
1Cdt: A Container Data Type LibraryKIEM-PHONG VO2B-112, AT&T Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.(kpv@research.att.com)SUMMARYCdt is a container data type library that provides a uniform set of operations to managedictionaries based on the common storage methods: list, stack, queue, ordered set/multiset,and unordered set/multiset. Both object description and storage method in a dictionarycan be dynamically changed so that abstract operations can be exactly matched withrun-time requirements for operational
exibility and performance. A study compar-ing Cdt and other popular container packages shows that Cdt performs best in bothcomputing time and space usage.KEYWORDS: set, map, stack, queue, list, dictionary, method, discipline, binary tree, hash table1 IntroductionA container data type is an interface to manage collections of objects. An instance of a containerdata type is a container or a dictionary. Common data structures to implement container data typesare: balanced trees[1, 2] , skip lists[3] , hash tables, stacks, queues and lists[4] . Each data structurehas unique operational and performance properties. Stack insertion is restricted to stack top andtakes constant time while balanced tree insertion takes logarithmic time. Container data types arepervasive in programs and there are many library packages to deal with them. Unix/C environmentsprovide functions tsearch, hsearch and lsearch to manipulate respectively objects stored in binarytrees, hash tables, and lists. C++ provides classes such as Map [5] and Set [6] to deal with orderedmaps and unordered sets. The C++ community is quickly converging on the Standard TemplateLibraries[7] , STL, a set of templates that include ordered and unordered maps and sets.Many container data type packages su�er from interface confusion and rigidity due to insu�cientdistinction between abstract container data types and their implementation data structures. Theworst example of this is the family of Unix/C search functions which, from function to function,present completely di�erent object management interfaces. All container data types support thesame abstract set of operations: insert, delete, search, and iterate. When such basic operationsemploy distinct and con
icting interfaces, programmers have a hard time learning and programmingthem. The newer STL templates alleviate this problem by establishing guidelines so that similaroperations in di�erent container data types use the same interfaces. However, container and objecttypes must be statically bound. This tends to reduce
exibility in object interpretation and matchingof dictionary types to usage contexts.

2Cdt is a library for managing dictionaries based on the common container data types: list, stack,queue, ordered set/multiset, and unordered set/multiset. Ordered sets and multisets are implementedwith splay trees[8] , unordered sets and multisets are based on hash tables with move-to-front collisionchains, and stacks, queues, and lists use doubly-linked lists. These implementation data structureswere chosen for their simplicity and good performance. In all cases, object storage requires aminimum overhead of two or three pointers per object.The Cdt programming interface possesses the following characteristics:� Dictionary operations use a uniform abstract interface independent of container types;� Container types are dynamically changeable, for example, to change a dictionary from beingunordered to being ordered;� Object attributes are described by a discipline structure that supports both set-like dictio-naries, i.e., dictionaries that identify objects by matching, and map-like dictionaries, i.e.,dictionaries that identify objects by keys;� Discipline structures are dynamically changeable, for example, to change how objects arecompared and identi�ed;� Iterations are done directly over objects, i.e., no separate iterator types [7] are needed; and� Sharing objects between dictionaries and sharing dictionaries between processes are supported.The remainder of the paper is organized as follows. Section 2 discusses dictionary types andoperations and gives examples of their usage. Section 3 presents a performance study showing thatCdt outperforms other common container packages and gives examples of performance tuning usingthe
exible Cdt interface. Section 4 summarizes and discusses the results.2 The Cdt libraryThe Cdt interface follows a method and discipline architecture [9, 10, 11] . Brie
y, a library in thisarchitecture provides:� A handle type to hold resources;� A set of abstract operations on handles and resources;� A set of methods, each of which encapsulates the semantics and performance characteristics ofa particular implementation of operations; and� A discipline type to de�ne resource attributes.

3Dictionary handle Abstract operationsObjects Dictionary opening and closingDictionary states Object insertion, deletion, search, iterationMethod and discipline changesDiscipline type Storage methodsKey, comparator, hasher Set, multisetConstructor, destructor Ordered set, ordered multisetEvent handler List, stack and queueFigure 1: A method and discipline architecture for CdtFigure 1 shows the method and discipline architecture as applied to Cdt. The left part showsthat dictionary handles hold states and objects (i.e., dictionary resources) whose attributes areparameterized by a discipline type. The right part shows that dictionaries, objects, and their typesare manipulated by abstract operations which are parameterized by storage methods. Thus, thetop part of Figure 1 is completely abstract, i.e., independent from concrete object types and storagemethods. Further, though not true in general of a method and discipline architecture, Cdt objectsare independent from storage methods and, to a large extent, from disciplines. This means thatboth methods and disciplines are dynamically changeable. Later examples show that this feature ofthe Cdt interface is a key for both
exible application construction and e�cient performance tuning.The below subsections discuss Cdt data types, operations, methods, and disciplines in detail. Inmany cases, this is done via examples based on code fragments from the program shown in Figure 2.This example application is similar to ones from the Map associative array paper [5] and the Unix/Cmanual page for the function tsearch(). The program reads tokens from the standard input stream,calculates the frequency count for each distinct token, and outputs tokens with their frequencies.Note that omitted from Figure 2 are a few inessential grammatical statements and the functionreadtoken() to parse the input stream into tokens.2.1 Dictionary data types and operationsLines 1-16 of Figure 2 show how the application imports and de�nes data types and functions. Theheader �le sfio.h [9] is included for I/O functions. The Cdt header �le cdt.h declares dictionary datatypes, values and functions. For example, it de�nes Dt t, the type of dictionary handles, Dtdisc t,the type for disciplines (Section 2.3), and Dtmethod t, the type for methods (Section 2.2). cdt.halso de�nes a type Void t* suitable for exchanging addresses between the library and applications.Void t is de�ned to be void for ANSI-C and C++ and char for older C
avors.The Token t data structure de�ned on lines 3-7 associates a token name and its frequency countfreq. Embedded in Token t is an object holder structure link of type Dtlink t (Section 2.3). This isan option provided by Cdt to allow an application to allocate both an object and its holder together,thus saving time and reducing memory fragmentation.

41. #include <sfio.h>2. #include <cdt.h>3. typedef struct4. { Dtlink_t link;5. int freq;6. char* name;7. } Token_t;8. Dtdisc_t Tkdisc = { offsetof(Token_t,name), -1, 0 };9. Token_t* newtoken(const char* s)10. { Token_t* tk;11. tk = malloc(sizeof(Token_t));12. tk->name = malloc(strlen(s)+1);13. strcpy(tk->name,s);14. tk->freq = 1;15. return tk;16. }17. main()18. { char* s;19. Token_t* tk;20. Dt_t* dt = dtopen(&Tkdisc,Dtset);21. while((s = readtoken(sfstdin)))22. { if((tk = dtmatch(dt,s)))23. tk->freq += 1;24. else dtinsert(dt,newtoken(s));25. }26. for(tk = dtfirst(dt); tk; tk = dtnext(dt,tk))27. sfprintf(sfstdout,"%s:\t%d\n", tk->str, tk->freq);28. } Figure 2: A program to count token frequencies

5The discipline Tkdisc on line 8 describes attributes of Token t to Cdt. Disciplines will be discussedin Section 2.3. The function newtoken() on lines 9-16 creates Token t structures from strings givenin the argument s. Note that omitted are the error checks for the malloc calls.2.1.1 Object manipulationLine 20 of Figure 2 shows that a dictionary dt is opened via the call dtopen(&Tkdisc,Dtset). Thiscall requires a discipline to describe objects and a method to manage them. In this case, the methodDtset (Section 2.2) is selected to keep unordered tokens in a hash table. A dictionary dt can beclosed with dtclose(dt) or cleared (i.e., deleting all objects without closing) with dtclear(dt).Line 22 shows the call dtmatch(dt,s) to search for a token matching a key s. Thus, dt is beingused as a map-like dictionary that maps token strings to their frequencies. Line 23 updates thefrequency of a token if the search succeeds. An object matching a given object obj can also be foundvia the call dtsearch(dt,obj).Line 24 shows the call dtinsert(dt,newtoken(s)) to create a new token via newtoken(s) and insertit into dt. The semantics of dtinsert() depends on the method in use. Here, Dtset is a set methodand will not allow repeated objects so an insertion will fail if there is already a matching object inthe dictionary. The dtmatch() test on line 22 guarantees that this dtinsert() call is safe.The call dtdelete(dt,obj) is used to delete from dt an object matching a given object obj. Notethat obj itself does not have to be in dt.A successful search, insert, or iterate operation de�nes a current object. This object can beobtained via the call dtfinger(dt). Normally, an object obj should not be changed while it is in adictionary as that may violate certain internal data structure. However, a frequent operation is tosearch for an object and update it. If such an update causes a change in how the object is identi�ed(e.g., changing its key), the call dtrenew(dt,obj) can be used to update the internal dictionarystructure. dtrenew() works only if obj is the current object of dt. Section 2.4 gives an example ofusing dtrenew().2.1.2 IterationObject iteration depends on a particular object ordering de�ned by the storage method in use.Cdt provides methods: Dtoset, Dtobag, Dtstack, Dtqueue, Dtlist, Dtset and Dtbag (Section 2.2).Dtoset and Dtobag order objects by comparison. Dtstack orders objects in the reverse order of theirinsertion. Dtqueue orders objects in the order of their insertion. Dtlist orders objects by their listpositions. Dtset and Dtbag �x the object ordering only at the point of use and may change thisordering on any search or insert operation.Line 26 of Figure 2 shows that a way to iterate over all objects in dictionary dt is:for(tk = dtfirst(dt); tk; tk = dtnext(dt,tk))

6The call dtfirst(dt) initializes tk to the �rst object in the dictionary dt. Then, dtnext(dt,tk)is continually called to iterate over all following objects. A noteworthy point here is that the aboveiteration loop does not require a separate iterator type; iteration is done directly over objects. It isalso possible to loop over objects in dt in reverse order via the below loop:for(tk = dtlast(dt); tk; tk = dtprev(dt,tk))When objects are ordered (Dtoset and Dtobag), dtnext(dt,tk) and dtprev(dt,tk) can be mean-ingful even if tk is not in the dictionary. For example, suppose that dt currently contains twotokens 1 and 3. Suppose that tk is a Token t representing 2, then even though dtsearch(dt,tk) fails,dtnext(dt,tk) and dtprev(dt,tk) will return 3 and 1 respectively.When many iterations over the same set of objects are required, the function call overhead fordtnext() and dtprev() can be signi�cant. A more e�cient iteration style uses the call dtflatten(dt)to get a linked list of objects then traverses and accesses objects via the macro calls dtlink(dt,link)and dtobj(dt,link). For example, suppose that link is of type Dtlink t*, lines 26-27 of Figure 2could be rewritten somewhat more e�ciently as:for(link = dtflatten(dt); link; dtlink(dt,link)){ tk = dtobj(dt,link);sfprintf(sfstdout, "%s:\t%d\n", tk->name, tk->freq);}The call dtwalk(dt,userf,data) provides yet another way to iterate over objects and executeactions. Function userf is called as (*userf)(dt,obj,data) for each object obj in dictionary dt. Awalk can be terminated early by having userf return a negative value.2.1.3 Viewpath of dictionariesMany applications keep multiple related dictionaries. For example, a language parser may maintaina dictionary of tokens per scope. In that case, it is useful to connect dictionaries in nested scopesso that a token search can start from an inner scope and continue to outer scopes. To do this, thecall dtview(dt1,dt2) can be used to establish a view from a dictionary dt1 to another dictionarydt2. Such connected views form a viewpath. dtview() disallows cycles in viewpaths to avoid in�niteloops. Note also that an application is responsible for ensuring that dictionaries on a viewpath arecompatible with respect to object identi�cation (Section 2.3).As an example of using viewpath, consider three dictionaries dt1, dt2, and dt3 on a viewpathfrom dt1 to dt2 to dt3. Suppose that dt1 contains tokens 1, 2, 3; dt2 contains tokens 2, 3, 4; and dt3contains tokens 1, 4, and 5. A search for 5 starting from dt1 will return the corresponding token indt3. An iteration starting from dt1 will see the sequence 1, 2, 3, 4 and 5 while an iteration startingfrom dt2 will see the sequence 2, 3, 4, 1 and 5. Note that objects in a dictionary already seen in anearlier dictionary are masked. In addition, objects in a dictionary are always seen together.

72.2 MethodsA storage method is of type Dtmethod t and de�nes how objects are managed. A dictionary canchange its method at run time to suit the computational style needed.2.2.1 Storage methodsThe Cdt storage methods are:� Dtset and Dtbag: These methods are based on hash tables with move-to-front collision chains.The move-to-front heuristic enables frequently accessed objects to migrate closer to the chainfronts. This works well in general and is particularly useful when an application selects a badhash function. Dtset stores unique objects while Dtbag allows repeatable objects (i.e., objectsthat compare equal). Repeatable objects are collected together so that any iteration alwayspasses over sections of them. Object accesses take expected O(1) time given a good hashfunction.� Dtoset and Dtobag: These methods store ordered objects in top-down splay trees. Dtoset storesunique objects while Dtobag allows repeatable objects. Object accesses take amortized O(logn)time where n is the number of objects. Amortization means that the time bound is not peroperation, but it is a bound over the average time per operation in a long enough sequenceof operations. This is �ne for Cdt because typical dictionaries are built from scratch so anysequence of operations is long enough. A splay tree also adapts well to biased access patternsbecause frequently accessed objects are migrated closer to the tree root.� Dtlist: This method stores repeatable objects in a doubly-linked list. An object is alwaysinserted in front of the current object which is either the list head or established by a search,insert, or iteration. Object insertion and deletion are done in O(1) time while a search maytake O(n) time where n is the current number of objects in the list.� Dtstack and Dtqueue: These methods store repeatable objects in stack and queue order. Ina stack order, objects are kept in reverse order of their insertion. In a queue order, ob-jects are kept in order of their insertion. In addition to the usual use of dtdelete(), thecall dtdelete(dt,NULL) is valid only for a dictionary dt using Dtstack or Dtqueue and deletesrespectively the stack top or the queue tail. Object insertion and deletion take O(1) time.2.2.2 Method changingSuppose that the token counting application requires that tokens are output in a lexicographic order.This can be accomplished in Figure 2 by simply switching method from Dtset to Dtoset before theoutput loop on lines 26-27:dtmethod(dt,Dtoset);

8Note that dt could have been opened with Dtoset to start with. However, doing so might be sub-optimal on certain types of input. During the construction phase only token existence is of interest,not their order and a search tree may consume more time than a hash table. Benchmark results inSection 3.4 show that mixing methods strategically can have signi�cant impact on performance.2.3 DisciplinesObject attributes such as key, comparator, hasher, constructor and destructor are de�ned in adiscipline structure of type Dtdisc t. A discipline structure must be speci�ed when a dictionary isopened and can be dynamically changed.2.3.1 Discipline structuretypedef struct{ int key; /* offset to key */int size; /* key length or type */int link; /* offset to object holder */Dtmake_f makef; /* object constructor */Dtfree_f freef; /* object destructor */Dtcompar_f comparf; /* key comparator */Dthash_f hashf; /* hash function */Dtmemory_f memoryf; /* memory allocator */Dtevent_f eventf; /* event handler */} Dtdisc_t; Figure 3: A discipline structureFigure 3 shows Dtdisc t. Dtdisc t.key and Dtdisc t.size identify a key of type Void t* used forobject comparison or hashing. Dtdisc t.key de�nes the o�set in an object where the key resides.Dtdisc t.size de�nes the key type: (1) a positive value for a byte array of given length, (2) a zerovalue for a null-terminated string, and (3) a negative value for a null-terminated string whose addressis stored at the key o�set.Objects are held in a dictionary via holders of type Dtlink t. When Dtdisc t.link is non-negative,holders are assumed to be embedded inside objects at the o�set de�ned by Dtdisc t.link. Otherwise,object holders will be allocated separately. For example, line 8 of Figure 2 de�nes Tkdisc.link tobe 0 indicating the position of the �eld Token t.link in Token t. If Tkdisc.link was negative, Cdtwould allocate holders separately. In that case, the �eld Token t.link would become redundant andcan be removed.Dtdisc t.makef and Dtdisc t.freef, if not NULL, specify functions to make and free objects whenthey are inserted or deleted. For example, a call dtinsert(dt,obj) will insert obj itself if makef isNULL. Otherwise, (*makef)(dt,obj,disc) is issued to construct a new object based on the prototypeobject obj. disc is the discipline in use.

9Dtdisc t.comparf, if not NULL, is called as (*comparf)(dt,e1,e2,disc) to compare two elementse1 and e2. A negative, zero, or positive return value indicates respectively that e1 is less than,equal, or larger than e2. If Dtdisc t.comparf is NULL, keys are compared by one of the ANSI-Cfunctions memcmp() or strcmp(), with a particular choice depending on Dtdisc t.size. For example,in Figure 2, strcmp() will be used since Tkdisc.comparf is NULL and Tkdisc.size is negative.Dtset and Dtbag are based on hash tables and require key hashing, i.e., a mapping of keysto unsigned integer values. Though this mapping does not have to be one-to-one, Cdt requiresthat keys compared equal must have equal hash values. If Dtdisc t.hashf is not NULL, it speci�es afunction called as (*hashf)(dt,key,disc) to compute from key a hash value of type unsigned int.If Dtdisc t.hashf is NULL, an internal string hashing function is used.By default, object holders and other internal structures are allocated and freed via the ANSI-Cfunctions malloc() and free(). When memoryf is de�ned, it is used to allocate and free memoryin calls of the form (*memoryf)(dt,area,size,disc). The arguments area and size are treatedsimilarly to the corresponding arguments of the ANSI-C function realloc(). By de�ning appropriateDtdisc t.memoryf functions, dictionaries can be built in any type of memory. Accesses to a dictionaryalways start from its managing area which shall be the �rst area to be allocated via a memoryf call.This fact could be used to build dictionaries in shared or persistent memory (Section 2.4.2)During dictionary operations, certain events may be generated. If Dtdisc t.eventf is not NULL,it will be called as (*eventf)(dt,e,v,disc) to announce an event e of type int and a correspondingvalue v of type Void t*. A negative return value from eventf causes the on-going operation toterminate. The available events are:� DT OPEN: dt is being opened. A positive return value from eventf indicates that dt shares mem-ory with another dictionary, say odt. In this case, eventf should also return in *(Void t**)vthe dictionary management area of odt (see the memoryf discussion above) so that dt can beinitialized with it.� DT CLOSE: dt is being closed.� DT DISC: The current discipline is being changed to a new discipline (Dtdisc t*)v. If a dic-tionary does not want change disciplines, it can prevent this by having an event functionreturning a negative value on this event.� DT METH: The current method is being changed to a new method (Dtmethod t*)v. As withdisciplines, if a dictionary does not wish its method to be change, it can install an eventfunction that returns a negative value on this event.2.3.2 Discipline changingTreatment of objects can be dynamically changed by changing the disciplines that describe them.For example, suppose that the token counting application of Figure 2 requires tokens to be output inorder of their frequencies. Figure 4 shows the necessary code. Lines 1-6 de�ne a function fcompare()

101. int fcompare(Dt_t* dt, Void_t* t1, Void_t* t2, Dtdisc_t* disc)2. { int d;3. if((d = ((Token_t*)t1)->freq - ((Token_t*)t2)->freq) != 0)4. return d;5. else return strcmp(((Token_t*)t1)->name,((Token_t*)t2)->name);6. }7. Tkdisc.key = Tkdisc.size = 0;8. Tkdisc.comparf = fcompare;9. dtdisc(dt,&Tkdisc,DT_SAMECMP|DT_SAMEHASH);10. dtmethod(dt,Dtoset); Figure 4: Order tokens by frequencyto compare tokens �rst by frequencies, then by names. Note that fcompare() requires entire tokenstructures, not just the Token t.name �elds. Lines 7-10 de�ne code to be inserted before the outputloop on lines 26-27. Tkdisc.key and Tkdisc.size are set to 0 so that Token t objects will be passedto fcompare() per its requirement. The dtdisc() call on line 9 announces the discipline change. The
ag DT SAMECMP indicates that objects remain distinct with the new comparator. Thus, no checkfor new duplicates will be performed. Similarly, the
ag DT SAMEHASH indicates that hash values forobjects remain the same so objects will not be rehashed. These two
ags save computation thatwould have been wasted anyway in the subsequent call dtmethod(dt,Dtoset) on line 10 which changesthe storage method to Dtoset and reorders all objects.2.4 Object and dictionary sharingWith proper use of disciplines, objects can be shared between dictionaries. Further, such dictionariesmay even be in di�erent processes.2.4.1 Sharing objects among dictionariesAs an example of object sharing, consider an event processing system in which events arrive randomlybut are processed in a priority order. Priorities of events are allowed to be updated dynamically.Figure 5 shows how to do this with two dictionaries, pdt, for processing events by priorities and edt,for processing events by values.Lines 1-6 de�ne the event type. Since the same event must appear in two di�erent dictionaries,two object holder �elds elink and plink are de�ned to be used respectively in the two dictionaries,pdt and edt. Though the link �elds could have been left out so that the dictionaries will allocateholders separately from the event objects, doing it this way helps save memory allocation overhead.Lines 7-21 de�ne disciplines and discipline functions. Discipline Pdisc of pdt uses the comparatorpcompare() to order events �rst by reverse priority values then by event values. In this way, events

111. typedef struct2. { int e; /* event type */3. int p; /* priority */4. Dtlink_t elink; /* holder in edt */5. Dtlink_t plink; /* holder in pdt */6. } Event_t;7. int pcompare(Dt_t* dt, Void_t* e1, Void_t* e2, Dtdisc_t* disc)8. { if(((Event_t*)e2)->p != ((Event_t*)e1)->p)9. return ((Event_t*)e2)->p - ((Event_t*)e1)->p;10. else return ((Event_t*)e1)->e - ((Event_t*)e2)->e;11. }12. Void_t* emake(Dt_t* dt, Void_t* e, Dtdisc_t* disc)13. { Event_t* newe = malloc(sizeof(Event_t));14. newe->p = ((Event_t*)e)->p;15. newe->e = ((Event_t*)e)->e;16. return (Void_t*)newe;17. }18. void efree(Dt_t* dt, Void_t* e, Dtdisc_t* disc)19. { free(e); }20. Dtdisc_t Pdisc = { 0, 0, offsetof(Event_t,plink), 0, 0, pcompare };21. Dtdisc_t Edisc = { 0, sizeof(int), offsetof(Event_t,elink), emake, efree };...22. Dt_t* edt = dtopen(&Edisc,Dtset);23. Dt_t* pdt = dtopen(&Pdisc,Dtoset);24. for(;;)25. { Event_t *es, *e = readevent();26. if((es = dtsearch(edt,e)))27. { es = dtsearch(pdt,es);28. es->p = e->p;29. dtrenew(pdt,es);30. }31. else dtinsert(pdt,dtinsert(edt,e));32. if((e = dtfirst(pdt)))33. { ...process event e...34. dtdelete(pdt,e);35. dtdelete(edt,e);36. }37. } Figure 5: Sharing event objects between two dictionaries

12with higher priorities will be processed �rst. Discipline Edisc of edt speci�es the value of an eventas its key. Objects are allocated and freed only in edt via the functions emake() and efree().Lines 22-23 show dictionary creation. Dictionary pdt uses method Dtoset because it needs toprioritize events. Dictionary edt uses method Dtset for fast search.Lines 24-37 show the event processing loop. Line 25 reads an event e. Lines 26-30 check to seethere is an event es that matches e. If so, the priority of es is updated and dtrenew(pdt,es) is calledto update its position in pdt. Otherwise, line 31 adds a new event. Note that event insertion mustbe done �rst in edt because the new event structure is allocated there.Lines 32-36 process the highest priority event and deletes it from the event set.2.4.2 Sharing dictionaries across processesIn the above example, edt and pdt can be shared from di�erent processes via shared memory. Doingthis requires a discipline function memoryf that allocates from shared memory regions with the samebase addresses across processes (because objects are accessed via pointers), and an event handlereventf that takes special action on the event DT OPEN.Figure 6 shows the de�nition of an event handler evhandler(). On line 3, evhandler() usesshared managing area(disc) (some application-speci�c function) on the event DT OPEN to see if there isalready a shared managing area (Section 2.3.1). In that case, evhandler() sets *v to point to this areathen returns with a value 1. On receiving a positive return value from the event handler, dtopen()uses the given data to reinitialize the new dictionary instance. If no shared management area exists,evhandler() returns 0, causing dtopen() to call disc->memoryf to create a new management area.Also shown in Figure 6 are the new de�nitions of the disciplines Pdisc and Edisc and disciplinefunctions emake() and efree() based on memoryf. A subtlety here is that the shared managing areaof the collective dictionary edt must be separate from that of the collective dictionary pdt becauseedt and pdt are separate dictionaries. This means that Edisc and Pdisc must be extended to keepprivate data about their managing areas. Below is a common technique to extend Dtdisc t to anextended type Evdisc t suitable for this example. C casting rules allow pointers to Dtdisc t andEvdisc t to be interchangeable.typedef struct{ Dtdisc_t disc;... data for managing area ...} Evdisc_t;The above examples show how Cdt supports sharing objects among dictionaries and sharingdictionaries among processes. Left undiscussed are the important issues of how to allocate sharedmemory keeping the same virtual addresses and how to manage concurrency. Both of these issuesare beyond the scope of Cdt but there are relevant tools such as Vmalloc [11] for generalized memoryallocation, and standard operating system facilities (e.g., semaphores) for negotiating safe concurrentaccesses to shared memory.

131. int evhandler(Dt_t* dt, int ev, Void_t* v, Dtdisc_t* disc)2. { Void_t* sma;3. if(ev == DT_OPEN && (sma = shared_managing_area(disc)))4. { *((Void_t**)v) = sma;5. return 1;6. }7. else return 0;8. }9. Void_t* emake(Dt_t* dt, Void_t* e, Dtdisc_t* disc)10. { Event_t* newe;11. newe = (*disc->memoryf)(dt,(Void_t*)0,sizeof(Event_t),disc);12. newe->p = ((Event_t*)e)->p;13. newe->e = ((Event_t*)e)->e;14. return (Void_t*)newe;15. }16. void efree(Dt_t* dt, Void_t* e, Dtdisc_t* disc)17. { (*disc->memoryf)(dt,e,0,disc);18. }19. Evdisc_t Pdisc = { { 0, 0, offsetof(Event_t,plink),20. (Dtmake_f)0, (Dtfree_f)0, pcompare,21. (Dthash_f)0, allocator, evhandler22. }23. ...Pdisc shared memory data...24. };25. Evdisc_t Edisc = { { 0, sizeof(int), offsetof(Event_t,elink),26. emake, efree, (Dtcompar_f)0, (Dthash_f)0,27. allocator, evhandler28. }29. ...Edisc shared memory data...30. };Figure 6: Disciplines for sharing event dictionaries

143 PerformanceAmong the various container data types, ordered and unordered sets are most common and alsohave most variation in implementation quality. This section presents results from a performancestudy that compared various set and map container data type packages.3.1 MethodologyThe token counting application in Figure 2 was used as a benchmark. To minimize implementationvariation, a single program was written with compile time options to switch implementations basedon the Cdt methods Dtoset and Dtset, the Unix/C package tsearch, the C++ classes Set andMap, and the STL templates map and hashmap (ftp://butler.hpl.hp.com/stl, release 10/31/1995).For uniformity, all implementations used the same string comparison function and, for hash tablemethods, the same hash function.A variety of input �les were used:� ps: PostScript source of a technical paper,� src: an archive of C source code,� kjv: a King James version of the Bible,� mbox: a personal mail archive,� host: a database mapping IP addresses to machine hosts, and� city: a database mapping cities to area codes.File Size Tokens Distinct Lengthps 1,989K 335,997 11,912 38.00src 1,169K 149,886 27,964 16.40kjv 4,441K 822,587 33,916 8.01mbox 2,701K 419,197 49,903 9.83city 1,349K 81,206 69,610 18.17host 2,722K 449,554 102,566 16.71Table 1: Summary of benchmark input �lesTable 1 summarizes input �le statistics: �le size in K-bytes, total number of tokens, number ofdistinct tokens, and average length of a token. These input �les represent a wide variety of dataranging from ps which has relatively few distinct tokens to city which has about 85% distinct tokens.Tokens in most input �les appear more or less in random order. However, tokens in host and city arehighly ordered. Thus, this set of input data provides a realistic testbed for checking the performanceof the various packages.

15Program Sizehashmap 179,988Set 146,632map 145,892Map 83,795tsearch 66,744Dtset+Dtoset 73,712Table 2: Sizes of benchmark programsThe experiment was performed on a SPARC-20 running SUN OS5.4. The Cdt version of thetest program combined Dtset and Dtoset with invocation switches for method selection. Table 2shows executable code sizes of various versions. The hashmap, map and Set versions were about twiceas large as the others. Compiling main()fg with C and C++ showed that C++ compilation onlyadded about 5K to the resulting executable code. Thus, the hashmap, map and Set versions werelarge because of the implementation of these packages and not the language.Program execution was done at night on a quiescent machine. Each time measurement wasobtained by running the same test 9 times, computing total cpu and system times for each run,discarding the top two and bottom two scores to reduce variance, then averaging the remaining �vescores. Space measurements were done by calling sbrk(0) before any dictionary was opened andafter all output was done and computing di�erences in the return values.3.2 Unordered set packagesThe container packages for unordered sets and maps considered here were:� hashmap: The STL hashmap template. This uses hash tables with collision chains.� Set: The Set class. This uses hash tables with chaining to resolve collisions.� Dtset: Method Dtset of Cdt. This uses hash tables with move-to-front collision chains.Package ps src kjv mbox city hosthashmap 681,802 565,586 4,037,962 1,839,234 291,828 2,279,318Set 328,199 130,870 799,337 385,711 35,410 384,460Dtset 324,085 122,085 788,681 369,597 11,602 346,992Table 3: Comparison counts of unordered set packagesTable 3 shows comparison counts. hashmapwas worst, with comparison counts many times higherthan that of Set and Dtset. Dtset exploited the assertion that equal tokens must have the same hashvalues to minimize comparisons. Judging from its low comparison counts, Set might have used thesame strategy as Dtset. However, Dtset still did better, thanks to its move-to-front collision chains.

16
Seconds

S: C++ Set
H: STL hashmap

D: Dtset

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

ps src kjv mbox city host

S.S..
..

..
..

..
..

..
..

..
..

..
..

..S.S.S.S

H.H..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..H. .H.H..

..
..

..
..

..
..

..
..

..
..

..H

D.D.D.D.D.DFigure 7: Time performance of unordered set packages
Kbytes

S: C++ Set
H: STL hashmap

D: Dtset

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

ps src kjv mbox city host

S.S.S. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

.S..
..

..
..

..
..

..
..

..
..

..
..

..
..S.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..S

H.H.H.H.H. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

.H

D.D.D.D. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

.D. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

.D

Figure 8: Space usage of unordered set packages

17Figure 7 shows time performance for the unordered set packages. Poor comparison counts directlytranslated to poor computing time. hashmap was worst, sometimes up to a factor of 3 slower thanDtset. Dtset was fastest among the three packages.Figure 8 shows space usage. Dtset and hashmap used about the same amount of space. Set oftenused twice as much space as the other packages.3.3 Ordered set packagesAs discussed in Section 2.2.2, the token counting example may require tokens to be output in order.A natural solution is to use container packages that maintain ordered tokens. The container packagesfor ordered sets and maps considered here were:� Map: The Map class. This uses AVL balanced trees.� map: The STL map template. This uses red-black balanced trees.� tsearch: The tsearch function in SUN OS 5.4. This uses plain binary trees.� Dtoset: Method Dtoset of Cdt. This uses top-down splay trees.Package ps src kjv mbox city hostMap 14,267,464 5,857,168 28,141,722 15,746,680 3,840,718 22,963,206map 10,434,097 4,553,264 26,118,542 13,229,379 3,006,238 15,657,198tsearch 7,313,655 3,532,762 13,525,549 7,396,212 12,189,319 19,749,995Dtoset 1,636,228 1,773,115 8,592,385 5,424,683 1,630,525 2,567,979Table 4: Comparison counts for ordered set packagesTable 4 shows comparison counts. Except for city and host, tsearch performed well despiteits simplistic data structure. This was because tokens appeared randomly in most datasets so theconstructed binary trees were naturally balanced. By contrast, tokens were highly ordered in cityand host so the corresponding trees were skewed causing bad performance for tsearch. The balancedtree packages Map and map ignored any ordering property in the data and used about the same numberof comparisons with map having a slight edge. The splay tree approach in Dtoset adapted well todata biases and helped Dtoset to win in all cases.Figure 9 shows time performance for the ordered set packages. map was sometimes slower thanMap even though it had better comparison counts, perhaps due to some hidden bookkeeping costs inmap. Dtoset was fastest among the ordered set packages, sometimes by a factor of two or three. Infact, comparing with Figure 7 showed that Dtoset was only slower than Dtset and was comparablewith or faster than the other unordered set packages.Figure 10 shows memory usage. tsearch and Map used more memory than other packages. Map'sextra space was due to the balancing data. The cause for tsearch's poor memory usage was unclear

18
Seconds

K: C++ Map
M: STL map

T: tsearch
C: Dtoset

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

ps src kjv mbox city host

K.K..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.K..................K.............K..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
.K

M.M..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..M.............................M.............................M..

..
..

..
..

..
..

..
..

..
..

..
..

.M

T.T..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.T.T.T..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..T

C.C..
..

..
..

..
..

..
..

..
..

..
..

..
..C.C.C.CFigure 9: Time performance of ordered set packages

Kbytes

K: C++ Map
M: STL map

T: tsearch
C: Dtoset

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

ps src kjv mbox city host

T.T.T.T. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .T..
..

..
..

..
..

..
..

..
..

..
..

.T

K.K.K.K. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .K..
..

..
..

..
..

..
..

..
..

..
..

.K

M.M.M.M.M. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

.M

C.C.C.C.C. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

.C

Figure 10: Space usage of ordered set packages

19although a memory trace using Vmalloc revealed a mysterious extra allocation after each allocationof a holder. Finally, comparing Figure 8 and Figure 10 revealed that the Cdt hash-based methodDtset only used slightly more space than the tree-based methods Dtoset and map. In fact, it usedless space than tsearch and Map.3.4 Performance tuning with CdtThe Cdt program used in the discussed benchmark tests was deliberately left suboptimal so that afair comparison in terms of memory allocation could be made with the other packages. Cdt disciplinecould be used to further tune the code to reduce space usage and improve execution time.1. typedef struct2. { Dtlink_t link;3. int freq;4. char name[1];5. } Token_t;6. Dtdisc_t Tkdisc = { offsetof(Token_t,name), 0, 0};7. Token_t* newtoken(char* s)8. { Token_t* tk;9. tk = malloc(sizeof(Token_t)+strlen(s));10. strcpy(tk->name,s);11. tk->freq = 1;12. } Figure 11: Discipline to reduce memory allocation for token countingFigure 11 shows a de�nition of Token t and a corresponding newtoken() function that requiresonly a single malloc() call to allocate both the Token t structure and the token name. This avoidsmalloc() headers and reduces fragmentation. Note that Tkdisc.size is set to 0 to indicate thatToken t.name is now a null-terminated array of characters and not a null-terminated string as inFigure 2. Lines 3-16 of Figure 2 should be replaced by Figure 11 for this optimization.Tables 5.a and 5.b compare the code in Figure 2 (Dtoset and Dtset) and the new code (Dtoset+and Dtset+). Though time saving is small, space saving can be up to 20%. This is signi�cant inmodern information systems that routinely manipulate gigabytes of data.Matching methods and computational needs can signi�cantly enhance performance. Consider theproblem of printing tokens in order as discussed in Section 2.2.2. For a dataset with many repeatedtokens, a combined strategy, Dtset+Dtoset, of constructing the token dictionary with Dtset andsorting it with Dtoset before printing can improve performance over the sole use of Dtoset becauseDtset is faster than Dtoset. Table 6.a shows that Dtset+Dtoset substantially improves comparisoncounts over the sole use of Dtoset, up to 70% for kjv. Except for city and host which contain mostlydistinct tokens, Table 6.b shows that time measurements improved accordingly.

20Package ps src kjv mbox city hostDtoset 880 1,432 1,440 2,232 3,680 5,240Dtoset+ 744 1,184 1,136 1,768 3,096 4,360Dtset 912 1,496 1,584 2,360 3,944 5,496Dtset+ 776 1,248 1,296 1,896 3,352 4,616a. Space usage (in K-bytes)Package ps src kjv mbox city hostDtset 4.32 3.59 11.01 8.20 6.49 10.78Dtset+ 4.23 3.32 10.54 7.58 6.23 10.24Dtoset 5.33 5.53 21.27 15.85 8.92 13.76Dtoset+ 5.14 5.13 19.01 14.05 8.07 12.72b. Cpu+system times (in seconds)Table 5: Performance when disciplines are used to tailor object typesPackage ps src kjv mbox city hostDtoset 1,636,228 1,773,115 8,592,385 5,424,683 1,630,525 2,567,979Dtset+Dtoset 498,090 608,173 1,307,352 1,282,181 1,420,223 2,013,692a. Comparison countsPackage ps src kjv mbox city hostDtoset 5.33 5.53 21.27 15.85 8.92 13.76Dtset+Dtoset 4.83 5.12 12.50 11.55 12.73 18.38b. Cpu+system times (in seconds)Table 6: Performance when methods are matched to usage contexts

21Performance variation due to input data as shown in Table 6.b is typical in practical applications.Input data often come with a variety of special characteristics. Rarely can e�cient algorithms bedevised that adapt smoothly and e�ciently to data diversity. Thus, a good design principle is toimplement the best default method of computation but, if possible, also let users have a choice inpicking and combining methods to optimize based on speci�c knowledge of input data. Cdt enablesapplications to do this in the context of using container data types. In fact, to facilitate datacollection, the benchmark program was written to allow strategy selection at invocation time. It isnot easy to do the same with the other container packages.4 DiscussionThis paper introduced Cdt, a container data type library. The library provides the common storagemethods: set, multiset, ordered set, ordered multiset, list, stack and queue which are often seen onlyin isolated packages. Based on a method and discipline architecture, Cdt achieves an interface thatkeeps orthogonal the three main design dimensions: dictionary operations, storage methods, andobject descriptions. This is a goal attempted but not quite achieved by other recent work on reusablecomponents for containers, including the C++ Standard Template Libraries.Contemporary container libraries tend to tie interfaces closely to implementation methods. Atworst, this leads to divergent interfaces for the same basic operations as shown by the Unix/Csearch functions. Even with better interface design as in the STL templates, the close tie betweenimplementation techniques and abstract interfaces can reduce generality. For example, instead ofa general container template that can be parameterized by storage methods, STL provides variouscontainer templates such as hashmap and map that are strongly bound to the minimal object require-ments of the respective underlying data structures. As a result, although hashmap and map providesimilar functions they require objects with di�erent type speci�cations. This means that there is nosimple way to convert a container from a hashmap to a map (and vice versa) in the style discussed inSection 3.4. Cdt avoids such interface limitations by making the dictionary type and accompanyingdictionary operations completely abstract and parameterizable by methods and disciplines, whichare orthogonal and dynamically mutable dictionary attributes.Cdt disciplines are run-time structures used to de�ne object attributes such as keys, comparison,hashing, and allocation. By allowing both comparators and keys, Cdt generalizes set-like and map-like container packages and provides a unifying interface to manage such containers. Using run-timestructures for type de�nition means losing certain services common to C++ templates such asstatic type checking and inlining of comparison or hash functions. The loss of static type checkingis balanced by the added programming
exibility as shown throughout the paper. In particular,examples showed how disciplines can be used to share objects in di�erent dictionaries based ondistinct object semantics. Further, dictionaries can be built in shared or persistent memory, givensome suitable memory allocation method. The e�ciency loss resulting from no inlining of objectcomparisons is compensated by the advantage of having a single library code image and consequentcode size reduction as exempli�ed in Table 2. A single code image also enables Cdt to be used as

22a dynamically loadable shared library. In any case, for applications such as the discussed tokencounting example that require relatively complex objects, any function call overhead to comparetwo objects would be negligible relative to the cost of the comparison itself.A performance study showed that Cdt methods Dtset and Dtoset performed as well as or betterthan their counterparts in other C and C++ container libraries. Cdt methods consistently usedabout the same or less space than other packages while they could be faster by a factor of two orthree depending on the particular packages. The use of splay trees and hash tables with move-to-front collision chains as implementation data structures enabled Cdt ordered set and unordered setmethods to perform well in a wide range of input data. Among all studied container packages, theCdt unordered set method Dtset was fastest, followed by Cdt ordered set method Dtoset. Asidefrom better data structure implementation, the
exible Cdt interface allows performance tuning ata level beyond other packages. Examples were given showing how signi�cant performance gains canbe made with selective matching of disciplines and methods to usage contexts.Cdt is a descendant of Libdict [12] . It is a mature library and has been used in many applicationsranging from language processors and graph manipulation systems to large-scale information pro-cessing and event handling communication systems. Some of these applications routinely manipulatedictionaries with hundreds of thousands of objects.AcknowledgementCdt evolved over many years and bene�ted from advice and demands of many friends and users. Inparticular, I'd like to thank Glenn Fowler, David Korn, and Stephen North who patiently survivedseveral generations of interface changes.Code availabilityCdt source code can be obtained from http://www.research.att.com/sw/tools/cdt/.

23References[1] G.M. Adelson-Velskii and E.M. Landis. An Algorithm for the Organization of Information.Soviet Math. Doklady, 3:1259{1263, 1962.[2] Robert Sedgewick. Algorithms, 2nd Edition. Addison-Wesley, 1988.[3] T. Papadakis. Skip Lists and Probabilistic Analysis of Algorithms. Uni. of Waterloo, 1993.[4] Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.Addison-Wesley, 1973.[5] Andrew R. Koenig. Associative Arrays in C++. In Proceedings of Summer 1988 USENIXConference, pages 173{186, 1988.[6] Unix System Laboratories. USL C++ Standard Components Programmer's Reference. AT&Tand Unix System Laboratories, Inc., 1990.[7] David R. Musser and Atul Saini. STL Tutorial and Reference Guide. Addison-Wesley, 1995.[8] D. Sleator and R.E. Tarjan. Self-Adjusting Binary Search Trees. JACM, 32:652{686, 1985.[9] David G. Korn and Kiem-Phong Vo. SFIO: Safe/Fast String/File IO. In Proc. of the Summer'91 Usenix Conference, pages 235{256. USENIX, 1991.[10] Kiem-Phong Vo. Writing Reusable Libraries with Disciplines and Methods. In PracticalReusable UNIX Software. John Wiley & Sons, 1994.[11] Kiem-Phong Vo. Vmalloc: A General and E�cient Memory Allocator. Software Practice &Experience, 26:1{18, 1996.[12] Stephen C. North and Kiem-Phong Vo. Dictionary and Graph Libraries. In Proc. of the Winter'93 Usenix Conference, pages 1{11. USENIX, 1993.

