
1Vmalloc: A General and E�cient MemoryAllocator KIEM-PHONG VOAT&T Laboratories 180 Park Avenue, Florham Park, NJ 07932, U.S.A.(kpv@research.att.com)SUMMARYOn C/Unix systems, the malloc interface is standard for dynamic memory allocation.Despite its popularity, malloc's shortcomings frequently cause programmers to codearound it. The new library Vmalloc generalizesmalloc to give programmers more controlover memory allocation. Vmalloc introduces the idea of organizingmemory into separateregions, each with a discipline to get raw memory and a method to manage allocation.Applications can write their own disciplines to manipulate arbitrary type of memoryor just to better organize memory in a region by creating new regions out of its memory.The provided set of allocation methods include general purpose allocation, fast specialcases and aids for memory debugging or pro�ling. A compatiblemalloc interface enablescurrent applications to select allocation methods using environment variables so theycan tune for performance or perform other tasks such as pro�ling memory usage,generating traces of allocation calls or debugging memory errors. A performance studycomparing Vmalloc and currently popular malloc implementations shows that Vmalloc iscompetitive to the best of these allocators. Applications can gain further performanceimprovement by using the right mixture of regions with di�erent Vmalloc methods.KEYWORDS: Memory allocation, debugging, pro�ling, region, method, discipline1 IntroductionDynamic memory allocation is an integral part of programming. Programs in C and C++ (viaconstructors and destructors) routinely allocate memory using the familiar ANSI-C standard inter-face malloc established around 1979 by Doug McIlroy. Malloc manipulates heap memory using thefunctions malloc(s) to allocate a block of size s, free(b) to free a previously allocated block b,and realloc(b,s) to resize a block b to size s. No optimal solution to dynamic memory allocationexists [1, 2, 3] so, over the years, many malloc implementations were proposed with di�erent trade-o�s in time and space e�ciency. A study by David Korn and Phong Vo [4] in 1985 presented andcompared 11 malloc versions. Only a few of these survived the test of time. The �rst widely usedmalloc was written by McIlroy and became part of many Bell Labs Research and System V versionsof the UNIX system. This malloc is based on a �rst-�t strategy and can be signi�cantly slow inlarge memories. C. Kingsley wrote a malloc based on a power-of-two buddy system around 1980.This version is distributed with versions of the BSD UNIX system. It is fast but wastes signi�cant

2space. In 1983, C.J. Stephenson [5] proposed a better-�t strategy based on the Cartesian tree datastructure [6] . This strategy was implemented by C. Aoki and C. Adams and is now part of SUNOS. Also around 1983, Vo implemented a malloc based on the best-�t strategy and bottom-up splaytree data structure [7] . This version is now distributed with UNIX System V Release 4.The malloc interface is simple and elegant. However, its simplicity imposes certain constraintson implementation and usability. For example, since only the address of usable data is returned inan allocation request, the size of the block must be kept elsewhere in the event that the block isfreed or resized. Such overhead can be signi�cant for programs that allocate small blocks or seldomfree. Many programs allocate a few di�erent block types where each type has a �xed size. Here,malloc may be ine�cient in space because of the mentioned overhead and also ine�cient in timebecause of the implied search for free space. To improve performance, many applications inventspecial interfaces that use malloc to allocate large chunks then manage that space themselves. TheCustoMalloc package [8] improves on this approach by analyzing allocation traces from programexecution to synthesize special malloc interfaces for popular sizes. This approach still has to paythe space overhead and may be misled by the trace data. Another type of allocation problem is tomanage memory other than heap memory. For example, on modern environments, it is increasinglydesirable to use shared memory to speed up process communication and mapped memory for fasterIO and data persistence. Malloc is simply not designed for such purposes. This is unfortunate asthe signi�cant time and e�ort put into developing good algorithms and heuristics for malloc mustbe reinvented or at least repackaged in each new situation.The Vmalloc library generalizes the malloc interface to give programmers more control overmemory allocation strategy. Vmalloc introduces the idea of allocating memory in separate regionseach of which has a discipline to obtain raw memory and a method to manage that memory. Asidefrom memory acquisition, a region discipline may also include a function to handle exceptional allo-cation events. The library provides disciplines for standard ways of obtaining memory. Applicationcan de�nes their own disciplines to manipulate any type of memory including shared or mappedmemory. The method of a region speci�es how memory resource is managed. The prede�ned setof methods includes general purpose allocation via a best-�t allocator, fast allocation of importantspecial cases, and allocation with aids for memory debugging and pro�ling. Thus, using Vmalloc,an application can select the appropriate mixture of regions that most e�ectively deals with itsmemory needs. For current applications, Vmalloc also provides a compatible malloc interface thatallows method selection by environment variables.The rest of the paper is organized as follows. Section 2 describes the Vmalloc library. Section 3presents a performance study that both compares the general allocation method of Vmalloc againstcurrently popular malloc versions and shows the e�ciency of the specialized Vmalloc methods.Section 4 gives examples of how to use the compatible malloc interface. Section 5 summarizes theresults.

31. Vmalloc_t* vm = vmopen(Vmdcheap,Vmlast,0);2. for(a while)3. { ...4. b = vmalloc(vm,block_size);5. b = vmresize(vm,b,new_size,1);6. vmfree(vm,b);7. ...8. vmclear(vm);9. vmcompact(vm);10. }11. vmclose(vm);Figure 1: An example of region creation and space allocation2 The Vmalloc libraryVmalloc enables applications to allocate arbitrary types of memory, and to pick allocation strategiesthat matches allocation requirements. This is done via three basic structures:� Region: Each allocation request is handled in some region. The library provides a standardheap region Vmheap. This region performs general purpose memory allocation on heap memorywhich, on UNIX systems, is obtained by the sbrk() system call. Applications can create otherregions as necessary. Region operations are discussed in Section 2.1.� Discipline: Each region has a discipline to obtain raw memory and to handle exceptionalevents. The library provides two standard disciplines: Vmdcsbrk to obtain memory with thesystem call sbrk(), and Vmdcheap to obtain memory from the heap region. Applications cande�ne new disciplines for other types of memory. Discipline usage is discussed in Section 2.2.� Method: Each region selects a particular method of memory management. The availablemethods are: Vmbest for general purpose allocation based on an approximate best-�t strategy,Vmpool to allocate blocks of �xed sizes, Vmlast for allocation where only the last block can befreed or resized, Vmdebug for allocation with aids for memory error detection, and Vmprofilefor allocation with aids for memory pro�ling. Methods are discussed in Section 2.3.2.1 Region operationsFigure 1 shows an example code fragment. This code fragment runs a loop for a while. Eachiteration of the loop constructs and manipulates some data structures. The structures are deletedat the end of an iteration. This is the typical mode of operation in an application such as a languageinterpreter. The main loop reads one or more language statements, constructs and interprets astructure representing these statements, then cleans up before continuing.

4The call vmopen(disc,meth,flags) creates a region with discipline disc, method meth, andsome control bits in flags. Thus, line 1 of Figure 1 creates a region vm with the discipline Vmdcheap(see Section 2.2) and the allocation method Vmlast. The discipline Vmdcheap obtains heap memoryfrom the standardly provided region Vmheap. The Vmlastmethod allocates space but does not allowa block to be freed or resized unless it is the very last one allocated. Based on this constraint, Vmlastcan avoid most space overhead and search time. The constraint is �ne here since memory is onlyfreed at the bottom of the loop (via vmclear()). The flags argument of vmopen() is composedfrom a few bits. The ones that apply here are VM TRACE to generate a trace of allocation calls (seeSection 4 for sample trace outputs), and VM TRUST to turn o� region locking and validation checksduring allocation calls for faster speed. Since flags is 0 here, standard region handling will be usedand vm will be locked during allocation.Lines 4, 5, and 6 of Figure 1 show that allocations are performed with the calls:� vmalloc(vm,size): allocates from region vm a block of size bytes. The block is suitablyaligned to store any C or C++ type.� vmfree(vm,b): makes the previously allocated space block b available for future allocations.Note that if VM TRUST is o�, both vmfree() and vmresize() will check to see if b was in factallocated from vm.� vmresize(vm,b,size,type): resizes the block b to size bytes. type is composed from thebits VM RSMOVE, VM RSCOPY, and VM RSCLEAR. VM RSMOVE means that b cannot be resized inplace, a new block of size size will be allocated. VM RSCOPY is like VM RSMOVE but it alsocopies data from the old block to the new block. VM RSCLEAR means that any new spacebeyond the old size will be zero-�lled.The call vmclear(vm) on line 8 of Figure 1 clears the region vm, i.e., to reclaim all allocatedspace. vmclear() is useful to globally free all currently busy blocks in a region. It is particularhelpful with the Vmlastmethod which only allows freeing of the last block. The call vmcompact(vm)on line 9 reduces unused space in the region via the discipline. In this example, this means to returnsuch space to the Vmheap region. This is an important consideration if some iterations may consumelarge amounts of space. Finally, after the loop terminates, vmclose(vm) is called on line 11 to closethe region vm and release all of its memory.Other functions are available for obtaining information about regions and allocated blocks. Forexample, vmstat(vm,statb) returns in the bu�er statb summary statistics on busy and free space,vmaddr(vm,addr) checks to see if addr is a part of some allocated block, and vmsize(vm,b) returnsthe true size of b.2.2 Writing and using disciplinesThe example in Figure 1 uses the system-provided discipline Vmdcheap to obtain memory from theheap region Vmheap. Applications can provide their own disciplines for special memory organization.

51. void* heapmem(Vmalloc_t* vm, void* addr,2. size_t csz, size_t nsz, Vmdisc_t* disc)3. { if(csz == 0)4. return vmalloc(Vmheap,nsz);5. else if(nsz == 0)6. return vmfree(Vmheap,addr) >= 0 ? addr : (void*)0;7. else return vmresize(Vmheap,addr,nsz,0);8. } Figure 2: A memory-obtaining discipline functionA discipline de�nes functions to get memory and to handle exceptional events. It is of type Vmdisc twhich has members:Vmemory_f memoryf;Vmexcept_f exceptf;size_t round;The call (*exceptf)(vm,type,obj,disc) announces events. vm is the region originating theevent and disc is the discipline. type and obj de�ne the type of the event and the object thatcauses it. Events supported are: VM NOMEM to indicate that region is out of memory, VM BADADDRto indicate that a call to vmfree() or vmresize() was given an invalid address, and VM OPEN andVM CLOSE to indicate region opening and closing. The last two events are useful to initialize and�nalize memory shared in multiple regions or mapped from persistent storage.The call (*memoryf)(vm,addr,csz,nsz,disc) obtains or releases memory for region vm. Thearguments csz and nsz de�ne the current and new sizes of a memory segment. In any memoryf call,at most one of csz and nsz can be zero. If csz is zero, memoryf returns a new segment of memoryof size nsz. Otherwise, memoryf tries to change the size of the segment pointed to by addr from cszto nsz without moving it. So, even when nsz is zero and the given segment is successfully freed,memoryf should return addr to indicate that the resize succeeds. Sizes in memoryf calls are alwaysmultiples of round. Depending on the region, round should be chosen to optimize some relevantsystem-dependent parameters such as page or disk block sizes. If round is zero, the library will picka convenient size such as the page size.Figure 2 shows the heapmem() function taken from the Vmdcheap discipline. This function obtainsand frees space from the Vmheap region via Vmalloc allocation functions. On line 4, since at mostone of csz and nsz can be zero, the value of nsz in the call vmalloc(Vmheap,nsz)must be non-zero.On line 6, if addr is successfully freed, heapmem() returns addr to indicate success to the callingfunction. On line 7, vmresize() is called to resize an existing block of memory without moving it(the last argument of the call is zero). This is important because elsewhere there may be pointerspointing into some part of the segment addr.The example in Figure 2 does not use the region argument vm and the discipline argument disc.However, it is easy to imagine cases where these will be useful. For example, a discipline based on �le

6typedef struct _vmdcmmap_s{ Vmdisc_t disc; /* Vmalloc discipline */int fd; /* file descriptor */... /* whatever else */} Vmdcmmap_t; Figure 3: An application-extended discipline structurememory mapping will need a place to store a �le descriptor for the �le being manipulated. A way todo this is to extend the Vmalloc discipline structure as in Figure 3. If mmapdisc and disc are of typesVmdcmmap t* and Vmdisc t*, C and C++ casting rules allow the constructs (Vmdisc t*)mmapdiscand (Vmdcmmap t*)disc to work.2.3 Allocation methodsEach region must select a method for memory allocation. The prede�ned methods are: Vmbest,Vmpool, Vmlast, Vmdebug, and Vmprofile.2.3.1 General purpose allocation with VmbestVmbest is a general purpose allocator. The basic allocation strategy is best-�t, i.e., an allocationrequest is satis�ed from a smallest free area that �ts the required size. Free areas are kept in atop-down splay tree [7] for fast search. Even though there is an example of quadratic fragmentationfor best-�t [2] , experience and theoretical evidence in bin-packing problems [4, 5, 9, 10] indicate thatbest-�t behaves nicely in general. Vmbest has a few additional heuristics to improve speed andreduce fragmentation:� Free blocks are cached until a future allocation. This strategy bene�ts programs that freeeverything before exiting by avoiding expensive coalescing. It also bene�ts programs thatcontinually free and allocate the same block types by giving the allocator the opportunity toavoid some searches if requested sizes �t recently freed blocks.� Frequent and small allocation sizes are handled in an adaptive manner to speed up allocation.This strategy bene�ts programs that allocate small data types.� When a block is resized to grow and has to be moved because it cannot be extended in place,a small amount is added to the size before searching for new space. This strategy reduces datamovement and fragmentation because such a block is often resized again.� The \wilderness preservation heuristic" [4] is observed. This means that the free area withhighest address, or the wilderness, is only allocated as a last resource. This strategy preventsunnecessary growth of the arena.Vmbest is analogous to the ANSI-C malloc interface. Section 3.1 presents a performance studycomparing Vmbest and currently popular malloc implementations.

72.3.2 Special purpose allocation with Vmpool and VmlastVmpool and Vmlast are special purpose allocators. Vmpool allocates blocks of a single size determinedby the �rst call to vmalloc() after vmopen() or vmclear(). Vmlast allocates without freeing orresizing except on the last allocated block. Both Vmpool and Vmlast are faster and more space-e�cient than Vmbest because the allocators do not have to maintain information on a per-blockbasis. Section 3.2 shows examples of performance gain using these methods.2.3.3 Memory debugging with VmdebugVmdebug is a general purpose allocator equipped with aids to detect common memory violationssuch as memory overwrites or freeing and resizing unallocated data. Thus, Vmdebug performs asubset of functions provided in Purify [11] . One advantage of Vmdebug over Purify is that it doesnot change the executable code which may hide certain elusive bugs. In addition, since it is justanother allocation method, Vmdebug can be put to use any time during program execution bysimply creating a new region. Two region
ags a�ect the behavior of Vmdebug: VM DBABORT abortsthe program upon a detected error and VM DBCHECK checks the region integrity on each allocationrequest. Since checking region integrity can be expensive, applications may leave VM DBCHECK o�and occasionally call vmdbcheck(vm) instead. The call vmdbwatch(vm,addr) can be used to watchwhen an address addr is met in an allocation function. Section 4 gives examples of how Vmdebug isused in the malloc compatibility interface.2.3.4 Memory pro�ling with VmprofileVmprofile is a general purpose allocator that also collects data on space allocation. The pro�ler sum-marizes space allocated and freed at each applicable program text line. The call vmprofile(vm,fd)outputs pro�le data in region vm to �le descriptor fd. The special value NULL for vm causes output ofpro�le data for on all regions instrumented with Vmprofile. Section 4 gives an example of pro�lingoutput.3 PerformanceThis section presents a study comparing the general purpose allocator Vmbest against currentlypopular malloc implementations and gives a few examples of performance bene�ts of using Vmlastand Vmpool in appropriate contexts.3.1 Comparing Vmbest to popular malloc versionsPrevious allocation performance studies [4, 3] often employed randomly generated data to exercisethe allocators. Though such simulations can give useful insights into the implemented algorithms,

8it is hard to create data that truly model operations in real programs [12] . Zorn and Grunwald [13]propose a good methodology in which allocation performance is measured using actual applications.However, they measure allocation performance using direct program execution. This is �ne formeasuring space because only the allocators allocate space but measuring time can be tricky due toother work done in the programs. To be consistent in measuring both space and time, the approachtaken here is:� Construct a simulator to execute any sequence of: allocate, free, and resize. The simulatorcan exercise any allocator by linking with it.� Link the programs of interest with Vmalloc to generate traces of allocation requests using theVM TRACE option (Sections 2.1 and 4).� Process the traces into the format required by the simulator. This format is designed to reducecomputation to a minimumof invoking allocation functions and accumulating resource usages.� Execute the properly instrumented simulator with given data to measure resource consump-tion using a particular allocator. Space obtained in each allocation is cleared to ensure thatthe respective memory pages are indeed allocated by the operating system and improve theaccuracy of system time.� Each allocation is set to be at a minimum of 2 words so that blocks can be maintainede�ciently in a doubly linked list as they are allocated or freed. This enables comparison of theBoehm-Weiser conservative garbage collector [14] and other allocators on the same footing.The allocators that will be compared against Vmbest are:� V: by Phong Vo, distributed with System V Release 4. This malloc is based on a best-�tstrategy using a bottom-up splay tree for free blocks.� S: by Chris Aoki and C. Adams, distributed with SUN OS. This malloc is Stephenson's better-�t allocator [5] .� P: by Chris Kingsley, modi�ed and distributed with the Perl language interpreter. This mallocuses a power-of-two buddy system.� X: by Doug McIlroy, used in the 10th Edition Bell Labs Research UNIX system. This mallocis based on a �rst-�t strategy with a roving pointer. Small blocks are cached on freeing tospeed up subsequent allocations.� H: by Mike Haertel, distributed with the GNU C library, dated Mar 1 1994. This allocatorsegregates blocks of same size in same pages.� L: by Doug Lea, distributed with the GNU C++ library, version 2.5.3b.

9Dataset Allocate Free Resize MaxAllocate MaxBusygawk 723,470 722,922 150,888 47,684K 38Kdb.2X 880,688 879,648 0 10,953K 20Kdb.ioQ 66,626 11,912 0 1,777K 1,411Kmt.ioQ 69,387 10,677 0 1,867K 1,575KC++parser 44,730 5,381 0 1,024K 848Kgraph 111,782 14,882 0 1,706K 1,590KS 102,146 83,124 56 800,369K 5,887Kciao 163,044 145,113 3,246 912,507K 6,839Kfragment 10,001 0 10,000 1,563,203K 547KTable 1: Summary of datasets in the simulation study� B: by Hans Boehm and Mark Weiser, a conservative garbage collector, version 4.5. Here,GC malloc uncollectable() and GC free() are used so that garbage collection is bypassedand only allocation performance is measured. Allocated space is not cleared because that isalready done by the allocator.� C: the same Boehm-Weiser garbage collector. Here, GC malloc() is used and objects arefreed by removing them from the linked list discussed above. Thus, in this case, the garbagecollection performance is measured.The datasets studied here contain allocation traces from a diverse set of applications includingparsers, database queries, data analyses and interactive graphics. Each dataset either performs alarge number of allocations or allocates a large amount of data, or both. Table 1 summarizes informa-tion about the datasets. The �rst three numerical columns display total numbers of di�erent typesof operations. The fourth column shows the total of space requested via malloc() or realloc().The last column shows the maximum busy space at any time. Below are brief descriptions of theprograms and their input data:� gawk: The GNU awk program with input data as described in [13] .� db.ioQ, db.2X: Two processes in the Daytona database system [15] for compiling and executinga large query.� C++parser: A C++ language parser parsing a large program.� mt.ioQ: The program that prepares an allocation trace from Vmalloc for the allocation simu-lator, here using the db.ioQ trace as input. This program allocates memory via three separateregions (Section 3.2).� graph: A graph processor parsing a large directed graph speci�cation and building an in-corerepresentation of the graph.� S: The S statistical analysis system [16] processing its regression test suite.

10size = 32;big = malloc(size);for(n = 0; n < 10000; ++n){ small[n] = malloc(24);big = realloc(big,size += 32);} Figure 4: An allocation pattern causing fragmentation in some allocators� ciao: A program and data visualization system [17] .� fragment: A program running the allocation pattern in Figure 4. This pattern occurred in anearly version of the IFS language compiler [18, 19] .Figure 5 shows the time and space performance comparisons between Vmbest and the describedmalloc versions. To give an idea of magnitude, bottoms of the graphs are labeled with the timemeasures and arena sizes for Vmbest. Measurements were done on a completely idle Sparc-5 runningSUNOS4.1. Each time value is a sum of cpu and system times obtained by running the simulator10 times and taking the average. Each data point on the graphs is constructed by dividing the timeor space value of the respective allocator by that of Vmbest if the former is larger; otherwise, thereverse is done. Thus, the horizontal lines at 1 in both graphs represent Vmbest. An allocator isslower or faster (less or more space e�cient) than Vmbest if the corresponding data point is aboveor below this line. A data point between inf0 and inf1 means that the respective allocator is ableto service all allocation requests but its time or space value is at least 4 times that of Vmbest. Adatapoint beyond inf1 means that the respective allocator fails { typically because it runs out ofmemory. Below are a few observations about the data:� Vmbest is competitive to the best allocators in time. However, note that the times used byVmbest on Figure 5 are only small fractions of application running times. For example, gawktakes on average about 95 seconds to process the given input and only about 7 seconds of thattime is for allocation. This means that the speed of an allocator is not an important factoras long as it remains reasonable. Much more important is space fragmentation which hasimplication on memory contention not just for the immediate process but also others runningconcurrently on the system.� Allocators B, C, H, S, and X su�er signi�cant fragmentation on a few datasets. In fact, Xruns out of memory on ciao and fragment. P typically used 30% to 40% more space than thebetter allocators because it rounds any request size up to the next power of 2. L managesspace well in general except on the dataset fragment. V and Vmbest do �ne in all cases.� Table 2 summarizes realloc() calls on gawk, ciao and fragment. The \move" columns showthe number of times that resized blocks are moved to new locations. The \copy" columnsshow the total amounts of data copied in such cases. gawk has the most realloc() calls butmostly for small, short-lived blocks. ciao uses a few large, long-lived bu�ers that are resized

11- 1 -

Space
Ratios

V: SysVr4
S: SUN
P: Perl
X: V10

H: Haertel
L: Lea

B: B-W GC
C: B-W GC

2

1

2

3

inf0

inf1

gawk db.2X db.ioQ mt.ioQ C++parser graph S ciao fragment

V
S

P

X

H

L

BC

.V

.S

.P

................................X.H

.L

.B.C

.V.S

.P

.X

.H

.L

...B

......................................C

.V.S

.P

.X

.H

.L.B

.C.V.S

.P

.X

.H.L.B.C
.V.S
.P
.X.H
.L.B

.C
.V.S
.P

.X

.H.L.B

.C

.V

.S

.P

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.X

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.H

.L

.B.C

.V..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.S

.P

.X

..................................H. .
. .

. .
. .

. .
. .

. .
. .

. .L
. .

. .
. .

. .
. .

. .
. .

. .
. .

.B

. .
. .

. .
. .

. .
. .

. .
. .

.C

Vmbest arena size in Kbytes

52 36 1872 2264 1216 2368 6540 8072 656

Time
Ratios

V: SysVr4
S: SUN
P: Perl
X: V10

H: Haertel
L: Lea

B: B-W GC
C: B-W GC

2

1

2

3

inf0

inf1

gawk db.2X db.ioQ mt.ioQ C++parser graph S ciao fragment

V
S

P
XHLB

C

.V.S

.P

.X.H

.L.B

.C.V

.S

.P.X

.H.L

.B

.C

.V

.S.P

.X

.H.L.B

.C

.V

.S

.P

.X

.H

.L

.B

.C

.V

.S.P

.X

.H

.L.B

.C

.V

.S.P

.X

.H

.L

.B

. .
. .

. .
. .

. .
. .

. .
. .

.C

.V.S

.P

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.X

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..H

.L..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..B

..
..
..
..
..
..
..
..
..
..
..
..
..C

.V

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..S

.P

.X

...................................H

.L

.B.C

Vmbest user+sys time in seconds

7.17 6.11 0.44 0.48 0.28 0.58 18.86 2.21 0.22Figure 5: Time and space allocation performances normalized to Vmbest

12gawk(150,888) ciao(3,246) fragment(10,000)Allocator move copy move copy move copyVmbest 20,114 470K 223 11,546K 12 335KV: SysVr4 150,869 3,536K 295 14,373K 8 442KS: SUN 72,194 1,573K 298 14,267K 317 49,288KP: Perl 150,884 3,536K 163 2,540K 13 512KX: V10 17,165 326KH: Haertel 150,869 3,536K 404 81,543K 12 356KL: Lea 105,479 2,357K 209 11,938K 16 842KB: B-W GC 150,884 3,536K 488 91,692K 99 12,332KC: B-W GC 150,867 3,536K 470 91,690K 96 12,330KTable 2: realloc() statistics for the datasets gawk and ciaomany times. For gawk and ciao, the Vmbest's resize strategy of adding a small amount to amoved block helps to reduce the total number of moves and the amount of copied data. P'spolicy of rounding a size up to its next power of 2 does even better on ciao because the bu�ersare large.� Except for H, V, and Vmbest, the other allocators lose large amount of space on the datasetfragment. A likely reason is because they do not observe the wilderness preservation heuristic(Section 2.3.1). When the arena requires extension, all allocators extend it by a multiple ofsome �xed value (usually the page size). This often leaves some extra space after the respectiveallocation request is satis�ed. Without wilderness preservation, this space is immediatelyavailable for allocation. On fragment, arena extension happens mostly when the big blockin Figure 4 grows. Using the extra space for a small allocation prevents the big block frombeing able to grow in place and causes it to move in its next resizing. V and Vmbest preservewilderness and avoid this problem. H manages to mostly avoid the problem due to its techniqueof allocating page at a time for groups of blocks of the same size. Since the extra space isunlikely to be page aligned, H is unlikely to use it for a small allocation.� On the dataset gawk, the �nal arena sizes for B and C are respectively 257K and 385Kindicating that switching to garbage collection signi�cantly increases space requirement. Thisis probably because free blocks are not collected fast enough. The peak di�erence is on db.2Xwhere B uses 257K and C uses 773K. Turning on garbage collection also negatively a�ectstime. On gawk, the allocation time increases from an average of 6.53s for B to 10.73s for C.The peak di�erence is on dataset S where B uses an average of 16.40s while C uses 51.33s.Garbage collection is a good technique that solves many programming problems. Applicationswith memory leakage sometimes look to it as a quick �x. The evidence here suggests thatthis is not always a good idea. Unless the leakage is severe, a program may be better o� justignoring it.

13C++parser graphVmlast Vmbest Vmlast VmbestArena size 1,076K 1,216K 1,724K 2,368KCpu+Sys 0.22s 0.28s 0.50s 0.58sTable 3: Performance comparison of Vmlast and Vmbest3.2 E�cient allocation with Vmpool and VmlastPrograms can bene�t from the special purpose allocators Vmpool and Vmlast. For example, it is afolklore that parsers and compilers often do well with an allocator that never frees. The datasetsC++parser and graph are typical cases. Table 3 compares the space and time performances betweenVmbest and Vmlast on these datasets. Vmlast uses less space than Vmbest even though it ignoresmost free calls. The reason for this becomes clear in Figure 6 which shows snapshots of the Vmlastand Vmbest allocation arenas forC++parserwhen the allocated space just exceeds 195K bytes. Eachline in the pictures represents 8K bytes. Thick segments are allocated space and thin segments arefree areas. The relatively large free areas in the Vmlast arena are lost because they are not reusable.The Vmbest arena is fairly well packed but it has numerous thin unused areas corresponding to blockheaders. The sum of such header space is much more than the lost space in Vmlast.The program producing mt.ioQ allocates space via three regions, each with a di�erent method,Vmbest, Vmlast, and Vmpool. All three regions use the standardly provided discipline Vmdcsbrkwhich is based on the sbrk() system call. At peak time, the allocated space is 1,575K bytes.With regions, this is satis�able with an arena of size 1,812K and takes 0.35s allocation time. Whenallocations are forced to be done with a single Vmbest region, arena size increases to 2,264K andallocation time increases to 0.48s. Figure 7 shows the arenas when the allocated space just exceeds270K bytes. The light gray areas in Figure 7 indicate that most allocations are done in the Vmpoolregion. Thus, the good performance for mt.ioQ is due to the header saving and fast allocation speedof Vmpool.4 The compatible malloc interfaceA malloc interface is provided to make Vmalloc functionality available to current applications. Bydefault, this interface allocates via the heap region Vmheap which uses the Vmbest method andthe Vmdcsbrk discipline. A program that creates regions with Vmalloc can redirect the mallocinterface to any other region by setting the global variable Vmregion to the wanted region. This is auseful technique to redirect allocation before calling functions in reusable libraries that may allocatememory.Applications can change the allocation method of malloc at start-up time by setting certainenvironment variables. For example, setting VMETHOD=Vmlast selects the Vmlast method. Note,however, that setting the method to Vmpool is usually not a good idea unless it is certain that the

14 +
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

Vmlast

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

vmbest

Figure 6: Arenas for C++parser with Vmlast and with Vmbest

15
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

1: Vmbest 2: Vmlast 3: Vmpool +
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

vmbest

Figure 7: Arenas for mt.ioQ with di�erent method regions and with only Vmbest

161. #include <vmalloc.h>2. foo(s)3. char* s;4. { char* news = malloc(strlen(s));5. strcpy(news,s);6. free(s);7. }8. char* bar(s)9. char* s;10. { char* news = malloc(strlen(s)+1);11. strcpy(news,s);12. free(news);13. return news;14. }15. main()16. { char* s = "1234";17. foo(s);18. s = bar(s);19. free(s);20. } Figure 8: A buggy C programprogram only allocates one type of data. Other variables provide �ner controls depending on themethod in use. It is best to show this with examples.Consider the program in Figure 8 which contains a few common memory errors. Figure 9 showsthat this program is �rst compiled and linked with Vmalloc. The
ag -DVMFL enables recording ofthe �le name and line number for each allocation call. This makes error messages more meaningful.The �rst execution results in a memory fault. Then, the Vmdebug method is selected by settingVMDEBUG=1. Three errors are detected. The �rst one is a memory corruption in a block allocatedon line 4 of the code. This is because not enough space was allocated for the null byte at the endof a C string. The second error on line 6 concerns a block being freed but never allocated. This isbecause the function foo() was passed a literal string as its argument (line 17 of Figure 8). Thiserror is what causes the memory fault! The third error concerns freeing a block already freed. Toexamine this, the aberrant block 0xd6e0 is added to VMDEBUG so that it would be watched for bythe allocator. The resulting two alert messages show that the block is allocated on line 10 andsubsequently freed on line 12. Thus, the free() call on line 19 is redundant and, under normalcircumstances, would have corrupted the heap. Note that the memory fault is avoided with Vmdebugbecause the allocator prevents bad operations from proceeding too far.Figure 10 shows that setting VMTRACE=/dev/tty causes whatever allocator in use to produce atrace of allocation calls. Such an allocation trace can be useful for an in-depth analysis of how aprogram behaves with respect to allocation. For a quick assessment of memory usage, the Vmprofile

17$ cc -DVMFL -O t.c -lvmalloc -o t$ tMemory fault(core dump)$ VMDEBUG=1 tcorrupted data:region=0xc648:block=0xd6b0:bad byte at=4:allocated at=t.c,4:free error:region=0xc648:block=0xc180:unallocated block:detected at=t.c,6:free error:region=0xc648:block=0xd6e0:already freed:detected at=t.c,19:$ VMDEBUG=1,0xd6e0 tcorrupted data:region=0xc648:block=0xd6b0:bad byte at=4:allocated at=t.c,4:free error:region=0xc648:block=0xc180:unallocated block:detected at=t.c,6:alert:region=0xc648:block=0xd6e0:size=5:just allocated:detected at=t.c,10:alert:region=0xc648:block=0xd6e0:size=5:being freed:detected at=t.c,12:free error:region=0xc648:block=0xd6e0:already freed:detected at=t.c,19:Figure 9: Examples of debugging with Vmalloc$ VMTRACE=/dev/tty t0x0:0xc648:4:0xc288:best:t.c,4:0x0:0xc658:5:0xc288:best:t.c,10:0xc658:0x0:8:0xc288:best:t.c,12:$ VMPROFILE=/dev/tty tALLOCATION USAGE SUMMARY:n_alloc=3:n_free=1:s_alloc=21:s_free=5:region=0xc648:n_alloc=3:n_free=1:s_alloc=21:s_free=5:max_busy=21:extent=4096:file=<>:n_alloc=1:n_free=0:s_alloc=12:s_free=0:line=0:region=0xc648:n_alloc=1:n_free=0:s_alloc=12:s_free=0:file=t.c:n_alloc=2:n_free=1:s_alloc=9:s_free=5:line=4:region=0xc648:n_alloc=1:n_free=0:s_alloc=4:s_free=0:line=10:region=0xc648:n_alloc=1:n_free=1:s_alloc=5:s_free=5:Figure 10: Examples of tracing and pro�ling with Vmalloc

18method can be used. Setting VMPROFILE=/dev/tty both selects Vmprofile and causes it to sendpro�ling data to the terminal. The �le name <> in Figure 10 summarizes allocations from librariesand code not instrumented with vmalloc.h and -DVMFL. A total of 9 bytes are allocated in t.cbut only 5 are freed. The unfreed 4 bytes are allocated on line 4 in function foo() which returnswithout freeing them, a typical example of memory leakage.5 DiscussionsWe have presented Vmalloc, a memory allocation library that allows a wide range of memory ma-nipulation. Flexibility is accomplished by: (1) using regions to organize memory and group log-ically related allocation tasks, (2) obtaining memory via application-de�nable disciplines, and (3)customizing memory management with appropriate allocation methods. Vmalloc provides two stan-dard disciplines, one to get memory using the system call sbrk() and the other to get memory fromthe standardly provided heap region using Vmalloc allocation calls. The latter discipline makesit simple to create special purpose regions out of heap memory. Examples were given to show thesimplicity of writing and using disciplines and how to extend the discipline structure for application-speci�c requirements. The prede�ned set of allocation methods includes general purpose allocation,fast allocation of �xed size blocks or without freeing, memory debugging, and memory pro�ling.A compatible malloc interface is provided. This package is instrumented with Vmalloc methods.Examples were given to show how a malloc-based application using Vmalloc can perform e�cientlyunder normal circumstances using a good allocator and can also do memory debugging and pro�l-ing by selecting specialized allocators using environment variables. In particular, this means thatproduction code can perform preliminary debugging at customers' sites, a valuable tool consideringthat memory bugs are often elusive and sensitive to the execution environments.A performance study based on allocation traces from real applications compared the generalpurpose allocation method Vmbest of Vmalloc to other popular malloc implementations. The resultsshow that Vmbest performs competitively to the best of these malloc versions in both space andtime. In fact, only Vmbest and the System V Release 4 malloc manage to do well in all casesincluding those that cause a few of the malloc versions to completely or partially fail. The timee�ciency of Vmbest is good considering that because of Vmalloc's architecture, its calls go throughmore indirections and do more preliminary work than their malloc's counterparts.Careful organization of memory into regions and use of the special allocationmethods Vmpool andVmlast can save signi�cant amounts of space and time. Examples were given to show e�ciency im-provement when the general purpose method Vmbest was replaced with appropriate special purposemethods. An example application showed that Vmpool is an e�ective allocator of �xed size blockssuch as C and C++ structures. In fact, for C++, Vmpool would be a good base for implementingconstructors and destructors of heavily used classes.Beyond performance tuning, regions are useful for other reasons. In applications needing asyn-chronous processing such as threads or signal handling, malloc typically falls short due to reentrant

19problems. Multi-threaded programs based on malloc also have no convenient ways to clean up whena thread is �nished. In general, Vmalloc calls are safe because they lock regions during operationand check for bad arguments in operations such as freeing or resizing. In a multi-threaded program,di�erent regions can be used to support di�erent threads. Then, safety issues concerning reentranceare lessened, and cleaning up on thread exit is just a region close.Modern applications are often assembled using code from multiple sources. In such a setting,memory errors are hard to isolate and estimating the memory consumption in each package is atbest an art. This is in part because it is hard to �nd out the exact origin of each allocation call withmalloc. Packages such as Purify and the memory debugging and pro�ling methods of Vmalloc canalleviate some of the problems. A better solution would be to require di�erent packages to allocatefrom di�erent regions. Then, memory would be better organized, there is less chance of code in onepackage overstepping space allocated in another, and it is easy to gather space usage estimates ona per package basis.We end with a discussion on the use of methods and disciplines as abstractions of memory man-agement and memory acquisition functions. The Vmalloc method provides a single abstraction thathides di�erent techniques to manage memory resources. Allocation calls on a region are identical,independent from whatever method speci�ed at region opening. A bene�t for applications is thatcode tuning and instrumentation with di�erent methods can be done easily. An example of thisis provided by Vmalloc itself in the compatible malloc interface which allows method selection byenvironment variables. This architecture also opens up the possibility of future method additionwithout too much upheaval in the interface.A discipline packages data and functions for resource acquisition and handling of certain excep-tional events. Despite its importance, resource acquisition is often glossed over by library implemen-tors. An obvious example in many of the malloc implementations considered here is the hard-codingof the system calls brk() or sbrk() as means to obtain memory. This makes these packages unus-able beyond heap memory. By allowing the creation of regions with application-de�nable disciplines,Vmalloc opens up a new level of
exibility in managing di�erent memory types or just organizingthe same memory but for di�erent purposes. The most important part is that any extension ofthe library for exotic memory management can be easily created by application writers themselveswithout touching library code. In fact, some Vmalloc users have written disciplines for shared andmapped memory.AcknowledgementI would like to thank Doug McIlroy and David Korn for their valuable advices on interface design.

20References[1] D.E. Knuth. The Art of Computer Programming, Volume 1. Addison-Wesley, 1968.[2] J.M. Robson. Worst case fragmentation of �rst �t and best �t storage allocation strategies.The Computer Journal, 20:242{244, 1975.[3] J.E. Shore. On the External Storage Fragmentation Produced by First-Fit and Best-Fit Allo-cation Strategies. CACM, 18:433{440, 1975.[4] D.G. Korn and K.-P. Vo. In Search of a Better Malloc. In Proc. of the Summer '85 UsenixConference, pages 489{506. USENIX, 1985.[5] C.J. Stephenson. Fast �ts: new methods for dynamic storage allocation. In Proc. Ninth ACMSymp. on Operating System Principles, pages 30{32. Bretton Woods, NH, 1983.[6] J. Vuillemin. A unifying look at data structures. CACM, 23:229{239, 1980.[7] D. Sleator and R.E. Tarjan. Self-Adjusting Binary Search Trees. JACM, 32:652{686, 1985.[8] D. Grunwald and B. Zorn. CustoMalloc: E�cient Synthesized Memory Allocators. Software -Practice And Experience, 23(8):851{869, 1993.[9] D.S. Johnson, A. Demers, J.D. Ullman,M.R. Garey, and R.L. Graham. Worst case performancebounds for simple one-dimensional packing algorithms. SIAM J. Computing, 3:299{325, 1974.[10] P.W. Shor. The average case analysis of some on-line algorithms for bin-packing. Combinatorica,6:179{200, 1986.[11] R. Hastings and R. Joyce. Purify: Fast Detection of Memory Leaks and Access Errors. InProceedings of the Winter 1992 Usenix Conference, pages 125{136. USENIX Association, 1992.[12] B. Zorn and D. Grunwald. Evaluating Models of Memory Allocation. ACM Transaction onModeling and Computer Simulation, 4(1):107{131, 1994.[13] B. Zorn and D. Grunwald. Empirical measurements of six allocation-intensive C programs.SIGPLAN Notices, 27(12):71{80, 1992.[14] H. Boehm and M. Weiser. Garbage collection in an uncooperative environment. Software -Practice and Experience, pages 807{820, 1988.[15] R. Greer. Daytona and the Fourth-Generation Language Cymbal. Available from author atrxga@research.att.com, 1995.[16] R.A. Becker, J.M. Chambers, and A.R. Wilks. The New S Language. Chapman and Hall, 1988.[17] Y.-F. Chen, G.S. Fowler, E. Koutso�os, and R.S. Wallach. Ciao: A Graphical Navigator forSoftware and Document Repositories. In International Conference on Software Maintenance,1995.

21[18] K.-P. Vo. IFS: A Tool to Build Integrated, Interactive Software. AT&T Bell Labs Tech. J.,64(9):2097{2117, 1985.[19] G.S. Fowler, J.J. Snyder, and K.-P. Vo. End-User Systems, Reusability and High Level Design.In Proc. of the Usenix VHLL Conference, pages 101{118. USENIX, 1994.

