
)Aae Enter#d;

ION PAGE rrr % roAD- A 2 944 12. GOVI ACCESSION NO. 3. RECIP1ENI"S CATALOG NUMBER

4. TITLE (and/Subr,r/e) S. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Val'dation SimWr o B 24 Sept. L989 to 24 Sept. 199(
Information Systems, Inc., 0 omp a __on _t_,_24_..._to

Ver 2.3, DPS 8000 (Host to Target), 890924S1.10231 6. PERFORMINGbRG. REPORT NUNBER

7. AUTNOR(s) S. CONTRACT OR 6RANT NUMBER(s)

National Institute of Standards and Technology

Gaithersburg, Maryland, USA

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PRCJECT. TASK

National Institute of Standards and Technology
AREA & WORK UNIT NUMBERS

Gaithersburg, Maryland, USA

It. CONTROLLING OFFICE NAME AND ADDRESS 1Z. REPORT DATE
Ada Joint Program Office
United States Department of Defense 1 N
Washington, DC 20301-3081

14. MONITORING AGENCY NAME & ADORESS(f different from Controlling Office) 15. SECURITY CLASS (ofthisreport)
U NC LASS! F IED

National Institute of Standards and Technology UN.. CS CATION/DOV%RADING

Gaithersburg, Maryland, USA N/A

15. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. OISTRIBJTIO STATEMENT (of the abstentered,n Block20 fO, Hefrent from Report)

UNCLASSIFIED -DTIC
APR2 6 1990 D

19. It. YWORDS (Continue on reverse sde f neessary end identify by block number)

Ada Prograrr.ing language, Ada Compiler Validation Summary Report, Ada
Co.piler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABST RAC I (Continue on reverse side f necessary and oentf) by block number)

Bull HN Information Systems, Inc., Gaithersburg, MD, DPS 8000 under GCOS 8 SR 3000

(Host & Target), ACVC 1.10.

DD 'u" 1473 EDITION OF I NOv 65 IS OBSOLETE
I JAM 73 S/N o02-L-od-SSO1 UNCLASSIFIED

SECURITY CLASSIFICATIPo Of THIS PAGE (wrwenOata Entered;

90 04 24 09.3

AVF Control Number: NIST89HFS55021.10
22 January 1990

Ada COMPILER

VALIDATION SUMMARY REPORT:

Certificate Number: 890924S1.10231
Bull HN Information Systems, Inc

GCOS 8 ADA Compilation System, Ver 2.3
DPS 8000 Host and DPS 8000 Target

Completion of On-Site Testing:
24 September 1989

Prepared By:
Software Standards Validation Group
National Computer Systems Laboratory

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: GCOS 8 ADA Compilation System, Ver 2.3

Certificate Number: 890924S1.10231

Host: DPS 8000 under GCOS 8 SR 3000

Target: DPS 8000 under GCOS 8 SR 3000

Testing Completed 24 September 1989 Using ACVC 1.10

This report 1- bean reviewed and is approved.

A a idatio a it Ada Validation Facility
Dr. David K. Jeffekon Mr. L. Arnold J6 ffison
Chief, Information Systems Manager, Software Standards
Engineering Division Validation Group
National Computer Systems National Computer Systems
Laboratory (NCSL) Laboratory (NCSL)

National Institute of National Institute of
Standards and Technology Standards and Technology

Building 225, Room A266 Building 225, Room A266
Gaithersburg, MD 20899 Gaithersburg, MD 20899

da Validation Organization Acc(-.io: For

(" Dr. John F. Kramer
Institute for Defense Analyses NTISriNS19
Alexandria VA 22311 [)1i. 1 H

i

// .. / /! °.

7/SI .C~~I ~9By

/Ata Joint Program Office D;,t ,tutir4
Dr. John Solomond .Avam,:tv Coies
Director
Department of Defense Avdsi idlOT
ashington DC 20301 i Special

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-1

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS 3-2

3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 3-6
3.7 ADDITIONAL TESTING INFORMATION3-7

3.7.1 Prevalidation 3-7
3.7.2 Test Method 3-7
3.7.3 Test Site 3-8

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX :% WITHDRAWN TESTS

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY
Bull HN Information Systems

CHAPTER I

INTRODUCTION

This Validation Summary Report tVSR4 describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of tsting this compiler using the Ada Compiler
Validation Capability4 (A0VG)Q An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.
The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results.7>The purpose of validating is to ensure
conformity of the compiler to the Ada Standard by testing that the
compiler properly implemdnts legal language constructs and that it
identifies and rejects iflegal language constructs. The testing also
identifies behavior that is implementation dependent, but is permitted
by the Ada Standard. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

/,

1-1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by

the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by Gemma Corp under the direction
of the AVF according to procedures established by the Ada Joint Program
Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 31 August 1989 at Bull HN Information

Systems.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this

report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group
National Computer Systems Laboratory
National Institue of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

1-2

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada An Ada Commentary contains all information relevant to
the Commentary point addressed by a comment on the Ada
Standard. These comments are given a unique
identification number having the form Al-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and
technical support for Ada validations to ensure

1-3

consistent practices.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding
a particular feature or a combination of features to the
Ada Standard. In the context of this report, the term

is used to designate a single test, which may comprise
one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check

test conformity to the Ada Standard. A test may be
incorrect because it has an invalid test objective,
fails to meet its test objective, or contains illegal or
erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce errors
because of the way in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal
Ada programs with certain language constructs which cannot be verified
at run time. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved

1-4

words of another language (other than those already reserved in the Ada
language) are not treated as reserved words by an Ada compiler. A Class
A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check the run time system to ensure that legal Ada
programs can be correctly compiled and executed. Each Class C test is
self-checking and produces a PASSED, FAILED, or NOT APPLICABLE message
indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the
Ada Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated. In some cases, an
implementation may legitimately detect errors during compilation of the
test.

Two library units, the package REPORT and the procedure CHECKFILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada

1-5

Standard that would circumvent a test objective. The procedure
CHECKFILE is used to check the contents of text files written by some

of the Class C tests for Chapter 14 of the Ada Standard. The operation
of REPORT and CHECKFILE is checked by a set of executable tests. These
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all

implementations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass

criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an
implementation is considered each time the implementation is validated.
A test that is inapplicable for one validation is not necessarily
inapplicable for a subsequent validation. Any test that was determined
to contain an illegal language construct or an erroneous language
construct is withdrawn from the ACVC and, therefore, is not used in
testing a compiler. The tests withdrawn at the time of this validation
are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under
the following configuration:

Compiler: GCOS 8 ADA Compilation System, Ver 2.3

ACVC Version: 1.10

Certificate Number: 890924SI.10231

Host Computer:

Machine: DPS 8000

Operating System: GCOS 8 SR 3000

Memory Size: 16 MB

Target Computer:

Machine: DPS 8000

Operating System: GCOS 8 SR 3000

Memory Size: 16 MB

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for

such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

2-1

Capacities.

(1) The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55AO3A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursi'.'e
procedures separately compiled as subunits nested to 17

levels. See tests D64005E..G (3 tests).)

Predefined types.

(1) This implementation supports the additional predefined
types LONGINTEGER and LONGFLOAT in the package STANDARD.
(See tests B86001T. .Z (7 tests).)

Expression evaluation.

The order in which expressions are evaluated and the time at
which constraints are checked are not defined by the language.

While the ACVC tests 4o not specifically attempt to determine
the order of evaluation of expressions, test results indicate
the following:

(1) None of the default initialization expressions for record
components are evaluated before any value is checked for

membership in a component's subtype. (See -est C32117A.

(2) Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test
C35903A.)

(4) NUMERIC_ERROR is raised when an integer literal operand in
a comparison or membership test is outside the range of the
base type. (See test C45232A.)

(5) No exception is raised when a literal operand in a
fixed-point comparison or membership test is outside the
range of the base type. (See test C45252A.)

2-2

(6) Underflow is not gradual. (See tests C45524A..Z (26

tests).)

Rounding.

The method by which values are rounded in type conversions is
not defined by the language. While the ACVC tests do not
specifically attempt to determine the method of rounding, the

test results indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round
away from zero. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test
C4AO14A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINTERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this

implementation:

(1) Declaration of an array type or subtype declaration with
more than SYSTEM.MAXINT components raises NUMERICERROR.
(See test C36003A.)

(2) NUMERIC ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

(3) NUMERIC ERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAXINT + 2 components. (See test

C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises NUMERIC ERROR when the array type is
declared. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERICERROR when the
array objects are declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than

INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINTERROR
either when declared or assigned. Alternatively, an

2-3

implementation may accept the declaration. However,
lengths must match in array slice assignments. This
implementation raises NUMERIC ERROR when the array type is
declared. (See test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Discriminated types.

(1) During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that
is used in an access type definition with a compatible
discriminant constraint. This implementation accepts such
subtype indications. (See test E38104A.)

(2) In assigning record types with discriminants, the
expression is evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

2-4

Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the
test results indicate that all choices are evaluated before
checking against the index type. (See tests C43207A and
C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for

identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate
does not belong to an index subtype. (See test E43211B.)

Pragmas.

(1) The pragma INLINE is supported for functions or procedures.
(See tests LA3004A..B (2 tests), EA3004C..D (2 tests), and
CA3004E..F (2 tests).)

Generics.

(1) Generic specifications and bodies cannot be compiled in

separate compilations. (See tests CAIOI2A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3OIIA.)

(3) Generic subprogram declarations and bodies can be compiled
in separate compilations. (See tests CA1012A and CA2009F.)

(4) Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CAlOl2A.)

(5) Generic tiLl-library subprogram bodies cannot be compiled in
separate compilations from their stubs. (See test
CA2009F.)

(6) Generic package declarations and bodies cannot be compiled
in separate compilations. (See tests CA2009C, BC3204C, and

BC3205D.)

(7) Generic library package specifications and bodies cannot be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

2-5

(8) Generic non-library package bodies as subunits cannot be
compiled in separate compilations. (See test CA2009C.)

Input and output.

(1) The package SEQUENTIAL_10 can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C,
EE220ID, and EE220IE.)

(2) The package DIRECT_10 cannot be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE21OIH,
EE2401D, and EE2401G.)

(4) Modes INFILE and OUTFILE are supported for SEQUENTIAL_10.
(See tests CE2102D..E, CE2102N, and CE2102P.)

(5) Modes INFILE, OUTFILE, and INOUTFILE are supported for
DIRECTIO. (See tests CE2102F, CE21021..J (2 tests),
CE2102R, CE2102T, and CE2102V.)

(6) Modes INFILE and OUTFILE are supported for text files.
(See tests CE3102E and CE31021..K (3 tests).)

(7) RESET and DELETE operations are supported for
SEQUENTIAL IO. (See tests CE2102G and CE2102X.)

(8) RESET and DELETE operations are supported for DIRECT_10.
(See tests CE2102K and CE2102Y.)

(9) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G (2 tests), CE3104C, CE311OA, and
CE3114A.)

(10) Overwriting to a sequential file truncates to the last
element written. (See test CE2208B.)

(11) Temporary sequential files are not given names and not
deleted when closed. (See test CE2108A.)

(12) Temporary direct files are not given names and not deleted
when closed. (See test CE2108C.)

(13) Temporary text files are not given names and not deleted
when closed. (See test CE3112A.)

(14) Only one internal file can be associated with each external
file for sequential files when writing or reading. (See
tests CE2107A..E (5 tests), CE2102L, CE2110B, and CE2111D.)

2-6

(15) Only one internal file can be associated with each external
file for direct files when writing or reading. (See tests
CE2107F..H (3 tests), CE211OD and CE2111H.)

(16) Only one internal file can be associated with each external
file for text files when writing or reading (See tests
CE3111A..E (5 tests), CE3114B, and CE3115A.)

2-7

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 520 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for
173 executable tests that use floating-point precision exceeding that
supported by the implementation. Modifications to the code, processing,
or grading for 8 tests were required to successfully demonstrate the
test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable

conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 121 1129 1816 17 24 46 3153

Inapplicable 8 9 499 0 4 0 520

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 200 581 567 245 172 99 159 331 135 36 250 99 279 3153

Inapplicable 12 68 113 3 0 0 7 1 2 0 2 270 42 520

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time
of this validation:

A39005G B97102E C97116A BC3009B CD2A62D CD2A63A
CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C
CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A
CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G CD2A84M
CD2A84N CD2B15B CD2BI5C CD2DlB CD5007B CD50110
CD71O5A CD7203B CD7204B CD7205C CD7205D CE21071
CE3111C CE3301A CE3411B E28005C ED7004B ED7005C
ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 520
tests were inapplicable for the reasons indicated:

3-2

The following 173 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113N..Y (12 tests) C35705N..Y (12 tests)
C35706N. .Y (12 tests) C35707N..Y (12 tests)
C35708N..Y (12 tests) C35802N..Z (13 tests)
C45241N. .Y (12 tests) C45321N..Y (12 tests)
C45421N..Y (12 tests) C45521N..Z (13 tests)
C45524N..Z (13 tests) C45621N..Z (13 tests)
C45641N..Y (12 tests) C46012N..Z (13 tests)

The following 170 tests are not applicable because 'SIZE
representation clauses are not supported:

A39005B C87B62A CDI009A..I (9 tests)
CD1OO90..Q (3 tests) CDlC03A CDlCO4A
CD2A21A..E (5 tests) CD2A22A. .J (10 tests)
CD2A23A..E (5 tests) CD2A24A. .J (10 tests)
CD2A31A..D (4 tests) CD2A32A. .J (10 tests)
CD2A41A..E (5 tests) CD2A42A. .J (10 tests)
CD2A51A..E (5 tests) CD2A52A. .D (4 tests)
CD2A52G..J (4 tests) CD2A53A. .E (5 tests)
CD2A54A..D (4 tests) CD2A54G. .J (4 tests)
CD2A61A..L (12 tests CD2A62A. .C (3 tests)
CD2A64A..D (4 tests) CD2A65A. .D (4 tests)
CD2A7TA..D (4 tests) CD2A72A. .D (4 tests)
CD2A74A..D (4 tests) CD2A75A. .D (4 tests)
CD2A81A..E (5 tests) CD2A81F
CD2A83A..C (3 tests) CD2A83E..F (2 tests)
CD2A84B..I (8 tests) CD2A84K..L (2 tests)
CD2A87A CD2A91A..E (5 tests)
ED2A26A ED2A56A ED2A86A

The following 7 tests are not supported because 'SMALL
representation clauses are not supported:

A39005E C87B62C CD1009L CDlC03F CDlC04C CD2DllA
CD2Dl3A

C355081, C35508J, C35508M, and C35508N are not applicable because
they include enumeration representation clauses for BOOLEAN types
in which the representation values are other than (FALSE -> 0, TRUE
-> 1). Under the terms of AI-00325, this implementation is not
required to support such representation clauses.

C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT-FLOAT.

3-3

The following 16 tests are not applicable because this
implementation does not support a predefined type SHORTINTEGER:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55BO7B B55BO9D B86001V

CD71OIE

B86001X, C45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONGINTEGER, or SHORTINTEGER.

B8600lZ is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORTFLOAT.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

C4AOI3B is not applicable because the evaluation of an expression
involving 'MACHINERADIX applied to the most precise floating-point

type would raise an exception; since the expression must be static,
it is rejected at compile time.

The following 76 tests are not applicable because, for this
implementation, type SYSTEM.ADDRESS is a limited private type:

CD5003B..1 (8 tests) CDS011A..I (9 tests)
CD5011K..M (4 tests) CD5011Q..S (3 tests)
CD5Ol2A..J (10 tests) CD5012L..M (2 tests)
CD5013A..I (9 tests) CD5013K..O (5 tests)
CD5Ol3R..S (2 tests) CD5Ol4A..O (15 tests)
CD5OI4R..Z (9 tests)

C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

CA2009C is not applicable because this implementation does not
permit compilation of generic non-library package bodies as subunits
in separate files from their stubs.

CA2009F is not applicable because this implementation does not

permit compilation of generic no,-library subprogram bodies as
subunits in separate files from their stubs.

BC3204C and BC4205D are not applicable because this implementation
does not permit compilation of generic library package bodies in
different files from their specifications.

3-4

The following 19 tests are not applicable because no representation
clauses may be given for a derived type:

ADlC04D AD3015C AD3O15F AD3OI5H AD3OI5K
CDlCO4B CDlCO4E CD3OI5A CD305B CD3OI5D
CD3OI5E CD305G CD30151 CD3OI5J CD3OI5L
CD4O5IA..D (4 tests)

AE21OIH and EE2401D use instantiations of package DIRECTIO with
unconstrained array types. These instantiations are rejected by
this compiler.

CE2102E is inapplicable because this implementation supports CREATE
with OUTFILE mode for SEQUENTIAL10.

CE2102F is inapplicable because this implementation supports CREATE
with INOUTFILE mode for DIRECTIO.

CE21021 is inapplicable because this implementation supports CREATE
with INFILE mode for DIRECTIO.

CE2102J is inapplicable because this implementation supports CREATE
with OUTFILE mode for DIRECTIO.

CE2102N is inapplicable because this implementation supports OPEN
with INFILE mode for SEQUENTIALIO.

CE21020 is inapplicable because this implementation supports RESET
with INFILE mode for SEQUENTIALIO.

CE2102P is inapplicable because this implementation supports OPEN
with OUTFILE mode for SEQUENTIALIO.

CE2102Q is inapplicable because this implementation supports RESET
with OUTFILE mode for SEQUENTIAL_10.

CE2102R is inapplicable because this implementation supports OPEN
with INOUTFILE mode for DIRECT_10.

CE2102S is inapplicable because this implementation supports RESET
with INOUTFILE mode for DIRECT_10.

CE2102T is inapplicable because this implementation supports OPEN
with INFILE mode for DIRECT_10.

CE2102U is inapplicable because this implementation supports RESET
with IN FILE mode for DIRECTIO.

CE2102V is inapplicable because this implementation supports OPEN
with OUTFILE mode for DIRECTIO.

CE2102W is inapplicable because this implementation supports RESET

3-5

with OUTFILE mode for DIRECTIO.

CE2105A is inapplicable because CREATE with IN FILE mode is not
supported by this implementation for SEQUENTIAL_10.

CE2107A..H (8 tests), CE2107L, CE211OB, CE211OD, CE2111D and CE2111H
are not applicable because multiple internal files cannot be
associated with the same external file for sequential files or
direct files. The proper exception is raised when multiple access
is attempted.

CE3102F is inapplicable because text file RESET is supported by this
implementation.

CE3102G is inapplicable because text file DELETE is supported by
this implementation.

CE31021 is inapplicable because text file CREATE with OUTFILE mode
is supported by this implementation.

CE3102J is inapplicable because text file OPEN with INFILE mode is
supported by this implementation.

CE3102K is inapplicable because text file OPEN with OUTFILE mode is
not supported by this implementation.

CE3109A is inapplicable because text file CREATE with INFILE mode
is not supported by this implementation.

CE3111A..B (2 tests), CE3111D..E (2 tests), CE3114B, and CE3115A are
not applicable because multiple internal files cannot be associated
with the same external file for text files. The proper exception is

raised when multiple access is attempted.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that was not anticipated
by the test (such as raising one exception instead of another).

Modifications were required for 61 tests.

The following tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

3-6

B22003A B26001A B26002A B26005A B28001D B28003A
B29001A B33001B B35101A B37106A B37301B B37302A
B38003A B38003B B38009A B38009B B510O0A B53009A
B54AOlC B54AOJ B55AOlA B61001C B61OOID B61001F
B61OOIH B61001I B610O0M B61OOIR B61OOlW B67001H
B91OOlA B91002A B91002B B91002C B91O02D B91002E
B91002F B91002G B91002H B91002I B91002J B91002K
B91002L B95030A B95061A B95061F B95061G B95077A
B97103E B97104G BA1I01B BC1I09A BC1109C BCIIO9D
BCl202A BC1202B BC1202E BCl202F BC1202G BC2001D
BC200lE

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10
produced by the GCOS 8 ADA Compilation System compiler was submitted to
the AVF by the applicant for review. Analysis of these results
demonstrated that the compiler successfully passed all applicable tests,
and the compiler exhibited the expected behavior on all inapplicable
tests.

3.7.2 Test Method

Testing of the GCOS 8 ADA Compilation System compiler using ACVC Version

1.10 was conducted based on a review of material supplied by Bull HN
Information Systems comparing the DPS 8000 host and target output with
the DPS 9000 host and target output that was observed on site by a
validation team from the AVF. The configuration in which the testing

was performed is described by the following designations of hardware and

software components:

Host computer: DPS 8000
Host operating system: GCOS 8 SR 3000
Target computer: DPS 8000
Target operating system: GCOS 8 SR 3000

A tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precision was taken on-site by the
validation team for processing. Tests that make use of

implementation-specific values were customized on site.

3-7

TEST INFORMATION

The contents of the tape were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was
compiled, linked, and all executable tests were run on the DPS 8000.
Results were printed from the host computer.

The compiler was tested using command scripts provided by Bull HN
Information Systems Inc. and reviewed by the validation team. The
compiler was tested using all default option settings. See Appendix E
for a complete listing of the compiler options for this implementation.

Tests were compiled, linked, and executed (as appropriate) using one
host computer and one target computer. Test output, compilation
listings, and job logs were captured on tape and archived at the AVF.
The listings provided by Bull HN Inforamtion Systems, Inc were also
archived.

3.7.3 Test Site

Testing was conducted at Bull HN Information Systems Inc. and was
completed on 24 September 1989.

3-8

APPENDIX A

DECLARATION OF CONFORMANCE

Bull HN Information Systems Inc. has submitted the following
Declaration of Conformance concerning the GCOS 8 ADA Compilation
System.

A-I

Declaration of Conformance

Compiler Implementor: Bull HN Information Systems Inc.
Ada Validation Facility: National Institute of Standards and Technology
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configurations

Base Compiler Name: GCOS 8 Ada Compilation System Version: 2.3
Host Architecture: DPS 8000 OS&VER #: GCOS 8 SR 3000
Target Architecture: DPS 8000 OS&VER #: GCOS 8 SR 3000

Host Architecture: DPS 9000 OS&VER #: GCOS 8 SR 4000

Target Architecture: DPS 9000 OS&VER 4: GCOS 8 SR 4000

Derived Compiler Registrations

Derived Compiler Name: GCOS 8 Ada Compilation System Version: 2.3
Host Architecture: DPS 8/70 OS&VER #: GCOS 8 SR 3000
Target Architecture: DPS 8/70 OS&VER #: GCOS 8 SR 3000

Host Architecture: DPS 8000 OS&VER #: GCOS 8 SR 4000
Target Architecture: DPS 8000 OS&VER #: GCOS 8 SR 4000

Host Architecture: DPS 90 OS&VER #: GCOS 8 SR 4000
Target Architecture: DPS 90 OS&VER #: GCOS 8 SR 4000

Implementer's Declaration

I, the undersigned, representing Bull HN Information Systems Inc., have
implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compiler listed in this declaration. I declare that
Bull HN Information Systems Inc. is the owner of record of the Ada language
compiler listed above and, as such, is responsible for maintaining said
compiler in conformance to ANSI-MIL-STD-1815A. All certificates and
registrations for the Ada language compiler listed in this declaration shall
be made only in the owner's corporate name.

LuL 14/ /z1,-. M Date: g, J -A
Bull HN Informationiystems Inc.
David Mosley, Consulting Software Engineer

Owner's Declaration

I, the undersigned, representing Bull HN Information Systems Inc., take full
responsibility for implementation and maintenance of the Ada compiler listed
above, and agree to the public disclosure of the final Validation Summary
Report. I further agree to continue to comply with the Ada trademark policy,
as defined by the Ada Joint Program Office. I declare that the Ada language
compiler listed, and its host/target performance is in compliance with the
Ada Language Standard ANSI/MIL-STD-1815A. I have reviewed the Validation
Summary Report for the compiler and concur with the contents.

&__U __a_ ____ ___ Date: 31 Z-z s
Bull HN Informati' Systems Inc.
David Curry, Manager
Production Environment Development Products

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the GCOS 8 ADA Compilation
System, as described in this Appendix, are provided by Bull HN
Information Systems. Unless specifically noted otherwise, references in
this appendix are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are not
a part of Appendix F, are:

package STANDARD is

type INTEGER is range -34359738368 .. 34359738367;
type LONGINTEGER is range -23611832241434822606848

23611832241434822606847;

type FLOAT is digits 6 range -16#O.IE128 .. 16#O.FFFFFFE#El27;
type LONGFLOAT is digits 17 range -16#0.I#E128

16#0.FFFFFFFFFFFFFFFE#EI27;

type DURATION is delta 0.000016 range -1099799511627776.0 .

1099799511627776.0;

end STANDARD;

B-1

- 13 -

5 Appendix F of the Ada Laneuage Reference Manual

1. Implementation-dependent Pragmas

Pragma INTERFACE SPELLING

This pragma has the form:

pragma INTERFACESPELLING (subprogramname, stringliteral);

The name of a subprogram written in another language may be an illegal
identifier within the Ada language. This pragma can be used to establish a
correspondence between the external name (given by the stringliteral) and
the Ada identifier (subprogramname) specified in a pragma INTERFACE.

This pragma is allowed at the place of a declarative item and must apply to
a subprogram declared by an earlier pragma INTERFACE.

Pragma MULTI SEGMENT DATA

This pragma has the form:

pragma MULTISEGMENTDATA;

This pragma affects the method used for static data storage access and,
hence, the amount of static storage which is accessible to this compilation
unit. By specifying a more costly access method, this pragma allows the
compilation unit to access over 256K words of static storage (the default
limit on static storage is 32K words).

This pragma is allowed anywhere a pragma is allowed. It will affect the
current compilation unit and any subsequent units in the same compilation.

Praoma SINGLE SEGMENT DATA

This pragma has the form:

pragma SINGLESEGMENTDATA;

This pragma affects the method used for static data storage access and,
hence, the amount of static storage which is accessible to this compilation
unit. By specifying a more costly access method, this pragma allows the
compilation unit to access up to 256K words of static storage (the default
limit on static storage is 32K words).

This pragma is allowed anywhere a pragma is allowed. It will affect the
current compilation unit and any subsequent units in the same compilation.

2. Implementation-dependent Attributes

There are no implementation-dependent attributes.

- 14 -

3. Package System

The specification of the package SYSTEM is as follows:

package SYSTEM is

type ADDRESS is access INTEGER;

subtype PRIORITY is INTEGER range 1..15;

type NAME is (DPS8);

SYSTEMNAME : constant NAME DPS8;

STORAGE-UNIT : constant := 36;
MEMORYSIZE : constant 256*1024;

MININT : constant : -2361_183241_434822_606848;
MAXINT : constant 2361_183241_434822_606847;
MAX-DIGITS : constant :: 17;
MAXMANTISSA . constant := 60;
FINEDELTA constant 2.0**(-60);
TICK : constant :: 0.000016;

type INTERFACELANGUAGE is (GMAPV, COBOL_85, PL_6, FORTRAN_77, C,
GMAPV_ADA);

end SYSTEM;

4. Representation Clauses

The list of all restrictions on representation clauses is as follows:

In general, no type representation clauses may be given for a derived type.
The type representation clauses that are accepted for non-derived types are
described in the following:

The compiler accepts only a length clause that specifies the number of storage
units to be reserved for a collection and the number of storage units reserved
for an activation of a task.

Enumeration representation clauses may specify representations only in the
range of the predefined type INTEGER.

Record representation clauses do not support alignment clauses. A component
clause is allowed if, and only if, either of these statements is true:

• The component type is a discrete type different from LONG_INTEGER.

" The component type is an array type with a discrete element type
different from LONG-INTEGER.

No component clause is allowed if the component type is not covered by the
above two inclusions. If the record type contains components not covered by a
component clause, they are allocated consecutively after the component with

- 15 -

the highest AT value. Allocation of a record component without a component
clause is always aligned on a storage unit boundary. Holes created because of
component clauses are not otherwise utilized by the compiler.

5. Implementation-generated Names for Implementation-dependent Components

There are no implementation-generated names for implementation-dependent
components.

6. Address Clauses

Address clauses are not supported.

7. Unchecked Conversion

Unchecked conversion is allowed only between values of the same size. For
dynamic arrays this will be checked at runtime. Unchecked conversion between
types where at least one is an unconstrained array type is not allowed.

8. Input-Output

The implementation-dependent characteristics of the input-output packages are

as follows:

An attempt to CREATE an INFILE will raise USEERROR.

A RESET to OUT-FILE, on a sequential or text file, empties the file.

Two internal files may not be associated with the same external file
simultaneously.

Temporary files accessed by a batch program are not named. Use of the
function NAME results in a USE-ERROR.

An attempt to open a "busy" file will result in the I/O exception,
STATUS-ERROR.

The FORM parameter can be the concatenation of any of the following strings
separated by spaces:

"-FILCOD XX" Allows the association of an internal file to a file code
where XX is a valid file code supplied by JCL. A file code
takes precedence over a NAME string.

"-MEDCOD N" Allows the specification of the media code of the external
file where N is a valid media code.

"-APPEND" On opening a file with mode OUT-FILE, allows the positioning
at end-of-file so that writes will append rather than over-
write the file. It has no effect on creates or on opening
files with mode IN-FILE. It is only applicable to sequential

- 16 -

and text files; it results in a USEERROR if it is applied to
direct files.

A file name may consist of 10 levels of qualifications: up to 9 catalog names
and a file name. Each name must be no more than 12 characters in length.
Passwords are not currently implemented. If only a file name is given in the
name parameter, it is prefaced by the userid of the process in execution.

All Ada files are mapped to GCOS system standard files. Blocks are of
variable length with a maximum size of 320 words. Each block has a control
word containing the block size and a sequence number. Records are of variable
format with record control words, but in a direct or sequential file, all
record elements are the same size. Records may span as many physical blocks
as is necessary.

Ada files are recorded in ASCII format and are compatible with standard time
sharing tools. When a BCD file is read (media codes 0, 2, 3). each record is
translated to ASCII format as it is passed to the user's record area. There
is no physical difference between the formats of direct and sequential files
and a sequentially created file may be read directly and vice versa.

The use of protected files should be avoided. A program cannot define
commitment points: therefore it can adversely impact the performance of other
processes accessing the protected files.

The text input/output provides input and output of data in human-readable
form. The physical file format of disk files is the same as for sequential
I/O except that the records may vary in length from null to 4096 bytes.

The following applies only to files on disk. The standard input and output
files are described later. Line terminators and file terminators are not
explicitly present on the file. A line is a variable length record and can
contain up to 4096 bytes including a possible page terminator. A page
terminator is a form feed character (FF, ASCII 12) and is always appended to
the last line of a page.

If more than 4096 characters are input, a USEERROR is raised. The last
record of a file will not contain a form feed character since the physical
end-of-file will signal both page and file termination.

The standard input and output files are equated to file codes I* and P*,
respectively. They may be redirected to the terminal by setting bit 19 in the
program switch word ($ SET 19). The program can then be connected via its
SNUMB using the time sharing JDAC commands.

The file code P* will written as media code 7 (ASCII print) and it may be
assigned to SYSOUT or to a disk file. Any horizontal tab character is
converted to a space. A single space control sequence is appended to the end
of every line. A page eject sequence is placed at the end of every page.
These control characters must be accounted for if a disk file is to be reread.

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

C-I

- 19 -

8 Macro Definitions

ACCSIZE 36
BIG_ IDI (l..248 > 'A', '1')
BIGID2 (l..248 => 'A', '2')
BIG_ ID3 (l..124 => 'A', '3', 126..249 => 'A')
BIGID4 : (1..124 => 'A', '4', 126..249 => 'A')
BIGINTLIT (1..246 => 0, 298)
BIGREALLIT (1..244 z> 0, 690.0)
BIGSTRING' : (1..124 => 'A')
BIGSTRING2 : (125..248 => 'A', '1')
BLANKS (1..229 => '

COUNT-LAST 34359738367
DEFAULTMEMSIZE : 262144
DEFAULTSTORUNIT : 36
DEFAULTSYSNAME : DPS8
DELTA DOC : 2#1.0#E-60
FIELD LAST : 75
FIXED NAME : NOSUCH FIXED TYPE
FLOATNAME : NOSUCHFLOAT TYPE
GREATERTHANDURATION : 0.0
GREATERTHAN_DURATIONBASELAST : 1100000000000.0
HIGHPRIORITY : 15
ILLEGALEXTERNALFILE_NAMEl : F@LENAME
ILLEGALEXTERNALFILENAME2 : NAMETOLONGFORFILENAME
INTEGERFIRST : -34359738368
INTEGERLAST : 34359738367
INTEGERLASTPLUSI : 34359738368
LESSTHANDURATION : 0.0
LESSTHANDURATIONBASEFIRST : -1100000000000.0
LOW PRIORITY : 1
MANTISSA-DOC : 60
MAXDIGITS : 17
MAXINT : 2361183241434822606847
MAXINTPLUSI : 2361183241434822606848
MAX IN LEN : 249
MAXLENINTBASEDLITERAL : (2:, 3..246 => '0', 11:)
MAXLENREALBASEDLITERAL : (16:, 4..245 => '0', F.E:)
MAXSTRINGLITERAL : ('"', 2..248 => 'A', "')
MININT : -2361183241434822606848
MINTASKSIZE : 36
NAME : NOSUCHINTEGERTYPE
NAMELIST : DPS8
NEGBASEDINT : 16#FFFFFFFFFFFFFFFFrF#
NEWMEMSIZE : 262144
NEWSTOR UNIT : 36
NEWSYSNAME : DPS8

TASK_SIZE : 36
TICK : 0.000016

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 44 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form AI-ddddd is to an Ada Commentary.

A39005C
This test unreasonably expects a component clause to pack an array
component into a minimum size (line 30).

B97102E
This test contains an unintended illegality: a select statement
contains a null statement at the place of a selective wait alternative
(line 31).

C97116A
This test contains race conditions, and it assumes that guards are
evaluated indivisibly. A conforming implementation may use interleaved
execution in such a way that the evaluation of the guards at lines 50 &
54 and the execution of task CHANGING OF THE GUARD results in a call to
REPORT.FAILED at one of lines 52 or 56.

BC3009B
This test wrongly expects that circular instantiations will be detected
in several compilation units even though none of the units is illegal
with respect to the units it depends on; by AI-00256, the illegality
need not be detected until execution is attempted (line 95).

CD2A62D
This test wrongly requires that an array object's size be no greater
than 10 although its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length clause
and attribute, whose interpretation is considered problematic by the ;G9
ARC.

CD2A81G, CD2A83G, CD2A84N & M, & CDSOIO
These tests assume that dependent tasks will terminate while the main
program executes a loop that simply tests for task termination; this is
not the case, and the main program may loop indefinitely (lines 74, 85,
86 & 96, 86 & 96, and 58, resp.).

D-1

CD2B15C & CD7205C
These tests expect that a 'STORAGE SIZE length clause provides precise
control over the number of designated objects in a collection; the Ada
standard 13.2:15 allows that such control must not be expected.

CD2DllB

This test gives a SMALL representation clause for a derived fixed-point
type (at line 30) that defines a set of model numbers that are not
necessarily represented in the parent type; by Commentary AI-00099, all
model numbers of a derived fixed-point type must be representable values

of the parent type.

CDSOO7B
This test wrongly expects an implicitly declared subprogram to be at the
address that is specified for an unrelated subprogram (line 303).

ED7 004B, ED7005C & D, ED7006C & D [5 tests]

These tests check various aspects of the use of the three SYSTEM
pragmas; the AVO withdraws these tests as being inappropriate for
validation.

CD7105A

This test requires that successive calls to CALENDAR.CLOCK change by at
least SYSTEM.TICK; however, by Commentary AI-00201, it is only the
expected frequency of change that must be at least SYSTEM.TICK --
particular instances of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD7205D
This test checks an invalid test objective: it treats the specification
of storage to be reserved for a task's activation as though it were like
the specification of storage for a collection.

CE21071
This test requires that objects of two similar scalar types be

distinguished when read from a file--DATAERROR is expected to be raised
by an attempt to read one object as of the other type. However, it is
not clear exactly how the Ada standard 14.2.4:4 is to be interpreted:
thus, this test objective is not considered valid. (line 90)

CE3111C
This test requires certain behavior, when two files are associated with
the same external file, that is not required by the Ada standard.

CE3301A
This test contains several calls to END OF LINE & ENDOFPAGE that have
no parameter: these calls were intended to specify a file, not to refer
to STANDARDINPUT (lines 103, 107, 118, 132, & 136).

D-2

CE3411B
This test requires that a text file's column number be set to COUNT'LAST
in order to check that LAYOUTERROR is raised by a subsequent PUT
operation. But the former operation will generally raise an exception
due to a lack of available disk space, and the test would thus encumber
validation testing.

E28005C
This test expects that the string "-- TOP OF PAGE. --63" of line 204
will appear at the top of the listing page due to a pragma PAGE in line
203; but line 203 contains text that follows the pragma, and it is this
that must appear at the top of the page.

D-3

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY

Bull HN Information Systems Inc.

Compiler: GCOS 8 ADA Compilation System, Ver 2.3

ACVC Version: 1.10

E-1

-20 -

9 Testing Method

A) The validation tape will be loaded directly onto the host machine (DPS 90).
After necessary modifications are made, GCOS save tapes will be made of the
ACVC sources. These save tapes will be loaded onto the other host
machines: DPS 8/70, DPS 8000, and DPS 9000.

B) The command files can be found on the enclosed tape, see section 11.

C) All tests were run with the same compiler options: namely:

BOTTOM=3 (default) Specify no. of lines in listing bottom margin
ERRORLIMIT:200 (default) Specify max. no. of errors in compilation
INPUT=249 Specify max. no. of chars in source line
LIBRARY=library name Specify current sublibrary
LIST Create listing
NODEBUG (default) Don't generate debugging data
NOLISTOUT (default) Don't produce object code listing
NO_XREF (default) Don't produce cross-reference listing
OUTPUT:l00 (default) Specify max. no. of chars in listing line
PAGE=55 (default) Specify max. no. lines in listing page
PROGRESSREPORT Print passes of compiler on execution report
SOURCEFILE=file-name Specify source file
TOP=5 (default) Specify no. of lines in listing top margin

The following additional compiler options were available:

DEBUG Generate debugging data
DUMP Produce complete dump on abort
LISTOUT Produce object code listing
M3DATA Allow for more than 256K words of static data
NO_ACCESSCHECK Suppress runtime checks on access values
NOCHECKS Suppress all runtime checks
NODISCRIMINANTCHECK Suppress runtime checks on discriminant values
NODIVISIONCHECK Suppress runtime checks on division by zero
NOELABORATIONCHECK Suppress runtime checks on elaboration
NOINDEXCHECK Suppress runtime checks on index values
NOLENGTHCHECK Suppress runtime checks on matching components
NOLIST Don't produce listing
NOOVERFLOW_CHECK Suppress runtime checks on overflow
NORANGECHECK Suppress runtime checks on range constraints
NOSTORAGECHECK Suppress runtime checks on storage allocation
OPTIMIZEALL Enable all optimizations
OPTIMIZEBLOCK Enable block optimization
OPTIMIZECHECK Enable check optimization
OPTIMIZECSE Enable common subexpression optimization
OPTIMIZEFCT2PROC Enable function optimization
OPTIMIZEPEEP Enable peephole optimization
OPTIMIZEREORDER Enable expression reordering optimization
OPTIMIZESTACKHEIGHT Enable stack height optimization
SAVESOURCE Save source copy in current sublibrary
SCC=string Specify security classification code
SSDATA Allow for more than 32K words of static data

STANDARD Compile package STANDARD
TEST:string Set compiler test switches
UNIT_ID=integer Specify unit number of compilation unit
XREF Produce cross-reference listing

-21 -

D) The host and target are not different.

