Cdt: A General and Efficient Container Data Type Library

Kiem-Phong Vo

ATET Labs
600 Mountain Ave
Murray Hill, NJ 07974
kpv@research.att.com

Abstract

Cdt is a container data type library that
provides a uniform set of operations to
manage dictionaries based on the common
storage methods: list, stack, queue, set and
ordered set. It is implemented on top of
linked lists, hash tables and splay trees.
Applications can dynamically change both
object description and storage methods so
that abstract operations can be exactly
matched with run-time requirements to op-
timize performance. This paper briefly
overviews Cdt and presents a performance
study comparing it to other popular con-
tainer data type packages.

1 Introduction

A data structure to store objects is a container data
type and an instance of it is a container or a dic-
tionary. Common examples of container data types
are: balanced and splay trees[1, 9, 10], skip lists[8],
hash tables, stacks, queues and lists[2]. Each data
type has unique operational and performance prop-
erties. For example, inserting an object into a stack
is restricted to the stack top and takes constant time
while inserting an object into a set of ordered ob-
jects represented by a balanced tree takes logarith-
mic time.

Container data structures are pervasive in programs
and there are many library packages to deal with
them. Most Unix/C environments include the func-
tions tsearch, hsearch, 1search, and bsearch to ma-
nipulate respectively objects stored in binary trees,
hash tables, arrays and sorted arrays. C++ provides
classes such as Map [3] and Set [5] to deal with or-
dered maps and unordered sets. Recently, a new set
of C++ templates for ordered and unordered maps
and sets called the Standard Template Library[6] has
become increasingly popular.

Two common problems with existing container data
type packages are interface confusion and perfor-
mance deficiency. At the interface level, other than
similar names, the Unix/C search functions have lit-
tle else in common in how they manage objects. This
is disconcerting because all container data types sup-
port the same basic set of abstract operations: in-
sert, delete, search, and iterate. When such oper-
ations are realized via distinct interfaces and con-
flicting conventions, programmers have a hard time
learning and programming them. The STL tem-
plates alleviate this problem by establishing inter-
face guidelines for similar operations in different con-
tainer data types. However, it is difficult with the
STL templates to manage objects in multiple con-
texts because container and object types must be
statically bound together to form dictionaries. Aside
from interface issues, we shall see later that not only
the older Unix/C packages but also the more modern
C++ packages do not always perform well in both
time and space usage.

This paper introduces Cdt, a C library for managing
dictionaries based on common container data types:
list, stack, queue, ordered set, ordered multiset, un-
ordered set and unordered multiset. Cdt is unique
among container packages in possessing the follow-
ing characteristics:

e All dictionaries are manipulated via a uniform
set of operations regardless of storage methods
(i.e., container data types);

e Storage methods can be dynamically changed,
for example, to turn an unordered dictionary to
an ordered one;

e Object attributes are described in discipline
structures that support both set-like dictionar-
ies, i.e., dictionaries that identify objects by
matching, and map-like dictionaries, i.e., dic-
tionaries that identify objects by keys;

dynamically

e Discipline structures can be

changed, for example, to change object com-
parators;

e Objects can be in multiple dictionaries, includ-
ing dictionaries in shared memory; and

e Iterations are done directly over objects, i.e., no
separate iterator types [6] needed.

Cdt uses splay trees for ordered sets and multi-
sets, hash tables with move-to-front collision chains
for unordered sets and multisets, and doubly linked
lists for stacks, queues, and lists. The overall in-
terface follows a method and discipline architec-
ture [4, 11, 12]. Briefly, a library in this architec-
ture provides handles and operations to hold and
manipulate resource, methods to parameterize the
semantics and performance characteristics of opera-
tions, and a discipline structure type that applica-
tions can use to define resource attributes and acqui-
sition. Applying this architecture to Cdt, a handle is
a dictionary and operations include handle creation,
object insert, search, delete, etc. A Cdt method
maps to a container data type while a discipline lets
applications define information and operations that
pertain directly to objects such as key type and ob-
ject allocation.

2 The Cdt library

Objects are managed via three data types: dictio-
nary, discipline, and method.

e Dictionary: A dictionary stores objects.

e Method: A dictionary has a method to define
how objects are stored within it. Available
methods are: Dtset for unordered sets, Dtbag
for unordered multisets, Dtoset for ordered sets,
Dtobag for ordered multisets, Dtlist for doubly
linked lists, Dtstack for stacks and Dtqueue for
queues.

e Discipline: Each dictionary has an application-
defined discipline structure that specifies object
comparison, hashing, allocation, and event an-
nouncement.

2.1 Dictionary operations

This section briefly overviews the main functions in
the Cdt library.

Dt_t* dtopen(Dtdisc_t* disc, Dtmethod_t* meth)
creates a dictionary of type Dt_t with the given
discipline disc and method meth. A dictionary
dt is closed or cleared with dtclose(Dt_t* dt) and
dtclear (Dt_t* dt).

Functions Void_t* dtsearch(Dt_t* dt, Void_t* obj)
and Void_t* dtmatch(Dt_t* dt, char* key) search
the dictionary dt for an object matching respectively
obj or key. Such a matched object becomes a cur-
rent object with special semantics in certain opera-
tions discussed below. Void_t is defined as void for
ANSI-C or C++ and char for older C variants so
it is suitable for exchanging addresses between the
library and applications.

Void_t* dtinsert(Dt_t* dt, Void_t* obj) inserts an
object obj into the dictionary dt. Methods Dtset
and Dtoset allow obj to be inserted only if there is
no matching object already in dt. Other methods
always insert a new object because they allow in-
sertion of equal objects. Method Dtstack inserts ob-
jects at stack top. Method Dtqueue inserts objects at
queue tail. Method Dtlist inserts an object before
the current object of dt if there is one, or at list head
otherwise. An inserted or found object becomes the
new current object.

Void_t* dtdelete(Dt_t* dt,Void_t* obj) is used to
delete from dt an object matching obj if one exists.
dtdelete(dt,NULL) works with Dtstack and Dtqueue
and removes respectively the top or head object.

Object iteration depends on a particular object or-
dering defined by the storage method in use. For
Dtoset and Dtobag, objects are ordered by object
comparisons. For Dtstack, objects are ordered in
the reverse order of insertion. For Dtqueue, objects
are ordered in the order of insertion. For Dtlist,
objects are ordered by their list positions. For Dtset
and Dtbag, the object order is defined at the point
of use and may change on any search or insert oper-
ation.

There are many ways to iterate over objects in a
dictionary. The below loop iterates forward over all
objects in a dictionary dt:

for(o = dtfirst(dt); o; o = dtnext(dt,o))

Alternatively, the below loop can be used to iterate
backward over objects:

for(o = dtlast(dt); o; o = dtprev(dt,o))

2.2 Storage methods

A storage method is of type Dtmethod_t and defines
how objects are manipulated. Cdt provides the fol-
lowing storage methods:

e Dtset and Dtbag: These methods are based on
hash tables with move-to-front collision chains.
Dtset stores unique objects while Dtbag allows
repeatable objects (i.e., objects that compare
equal). Repeatable objects are collected to-
gether so that any iteration always passes over
sections of them. Object accesses take expected
O(1) time given a good hash function.

e Dtoset and Dtobag: These methods store or-
dered objects in top-down splay trees. Dtoset
stores unique objects while Dtobag allows re-
peatable objects. Object accesses take amor-
tized O(logn) time. Splay trees adapt well to
biased access patterns because frequently ac-
cessed objects migrate closer to tree roots.

e Dtlist: This method stores repeatable objects
in a doubly-linked list. An object is always in-
serted in front of the current object which is
either the list head or established by a search,
insert, or iteration. Object insertion and dele-
tion are done in O(1) time.

e Dtstack and Dtqueue: These methods store re-
peatable objects in stack and queue order. In
a stack order, objects are kept in reverse order
of their insertion. In a queue order, objects are
kept in order of their insertion. Object insertion
and deletion are done in O(1) time.

2.3 Disciplines

A discipline structure is of type Dtdisc_t. Applica-
tions use disciplines to define object attributes such
as comparison, hashing, and allocation.

Figure 1 shows Dtdisc_t. Dtdisc_t.key and
Dtdisc_t.size identify a key of type Void_t* used
for object comparison or hashing. Dtdisc_t.key de-
fines the offset in an object where the key resides.
Dtdisc_t.size defines the key type. A positive value
means that the key is a byte array of given length,
a zero value means that the key is a null-terminated
string, and a negative value means that the key is
a null-terminated string whose address is stored at
the key offset.

typedef struct

{ int key; /* key offset */
int size; /* key size/type */
int link; /* object holder */
Dtmake_f makef; /* object makef */
Dtfree_f freef; /* object freef */
Dtcompar_f comparf; /* comparator */
Dthash_f hashf; /* hash function */
Dtmemory_f memoryf; /# allocator */
Dtevent_f eventf; /* event handler */

} Dtdisc_t;

Figure 1: A discipline structure

Objects are held in a dictionary via holders of type
Dtlink t. If Dtdisc_t.link is negative, the library
will allocate object holders. Otherwise, the library
assumes that object holders are embedded inside ob-
jects and Dtdisc_t.link defines the offset in an ob-
ject where the holder resides.

Dtdisc_t.makef and Dtdisc_t.freef, if defined, are
called to make and free objects when they are in-
serted or deleted. If Dtdisc_t.makef is not defined,
then in the call dtinsert(dt,obj) obj itself will be
inserted.

If Dtdisc_t.comparf or Dtdisc_t.hashf are not de-
fined, some internal functions are used. By allowing
both key definition and compare function in a dis-
cipline, both set-like and map-like dictionaries are
supported.

Dtdisc_t.memoryf, if defined, is used to allocate
space. Dtdisc_t.eventf, if defined, announces var-
ious events such as dictionary opening and closing
and method or discipline changes.

2.4 An example Cdt application

A common container data type example is given in
the Map associative array paper [3] and the Unix/C
manual page for the function tsearch(). This ap-
plication reads a text file, partitions it into tokens
(strings separated by space, tab and new line char-
acters), keeps frequency count for each token, and
finally writes out the tokens and their frequencies.

Figure 2 shows an implementation of the token
counting example. Omitted are a few minor gram-
matical statements and the function readtoken() to
parse an input stream into tokens. The below com-
ments are based on line numbers in the figure:

~N o oW N

(o]

10.
11.
12.
13.
14.
15.
16.
17.

18.
19.
20.
21.

22.
23.
24.
25.
26.

27.
28.
29.

30.
31.

1-2:

3-7:

10-17:

<sfio.h>
<cdt.h>

#include
#include

typedef struct
{ Dtlink_t link;

char* token;
int freq;
} Token_t;

Dtdisc_t Tkdisc =
{ offsetof(Token_t,token), -1, 0 };
Token_t* newtoken(char* s)
{ Token_t* tk;
tk = malloc(sizeof(Token_t));
tk->token = malloc(strlen(s)+1);
strcpy(tk->token,s);
tk->freq = 1;
return tk;

}

main()
{ char* s;
Token_t* tk;
Dt_t* dt = dtopen(&Tkdisc,Dtset);

while((s = readtoken(sfstdin)))
{ if((tk = dtmatch(dt,s)))
tk->freq += 1;
else dtinsert(dt,newtoken(s));
}

for(tk = dtfirst(dt); tk;

tk = dtnext(dt,tk))
sfprintf(sfstdout,"%s:\t%d\n",
tk->str, tk->freq);

Figure 2: Program to count tokens

The header file sfio.h [4] declares I/O func-
tions. cdt.h is the Cdt public header file and
declares necessary types, values and functions.

Token_t is a structure to hold a string token and
a frequency count freq. It also embeds the con-
tainer holder structure in the link field.

: The discipline Tkdisc describes attributes of

Token_t objects. The ANSI-C macro offsetof ()
defines the offset of Token_t.token in Token_t.
Since Token_t.token points to a null-terminated
string, Tkdisc.size is set to -1. Tkdisc.link is
set to 0, the offset to Token_t.1link in Token_t.

newtoken() is a function to create a new Token_t

22-26:

27-30:

structure from a given string s. To simplify the
exposition, error checks for the malloc calls were
omitted.

21: A new dictionary dt is created based on the dis-
cipline Tkdisc and the method Dtset. Here it is
assumed that tokens need not be sorted. Other-
wise, Dtoset could be used (see also Section 4).

Tokens are read and inserted into dt. Line 22
uses dtmatch() to find out if a token matching
the current read token already exists in dt. In
that case, only its frequency count is updated.
Otherwise, Line 24 creates and inserts a new
token structure into dt.

These lines loop over all tokens and output both
tokens and their frequency counts. Note that
this is done directly over objects without the
aid of any iterator type [6].

3 Performance

Among the various container data types, hash tables
and binary trees are most common and also have
large variation in implementation quality. This sec-
tion presents results from a performance study that
compared various set and map container structure
packages based on hash tables and binary trees.

3.1 Methodology

The token counting application in Section 2.4 was
used as a benchmark. To minimize implementation
variation, a single program based on Figure 2 was
written. Compile time options allowed switching
usages of the Cdt methods Dtoset and Dtset, the
Unix/C package tsearch, the C++ classes Set and
Map, and the STL templates map and hashmap. All
implementations used the same string comparison
function, a variant of stremp() that also keeps invo-
cation count. In addition, all hash table implemen-
tations used the same hash function supplied by Cdt
so that hash value computation would be uniform.
This was necessary because the default hash func-
tions in some of the packages were not very good.
For example, the comparison counts in Section 3.2
for the set package would have been much higher if
its default hash function was used.

A variety of input files were used:

e ps: PostScript source of a technical paper,
e src: an archive of C source code,

e kju: a King James version of the bible,

e mboz: a personal mail archive,

e host: a database mapping IP addresses to ma-
chine hosts, and

e city: a database mapping cities to area codes.

File Size Tokens | Distinct | Length
ps 1,989K | 335,997 11,912 38.00
sre 1,169K | 149,886 27,964 16.40
kju 4,441K | 822,587 33,916 8.01
mboz | 2,701K | 419,197 49,903 9.83
city | 1,349K | 81,206 69,610 18.17
host | 2,722K | 449,554 | 102,566 16.71

Table 1: Summary of benchmark input files

Table 1 summarizes input file statistics: file size in
K-bytes, total number of tokens, number of distinct
tokens, and average length of a token. These input
files represent a wide variety of data ranging from ps
which has relatively few distinct tokens to city which
has about 85% distinct tokens. Tokens in host and
city are also highly ordered.

Program Size
Set 146,632
hashmap 179,988
map 145,892
Map 83,795
tsearch 66,744
Dtset+Dtoset 73,712

Table 2: Sizes of benchmark programs

The experiment was performed on a SPARC-20 run-
ning SUN 0S5.0. Table 2 shows the sizes of the
benchmark programs. Both Dtset and Dtoset were
combined in the same benchmark program with in-
vocation options for method selection. Except for
Map, other C++ packages caused the test code to
be about twice as large as the C versions, a sign of
code bloating due to the use of templates. Com-
paring the results of compiling main () {} with C and
C++ showed that only about 5K can be attributed
to language difference.

Program execution was done at night on a quiescent
machine. Each time measurement was obtained by

running the same test 9 times, computing total cpu
and system times for each run, discarding the top
two and bottom two scores to reduce variance, then
averaging the remaining five scores. Space measure-
ments were done by calling sbrk(0) before any dic-
tionary was opened and after all output was done
and computing differences in the return values.

3.2 Hash table packages

Below are brief descriptions of the container pack-
ages that use hash tables to implement unordered
sets and maps. The Unix/C hsearch package was
omitted because it was too slow to measure.

e Set: The C++ set class that comes standard
with our compiler. This uses a hash table with
chaining to resolve collisions.

e hashmap: The C++ STL hashmap template. This
uses a hash table with chaining to resolve colli-
sions.

e Dtset Method Dtset of Cdt. This uses a hash
table with chaining. The collision chains use a
move-to-front heuristic to improve search time.

Dataset | Set | hashmap | Dtset
s 328 682 324
sre 131 566 122
kjv 799 4,038 789
mboz 386 1,839 370
city 35 292 12
host 384 2,279 347

Table 3: Hash: comparison counts in thousands

Table 3 shows comparison counts for the hash table
packages in units of thousands. hashmap performed
worst, with comparison counts many times higher
than that of Set and Dtset. Dtset asserted that to-
kens compared equal must have the same hash val-
ues. This fact was used effectively to reduce many
comparisons because the hash function distinguished
objects well. The low comparison counts for Set sug-
gested that it might have used the same strategy as
Dtset. Dtset retains a slight edge perhaps due to its
move-to-front strategy on collision chains.

Table 4 shows time performance. Poor comparison
counts directly translated to poor computing time.
hashmap was worst, sometimes up to a factor of 3

Dataset Set hashmap | Dtset
ps 7.47 10.76 4.32
sre 6.06 7.57 3.59
kjv 20.61 31.49 | 11.01
mbozx 14.27 19.84 8.20
city 9.49 10.66 6.49
host 18.28 23.31 | 10.78

Table 4: Hash: times in seconds

Dataset Set hashmap | Dtset
DS 1,464 976 912
sre 2,752 1,432 | 1,496
kju 3,048 1,448 | 1,584
mbox 4,632 2,232 | 2,360
city 7,144 3,688 | 3,944
host 10,552 5,248 | 5,496

Table 5: Hash: space in K-bytes

slower than Dtset. Dtset was fastest among the three
packages.

Table 5 shows space usage. Dtset and hashmap used
about the same amount of space. Set sometimes
used twice as much space as the other packages.

3.3 Binary tree packages

A further requirement could be stimulated in the to-
ken counting example that tokens must be output in
a lexicographic order. In that case, a natural solu-
tion is to use container packages that maintain or-
dered tokens. Below are the studied container pack-
ages for ordered sets and maps:

e tsearch: The tsearch function in SUN OS5.4.
This uses plain binary trees.

e Map: The C++ Map class. This is based on AVL
balanced trees.

e map: The C++ STL map template. This uses
red-black balanced trees.

e Dtoset: Method Dtoset of Cdt. This uses top-
down splay trees.

Table 6 shows comparison counts for the binary
tree methods. Except for city and host, tsearch
performed well despite its simplistic data structure.
This is because most datasets consist of more or less
random tokens and binary trees built from such ran-
dom data are naturally balanced. tsearch did poorly

Dataset Map map tsearch | Dtoset
DS 14,267 | 10,434 7,314 1,636
sre 5,857 4,553 3,533 1,773
kju 28,142 | 26,119 13,526 8,592
mboz 15,747 | 13,229 7,396 5,425
city 3,841 3,006 12,189 1,631
host 22,963 | 15,657 19,750 2,568

Table 6: Tree: comparison counts in thousands

Dataset Map map tsearch | Dtoset
DS 15.37 | 15.51 13.26 5.33
sTe 9.63 | 9.05 8.20 9.53
kjv 37.08 | 44.79 26.77 21.27
mbox 24.22 | 28.13 17.86 15.85
city 12.01 | 11.58 25.60 8.92
host 30.19 | 26.58 61.00 13.76

Table 7: Tree: times in seconds

on city and host whose tokens were highly ordered.
The balanced tree packages Map and map ignored any
such ordering property in the data. Both packages
used about the same number of comparisons with
map having a slight edge. The splay tree approach
in Dtoset took advantage of data ordering to reduce
comparisons. As a result, Dtoset was the clear win-
ner in all cases.

Table 7 shows time performance. As with the hash
table methods, comparison counts mapped directly
to time. Dtoset was fastest, sometimes by a factor
of 3 or more over some of the other methods. Note
that Dtoset was even faster than the STL hashmap
package which did not have to order tokens.

Table 8 shows memory usage. tsearch and Map
used more memory than other methods. Map’s extra
space was due to the balancing data. The cause for
tsearch’s poor memory usage was unclear although
a memory trace using Vmalloc [12] revealed a mys-
terious extra allocation after each holder allocation.

Dataset Map map tsearch | Dtoset
DS 1,064 872 1,064 880
sTe 1,864 | 1,424 1,872 1,432
kjv 1,968 | 1,440 1,976 1,440
mboz 3,008 | 2,224 3,016 2,232
city 4,768 | 3,672 4,776 3,680
host 6,840 | 5,240 6,856 5,240

Table 8: Tree: space in K-bytes

4 Flexible programming with Cdt

To output tokens in order, a strategy that often
works better than just using Dtoset is as follows.
First, Dtset is used to construct the token dictio-
nary. Then, Dtoset is used right before outputting
to sort tokens into the right order. To implement
this strategy, the below line of code can be inserted
before Line 26 of Figure 2:

dtmethod(dt,Dtoset);

Dataset | Dtset | Dtoset | Dtset+Dtoset
»S 324 1,636 498
sre 122 1,773 608
kju 789 8,592 1,307
mbozx 370 5,425 1,282
city 12 1,631 1,420
host 347 2,568 2,014

Table 9: Tuning: comparison counts in thousands

Table 9 shows comparison counts for the above strat-
egy. Except for city and hosts, Dtset+Dtoset im-
proves substantially over the exclusive use of Dtoset,
up to 70% for kjv.

Dataset | Dtset | Dtoset | Dtset+Dtoset
DS 4.32 5.33 4.83
sre 3.59 5.53 5.12
kju 11.01 21.27 12.50
mbozx 8.20 15.85 11.55
city 6.49 8.92 12.73
host 10.78 13.76 18.38

Table 10: Tuning: times in seconds

Table 10 show time performance. Time usages for
Dtset+Dtoset markedly improved over the lone use
of Dtoset on most datasets except for city and hosts.
For these datasets, though comparison counts went
down somewhat, time measurements actually went
up. This was because these datasets contained
many distinct tokens and Dtoset ended up repeat-
ing Dtset’s work.

The above situation is common in practice. Pro-
grams must often deal with data that have special
characteristics. It is seldom the case that efficient
algorithms can be devised to adapt smoothly to the
data diversity and operate optimally in each spe-
cial situation. Therefore, whenever possible, a good
design principle is to let users select and combine

int freqemp(Dt_t* dt, Void_t* argl,
Void_t* arg2, Dtdisc_t* disc)
{ int d;
Token_t* t1 = (Token_t*)argl;
Token_t* t2 = (Token_t*)arg2;
if((d = ti->freq - t2->freq)
return d;
else return strcmp(ti->token,t2->token);

= 0)

W 00 ~NO U & WN =

}

10. Tkdisc.comparf = freqcmp;

11. Tkdisc.key = Tkdisc.size = 0;

12. dtdisc(dt,&Tkdisc,DT_SAMEHASH|DT_SAMECMP);
13. dtmethod(dt,Dtoset);

Figure 3: Order tokens by frequency

computing methods to optimize processing based on
specific knowledge of the data. Cdt simplifies doing
this in the context of using container data types. In
fact, the benchmark program was written to allow
strategy selection at invocation time. It is not easy
to do the same using the other container packages.

As another example of Cdt’s flexibility, suppose that
the output requirement is changed to ordering to-
kens in increasing order of frequency. To do this,
Figure 2 should be augmented with Lines 1-9 of Fig-
ure 3 before main() and Lines 10-13 of the same fig-
ure before Line 26. The below comments pertain to
line numbers in Figure 3:

1-9: The function freqcmp() compares tokens first
by frequency, then by token names. So within a
group of tokens with the same frequency, tokens
will be ordered lexicographically.

10: The comparator is redefined to be freqcmp().

11: Tkdisc.key and Tkdisc.size are set to 0 to
indicate that Token_t objects will be com-
pared whole instead of via the key strings
Token_t.token.

12: dtdisc() is called to officially change the dis-
cipline. Normally, a discipline change implies
rearranging of objects because hash values may
have changed or objects that used to compare
disctint may have become equal. The flags
DT_SAMEHASH and DT_SAMECMP tell dtdisc() that,
in this case, both hash values and object com-
parison remain unchanged. The latter is strictly
untrue but it saves computation that would be
done anyway on line 13.

13: dtmethod(dt,Dtoset) is called to switch the stor-
age method to Dtoset and sort tokens by the
new comparator.

Note that in this example it is possible to use method
Dtoset with the comparator freqemp() from the start
of the application. However, doing so would have
been prohibitively expensive because objects must
be deleted and reinserted each time their frequen-
cies are updated. Thus, for efficiency, it is neces-
sary that Dtset is used during dictionary construc-
tion and Dtoset is used only at the end before out-
putting.

5 Discussion

This paper introduced Cdt, a container data type
library. The library provides the common storage
methods: set, multiset, ordered set, ordered multi-
set, list, stack and queue which are often seen only
in isolated packages. Cdt achieves an interface that
keeps orthogonal the three design dimensions: dic-
tionary operations, storage methods, and object de-
scriptions. This is a goal attempted but not quite
achieved by other recent work on reusable compo-
nents such as the C++ Standard Template Library.

Many contemporary container libraries are unwieldy
because their interfaces are not sufficiently abstract
and operations are tied too closely to container data
types. At worst, this leads to divergent interfaces for
the same basic operations as shown by the Unix/C
search functions. Even with better interface design
as in the STL case, the close tie between implemen-
tation techniques and abstract interfaces can reduce
the generality of the library. For example, instead
of a general container template that can be param-
eterized by storage methods, STL provides various
container templates such as hashmap and map that are
strongly bound to minimal object requirements ac-
cording to the respective implementation techniques.
As a result, although hashmap and map provide simi-
lar functions they require objects with different type
specifications. This means that there is no simple
way to dynamically convert a hashmap container to a
map container in the style discussed in Section 4. Cdt
avoids such interface limitations by making dictio-
nary operations completely abtract and parametriz-
able by methods and disciplines which are orthog-
onal and mutable attributes of dictionaries. The
method and discipline architecture naturally lifts a
library interface to its most general level. Perhaps

some future STL work can benefit from such an in-
terface analysis and design.

Cdt disciplines are run-time structures used to define
object attributes such as keys, comparison, hashing,
and allocation. By allowing both comparators and
keys, Cdt generalizes set-like and map-like container
packages. This leads to a unifying interface to man-
age such containers. Using run-time structures for
type definition means losing certain services com-
mon to C++ templates such as static type checking
and inlining of comparison functions. The loss of
static type checking is balanced out by the added
programming flexibility. For example, Cdt allows
the same objects to be described in multiple ways
and both disciplines (i.e., object types) and meth-
ods (i.e., container types) can be arbitrarily mixed
and changed. The efficiency loss resulted from no in-
lining of object comparisons is compensated by the
advantage of having a single library code image and
consequent code size reduction as exemplified in Ta-
ble 2. A single code image also makes possible using
Cdt as a dynamically loadable shared library. Fur-
ther, for applications such as the discussed token
counting example which require relatively complex
objects, any function call overhead to compare two
objects would be negligible relative to the cost of the
comparison itself.

A performance study showed that Cdt methods
Dtoset and Dtset performed as well or better than
their counterparts in other C and C++ container li-
braries including the modern STL components. The
Cdt methods consistently used about the same or
less space than other packages while they were faster
than other packages by up to a factor of two or more.
The use of splay trees and hash tables with self-
adjusting collision chains enable these methods to
perform well in a wide range of input data. Ex-
amples were given showing how further performance
gains can be made with selective matching of disci-
plines and methods at run time.

Cdt is a descendant of Libdict [7]. It is a ma-
ture library and has been used in many applica-
tions including large-scale information systems that
routinely handle dictionaries with tens to hundreds
thousands of objects.

Acknowledgement

Cdt evolved over many years and benefited from ad-
vices and demands of many friends and users. In
particular, I'd like to thank Glenn Fowler, David

Korn, and Stephen North who patiently survived
several generations of interface changes. In addition,
I’d like to thank Carl Staelin whose careful reading
of this paper helped improving it greatly.

Code availability

Cdt source code is available at:
http://wwu.research.att.com/sw/tools/reuse/.

REFERENCES

[1] G.M. Adelson-Velskii and E.M. Landis. An Algo-
rithm for the Organization of Information. Soviet
Math. Doklady, 3:1259-1263, 1962.

[2] Donald E. Knuth. The Art of Computer Program-
ming, Volume 3: Sorting and Searching. Addison-
Wesley, 1973.

[3] Andrew R. Koenig. Associative Arrays in C++. In
Proceedings of Summer 1988 USENIX Conference,
pages 173-186, 1988.

[4] David G. Korn and Kiem-Phong Vo. SFIO:
Safe/Fast String/File 10. In Proc. of the Summer
91 Usenix Conference, pages 235-256. USENIX,
1991.

[6] Unix System Laboratories. USL C++ Standard
Components Programmer’s Reference. AT&T and
Unix System Laboratories, Inc., 1990.

[6] David R. Musser and Atul Saini. STL Tutorial and
Reference Guide. Addison-Wesley, 1995.

[7] Stephen C. North and Kiem-Phong Vo. Dictionary
and Graph Libraries. In Proc. of the Winter '93
Usenix Conference, pages 1-11. USENIX, 1993.

[8] T. Papadakis. Skip Lists and probabilistic Analysis
of Algorithms. University of Waterloo, 1993.

[9] Robert Sedgewick. Algorithms, 2nd Edition.
Addison-Wesley, 1988.

[10] D. Sleator and R.E. Tarjan. Self-Adjusting Binary
Search Trees. JACM, 32:652—-686, 1985.

[11] Kiem-Phong Vo. Writing Reusable Libraries with
Disciplines and Methods. In Practical Reusable
UNIX Software. John Wiley & Sons, 1994.

[12] Kiem-Phong Vo. Vmalloc: A General and Efficient
Memory Allocator. Software Practice & Experi-
ence, 26:1-18, 1996.

