Vmalloc: A General and Efficient Memory
Allocator kiv-rrona vo

AT&T Laboratories 180 Park Avenue, Florham Park, NJ 07932, U.S.A.

(kpv@research.att.com)
SUMMARY

On C/Unix systems, the malloc interface is standard for dynamic memory allocation.
Despite its popularity, malloc’s shortcomings frequently cause programmers to code
around it. The new library Vmalloc generalizes malloc to give programmers more control
over memory allocation. Vmalloc introduces the idea of organizing memory into separate
regions, each with a discipline to get raw memory and a method to manage allocation.
Applications can write their own disciplines to manipulate arbitrary type of memory
or just to better organize memory in a region by creating new regions out of its memory.
The provided set of allocation methods include general purpose allocation, fast special
cases and aids for memory debugging or profiling. A compatible malloc interface enables
current applications to select allocation methods using environment variables so they
can tune for performance or perform other tasks such as profiling memory usage,
generating traces of allocation calls or debugging memory errors. A performance study
comparing Vmalloc and currently popular malloc implementations shows that Vmalloc is
competitive to the best of these allocators. Applications can gain further performance

improvement by using the right mixture of regions with different Vmalloc methods.

KEYWORDS: Memory allocation, debugging, profiling, region, method, discipline

1 Introduction

Dynamic memory allocation is an integral part of programming. Programs in C and C++ (via
constructors and destructors) routinely allocate memory using the familiar ANSI-C standard inter-
face malloc established around 1979 by Doug Mcllroy. Malloc manipulates heap memory using the
functions malloc(s) to allocate a block of size s, free(b) to free a previously allocated block b,
and realloc(b,s) to resize a block b to size s. No optimal solution to dynamic memory allocation
exists [23] so, over the years, many malloc implementations were proposed with different trade-
offs in time and space efficiency. A study by David Korn and Phong Vo (4] in 1985 presented and
compared 11 malloc versions. Only a few of these survived the test of time. The first widely used
malloc was written by Mcllroy and became part of many Bell Labs Research and System V versions
of the UNIX system. This malloc is based on a first-fit strategy and can be significantly slow in
large memories. C. Kingsley wrote a malloc based on a power-of-two buddy system around 1980.

This version is distributed with versions of the BSD UNIX system. It is fast but wastes significant

space. In 1983, C.J. Stephenson [5] proposed a better-fit strategy based on the Cartesian tree data
structure 16] | This strategy was implemented by C. Aoki and C. Adams and is now part of SUN
OS. Also around 1983, Vo implemented a malloc based on the best-fit strategy and bottom-up splay
tree data structure [7] . This version is now distributed with UNIX System V Release 4.

The malloc interface is simple and elegant. However, its simplicity imposes certain constraints
on implementation and usability. For example, since only the address of usable data is returned in
an allocation request, the size of the block must be kept elsewhere in the event that the block is
freed or resized. Such overhead can be significant for programs that allocate small blocks or seldom
free. Many programs allocate a few different block types where each type has a fixed size. Here,
malloc may be inefficient in space because of the mentioned overhead and also inefficient in time
because of the implied search for free space. To improve performance, many applications invent
special interfaces that use malloc to allocate large chunks then manage that space themselves. The
CustoMalloc package [8 improves on this approach by analyzing allocation traces from program
execution to synthesize special malloc interfaces for popular sizes. This approach still has to pay
the space overhead and may be misled by the trace data. Another type of allocation problem is to
manage memory other than heap memory. For example, on modern environments, it is increasingly
desirable to use shared memory to speed up process communication and mapped memory for faster
IO and data persistence. Malloc is simply not designed for such purposes. This is unfortunate as
the significant time and effort put into developing good algorithms and heuristics for malloc must

be reinvented or at least repackaged in each new situation.

The Vmalloc library generalizes the malloc interface to give programmers more control over
memory allocation strategy. Vmalloc introduces the idea of allocating memory in separate regions
each of which has a discipline to obtain raw memory and a method to manage that memory. Aside
from memory acquisition, a region discipline may also include a function to handle exceptional allo-
cation events. The library provides disciplines for standard ways of obtaining memory. Application
can defines their own disciplines to manipulate any type of memory including shared or mapped
memory. The method of a region specifies how memory resource is managed. The predefined set
of methods includes general purpose allocation via a best-fit allocator, fast allocation of important
special cases, and allocation with aids for memory debugging and profiling. Thus, using Vmalloc,
an application can select the appropriate mixture of regions that most effectively deals with its
memory needs. For current applications, Vmalloc also provides a compatible malloc interface that

allows method selection by environment variables.

The rest of the paper 1s organized as follows. Section 2 describes the Vmalloc library. Section 3
presents a performance study that both compares the general allocation method of Vmalloc against
currently popular malloc versions and shows the efficiency of the specialized Vmalloc methods.
Section 4 gives examples of how to use the compatible malloc interface. Section 5 summarizes the

results.

2

Vmalloc_t* vm = vmopen (Vmdcheap,Vmlast,0);
for(a while)
{...
b
b

vmalloc(vm,block_size);

vmresize(vm,b,new_size,1);

vmfree(vm,b);

vmclear (vm) ;

© W0 N O U WwWw N =

vcompact (vm) ;

-
o

-}

. vmclose(vm);

-
—_

Figure 1: An example of region creation and space allocation

The Vmalloc library

Vmalloc enables applications to allocate arbitrary types of memory, and to pick allocation strategies

that matches allocation requirements. This is done via three basic structures:

e Region: Each allocation request is handled in some region. The library provides a standard

2.1

heap region Vmheap. This region performs general purpose memory allocation on heap memory
which, on UNIX systems, is obtained by the sbrk() system call. Applications can create other

regions as necessary. Region operations are discussed in Section 2.1.

Discipline: Each region has a discipline to obtain raw memory and to handle exceptional
events. The library provides two standard disciplines: Vmdcsbrk to obtain memory with the
system call sbrk(), and Vmdcheap to obtain memory from the heap region. Applications can

define new disciplines for other types of memory. Discipline usage is discussed in Section 2.2.

Method: Each region selects a particular method of memory management. The available
methods are: Vmbest for general purpose allocation based on an approximate best-fit strategy,
Vmpool to allocate blocks of fixed sizes, Vmlast for allocation where only the last block can be
freed or resized, Vmdebug for allocation with aids for memory error detection, and Vmprofile

for allocation with aids for memory profiling. Methods are discussed in Section 2.3.

Region operations

Figure 1 shows an example code fragment. This code fragment runs a loop for a while. Each

iteration of the loop constructs and manipulates some data structures. The structures are deleted

at the end of an iteration. This is the typical mode of operation in an application such as a language

interpreter. The main loop reads one or more language statements, constructs and interprets a

structure representing these statements, then cleans up before continuing.

The call vmopen(disc,meth,flags) creates a region with discipline disc, method meth, and
some control bits in flags. Thus, line 1 of Figure 1 creates a region vm with the discipline Vmdcheap
(see Section 2.2) and the allocation method Vmlast. The discipline Vmdcheap obtains heap memory
from the standardly provided region Vmheap. The Vmlast method allocates space but does not allow
a block to be freed or resized unless it is the very last one allocated. Based on this constraint, Vmlast
can avoid most space overhead and search time. The constraint is fine here since memory is only
freed at the bottom of the loop (via vmclear()). The flags argument of vmopen() is composed
from a few bits. The ones that apply here are VM_TRACE to generate a trace of allocation calls (see
Section 4 for sample trace outputs), and VM_TRUST to turn off region locking and validation checks
during allocation calls for faster speed. Since flags is 0 here, standard region handling will be used

and vm will be locked during allocation.

Lines 4, 5, and 6 of Figure 1 show that allocations are performed with the calls:

e vmalloc(vm,size): allocates from region vm a block of size bytes. The block is suitably

aligned to store any C or C++ type.

e vmfree(vm,b): makes the previously allocated space block b available for future allocations.
Note that if VM_TRUST is off, both vmfree() and vmresize() will check to see if b was in fact

allocated from vm.

e vmresize(vm,b,size,type): resizes the block b to size bytes. type is composed from the
bits VM_RSMOVE, VM_RSCOPY, and VM_RSCLEAR. VM_RSMOVE means that b cannot be resized in
place, a new block of size size will be allocated. VM_RSCOPY is like VM _RSMOVE but it also
copies data from the old block to the new block. VM_RSCLEAR means that any new space
beyond the old size will be zero-filled.

The call vmclear(vm) on line 8 of Figure 1 clears the region vm, i.e., to reclaim all allocated
space. vmclear() is useful to globally free all currently busy blocks in a region. It is particular
helpful with the Vmlast method which only allows freeing of the last block. The call vmcompact (vm)
on line 9 reduces unused space in the region via the discipline. In this example, this means to return
such space to the Vmheap region. This is an important consideration if some iterations may consume
large amounts of space. Finally, after the loop terminates, vmclose(vm) is called on line 11 to close

the region vm and release all of its memory.

Other functions are available for obtaining information about regions and allocated blocks. For
example, vmstat (vm, statb) returns in the buffer statb summary statistics on busy and free space,
vmaddr (vm, addr) checks to see if addr is a part of some allocated block, and vmsize(vm,b) returns

the true size of b.

2.2 Writing and using disciplines

The example in Figure 1 uses the system-provided discipline Vmdcheap to obtain memory from the

heap region Vmheap. Applications can provide their own disciplines for special memory organization.

void#* heapmem(Vmalloc_t* vm, void* addr,
size_t csz, size_t nsz, Vmdisc_t* disc)
{ if(csz == 0)
return vmalloc(Vmheap,nsz) ;
else if (nsz == 0)
return vmfree (Vmheap,addr) >= 0 7 addr : (voidx)O0;

else return vmresize (Vmheap,addr,nsz,0);

W ~N O s W N =

Figure 2: A memory-obtaining discipline function

A discipline defines functions to get memory and to handle exceptional events. It is of type Vmdisc_t

which has members:

Vmemory_f memoryf;
Vmexcept_f exceptf;

size_t round;

The call (*exceptf) (vm,type,obj,disc) announces events. vm is the region originating the
event and disc is the discipline. type and obj define the type of the event and the object that
causes 1t. Events supported are: VM_NOMEM to indicate that region is out of memory, VM_BADADDR
to indicate that a call to vmfree() or vmresize() was given an invalid address, and VM_OPEN and
VM_CLOSE to indicate region opening and closing. The last two events are useful to initialize and

finalize memory shared in multiple regions or mapped from persistent storage.

The call (*memoryf) (vm,addr,csz,nsz,disc) obtains or releases memory for region vm. The
arguments csz and nsz define the current and new sizes of a memory segment. In any memoryf call,
at most one of csz and nsz can be zero. If csz is zero, memoryf returns a new segment of memory
of size nsz. Otherwise, memoryf tries to change the size of the segment pointed to by addr from csz
to nsz without moving it. So, even when nsz is zero and the given segment is successfully freed,
memoryf should return addr to indicate that the resize succeeds. Sizes in memoryf calls are always
multiples of round. Depending on the region, round should be chosen to optimize some relevant
system-dependent parameters such as page or disk block sizes. If round is zero, the library will pick

a convenient size such as the page size.

Figure 2 shows the heapmem() function taken from the Vmdcheap discipline. This function obtains
and frees space from the Vmheap region via Vmalloc allocation functions. On line 4, since at most
one of csz and nsz can be zero, the value of nsz in the call vmalloc(Vmheap,nsz) must be non-zero.
On line 6, if addr is successfully freed, heapmem() returns addr to indicate success to the calling
function. On line 7, vmresize() is called to resize an existing block of memory without moving it
(the last argument of the call is zero). This is important because elsewhere there may be pointers

pointing into some part of the segment addr.

The example in Figure 2 does not use the region argument vm and the discipline argument disc.

However, it is easy to imagine cases where these will be useful. For example, a discipline based on file

typedef struct _vmdcmmap_s
{ Vmdisc_t disc;

int £d; /* file descriptor

/* whatever else

} Vmdcmmap_t;

/* Vmalloc discipline */
*/
*/

Figure 3: An application-extended discipline structure

memory mapping will need a place to store a file descriptor for the file being manipulated. A way to

do this is to extend the Vmalloc discipline structure as in Figure 3. If nmmapdisc and disc are of types

Vmdcmmap_t* and Vmdisc_t*, C and C++ casting rules allow the constructs (Vmdisc_t*)mmapdisc

and (Vmdcmmap_t*)disc to work.

2.3 Allocation methods

Each region must select a method for memory allocation. The predefined methods are: Vmbest,

Vmpool, Vmlast, Vmdebug, and Vmprofile.

2.3.1 General purpose allocation with Vmbest

Vmbest is a general purpose allocator. The basic allocation strategy is best-fit, i.e., an allocation

request is satisfied from a smallest free area that fits the required size. Free areas are kept in a

top-down splay tree [T for fast search. Even though there is an example of quadratic fragmentation

for best-fit [2] | experience and theoretical evidence in bin-packing problems (4,5,9, 10] indicate that

best-fit behaves nicely in general. Vmbest has a few additional heuristics to improve speed and

reduce fragmentation:

e Free blocks are cached until a future allocation. This strategy benefits programs that free

everything before exiting by avoiding expensive coalescing. It also benefits programs that
continually free and allocate the same block types by giving the allocator the opportunity to

avold some searches if requested sizes fit recently freed blocks.

Frequent and small allocation sizes are handled in an adaptive manner to speed up allocation.

This strategy benefits programs that allocate small data types.

When a block is resized to grow and has to be moved because it cannot be extended in place,
a small amount is added to the size before searching for new space. This strategy reduces data

movement and fragmentation because such a block is often resized again.

The “wilderness preservation heuristic” [is observed. This means that the free area with
highest address, or the wilderness, is only allocated as a last resource. This strategy prevents

unnecessary growth of the arena.

Vmbest is analogous to the ANSI-C malloc interface. Section 3.1 presents a performance study

comparing Vmbest and currently popular malloc implementations.

2.3.2 Special purpose allocation with Vmpool and Vmlast

Vmpool and Vmlast are special purpose allocators. Vmpool allocates blocks of a single size determined
by the first call to vmalloc() after vmopen() or vmclear(). Vmlast allocates without freeing or
resizing except on the last allocated block. Both Vmpool and Vmlast are faster and more space-
efficient than Vmbest because the allocators do not have to maintain information on a per-block

basis. Section 3.2 shows examples of performance gain using these methods.

2.3.3 Memory debugging with Vmdebug

Vmdebug is a general purpose allocator equipped with aids to detect common memory violations
such as memory overwrites or freeing and resizing unallocated data. Thus, Vmdebug performs a

subset of functions provided in Purify [11]

. One advantage of Vmdebug over Purify is that it does
not change the executable code which may hide certain elusive bugs. In addition, since it is just
another allocation method, Vmdebug can be put to use any time during program execution by
simply creating a new region. Two region flags affect the behavior of Vmdebug: VM_DBABORT aborts
the program upon a detected error and VM_DBCHECK checks the region integrity on each allocation
request. Since checking region integrity can be expensive, applications may leave VM_DBCHECK off
and occasionally call vmdbcheck(vm) instead. The call vmdbwatch(vm,addr) can be used to watch
when an address addr is met in an allocation function. Section 4 gives examples of how Vmdebug is

used in the malloc compatibility interface.

2.3.4 Memory profiling with Vmprofile

Vmprofileis a general purpose allocator that also collects data on space allocation. The profiler sum-
marizes space allocated and freed at each applicable program text line. The call vmprofile(vm,fd)
outputs profile data in region vm to file descriptor £d. The special value NULL for vm causes output of
profile data for on all regions instrumented with Vmprofile. Section 4 gives an example of profiling

output.

3 Performance

This section presents a study comparing the general purpose allocator Vmbest against currently
popular malloc implementations and gives a few examples of performance benefits of using Vmlast

and Vmpool in appropriate contexts.

3.1 Comparing Vmbest to popular malloc versions

Previous allocation performance studies [3] often employed randomly generated data to exercise

the allocators. Though such simulations can give useful insights into the implemented algorithms,

it is hard to create data that truly model operations in real programs 2] . Zorn and Grunwald [13]

propose a good methodology in which allocation performance is measured using actual applications.

However, they measure allocation performance using direct program execution. This is fine for

measuring space because only the allocators allocate space but measuring time can be tricky due to

other work done in the programs. To be consistent in measuring both space and time, the approach

taken here is:

Construct a simulator to execute any sequence of: allocate, free, and resize. The simulator

can exercise any allocator by linking with it.

Link the programs of interest with Vmalloc to generate traces of allocation requests using the
VM_TRACE option (Sections 2.1 and 4).

Process the traces into the format required by the simulator. This format is designed to reduce

computation to a minimum of invoking allocation functions and accumulating resource usages.

Execute the properly instrumented simulator with given data to measure resource consump-
tion using a particular allocator. Space obtained in each allocation is cleared to ensure that
the respective memory pages are indeed allocated by the operating system and improve the

accuracy of system time.

Each allocation 1s set to be at a minimum of 2 words so that blocks can be maintained
efficiently in a doubly linked list as they are allocated or freed. This enables comparison of the

Boehm-Weiser conservative garbage collector [14 and other allocators on the same footing.

The allocators that will be compared against Vmbest are:

V: by Phong Vo, distributed with System V Release 4. This malloc is based on a best-fit
strategy using a bottom-up splay tree for free blocks.

S: by Chris Aoki and C. Adams, distributed with SUN OS. This malloc is Stephenson’s better-
fit allocator [5] |

P: by Chris Kingsley, modified and distributed with the Perl language interpreter. This malloc

uses a power-of-two buddy system.

X: by Doug Mcllroy, used in the 10th Edition Bell Labs Research UNIX system. This malloc
is based on a first-fit strategy with a roving pointer. Small blocks are cached on freeing to

speed up subsequent allocations.

H: by Mike Haertel, distributed with the GNU C library, dated Mar 1 1994. This allocator

segregates blocks of same size in same pages.

L: by Doug Lea, distributed with the GNU C++ library, version 2.5.3b.

Dataset Allocate Free Resize | MaxAllocate | MaxBusy
gawk 723,470 | 722,922 | 150,888 47,684K 38K
db.2X 880,688 | 879,648 0 10,953K 20K
db.ioQ 66,626 | 11,912 0 1,777K 1,411K
mt.10Q) 69,387 | 10,677 0 1,867K 1,675K
C++parser 44,730 5,381 0 1,024K 848K
graph 111,782 | 14,882 0 1,706 K 1,590K
S 102,146 | 83,124 56 800,369K 5,887K
ctao 163,044 | 145,113 3,246 912,507K 6,839K
fragment 10,001 0 | 10,000 1,663,203K 547K

Table 1: Summary of datasets in the simulation study

e B: by Hans Boehm and Mark Weiser, a conservative garbage collector, version 4.5. Here,
GCmallocuncollectable() and GC_free() are used so that garbage collection is bypassed
and only allocation performance 1s measured. Allocated space is not cleared because that is

already done by the allocator.

o (' the same Boehm-Weiser garbage collector. Here, GCmalloc() is used and objects are
freed by removing them from the linked list discussed above. Thus, in this case, the garbage

collection performance is measured.

The datasets studied here contain allocation traces from a diverse set of applications including
parsers, database queries, data analyses and interactive graphics. Each dataset either performs a
large number of allocations or allocates a large amount of data, or both. Table 1 summarizes informa-
tion about the datasets. The first three numerical columns display total numbers of different types
of operations. The fourth column shows the total of space requested via malloc() or realloc().
The last column shows the maximum busy space at any time. Below are brief descriptions of the

programs and their input data:

e gawk: The GNU awk program with input data as described in [13] |

e db.ioQ, db.2X: Two processes in the Daytona database system [15] for compiling and executing

a large query.
o C++parser: A C++ language parser parsing a large program.

e mt.10Q): The program that prepares an allocation trace from Vmalloc for the allocation simu-
lator, here using the db.i0Q) trace as input. This program allocates memory via three separate

regions (Section 3.2).

e graph: A graph processor parsing a large directed graph specification and building an in-core

representation of the graph.

(16]

e 5. The S statistical analysis system processing its regression test suite.

10

size = 32;
big = malloc(size);
for(n = 0; n < 10000; ++n)
{ small[n] = malloc(24);
big = realloc(big,size += 32);

Figure 4: An allocation pattern causing fragmentation in some allocators

e ciao: A program and data visualization system [17] .

e fragment: A program running the allocation pattern in Figure 4. This pattern occurred in an

early version of the IFS language compiler [18: 19] |

Figure 5 shows the time and space performance comparisons between Vmbest and the described
malloc versions. To give an idea of magnitude, bottoms of the graphs are labeled with the time
measures and arena sizes for Vmbest. Measurements were done on a completely idle Sparc-b running
SUNOS4.1. Each time value is a sum of cpu and system times obtained by running the simulator
10 times and taking the average. Each data point on the graphs is constructed by dividing the time
or space value of the respective allocator by that of Vmbest if the former is larger; otherwise, the
reverse is done. Thus, the horizontal lines at 1 in both graphs represent Vmbest. An allocator is
slower or faster (less or more space efficient) than Vmbest if the corresponding data point is above
or below this line. A data point between inf0 and infl means that the respective allocator is able
to service all allocation requests but its time or space value is at least 4 times that of Vmbest. A
datapoint beyond ¢nfl means that the respective allocator fails — typically because it runs out of

memory. Below are a few observations about the data:

e Vmbest is competitive to the best allocators in time. However, note that the times used by
Vmbest on Figure 5 are only small fractions of application running times. For example, gawk
takes on average about 95 seconds to process the given input and only about 7 seconds of that
time is for allocation. This means that the speed of an allocator is not an important factor
as long as it remains reasonable. Much more important is space fragmentation which has
implication on memory contention not just for the immediate process but also others running

concurrently on the system.

e Allocators B, C, H, S, and X suffer significant fragmentation on a few datasets. In fact, X
runs out of memory on ciao and fragment. P typically used 30% to 40% more space than the
better allocators because it rounds any request size up to the next power of 2. L manages

space well in general except on the dataset fragment. V and Vmbest do fine in all cases.

e Table 2 summarizes realloc() calls on gawk, ciao and fragment. The “move” columns show
the number of times that resized blocks are moved to new locations. The “copy” columns
show the total amounts of data copied in such cases. gawk has the most realloc() calls but

mostly for small, short-lived blocks. ciao uses a few large, long-lived buffers that are resized

11
gawk db.2X db.ioQ mt.ioQ C++parser graph S ciao fragment
\ \ \ \ \ \ \ \ \
X X
infl — :
§::::::::::§
X <
inf0 S V: Sysvr4
" R b S. SUN
P: Perl
Space 3 . B L % X: V10
Ratios = | H: Haertel
v Cl L L: Lea
S T B: B-W GC
2 SR ¢ P C: B-W GC
= H
1 2
, E | | | | | | | | |
52 36 1872 2264 1216 2368 6540 8072 656
Vmbest arena size in Kbytes
gawk db.2X db.ioQ mt.ioQ C++parser graph S ciao fragment
\ \ \ \ \ \ \ \ \
infl
infO —| V: Sysvr4d
S: SUN
R Lo P: Per|
Time 4 X: V10
Ratios = | c K H: Haertel
o S L: Lea
B: B-W GC
2 C: B-W GC
1
= | | | | | | | | |

7.17 6.11 0.44 0.48 0.28 0.58 18.86 221 0.22

Vmbest user+sys time in seconds

Figure 5: Time and space allocation performances normalized to Vmbest

12

gawk(150,888) ciao(3,246) fragment(10,000)
Allocator move copy | move copy | move copy
Vmbest 20,114 470K 223 | 11,546K 12 335K
V: SysVr4 150,869 | 3,536K 295 | 14,373K 8 442K
S: SUN 72,194 | 1,573K 298 | 14,267K 317 | 49,288K
P: Perl 150,884 | 3,536K 163 | 2,540K 13 512K
X: V10 17,165 326K
H: Haertel 150,869 | 3,536K 404 | 81,543K 12 356K
L: Lea 105,479 | 2,357TK 209 | 11,938K 16 842K
B: B-W GC | 150,884 | 3,536K 488 | 91,692K 99 | 12,332K
C: B-W GC | 150,867 | 3,536K 470 | 91,690K 96 | 12,330K

Table 2: realloc() statistics for the datasets gawk and ciao

many times. For gawk and ciao, the Vmbest’s resize strategy of adding a small amount to a
moved block helps to reduce the total number of moves and the amount of copied data. P’s
policy of rounding a size up to its next power of 2 does even better on ciao because the buffers

are large.

Except for H, V, and Vmbest, the other allocators lose large amount of space on the dataset
fragment. A likely reason is because they do not observe the wilderness preservation heuristic
(Section 2.3.1). When the arena requires extension, all allocators extend it by a multiple of
some fixed value (usually the page size). This often leaves some extra space after the respective
allocation request is satisfied. Without wilderness preservation, this space is immediately
available for allocation. On fragment, arena extension happens mostly when the big block
in Figure 4 grows. Using the extra space for a small allocation prevents the big block from
being able to grow in place and causes it to move in its next resizing. V and Vmbest preserve
wilderness and avoid this problem. H manages to mostly avoid the problem due to its technique
of allocating page at a time for groups of blocks of the same size. Since the extra space is

unlikely to be page aligned, H is unlikely to use it for a small allocation.

On the dataset gawk, the final arena sizes for B and C are respectively 257K and 385K
indicating that switching to garbage collection significantly increases space requirement. This
is probably because free blocks are not collected fast enough. The peak difference is on db.2X
where B uses 257K and C uses 773K. Turning on garbage collection also negatively affects
time. On gawk, the allocation time increases from an average of 6.53s for B to 10.73s for C.
The peak difference is on dataset S where B uses an average of 16.40s while C uses 51.33s.
Garbage collection is a good technique that solves many programming problems. Applications
with memory leakage sometimes look to it as a quick fix. The evidence here suggests that
this is not always a good idea. Unless the leakage is severe, a program may be better off just

ignoring it.

13

C'++parser graph
Vmlast | Vmbest | Vmlast | Vmbest
Arena size | 1,076K | 1,216K | 1,724K | 2,368K
Cpu+Sys 0.22s 0.28s 0.50s 0.58s

Table 3: Performance comparison of Vmlast and Vmbest

3.2 Efficient allocation with Vmpool and Vmlast

Programs can benefit from the special purpose allocators Vmpool and Vmlast. For example, it is a
folklore that parsers and compilers often do well with an allocator that never frees. The datasets
C'++parser and graph are typical cases. Table 3 compares the space and time performances between
Vmbest and Vmlast on these datasets. Vmlast uses less space than Vmbest even though it ignores
most free calls. The reason for this becomes clear in Figure 6 which shows snapshots of the Vmlast
and Vmbest allocation arenas for C'++parser when the allocated space just exceeds 195K bytes. Each
line in the pictures represents 8K bytes. Thick segments are allocated space and thin segments are
free areas. The relatively large free areas in the Vmlast arena are lost because they are not reusable.
The Vmbest arena is fairly well packed but it has numerous thin unused areas corresponding to block

headers. The sum of such header space is much more than the lost space in Vmlast.

The program producing mt.i0Q) allocates space via three regions, each with a different method,
Vmbest, Vmlast, and Vmpool. All three regions use the standardly provided discipline Vmdcsbrk
which is based on the sbrk() system call. At peak time, the allocated space 1s 1,575K bytes.
With regions, this is satisfiable with an arena of size 1,812K and takes 0.35s allocation time. When
allocations are forced to be done with a single Vmbest region, arena size increases to 2,264K and
allocation time increases to 0.48s. Figure 7 shows the arenas when the allocated space just exceeds
270K bytes. The light gray areas in Figure 7 indicate that most allocations are done in the Vmpool
region. Thus, the good performance for mt.<0Q is due to the header saving and fast allocation speed

of Vmpool.

4 The compatible malloc interface

A malloc interface is provided to make Vmalloc functionality available to current applications. By
default, this interface allocates via the heap region Vmheap which uses the Vmbest method and
the Vmdesbrk discipline. A program that creates regions with Vmalloc can redirect the malloc
interface to any other region by setting the global variable Vmregion to the wanted region. This is a
useful technique to redirect allocation before calling functions in reusable libraries that may allocate

memory.

Applications can change the allocation method of malloc at start-up time by setting certain
environment variables. For example, setting VMETHOD=Vmlast selects the Vmlast method. Note,

however, that setting the method to Vmpool is usually not a good idea unless it is certain that the

—— O\ Mlast

—_——— vVmbest

Figure 6: Arenas for C++parser with Vmlast and with Vmbest

15

— i .-
—J| H -

B I

mmmmm IHI“I““HIIH““ mmmmmmmmﬂmmmmmmmmlmmmmmm

HEHH HHH HHEH
HHHEHHHH HHH HHH B B HHH B HHH HHEH B HHHH B HHH) HHH B HHH T HHH B -
HHHHHHHHEHHHHHE

- VMbest

16

1. #include <vmalloc.h>

2. foo(s)

3. charx g;

4. { char* news = malloc(strlen(s));
5. strcpy (news, s) ;

6. free(s);

7.}

8. charx bar(s)

9. charx g;

10. { char* news = malloc(strlen(s)+1);
11. strcpy (news,s) ;

12. free(news);

13. return news;

14. }

15. main()

16. { char* s = "1234";

17. foo(s);

18. s = bar(s);

19. free(s);
20. }

Figure 8: A buggy C program

program only allocates one type of data. Other variables provide finer controls depending on the

method in use. It is best to show this with examples.

Consider the program in Figure 8 which contains a few common memory errors. Figure 9 shows
that this program is first compiled and linked with Vmalloc. The flag ~-DVMFL enables recording of
the file name and line number for each allocation call. This makes error messages more meaningful.
The first execution results in a memory fault. Then, the Vmdebug method is selected by setting
VMDEBUG=1. Three errors are detected. The first one is a memory corruption in a block allocated
on line 4 of the code. This is because not enough space was allocated for the null byte at the end
of a C string. The second error on line 6 concerns a block being freed but never allocated. This is
because the function foo() was passed a literal string as its argument (line 17 of Figure 8). This
error is what causes the memory fault! The third error concerns freeing a block already freed. To
examine this, the aberrant block 0xd6e0 i1s added to VMDEBUG so that it would be watched for by
the allocator. The resulting two alert messages show that the block is allocated on line 10 and
subsequently freed on line 12. Thus, the free() call on line 19 is redundant and, under normal
circumstances, would have corrupted the heap. Note that the memory fault is avoided with Vmdebug

because the allocator prevents bad operations from proceeding too far.

Figure 10 shows that setting VMTRACE=/dev/tty causes whatever allocator in use to produce a
trace of allocation calls. Such an allocation trace can be useful for an in-depth analysis of how a

program behaves with respect to allocation. For a quick assessment of memory usage, the Vmprofile

17

$ cc -DVMFL -0 t.c -lvmalloc -o t
$t

Memory fault (core dump)

$ VMDEBUG=1 t

corrupted data:region=0xc648:block=0xd6b0:bad byte at=4:allocated at=t.c,4:
free error:region=0xc648:block=0xc180:unallocated block:detected at=t.c,6:
free error:region=0xc648:block=0xd6e0:already freed:detected at=t.c,19:

$ VMDEBUG=1,0xd6e0 t

corrupted data:region=0xc648:block=0xd6b0:bad byte at=4:allocated at=t.c,4:
free error:region=0xc648:block=0xc180:unallocated block:detected at=t.c,6:
alert:region=0xc648:block=0xd6e0:size=5:just allocated:detected at=t.c,10:
alert:region=0xc648:block=0xd6e0:size=5:being freed:detected at=t.c,12:
free error:region=0xc648:block=0xd6e0:already freed:detected at=t.c,19:

Figure 9: Examples of debugging with Vmalloc

$ VMTRACE=/dev/tty t

0x0:0xc648:4:0xc288:besgt:t.c,4:
0x0:0xc658:5:0xc288:begt:t.c,10:
0xc658:0x0:8:0xc288:besgt:t.c,12:

$ VMPROFILE=/dev/tty t

ALLOCATION USAGE SUMMARY:n_alloc=3:n_free=1:s_alloc=21:s_free=5:

region=0xc648:n_alloc=3:n_free=1:s_alloc=21:s_free=5:max_busy=21:extent=4096:

file=<>:n_alloc=1:n_free=0:8_alloc=12:8_free=0:
line=0:region=0xc648:n_alloc=1:n_free=0:s_alloc=12:s_free=0:

file=t.c:n_alloc=2:n_free=1:s_alloc=9:8_free=5b:
line=4:region=0xc648:n_alloc=1:n_free=0:s_alloc=4:s_free=0:

line=10:region=0xc648:n_alloc=1:n_free=1:s_alloc=b5:s_free=5:

Figure 10: Examples of tracing and profiling with Vmalloc

18

method can be used. Setting VMPROFILE=/dev/tty both selects Vmprofile and causes it to send
profiling data to the terminal. The file name <> in Figure 10 summarizes allocations from libraries
and code not instrumented with vmalloc.h and -DVMFL. A total of 9 bytes are allocated in t.c
but only 5 are freed. The unfreed 4 bytes are allocated on line 4 in function foo() which returns

without freeing them, a typical example of memory leakage.

5 Discussions

We have presented Vmalloc, a memory allocation library that allows a wide range of memory ma-
nipulation. Flexibility is accomplished by: (1) using regions to organize memory and group log-
ically related allocation tasks, (2) obtaining memory via application-definable disciplines, and (3)
customizing memory management with appropriate allocation methods. Vmalloc provides two stan-
dard disciplines, one to get memory using the system call sbrk() and the other to get memory from
the standardly provided heap region using Vmalloc allocation calls. The latter discipline makes
it simple to create special purpose regions out of heap memory. Examples were given to show the
simplicity of writing and using disciplines and how to extend the discipline structure for application-
specific requirements. The predefined set of allocation methods includes general purpose allocation,

fast allocation of fixed size blocks or without freeing, memory debugging, and memory profiling.

A compatible malloc interface is provided. This package is instrumented with Vmalloc methods.
Examples were given to show how a malloc-based application using Vmalloc can perform efficiently
under normal circumstances using a good allocator and can also do memory debugging and profil-
ing by selecting specialized allocators using environment variables. In particular, this means that
production code can perform preliminary debugging at customers’ sites, a valuable tool considering

that memory bugs are often elusive and sensitive to the execution environments.

A performance study based on allocation traces from real applications compared the general
purpose allocation method Vmbest of Vmalloc to other popular malloc implementations. The results
show that Vmbest performs competitively to the best of these malloc versions in both space and
time. In fact, only Vmbest and the System V Release 4 malloc manage to do well in all cases
including those that cause a few of the malloc versions to completely or partially fail. The time
efficiency of Vmbest is good considering that because of Vmalloc’s architecture, its calls go through

more indirections and do more preliminary work than their malloc’s counterparts.

Careful organization of memory into regions and use of the special allocation methods Vmpool and
Vmlast can save significant amounts of space and time. Examples were given to show efficiency im-
provement when the general purpose method Vmbest was replaced with appropriate special purpose
methods. An example application showed that Vmpool is an effective allocator of fixed size blocks
such as C and C++ structures. In fact, for C++, Vmpool would be a good base for implementing

constructors and destructors of heavily used classes.

Beyond performance tuning, regions are useful for other reasons. In applications needing asyn-

chronous processing such as threads or signal handling, malloc typically falls short due to reentrant

19

problems. Multi-threaded programs based on malloc also have no convenient ways to clean up when
a thread is finished. In general, Vmalloc calls are safe because they lock regions during operation
and check for bad arguments in operations such as freeing or resizing. In a multi-threaded program,
different regions can be used to support different threads. Then, safety issues concerning reentrance

are lessened, and cleaning up on thread exit is just a region close.

Modern applications are often assembled using code from multiple sources. In such a setting,
memory errors are hard to isolate and estimating the memory consumption in each package is at
best an art. This is in part because it 1s hard to find out the exact origin of each allocation call with
malloc. Packages such as Purify and the memory debugging and profiling methods of Vmalloc can
alleviate some of the problems. A better solution would be to require different packages to allocate
from different regions. Then, memory would be better organized, there is less chance of code in one
package overstepping space allocated in another, and it 1s easy to gather space usage estimates on

a per package basis.

We end with a discussion on the use of methods and disciplines as abstractions of memory man-
agement and memory acquisition functions. The Vmalloc method provides a single abstraction that
hides different techniques to manage memory resources. Allocation calls on a region are identical,
independent from whatever method specified at region opening. A benefit for applications is that
code tuning and instrumentation with different methods can be done easily. An example of this
is provided by Vmalloc itself in the compatible malloc interface which allows method selection by
environment variables. This architecture also opens up the possibility of future method addition

without too much upheaval in the interface.

A discipline packages data and functions for resource acquisition and handling of certain excep-
tional events. Despite its importance, resource acquisition is often glossed over by library implemen-
tors. An obvious example in many of the malloc implementations considered here is the hard-coding
of the system calls brk() or sbrk() as means to obtain memory. This makes these packages unus-
able beyond heap memory. By allowing the creation of regions with application-definable disciplines,
Vmalloc opens up a new level of flexibility in managing different memory types or just organizing
the same memory but for different purposes. The most important part is that any extension of
the library for exotic memory management can be easily created by application writers themselves
without touching library code. In fact, some Vmalloc users have written disciplines for shared and

mapped memory.

Acknowledgement

I would like to thank Doug Mcllroy and David Korn for their valuable advices on interface design.

20

References

[1] D.E. Knuth. The Art of Computer Programming, Volume 1. Addison-Wesley, 1968.

[2] J.M. Robson. Worst case fragmentation of first fit and best fit storage allocation strategies.
The Computer Journal, 20:242-244, 1975.

[3] J.E. Shore. On the External Storage Fragmentation Produced by First-Fit and Best-Fit Allo-
cation Strategies. CACM, 18:433-440, 1975.

[4] D.G. Korn and K.-P. Vo. In Search of a Better Malloc. In Proc. of the Summer ‘85 Usenix
Conference, pages 489-506. USENIX, 1985.

[6] C.J. Stephenson. Fast fits: new methods for dynamic storage allocation. In Proc. Ninth ACM
Symp. on Operating System Principles, pages 30-32. Bretton Woods, NH, 1983.

[6] J. Vuillemin. A unifying look at data structures. CACM, 23:229-239, 1980.
[7] D. Sleator and R.E. Tarjan. Self~-Adjusting Binary Search Trees. JACM, 32:652-686, 1985.

[8] D. Grunwald and B. Zorn. CustoMalloc: Efficient Synthesized Memory Allocators. Software -
Practice And Ezxperience, 23(8):851-869, 1993.

[9] D.S. Johnson,; A. Demers, J.D. Ullman, M.R. Garey, and R.L. Graham. Worst case performance
bounds for simple one-dimensional packing algorithms. SIAM J. Computing, 3:299-325, 1974.

[10] P.W. Shor. The average case analysis of some on-line algorithms for bin-packing. Combinatorica,

6:179-200, 1986.

[11] R. Hastings and R. Joyce. Purify: Fast Detection of Memory Leaks and Access Errors. In
Proceedings of the Winter 1992 Useniz Conference, pages 125-136. USENIX Association, 1992.

[12] B. Zorn and D. Grunwald. Evaluating Models of Memory Allocation. ACM Transaction on
Modeling and Computer Simulation, 4(1):107-131, 1994.

[13] B. Zorn and D. Grunwald. Empirical measurements of six allocation-intensive C programs.

SIGPLAN Notices, 27(12):71-80, 1992.

[14] H. Boehm and M. Weiser. Garbage collection in an uncooperative environment. Software -
Practice and Ezperience, pages 807-820, 1988.

[15] R. Greer. Daytona and the Fourth-Generation Language Cymbal. Awvailable from author at

rega@research.att.com, 1995.
[16] R.A. Becker, J.M. Chambers; and A.R. Wilks. The New S Language. Chapman and Hall, 1988.

[17] Y.-F. Chen, G.S. Fowler, E. Koutsofios, and R.S. Wallach. Ciao: A Graphical Navigator for
Software and Document Repositories. In International Conference on Software Maintenance,

1995.

21

[18] K.-P. Vo. TFS: A Tool to Build Integrated, Interactive Software. ATE&T Bell Labs Tech. J.,
64(9):2097-2117, 1985.

[19] G.S. Fowler, J.J. Snyder, and K.-P. Vo. End-User Systems, Reusability and High Level Design.
In Proc. of the Usenuz VHLL Conference, pages 101-118. USENIX, 1994.

