
Extended Data Formatting Using S�oGlenn S. Fowler, David G. Korn and Kiem-Phong VoAT&T Laboratories { Research180 Park Avenue, Florham Park, NJ 07932, U.S.A.gsf,dgk,kpv@research.att.comAbstractThe ANSI-C Standard de�nes Stdio as the I/O library for C programs. Despite its ubiquitoususe, Stdio has well-documented de�ciencies in various areas including data formatting. The S�olibrary provides an alternative to Stdio with improved functionality, robustness and performance.In particular, S�o extends the data formatting functions so that applications can deal with arbitraryscalar objects, avoid unsafe operations and even de�ne their own conversion patterns. This paperdiscusses these formatting enhancements.1 IntroductionThe Stdio printf()/scanf() family of functions [1, 5]are the de facto standard for formatting data inC programs. Many implementations of the C++I/O operators [9] >> and << are also based on theprintf()/scanf() functions. Despite this popular-ity, the Stdio formatting functions have a number ofshortcomings:� Inadequate handling of abstract scalars: Theformatting functions only deal with primitivescalar types. To format an abstractly de�nedscalar object, it is customary and even neces-sary to cast it to some presumed larger scalartype. For example, on most platforms, a �leo�set object declared with the Posix type off twould need to be casted to a long for print-ing. This trick is not portable since, on a mod-ern platform, off t may be de�ned on top of anewer and larger type such as long long.� Unsafe data scanning: String scanning withStdio always runs the risk of overowing thebu�er because there is no way to tell the scan-ning function the bu�er size. Bu�er overowbugs often corrupt memory leading to disas-trous consquences. These bugs are also hardto detect.� Inextensible interface: It is useful to be able toextend the de�ned set of conversion patterns oreven to rede�ne some of them based on speci�cneeds. For example, if an application de�nes

a type Coord t for spatial coordinates, it wouldbe nice to be able to de�ne a corresponding for-matting pattern, say %C, to print or scan sucha type. This cannot be done in the current for-matting framework.� Inadequate reuse: The POSIX Standard [8] de-�nes commands such as printf to format datain the same style as the corresponding Stdiofunctions. Since applications cannot access theformat parsing and argument processing codein the formatting functions, each tool must in-vent its own way to perform these tasks. Thisunnecessarily duplicates work already done inlibrary functions and does not help to improveinterface consistency across tools.The S�o library [3, 7] was introduced in 1991 asa better alternative to Stdio. In particular, the S�odata formatting functions outperformed their Stdiocounterparts due to faster integer and oating pointvalue conversion algorithms. Although these earlyS�o formatting functions addressed the mentionedportability and robustness issues in Stdio, they werestill inexible so that applications could not adaptthem for speci�c needs.Starting from the 1997 release of S�o, we exper-imented with extending the formatting functions toallow both non-standard patterns and alternative ar-gument processing. The early extensions were usefulbut we found through experience that the frame-work was incomplete and cumbersome to use. Forexample, formatting ags and values such as widthand precision were not properly packaged and passed

between library and application code when process-ing non-standard conversion patterns. It was alsoimpossible to rede�ne existing conversion patterns.Since then, we have redesigned the extensions to en-able much more natural cooperation between the for-matting functions and applications.The rest of this paper summarizes the new for-matting features and gives examples of how to usethem. A performance study comparing S�o and var-ious Stdio versions on the basic printing and scan-ning tasks shows that S�o outperforms Stdio despitethe additional features.2 Extended data formattingThe formatting extensions include portable scalarformatting, safe data scanning, dealing with inte-gers in general bases, and the ability to de�ne newformatting patterns or rede�ne existing ones. To ac-comodate the new extensions, the general forms ofS�o printing and scanning patterns are respectively:%[pos$][flag][(tstr)][width[.precis[.base]]]z%[*][pos$][flag][(tstr)][width[.width.base]]zArguments such as pos$, width, etc. are the sameas de�ned in the ANSI-C Standard. The base argu-ment is introduced to accomodate generalized scalarand string processing.The argument (tstr) is used to de�ne a stringthat will be passed to an extension function if one isde�ned. Section 2.5 discusses how applications canuse such data for non-standard conversion patternsand argument processing.The below subsections discuss the new extensions.We mostly present printing examples, but scanningexamples work in a similar way.2.1 Portable scalar formattingCertain platforms provide 64-bit integer and oat-ing point values via types such as long long andlong double. These types are handled di�erently indi�erent Stdio implementations. For example, theMicrosoft-C version provides an I64 ag to specifya 64-bit integer while other Unix platforms use themore general ag ll for the same purpose.S�o generalizes the ll ag to deal with the largestprimitive types on a particular platform. In fact,to ensure portability, S�o provides types such asSflong t, Sfulong t or Sfdouble t that are alwaysmapped to the largest primitive types available. Thefollowing examples show how to use the ll ag inprinting or scanning objects with large types:

Sflong_t intval;sfprintf(sfstdout,"%lld", intval);Sfdouble_t fltval;sfscanf(sfstdin,"%llf", &fltval);The ll ag enables printing of abstract types thatmay be mapped to di�erent primitive scalar types ondi�erent platforms. For example, the familiar ANSI-C size t for memory size and the POSIX off t for�le o�set are often mapped to unsigned int and longrespectively. But off t may also be mapped to thetype long long on platforms that support very large�les. To print a value de�ned by an abstract scalartype, one should cast it to the largest correspondingscalar type and use the ll ag with an appropri-ate conversion pattern. For example, an off t valueshould be printed by casting to Sflong t and usingthe pattern %lld as follows:off_t offset;sfprintf(sfstdout,"%lld", (Sflong_t)offset);Unfortunately, the above trick does not work withscanning since the scanned value must be stored in alocation with a speci�c type. Printing performanceis also suboptimal if arithmetic operations on suchlarge types are more expensive than that on nor-mal types. Various proposals are being debated bythe C9X Standard Committee [4] to solve this prob-lem. For S�o, since we already needed to providethe Microsoft-C ag I64 for portability, we simplytook the opportunity and generalized this ag to al-low speci�cation of objects with arbitrary sizes. Thebelow examples show how this works:sfprintf(sfstdin,"%I4d",intval);sfprintf(sfstdin,"%I*d",sizeof(intval),intval);sfscanf(sfstdin,"%I*f",sizeof(fltval),&fltval);sfprintf(sfstdout,"%I64d",big_long);The �rst line indicates that the integer valueintval is an object whose size is 4 bytes, i.e., a 32-bitinteger. The second line is more general and sup-plies the size of intval via `*'. This will work withintegers of any size. The third line is similar to thesecond line but for scanning a oating point value.The fourth line shows that, for compatibility withMicrosoft-C, the value 64 can be used to identify a64-bit integer.The above use of 64 to indicate bit size insteadof byte size is potentially ambiguous. However, itwill be a long time before we need to worry aboutmachines with 64-byte words. In the mean time, itsolves a practical problem.

2.2 Safe data scanningThe string scanning patterns %s, %c and %[] are oftenunsafe to use due to bu�er overow problems. Theaforementioned I ag can be used to de�ne bu�ersizes. Specifying a bu�er size does not limit theamount of scanned data. Rather, scanned data ex-ceeding the bu�er limit are discarded. Below are twoscanning examples where the second one is slightlymore general than the �rst:char buf[10];sfscanf(sfstdin,"%I10s",buf);sfscanf(sfstdin,"%I*s",sizeof(buf),buf);In both cases, at most 9 bytes will be copied intothe bu�er. Further input data will be scanned butdiscarded. S�o reserves one byte from the bu�er forthe �nal null character.2.3 Integers in general basesThe patterns %i, %u and %d can format in bases from2 to 64. The syntax [width[.precision[.base]]] isused so that a base is de�ned if and only if exactlytwo dots have appeared. If a base is not validlyde�ned, base 10 is used. Below are the 64 digitsused to represent numbers:0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ @_Pattern Value Result%..2d 123 1111011%#..2d 123 2#1111011%#..16d 12345 16#3039%#..34d -12345 -34#an3%#..63d 123456789 63#7QKgATable 1: Integer values in general basesTable 1 shows examples of printing numbers ingeneral bases. The ag # outputs a number in theform base#representation where base is decimal andrepresentation is in the digits for that base.2.4 Character and string arraysIn addition to handling characters and strings,the string patterns %c and %s can also print null-terminated arrays of characters or null-terminatedarrays of strings. To format an array, a sep-arator must be supplied based on the syntax[width[.precision[.separator]]]. That is, a sep-arator is de�ned if and only if exactly two dots have

appeared. When the separator is given in the formatstring, it must be a non-alphanumeric character andappear immediately before the conversion pattern.Each formatted character or string always obeys thelayout rules de�ned by width and precision. Beloware three example formatting calls and results:sfprintf(sfstdout,"%..:c", "abc");a:b:csfprintf(sfstdout,"|%6..*s|", '|', words);| trez| tres| three|sfprintf(sfstdout,"%..s", words);treztresthreeThe second and third examples assume that thenull-terminated array words contain three words:trez, tres and three. In the second example, the�eld width for each word is 6 and the '*' means toget the separator from the argument list. In thethird example, the separator is not de�ned so thestrings are simply output one after another.2.5 Extended format processingApplications can both de�ne new conversion pat-terns and rede�ne existing ones. In addition, it isalso possible to use call-back functions to get the ob-jects to be formatted instead of getting them fromthe function argument list. This ability is impor-tant for implementing certain Posix commands suchas printf that mimics the Stdio function with thesame name but whose arguments are given as stringson the command line.In the below, we �rst describe the mechanisms toextend formatting, then give examples of how theymay be used. Readers not yet acquainted with theseextensions may prefer to reverse the order by readingthe examples �rst before learning the details of themechanisms.2.5.1 Formatting environments and stacksA typical formatting call has as input argumentsa formatting string with conversion patterns and acorresponding argument list of the objects to be for-matted based on the speci�ed patterns. Such a for-matting string and argument list is called a format-ting pair.To extend pattern processing, we de�ne format-ting environments in which both formatting pairsand associated call-back functions can be given.We further allow these multiple formatting environ-ments to be stacked on top of one another on anenvironment stack for recursive pattern processing.

Sffmtext_f extf;Sffmtevent_f eventf;char* form;va_list args;int fmt;ssize_t size;int flags;int width;int precis;int base;char* t_str;int n_str;Figure 1: The extended formatting environmentA formatting environment is of the type Sffmt twith elements as shown in Figure 1:� The �rst four members of an Sffmt t objectshould be set by the application before passingto the formatting function. The event-handlingfunction eventf, if not NULL, is called to pro-cess events such as popping the stack. form andargs de�ne a new formatting pair if form is notNULL. The extension function extf, if not NULL,is called to process conversion patterns.� The next six members of Sffmt t are used by theformatting function and extf to exchange dataabout the pattern being processed. For exam-ple, on the call to extf, the formatting functionsets fmt to the pattern being processed. Onreturn, extf may reset that �eld to redirect fur-ther processing.� The last two members of Sffmt t are used by aformatting function to pass to extf the (tstr)string that S�o allows in specifying a conver-sion pattern. Section 2.5.5 shall discuss a useof such strings to unify formatting at the com-mand level.Each formatting call maintains a separate format-ting stack whose bottom is a virtual formatting envi-ronment that consists only of the original formattingpair. A new conversion pattern %! is used to eitherpush a new formatting environment onto the format-ting stack or change the extension functions of thetop environment. This works as follows:� When the pattern %! is encountered duringprocessing of a format string, the formatting

function obtains the corresponding Sffmt t ob-ject. Then, if the form �eld of this object is notNULL, the new environment is pushed onto thestack and processing will start with the new for-matting pair and extension functions. On theother hand, if form is NULL, only the extensionfunctions of the current top environment arechanged to the new ones and processing con-tinues with the current formatting pair.� The stack top is popped whenever its formatstring is completely processed or if a call toan extension function returns a negative value.When this happens, the current eventf functionwill be called to allow the application to per-form any �nalization actions (e.g., freeing theformatting environment object).� To process a conversion pattern, the formattingfunction �rst �lls the relevant Sffmt t �elds withdata such as the current states of the formatstring and the argument list, the formattingpattern, object size, ags, width, precision, etc.Then, it makes the call (*extf)(f,v,fe). Heref is the stream, v is a pointer to an object suit-able for storing a scalar or pointer value, and feis the given Sffmt t object.� The return value of extf is handled as follows:{ A negative value pops the stack. Process-ing will continue with the newly revealedtop environment if there is one. If there isno more environment, the formatting func-tion will return.{ A positive value means that extf has �n-ished formatting this pattern and also in-dicates the amount of stream data thatextf reads or writes. The calling format-ting function will record this amount, thencontinue processing of the format string.{ A zero value indicates that the format-ting function should take over process-ing this pattern. The extension functionmay redirect processing by modifying theSffmt t object to change the formattingpattern and other associated formattingattributes. In fact, if the original patternwas not one already de�ned by S�o, extfshould reset the �eld fmt to one already de-�ned. Otherwise, this conversion patternwill be ignored.

1. timeprint(Sfio_t* f,Void_t* v,Sffmt_t* env)2. { if(env->fmt == 't')3. { time_t t = va_arg(env->args,time_t);4. *((char**)v) = ctime(&t);5. env->size = -1;6. env->fmt = 's';7. env->flags |= SFFMT_VALUE;8. }9. return 0;10. }11. error(char* form, ...)12. { Sffmt_t fmt;13. va_list args;14. static int count;15. va_start(args,form);16. fmt.form = form;17. va_copy(env.args,args);18. fmt.extf = timeprint;19. fmt.eventf = (Sffmtevent_f)0;20. sfprintf(sfstderr,"Error #%d, %!.\n",++count, &fmt);21. va_end(args);22. }23. error("%t:\n\tTrying to allocate %d bytes",time(0), 1024);Error #1, Tue Dec 1 00:39:46 EST 1999:Trying to allocate 1024 bytes.Figure 2: An error processing function2.5.2 De�ning a new patternFigure 2 shows how to implement a function error()that prints all normal conversion patterns and alsosupports a new pattern %t to convert a clock valueto a date string. This example also shows how theformatting stack is used.Lines 1-10 de�ne an extension functiontimeprint() to interpret the new conversionpattern if it is speci�ed. Other patterns are simplydeferred to the calling formatting function.Lines 3-4 obtain the time value and convert it to adate string. The use of time t to get a value o� of anargument list is possible here because timeprint() isan application routine. Both time t and ctime() arede�ned in the ANSI-C Standard.Lines 5-7 reset the formatting pattern env->fmtto `s' and env->size to -1 and also add the bitag SFFMT VALUE to env->flags. These actions tellsfprintf() that timeprint() is returning a null-

terminated string to be printed. Although not nec-essary in this example, the extension function shouldalways make sure that associated formatting at-tributes such as width, precision and base are resetproperly along with resetting a conversion pattern.Lines 11-22 de�ne a function error() to print er-ror messages with embedded conversion patterns in-cluding %t.Lines 15-19 construct a formatting environmentfmt from the function arguments and the extensionfunction timeprint().Line 17 shows the use of the macro functionva copy to copy argument lists. This macro func-tion is provided by S�o for portability.Line 20 calls sfprintf() to do the actual format-ting. This call �rst outputs an error count. Thenwhen it encounters the pattern %!, it stacks fmt tostart processing the arguments of error(). Whenthat is �nished, the stack is popped and processingreturns to the original formatting string to outputthe �nal period.Line 23 gives an example of how error() may becalled to print an error message concerning an alloca-tion error. The %t pattern is treated by timeprint()in the described manner. However, timeprint() sim-ply returns 0 for the %d pattern so that sfprintf()will continue with normal processing. An exampleoutput is shown after the error() call.2.5.3 Rede�ning a patternFigure 3 shows an example that rede�nes thesystem-de�ned pattern %c and also de�nes a newpattern %C to print a pair of real numbers in twodi�erent ways, as a complex number or as a two-dimensional coordinate. The former is presented asa pair of numbers in parentheses while the latter ispresented in angle brackets.Lines 1-4 de�ne the object type Obj t, a structwith two oating point value members.Lines 5-17 de�nes the extension functionobjprint() to print an Obj t object based on thespeci�ed formatting patterns. The default clause ofthe switch statement shows that objprint() returns0 on all conversion patterns other than %c and %C.This means that sfprintf() will continue process-ing them normally.Lines 8-13 show how recursive calls to sfprintf()are used to process the patterns %c and %C. In eachcase, data is output directly to the stream. Theoutput amount is returned to indicate to the theoriginal sfprintf() call that the pattern has beencompletely processed and also so that sfprintf()can correctly update its output count.

1. typedef struct obj_s2. { double x;3. double y;4. } Obj_t;5. objprint(Sfio_t* f,Void_t* v,Sffmt_t* env)6. { Obj_t* o;7. switch(env->fmt)8. { case 'c': /* print a complex number */9. o = va_arg(env->args,Obj_t*);10. return sfprintf(f,"(%g,%g)",o->x,o->y);11. case 'C': /* print a coordinate pair */12. o = va_arg(env->args,Obj_t*);13. return sfprintf(f,"<%g,%g>",o->x,o->y);14. default :15. return 0;16. }17. }18. Sffmt_t fmt;19. fmt.form = (char*)0;20. fmt.extf = objprint;21. Obj_t obj = {1.11, 2.22};22. sfprintf(sfstdout,"%!%c\n",&fmt,&obj);(1.11,2.22)23. sfprintf(sfstdout,"%!%C\n",&fmt,&obj);<1.11,2.22>Figure 3: Printing user-de�ned dataLines 18-20 construct a formatting environment.The �eld fmt.form is set to NULL so that only theextension function of the current top environmentwould be changed to objprint().Lines 21-23 initialize an object obj with the shownvalues, then print it both as a complex number andas a two-dimensional coordinate. The resulting out-puts are shown along with the respective calls.2.5.4 Application-de�ned argumentsFigure 4 shows how to extend sfprintf() so that thevalues to be formatted can be obtained either fromthe argument list or via a call-back function thatgets them from the process environment.Lines 1-18 de�ne the function envprint() to pro-cess environment variables. The special processingis done only when an environment variable name isgiven via the use of the (tstr) syntax.Lines 4-5 construct the name of the environmentvariable. This explicit construction is necessary be-cause the (tstr) string env->t str is not necessarilynull-terminated.

1. envprint(Sfio_t* f,Void_t* arg,Sffmt_t* env)2. { char name[1024], *v;3. if(env->n_str > 0)4. { memcpy(name,env->t_str,env->n_str);5. name[env->n_str] = 0;6. if((v = getenv(name)) && *v)7. { *((char**)arg) = v;8. env->size = -1;9. env->fmt = 's';10. }11. else12. { *((char*)arg) = '?';13. env->fmt = 'c';14. }15. env->flags |= SFFMT_VALUE;16. }17. return 0;18. }19. Sffmt_t ft;20. ft.extf = envprint;21. ft.form = (char*)0;22. sfprintf(sfstdout,"%!%s=%(*)d\n",&ft, "LINES", "LINES");LINES=2423. sfprintf(sfstdout,"%!%s=%(*)s\n",&ft, "SHELL", "SHELL");SHELL=/bin/ksh24. sfprintf(sfstdout,"%!%s=%(*)s\n",&ft, "UNKNOWN", "UNKNOWN");UNKNOWN=?Figure 4: Application-de�ned argumentsLines 6-15 attempts to obtain the value of thespeci�ed environment variable. If this value exists,it is returned in the given argument arg. The conver-sion pattern is changed to `s' since this is a string. Ifthe value does not exist, the character `?' is returnedand the conversion pattern is accordingly changed to`c'. In either case, the ag SFFMT VALUE is set to in-dicate that further processing of the returned valueis needed by the orginal sfprintf() call.Lines 19-21 set up a new formatting environment.Since the �eld form is set to NULL, only the extensionfunction of the current top formatting environmenton the formatting stack will be changed.Lines 22-24 give examples of printing the namesand values of three environment variables: LINES,SHELL and UNKNOWN. In each case, the conversion pat-

tern %! is used to change the extension function toenvprint(). After that, processing continues withthe current formatting string and argument list.This would cause the name of the variable and thecharacter `=' to be output. Then, the * directive inthe \(tstr)" construct obtains the second instanceof the variable name from the argument list to passon to envprint(). In turn, the envprint() call com-putes and returns the value of the speci�ed environ-ment variable in the manner described above.2.5.5 Command-level formattingCommands like ls, ps and �nd can produce datain tabular formats. Classic implementations providea variable format controlled by option ags, eachag enabling another column in the formatted out-put. These commands have been independently ex-tended by various groups to allow printf-style spec-i�cations, but because of the earlier lack of a pro-grammable printf interface, such extensions are of-ten incompatible.The S�o \(tstr)" construct allows a commonsyntax for extending formatting at command level.For example, our ls command provides a -f formatoption that accepts format parameters of the form:%[-+][width[.precis[.base]]](id[:subformat])charHere, id is path or any member of the<sys/stat.h> stat structure (with the leading stomitted.) If char is s then the string representationof the item is formatted; otherwise, the integer formis formatted. Consider the below example option:-f '%(mode)s %(mtime:time=%H:%M:%S)s %(path)s'This would print:� The �le mode in the style of ls -l,� The �le modify time using the strftime(3) for-mat %H:%M:%S (hours, minutes, seconds), and� The �le path name.Within the ls implementation, such an option issimply passed to the formatting function sfprintf()after a formatting environment has been set up withan appropriate extension function that knows howto interpret the mentioned (tstr) strings. Then,sfprintf() parses the format string and calls theextension function for actual formatting.Figure 5 shows parts of an extension functionlsprint() to interpret the above example (tstr)strings for printing the path name and modi�cationtime of a �le. Although this code is not the same as

1. typedef struct _lsfmt_s2. { Sffmt_t fmt;3. struct stat* sb;4. char* path;5. } Lsfmt_t;6. lsprint(Sfio_t* f,Void_t* arg,Sffmt_t* env)7. {8. Lsfmt_t* ls = (Lsfmt_t*)env;9. if(...path name...)10. { *((char**)arg) = ls->path;11. env->size = -1;12. env->flags |= SFFMT_VALUE;13. return 0;14. }15. else if(...modification time...)16. { char buf[1024], pattern[1024];17. ...extract strftime() pattern...18. strftime(buf, sizeof(buf), pattern,19. localtime(ls->sb->st_mtime));20. return sfwrite(f,buf,strlen(buf));21. }22. ...23. }Figure 5: Printing �le modi�cation timein our implementation of the ls command, it showshow the formatting extensions may be used.Lines 1-5 de�ne a type Lsfmt t that combines theSffmt t type, a struct stat* for a �le status object,and a char* for the �le name. In this way, the lsapplication can pass along the �le status data and�le name to the formatting function. C casting ruleallows a pointer to a Lsfmt t object to be treatedas a pointer to an Sffmt t object. This way of ex-tending a data structure to be passed back and forthbetween the library and the application code is com-monly used in our libraries based on the disciplineand method library architecture[10].Line 9 identi�es a formatting request for a pathname via examining the string env->t str to see ifit de�nes the id path.Lines 10-14 simply return the path name as astring to be further processed by the calling format-ting function.Line 16 identi�es the print modi�cation time re-quest by examining the string env->t str to see if itde�nes the id mtime.Line 18-20 extracts from the form �eld the con-version string %H:%M:%S to pass to the ANSI-C func-tion strftime(). This conversion string is assumed

to be stored in the bu�er pattern. The functionlocaltime() is called �rst to convert the time t valueenv->sb->st mtime to an object of the type structtm as required by strftime(). Both strftime() andlocaltime() are de�ned in the ANSI-C Standard.Line 21 writes the result out to the given streamand returns the number of bytes written. Subse-quently, the formatting function continues with pro-cessing the format string.3 PerformanceThe new features do add complexity to the format-ting functions. Since many applications, especiallythose based on Stdio, only use the basic formattingtasks, we need to assure that their performance arenot adversely a�ected by the new features when theyare not used. Toward this end, we perform a studycomparing S�o against various Stdio versions on ba-sic data printing and scanning tasks.Hardware MHZ OSO Pentium II 200 SCO UNIX 3.2K Pentium II 333 UWIN/WIN32F Pentium II 333 Linux 2.2.12-20W Pentium II 450 BSDI 4.0.1D HP9000/889 400 HP-UX B.10.20G UltraSparc2 2x300 SUNOS 5.6R SGI Origin 200 4x270 IRIX64 6.5T DEC-Alpha 500 UNIX V4.0DTable 2: Tested platformsTable 2 shows the platforms used in the perfor-mance study. The �rst four systems are PCs runningvarious Unix operating systems. UWIN/WIN32 isDavid Korn's UWIN system [6] that provides a Posixlayer on top of the WIN32 environment. The lastfour are large servers from Hewlett-Packard, Sili-con Graphics, Sun Microsystems and Digital Equip-ment running some respective Unix operating sys-tems available from the vendors.The conditions of the experiments were as follows:� A test program prints 25,000 lines out to a �le,then scanning the same lines back. Each linecontains an instance of each of the patterns:c,d,o,x,f,e,s. The amount of data generatedper run is about 1.7Mbs.� To ensure uniformity, we wrote a single test pro-gram based on the Stdio interface. To test Stdioon a particular platform, we simply compiledthe program using the native stdio.h header

and library. To test S�o, we compiled theprogram using the source compatibility headerstdio.h provided by S�o. This header mappedStdio calls to S�o calls mostly via macros. Suchmappings did add some more work to the S�otests but we deemed that to be insigni�cantcompared to the work done by the formattingtasks themselves.� For UWIN/WIN32, the native WIN32 Stdiowas used instead of the UWIN Stdio since thelatter is just the same source compatibility in-terface provided by S�o.� The test programs always performed I/O to asame �le in /tmp. In our environment, this en-sured that the �le would be on a disk local tothe processing computer.� All test runs were performed at night on lightlyloaded machines. In fact, most machines weresingle user during the tests except for platformR, a large compute server.� Times shown are totals of CPU and Systemtime measured in seconds. Each data point wasobtained as follows. Each test was run ninetimes. Then the highest two and lowest twovalues are discarded to remove certain outliersdue to �le caching e�ects on some platforms.The remaining �ve values are then averaged toproduce the �nal result.Printing ScanningS�o Stdio S�o StdioO .82 1.01 .86 1.00K .42 1.96 .61 .73F .52 1.29 .66 1.22W .21 .43 .26 .30D .85 .90 2.06 2.07G .75 .85 .78 1.09R .40 .40 .49 .70T .25 .26 .33 1.39Table 3: Timing resultsTable 3 presents timing results on the mentionedplatforms. Figure 6 shows the same data in barcharts. Below are a few comments on the data:� S�o outperforms Stdio on all platforms. Mostof the improvement is due to new data con-version algorithms. For example, the decimalprinting algorithm uses table look-up and an in-line binary search to compute digits instead of

O K F W D G R T

Printing

0.0

0.5

1.0

1.5

2.0

Sfio

Stdio

O K F W D G R T

Scanning

0.0

0.5

1.0

1.5

2.0

Sfio

Stdio

Figure 6: Formatting performancethe usual method of division and modulo by 10.This works particularly well on hardwares suchas SUN SPARCs that use function calls for divi-sion and modulo. A full description of the S�oconversion algorithms is not appropriate for thispaper whose focus is on the new formatting fea-tures. Interested readers can peruse the freelyavailable S�o source code for details.� It should be noted that S�o is built from a sin-gle source base but con�gured di�erently on dif-ferent platforms. For optimal performance, itis important that certain basic functions, e.g.,string or memory copy, are matched to the bestavailable methods on a particular platform. Weuse the tool I�e[2] to automatically detect andcompare di�erent functions made available bya platform for the same purposes and generateappropriate con�guration parameters.� The native Stdio on platform K, Windows NT,has the worst printing performance relative toS�o. Some of this poor performance is due thebu�ering strategy of the I/O package (i.e., smallstream bu�er) but a larger part is due to anti-quated conversion algorithms.

� Platforms K and F are based on the sameprocessor but use di�erent operating systems,UWIN for K and Linux2.2.12 for F. The S�operformance is slightly poorer on F than on K.To see if this di�erence is due to compilationenvironments, we reran the S�o tests on plat-form K after recompiling with gcc version egcs-2.91.66, the same compiler on Linux2.2.12. TheS�o printing and scanning times on K are then0.80s and 0.77s respectively. This shows thateither gcc generates worse code than the nativeMicrosoft-C compiler or its supporting librariesare not as optimized as the Microsoft-C ones,or both. Since the gcc-based timing results onK are also worse than that on F, it is likely thatthe support libraries for gcc on F are more op-timized than on K.� The printing performance of Stdio on platformsG, R and T is close to that of S�o but its scan-ning performance is relatively much worse. Thisis particularly bad on T where Stdio scans dataat a rate 4 times slower than S�o. Since printingis more popular than scanning, perhaps theseplatforms recently improved their printing fa-cilities though not the scanning ones.� Platform D clearly has the worst performancein both printing and scanning. This is espe-cially disappointing given the advertised proces-sor speed. Since the timing results are similarbetween S�o and Stdio, the poor performancemust be due to the platform itself, i.e., the com-piler or the support standard libraries.The additional formatting features to de�ne newpatterns or rede�ne existing patterns do incur costdue to extra function calls. To see how much thiscost might be, we wrote test programs to print asequence of complex numbers whose real and imagi-nary parts are equal and range from 1 to n. For anygiven n, all programs produced identical output. Be-low are brief descriptions of the programs:� s�o%c: This prints numbers using the methodshown in Section 2.5.3.� s�o: This prints numbers using the formatstring \(%g,%g)" in direct sfprintf() calls. Forfair comparison with s�o%c, the program con-structs Obj t objects before using their parts inthe printing calls.� complex: This uses the complex<double> typein C++ and the output operator >> to printnumbers to the standard output.

0 2 4 6 8 10

Incrementing by 100,000

0

5

10

15

20

sfio
sfio%c
complex

Figure 7: Times to print complex numbersAll programs were compiled on platform R us-ing the compiler g++ version 2.95. Figure 7 showsCPU+System times from test runs with n from100,000 to 1,000,000 in increments of 100,000. Notsurprisingly, the program s�o using direct sfprint()calls was fastest. The mapping of the new conver-sion pattern in s�o%c increased computation costby about 50% relative to s�o. The program com-plex was slowest, about twice slower than s�o%cand three times slower than s�o. This shows thatthere is a signi�cant performance cost to use the newextensions. However, this cost is not unreasonablein light of the cost incurred by a commonly used I/Ofacility in C++.4 ConclusionWe discussed a number of extensions made to theprinting and scanning functions in the S�o library.These extensions enable safe and exible manipula-tion of strings and scalar objects. Data formattingis fully generalized so that applications can providetheir own interpretation of the conversion patternsand also de�ne new ones. Examples were given toshow how the new features enable applications thatwould be hard to build using Stdio.A performance study was presented to show that,despite the additional formatting features, S�o stillperformed as well or better than currently popularStdio implementations when only standard format-ting tasks are done. A separate experiment showedthat the extended formatting features to de�ne newpatterns and/or rede�ne old ones could incur sig-ni�cant cost due to extra function calls. This costshould be balanced against the extra programmingexibility.Although the S�o's API is distinct from Stdio's,S�o does provide source and binary compatibility

packages for programs written on top of Stdio. Theextensions discussed here are orthogonal to the fea-tures de�ned in the ANSI-C Standard[1]. Therefore,they can be transparently used by Stdio applicationsthat are compiled or linked with the compatibilitypackages provided by S�o.Code availabilityThe source code for S�o is freely available at:http://www.research.att.com/swIn addition, related commands and libraries areavailable at:http://www.research.att.com/sw/downloadReferences[1] ANSI. American National Standard for InformationSystems - Programming Language - C. AmericanNational Standards Institute, 1990.[2] Glenn S. Fowler, David G. Korn, J.J. Snyder, andKiem-Phong Vo. Feature-Based Portability. InProc. of the Usenix VHLL Conference, pages 197{207. USENIX, 1994.[3] Glenn S. Fowler, David G. Korn, and Kiem-PhongVo. S�o: A Bu�ered I/O Library. Software|Practice and Experience, Accepted for publication,1999.[4] ISO/IEC. ISO/IEC International Standard9899:1999(E) Programming Language - C. IEEE,1999.[5] Brian Kernighan and Dennis Ritchie. The C Pro-gramming Language. Prentice Hall, 1978.[6] David G. Korn. Porting UNIX to Windows NT.In Proc. of the 1997 Usenix Conference. USENIX,1997.[7] David G. Korn and Kiem-Phong Vo. SFIO:Safe/Fast String/File IO. In Proc. of the Summer'91 Usenix Conference, pages 235{256. USENIX,1991.[8] Posix - part 2: Shell and utitilities, 1993.[9] Bjarne Stroustrup. The C++ Programming Lan-guage. Addison-Wesley, second edition, 1991.[10] Kiem-Phong Vo. The discipline and method archi-tecture for reusable libraries. Software|Practiceand Experience, 30:107{128, 2000.

