
Cdt: A General and E�cient Container Data Type LibraryKiem-Phong VoAT&T Labs600 Mountain AveMurray Hill, NJ 07974kpv@research.att.comAbstractCdt is a container data type library thatprovides a uniform set of operations tomanage dictionaries based on the commonstorage methods: list, stack, queue, set andordered set. It is implemented on top oflinked lists, hash tables and splay trees.Applications can dynamically change bothobject description and storage methods sothat abstract operations can be exactlymatched with run-time requirements to op-timize performance. This paper brieyoverviews Cdt and presents a performancestudy comparing it to other popular con-tainer data type packages.1 IntroductionA data structure to store objects is a container datatype and an instance of it is a container or a dic-tionary. Common examples of container data typesare: balanced and splay trees[1, 9, 10], skip lists[8],hash tables, stacks, queues and lists[2]. Each datatype has unique operational and performance prop-erties. For example, inserting an object into a stackis restricted to the stack top and takes constant timewhile inserting an object into a set of ordered ob-jects represented by a balanced tree takes logarith-mic time.Container data structures are pervasive in programsand there are many library packages to deal withthem. Most Unix/C environments include the func-tions tsearch, hsearch, lsearch, and bsearch to ma-nipulate respectively objects stored in binary trees,hash tables, arrays and sorted arrays. C++ providesclasses such as Map [3] and Set [5] to deal with or-dered maps and unordered sets. Recently, a new setof C++ templates for ordered and unordered mapsand sets called the Standard Template Library[6] hasbecome increasingly popular.

Two common problems with existing container datatype packages are interface confusion and perfor-mance de�ciency. At the interface level, other thansimilar names, the Unix/C search functions have lit-tle else in common in how they manage objects. Thisis disconcerting because all container data types sup-port the same basic set of abstract operations: in-sert, delete, search, and iterate. When such oper-ations are realized via distinct interfaces and con-icting conventions, programmers have a hard timelearning and programming them. The STL tem-plates alleviate this problem by establishing inter-face guidelines for similar operations in di�erent con-tainer data types. However, it is di�cult with theSTL templates to manage objects in multiple con-texts because container and object types must bestatically bound together to form dictionaries. Asidefrom interface issues, we shall see later that not onlythe older Unix/C packages but also the more modernC++ packages do not always perform well in bothtime and space usage.This paper introduces Cdt, a C library for managingdictionaries based on common container data types:list, stack, queue, ordered set, ordered multiset, un-ordered set and unordered multiset. Cdt is uniqueamong container packages in possessing the follow-ing characteristics:� All dictionaries are manipulated via a uniformset of operations regardless of storage methods(i.e., container data types);� Storage methods can be dynamically changed,for example, to turn an unordered dictionary toan ordered one;� Object attributes are described in disciplinestructures that support both set-like dictionar-ies, i.e., dictionaries that identify objects bymatching, and map-like dictionaries, i.e., dic-tionaries that identify objects by keys;� Discipline structures can be dynamically



changed, for example, to change object com-parators;� Objects can be in multiple dictionaries, includ-ing dictionaries in shared memory; and� Iterations are done directly over objects, i.e., noseparate iterator types [6] needed.Cdt uses splay trees for ordered sets and multi-sets, hash tables with move-to-front collision chainsfor unordered sets and multisets, and doubly linkedlists for stacks, queues, and lists. The overall in-terface follows a method and discipline architec-ture [4, 11, 12]. Briey, a library in this architec-ture provides handles and operations to hold andmanipulate resource, methods to parameterize thesemantics and performance characteristics of opera-tions, and a discipline structure type that applica-tions can use to de�ne resource attributes and acqui-sition. Applying this architecture to Cdt, a handle isa dictionary and operations include handle creation,object insert, search, delete, etc. A Cdt methodmaps to a container data type while a discipline letsapplications de�ne information and operations thatpertain directly to objects such as key type and ob-ject allocation.2 The Cdt libraryObjects are managed via three data types: dictio-nary, discipline, and method.� Dictionary: A dictionary stores objects.� Method: A dictionary has a method to de�nehow objects are stored within it. Availablemethods are: Dtset for unordered sets, Dtbagfor unordered multisets, Dtoset for ordered sets,Dtobag for ordered multisets, Dtlist for doublylinked lists, Dtstack for stacks and Dtqueue forqueues.� Discipline: Each dictionary has an application-de�ned discipline structure that speci�es objectcomparison, hashing, allocation, and event an-nouncement.2.1 Dictionary operationsThis section briey overviews the main functions inthe Cdt library.

Dt t* dtopen(Dtdisc t* disc, Dtmethod t* meth)creates a dictionary of type Dt t with the givendiscipline disc and method meth. A dictionarydt is closed or cleared with dtclose(Dt t* dt) anddtclear(Dt t* dt).Functions Void t* dtsearch(Dt t* dt, Void t* obj)and Void t* dtmatch(Dt t* dt, char* key) searchthe dictionary dt for an object matching respectivelyobj or key. Such a matched object becomes a cur-rent object with special semantics in certain opera-tions discussed below. Void t is de�ned as void forANSI-C or C++ and char for older C variants soit is suitable for exchanging addresses between thelibrary and applications.Void t* dtinsert(Dt t* dt, Void t* obj) inserts anobject obj into the dictionary dt. Methods Dtsetand Dtoset allow obj to be inserted only if there isno matching object already in dt. Other methodsalways insert a new object because they allow in-sertion of equal objects. Method Dtstack inserts ob-jects at stack top. Method Dtqueue inserts objects atqueue tail. Method Dtlist inserts an object beforethe current object of dt if there is one, or at list headotherwise. An inserted or found object becomes thenew current object.Void t* dtdelete(Dt t* dt,Void t* obj) is used todelete from dt an object matching obj if one exists.dtdelete(dt,NULL) works with Dtstack and Dtqueueand removes respectively the top or head object.Object iteration depends on a particular object or-dering de�ned by the storage method in use. ForDtoset and Dtobag, objects are ordered by objectcomparisons. For Dtstack, objects are ordered inthe reverse order of insertion. For Dtqueue, objectsare ordered in the order of insertion. For Dtlist,objects are ordered by their list positions. For Dtsetand Dtbag, the object order is de�ned at the pointof use and may change on any search or insert oper-ation.There are many ways to iterate over objects in adictionary. The below loop iterates forward over allobjects in a dictionary dt:for(o = dtfirst(dt); o; o = dtnext(dt,o) )Alternatively, the below loop can be used to iteratebackward over objects:for(o = dtlast(dt); o; o = dtprev(dt,o) )



2.2 Storage methodsA storage method is of type Dtmethod t and de�neshow objects are manipulated. Cdt provides the fol-lowing storage methods:� Dtset and Dtbag: These methods are based onhash tables with move-to-front collision chains.Dtset stores unique objects while Dtbag allowsrepeatable objects (i.e., objects that compareequal). Repeatable objects are collected to-gether so that any iteration always passes oversections of them. Object accesses take expectedO(1) time given a good hash function.� Dtoset and Dtobag: These methods store or-dered objects in top-down splay trees. Dtosetstores unique objects while Dtobag allows re-peatable objects. Object accesses take amor-tized O(logn) time. Splay trees adapt well tobiased access patterns because frequently ac-cessed objects migrate closer to tree roots.� Dtlist: This method stores repeatable objectsin a doubly-linked list. An object is always in-serted in front of the current object which iseither the list head or established by a search,insert, or iteration. Object insertion and dele-tion are done in O(1) time.� Dtstack and Dtqueue: These methods store re-peatable objects in stack and queue order. Ina stack order, objects are kept in reverse orderof their insertion. In a queue order, objects arekept in order of their insertion. Object insertionand deletion are done in O(1) time.2.3 DisciplinesA discipline structure is of type Dtdisc t. Applica-tions use disciplines to de�ne object attributes suchas comparison, hashing, and allocation.Figure 1 shows Dtdisc t. Dtdisc t.key andDtdisc t.size identify a key of type Void t* usedfor object comparison or hashing. Dtdisc t.key de-�nes the o�set in an object where the key resides.Dtdisc t.size de�nes the key type. A positive valuemeans that the key is a byte array of given length,a zero value means that the key is a null-terminatedstring, and a negative value means that the key isa null-terminated string whose address is stored atthe key o�set.

typedef struct{ int key; /* key offset */int size; /* key size/type */int link; /* object holder */Dtmake_f makef; /* object makef */Dtfree_f freef; /* object freef */Dtcompar_f comparf; /* comparator */Dthash_f hashf; /* hash function */Dtmemory_f memoryf; /* allocator */Dtevent_f eventf; /* event handler */} Dtdisc_t;Figure 1: A discipline structureObjects are held in a dictionary via holders of typeDtlink t. If Dtdisc t.link is negative, the librarywill allocate object holders. Otherwise, the libraryassumes that object holders are embedded inside ob-jects and Dtdisc t.link de�nes the o�set in an ob-ject where the holder resides.Dtdisc t.makef and Dtdisc t.freef, if de�ned, arecalled to make and free objects when they are in-serted or deleted. If Dtdisc t.makef is not de�ned,then in the call dtinsert(dt,obj) obj itself will beinserted.If Dtdisc t.comparf or Dtdisc t.hashf are not de-�ned, some internal functions are used. By allowingboth key de�nition and compare function in a dis-cipline, both set-like and map-like dictionaries aresupported.Dtdisc t.memoryf, if de�ned, is used to allocatespace. Dtdisc t.eventf, if de�ned, announces var-ious events such as dictionary opening and closingand method or discipline changes.2.4 An example Cdt applicationA common container data type example is given inthe Map associative array paper [3] and the Unix/Cmanual page for the function tsearch(). This ap-plication reads a text �le, partitions it into tokens(strings separated by space, tab and new line char-acters), keeps frequency count for each token, and�nally writes out the tokens and their frequencies.Figure 2 shows an implementation of the tokencounting example. Omitted are a few minor gram-matical statements and the function readtoken() toparse an input stream into tokens. The below com-ments are based on line numbers in the �gure:



1. #include <sfio.h>2. #include <cdt.h>3. typedef struct4. { Dtlink_t link;5. char* token;6. int freq;7. } Token_t;8. Dtdisc_t Tkdisc =9. { offsetof(Token_t,token), -1, 0 };10. Token_t* newtoken(char* s)11. { Token_t* tk;12. tk = malloc(sizeof(Token_t));13. tk->token = malloc(strlen(s)+1);14. strcpy(tk->token,s);15. tk->freq = 1;16. return tk;17. }18. main()19. { char* s;20. Token_t* tk;21. Dt_t* dt = dtopen(&Tkdisc,Dtset);22. while((s = readtoken(sfstdin)) )23. { if((tk = dtmatch(dt,s)) )24. tk->freq += 1;25. else dtinsert(dt,newtoken(s));26. }27. for(tk = dtfirst(dt); tk;28. tk = dtnext(dt,tk) )29. sfprintf(sfstdout,"%s:\t%d\n",30. tk->str, tk->freq);31. } Figure 2: Program to count tokens1-2: The header �le sfio.h [4] declares I/O func-tions. cdt.h is the Cdt public header �le anddeclares necessary types, values and functions.3-7: Token t is a structure to hold a string token anda frequency count freq. It also embeds the con-tainer holder structure in the link �eld.8-9: The discipline Tkdisc describes attributes ofToken t objects. The ANSI-C macro offsetof()de�nes the o�set of Token t.token in Token t.Since Token t.token points to a null-terminatedstring, Tkdisc.size is set to -1. Tkdisc.link isset to 0, the o�set to Token t.link in Token t.10-17: newtoken() is a function to create a new Token t

structure from a given string s. To simplify theexposition, error checks for the malloc calls wereomitted.21: A new dictionary dt is created based on the dis-cipline Tkdisc and the method Dtset. Here it isassumed that tokens need not be sorted. Other-wise, Dtoset could be used (see also Section 4).22-26: Tokens are read and inserted into dt. Line 22uses dtmatch() to �nd out if a token matchingthe current read token already exists in dt. Inthat case, only its frequency count is updated.Otherwise, Line 24 creates and inserts a newtoken structure into dt.27-30: These lines loop over all tokens and output bothtokens and their frequency counts. Note thatthis is done directly over objects without theaid of any iterator type [6].3 PerformanceAmong the various container data types, hash tablesand binary trees are most common and also havelarge variation in implementation quality. This sec-tion presents results from a performance study thatcompared various set and map container structurepackages based on hash tables and binary trees.3.1 MethodologyThe token counting application in Section 2.4 wasused as a benchmark. To minimize implementationvariation, a single program based on Figure 2 waswritten. Compile time options allowed switchingusages of the Cdt methods Dtoset and Dtset, theUnix/C package tsearch, the C++ classes Set andMap, and the STL templates map and hashmap. Allimplementations used the same string comparisonfunction, a variant of strcmp() that also keeps invo-cation count. In addition, all hash table implemen-tations used the same hash function supplied by Cdtso that hash value computation would be uniform.This was necessary because the default hash func-tions in some of the packages were not very good.For example, the comparison counts in Section 3.2for the Set package would have been much higher ifits default hash function was used.A variety of input �les were used:



� ps: PostScript source of a technical paper,� src: an archive of C source code,� kjv: a King James version of the bible,� mbox: a personal mail archive,� host: a database mapping IP addresses to ma-chine hosts, and� city: a database mapping cities to area codes.File Size Tokens Distinct Lengthps 1,989K 335,997 11,912 38.00src 1,169K 149,886 27,964 16.40kjv 4,441K 822,587 33,916 8.01mbox 2,701K 419,197 49,903 9.83city 1,349K 81,206 69,610 18.17host 2,722K 449,554 102,566 16.71Table 1: Summary of benchmark input �lesTable 1 summarizes input �le statistics: �le size inK-bytes, total number of tokens, number of distincttokens, and average length of a token. These input�les represent a wide variety of data ranging from pswhich has relatively few distinct tokens to city whichhas about 85% distinct tokens. Tokens in host andcity are also highly ordered.Program SizeSet 146,632hashmap 179,988map 145,892Map 83,795tsearch 66,744Dtset+Dtoset 73,712Table 2: Sizes of benchmark programsThe experiment was performed on a SPARC-20 run-ning SUN OS5.0. Table 2 shows the sizes of thebenchmark programs. Both Dtset and Dtoset werecombined in the same benchmark program with in-vocation options for method selection. Except forMap, other C++ packages caused the test code tobe about twice as large as the C versions, a sign ofcode bloating due to the use of templates. Com-paring the results of compiling main()fg with C andC++ showed that only about 5K can be attributedto language di�erence.Program execution was done at night on a quiescentmachine. Each time measurement was obtained by

running the same test 9 times, computing total cpuand system times for each run, discarding the toptwo and bottom two scores to reduce variance, thenaveraging the remaining �ve scores. Space measure-ments were done by calling sbrk(0) before any dic-tionary was opened and after all output was doneand computing di�erences in the return values.3.2 Hash table packagesBelow are brief descriptions of the container pack-ages that use hash tables to implement unorderedsets and maps. The Unix/C hsearch package wasomitted because it was too slow to measure.� Set: The C++ Set class that comes standardwith our compiler. This uses a hash table withchaining to resolve collisions.� hashmap: The C++ STL hashmap template. Thisuses a hash table with chaining to resolve colli-sions.� Dtset Method Dtset of Cdt. This uses a hashtable with chaining. The collision chains use amove-to-front heuristic to improve search time.Dataset Set hashmap Dtsetps 328 682 324src 131 566 122kjv 799 4,038 789mbox 386 1,839 370city 35 292 12host 384 2,279 347Table 3: Hash: comparison counts in thousandsTable 3 shows comparison counts for the hash tablepackages in units of thousands. hashmap performedworst, with comparison counts many times higherthan that of Set and Dtset. Dtset asserted that to-kens compared equal must have the same hash val-ues. This fact was used e�ectively to reduce manycomparisons because the hash function distinguishedobjects well. The low comparison counts for Set sug-gested that it might have used the same strategy asDtset. Dtset retains a slight edge perhaps due to itsmove-to-front strategy on collision chains.Table 4 shows time performance. Poor comparisoncounts directly translated to poor computing time.hashmap was worst, sometimes up to a factor of 3



Dataset Set hashmap Dtsetps 7.47 10.76 4.32src 6.06 7.57 3.59kjv 20.61 31.49 11.01mbox 14.27 19.84 8.20city 9.49 10.66 6.49host 18.28 23.31 10.78Table 4: Hash: times in secondsDataset Set hashmap Dtsetps 1,464 976 912src 2,752 1,432 1,496kjv 3,048 1,448 1,584mbox 4,632 2,232 2,360city 7,144 3,688 3,944host 10,552 5,248 5,496Table 5: Hash: space in K-bytesslower than Dtset. Dtset was fastest among the threepackages.Table 5 shows space usage. Dtset and hashmap usedabout the same amount of space. Set sometimesused twice as much space as the other packages.3.3 Binary tree packagesA further requirement could be stimulated in the to-ken counting example that tokens must be output ina lexicographic order. In that case, a natural solu-tion is to use container packages that maintain or-dered tokens. Below are the studied container pack-ages for ordered sets and maps:� tsearch: The tsearch function in SUN OS5.4.This uses plain binary trees.� Map: The C++ Map class. This is based on AVLbalanced trees.� map: The C++ STL map template. This usesred-black balanced trees.� Dtoset: Method Dtoset of Cdt. This uses top-down splay trees.Table 6 shows comparison counts for the binarytree methods. Except for city and host, tsearchperformed well despite its simplistic data structure.This is because most datasets consist of more or lessrandom tokens and binary trees built from such ran-dom data are naturally balanced. tsearch did poorly

Dataset Map map tsearch Dtosetps 14,267 10,434 7,314 1,636src 5,857 4,553 3,533 1,773kjv 28,142 26,119 13,526 8,592mbox 15,747 13,229 7,396 5,425city 3,841 3,006 12,189 1,631host 22,963 15,657 19,750 2,568Table 6: Tree: comparison counts in thousandsDataset Map map tsearch Dtosetps 15.37 15.51 13.26 5.33src 9.63 9.05 8.20 5.53kjv 37.08 44.79 26.77 21.27mbox 24.22 28.13 17.86 15.85city 12.01 11.58 25.60 8.92host 30.19 26.58 61.00 13.76Table 7: Tree: times in secondson city and host whose tokens were highly ordered.The balanced tree packages Map and map ignored anysuch ordering property in the data. Both packagesused about the same number of comparisons withmap having a slight edge. The splay tree approachin Dtoset took advantage of data ordering to reducecomparisons. As a result, Dtoset was the clear win-ner in all cases.Table 7 shows time performance. As with the hashtable methods, comparison counts mapped directlyto time. Dtoset was fastest, sometimes by a factorof 3 or more over some of the other methods. Notethat Dtoset was even faster than the STL hashmappackage which did not have to order tokens.Table 8 shows memory usage. tsearch and Mapused more memory than other methods. Map's extraspace was due to the balancing data. The cause fortsearch's poor memory usage was unclear althougha memory trace using Vmalloc [12] revealed a mys-terious extra allocation after each holder allocation.Dataset Map map tsearch Dtosetps 1,064 872 1,064 880src 1,864 1,424 1,872 1,432kjv 1,968 1,440 1,976 1,440mbox 3,008 2,224 3,016 2,232city 4,768 3,672 4,776 3,680host 6,840 5,240 6,856 5,240Table 8: Tree: space in K-bytes



4 Flexible programming with CdtTo output tokens in order, a strategy that oftenworks better than just using Dtoset is as follows.First, Dtset is used to construct the token dictio-nary. Then, Dtoset is used right before outputtingto sort tokens into the right order. To implementthis strategy, the below line of code can be insertedbefore Line 26 of Figure 2:dtmethod(dt,Dtoset);Dataset Dtset Dtoset Dtset+Dtosetps 324 1,636 498src 122 1,773 608kjv 789 8,592 1,307mbox 370 5,425 1,282city 12 1,631 1,420host 347 2,568 2,014Table 9: Tuning: comparison counts in thousandsTable 9 shows comparison counts for the above strat-egy. Except for city and hosts, Dtset+Dtoset im-proves substantially over the exclusive use of Dtoset,up to 70% for kjv.Dataset Dtset Dtoset Dtset+Dtosetps 4.32 5.33 4.83src 3.59 5.53 5.12kjv 11.01 21.27 12.50mbox 8.20 15.85 11.55city 6.49 8.92 12.73host 10.78 13.76 18.38Table 10: Tuning: times in secondsTable 10 show time performance. Time usages forDtset+Dtoset markedly improved over the lone useof Dtoset on most datasets except for city and hosts.For these datasets, though comparison counts wentdown somewhat, time measurements actually wentup. This was because these datasets containedmany distinct tokens and Dtoset ended up repeat-ing Dtset's work.The above situation is common in practice. Pro-grams must often deal with data that have specialcharacteristics. It is seldom the case that e�cientalgorithms can be devised to adapt smoothly to thedata diversity and operate optimally in each spe-cial situation. Therefore, whenever possible, a gooddesign principle is to let users select and combine

1. int freqcmp(Dt_t* dt, Void_t* arg1,2. Void_t* arg2, Dtdisc_t* disc)3. { int d;4. Token_t* t1 = (Token_t*)arg1;5. Token_t* t2 = (Token_t*)arg2;6. if((d = t1->freq - t2->freq) != 0)7. return d;8. else return strcmp(t1->token,t2->token);9. }10. Tkdisc.comparf = freqcmp;11. Tkdisc.key = Tkdisc.size = 0;12. dtdisc(dt,&Tkdisc,DT_SAMEHASH|DT_SAMECMP);13. dtmethod(dt,Dtoset);Figure 3: Order tokens by frequencycomputing methods to optimize processing based onspeci�c knowledge of the data. Cdt simpli�es doingthis in the context of using container data types. Infact, the benchmark program was written to allowstrategy selection at invocation time. It is not easyto do the same using the other container packages.As another example of Cdt's exibility, suppose thatthe output requirement is changed to ordering to-kens in increasing order of frequency. To do this,Figure 2 should be augmented with Lines 1-9 of Fig-ure 3 before main() and Lines 10-13 of the same �g-ure before Line 26. The below comments pertain toline numbers in Figure 3:1-9: The function freqcmp() compares tokens �rstby frequency, then by token names. So within agroup of tokens with the same frequency, tokenswill be ordered lexicographically.10: The comparator is rede�ned to be freqcmp().11: Tkdisc.key and Tkdisc.size are set to 0 toindicate that Token t objects will be com-pared whole instead of via the key stringsToken t.token.12: dtdisc() is called to o�cially change the dis-cipline. Normally, a discipline change impliesrearranging of objects because hash values mayhave changed or objects that used to comparedisctint may have become equal. The agsDT SAMEHASH and DT SAMECMP tell dtdisc() that,in this case, both hash values and object com-parison remain unchanged. The latter is strictlyuntrue but it saves computation that would bedone anyway on line 13.



13: dtmethod(dt,Dtoset) is called to switch the stor-age method to Dtoset and sort tokens by thenew comparator.Note that in this example it is possible to use methodDtoset with the comparator freqcmp() from the startof the application. However, doing so would havebeen prohibitively expensive because objects mustbe deleted and reinserted each time their frequen-cies are updated. Thus, for e�ciency, it is neces-sary that Dtset is used during dictionary construc-tion and Dtoset is used only at the end before out-putting.5 DiscussionThis paper introduced Cdt, a container data typelibrary. The library provides the common storagemethods: set, multiset, ordered set, ordered multi-set, list, stack and queue which are often seen onlyin isolated packages. Cdt achieves an interface thatkeeps orthogonal the three design dimensions: dic-tionary operations, storage methods, and object de-scriptions. This is a goal attempted but not quiteachieved by other recent work on reusable compo-nents such as the C++ Standard Template Library.Many contemporary container libraries are unwieldybecause their interfaces are not su�ciently abstractand operations are tied too closely to container datatypes. At worst, this leads to divergent interfaces forthe same basic operations as shown by the Unix/Csearch functions. Even with better interface designas in the STL case, the close tie between implemen-tation techniques and abstract interfaces can reducethe generality of the library. For example, insteadof a general container template that can be param-eterized by storage methods, STL provides variouscontainer templates such as hashmap and map that arestrongly bound to minimal object requirements ac-cording to the respective implementation techniques.As a result, although hashmap and map provide simi-lar functions they require objects with di�erent typespeci�cations. This means that there is no simpleway to dynamically convert a hashmap container to amap container in the style discussed in Section 4. Cdtavoids such interface limitations by making dictio-nary operations completely abtract and parametriz-able by methods and disciplines which are orthog-onal and mutable attributes of dictionaries. Themethod and discipline architecture naturally lifts alibrary interface to its most general level. Perhaps

some future STL work can bene�t from such an in-terface analysis and design.Cdt disciplines are run-time structures used to de�neobject attributes such as keys, comparison, hashing,and allocation. By allowing both comparators andkeys, Cdt generalizes set-like and map-like containerpackages. This leads to a unifying interface to man-age such containers. Using run-time structures fortype de�nition means losing certain services com-mon to C++ templates such as static type checkingand inlining of comparison functions. The loss ofstatic type checking is balanced out by the addedprogramming exibility. For example, Cdt allowsthe same objects to be described in multiple waysand both disciplines (i.e., object types) and meth-ods (i.e., container types) can be arbitrarily mixedand changed. The e�ciency loss resulted from no in-lining of object comparisons is compensated by theadvantage of having a single library code image andconsequent code size reduction as exempli�ed in Ta-ble 2. A single code image also makes possible usingCdt as a dynamically loadable shared library. Fur-ther, for applications such as the discussed tokencounting example which require relatively complexobjects, any function call overhead to compare twoobjects would be negligible relative to the cost of thecomparison itself.A performance study showed that Cdt methodsDtoset and Dtset performed as well or better thantheir counterparts in other C and C++ container li-braries including the modern STL components. TheCdt methods consistently used about the same orless space than other packages while they were fasterthan other packages by up to a factor of two or more.The use of splay trees and hash tables with self-adjusting collision chains enable these methods toperform well in a wide range of input data. Ex-amples were given showing how further performancegains can be made with selective matching of disci-plines and methods at run time.Cdt is a descendant of Libdict [7]. It is a ma-ture library and has been used in many applica-tions including large-scale information systems thatroutinely handle dictionaries with tens to hundredsthousands of objects.AcknowledgementCdt evolved over many years and bene�ted from ad-vices and demands of many friends and users. Inparticular, I'd like to thank Glenn Fowler, David



Korn, and Stephen North who patiently survivedseveral generations of interface changes. In addition,I'd like to thank Carl Staelin whose careful readingof this paper helped improving it greatly.Code availabilityCdt source code is available at:http://www.research.att.com/sw/tools/reuse/.REFERENCES[1] G.M. Adelson-Velskii and E.M. Landis. An Algo-rithm for the Organization of Information. SovietMath. Doklady, 3:1259{1263, 1962.[2] Donald E. Knuth. The Art of Computer Program-ming, Volume 3: Sorting and Searching. Addison-Wesley, 1973.[3] Andrew R. Koenig. Associative Arrays in C++. InProceedings of Summer 1988 USENIX Conference,pages 173{186, 1988.[4] David G. Korn and Kiem-Phong Vo. SFIO:Safe/Fast String/File IO. In Proc. of the Summer'91 Usenix Conference, pages 235{256. USENIX,1991.[5] Unix System Laboratories. USL C++ StandardComponents Programmer's Reference. AT&T andUnix System Laboratories, Inc., 1990.[6] David R. Musser and Atul Saini. STL Tutorial andReference Guide. Addison-Wesley, 1995.[7] Stephen C. North and Kiem-Phong Vo. Dictionaryand Graph Libraries. In Proc. of the Winter '93Usenix Conference, pages 1{11. USENIX, 1993.[8] T. Papadakis. Skip Lists and probabilistic Analysisof Algorithms. University of Waterloo, 1993.[9] Robert Sedgewick. Algorithms, 2nd Edition.Addison-Wesley, 1988.[10] D. Sleator and R.E. Tarjan. Self-Adjusting BinarySearch Trees. JACM, 32:652{686, 1985.[11] Kiem-Phong Vo. Writing Reusable Libraries withDisciplines and Methods. In Practical ReusableUNIX Software. John Wiley & Sons, 1994.[12] Kiem-Phong Vo. Vmalloc: A General and E�cientMemory Allocator. Software Practice & Experi-ence, 26:1{18, 1996.


