
(12) United States Patent
Guenthner et al.

USOO7314491 B2

US 7,314.491 B2
Jan. 1, 2008

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

(56)

6.457,171 B1*

ENCAPSULATION OF LARGE NATIVE
OPERATING SYSTEM FUNCTIONS AS
ENHANCEMENTS OF THE INSTRUCTION
SET IN AN EMULATED CENTRAL
PROCESSOR SYSTEM

Inventors: Russell W. Guenthner, Glendale, AZ
(US); Rodney B. Schultz, Phoenix, AZ
(US); F. Michel Brown, Glendale, AZ
(US); Stefan R. Bohult, Phoenix, AZ
(US); William J. Brophy, Buena Vista,
CO (US)

Assignee: Bull HN Information Systems Inc.,
Billerica, MA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 374 days.

Appl. No.: 11/025,639

Filed: Dec. 29, 2004

Prior Publication Data

US 2006/O165094A1 Jul. 27, 2006

Int. C.
G06F 9/455 (2006.01)
U.S. Cl. 730/26: 717/136; 717/138;

717/140; 717/139; 709/107; 707/6
Field of Classification Search 703/26,

703/27; 717/138, 140, 139,136; 709/107;
707/6; 712/208; 710/1

See application file for complete search history.
References Cited

U.S. PATENT DOCUMENTS

9/2002 Mann et al. 717/138

6

MEMORY
(36-BIT woRDs)

in Q(36-BIT)
THER CPU circuitry

EMULATEC CPU

OTHERTARTSYSTEMCRCUITRY

TARGET (EMULATED) sysTEM

A

6,480.845 B1* 11/2002 Egolf et al. 707/6
6,961,843 B2 * 1 1/2005 O'Connor et al. ... 712,208

2002/0032718 A1 3/2002 Yates et al. 709/107
2002/013381.0 A1* 9, 2002 Giles et al. 717/138
2003/0093.776 A1* 5, 2003 Hilton T17.138
2004/0177346 A1* 9, 2004 Cannon et al. 717.136
2004/O181785 A1 9, 2004 Zwirner et al. 717,140
2005, OO8665.0 A1* 4, 2005 Yates et al. 717,139
2005/0091029 A1 4/2005 Traut TO3/27
2005/0246453 A1* 11/2005 Erlingsson et al. T10/1

OTHER PUBLICATIONS

Hatrig, H. "Security architectures revisited'. ACM, Jul. 2002.*
Desoli et al., “DELI: A new run-time control point', IEEE 2002.*
Whitaker et al., “Scale and performance in the Denali Isolation
Kernel”, ACM 2002.*
Le Vasseur et al., “A sledgehammer Approach to reuse of legacy
device drivers', ACM, Sep. 2004.*

* cited by examiner
Primary Examiner K. Thangavelu
(74) Attorney, Agent, or Firm—James H. Phillips; Russell
W. Guenthner; Faith F. Driscoll

(57) ABSTRACT

This invention relates to the art of computer system emu
lation and, more particularly, to a computer system emulator
in which the functions normally performed by the hardware
in a legacy central processor unit are emulated by a software
program. The invention is to enhance the emulated instruc
tion set beyond that of the legacy machine Such to include
as new single instructions a method for invoking operating
system functions, with the machine coding of the operating
system functions now being performed by machine code
native to the new host machine, rather than as a sequence of
emulated legacy instructions.

17 Claims, 5 Drawing Sheets

HOSTREAL) CPU

MORY
(64-BIT WORDS)

TARGet
OPERATING
SYSTEM

REFERENCE

OTHER hostsys CIRCUTRY

HOST (REAL SYSTEM

U.S. Patent Jan. 1, 2008 Sheet 1 of 5 US 7,314.491 B2

A (36-BIT) Q (36-BIT)

OTHER CPU CIRCUTRY

EMULATED CPU

(as Ros OTHER TARGET SYSTEM CIRCUITRY

TARGET (EMULATED) SYSTEM

HOST (REAL) CPU

e.Sos OTHER HOST SYSTEM CIRCUITRY

TARGET
OPERATING
SYSTEM

REFERENCE

HOST (REAL) SYSTEM

FIG. 1

U.S. Patent Jan. 1, 2008 Sheet 2 of 5 US 7,314.491 B2

Machine Code of the Operating System using
Legacy Instructions to Perform a Function

100
Instructions in Mnemonic Form

101 A101 LDA
A1 O2 ADA
A103 STA
A104 TSX1

105 A105 STX1 Beginning of FX1 function --
A106 LDO
A107 ADO
A108 SBO
A109 STO Legacy

Function FX1
300

A201 ADX1 More Instructions inside FX1
A2O2 ...

203 A203 ... End of FX1 -CH

A204 Instructions after FX1 function
A205 ...

FIG. 2

U.S. Patent Jan. 1, 2008 Sheet 3 of 5 US 7,314.491 B2

Machine Code of the Operating System 2000
utilizing the newly defined FX1 instruction

Instructions in Mnemonic Form

101 A101 LDA
A102 ADA
A103 STA
A104 TSX1

2105 -CH- New
A105 FX1 instruction to invoke FX1 function 2 Function FX1

2106 A106 instructions after FX1 function 301
A1 O7 ...

2108 A108

FIG. 3

U.S. Patent Jan. 1, 2008 Sheet 4 of 5 US 7,314.491 B2

instructions in Mnemonic Form

101 A101
102 A102
103 A103
104 A104

105 A105
106 A106
107 A107
108 A108

A109

LDA
ADA
STA
TSX1

LDQ Beginning of FX1 function -CH
ADQ
SBO
STO
STX1

Function FX1
300

ADX1 More instructions inside FX1
A202 ...

203 A203 ...

A204

End Of FX1

Instructions after FX1 function
A205 ...

206 A206 ...

Steps to Perform an Operating System Function using
Emulation of a Sequence of Legacy instructions

Fetch instruction A105
interpret machine code of instruction
Form Address specified by instruction
Fetch operand from address specified
Perform Function specified by opcode of instruction
increment instruction Counter to prepare next instruction

310

1 Fetch instruction A106 ... do similar processing as for A105
311
N continue processing of all instructions through A203

312 continue with instruction A203 (after FX1 function)

FIG. 4

U.S. Patent Jan. 1, 2008 Sheet S of 5 US 7,314.491 B2

instructions in Mnemonic Form with new single
instruction for Operating System Function FX1

101 A101 LDA
A102 ADA
A103 STA
A104 TSX1

2105 A105 FX1 instruction to invoke FX1 function H Function FX1
301

2106 A106 instructions after FX1 function
A1 O7 ...

2108 A108 ...

Fetch instruction A105
Interpret machine code of instruction
Perform FX1 Function specified by opcode of instruction

(in machine code running directly on host system)

continue with instruction A106 (after FX1 function)

FIG. 5

US 7,314,491 B2
1.

ENCAPSULATION OF LARGE NATIVE
OPERATING SYSTEM FUNCTIONS AS

ENHANCEMENTS OF THE INSTRUCTION
SET IN AN EMULATED CENTRAL

PROCESSOR SYSTEM

RELATED PATENT APPLICATIONS

1. Application Ser. No. 2004011 1551 titled “Process for
Emulating Associative Memory’ invented by Bruce A.
Noyes filed on Jun. 10, 2004.

2. Application Ser. No. 20060155524 titled “Instructions
to Load and Store Containing Words in a Computer System
Emulator with Host Word Size Larger than that of the
Emulated Machine', invented by Russell W. Guenthner, et.
al. filed on Dec. 7, 2004.

3. Application Ser. No. 20070156391 titled “Host Com
puter System Emulating Target System Legacy Software
and Providing for Incorporating More Powerful Application
Program Elements into the flow of Legacy Software'.
invented by Russell W. Guenthner, et. al. filed on Dec. 29.
2005.

FIELD OF THE INVENTION

This invention relates to the art of computer system
emulation and, more particularly, to a computer system
emulator in which the functions normally performed by the
hardware in a central processor unit are emulated by a
Software program.

BACKGROUND OF THE INVENTION

Users of mainframe computers running a proprietary
operating system may have a very large investment in
proprietary application Software and, further, may be com
fortable with using the application software because it has
been developed and improved over a period of years, even
decades, to achieve a very high degree of reliability and
efficiency.
As manufacturers of very fast and powerful commodity

processors continue to improve the capabilities of their
products, it has become practical to emulate the proprietary
operating systems of powerful older computers such that the
manufacturers of the older computers can provide new
systems which allow the users to continue to use their
highly-regarded proprietary Software by emulating the older
or "legacy' computer and in particular the central processing
units of the legacy system. Accordingly, computer system
manufacturers are developing such emulator systems for the
users of their legacy systems, and the emulation process
used by a given system manufacturer is itself subject to
ongoing refinement and increases in efficiency and reliabil
1ty.

SUMMARY OF THE INVENTION

According to the teachings of the present invention,
several advantages will now be described along with specific
objects and the manner in which they are achieved in the
following paragraphs.

In one specific state-of-the-art example, a 64-bit Itanium
Intel processor is used to emulate the Bull DPS 9000 36-bit
memory space and the GCOS 8 instruction set of the Bull
DPS 9000. Within the memory space of the emulator, the
36-bit word of the DPS 9000 is stored right justified (least
significant bits) in the least significant 36 bits of the “host'

10

15

25

30

35

40

45

50

55

60

65

2
(Itanium) 64-bit word. The upper 28 bits of the 64-bit word
are typically Zero for “legacy code. Sometimes, certain
specific bits in the upper 28 bits of the containing word are
used as flags or for other temporary purposes, but in normal
operation these bits are usually Zero and in any case are
typically viewed by older programs in the "emulated' view
of the world as being non-existent. That is, only the emu
lation program itself uses these bits.

For some purposes. Such as providing new or more direct
communication with programs or services running in the
64-bit system, it is advantageous to provide the emulated
system with full access to the entire “containing word,
which in this case is the 64-bit containing word, for purposes
of both loading or storing the 64-bit word from the view
point of the emulated software into visible space within the
36-bit environment. The capability of viewing and manipu
lating 64 bits can also be used to improve the machine
architecture by Such expedients as adding new opcodes with
more functionality, increasing the address space, or other
similar things which can utilize more bits in the instruction
or data words.

It is also possible to enhance the basic instruction set of
the newly defined system beyond what was provided in the
older legacy system. Opcodes can be selected and their
functionality can be defined in the emulation program which
extends the instruction set beyond, or even far beyond the
functionality of the original “legacy” system. This can be
done by either enhancing or enriching the functionality of
the opcodes already defined on the legacy system, or by
utilizing previously unused opcodes to specify new func
tionality.
The present invention is directed to achieving this end,

that is, to enhance the instruction set of the new emulated
system to include functionality which encompasses that
previously performed by the operating system using only the
older legacy instructions. The purpose of the invention is to
increase performance of the emulated system, and in par
ticular to increase the performance of programs which make
heavy or large use of the operating system to perform the
processing required by that program.

OBJECTS OF THE INVENTION

It is therefore a broad object of this invention to increase
the performance of a computer system. This object is
achieved in the illustrated embodiment by defining new
opcodes which enhance the instruction set of an emulated
central processor unit with these new opcodes implementing
functionality previously performed by a sequence of legacy
instructions inside the code of the operating system.

It is another broad object of this invention to improve the
performance of the emulated Ventral processor unit and also
the performance of the emulated system. This object is
achieved by writing programs or Subroutines which will run
in native machine code on the host system to perform the
functions previously performed by the original operating
system in a manner which Surpasses the performance that
could be achieved by emulating a sequence of the original
legacy instructions which performed the original function.
Typically, one newly defined instruction will replace the
functionality of a section of original operating system code
that would require the processing of many legacy instruc
tions.

According to the teachings of this invention, two types of
new opcodes are provided. The first type is to newly utilize
previously unused opcodes or other encoding of the original
legacy instruction word to specify and provide functionality

US 7,314,491 B2
3

which was previously provided by a sequence of instructions
in the original legacy operating system code. The second
type is to utilize unused bits in the host instruction word to
define new instructions and new functionality that replaces

4
DESCRIPTION OF THE PREFERRED

EMBODIMENT(S)

FIG. 1 illustrates an exemplary environment in which the
original operating system code. Both of these instruction 5 invention finds application. More particularly, the operation
formats allow for increased performance by allowing for
host system machine code to replace a sequence of emulated
legacy instructions with a single instruction. Use of previ
ously unused bits in the host system word, also allows for the
overall encoding of the instructions to be less compact
which in turn allows for faster decode and quicker determi
nation of the precise work to be done by the code of the
emulation system.

Briefly, these and other objects of the invention are
achieved by providing new opcodes or other means of
encoding the specification of new functionality into the
instruction set of an emulated processing unit in an emulated
computer system. The newly added opcodes specifically
implement functionality previously performed by the legacy
operating system with performance improvement of the
overall system being achieved through more efficient coding
of operating system functions in a language or machine code
native to the host system, instead of the prior art approach
of interpreting a series of legacy instructions. This approach
enables more efficient coding with resulting improved per
formance of the overall computer system.

DESCRIPTION OF THE DRAWING

The subject matter of the invention is particularly pointed
out and distinctly claimed in the concluding portion of the
specification. The invention, however, both as to organiza
tion and method of operation, may best be understood by
reference to the following description taken in conjunction
with the Subjoined claims and the accompanying drawing of
which:

FIG. 1 is a block diagram showing a virtual target system
emulated in a host system;

FIG. 2 is an annotated listing fragment showing a section
of operating system code in a legacy system which is a
candidate for being replaced by a single instruction in the
equivalent operating system code for a new computer sys
tem in which the central processing unit hardware is
replaced by a software program which emulates functions of
the processor unit.

FIG. 3 is an annotated listing fragment showing the
instructions of the operating system machine code that are
required after application of the invention in which many
legacy instructions to perform a function are replaced by a
single instruction which invokes the function implemented
in the machine code of the host system.

FIG. 4 is an annotated listing fragment and diagram
showing some typical exemplary processing required by an
emulation program to process a sequence of instructions
with that sequence of instructions implementing a specific
section of operating system code. This diagram is an
example of the prior art approach.

FIG. 5 is an annotated listing fragment and diagram
showing typical processing required by the emulation sys
tem program after application of the invention in which a
section of operating system code is replaced by a single
instruction thus allowing for increased performance through
more efficient coding.

10

15

25

30

35

40

45

50

55

60

65

of a target (emulated) system, which does not actually
physically exist, is emulated by a host (real) system 10. The
target system 1 includes an emulated central processing unit
(CPU) 2, an emulated memory 3, emulated input/output
(I/O)4 and other emulated system circuitry 5. The emulated
CPU 2 incorporates program visible registers such as accu
mulator “A” and supplementary accumulator “B” registers,
6, 7, respectively, as well as other CPU circuitry 8. The host
(real) system 10 includes a host CPU 11, a host memory 12,
host I/O 13 and other host system circuitry 14. The host
memory 12 includes a dedicated target operating system
reference space 15 in which the elements and components of
the emulated system 1 are represented in one or more
individual words each.
The target operating system reference space 15 also

contains suitable information about the interconnection and
interoperation among the various target system elements and
components and a complete directory of the target system
operating system commands which includes information on
the steps the host system must take to “execute” each target
system command in a program originally prepared to run on
a physical machine using the target system operating system.
It can loosely be considered that, to the extent that the target
system 1 can be said to “exist” at all, it is in the target
operating system reference space 15 of the host system
memory 12.

Thus, an emulator program running on the host system 2
can replicate all the operations of an application program
written for the target system operating system as if the
application program were running on a physical target
system.

Referring now to FIG. 2, operating system cods is often
written in assembly language, but may also be written in a
higher level language Such as C, C++ or any other computer
language. When the operating system code has been com
piled or assembled and is actually running it exists as
machine code 100 in the computer system memory space,
either virtual or real, as a sequence or series of instructions.
In FIG. 2 Such a sequence of instructions is illustrated as
instructions at addresses/locations A101101 through A206
206. Within such a sequence there may be branches or
transfer instructions which cause the processing machine to
proceed non-sequentially but for purposes of this discussion
it will be considered that a section of code as illustrated is
tat which performs a specific operating system function.
This section of code in the figure is marked as function
“FX1300 and the function is performed by instructions at
addresses/locations A105105 through A203203. Typically,
the section of code which implements a specific operating
system function might be a Subroutine with certain argu
ments and parameters passed to it by the calling routine, in
a manner well known in the state of the art.

FIG.3 is a listing fragment showing the instructions of the
operating system machine code that are required after appli
cation of the invention. In this diagram instructions at
addresses/locations A101 101 through A104 104 are the
same as in FIG. 1. Instruction FX1 at address A105 marked
as in location 105 in FIG. 2 is no longer the beginning of the
legacy instructions which did the processing for function
FX1300, but is instead replaced by a new instruction at
location 2105 which is the machine code tat invokes the
newly defined FX1 301 instruction. Instructions at

US 7,314,491 B2
5

addresses/locations A106 2106 through A1082108 are now
the instructions immediately after function FX1 processing
which were at addresses/locations A204 204 through A206
206 in FIG. 1. Instructions from addresses/locations A105
105 through A203203 in FIG. 1 have been replaced by a
single instruction at address/location A105 2105 in FIG. 2.

FIG. 4 is a listing fragment showing the typical processing
that must be performed by a software program emulating the
instruction set of a legacy processing unit in order to process
to sequence of legacy instructions implementing function
“FX1300 from FIG. 1. Within the instructions of function
FX1300 instructions such as LDQ at location 105, ADQ at
location 106, SBQ at location 107, STQ at location 108 and
others as shown are processed by the emulation system.
Exemplary steps typically involved in processing each
instruction may include 1) the fetch of the instruction word
from the emulated system memory, 2) the interpretation of
the machine code from within instruction, 3) the formation
of the address specified by the instruction, 4) the fetch of any
operand or operands specified by the instruction, 5) the
processing or actual execution of the instruction using the
fetched operand data, 6) the storing away of any results from
the processing into memory or into a register, and 7) the
incrementing of the instruction counter for the emulated
program and then proceeding to the next instruction. In FIG.
4 these steps 310 are illustrated for the processing of
instruction at address/location A105 105 and then similar
steps 311 are repeated for processing the remainder of the
legacy instructions implementing function FX1 300. Pro
cessing then continues in the same manner as indicated in
step 312 for the instructions following the FX1300 function.

FIG. 5 is a listing fragment of the same operating system
function where instead of a section of code for the instruc
tions of FX1 as shown in FIG. 2. the machine code for the
section is replaced by a single newly defined instruction
which performs all the functionality of FX1 as a single
emulated instruction. This code is written in a computer
language or in assembler Such that the machine code for this
function is code that runs directly on the hardware of the
host machine, rather than being a series of emulated instruc
tions from the legacy instruction set. The performance of
this code, being processed directly by the hardware of the
host machine is faster and more efficient than the interpre
tation of a series of legacy instructions.
Any number of pieces of the operating system can be

rewritten and compiled and run as native code on the host
central processing unit. The original operating system code
is modified Such that the large sequences of instructions
previously used to implement a function are replaced by new
single instructions, possibly with arguments, and the code
for performing these functions is now in essence part of the
emulation system rather than the operating system, although
of course conceptually it can be viewed as remaining part of
the operating system.

The processing in FIG.3 and FIG. 4. is exemplary and not
in any way intended to limit or restrict the application of the
invention to only sequential code.

In a current state-of-the-art example chosen to illustrate
the invention, a 64-bit Itanium Intel processor is used to
emulate the Bull DPS9000 36-bit memory space and the
instruction set of the DPS9000 with its proprietary GCOS 8
operating system. Within the memory space of the emulator,
the 36-bit word of the DPS9000 is stored right justified in the
least significant 36 bits of the “host” (Itanium) 64-bit word
during the emulation process. The upper 28 bits of the 64-bit
word are typically Zero; however, sometimes, certain spe
cific bits in the “upper 28 bits of the “containing word are

10

15

25

30

35

40

45

50

55

60

65

6
used as flags or for other temporary purposes. Within the
instruction set of the legacy DPS9000 the numbers 3 and 4
(among others) were unused in the legacy instruction set,
and a fault was generated if they were encountered. For
purposes of improving the performance of the emulated
computer system, opcodes 3 and 4 were chosen as a mecha
nism to implement a call to host native emulation code with
the address field of the instruction for opcode 3 indicating
which of many operating system functions was being
invoked. When opcode number 3 is encountered by the
emulation system, one of many new functions as specified
by the address field is invoked and processing of that single
instruction as part the host native emulation code replaces
the processing of many instructions in the original operating
system code.
The newly defined instructions for specifying operating

system functions are called “hybrid” instructions and these
instructions differ from typical instructions from the legacy
instruction set. Hybrid instructions would typically be more
complex than typical instructions from the legacy instruction
set. Hybrid instructions have full access to the resources of
the host machine for performing their services, which the
instructions of the legacy instruction set typically do not
utilize. Hybrid instructions may access files or utilize com
munication functions of the host operating system. Hybrid
functions may use multiple threads to achieve higher
degrees of parallelism than can be achieved by attacking a
problem with a sequence of legacy instructions. Hybrid
functions can utilize recursion and resources for calls and
returns that are native to the host system hardware. Hybrid
instructions can use internal caching of data and internal
variable to avoid recalculation of certain data when that
possibility is recognized.

Hybrid functions may be called from only one place in the
operating system. That is, since they are replacing a specific
section of code, they may be called or invoked only from
that specific place in the new Source code for the legacy
operating system. Thus, the hybrid instructions do not need
to be designed and tailored for general use and since they
may be invoked from only one place they can be optimized
for most efficient operation in precisely the environment
from which they are invoked.

Within the functions of the operating system it is possible
that the code implementing an operating system function
may itself require calls back to the operating system itself.
That is, the function may require calls to other operating
system functions which may or may not also contain or be
implemented with other “hybrid” instructions. This requires
that the mechanism of the invention may for Some functions
require a method or procedure for the saving and Subsequent
restoring of the program state after the return from the
operating system calls. The mechanism must allow for the
stacking of program states as the code could be called from
multiple places and lower level functions could also them
selves make calls to the same function. If the program is
written in a higher level language Such as C, or C++ then the
internal state of the C program must itself be saved as part
of the program state so that if the emulated processor is
dispatched to another task on behalf of another user, the
variables for the processing of the first program must be
restored when the first program is resumed.

It may also be required that the implementation of the
program for performing the operating system function be
given access to the program visible registers, or other
internal variables and structures of the emulation program.
This can be accomplished in many ways well known in the
state of the art such as passing pointers to variable structures

US 7,314,491 B2
7

as part of the call to the function implementing the program,
or by identifying certain structures and variables as being
contained in global or common memory space.

It is noted that the invention which replaces sections of
operating system code with an alternative implementation in
machine code of the host system is not limited to exact
replacement of the function, nor does the function have to be
precisely or even approximately equivalent to the original
function. The application of the invention does not preclude
continued improvement in algorithms or in approach to the
overall operating system function as legacy code is migrated
into instructions which invoke machine code of the host
system.

While the principles of the invention have now been made
clear in an illustrative embodiment, there will be immedi
ately obvious to those skilled in the art many modifications
of structure, arrangements, proportions, the elements, mate
rials, and components, used in the practice of the invention
which are particularly adapted for specific environments and
operating requirements without departing from those prin
ciples.
What is claimed is:
1. In a data processing system in which a legacy process

ing unit structure and operation within a legacy target
computer system operating under control of operating sys
tem code is emulated by an emulation software program on
a host system that includes a host memory, a mechanism for
improving performance of the data processing system com
prising:
A) a function stored in the host memory implemented in

native machine code within the emulator software
program running on the host system which performs a
function previously implemented as a sequence of
legacy instructions as part of the operating system code
of the legacy system, where said operating system code
includes any code provided by a computer system
manufacturer, and

B) an instruction mechanism for invoking said function
from within the operating system code newly modified
to include the instruction mechanism that replaces the
sequence of legacy instructions for use on the legacy
target computer system when the newly modified oper
ating system code is Subsequently stored in a target
operating system reference space of the host memory.

2. The data processing system of claim 1 in which the
operating system code is restricted to not include application
software.

3. The data processing system of claim 1 in which the
instruction mechanism is specified to utilize an unused
opcode from the sequence of legacy instructions to invoke
the function.

4. The data processing system of claim 1 in which the
instruction mechanism is specified to utilize further encod
ing of existing legacy instructions to invoke the function.

5. The data processing system of claim 1 in which the
legacy target computer system utilizes an instruction set and
wherein the instruction mechanism is specified to utilize bits
of a host word which were not utilized to hold an instruction
word of the legacy instruction set.

6. The data processing system of claim 1 in which the host
system is an Intel Itanium machine with a 64-bit word size
and the emulated legacy target computer system is a Bull
DPS9000 machine running a GCOS 8 operating system.

7. The data processing system of claim 1 in which the
legacy target computer system has a word length of 36 bits
and the host system has a word length of 64 bits.

5

10

15

25

30

35

40

45

50

55

60

65

8
8. The data processing system of claim 1 in which the

legacy target computer system has a word length that is other
than a power of 2.

9. A method for improving performance of a computer
system performing emulation of a legacy computer system
the emulation including emulation of a legacy central pro
cessing unit, emulation of processing of instructions of a
legacy application program and an original legacy operating
system, the emulation performed by an emulation software
program running on a host computer system, the host
computer system including a host processor and a host
system memory, the method comprising the steps of:

A. including as part of the emulation Software program
running on the host processor of the host system, new
special program code which performs functionality of
machine instructions which compose a selected section
of original legacy operating system code:

B. allocating a first portion of host system memory and
storing in that portion of host system memory the
emulation Software program including the new special
program code for performing functionality of the
Selected section of original legacy operating system
code;

C. implement a second improved version of the legacy
operating system by Substituting in at least one place
for machine code of the selected original legacy oper
ating system component within the original legacy
operating system code a special function invocation
instruction, with said function invocation instruction
when recognized by the emulation Software program to
cause execution of the new special program code which
is included as part of the emulation software program;

D. allocating a second portion of the host system memory
and storing in that second portion of memory the
second improved implementation of the legacy oper
ating system;

E. launching or starting the emulation software program;
F. starting emulation by the emulation Software program

of execution of instructions of the second improved
implementation of the legacy operating system;

G. invoking the new special program code in the emula
tion Software program running on the host system
which performs the function of the selected section of
legacy operating system code whenever the special
function invocation instruction is encountered by the
emulation Software program within code of the second
improved implementation of the legacy operating sys
tem; and thus, achieving improved performance, that is,
less time in completing the new special program code
when compared to time required to perform the same
function through emulation of machine instructions
which composed the selected section of original legacy
operating system code.

10. The method of claim 9 wherein the special function
invocation instruction utilizes an opcode specified to be
selected from the set of unused opcodes of the legacy central
processing unit instruction set.

11. The method of claim 10 wherein the special function
invocation instruction is also specified to utilize no more bits
in its instruction word than in the word size of the legacy
computer system.

12. The method of claim 10 wherein the special function
invocation instruction is specified to utilize more bits in its

US 7,314,491 B2
9

instruction word than in the word size of the legacy com
puter system and that these bits are contained within a single
word of the host computer system.

13. The method of claim 9 wherein the host machine word
length is 64 bits, and the legacy machine word length is 36
bits.

14. The method of claim 9 wherein the new special
program code of Step A is written by band in a high level
language Such as C or C++.

15. The method of claim 9 wherein the new special
program code of Step A is written by hand in the machine
language of the host system.

10

10
16. The method of claim 9 wherein a plurality of sections

of the original legacy operating system code are selected for
replacement by hand written machine code tailored for
execution on the host system.

17. The method of claim 9 wherein a plurality of sections
of the original legacy operating system code are selected for
replacement by hand written code in a high level language
Such as C or C++.

