Operating System
GCOS 8 Operating System
Programmer's Guide

Bull NovaScale 9000 Series Assembly
Instructions

GCOS 8

67 A2 RJ78 REV00

Operating System

GCOS 8 Operating System
Programmer's Guide

Bull NovaScale 9000 Series Assembly

Instructions

GCOS 8

Subject:

Special instructions:

Softwar e supported:

Date:

Bull S.A.

CEDOC

Atelier de reprographie

357, Avenue Patton BP 20845
49008 ANGERS Cedex 01
FRANCE

67 A2 RJ78 REV00

Assembly Instructions programmer's guide for the Bull NovaScale 9000
Series|arge-system computer systems.

Thisisthefirst version of 67 A2 RJ78.

GCOS 8 System Release SR5.2 and later

November 2003

Bull HN Information Systems Inc.
Publication Order Entry

FAX: (800) 611-6030

MA30/415

300 Concord Rd.

Billerica, MA 01821

US.A

Copyright © Bull HN Information Systems Inc., 2003

All Rights Reserved

All trademarks, service marks, and company names are the property of their respective owners.

Suggestions and criticisms concerning the form, the content, and the presentation of this manual are
invited. Documentation comments or changes can be reported using Software Technical Action
Requests (STARs) via local account procedures.

BULL DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE AND MAKES NO EXPRESS WARRANTIES EXCEPT AS
MAY BE STATED IN ITS WRITTEN AGREEMENT WITH AND FOR ITS CUSTOMER. BULL
DOES NOT WARRANT THAT USE OF THE SOFTWARE PRODUCTS WILL BE
UNINTERRUPTED OR THAT THE SOFTWARE PRODUCTS ARE ERROR-FREE. In no event is
Bull liable to anyone for any indirect, special, or consequential damages.

The information and specifications in this document are subject to change without notice. Consult your
marketing representative for product or service availability.

67 A2 RJ78 REV00

Preface

About this Manual

This manual contains information that enables the user to code programsin
symbolic machine language which is then translated into binary machine
instructions.

The manual is directed to users who are experienced in coding within the
environment of alarge-scale computer installation. Considerable knowledge and
practical experience isrequired to use address modification with indirection,
hardware indicators, fault interrupts and recovery routines, macro operations,
pseudo-operations, and other features normally encountered in alarge computer
system with aflexible repertoire for instructions under the control of a master
executive program. The reader should also be familiar with the two's-complement
number system.

This manual includes processor capabilities, modes of operation, detailed
descriptions of machine instructions, virtual memory addressing, paging, and the
representation of data. Programmers who are responsible for analyzing conditions
that cause system failures should find this manua especialy useful.

For related information, see the GCOS 8 GMAP Assembler User's Guide,
Order No. DHO1.

Disclaimer for this Manual

Although the GCOS 8 system supports the execution of programs that employ the
Extended Segment (ES) and Extended Instruction (EI) Segment modes described in
this manual, the current release of GMAP does hot support assembly of the
instructions identified for use in ES/El mode only. These instructions are available
with GMAPV and other compilersin thisrelease. (Refer to Section 7 for a complete
list of ES'El mode instructions.)

Some obsolete instructions and mnemonics from other platforms will cause Illegal
Procedure (IPR) faults and others will result in unexpected code generation.

67 A2 RJ78 REVOO iii

NovaScale 9000 Assembly Instructions Programmer's Guide

GCOS 8 Documentation

GCOS 8 documentation is distributed on the Bull CD-ROM product, CD-DOC II.
Any documents that are updated after a CD-DOC version is distributed are available
in Portable Document Format (PDF) from the Bull Internet CD-DOC site at:

http://www.enter prise.bull.com/cd_doc/

Reporting Documentation Discrepancies

Report documentation discrepancies viathe site's normal problem-reporting process.

Document Corrections

Document corrections made after a CD-DOC version is distributed can be accessed
viaalink on the Bull Internet CD-DOC site.

No new document corrections areincluded in this revision.

Bull Hardware Platform

This document may have generic references to a Bull NovaScale 9000 Series
hardware platform. If so, such references are applicable to al models of the
following Bull large-system computers.

Har dware M odel Corresponding Software
Bull NovaScale 9000 Series (9000V) GCOS 8 System Release 5.2 (SR5.2)
or later

NOTE: Thenamein parenthesis— i.e., 9000V — is used in the GCOS 8 software
and in problem reporting as the interna equivalent of the external model
name.

Contact your marketing representative for more information about NovaScale 9000
hardware models.

67 A2 RJ78 REV0OO

11
111
1.1.2
1.1.3
114
1.2
121
1.2.2
1.2.3
1231
1.2.3.2
1.2.3.3

1.3

14

21

2.2

2.3

Table of Contents

IO AUCTION e

ProCeSSOr FEAUIESveiiiiiiiieiieiiieiie e
FUNCLIONAI UNIES oottt
Address ModifiCatiONcoiiiiiiiiiiii e
= LU SR AN oo B =T U o) €SP
EXECULION Of INtEITUPTS . uveiiiiiee it e e e e e e s eeeeee s
(@ o L=T =1 T I 1Y, o To L= S
Processor Modes Of OPEerationceeeeeiiiiciiiieiiee e ee e e e s s ee e e e e e
Segmentation MOAES ... e
Memory Addressing Modes
Virtual MemOry PAgiNgueeeiiiieiiiiiiiie ettt e e e
ADSOIULE MOUE.......cuiiiiiiiiiiiii e anan
RESEIVE MEIMOIY SPACEuiiiiiiiiiiiiiiiiiiiiitetbbettbebabebabebbebbeeebebebbebbebeebebeeaaeseaeennsnnes

Virtual Machine Operational MOAEScceevveeeiiiiiiiieee e

[N A= 1 T2 L=

Representation Of Data.........ccoovveiiiiiiiiiiiiii e

0] 0 =1 £ PPN

POSItion NUMDBEING ..o a e

The MaChing WOTA....... it e e e e e e e et e s e e e s eeeaees

67 A2 RJ78 REV0OO

1-1

1-2

1-3

1-3

1-4

2.4

24.1
242

25

2.6

26.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6

2.7

2.7.1
2.7.2
2.7.3

3.1

3.2

3.2.1
3.2.2

3.3

3.3.1
3.3.2
3.3.3
3.34
3.34.1
3.34.2
3.34.3
3.344
3.345
3.34.6

Vi

NovaScale 9000 Assembly Instructions Programmer's Guide

CRAraCter STHNQS ...t e e e e e e e eenbe e

(O g = 1= (o1 =] g =L F L {0] 1T
S o XY 1 AT 0] o F

[T = 1 £

Binary NUMIDEIS ..cooii ettt e e e e e e e e e e e e e eans

FiXed-Point NUMDEIS ...t
Floating-Point NUMDEIS ...t
Quadruple-Precision NUMDErS ...
Normalized Binary Floating-Point Numberscoooieee,
Hexadecimal Floating-Point NUMDBErs..........cccciiiiiiiiiee e
Binary Representation Of Fractional Values ...

DeCimal NUMDBEIS ...t e et e et e e e e e e e eaa e e eaas

Decimal Data Character COURScuuuiiiiiiiiiei ittt
Floating-Point Decimal NUMDEIS ...
Decimal NUMDEr RANQEScoooiiiiiiiiieiii e

MemOory OrganiZationceeeeeeeeeeeeeiiiiise e e e e eeeeeeaiine e e e e eeeeennannes

General DESCIIPLION ...eiiiii it a e e

Main Memory (MM) ReferenCesS..... ...

Main Memory Real AdArESSESuuuiiiiiieieie e
Store Into Instruction Stream - Single CPUccccciiiiiiiiiiieeee,

VITTUGL MBIMOIY .ttt e e et e e e e e e e s bt e e e e e e e e e e e annnes

WOTKING SPACES ...ttt ettt e e e e e e e e e e e e e sanbbeaeeaaaeeeeaanns
Page TabIES ... e
YT o 01T oL T U U PP PPPPPPPP
D o g1 o] o] = J PP RTR TP
Y= T g Lo FoT o [LTS o]]] (o I R
Standard Descriptor with Working Space NUMbEer........cccccovvviiiiieeie e,
YU 1= T DT =TTod o (o SR
Super Descriptor with Working Space NUMbEr..........cccccveeiiiviciiieiee e
Q= g (=T [D T= T o g o] (o (SR
Extended Descriptor with Working Space NUMber...........cccccviieveeeiiiicciiieeceeeenn

2-5

2-7

2-9

2-10

2-11

2-12

2-13

2-13

3-1

67 A2 RJ78 REV0OO

3.35

3.3.5.1
3.3.5.2
3.3.5.3
3.354

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

411

412

413

4.14

Table of Contents

[DToT o 1= 11 o 1= S PO PP PP PPP PP PPPR 3-15
a1 1A =T Tol 1 o (o PR 3-17 |
Special ENtry DESCIIPION ...ciiieiiiiiiieeeee e e et e e e e e e s e e e e e s s e e e e e e s e snnanneeeees 3-18
Dynamic LiNKiNG DESCIIPION......uuuiieeiiiiriieieeeeessiitieeeeeeeesssnenteeeeeeeessennnrnneeeeeesanns 3-19
S 10134 o S 3-19
Processor Accessible RegiStersveeeiiiiiiieeeeiiiiicee e 4-1
AccUMUIALOT REGISTEN (A) .eeiiiieiii ittt e e e e e e e e 4-4
Accumulator-Quotient Register (AQ)oiooueiiiieieeee et 4-5
Address Match Register (AMR)........uiiiiiiiiiiie e 4-6
Address RegiSters (ARN)o 4-7
Argument Stack RegiSter (ASR)cooiiiiiiiiiii e 4-9
(07117 o [o k=T 04 Lo Tof | (@03 PP UUPR PR 4-10
Data Stack Address Register (DSAR).....coo i 4-11
Data Stack Descriptor Register (DSDR)coiiiiiiiiiiiiiiiiieeee e 4-12
Debug Mode Register (DMR)uuiiiiiiiiiiiiieiee et a e 4-13
EXPONent REGISIEI (E)uueeiiiieiiiiiiiieiie et a e 4-14
Exponent-Accumulator-Quotient Register (EAQ)uevvveeerriiiiiiiiiiiiiieae e 4-15
Fault REQISTEr (FLTR) ...ttt e e e e e eeaaa e 4-16
General Index RegiSters (GXN) «.oieioeiiiuiieiieeee ettt e 4-17
IC History Registers (ICHR) ... 4-18

67 A2 RJ78 REV0OO Vi

4.15

4.16

417

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

viii

NovaScale 9000 Assembly Instructions Programmer's Guide

Index Registers (Xn)......ccoooeeeeeeeininiirnnnen.

Indicator Register (IR)cccccceeviiiuivinnnnn.

Instruction Counter (IC)ccccvvveeeeeenn.

Instruction Segment Register (ISR).......

Instruction Segment ldentity Register -

Interrupt Registers (INTRp)ccccveeeeeenn.

Linkage Segment Register (LSR)...........

Low Operand Register (LOR).................

Option Register (OR)........coccviiieeeeeeiinnes

Page Directory Base Register (PDBR) ..

Parameter Segment Register (PSR)

Quotient Register (Q)oovvvvvieieeeerriiinns

Safe Store Register (SSR).....cccccceeeeenneee

Segment Descriptor Registers (DRn)....

Segment Identity Registers (SEGIDn) ...

Stack Control Register (SCR).................

Timer Register (TR)ooeeveveiiiiiiiiiieeee,

Virtual Machine Timer Register (VMTR)

S [1(1S) N 4-27

67 A2 RJ78 REV0OO

4.33

51

5.2

521
5.2.2
5.2.3
524
5241
524.2
5243
5244
525
525.1
525.2
5253
5254
5255
5256
5257
5258
5259
5.2.5.10
52511
5.2.6
5.2.7
5.2.8
5.2.9
529.1
52.9.2
5293
5.2.10
5.2.10.1
5.2.10.2
5.2.10.3
5.2.10.4
5.2.10.5
5.2.10.6
5.2.10.7
5.2.10.8
5.2.10.9

Table of Contents

Working Space Registers (WSRN)cooiiiiiiiiiiiiae e

Address Modification and Development...........ccccvvviiciiineeeen,

Address ModifiCatioN FEALUIESiiiiii ittt

Address Generation INn The NS MOoooeeeiiiiiiiieie e

BasiC MOAIfICALIONeviiiiiiiiiieieiieeie e e
INAITECt AQAIESSING ..ottt a e e aae e e e e e as
Tag FIEIA ...ttt e e e e e
Types Of Address ModifiCation ...
=0 1S3 =T () SR
Register then INAIr€Ct (RI)vveeeeeeei i e rere e e
Indirect Then ReGISIEr (IR) ..vviiiieee i e e e e e e
TaTo [Tg=Todan W =T o TN IF= 11 YA () RS
Variations Under IT Modificationc.ccccc,
Fault (T) = F Variationcc.vvviiiiie e s s e e e e e ee e e e e
Character Indirect (T) = Cl Variationcccuvverieeeisiiiiiieece e
Sequence Character (T) = SC Variationcceeeviiieiiieeee e ciiieeee e s sssvneneeeeeen
Sequence Character Reverse (T) = SCR Variationcccccccoevvvvveveeeesviicinneennnn.
TaTo [Tg=Tod Q1) Tl B Z= 4 - o] o PR
Increment Address, Decrement Tally (T) = ID Variationcccccceevvevvvveeereeennnnns
Decrement Address, Increment Tally (T) + DI Variationcccccoeevecvvieneeeennnnns
Increment Address, Decrement Tally, and Continue (T) = IDC Variation............
Decrement Address, Increment Tally, and Continue (T) = DIC Variation............
Add Delta (T) = AD VariatioNcccuviiiiiieeciesiiiie e e sesieeee e e e e e s ssanieeeeeae e e snnnnnes
Subtract Delta (T) = SD Variation.........ccooieiuvieeieee e srieee e e
Address Modification Octal Codes..........ccceeiiiiiiiiieeeeeeeees
Address Modification Flowchart.................cccc
L Lo T= 1= 1 o] L= o 1o =
Address Modification With Address RegiStersccccoeeiiiiiiiiiiieieieee e
Single-Word Address ModifiCationcccuevevie i
Multiword Address ModifiCation............ccueeeiiiiiiiiiiiiie s
Multiword Modification FIieldcc.eeiiiiiiiiiii e
OPerand DESCIIPIONS ..oiiii ittt e e e e snnbe e e eas
Bit String Operand DESCIIPLON ...cvveeeii e e et r e e e e s r e e e e e s srrranereeee s
Alphanumeric Operand DESCIPLOISccueeiiiiiriiieieeeeeieieieere e e s e srirrer e e e e e sneeneees
Numeric Operand DESCIIPIOISciicuerieieeee e e iriee e e e e s e s e e e e e e s srnrereeeeeeeseannes
o (12Tt AT o] (o PP PP
Operand Descriptor Address Preparation Flowchartcccocoveveeeiiiciiennnnnn,
Operand Descriptor Bit String Address Preparationcccccccvvveveeeieiivvnneneenn,
Operand Descriptor Alphanumeric/Numeric Address Preparation......................
Operand Descriptor Address Preparation - Bit Operations..........ccccccoevevvvveeeennn.
Operand Descriptor Address Preparation - Character Operations

67 A2 RJ78 REV0OO

5-20

1
N
'_\

o
N
N

o
N
w

A
N
~

Qe
N[N
orfjon

o
N
o

e
N
~ I~

A
)
&3

[
w
H

o
0
R

LI)‘IU‘I
(98] | {98}
aljjon

o
o
o

i
w
I

WA
)
o

@
N
o

@
N
N

@
N
w

@
N
o

@
N
o

5.3

53.1
53.2
5.3.3
53.4
5.3.5
5.35.1
5.35.2
5.3.6

54

54.1
54.1.1
54.1.2
54.2
5421
5422
5423
54.3
543.1
54.3.2
5.4.3.3
54.4

55

55.1
5.5.2
5.5.3
554
555
5.5.6
5.5.7
5.5.8
558.1
55.8.2
55.8.3
5584
5.1.9

6.1

6.2

NovaScale 9000 Assembly Instructions Programmer's Guide

Address Generation IN ES/EI MOUEScooiiiiiiiiiiiiiii e 5-49
Instruction AdAress Field ... 5-49
Address Modification With No AR Indicatedccccceiiiiiiiiiiiicee 5-49
Address Modification With AR Indicated ... 5-51
Tag Field ModifiCation ... 5-53
@1V FoTo 11 1T o7= 110 o IS TP TP 5-55
ES MO ...ttt ettt nnes 5-55
L oo 1= T PP 5-56
Operand Descriptor ModifiCation ..o, 5-57
Address DeVEIOPMENT........uiiiiiiiiiie e a e 5-59
Virtual Memory AdAreSSIiNgoc.uueeeeiiaaee i a e 5-59
Operand AdAress ProCEAUIE.........uueiieeiiiiiieiiee e e e e e e e e r e e e e e snnraereeae s [5-60
Instruction Address ProCeAUIEcoiuiiiiiiiiiie et 5-60
Virtual Address Generation FOr NS MOdecooooiiiiiiiiiieiiiiiieeeee e 5-61
Standard DesCriptor NS MOUEvvvvvieiiiiiiiiieieee e e e e e e 5-61
Super Descriptor NS MOUE.........uuviiiiieeicccciie e e e e e e 5-62
Extended Segment Descriptor NS MOAEcocuvvviiriee i e e 5-64
Virtual Address Generation FOr ES/EI MOdESc.ueeeieiiiiiiiiiiiiiiiceeee e 5-65
Standard DesCriptor ES MOGE.......uuuiiiiiiiiiiiiieeie et e e 5-65
Extended Segment Descriptor ES MOG€.........coocuviiiiiie e ceveeee e [5-66
Virtual Address Generation in El Mode ... 5-67 |
WOTKING SPACE ZEIO ...ttt ettt e e e e e e e e e e e e e e e nanes 5-68
= To 1L Yo [P UP TR 5-69
Page Table Directory Word Format — SV Mode.........cccueeeeiiiiiiniiiiiieeeeeeeee 5-70
Page Table Directory Word Format - SVMX Modec.cccccveiiiiiiiiiiiiiieeneeenn. 5-71
Page Table Base Word FOrmMateeiiiiiiiiiiiiiiiiecee et 5-72
Page Table Word FOIMALcoooiiiiiiiiiiiee e 5-74
DeNSe Page Table ... 5-76
SECHION TaADIE o 5-78
AdAreSS TrUNCALIONuuiiiiiie ettt e e e e e e e e enabeeeeeae e e e aananes 5-81
Bounds CheCKiNgoooieeee e 5-81
Word and Double-Word OPErationsceeeeiicceiierieeeesiiiiiieeeeeeesssnnreneeeeeessennnes [5-81
2V (T @] o 1=T = 11T 1 PSR 5-82
Bit Strings and Table of Translate INStructionccccccov i 5-83
Bound Check EQUALIONSuuiiiieei it c e e e e e ne e e e e e 5-83
Multiprocessor Memory Management...........ueeeiiieeiiiiiiiiieee e 5-84
Faults and INterrupts ..o e 6-1
Description of Faults and INterruptsccuvveiiiiiii e 6-1
FAUIt PrOCEAUTIE ..ottt e e e e e e e ae s 6-2

67 A2 RJ78 REV0OO

6.3

6.3.1
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.2.4
6.3.2.5
6.3.2.6
6.3.2.7
6.3.2.8
6.3.2.9
6.3.2.10
6.3.2.11
6.3.2.12
6.3.2.13
6.3.2.14
6.3.2.15
6.3.2.16
6.3.2.17
6.3.2.18
6.3.2.19
6.3.2.20
6.3.2.21
6.3.2.22
6.3.2.23
6.3.2.24
6.3.2.25
6.3.2.26
6.3.3
6.3.4

6.4

6.5

6.5.1
6.5.1.1
6.5.1.2
6.5.1.3
6.5.2
6.5.3

Table of Contents

FAUI PrOCESSING ..eiiiiiiiiiiiiiie ittt a e e e s e eeeaa s

Processor Halt CoNditioNSoooeiiiiiiiiea e
FauUlt DESCIIPLIONS ...ttt e e e e e e as
STUP FAUIL ..ot
EXE FAUIL.....coeeeeeee e
ONC FAUI. ¢ttt
LUR FAUIE ...ttt
MEMSY'S FAUIL ..ot
DVCF FAUIL........oeiiiiieiee ettt n e
OFL FAUIL. ..ttt
CIMD FAUIL. ...ttt
MSG FAUIL....ceeieee et
BND FAUIL.....eoitiiiieieieee ettt
MME FAUIL ... e
DRL FAUIL. ...ttt
IPR FAUIL. ..ot
FTAG FAUIL ..ot
SCLL FAUI ...t
DYN FAUIL ..ottt nnre e e
MWS FAUIT. ...t
MSCT FAUIE ...
IMPE FAUIL ...ttt
SCL2 FAUI. ...t
SSSF FAUIL ..
CON FAUI. et
TRO FAUIL ...
SDF FAUIL......eeieee e
MEEPR FAUIL ...t
ADT FAUIL. ..ot
Segment Descriptor Flag Faultsc..oeeeiiiiiiii e
Page Table Word Control Field Faults ...,

(O = U OF- Vo3 o [T

INTEITUPT PrOCEAUIE ...t e e e e e e

INTEITUPT TIMING ceiiiiiiiie et e e e e e e b eeeaaaaeas
SINGIE-WOrd INSIIUCHIONSccoiiiiiiieee e e e e e e e s rrrnre e e e
MUIEIWOIA INSTIUCTIONS ...t
CliMDB INSTIUCTION ...
INTEITUPT PrOCESSING ittt e e e e e ree e e e e e as
Instruction Counter Value Stored At Interrupt ...

67 A2 RJ78 REV0OO

(DCIDO)
[{e]|[{e]](e0]

@
'_\
o

?3
=
[

@
[y
N

@
H
w

@
H
on

A
[y
[ep]

o
H
~

@
[y
[ee]

@
[y
(<o)

@
Ny
=

1
N
'_\

@
N
N

@
N
W

K
N
~

@
N
o1

@
Y
o

o
N
~

@
Ny
o

@
N
©

@
o
S

@
o~
N

@
o
W

@
w
~

[ep]
0

(o3}
1

N
col[colleolfo
©||N[e|fen

(o]
1

Xi

7.1

7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7.1.8
7.1.9
7.1.10
7.1.11
7.1.12
7.1.13

7.2

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6

7.3

7.3.1
7.3.2
7.3.3
7.3.4

7.4

7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7

Xii

NovaScale 9000 Assembly Instructions Programmer's Guide

Machine INStruction FUNCLIONS .cuieee e

SiNgle-Word INSTTUCTIONSuuiiiiiiii e

Address Register INSTFUCTIONSoiiiiiiiiiiiiiie e
BOO0Ian OPEratioNsSuuiiiiiiiiiie ittt e e e e e e e e e
CompPariSON OPEratiONS.....cuueeeeiieiee ettt e e e e e e e e e e e e e eenreees
Data Movement INSTIUCTIONScooiiiiiiiiiiie e
Data Shifting INStrUCtIONScooiiie e
Effective Address to Register INStruCtioNS........cooviiiiiiiiiiiii e
Fixed-Point Arithmetic INStruCtioNSc.oeeiiiiiiiii e,
Floating-Point Arithmetic INStruCtiONSuuiiiiiiiiii e
Quadruple-Precision Floating-Point INStructionscccuveeeiiiiiniiiiiiiiiieen,
Privileged Master Mode INSTrUCtIONS........ooiiiiiiiiiiie e
Miscellaneous INSIIUCTIONSoueviiiiiiiie e e
Random NUMDBEr INSTIUCTIONS ...cccoiiiiiiiiiiiie et
Special Processor INSTIUCTIONS ...coiii i

MUIEIWOTA INSTTUCTIONS ..eiiei et e e et e e e et e e eaa e e eaan

Alphanumeric INSTIUCTIONS ...
NUMETIC INSTIUCTIONS ...ttt e e ere e e e e e
Bit StHNG INSTIUCTIONS ...t
CoNVErSioN INSTIUCTIONS ... e
Edited MOVE INSIIUCTIONS ..coiiiiiiieeeee e
Multiword Instruction CapabilitieS. ...

Address Register INStIUCTIONSuuiiiiiiiiiiiiii e

Address ReQISTEr LOAM ...cceiiiiiiiiiiiiiiiee ettt a e
AdAress RegISTEI SEOTE...cciiii ittt e e e e
Alter Address Register CONTENTScooiiiiiiiiiieie e
Special Address Register INStruCtioONS ...

Boolean Operation INSTrUCTIONSciiiiiiiiiiiiieieee e

BOO0IaN EXPrESSIONS ...euiiiiiiiiiiee ettt a e a e e
Evaluation Of Boolean EXPreSSIiONS.....ccooiiiiiiiiiiieaeee ittt ee e
BOOIEAN AND ...t
BOOIEAN OR ..o e
Boolean EXCLUSIVE OR......coiiiiiiieiiiiie ettt
Boolean COMPARATIVE ANDcuuiiiiiiiiiiaiee ettt
Boolean COMPARATIVE NOT ANDccooiiiiiiiiiiieie ettt

7-1

7-11

7-11

7-11

7-13

7-14

7-14

7-15

7-15

7-15

7-16

7-16

67 A2 RJ78 REV0OO

7.5

7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8
7.5.9

7.6

7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6
7.6.7
7.6.8
7.6.9
7.6.10
7.6.11

7.7

7.8

7.8.1
7.8.2
7.8.3
7.8.3.1
7.8.3.2
7.8.3.3
7.8.4
7.8.4.1
7.8.4.2
7.8.5
7.85.1
7.8.5.2
7.8.5.3
7.8.6
7.8.6.1
7.8.6.2
7.8.6.3
7.8.6.4
7.8.7

Table of Contents

Fixed-Point INSTIUCLIONSooiiiiiieee e 7-17
Data MOVEMENT LOAMuueiiiiiaiiiiiiiiiie ettt a e 7-17
Data MOVEMENT SEOTE....iiiiiiiiiiiiiiiiiieeeii ittt ebe b e eebb bbb sbebebneaenennnee 7-17
Data MovemMent Shift ... 7-18
Fixed-Point AQQITIONooiiiiiiii e 7-18
Fixed-Point SUDLraction ... 7-18
Fixed-Point MUIIPIICAtIONoooiiiee e 7-19
FiXed-PoiNt DIVISION ..t e e e e 7-19
Fixed-Point COMPAriSONoiiiiiiiiiiiee et e e e e 7-19
FIXed-POINt NEQALEo e e 7-19
Floating-Point INStrUCTIONS ... 7-20
Data MOVEMENT LOAAuueiiiiiiiiiiiiiieie ettt e e e e 7-20
Data MOVEMENT STOTE....oiiiiiiiiiiiiiiieie ettt et abebe b bbbbeeebneeeeeennees 7-20
Floating-Point AdditioN ... 7-20
Floating-Point SUDTIaCtioNc.uuiiiiiiii e 7-20
Floating-Point MUltipliCation ... 7-21
Floating-Point DIiVISIONcoiiiiiiiiiiiiie e 7-21
Floating-Point COMPAriSONoocuuiiiiieiie et e e e e 7-21
FIoating-PoOiNt NEQALEcooiiiiiiiiiieee e a e 7-21
Floating-Point NOIrMaliZecoooiuiiiiiiiiiee e 7-21
Floating-Point ROUNGcoiiiiiiii et 7-21
Floating-Point Truncate Fraction ... 7-21
Quadruple-Precision INSTrUCLIONSeeiiiiiiiiiiiiie e 7-22
MUItIWOTA INSTFUCTIONS ... ae s 7-23
Multiword INStruction FOrmMat............ooiiiiiiiiiii e 7-23
Operand Descriptors And Indirect Wordsccccuuveeiiiiiiiiiiiiiiieieeeee e 7-25
Alphanumeric INSTIUCTIONS ... 7-25
Alphanumeric Operand Descriptor FOrMat...........cceeevviciviieeeeeeiiiiiiieee e e e e s snieeeens 7-26
P[0 g Tz Va1 =T (ol @foTa ¥ o -1 o= TR PSSR 7-28
W[o] g = Va1 T =T (o 1Y o Y SR 7-28
Character Move To/From Register INStruCtionsoccuvvieeieieniiiiiiiiieeeenn, 7-28
Operand Descriptor for Character Move INStructions.............cccvvveveeeevvcccvivneenenn, 7-28
Character Move Instruction REPEIOINEevvvveeiiiiiiiiiiieee e 7-29
NUMETIC INSTIUCTIONS ...t e e e e e e 7-30
Numeric Operand DescCriptor FOrMaALccovoiuviiiieeeis e e s e e e [/-30
N U] =T ol 0] o] o - (= PR 7-32
NUMEIIC IMOVE ...ttt sttt st e e s bt e e e e nbe e e e e nbeas 7-32
Bit StrHNG INSTIUCTIONS ...uuiiiiiiieeee e e 7-33
Bit String Operand DescCriptor FOrMat.........ccoiviiiiiiiieeie e ssvreee e e 7-34
Bit String COMDINE.....coii i e e e s reaee s 7-35
Bit StriNG COMPAIE ...cceeeiiieciieeeeee et e e e e e e e s s r e e e e e s s nraaeneeaeees 7-35
Bit String Set INAICALOrSuuiiiiiee i e e 7-35
Data Conversion INStIUCLIONSuuuiiiiiiieeii it 7-35

Xiii

67 A2 RJ78 REV0OO

7.8.8

7.8.8.1
7.8.8.2
7.8.8.3
7.8.8.4

7.9

7.9.1
7.9.2
7.9.3
7.9.3.1
7.9.3.2
7.9.4
7.9.5
7951
7.95.2
7.9.5.3
7954
7955
7.9.5.6
7.95.7
7.9.5.8
7959
7.9.5.10
7.9.5.11
7.9.5.12
7.9.5.13
7.9.5.14
7.9.5.15
7.9.5.16
7.9.5.17
7.9.6
7.9.7

7.10

7.10.1

7.10.2

7.10.3

7.10.3.1
7.10.3.2
7.10.3.3
7.10.3.4
7.10.3.5
7.10.3.6
7.10.3.7

Xiv

NovaScale 9000 Assembly Instructions Programmer's Guide

Arithmetic INSEIUCTIONS ..o e eeeaaae
DYoo g F= 17N (o 10T o 1R
DeCimal SUDLIACTIONuuvviiiiiiiiiiiiiiiiiiiiiiib bbb rerberbreasrebsrerersrarsrareres
Decimal MURIPIICAION...........uiiiieee e er e e e e e
(D= Tod 1 g F= I B LY Lo o P PPRRRPRPPRRPR

Micro Operations for Edit Instructions MVE, MVNE, MVNEXccccccoene

MiCro OpPeration SEOUEBNCEcccoiiiiiiiiiiiie ettt e et e e e e e e e sabaaeeeaaa e as
Edit INSertion TabIesueiiii e
MVNE, MVE, And MVNEX Differences ..o
Numeric Edit (MVNE and MVNEX)couiiieiiiiiiiiie s sieieee e e e s s sineneeee e e s ennns
Alphanumeric Edit (MVE)ooviiiiiiiiiiiieee e e e e e e e e s
MiCro Operation REPEITOINEcoiiiiiiiiiiiie e a e
Micro Operations DESCIIPLIONSuuuiiiiiiiiiiiiiiie e
(1 o I LY, [o7 o T @] o T=T = 11T o TS
SN Y ol Co T @] o =T =11 SRR
(€3I I\ Tt {0 @ 01T - o) o SRR
LN ST AN\ 1ot (0 I @ o 1= - o] o SRR
1N S SR\ 1ol (o I @ o 1= - o] o SRS
INSM MiICro OPEIatiONeevieeieee e e e i ctieiee e e e e e s e s e e e e e s e s e e e e e e e s snnnnnreneeeaeeeans
1N S ALY, o3 (o I @ o= - L1 T} o SRR
LN S o\ 1ot (0 I @ o 1= - o] o SRS
[I Y ol o T @ o T= T = 11 o] o RS
Y| O\ Tt {0 I @ o 1= - i) o PSR
Y| IS/ o] (o T @] == 11T o SRR
MORS MICIrO OPEIratiONuvviiiiiieeeisiiiiiiee e e e e e s s st e e e e e e e s s e e e e e e e e snnrraneeeeeeeen
MSES MICro OPEratioN.........uuueiiieeeeiiiiiiiiieeeeessssiteeeeeeeessssesreereeaeessnannsrereeeaeesanns
Y AV @Y o (o @ o 1= = 1o o RSP
AV Y Tod (o @ o T= - L1 (o] o PSR
Y AVA74 =3 1Y, Ted (o @ o T= - L1 (o] o PSR
Y S 1Y T £ @ o 1= - o1
Micro Operation Code ASSIgNMENT MaPuuiiiiiiiieiiiiiiieee e
Terminating MiCro OPEratioNsScciiii i

Virtual Memory INSTIUCTIONS «....eeiiiiiiiee et

Descriptor Register INStrUCHIONSociiiiiiiiiieeie e
Domain Transfer (CLIMB) ...
Privileged INSTFUCTIONSuiiiiiiieii it
Clear ASSOCIAtIVE MEMOIY........cveieeiie e e e e tee e e e s s r e e e e e e e e e e e e e srnrnreeeeeas
D= Vo | 10 1] 1o SRS
=T o153 =1 g o - Vo PR
oIS L=) (o] = SRS
V1= T 0o YA @0 (o I RS
SYSIEM CONIOL ..t e e e e e e s st r e e e e e e e nnrrereees
Pointer Register INSIIUCHIONScccoiiiiiiiiieee e e e e e

NN
IN(EN(ES
Kifeoffs

n
N
a1

n
N
o

I\I
N
~

I\l
N
06}

n
N
©

"
o
o

1
(62}
[

I e
nffcnffcn
o[[~

o
o
o

I\I
()]
~

~
on
&

-
n
©

~[[~N
oo
o|lo

1
(o))
iy

7-61

7-61

1
(o]
=)

NI
ol[&[l||
RO[RORS|IRS

o
o
N

o
o
@

Iy
o
@

67 A2 RJ78 REV0OO

7.11

7.11.1
7.11.11
7.11.1.2
7.11.1.3
7.11.2

7.12

7.12.1
7.12.2

7.13

7.13.1
7.13.2
7.13.3
7.13.4
7.13.5
7.13.6
7.13.7
7.13.8
7.13.9
7.13.10
7.13.11

7.14

7.14.1
7.14.2
7.14.3
7.14.4
7.14.5
7.14.6
7.14.7

7.14.8

7.14.9

7.14.10
7.14.11
7.14.12
7.14.13
7.14.14
7.14.15
7.14.16

7.15

Table of Contents

ES And El MOdE INSTIUCTIONS oevviiiiiiiieieie et e e e e e eenaae e e ees

Register to Register INSTrUCTIONScooii i
RR TYPE INSITUCTIONcie ittt e e e e e e r e e e e e s e e e e eee s
Movement and Arithmetic INStrUCTIONSuuuvuruiuriiiiiiiiiiieiiiireierererere e,
Shift INSTIUCLIONS ..o
Fixed-Point INSTIUCTIONScovviiiiiieieeeiiee e e e s

TraANS I INSTTUCTIONS .oeeeiiiit et e e e e s e e et eeenaa s

CoNAItIONAl TrANSTEL ..eieeeiiieee e e e e e s e e e b s
UNCONAItioNaAl TTANSTEI ...cieeieiee et e e e e e e ra e e ees

Miscellaneous INSITUCTIONS . .couueiiiie e e e e e e e e e ees

Option Register INStrUCTIONSoiiiiiiiiiiiii e
Binary-TO-BCD CONVEISION ..cccoiiiiiiiiiiiiieae ettt e e e eeea e s
EXECULE INSTIUCTIONS ..eeiiiiiiiii et
Gray-To-Binary CONVEISION.......ciiii ittt
Programmed Fault.........cc.ouiiiiiii e
N (oI @] o1 &= 11 [o] o PR UT TP
Repeat INSTIUCTIONS .. e e e
Pointer And Length INStrUCLIONS ...cooiiiiiiiiiiiiiiie e
Read Calendar CIOCK.........c..viiiii e
Read Processor NUMDBEr ...
RANAOM NUMIDET ..o

CodiNg LIMIAtiONS ..coiiiiiiiieeie e e e e e

Operand During IT Modification.........c..uuuiiiiiiiiiii e
DU/DL Modification of Conditional Transfer of Control Instructions
Accepting an Interrupt during Instruction Overlap Processing
Shutdown Fault and Safe Store Stack Fault..........cccocveeiiiiiiiiiiieeeee
Notes on the Read and Clear Type INStruCtionsc.ceevveiiiiiiiiiiiiieeieeeeeee
Indirect Modification of Conditional Transfer of Control Instructions
Operand Store-Compare (alteration of prefetched operand by

preceding Store iNSTIUCTION)cooii it
Overlapped Operand of the MLR and MRL INStructionsccccoeeuvvvieeeennn.
Overlapped Operand of the CSL and CSR InStructionscccooevuvviveeennnn.
Bound Check of a Multiword INStruCtioNcoooviiiiiiniiiie e
Result of Fault Detection in the MLR/MRL INStructioncccccovevveeeiiinnenn.
Segment Boundary for Bit String or 6-Bit Character Operand
Effective Address (EA) Wraparound Detectioneeevveeiiiiiiiiiiiiienieennns
Incorrect Bounds Fault During Multiword InStructions..........ccccceeeeeieennnnn.
Prepage Check in a Multiword INStruCtioN.........cooiiiiiiiiiiiie e
Modification of the "Instruction Stream" Using MLR, MRL, or MTM

NovaScale 9000 INStruction RePertOire...........ueveveeiiiiiiiiiieiie e

67 A2 RJ78 REV0OO

7-67

7-67

7-68

7-68

7-70

7-70

7-70

7-70

7-71

7-71

7-72

7-72

7-72

7-72

773

7-73

7-73

7-74

7-75

7-75

XV

8.1

8.2

8.3

8.3.1
8.3.2

8.4

8.4.1
8.4.2
8.4.3
8.4.4
8.4.5

8.5

8.6

8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6
8.6.7
8.6.8
8.6.9
8.6.10
8.6.11
8.6.12
8.6.13
8.6.14
8.6.15
8.6.16
8.6.17
8.6.18
8.6.19
8.6.20
8.6.21
8.6.22
8.6.23
8.6.24
8.6.25

XVi

NovaScale 9000 Assembly Instructions Programmer's Guide

Machine Instruction Descriptions (A-B)......ccoovvviiiiiiiniiiiiiieninnnns

Format of Instruction DeSCriPtioNSc.coociieiiiiiieee e

Abbreviations ANd SYMDOIS.......ueiiiiiiiiie e

Common Attributes Of INSTIUCTIONSciiiiieiiie e

llegal MOAIfICAtION ... e e e e e
Parity INAICALON ..vvvviieei e e e e e e s s e e e e e e e s

INSErUCEION WOTA FOIMALS..ccuuuiiiiiiiiiiiiiie et e e e e e e aara s

SiNgle-Word INSTTUCTIONSuiiiiiiii e
MUITEIWOTA INSTIUCTIONS oo
Address Register Special Arithmetic INStructionscccceccviveeeeeeev v,
Character Move To/From Register INStruCtionsoccccvvieeveeee e,
Register to Register INSTrUCTIONScvviii i

INSTIUCTION REPEIOITE .uuiiiiiiii e e e e i e e s e e e e s r e e e e e s s erreeee s

Machine Instruction DeSCIPtiONS (A)....cccccviiiiiiie e

AABDIAABDX ...ttt
ABBD/ABBDX........iiiiiitiiitee ettt
AOGBDIAIBDX ...ttt

8-1

8-11

8-13

8-15

8-16

8-18

8-21

8-24

8-26

8-28

8-31

8-32

8-35

8-38

8-42

8-45

8-46

8-48

8-50

8-52

8-53

8-55

8-56

8-58

8-60

8-61

8-63

8-65

8-67

8-69

67 A2 RJ78 REV0OO

8.6.26
8.6.27
8.6.28
8.6.29
8.6.30
8.6.31
8.6.32
8.6.33
8.6.34
8.6.35
8.6.36
8.6.37
8.6.38
8.6.39
8.6.40
8.6.41
8.6.42
8.6.43
8.6.44
8.6.45

8.7

8.7.1
8.7.2
8.7.3

9.1

9.1.1
9.1.2
9.1.3
9.14
9.15
9.1.6
9.1.7
9.1.8
9.1.9
9.11.1
9.11.2
9.11.3
9.114
9.1.10
9.1.11
9.1.12
9.1.13
9.1.14
9.1.15

Table of Contents

AWCQ 1ottt s sttt e e r e

Inward CLIMB (CALL/ICLIMB) C field bits 22 and 23 =00ccccvvvvereeernnnns
Outward CLIMB (RET/OCLIMB) C Field Bits 22 and 23 = 01......cc..ccceeecvvvveennnn.
Lateral Transfer (LTRAS/GCLIMB) C Field Bits 22 and 23 =10cccccceveeeenne
Lateral Transfer (PCLIMB/LTRAD) C Field Bits 22 and 23 = 11.......cccccceeeeeennns
L0 1Y SO

67 A2 RJ78 REV0OO

Xvi

9.1.16
9.1.17
9.1.18
9.1.19
9.1.20
9.1.21
9.1.22
9.1.23
9.1.24
9.1.25
9.1.26
9.1.27
9.1.28
9.1.29

9.2

9.2.1

9.2.2

9.2.3

9.2.4

9.2.5

9.2.6

9.2.7

9.2.8

9.2.9

9.2.10
9.2.11
9.2.12
9.2.13
9.2.14
9.2.15
9.2.16
9.2.17
9.2.18
9.2.19
9.2.20
9.2.21
9.2.22
9.2.23
9.2.24
9.2.25
9.2.26
9.2.27
9.2.28
9.2.29
9.2.30
9.2.31

xviii

NovaScale 9000 Assembly Instructions Programmer's Guide

9-58

9-61

9-64

9-67

9-69

9-71

9-73

9-75

9-76

9-77

9-78

9-80

9-83

9-86

9-88

9-90

9-92

9-94

9-96

9-98

9-99

9-101

9-103

9-105

9-107

9-109

9-110

9-112

9-117

9-119

9-121

9-123

9-124

9-125

9-130

9-131

9-133

9-135

9-137

9-140

9-143

9-149

9-152

9-154

9-156

67 A2 RJ78 REV0OO

Table of Contents

10. Machine Instruction Descriptions (E-G).......ccccvvvviiieiiiieevveennnns 10-1
10.1 Machine Instruction Descriptions (E).......ccccuuiieiiiiiiiiiiiiiiieeeee e 10-1
10.11 B A A e bbbt b bt e s be e e aaa e e abe e sabe e areaaa 10-1
10.1.2 Y O PP U U PR OURTUPROPIN 10-3
10.1.3 B A ettt ettt e b e e sa e e e be e e bee e sbe e e naneea 10-5
10.1.4 AN O PO RO UPRUUPRUP 10-7
10.15 E P PRI ..ttt bbb et b et e e nht e e sabe e arbe e areean 10-9
10.1.6 B R A bbb b et e b e e abe e nabe e sneean 10-11
10.1.7 ER A Q ittt ettt e b e e sh e e e be e e abne e nbe e e nrree e 10-12
10.1.8 2 (PP U R UUPUURTUPROPION 10-13
10.1.9 ERRR .ttt ettt et e b e e b e e eba e e sabe e e arbe e nneean 10-14
L0.1.00 ERS A ittt bbb et et e e b et bt e bt e nhbe e e be e e anbeeenees 10-16
O 0 0 I = T @ T TSRO PP OPR 10-18
L0.1.12 ERSXI .itiitiiaittieaiteeaatteeatee ettt sttt e e ste e e sate e e abe e e aabe e e sbb e e sabeesbe e e aabe e e ke e e abbe e e be e e nabeeennes 10-20
O T T = (o EO OO PP PP OPRO 10-22
10.2 Machine Instruction Descriptions (F)cccuuuiiiiiiiiiiie e
10.2.1 FAD et b et e b b e e e b et e ahae e sbe e nabe e aneaan 10-24
10.2.2 FOMG .ttt ettt b ettt e b b e e e be e e ebt e e sabe e nhbe e sneaan 10-26
10.2.3 FOMP etttk b etttk b et e e hb e e sabe e ntbe e nneean 10-28
10.2.4 5 O PO UU R UPPTOURRUPROTN 10-30
10.2.5 PP PO U RO PR UURTUPROPIN 10-32
10.2.6 I PP U U UUPROUPTUPROPIN 10-34
10.2.7 I PP UUT TP OUPTUPROTIN 10-35
10.2.8 Y =P R OURRUPROPIN 10-37
10.2.9 FINEG ..ttt ettt ettt bt ekttt e s bt e s it e e e bt e e sa b e e e abe e e ebeeeabeeennneeaa 10-39
L0.2.00 FINO oottt ettt ettt b ettt b e e e e be e e eabe e e ebre e anae e e 10-41
O T2 R o = 7 N PO P PP PP OPRO 10-43
L10.2.12 FRD ettt bbbttt bt b e b e e nabe e ba e aae e e 10-46
L0.2.13 S Boiiii ittt h e b e bt e R b e e b e e e hb e e s be e e nabe e aneeeres 10-48
L0.2.14 FSBluuiiiiiiii ittt bbb b e b b e e nabe e nbe e nane e enres 10-50
T R T S LSS PPOU R UPROPPTO 10-52
T2 L T o I = T OOV PP PU PP 10-53
L0.2.07 FSZN ittt bbb bt b e e be e e nabe e abae e abe e e 10-55
O T2 T o I = SO PRSP PP OURRTPRO 10-56
10.3 Machine Instruction DescCriptions (G)cccuveiieeiieeiiiiiiiiieie e
10.3.1 LTI 5] B T TP RO U PP OURPOPRTO 10-58
10.3.2 LTI I TSP RO U PSP OPRT 10-60
10.3.3 LTI S ST TP RO U PR PP 10-63
10.3.4 LCT I TP RO P PP OPRT 10-66
10.35 LR ettt b bbb e e e b e et e e bae e sbeeennes 10-69
10.3.6 LTI S ST TP RO PP TP PPN 10-72
10.3.7 L1 IS ST OO UP PP ROPRTN 10-75
10.3.8 BRI ettt bbb e e b bt e be e e hbe e ebe e aabe e e ne e e 10-78

67 A2 RJ78 REV0OO XiX

10.3.9
10.3.10
10.3.11

11.

111

1111

11.1.2

11.1.3

11.1.4

1115

11.1.6

11.1.7

11.1.8

11.1.9

11.1.10
11.1.11
11.1.12
11.1.13
11.1.14
11.1.15
11.1.16
11.1.17
11.1.18
11.1.19
11.1.20
11.1.21
11.1.22
11.1.23
11.1.24
11.1.25
11.1.26
11.1.27
11.1.28
11.1.29
11.1.30
11.1.31
11.1.32
11.1.33
11.1.34
11.1.35
11.1.36
11.1.37
11.1.38
11.1.39
11.1.40
11.1.41
11.1.42

XX

NovaScale 9000 Assembly Instructions Programmer's Guide

10-81

10-84

10-86

111

11-1

11-4

11-7

11-8

11-10

11-12

11-14

11-15

11-17

11-18

11-20

11-22

11-24

11-25

11-27

11-29

11-58

11-60

11-62

11-64

11-65

11-67

11-69

11-71

11-73

11-78

11-80

11-82

11-83

11-85

11-87

11-89

11-91

11-93

11-94

11-96

11-98

11-100

11-101

11-103

11-105

11-107

67 A2 RJ78 REV0OO

11.1.43
11.1.44
11.1.45
11.1.46
11.1.47
11.1.48
11.1.49
11.1.50
11.1.51

11.2

1121
11.2.2
11.2.3
11.2.4
11.25
11.2.6
11.2.7
11.2.8
11.2.9
11.2.10
11.2.11
11.2.12
11.2.13
11.2.14
11.2.15
11.2.16
11.2.17
11.2.18
11.2.19
11.2.20

12.

12.1

1211
12.1.2
12.1.3
12.1.4

12.2

12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6

Table of Contents

67 A2 RJ78 REV0OO

11-108
11-110
11-112
11-114
11-116
11-117
11-119
11-120
11-121

11-123
11-127
11-128
11-131
11-133
11-137
11-140
11-142
11-145
11-148
11-150
11-152
11-155
11-157
11-160
11-164
11-168
11-172
11-175
11-180

12-1

12-2
12-4
12-6
12-8

12-10
12-11
12-12
12-13
12-15
12-16

XXi

12.2.7
12.2.8
12.2.9
12.2.10
12.2.11

12.3

12.3.1
12.3.2
12.3.3

12.4

12.4.1
12.4.2
12.4.3
12.4.4
12.4.5
12.4.6
12.4.7
12.4.8
12.4.9
12.4.10
12.4.11

12.5

1251
12.5.2
12.5.3
12.5.4
1255
12.5.6
12.5.7
12.5.8
12.5.9
12.5.10
12.5.11
12.5.12
12.5.13
12.5.14

XXil

NovaScale 9000 Assembly Instructions Programmer's Guide

12-17
12-19
12-21
12-23
12-25

12-26
12-29
12-31

12-33
12-35
12-37
12-39
12-41
12-42
12-44
12-46
12-48
12-49
12-50

12-52
12-54
12-55
12-57
12-58
12-62
12-63
12-65
12-67
12-69
12-76
12-83
12-84
12-90

67 A2 RJ78 REV0OO

13.

13.1

13.1.1

13.1.2

13.1.3

13.1.4

13.1.5

13.1.6

13.1.7

13.1.8

13.1.9

13.1.10
13.1.11
13.1.12
13.1.13
13.1.14
13.1.15
13.1.16
13.1.17
13.1.18
13.1.19
13.1.20
13.1.21
13.1.22
13.1.23
13.1.24
13.1.25
13.1.26
13.1.27
13.1.28
13.1.29
13.1.30
13.1.31
13.1.32
13.1.33
13.1.34
13.1.35
13.1.36
13.1.37
13.1.38
13.1.39
13.1.40
13.1.41
13.1.42
13.1.43
13.1.44
13.1.45

Table of Contents

Machine Instruction Descriptions (S)...cccceeevvvvvvviiiiiiiiieeeeeeeeeiins

Machine Instruction DeSCriptions (S)......ococuuriieiiiiaiiiiiiee e

SABD/SABDX ...ttt e e
SOBD/SBBDX ...ttt e e an
SOBD/SOBDX ...ttt e e e e

67 A2 RJ78 REV0OO

13-1

13-3

13-5

13-7

13-8

13-10

13-12

13-16

13-18

13-22

13-25

13-26

13-27

13-29

13-31

13-33

13-35

13-37

13-39

13-41

13-42

13-44

13-46

13-49

13-52

13-55

13-58

13-59

13-62

13-63

13-65

13-67

13-68

13-70

13-72

13-74

13-75

13-77

13-79

13-81

13-82

13-83

13-85

13-87

13-88

xxiii

NovaScale 9000 Assembly Instructions Programmer's Guide

R I T T S N SO PP PP PPPPPPPPPPPPPPPPPPPNt 13-89
13.1.47 ST B A ettt ettt ettt ettt ettt atttateeteteaeanternnnrnne 13-91
R I S I = 1 O TP PP PP PPPPPPPPPPPPPPPPPPNt 13-93
R T e L S 3t PP P PP P PPPPPPPPPPPPPPPPPPNt 13-95
T T O I S 1 O3 PP P P PP PPPPPPPPPPPPPPPPPPPNt 13-97
T T R S 1O PP P PP PPPPPPPPPPPPPPPPPPPNt 13-99
T Y S N 1O O PP PPPPPPPPPPPPPPPPPPPPNt 13-101
T 3 T I B] PP PP P PPPPPPPPPPPPPPPPPPNt 13-103
L13.1.54 ST DS A ittt ettt ettt et e etteteeeeteaatneeeennrnne 13-105
L13.1.55 STDSD ...ttt ettt ettt et ettt et ettt et aeteeteeseteaenennrnnnrnne 13-107
L13.1.56 ST E ittt ettt e e e e e aeaeaeaeaes 13-108
T I A S N I (PRSP PPPPPPPPPPPP 13-109
13.1.58 STMB ettt eeaeaees 13-112
T TS T 1 PO P PP PPPPPPPPPPPPPPPPPPINt 13-114
R LT O I I o o P TP PP PP PPPPPPPPPPPPPPPPPPPNt 13-116
13161 STPS ettt 13-118
R G Y2 S N 1 PP PP PP P PPPPPPPPPPPPPPPPPPNt 13-120
R G T N 1O L OO PPPPPUPPPPPPPPPPPPPPNt 13-121
13.1.64 ST OH ittt ettt et ettt e e ettt ettt et ettt ee ittt eeesnnenennrnne 13-122
L3185 ST SS ittt 13-123
L3166 ST T ittt 13-125
L13.1.67 STV S ittt ettt ettt ettt et ettt ettt ettt aetteteetetntnsnnernnnrnne 13-126
T LG T S 19 o PP PPPPPPPPPPPPPPPPPPPPPNt 13-128
L13.1.89 STttt ettt ettt et e e ae e e e e e e aeaeaeaeaes 13-130
13.1.70 SVMMR ..ttt ettt ettt ettt ettt ittt tt ettt tete bt bntnnnrnnnrnne 13-131
13171 SVMOS ... 13-132
13,172 SVMTR e 13-133
L13.1.73 SWVC A ittt ettt ettt ettt et teteeteetettaetnnernnnrnne 13-134
13,174 SWECQ. ittt ettt ettt ettt ettt ettt et eee e ettt ettt eteeeeeeteteanananrennrnne 13-136
L13.1.75 SWD/SWWDX .eeeeiiieiiiiitte ettt ettt e e e e e ettt e e e e e e s bbb be e e e e e e e e annnbaaeeeaens 13-138
R T 4 T S) I P PO P PP PPPPPPPPPPPPPPPPPPPNt 13-140
13177 SZN.i e 13-142
131078 SZINC .. ittt ettt e ttttattebebetebebebebarnrnrnre 13-143
L13L1.79 SZT L ittt e et e e ee e e e e e eeeeeaaeaees 13-145
13.1.80 SZTR ittt e e e e e e e e e eeaaeaees 13-148
14. Machine Instruction Descriptions (T-U)cccevvviiiiiniieeeeeeeennns 14-1
14.1 Machine Instruction DeSCriptions (T)ooocuvieiiieieaiin et 14-2
14.1.1 L O I PP PR O T PP PP PP PP PPPTPRPRPRPRPR 14-2
14.1.2 L Ol PP P PP SRR PPPPPPPPPPPPPN 14-6
14.1.3 LI =L PP P PP PP PPPPPPPPPPPPPPPPPR 14-8
14.1.4 LI =L PP P P PP PP PPPPPPPPPPPPPPPPPN 14-11
14.1.5 TV ettt ettt ettt ettt ittt te ettt ettt eetetenennrnnenenneee 14-14
14.1.6 TIMOZ ...ttt ettt et et ee e et e eeeeeaeaeaees 14-17
14.1.7 LI PP T PP TP PP PP PP PPPPPPPRPRPRPR 14-20
14.1.8 LI PP P PP PP PTPPPTPPPPPPPTPRPRPR 14-23
14.1.9 L A PP P PO T PP PP PP PP PP PPPRPRPRPRPN 14-26
TA.1.10 TPttt 14-29

XXiv 67 A2 RJ78 REV0OO

14.1.11
14.1.12
14.1.13
14.1.14
14.1.15
14.1.16
14.1.17
14.1.18
14.1.19
14.1.20
14.1.21
14.1.22
14.1.23

14.2
14.2.1
14.2.2

14.2.3
14.2.4

15.

151
1511
15.2

15.2.1
15.2.2
15.2.3
15.2.4
15.2.5

Table of Contents

67 A2 RJ78 REV0OO

14-32
14-35
14-38
14-41
14-45
14-48
14-51
14-54
14-57
14-58
14-61
14-64
14-65

14-68
14-70
14-72
14-74

15-1

XXV

NovaScale 9000 Assembly Instructions Programmer's Guide

Appendices
A. NovaScale 9000 Machine INStructionscccceeeeiiiiiiiieeeeeee. A-1
B. Operation Code MaPSooii it eeaaaaee B-1
C. ASCII SEUENCE ...t e C-1
D. EBCDIC SEQUENCE .. .ottt e e D-1
E. GBCD SEQUENCE ...ttt E-1
F. HBCD SEUUENCE ...eiieeie et F-1
N X i-1

XXVi 67 A2 RJ78 REV0OO

3-1
3-2

4-1
4-2
4-3
4-4
4-5
4-6
4-7

4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
5-1

5-3
5-4

5-6
5-7

5-9

5-10
5-11
5-12
5-13
5-14
5-15

Table of Contents

Figures

Layout Of SEgMeNntS ON PAgeS.......coiiiuiiiiiiiieai ittt
Domain Of NONCcoNtigUOUS SEGMENTSuuuiiiiiiiiiiiiiiieeee e iieeee e
Shrunken Descriptor For Corresponding New Segment...........ccccceeeviiiiiieeeeeeenn.
Accumulator Register (A) FOIMAL..........cooiiiiiiiiiiiiiiee e
Accumulator-Quotient Register (AQ) FOIrMaLtccoeiiiiiiiiiiiiiiiieeeeeiiiieeeee e
Address Match Register (AMR) FOrmatoccuuviiiiiiiiiiiieee e
Address Register (ARn) Format (NS Mode)...........eeiiiiiiiiiiiiiiiieeeeiiieeee e
Address Register (ARn) Format (ES/El MOAE)coovviiiiiiiiiiiiiiiieiieiiiieeeee e
Argument Stack Register (ASR) FOrmat........ccccuuuiiiiiiiiiieeieeeee e
Data Stack Address Register (DSAR) FOrmatcccoeviiiiiiiiiiieieneiiiieeeeeeennn
Data Stack Descriptor Register (DSDR) FOrmat...........cooviviiiieiiiiinniiiiiieeeeeeennn
Exponent Register (E) FOIMat..........ccuuiiiiiiiiiiiiiiieeee e
Exponent-Accumulator-Quotient Register (EAQ) Formatccccceeeviiiiiieneennn.
General Index Registers (GXN) FOIMAL..........ccoooiiiiiiiiiiieeeiiiiiieie e
IC History Registers (ICHR) FOrMAL..........cooiuuiiiiiiiieeiiiiiieeeeee e
Index Register (XN) FOIMAL ...ttt e e
Indicator Register (IR) FOrMAt...........uuiiiiiiaiaiiiie et
Instruction Counter (IC) FOIMAL............eoiiiiiiiiiiiiiii e
Instruction Segment Register (ISR) FOrmatcccoeiiiiiiiiiiiiiiiieiiieeeeeeen
Instruction Segment ldentity Register - SEGID(IS) Format............oooevvviieeereennn.
Interrupt Registers (INTRP) FOrMat.. ..o
Linkage Segment Register (LSR) FOrmatc.ueeiiiiiiiiiiiiiiee e
Low Operand Register FOrMAL..........ocuviiiiiiiiaeiie e
Option Register (OR) FOrMALcooiiiiiiiiiiiieee e
Page Directory Base Register (PDBR) FOrmatcceeeeiiiiiiiiiiiiie e
Parameter Segment Register (PSR) FOrmatccccceeeviiiiiiiiiieiieiiieeeeeeen
Quotient Register (Q) FOMMAL........couiiiiiiiiiiiiie e
Safe Store Register (SSR) FOrmat........cc.uuiiiiiiiiiiie e
Segment Identity Register (SEGIDN) FOrMat.........cccuvveieiieiiiiiiiiiieeee e
Timer Register (TR) FOIMALuuiiiiiiiiiiiiie et a e
Virtual Machine Timer Register (VMTR) Format..........ccceeveiiiiiiniiiiiiee e
Working Space Register (WSRn) Format, SV Modecccccoeeiiiiiiiiiiiiieennns
Address Modification FIOWCNAITc..eviiiiiiiiiiiie e
Flowchart for Operand Descriptor Address Preparationccccooecvvveeeeeennnnns
Virtual Address Generation Using Standard Descriptor (NS Mode)
BASE For Standard DeSCIPLONoiiiiiiiiiiieie ettt
Bounds For Standard DeSCIPLOr........c.uuiiiiiiaeeiiiiie e
Virtual Address Generation Using Extended Segment Descriptor (NS Mode) ...
Virtual Address Generation Using Standard Descriptor (ES Mode)
Virtual Address Generation Using Extended Segment Descriptor (ES Mode) ...
Virtual Address Generation Using Standard Descriptor (EI Mode).....................
Virtual ADAreSS CRECKuviiiiiiiie e
Page Table Directory Word (PTDW) Format in SV mode..........ccccceeviniiiiiieennn.
Page Table Directory Word (PTDW) Format in SYMX modecccccooviuviieeennnn.
Page Table Base Word (PBW) FOIMALcccooiiiiiiiiiiiie i
Main Memory Page Table Word (PTW) FOrmat..........cccceeiiiiiiiiieineeeieiiiieeeenn
VIFUL AQUIESS ...ttt e e e s

67 A2 RJ78 REV0OO

4-4

45
4-6

»
\‘

&
o

o
©

1
=
(=Y

N
=
N

»
H
o

.Ih
[N
(¢3]

.F
-
~

AR
H
)

AR
[y
©

o
N
o

P
[N
o

P
R
o

.ll>
N
~

R
N
®

H
N
©

olo]lco
rol[E][&S

NNNE
w
~

W%%b
Y[98 [9N) | [8)
[l | (0] | [o2] | (S

'S
A
R

U‘ILIJ'I#
BN
[l | (02] | (¢S}

alferflon
(o21|[*2]|[*2]
wlIN|—

5-64
5-65
5-66

XXVii

5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
8-1
8-2
8-3

8-5
8-6
9-1

1-1
1-2
2-1
2-2

5-1
5-2

6-1
7-1
7-2
7-3

7-5
8-1
B-1
B-2

XXViii

NovaScale 9000 Assembly Instructions Programmer's Guide

Address Mapping Using a Dense Page Tableccccccoovviiiiieee i
L I AV Y (o £ USRI
PTW AGAIESS ..eeiiiiiiiie ittt sttt e e s ennbe e e e neee
WOIA AQAIESS ...ttt st e et e e st e e s snbb e e e e nbeas
VIFEUAI AQAIESS ...t e e e e
Address Mapping Using a Section Tablecccvvvirieeiiiicieeeeee e
PBW AGUIESS ..eiiiiiiiiie ittt sttt e et e et e e s nbbe e e s ennreee e eneee
PTW AGAIESS ...eeiiiiiiiee ittt sttt e e st senbbe e e e eneee
WOIA AQAIESS ...ttt ettt e e st e e st e e e e nbeas
Single-word Instruction with Address Modification............cccocccvvvveeeeeiiiciieneeeenn,
Alter Address Register CONENTSuuuiiiieeiii e e e et e e e e s srrerrr e e e e e e e e
Special Address Register INStrUCIONS..........cuiviiiiiiiiiiiiiree e
Multiword INStruCtion FOIM@Locuviiiiiiiiee e
Operand Descriptor Indirect Word FOrmat............ccccvvveeeeeeisiicinineeee e sesieeeeeeen
Alphanumeric Operand Descriptor FOrMat...........cceeevviciiiieeeeeeiiniiiieeeeee e s snnvenees
Character Move DescCriptor FOrmMat............ueevveveeiiiiiiiiireeee e e e
Numeric Operand DescCriptor FOrMALccoivcuvieiieeers i e e e sieeee e e e e
Bit String Operand DescCriptor FOrMat........cuveeviiiiiiiiieiee e
Micro Operation (MOP) Character FOrmat...........cccccveeeiiniiiiiiiieee e csiinneeeee e
Single-Word INStruction FOrMaAL.........cooiiiiiiiiiiie e
Multiword INStrUCtioN FOMMEALocuviiiiiiiiee e
Address Register Special Arithmetic Instruction Format............cccoccccvvvievieeninnnns
Character Move To/From Register Instruction Format............ccccceeveeevviivvnnennnn.
Register To Register INStruction FOrmMatccccvvveireee e iiccieereee e eseeeeeees
AWKD INSLrUCION FOIMALeoiiiiiiiiiiiiiiee e
Safe Store Stack FOrMALocuviiiiiiiiee e

Status of Processor Mode Determinants..........cccceevvieeeiiiiieeeiiiieee e
Memory AddreSSING MOOES.......uuiiieei e e et e e e e e e s s rreeeeee e s
Ranges Of Fixed-Point NUMDEIScccvviiiiiiee e e e
Ranges of Binary Floating-Point NUMbBErs..........cccccviviiei e,
Processor ACCesSIble REQISIEIS........ccuuviiiiieee e
Address Modification Octal COUESueiiiiiiiiiiiiiiie e
REQISIEN COUES ... uuiiiiiiie e ettt s e e e s e e e e e e s e st r e e e e e e annnsrrnneeaeeeean
Bound CheCk EQUALIONSuuiiiieeiiiiiiiiiee e st s s e e e e e s ee e e e e e ennns
Processor Faults BY PriOritycuecciioiciiieieee e e e e e e e e
Alphanumeric Character Number (CN) COUES.........ccovvvuviiiiieeeeiiiiiiieieee e e
Alphanumeric Data Type (TA) COUEScoveeeiiiiiiiieieee et e e e ssierer e e e e e e
Default Edit Insertion Table Characters for MVE and MVNX.........cccccceviiiieennne
Edit Insertion Table Entries for MVNEXccocoiiiiiiieiiiiiee e

Micro Operation Code Assignment Map

BINARY-TO-BCD CONVERSION CONSTANTSooiiiiiieiee e

Operation Code Map (Bit 27 = 0)
Operation Code Map (Bit 27 = 1)

4
\l
o

1
~
~

1
~
~

1
~
~

n
\I
o

o
~
(o)

n
\I
©

n
o
)

bk
o
S

N
-
o

1
[BEY
[

7-13
7-23

67 A2 RJ78 REV0OO

1. Introduction

This section of the Programmer's Guide provides an introduction to the essential
characteristics of the central processors for Bull NovaScale™ 9000 Series systems,
organized asfollows:

e Section 1.1, Processor Features

» Section 1.2, Operating Modes

» Section 1.3, Virtual Machine Operational Modes
» Section 1.4, Interval Timer

This manual contains a set of machine instructions used on Bull hardware and
operating systems. The systems are highly modular, alowing system configuration
to be matched to the work load mix.

Each processor module in the system has full program execution capability. The
processors conduct all actual computational processing (data movement, arithmetic,
logic, comparison, and control operations) within the information system. The
processors contain several special features that make significant contributions to
multiprogramming, high throughput, and rapid turnaround. These features are under
the control of the operating system, which maintains automatic supervision and
complete control of the multiprogramming/multi-processing environment.

The CPU emulator emul ates the DPS 9000/TA200 CPU instruction set and
processor behavior except as noted in this document.

™ NovaScaleis atrademanrk of Bull SA.

67 A2 RJ78 REV0OO 1-1

11

111

1-2

NovaScale 9000 Assembly Instructions Programmer's Guide

Processor Features

A processor contains the following general features:

1.

2.

Memory protection to place access restrictions on specified segments;

Ability to interrupt program execution in response to an external signal (e.g.,
I/0 termination), to save processor status, and to restore the status at a later
time without loss of program continuity;

Ability to fetch and buffer instructions;

Cyclical instruction development, address preparation, paging, and operation
execution; (While one instruction is being executed, instruction decoding,
address preparation, and paging for the operands of the next instructions are
taking place in the processor, so the processor is highly pipelined.)

A high level of interleaved direct main memory accesses;

Ability to hold recently referenced operands and instructions in a high-speed
cache memory;

An Extended Segment (ES) addressing mode that addresses very large virtual
memory segments and that includes a set of general register to register
instructions;

An extended address paging mode that permits access of real memory
configurations of up to 1 gigabyte;

Quad-precision arithmetic operations with exponents handled as powers of 16.

Functional Units

The processor consists of the following functional units:

an instruction prefetch and decoding unit;
a memory buffer unit, including operand and instruction caches;
a microprogram control store unit; and

execution units consisting of basic, floating-point, and extended instruction
control units.

67 A2 RJ78 REV0OO

Introduction

1.1.2 Address Modification

The address modification capability enables the user to dynamically develop an
address contained in an instruction (or indirect word). Before each main memory
access, two major phases of address preparation take place:

1. The address is modified by register or indirect word content if specified by the
instruction word or indirect word;

2. The address is modified by translating (mapping) a virtual memory address into
an absolute address for accessing main memory (i.e., no user control).

Indirection can also be used to modify the address, which leads to repetitions of the
same type or to other types of modification before accessing main memory for an
operand.

1.1.3 Faults And Interrupts

The processor detects certain illegal instructions, faulty communication with main
memory, programmed faults, certain external events, and arithmetic faults. Many of
the processor fault conditions are deliberately caused by the software and do not
necessarily involve error conditions. The processor communicates with the other
system modules (I/O processors and other processors) by setting and answering
external interrupts. When a fault or interrupt is recognized, a "trap" results. When
the processor responds to a fault or interrupt, control is transferred to an operating
system module through an interdomain transfer using an entry descriptor obtained
from a fixed memory location.

The locations in real memory containing the entry descriptors for interrupt, fault,
and system entry (PMME) are listed below.

Type Location

Interrupt 30-31 (octal)
Fault 32-33 (octal)
System Entry 34-35 (octal)

Interrupts and certain low-priority faults are recognized only at specific times during
program execution. If, at these times, bit 28 in the instruction word is set ON, the
trap is inhibited and program execution continues. The interrupt or fault signal is
saved for future recognition and is reset only when the trap is recognized.

67 A2 RJ78 REV0OO 1-3

1.1.4

1.2

1-4

NovaScale 9000 Assembly Instructions Programmer's Guide

Execution Of Interrupts

In a multiprogramming/multiprocessing computer system, both the hardware and
software must be freed from the burden of checking other components of the system,
either for completion of, or requests for, service. To free the system, all active
modules that have completed assigned tasks, or that require service, generate faults
or interrupts to the normal flow of instructions in a processor. Typically, the Input-
Output Processor (IOP) sends an interrupt to the processor after completing an I/O
service (movement of data from a peripheral to main memory). Each system
controller has its program interrupt cells connected in a priority sequence.

Normally, after each instruction word pair in the processor is executed, a check is
made for the presence of an interrupt. If no interrupts are present, or if interrupts
have been inhibited, instruction execution continues in the normal sequence. If one
or more interrupts are present (and not inhibited), the system controller reports the
identity of the highest priority cell that is set and then resets that interrupt cell. This
procedure causes the processor to execute an inward CLIMB. The processor
servicing an interrupt may load the interrupt enable registers with suitable
combinations of bits to prevent any undesired interrupts and to prevent other
processors from being interrupted. Servicing of the interrupt can then proceed
without use of the interrupt inhibit bit. The processor can be protected against
undesirable interrupts but can be interrupted, in turn, by enabled, higher-priority
interrupts.

Each Input/Output Processor will generate interrupts to indicate a number of events:

successful completion of a requested 1/O action,
unsuccessful initiation of a requested 1/O action,

special interrupts (e.g., unit becoming READY), and

bl S

error conditions.

Operating Modes
Two types of modes determine the operation of the CPU:

1. Privileged Master, Master, and Slave modes determine the processor mode of
operation;

2. NS (Normal Segment), ES (Extended Segment), and EI (Extended Instruction
Segment) segmentation modes determine whether 18-bit or 36-bit registers are
used and determine the method to be used to generate effective and virtual
addresses; and

67 A2 RJ78 REV0OO

121

Introduction

Processor Modes Of Operation

The three processor modes of operation are 1) Privileged Master Mode, 2) Master
Mode, and 3) Slave Mode. The determinants involved in defining these processor
modes are the master mode bit in the indicator register, the privileged bit in the
instruction segment register (ISR), and the housekeeping bit in the page table word
(PTW) for the instruction.

The status of the determinants for each mode is shown in Table 1-1.

Table 1-1. Status of Processor Mode Determinants

Processor Modes &

Determinants Privileged Master Slave

Master
Master Mode Bit in
Indicator Register ON ON OFF
Privileged Bit in
Instruction Segment ON OFF OFF
Register
Housekeeping Bit in
Page Table Word for ON b ON/OFF OFF
the Instruction

a2 All other combinations are illegal and result in a Class 1 Security Fault.

b When working space zero is referenced, the housekeeping bit is assumed to be
ON, and the processor addresses memory through working space zero page
tables.

A fault or an interrupt causes the processor to enter Privileged Master Mode. If the
processor is in Privileged Master Mode, an instruction can change to Master mode
by transferring to a segment marked non-privileged. The reverse is also true when
transferring to a segment marked privileged. The use of a CLIMB instruction
between Master and Privileged Master modes, like the transfer, not only allows a
change of processor execution modes but also a change of domains. Refer to the
CLIMB instruction definition (documented later in the manual) for a detailed
description of the variations of changes in domains.

67 A2 RJ78 REV0OO 1-5

NovaScale 9000 Assembly Instructions Programmer's Guide

The Master mode bit in the indicator register can be turned ON when:

1. an interrupt or fault occurs;

2. execution of the PMME version of the CLIMB instruction occurs, which causes
a system entry; and

3. execution of the OCLIMB version of the CLIMB instruction occurs, where the
master mode bit of the restored indicator register is ON.

The following mode-dependent processor functions are listed by mode. None of
these functions is permitted in Slave mode.

Functions Allowed in Master and Privileged Master Modes

1. access through working space register zero

2. reading operands from a housekeeping page of segment descriptor type T =0,
2,4,6,12, 0or 14

3. executing instructions from housekeeping pages of type T = 0 segments

4. executing a CLIMB (ICLIMB or GCLIMB) not invoking a system entry option
(PMME)

5. executing a transfer to a privileged executable segment

Functions Allowed Only in Privileged Master Mode

1. executing Privileged Master mode instructions (e.g., load working space
registers)

2. executing Privileged Master mode options of the LDDn, LDPn, or CLIMB
instructions, such as copying the safe store register (SSR) to a descriptor
register (DRn)

3. writing on housekeeping pages of type T =0, 2, 4, 6, 12 or 14 segments using
instructions other than CLIMB, SDRn, STDn

1-6 67 A2 RJ78 REV0OO

Introduction

1.2.2 Segmentation Modes

The NS (Normal Segment), ES (Extended Segment), and EI (Extended Instruction
Segment) modes are specified with bit 24 of the Instruction Segment Register (ISR):

1. when ISR bit 24 = 0, NS mode;

2. when ISR bit 24 = 1 and ISR type T = 0, ES mode;

3. when ISR bit 24 =1 and ISR type T = 12, EI mode.

ISR bit 24 may be altered only with the CLIMB instruction.

Processor operations differ between NS, ES, and EI modes for the following items:

* the number of bits in the index and the address registers, Instruction Counter
(IC), and the Page Directory Base Register (PDBR),

* the method used to generate effective and virtual address,
e the execution of some instructions, and

» the additional register instructions available in ES and EI modes.

67 A2 RJ78 REV0OO 1-7

1.2.3

1-8

NovaScale 9000 Assembly Instructions Programmer's Guide

Memory Addressing Modes

Three types of memory addressing exist in the DPS 9000G and DPS 9000TA:

1. Virtual memory which is mapped to a real (physical) memory address,

2. Absolute mode which is used only when working space zero is referenced, and

3. Reserve memory which is reserved for special use.

SV mode

Standard virtual, standard real memory mode. Virtual addressing is limited to 512
working spaces and real memory addressing is limited to 1 GB.

SVMX mode

Standard virtual, real memory extended mode. Virtual addressing is limited to 512
working spaces and real memory addressing is extended to 16 GB.

67 A2 RJ78 REV0OO

Introduction

1.2.3.1 Virtual Memory Paging

Virtual memory paging mode is an integral part of the address translation process for
mapping a virtual memory address to a real memory address. Each of the 512
working spaces is supported by a page table. The location of the page table
supporting a particular working space (WS) is found by using the 9-bit (SV or
SVMX mode) working space (WS) number to index a 512-word table (SV or
SVMX mode) that contains a section table containing the real memory address of

the page table.
Table 1-2. Memory Addressing Modes
Memory
Addressing > 12(9\1?5 l;f,psa)ces
Modes
g o8 SV
51 (256 MW) Standard Virtual,
E Standard Real Memory
S
~
£
2| 16GB SVMX
k= (4 GW) Standard Virtual,
S Real Memory Extended

Each of the 512 working spaces is supported by one page table or one section table.
The location of the page table or section table supporting a given WS is indicated by
a 9-bit WS number in SV mode. This WS number indexes the page table directory
(PTD), a 512-word table that contains the real memory address of a page table or
section table. The section table consists of up to 4K words and includes the real
memory address of the page table. The individual words in the section table are
called page table base words (PBW). When paging is performed, the section table
allows the page table to be divided and distributed throughout memory.

67 A2 RJ78 REV0OO 1-9

1.2.3.2

1.2.3.3

1.3

1.4

1-10

NovaScale 9000 Assembly Instructions Programmer's Guide

Absolute Mode

Absolute addressing mode is defined as any reference to WSN = 0 when the
Processor is in Privileged Master Mode (i.e., IR(28) = 1 and ISR(26) = 1). The CPU
hardware actually uses paging when generating absolute mode addresses. When in
absolute mode the hardware will reference a Page Table which translates the Virtual
Address to a real memory address. The WSN = 0 Page Table is prepared by the
maintenance system when the system is initialized. In Absolute Addressing mode all
pages are given housekeeping privilege regardless of the value of PTW bit 32.

To reference working space zero, the CPU must be in Privileged Master Mode with
the privileged bit of the Instruction Segment Register (ISR) ON. If these conditions
are not satisfied, a Command fault occurs when an attempt is made to reference
working space zero.

Reserve Memory Space

Reserve memory space is space in main memory specifically reserved by the Service
Processor (SP). It is reserved at system startup for use by the operating system
software, SCU firmware, CPU firmware.

The operating system software can access reserve memory space only through the
RRES (Read Reserve Memory), WRES (Write Reserve Memory), RCRES (Read
and Clear Reserve Memory), and OWRES (OR Write Reserve Memory instructions.
These instructions generate a real memory address by adding the effective address to
the reserve memory base register. In this operation, the segment descriptor is not
used, and the result is not paged. The operating system can use RRES and WRES
instructions to access the configuration information needed for startup and page
management.

Virtual Machine Operational Modes

NOTE: VMF not implemented on the V9000 platform. Attempts to enter VMM or
VMOS mode causes IPR fault.

Interval Timer
The processor contains a timer that provides a program interrupt (timer runout fault)

at the end of a variable interval. The timer is loaded by the operating system and
can be set to a maximum of approximately four minutes total elapsed time.

67 A2 RJ78 REV0OO

2. Representation of Data

This section of the Programmer's Guide provides a description of data
representation, organized as follows:

e Section 2.1, Formats

. Section 2.2, Position Numbering
. Section 2.3, The Machine Word
* Section 2.4, Character Strings

e Section 2.5, Literals

* Section 2.6, Binary Numbers

. Section 2.7, Decimal Numbers

2.1 Formats

The processor is functionally organized to process 36-bit groupings of information
called words. Special features are also included for ease in manipulating 4-bit
groups, 6-bit groups, 9-bit groups, 18-bit groups, and 72-bit double-precision
groups. These bit groupings are used by the hardware and software to represent a
variety of forms of information.

2.2 Position Numbering

The numbering of bit positions, character positions, words, etc., starts with zero and
increases from left to right as in conventional alphanumeric text.

67 A2 RJ78 REV0OO 2-1

NovaScale 9000 Assembly Instructions Programmer's Guide

2.3 The Machine Word

The machine word consists of 36 bits arranged in the following way.

00 17I 18 35

One Machine Word

Upper Half-Word 18l Lower Half-Word 18

Data transfers between the processor and memory are double-word-oriented. For
single-precision data, 36 bits are used at a time, and two parallel 36-bit word are
used for double-precision data. When words are transferred to a memory unit, Error
Detection and Correction (EDAC) bits are added to each word pair before the words
are stored. When words are requested from a memory unit, the EDAC bits are read
from memory, verified, and removed before sending the word pair to the processor.

The processor has many built-in features for the efficient transfer and processing of
pairs of words. In transferring a pair of words to or from memory, a pair of memory
locations is accessed. Their addresses consist of an even number and the next higher
odd number. A pair of machine words is arranged as illustrated on the next page.

00 35I 36 71

A Pair of Machine Words

Even Address 36! Odd Address 36

Either of the two addresses may be used as the effective address (Y) when
addressing such a pair of memory locations in an instruction intended for handling
pairs of machine words.

Thus, if Y is even, the pair of locations (Y, Y+1) is accessed. If Y is odd, the pair of
locations (Y-1, Y) is accessed. The term "Y-pair" is used for each such pair of
addresses. Preferred coding practice refers to the even address; the GMAP
assembler issues a warning diagnostic if Y is odd in an instruction intended for
handling pairs of machine words.

2-2 67 A2 RJ78 REV0OO

Representation of Data

2.4 Character Strings

2.4.1 Character Positions

Alphanumeric data is represented by 9-bit, 6-bit, or 4-bit characters. A machine
word contains either four, six, or eight characters, respectively. The character
positions within the word are listed below.

9-Bit Characters (Bytes)
00 08 09 17 18 26 27 35

6-Bit Characters
00 05 06 11 12 17 18 23 24 29 30 35

4-Bit Characters (Packed Decimal)
00 01 04 05 08 0910 13 14 17 1819 22 23 26 2728 31 32 35

The Z represents the zero bit value. Other numbers in the fields represent the
character positions.

67 A2 RJ78 REV0OO 2-3

NovaScale 9000 Assembly Instructions Programmer's Guide

2.4.2 Bit Positions

The following illustration indicates the bit positions within a character.

[0]1] 2] 3] 4-bit character
[0[1]2|3[4]5] 6-bit character

[0]1]2[3]4]5[6]7[8] 9-bit character

Thus, both bit and character positions increase from left to right as in normal
reading.

25 Literals

For information about literals, refer to the GMAP Assembler User's Guide (Order
No. DHO1).

2-4 67 A2 RJ78 REV0OO

2.6

2.6.1

Representation of Data

Binary Numbers

Fixed-Point Numbers

Binary fixed-point numbers are represented with half-word, single-word, and
double-word precision (as shown below).

Precision Representation

00 17

Upper Half
18 35
Half-word
Lower Half

00 35|<— assumed

Single-word | | degn;nal
poini

00 35 36 71

Double-word | |
Even Address Odd Address

Instructions can be divided into two groups according to the way in which the
operand is interpreted: 1) the "logic" group and 2) the "algebraic" group.

For logic operations, operands and results are regarded as unsigned, positive binary
numbers. In the cases of addition and subtraction, the occurrence of an overflow is
indicated by the carry out of the most significant (leftmost) bit position:

Addition if the carry out of the leftmost bit position equals 1
(Carry indicator ON), the sum is above the range;

Subtraction if the carry out of the leftmost bit position equals 0
(Carry indicator OFF), the difference is below the range.

In the case of comparisons, the zero and carry indicators show the relation.

For algebraic operations, operands and results are regarded as signed binary
numbers, and the leftmost bit is used as a sign bit (a 0 being plus and 1 minus).
When the sign is positive, all the bits represent the real value of the number. When
the sign is negative, they represent the complement of the real value of the number.

67 A2 RJ78 REV0OO 2-5

NovaScale 9000 Assembly Instructions Programmer's Guide

With addition and subtraction, the occurrence of an overflow is indicated by the
carries into and out of the leftmost bit position (the sign position). If the carry into
the leftmost bit position does not equal the carry out of that position, then overflow
has occurred. If overflow has been detected and the sign bit equals 0, the result is
below range; if overflow has occurred and the sign bit equals 1, the result is above

range.

In integral arithmetic, the location of the decimal point is assumed to the right of the
least significant bit position, that is, depending on the precision, to the right of bit
position 35 or 71 (17 for upper half-word).

The number ranges for the various cases of precision, interpretation, and arithmetic
are given in Table 2-1.

Table 2-1. Ranges Of Fixed-Point Numbers

Precision
Inter-
: Arithmeti
pretation | MthMEHC Half-word Single-word Double-word
(Xn, Y0...17) (AQ)Y) (AQ, Y-pair)
35 71
Integral -217<_ N < (217_1) -2 SN< (2 35_1) -271<_ N<(@2 -1
Algebraic
. -17 - -
Fractional | -1< N<(1-2) -1< N< (1-2 35) 1SN<(1-2 71)
18 36 72
Integral 0<N<(2 -1) 0<N< (2 -1) 0<SN< (2 -1
Logic
. -18 -36 -72
Fractional 0<N<(1-2") 0<N<@1-2) 0<N<(1-2)

2-6

67 A2 RJ78 REV0OO

Representation of Data

2.6.2 Floating-Point Numbers

Binary floating-point numbers are represented with single-word and double-word
precision. The upper 8 bits represent the integral exponent to the base 2 in two's
complement form, and the lower 28 or 64 bits represent the fractional mantissa in
two's complement form.

The format for a binary floating-point number is given below.

assumed radix point
00 01 07 OSVL 09 35
Single-word s s
Precision
< Exponent >< Mantissa >
assumed radix point
00 01 07 OS‘L 09 71
Double-word
Precision s s
< Exponent >< Mantissa >

where s = sign bit

Before performing floating-point additions or subtractions, the processor aligns the
number that has the smaller exponent. To maintain accuracy, the lowest permissible
exponent of -128, together with the mantissa of zero, has been defined as the
machine representation of the number zero (which has no unique floating-point
representation). Whenever a floating-point operation yields an untruncated resultant
mantissa equal to zero (71 bits plus sign because of extended precision), the
exponent is automatically set to -128.

67 A2 RJ78 REV0OO 2-7

NovaScale 9000 Assembly Instructions Programmer's Guide

2.6.3 Quadruple-Precision Numbers
The data format used in quadruple-precision arithmetic is illustrated below.
NOTE: The format of data to be used in an operation is somewhat different from
that of data to be stored after the operation.
The format for data when an operand in main memory is used as arithmetic data is
structured in the following way:
Y pair Y+2 pair
00 07 08 71 72 83 84 143
EU MU ML
0 710 630 110 59
Ignored
The format for data when the result is stored in main memory is given below.
00 07 08 7172 79 80 8384 143
EU MU EL 0 ML
0 7|0 63|0 710 3o 59
t 0 is set
EL = EU- 15
NOTE: In these formats,
Exponent Mantissa
EU = E-upper MU = M-upper
EL = E-lower ML = M-lower
* The data in memory must reside on a double-word boundary.
* The four words of data may span two pages.
The registers E, AQ, and LOR are used for quadruple-precision arithmetic. The
format for data used as operation data is structured as follows:
2-8 67 A2 RJ78 REV0O

Representation of Data

E AQ LOR
EU MU ML
o 7/o 63l0 7|0 11]0 59
Ignored

The format when the result is loaded into C(EAQ, LOR) is structured as follows:

00 07 08 71 72 79 80 87889192 151

EU MU 0 EL 0 ML
0 7|0 63|]0 7|0 7|0 3|0 59

Field Values
EU High-order exponent
MU High-order mantissa
EL Low-order exponent
ML Low-order mantissa

Quadruple-precision value: N = (M, + M) 6%

The quadruple-precision instructions operate with the exponent as a hexadecimal
exponent, regardless of the value of bit 32 of the indicator register (IR).

264 Normalized Binary Floating-Point Numbers

For normalized binary floating-point numbers, the binary point is placed at the left
of the most significant bit of the mantissa (to the right of the sign bit). Numbers are
normalized by shifting the mantissa to the left (and correspondingly adjusting the
exponent) until no leading zeros are present in the mantissa for positive numbers, or
until no leading ones are present in the mantissa for negative numbers. Zeros fill in
the vacated bit positions on the right.

The number ranges resulting from the various cases of precision, normalization, and
sign are given in Table 2-2.

67 A2 RJ78 REV0OO 2-9

NovaScale 9000 Assembly Instructions Programmer's Guide

Table 2-2. Ranges of Binary Floating-Point Numbers

Sign Single Precision Double Precision
1 ti _n-129 _9-27 127 129 -63 127
Normalized POSII!Ve 277 sN<(1-277)2 27" sNs(1-27>)2
Negative | (-1+2°26)2°128 > Nx>- 2127 (- 142°62) 2-129 5 N> - 2127
Unnormalized Positi ve 2° 155 < NS(1- 2»27) 2127 2- 191 < NS(1- 2»63) 2127
Negative |-27155 >N>- 2127 _2-155 5 N> . 2127

2.6.5

2-10

NOTE: The floating-point number zero is not included in the table.

Hexadecimal Floating-Point Numbers

The hexadecimal option may be used in floating-point operations to declare
hexadecimal constants, either explicitly or by default. The term hexadecimal refers
to a floating-point format where the mantissa is a binary number, while the exponent
represents a power of 16 (2**4). The mantissa is shifted by the number of places for
4-bit groups, as required by the exponent.

When decimal data is declared in source images, the characters "X" or "XD" are
specified in the variable field of the DEC pseudo-operation in place of "E" or "D" to
indicate single- or double-precision hexadecimal floating-point binary data,
respectively. (Refer to the GCOS 8 OS GMAP User's Guide.) These characters
control the computation of the exponent, the positioning of the binary mantissa, and
the storage required by the data. When reading the converted data, the user should
be aware that the exponent represents a power of 16, so a normalized positive
mantissa may have as many as three leading binary zeros.

The hexadecimal floating-point mode is enabled only when bit 32 of the Indicator
Register is set to 1. After the hexadecimal floating-point mode is requested, the user
controls the floating-point mode through the Indicator Register. If bit 32 of the
Indicator Register is not set to 1, the floating-point mode will be binary.

If a decimal point is present in the variable field of the DEC pseudo-operation and
no other controls are defined, the mechanism defaults to floating-point format. The
HXFLPT pseudo-operation alters the default mechanism to hexadecimal floating-
point format. The default mechanism may be further controlled by including the
ON, OFF, SAVE, or RESTORE options in the variable field of the HXFLPT
pseudo-operation. (Refer to the GCOS 8 OS GMAP User's Guide for additional
information.)

67 A2 RJ78 REV0OO

Representation of Data

2.6.6 Binary Representation Of Fractional Values

A decimal fraction of a given number of digits cannot necessarily be represented
exactly by a binary fraction of any finite number of bits. Consider, for example, the
value 1/5, which is represented in decimal notation as 0.2. As a four-bit binary
fraction, 1/5 becomes (.0011)2 or 3/16. In eight bits, it becomes (.00110011)2 or

51/256. In fact, the exact value must be written as:

(0.2)10 = (0.0011)> ...,

which means that the bit pattern 0011 in the binary expansion keeps repeating
indefinitely. If the decimal value 0.2 is converted to a binary expansion of 71 bits
and then is converted back, the one-digit result would be 0.1, quite different from
0.2. The four-digit result would be 0.1999, which is almost (but not quite) equal to
0.2. If computations were involved instead of only conversions, the imprecision in
the decimal result could be perpetuated.

Various adjustments can be made to binary fractional values to make exact decimal
results highly probable. Binary integer notation can be used to represent all values,
whether integral or fractional, but this method may make multiplication or division
of an operand by a power of 10 necessary in the course of a computation.

2.7 Decimal Numbers

Scaled decimal numbers that are used directly in hardware arithmetic commands are
expressed as decimal digits in either the 4-bit or 9-bit character format. They are
expressed as unsigned numbers or as signed numbers using a separate sign character.

Decimal data use the following formats:

00 01 0405 0809 10 1314 1718 19 2223 2627 28 3132 35

z 0 1 z 2 3 z 4 5 z 6 7

Packed Deci mal (4-bit)

00 01 08 09 10 17 18 19 26 27 28 35

Z 0 Z 1 Z 2 Z 3

ASCI1 (9-Bit)

The 'Z' represents the bit value 0 while other numbers in the fields represent the
character positions.

67 A2 RJ78 REV0OO 2-11

NovaScale 9000 Assembly Instructions Programmer's Guide

2.7.1 Decimal Data Character Codes

During arithmetic operations, decimal digits and signs are checked by the hardware
as 4-bit data (the 4 least significant bits from a 9-bit numeric). The following
interpretations are made.

Bit Pattern for I nterpreted Il egal Procedure
Char act er As: (IPR) if:

0000 0
0001 1
0010 2
0011 3 found where
0100 4 descriptor
0101 5 specifies sign
0110 6
0111 7
1000 8
1001 9
1010 +
1011 + found where
1100 + descriptor
1101 - specifies
1110 + digits
1111 +

The following codes are generated for output signs (9-bit zones are created by
prefixing binary 00010). The octal values are listed below.

Plus Minus
4-bit 14(13) 15
9-bit 053 055

For several numeric instructions, a sign value of 13 can be optionally generated.

2-12 67 A2 RJ78 REV0OO

2.7.2

2.7.3

Representation of Data

Floating-Point Decimal Numbers

The format for a floating-point decimal number expressed in 9-bit characters is
provided in the following illustration.

SI GN 10" ... 102 10t 10° 0 EXPONENT

where SIGN can start at any legal 9-bit character boundary
In 4-bit character notation, four formats for floating point decimal numbers exist:

8-bit
0| SIGN 10n ... | 0| 10° 10? | 0| 10* 10° | 0| EXPONENT

< Even character boundary, odd number of digits (number of digits = n+1)

4-bit 4-bit
SIGN| 0| 10n ... | 10® | 0| 102 10 | 0| 10° | EXPO | O| NENT

< 0dd character boundary, odd number of digits (number of digits = n+1)

The 8-bit exponent field, which now spans two character positions, is interpreted in
the same way as in 9-bit character mode. The other two formats are formed with
nt1 even. This process effectively exchanges the two exponent representations in
the formats shown.

Decimal Number Ranges

The number ranges for decimal numbers are listed below.

1. Fixed-Point Unsigned Integer: 0...10 to the power of 63
2. Fixed-point Signed Integer: + 10 to the power of 62

3. Floating-point (implicitly signed)
a) 9-bit format range:

1_1061 * 10+127- 128

b) 4-bit format range:
i1060 * 10+127» 128

c) Zero:
+127-128

+0 * 10

67 A2 RJ78 REV0OO 2-13

NovaScale 9000 Assembly Instructions Programmer's Guide

Notes

2-14 67 A2 RJ78 REV0OO

3.1

3.2

3.2.1

3. Memory Organization

This section of the Programmer's Guide describes memory organization, organized
as follows:

. Section 3.1, General Description
* Section 3.2, Main Memory (MM) References

. Section 3.3, Virtual Memory

General Description

The Central Processing Units (CPUs), I/O Central (I0Cs), and SP Agent access
emulated DPS9000 Memory in performing the emulation of a NovaScale 9000
system.

Main Memory (MM) References

Main Memory Real Addresses

The V9000 generates a 28-bit real memory word (30-bit byte) address in Standard
Virtual Storage (SV) mode. The CPU hardware does not check or notify software of
any address generation process which exceeds 28 bits.

Memory accesses are done in 16-word blocks. A block is transmitted to/from the
CPU in four consecutive 4-word sub-block cycles. A 28-bit System Bus Address
(SBA) is used to specify the first sub-block of the 16-word block to be transmitted.
The remaining sub-blocks are transmitted as described below:

1% sub-block 2"%sub-block | 3" sub-block | 4™ sub-block
00 01 10 11
01 00 11 10
10 11 00 01
11 10 01 00

67 A2 RJ78 REV0OO 3-1

3.2.2

3-2

NovaScale 9000 Assembly Instructions Programmer's Guide

Bit 0 of the SBA is a System Number (SN) which is set by the Service Processor
(SP). Bit 1 of the SBA is always forced to a value of zero by the CPU. Bits 2-27 of
the SBA are the upper 26 bits of the 28-bit real memory address. The system number
allows the hardware to be split into two physically different systems.

The relationship of the CPU real word address to the data sent out on the System
Bus address lines is:

00 2526 27
T
Real word address within CPU: CPU real word address
1
00 01 02 27
SBUS Address lines: E 0 CPU real word address (bits 0-25) modulo 4

The SCU determines how addresses are routed to the various Memory units attached
to the SCU memory bus. This is done via configuration tables contained in the SCU
and set by the SP. There are no software instructions for accessing the SCU memory
configuration registers.

Store Into Instruction Stream - Single CPU
Within a single CPU there shall be no sequence restrictions as to where stores are

directed except as defined in a given instruction specification. Within a single CPU a
store instruction can modify:

a) any instruction or operand of an instruction following or preceding the store
instruction;

b) any instruction or operand of an XEC, XED*, RPT, RPD*, or RPL instruction;
¢) any instruction or operand of IDC or DIC address modification.

*NOTE: The first instruction of an XED pair, or the first instruction of an RPD pair
cannot store into the second instruction of the pair.

67 A2 RJ78 REV0OO

Memory Organization

3.3 Virtual Memory

Virtual memory (VM) provides an extremely large, directly addressable memory
space (2**43 bytes) and a complement of registers and instructions to manage
virtual address space. To provide for efficient management and control, the VM
space is divided into a number of equal working spaces. The working spaces are
further divided into variable sizes called "segments". A segment within a working
space is described by a "segment descriptor,”" which has a base relative to the origin
of the working space and a bound relative to the base, together with control
information. Thus, for all memory references, virtual memory addresses are
prepared relative to a particular working space and to a particular segment base
within the working space. These virtual memory addresses are then mapped to real
memory addresses by a hardware algorithm, of which memory paging is an integral
part.

A high level of security, based on virtual memory management with working spaces
and segment descriptors, is provided between simultaneously executed procedures
by using hardware registers and instructions. To access (generate a memory address
for) an area of VM, a process (used here to mean the smallest working unit of
software) must have a segment descriptor that "frames" the particular segment of
VM and gives the desired permission for using this segment of VM (that is, Read,
Write, or Execute permission). A process cannot create a segment descriptor or
change the base and bound to access an area of VM not enclosed by the area
originally "framed" or increase the permissions field. Therefore, a process is limited
to accessing only those areas of VM described by segment descriptors that are
available to the process. Segment descriptors are passed to a process either by the
operating system or by another process. (All descriptors are created by the operating
system but may be passed by one process to another process.)

In the most secure form of operation, segment descriptors are passed to a process
only through one or more of the three segment descriptor "stacks" maintained in
main memory. Each of these stack areas of memory is defined by a special
hardware register. A unique transfer of domain (CLIMB) instruction is provided
that allows the process to specify which descriptors in the stacks are to be passed to
another process. Then, during the execution of this instruction, the descriptor stack
registers are manipulated by the hardware to pass descriptors as specified by the
process performing the transfer.

The hardware environment for the virtual memory is composed of four elements:
working spaces, domains, segments, and pages. The working spaces and pages are
physical elements, whereas the segments and domains are logical elements. These
elements are treated as separate components of the virtual memory but must be
interpreted in the context of the whole environment since they are closely related in
their interaction with each other.

67 A2 RJ78 REV0OO 3-3

3.3.1

3.3.2

3-4

NovaScale 9000 Assembly Instructions Programmer's Guide

Working Spaces

The virtual memory is divided into 512 (0 through 511) equal working spaces (WS)
of 2**34 bytes, each of which is divided into fixed-length parts called pages. These
pages are used for memory management and have a fixed size of 1024 words (4096
bytes) each. Working space numbers (WSN) used to generate a particular virtual
memory address are obtained from one of eight working space registers (WSR) or a
segment descriptor register (DRn).

NOTE: Historically, virtual memory included reference to working space quarters,
described in this manual as working spaces. The concept of working space
quarter is not used by any software implementation, and the phrase is not
mentioned elsewhere in this manual. The hardware has not been changed.

Page Tables

Each working space has an associated page table that identifies the real memory
allocation. The page table for each working space is located in real memory by a
pointer that resides in a section table (SCT). The directory has 512 entries, and the
pointer to the directory is stored in the page directory base register (PDBR).
Directory entries are pointers to section tables. The section table (SCT) consists of
up to 4K words called page table base words (PBW) that allow page tables to be
divided and distributed throughout the memory. The PDBR or the SCT can only be
altered in the Privileged Master mode.

In a memory operation, a virtual address is automatically transformed to a real
address by the hardware. The virtual address has three components: a working
space number (WSN), a page number, and a page byte number (commonly called an
offset).

67 A2 RJ78 REV0OO

3.3.3

Memory Organization

Segments

Another division of the working space is the segment. Each segment is a logical
entity of variable length and may be as small as one byte or as large as 2**32 bytes.
Consequently, a segment may reside on a portion of a page or span several pages
(see Figure 3-1). Segments are described with two-word (72-bit) segment
descriptors. When a virtual address is generated, the segment descriptor is located in
the segment descriptor register. Segments in virtual memory are specified with a
base value which is relative to from the origin of the WS, and a bound which is
relative to or from the base.

Page 0O <4—Segnent a
:—Segnent b

Page 1

Page 2 >Segnent [

Page 3

Figure 3-1. Layout Of Segments On Pages

To understand the relationship between pages and segments, the structure of a
working space must be examined. The combination of a working space number and
offset within the related working space is called a virtual address. Pages of 1K size
are ordered sequentially by page number within a working space. Each page is
represented by a page table word (PTW) that points to a real page, if that page is in
memory.

A segment is a logical sequence of virtual addresses, starting from a base and of a
size equal to the bound of that segment. The base and bound of a segment are
contained in a system protected, two-word structure called a segment descriptor. A
segment may be small and contained anywhere within a page, or it may span several
pages, irrespective of page boundaries.

67 A2 RJ78 REV0OO 3-5

3.3.4

3-6

NovaScale 9000 Assembly Instructions Programmer's Guide

A segment is characterized by its elements and the form of access to these elements,
which can be Execute, Read, or Write. Segments are classified either as descriptor
segments or operand segments. The descriptor segments that contain valid
descriptors as part of their contents may be used as linkage, parameter, argument, or
safe store segments. The operand segments may be instruction-only, data-only,
instruction and data segments, or data stack segments, as illustrated in the following
diagram.

Segment
Descriptor Segments Operand Segments
Linkage Parameter Argument Safe Store Intruction Data Data Stack
Segment Segment Segment Segment Segment Segment Segment
(LS) (PS) (AS) (SS) (IS) (DS) (DSS)

A segment of either class may also be loaded into one of the eight operand
descriptor registers (DRn).

Descriptors

A descriptor consists of a 72-bit word-pair and locates a segment in virtual memory.
When the processor hardware obtains a descriptor from memory, the processor
assumes that the descriptor is located on an even-word boundary and ignores the
least significant bit of the virtual word address. If a descriptor is stored from a
register, the processor hardware stores on an even-word boundary.

To allow a process to have access to a segment, a copy of the descriptor must be
obtained to locate the segment in virtual memory. The descriptor also delimits,
through a set of flags, what forms of access to the segment are available.

Twelve types of descriptors are available. Those segments containing instructions,
data, or a combination of both are commonly called operand segments and have
descriptors that are either type 0, 2, 4, 6, 12, or 14 to indicate operand storage. The
segments containing only descriptors, that is, descriptor segments, have descriptors
that are either type 1 or 3 to indicate descriptor storage. Operand memory references
are always accomplished through operand segment descriptors, usually to
nonhousekeeping pages, whereas descriptor references are made only through
descriptor segment descriptors to housekeeping pages.

67 A2 RJ78 REV0OO

Memory Organization

The remaining five descriptors are used only during the execution of the special
transfer-of-domain (CLIMB) instruction. The descriptor types are listed below.

Type Descriptor Contents
0 Standard Instructions/Data
2 Standard with WSN Data
4 Super Data
6 Super with WSN Data
12 Extended Data
14 Extended with WSN Data
1 Standard Descriptors
3 Standard with WSN Descriptors
5 Dynamic Linking }
7 Special Entry }
8 Entry + Used only with Climb
9 Entry }
11 Entry }
Segment
Descriptor Operand
Segment Segment
Standard Standard Super Extended

Descriptor Deiimq D?cript{ D;ipq

Descriptor Type WSR WSN WSR WSN WSR WSN WSR WSN

67 A2 RJ78 REV0OO

3.34.1

3-8

NovaScale 9000 Assembly Instructions Programmer's Guide

Instructions such as LDSS and LDAS that load segment descriptors from operand
segments to registers and instructions such as TSS and STPS that store segment
descriptors in operand memory areas access segments of type 0, 2, 4, 6, 12, or 14. In
these instances, instruction operand memory addresses must specify operands in
operand segments. An Illegal Procedure (IPR) fault occurs when operand or indirect
word addresses are generated which specify segment descriptors of other than those
types. This procedure has two exceptions.

1. Segment descriptor types 1 and 3 specify segments that include segment
descriptors. The CLIMB, SDRn, LDPn, LDDn, and STDn instructions access
segment descriptor segments to load or store segment descriptors. These
segment descriptor segments must be located in housekeeping pages. An IPR
fault occurs when either a segment descriptor is accessed with an instruction
other than one of the five mentioned above or when one of these instructions is
used to access a segment descriptor in a an operand segment that is not located
in a housekeeping page.

2. Instructions such as LDDn can access both operand segments and segment
descriptor segments because LDDn performs different operations with each
access. These instructions indirectly access segment descriptors through
operand segments. The safe store stack contains data other than segment
descriptors. However, it is specified with type 1 or 3 segment descriptors. The
safe store stack does not contain operand data and cannot be accessed except
with Privileged Master Mode. Using this mode, the segment descriptor for the
safe store stack can be obtained and converted to a type 0 or 2 segment
descriptor. (Refer to the LDDn instruction description in Section 8.)

Standard Descriptor

The format of the standard descriptor is given below.

00 19 20 28 29 3132 35
Bound Flags WSR | Type | Even
20 9 3 4| Word
Odd
Base 36 Word
Bound A 20-bit field that is the maximum valid byte address

within the segment. Bits 0-17 are the word address, and
bits 18-19 are the 9-bit byte address. The bound is
relative to the base. A zero bound indicates a 1-byte

segment if bit 27 is 1.

67 A2 RJ78 REV0OO

Flags

Memory Organization

A 9-bit field that describes the access privileges as well

as other control information associated with the
descriptor:

Bit

Flag
Code

Meaning

20

R

Read

0 Read not allowed
1 Read allowed

21

Write

0 Write not allowed
1 Write allowed

22

Store by STDn

0 Descriptor may not be stored in a type 1 or 3 segment by
the STDn instruction.

1 Descriptor may be stored in a type 1 or 3 segment by the
STDn instruction.

23

Cache Use Control

0 Cache is not used for fetches through this descriptor.

1 Cache is used for all memory references through this
descriptor.

24

NS/ES Mode

0 NS Mode
1 ES Mode

25

Execute

0 Execute not allowed
1 Execute allowed

26

Privilege
0 Privilege Master Mode not required for execution
1 Privilege Master Mode required for execution

27

Bound Validity

0 Bound is not valid; segment is empty
1 Bound field is maximum valid address

28

Available Segment

0 Segment not available; references not allowed
1 Segment available; references are allowed

WSR

67 A2 RJ78 REV0OO

A 3-bit field that specifies which of the eight working

space registers to use with this descriptor. The working

space register supplies the working space number
(WSN).

3-9

NovaScale 9000 Assembly Instructions Programmer's Guide

Type A 4-bit field that defines the descriptor type. Two types
for standard descriptors exist:

Type 0: the descriptor "frames" instruction/operand
space; and

Type 1: the descriptor "frames" an address space
containing descriptors.

Base A 36-bit virtual byte address that is relative to the
working space defined in the WSR. Bits 0-33 are a 34-
bit word address, and bits 34-35 represent a 9-bit byte
within the word.

3.34.2 Standard Descriptor with Working Space Number

The format of the standard descriptor with working space number (WSN) is given

below.
00 19 20 22 23 3132 35
Bound Flags WSN Type Even
20 3 9 4 | Word
Odd
B
ase 36 | Word

This format is the same as that for the standard descriptor except that the flags field
has been truncated to allow the descriptor to contain the actual working space
number rather than point to a working space register. The three flag bits are the
same as the corresponding flag bits of the standard descriptor. The state of the
truncated flags is assumed as follows:

Flags 1) Execute not allowed (NE)
2) Not privileged (NP)
3) Bound valid (B)
4) Segment available (A)
5) Bypass cache honored

WSN The actual working space number

Type The two types of the standard descriptor with WSN are

Type = 2 the descriptor "frames" operand space, and
Type = 3 the descriptor "frames" an address space
containing descriptors.

3-10 67 A2 RJ78 REV0OO

Memory Organization

3.34.3 Super Descriptor

When segments larger than 256K (2**18) words are required, super-descriptors are
used to define the large segments. The definitions of the flags, WSR, WSN, and
type fields of the super-descriptor are the same as those of the standard descriptor.
The base and bound fields are automatically extended on the right to a length of 36
bits. The base is extended with zeros, and the bound is extended with ones.

Therefore, a super descriptor with base, location, and bound of zero describes a
segment that begins at location zero of a working space and extends 2**26 bytes (16
million words). A super descriptor with a base of 1, location of zero, and a bound of
3 describes a segment that starts at location 2**26 and extends 2**28 bytes (64
million words).

The format of the super descriptor is given below.

00 09 10 19 20 28 29 3132 35
Base Bound Flags WSR | Type | Even
10 10 9 3 4| Word
. Odd
Location 36| Word
Base A 10-bit virtual address (unit 2**26 bytes) within a

working space. The 10-bit base is converted to a 36-bit
base (unit 1 byte) by extending to the right by 26 zero
bits.

Bound A 10-bit virtual address (unit 2**26 bytes) that is the
maximum valid address within the segment. Conversion
to a 36-bit bound (unit 1 byte) is accomplished by
extending the 10-bit field to the right by 26 one bits.

The bound is relative to the base.

Flags A field that describes the access privileges associated
with the descriptor (identical to the flags field for the
standard descriptor).

WSR A 3-bit field that specifies which of the eight working
space registers to use with this descriptor (identical to
the WSR field for the standard descriptor, except bit 25
Must Be Zero (Execute Not Allowed)).

Type A 4-bit field that defines the type for the super
descriptor.

Type =4 The descriptor "frames" operand space.

67 A2 RJ78 REV0OO 3-11

3.34.4

3-12

NovaScale 9000 Assembly Instructions Programmer's Guide

Location A 36-bit byte virtual address relative to the base, that is,
an offset from the 10-bit base. The area framed by the
super descriptor extends from (Base + Location) through
(Base + Bound).

NOTE: If an attempt is made to use a super descriptor in the ES mode, an IPR
fault occurs.

Super Descriptor with Working Space Number

The format of the super descriptor with working space number (WSN) is given
below.

00 09 10 19 20 22 23 3132 35
Even
Base Bound Flags WSN Type
10 10 3 9 4 | Word
. Odd
Location 46| Word

This format is the same as that for the super descriptor except the truncated flags
field contains three bits that are defined identically as the corresponding three bits of
the standard descriptor. The state of the truncated flags is assumed as follows:

Flags 1) Execute not allowed (NE)
2) Not privileged (NP)
3) Bound valid (B)
4) Segment available (A)
5) Bypass cache honored

WSN The actual working space number

Type A 4-bit field that defines the descriptor type as "super
with WSN"

Type = 6 The descriptor "frames" operand space

NOTE: If an attempt is made to use a super descriptor with WSN in the ES mode,
an [PR fault occurs.

67 A2 RJ78 REV0OO

3.3.4.5 Extended Descriptor

Memory Organization

The format of the extended descriptor is given below.

00 19 20 2829 3132 35
Bound Flags WSR | Type |Even
20 9 3 4| Word
Base Odd
36 Word
Bound A 20-bit field that is the maximum valid byte address
within the segment, modulo 2**12 bytes (2**10 words).
In other words, the bound is in terms of 4096 byte pages.
It is converted to a 36-bit byte bound by extending to the
right of the 20-bit field by 12 1-bits and adding four
zero-bits in the high-order. The bound is relative to the
base.
Flags The same as in the standard descriptor
WSR The same as in the standard descriptor
Type Indicates the type for the descriptor
Type = 12(10) for the extended descriptor
Base The same as in the standard descriptor

67 A2 RJ78 REV0OO

3-13

NovaScale 9000 Assembly Instructions Programmer's Guide

3.3.4.6 Extended Descriptor with Working Space Number

The format of the standard descriptor with working space number (WSN) is given

below.
00 19 20 22 23 31 32 35
Bound Flags WSN Type Even
20 3 9 4| Word
Base Odd
36 Word

This format is nearly the same as for the Extended Descriptor (T = 12(10)), except
that the flag field is shorter and a working space number (WSN) is specified.

Flags The three bits of the flag field are the same as the
corresponding standard descriptor flag bits. The state of
the truncated flags is assumed as follows:

1) Execute bit allowed
2) Not privileged (NP)
3) Bound valid (B)

4) Segment available (A)
5) Bypass cache honored

WSN The actual working space number

Type Indicates the type of the descriptor

T = 14(10) indicates an Extended descriptor
with WSN

3-14 67 A2 RJ78 REV0OO

Memory Organization

3.35 Domains

Another logical element of the virtual environment is the domain. A domain is
equal to those items that currently can be accessed. The domain exists as the
primary mechanism for security protection. The domain is a flexible and temporary
range of operation that may encompass several noncontiguous segments in one or
more working spaces (see Figure 3-2). Two or more domains may interact by
including the same segment. Each domain contains exactly one linkage segment to
define the domain. A change of domain implies a change of linkage segment and
vice versa. The linkage segment contains descriptors for the segments constituting
the domain. Descriptors for the domain may be in descriptor segments described in
the linkage segment, in descriptor registers, or in the parameter segment.

WSN X WSN Y

Page 0 Segment a =—- I Page 0

— e ~w—

Pagel = l- " Segment d

Segment b Page 1

Page 2 Domain Page 2

Page 3 Page 3

Segment e

|
' | I}

Page 4 Segment ¢ i

B S B
I

Page5 =

Figure 3-2. Domain Of Noncontiguous Segments

The safe store stack and the data stack segments are also associated with the process.
The safe store stack is always used (except for GCLIMB and PCLIMB) in a change
of domain, but a new domain may or may not choose to access a different portion of
the data stack segment. It does not have access to that portion used by the calling
domain.

67 A2 RJ78 REV0OO 3-15

3-16

NovaScale 9000 Assembly Instructions Programmer's Guide

Normally, a change of domain is accomplished through a succession of operations
that are associated with the ICLIMB instruction. Starting with two separate
domains, which for convenience are referred to as calling domain and called
domain, the entry descriptor accessed in the calling domain describes the called-
domain linkage segment and identifies a specific initial instruction in an instruction
segment described in that linkage segment. The contents of the calling domain's
registers (LSR, ASR, PSR, and DSAR), as well as those of any other registers
specified by the type of entry descriptor, are safe stored.

The change-of-domain CLIMB instruction indicates whether there are parameters
and the number of arguments. The arguments may be either vectors or descriptors.
(Refer to the discussion of LDDn instruction in Section 11.) If the arguments are
vectors, descriptors are prepared for the vectors, stored in the parameter segment of
the called domain, and the argument segment becomes empty.

The source of the list of vectors or descriptors is given as the contents of pointer
register zero. (Descriptor register zero identifies the segment in which the list
occurs and indicates whether vectors or descriptors are listed. Address register zero
gives the offset in that segment of the list.) On change-of-domain return, the
contents of the calling-domain's domain registers and any other register contents that
were safe stored are restored.

67 A2 RJ78 REV0OO

Memory Organization

3.35.1 Entry Descriptor

An entry descriptor is required to call a new domain. The entry descriptor describes
the linkage segment that defines the new domain, a segment containing instructions
to be initially executed in the domain, and an offset relative to the origin of that

segment to which control is
CLIMB instruction and has

transferred. The entry descriptor is used with the
the following format:

00 1718 19 2829 3132 35
Entry Location F ISEG No. WSR | Type \I/Eoloer?j
18 10 3 4
LBOUND Linkage Base 000 \?Vdd y
10 23 3| Wor

Entry Location

ISEG No.

WSR

Type

LBOUND

67 A2 RJ78 REV0OO

An 18-bit word address that is loaded into the instruction
counter when the entry descriptor is used as an argument
of the CLIMB instruction. The entry location is relative

to the base of the new instruction segment.

Bit 18 is the "store" permission bit and is interpreted the
same as flag bit 22 of the standard and super descriptors.

The number of the descriptor to be loaded into the
instruction segment register (ISR). The ISEG number is
expressed in units of descriptors and is an index relative
to the new linkage segment base. The ISEG number is
extended with three zeros to be expressed in bytes and is
also used in loading the SEGID (IS) register as follows:

Bits0-1 =11
Bits 2 -11 =ISEG No.

The working space register containing the number of the
working space to which the linkage base is relative

A 4-bit field that defines the entry descriptor type

Type =8, 9, or 11; each number has a special meaning
for the CLIMB instruction (determining the registers to
be saved in the safe store stack upon change of domain)

The bound of the linkage segment expressed in units of

descriptors. To form a standard descriptor bound, bound
=0000000|[LBOUNDI|111.

3-17

NovaScale 9000 Assembly Instructions Programmer's Guide

Linkage base The virtual starting address of the linkage segment
relative to the working space defined by the working
space register pointed to by the WSR field. When an
entry descriptor is utilized, the associated linkage
segment must be contained in the first 2**26 bytes of the
working space. The last three bits of the linkage base
are shown as zeros since the linkage segment must start
on a double-word boundary. In actual practice, the
hardware ignores the contents of these three bits.

3.35.2 Special Entry Descriptor

When the entry point is beyond the first 256K of the segment, the following special
entry descriptor (T = 7) is used by the CLIMB instruction to transfer to EI mode.

00 07 08 17 18 19 28 29 3132 35
NU DSEG NO. F ISEG No. w | T=7 |Even
8 10 10 3 4| Word
LSIZE Linkage Base 000 | Odd
10 23| 3| Word

This descriptor can only be loaded in the Descriptor Register n (DRn).

Explanation

NU Not used

DSEG NO. This field is the descriptor number of a type 12 segment
descriptor which defines the 34 bit entry location which
is loaded into the Instruction Counter. The DSEG.NO is
expressed in units of segment descriptor (i.e., modulo 2
words) and is the relative address from the base of the
linkage segment.

F, ISEG NO., W, These fields are the same as those for the entry

LBOUND, LINKAGE descriptorof T=28,9,and 11.

BASE

3-18 67 A2 RJ78 REV0OO

Memory Organization

3.35.3 Dynamic Linking Descriptor

The dynamic linking descriptor has a double-word format with a type field of T=5
entered in bits 32-35 of the even word. Bits 0-21, 23-31, and 36-71 are used to
define how the linkage is to be resolved. Bit 22 indicates store permission. A
dynamic linking fault occurs when the CLIMB instruction attempts to address
through a dynamic linking descriptor. Any attempt by the STDn instruction to store
a dynamic linking descriptor with the store permission bit (bit 22) of word 1 equal to
zero in a type T=1 or 3 segment causes an SCL2 fault.

The dynamic linking descriptor has the following format:

00 212223 3132 35
Reserved for Software Reserved for Software [Type [Even
22| 1 9 4| Word
Odd
Reserved for Software 56| Word
Type A 4-bit field that defines the dynamic linking descriptor

Type=5

NOTE: The software usually replaces this descriptor with a Type = 11 entry
descriptor while processing a dynamic linking fault.

3.354 Shrinking

A feature commonly used to provide descriptor access control is called shrinking.
This feature offers the only means available to the Slave mode for the creation of
descriptors. In this process, a new descriptor of decreased scope is formed in one of
the descriptor registers from a descriptor already available. In essence, a new

subordinate segment identified by the shrunken descriptor is formed (see Figure
3-3).

67 A2 RJ78 REV0OO 3-19

3-20

NovaScale 9000 Assembly Instructions Programmer's Guide

Given Segment

DR g
Given New Shrunken
Descriptor Segment Descriptor

Figure 3-3. Shrunken Descriptor For Corresponding New Segment

Shrinking is used in a number of ways:
* to prepare parameter descriptors for another domain,
* to facilitate access to portions of the domain, and

* to restrict access to specific shared portions of the domain.

Shrinking operations may be performed on both standard and super descriptors, but
the result is always a standard descriptor. A shrunken descriptor may be stored in a
descriptor segment on a housekeeping page or in the descriptor stack addressable by
the Argument Stack Register (ASR). Storing requires the descriptor to be stored to
have store permission.

Shrinking uses a Load Descriptor Register n (LDDn) instruction, or a domain call, or
the transfer version of the CLIMB instruction (ICLIMB or PCLIMB). In each
instance, operands are used to define the shrinking operation in terms of a base
address, size, and segment. The operands are called vectors and each is composed
of two contiguous words. Each vector specifies one of the following functions to be
performed by the instruction: copy descriptor, normal shrink, or data stack shrink.
An operand of a LDDn instruction may be in the same segment as the LDDn
instruction or in another segment. If the operand is in a descriptor segment, it is a
descriptor, not a vector, and replacement occurs rather than shrinking.

A companion of the vector is an internal offset (a combination of a segment
identifier (SEGID) and an address value) called a pointer. A pointer, in NS mode, is
a 36-bit operand with sufficient information to identify an operand within a domain.
Since a pointer is relative to a domain, it can be used only to address operands
within its domain. Pointers for one domain cannot be used in another domain, but
pointers can be exchanged and used by several instruction segments within a
domain.

A pointer in both ES and EI modes is a 2-word construct containing the same
information of segment identifier (SEGID) and address offset value.

67 A2 RJ78 REV0OO

4. Processor Accessible Registers

This section of the Programmer's Guide describes Processor accessible registers,
organized as follows:

e Section 4.1, Accumulator Register (A)

e Section 4.2, Accumulator-Quotient Register (AQ)

e Section 4.3, Address Match Register (AMR)

e Section 4.4, Address Registers (ARn)

e Section 4.5, Argument Stack Register (ASR)

e Section 4.6, Calendar Clock (CC)

e Section 4.7, Data Stack Address Register (DSAR)

e Section 4.8, Data Stack Descriptor Register (DSDR)
e Section 4.9, Debug Mode Register (DMR)

e Section 4.10, Exponent Register (E)

e Section 4.11, Exponent-Accumulator-Quotient Register (EAQ)
e Section 4.12, Fault Register (FLTR)

e Section 4.13, General Index Registers (GXn)

e Section 4.14, IC History Registers (ICHR)

e Section 4.15, Index Registers (Xn)

e Section 4.16, Indicator Register (IR)

e Section 4.17, Instruction Counter (IC)

e Section 4.18, Instruction Segment Register (ISR)

e Section 4.19, Instruction Segment Identity Register - SEGID(IS)
e Section 4.20, Interrupt Registers (INTRp)

e Section 4.21, Linkage Segment Register (LSR)

e Section 4.22, Low Operand Register (LOR)

e Section 4.23, Option Register (OR)

e Section 4.24, Page Directory Base Register (PDBR)
e Section 4.25, Parameter Segment Register (PSR)

e Section 4.26, Quotient Register (Q)

e Section 4.27, Safe Store Register (SSR)

e Section 4.28, Segment Descriptor Registers (DRn)

e Section 4.29, Segment Identity Registers (SEGIDn)
e Section 4.30, Stack Control Register (SCR)

e Section 4.31, Timer Register (TR)

e Section 4.32, Virtual Machine Timer Register (VMTR)
e Section 4.33, Working Space Registers (WSRn)

67 A2 RJ78 REV0OO 4-1

4-2

NovaScale 9000 Assembly Instructions Programmer's Guide

A processor register is a hardware assembly that holds information for use in some
specified manner. An accessible register is a register whose contents are available to
the user. Some accessible registers are explicitly addressed by particular
instructions, and some are implicitly referenced during the execution of instructions.
Some are used in both ways. The accessible registers are listed in Table 4-1. Refer
to Sections 8—15, "Machine Instruction Descriptions", for a discussion of each
instruction to determine the way in which the registers are used.

Table 4-1. Processor Accessible Registers

Length
Register Name Mnemonic | (# bits) | Quantity
Accumulator Register A 36 1
Accumulator-Quotient Register AQ 72 1
Address Match Register AMR 52 1
Address Registers ARn 24/36 8
Argument Stack Register ASR 72 1
Calendar Clock” CCL 52 1
Data Stack Address Register DSAR 17 1
Data Stack Descriptor Register DSDR 72 1
Debug Mode Register DMR 6 1
Exponent Register E 8 1
Exponent-Accumulator-Quotient Register' | EAQ 80 1
Fault Register FLTR 72 1
General Index Registers GXn 36 8
IC History Register ICHR 72 1024
Index Registers Xn 18 8
Indicator Register IR 18 1
Instruction Counter IC 18/34 * 1
Instruction Segment Register ISR 72 1
Instruction Segment Identity Register SEGID(IS) |12 1
Interrupt Registers INTRp’ 9 16
Linkage Segment Register LSR 72 1
Low Operand Register LOR 72 1
Option Register OR 2 1
Page Directory Base Register PDBR 18/36° 1
Parameter Segment Register PSR 72 1
Quotient Register Q 36 1
Safe Store Register SSR 72 1
Segment Descriptor Registers DRn 72 8
Segment Identity Registers SEGIDn 12 8
Stack Control Register SCR 2 1
Timer Register TR 27 1
Upper Limit Address Register ULAR 16 1
Virtual Machine Timer Register VMTR 27 1
Working Space Registers WSRn 9/18° 8

* 34 bits in EI mode.

67 A2 RJ78 REV0OO

Processor Accessible Registers

1 These registers are not separate physical assemblies but combinations of their
constituent registers.

2 In SV mode, PDBR length is 18 bits.

3 In SV mode, WSRn length is 9 bits. In VR mode, WSRn length is 18 bits.

In the descriptions that follow, the diagrams given for register formats do not imply
that a physical assembly possessing the pictured bit pattern actually exists. The
diagram is a graphic representation of the form of the register data as it appears in
memory when the register contents are stored or of how data bits must be assembled
for loading into the register.

If the diagrams contain the character "x" or "0", the value of the bit in the position
shown is irrelevant to the register. Bits pictured as "X" are not changed in the
receiving cell when the register is stored. Bits pictured as "0" are set to 0 in the
receiving cell when the register is stored. Neither "x" bits nor "0" bits are loaded
into the register.

67 A2 RJ78 REV0O 4-3

NovaScale 9000 Assembly Instructions Programmer's Guide

Accumulator Register (A)

4.1 Accumulator Register (A)
Format:
36 bits
00 17 18 35
A-Upper A-Lower
18 18

Figure 4-1. Accumulator Register (A) Format

Description:

A 36-bit physical register

Function:

In fixed-point binary instructions, holds operands and results

In floating-point binary instructions, holds the most significant part of the mantissa

and the result

In shifting instructions, holds original data and shifted results

In address preparation, may hold two logically independent offsets, A-upper and
A-lower, or an extended range bit- or character-string length

4-4

67 A2 RJ78 REV0OO

4.2

Processor Accessible Registers

Accumulator-Quotient Register (AQ)

Accumulator-Quotient Register (AQ)

Format:
72 bits
00 35 36 71
Even Word (Accumulator) Odd Word (Quotient)
36 36
Figure 4-2. Accumulator-Quotient Register (AQ) Format
Description:

A combination of the accumulator (A) and quotient (Q) registers

Function:
In fixed-point binary instructions, holds double-precision operands and results.
In floating-point binary instructions, holds the mantissa and the result.

In shifting instructions, holds original data and shifted results.

67 A2 RJ78 REV0OO

4-5

NovaScale 9000 Assembly Instructions Programmer's Guide

Address Match Register (AMR)

4.3 Address Match Register (AMR)

Format:
52 bits

00 51

Figure 4-3. Address Match Register (AMR) Format

Description:

Contains Virtual Byte Address or Real Memory Byte Address dependent on
addressing and debug mode setting.

Function:

When DMR(1) = 0, the AMR contains a 52-bit Virtual Byte Address. In SV or
SVMX mode the upper 9 bits of AMR must be set to zero.

When DMR(1) = 1 the lower 34 bits of AMR specify a real memory byte address
and the upper 18 bits must be set to zero.

4-6 67 A2 RJ78 REV0OO

Processor Accessible Registers

Address Registers (ARn)

4.4 Address Registers (ARn)
Format:
24 bits each(NS Mode)
00 171819 20 23
Word Char Bit

18 2 4

Figure 4-4. Address Register (ARn) Format (NS Mode)

Description:

Eight 24-bit physical registers numbered 0 through 7 that are associated with the
operand descriptor registers (DRn) and that allow address modification on a word,
character, or bit basis

Function:

The address registers provide address modification to the word, byte, and bit level:

Word 18 bits (0-17); a word offset within the segment described by the
associated operand descriptor register

Char 2 bits; designates one of the four 9-bit characters (bytes) of which
the word is composed

Bit 4 bits; designates one of the 9 bits within the character.

67 A2 RJ78 REV0OO 4-7

NovaScale 9000 Assembly Instructions Programmer's Guide

Address Registers (ARn)

Format:

36 bits each(ES/EI Mode)

00 01 29 30 3132 35
S Word Char Bit
1 29 2 4

Figure 4-5. Address Register (ARn) Format (ES/El Mode)

Description:

Eight 36-bit physical registers numbered 0 through 7 that are associated with the

operand descriptor registers (DRn) and that allow addressing on a word, character,

or bit basis.

Function:

In ES/EI mode, each address register is extended to 36 bits. The ARn is as given in
two's complement form, with bit 0 as sign bit. In the effective address generation,

bit 0 is extended 4 bits to the left.

Word

Char

Bit

4-8

29 bits (1-29); a word offset within the segment described by the
associated operand descriptor register

2 bits; designates one of the four 9-bit characters (bytes) of which

the word is composed

4 bits; designates one of the 9 bits within the character

67 A2 RJ78 REV0OO

Processor Accessible Registers

Argument Stack Register (ASR)

4.5 Argument Stack Register (ASR)
Format:
72 bits
00 19 20 2829 3132 35

Bound Flags WSR | Type=1 |Even-
20 9 3 4| word
Base Odd-
36 word

Figure 4-6. Argument Stack Register (ASR) Format

Description:

A 72-bit register that holds a type 1 standard descriptor that describes (or frames) the
argument stack of the current domain of the currently executing process

Function:

Instructions are provided for loading (Privileged Master Mode) and storing the
argument stack register. The argument stack register is utilized by and may have its
contents changed by the hardware during the execution of a Save Descriptor
Register (SDRn) or CLIMB instruction. When the bound field of the ASR is
loaded, bits 0-6 are forced to zero. If flag-bit 27 = 1 (bound valid), bits 17-19 are
forced to 111. Thus, the size of the argument stack is effectively limited to 1024
descriptors.

67 A2 RJ78 REV0OO 4-9

NovaScale 9000 Assembly Instructions Programmer's Guide

Calendar Clock (CCL)

4.6 Calendar Clock (CC)

Format:

52 bits

Description:

The DPS 9000TA CC is a 52-bit register located in the SCU that is incremented
every microsecond. The V9000 converts the second count and the microsecond
count returned by LINUX's "gettimeofday()" function to microseconds. V9000
emulates the LCCL instruction by saving the difference between the microseconds
specified in the LCCL operand and the microseconds from the current
"gettimeofday()" function.

4-10 67 A2 RJ78 REV0OO

Processor Accessible Registers

Data Stack Address Register (DSAR)

4.7 Data Stack Address Register (DSAR)
Format:
17 bits
00 16 17 18 35
Base of the next stack area 0
17| 1 18

Figure 4-7. Data Stack Address Register (DSAR) Format

Description:

A 17-bit special-purpose index register that points to the next available double-word
location within the data stack area of memory framed by the Data Stack Descriptor
Register (DSDR); bit 17 is always zero

Function:

Privileged Master Mode instructions (LDDSA and STDSA) are available for loading
and storing the Data Stack Address Register. The contents of the DSAR may be
altered during the execution of the Load Descriptor Register (LDDn) instruction,
Load Data Stack Address Register (LDDSA) instruction, or CLIMB instruction.

67 A2 RJ78 REV0OO 4-11

NovaScale 9000 Assembly Instructions Programmer's Guide

Data Stack Descriptor Register (DSDR)

4.8 Data Stack Descriptor Register (DSDR)
Format:
72 bits
00 19 20 28 29 3132 35

Bound Flags WSR | Type =0 | Even-

20 9 3 4 | word

Odd-

Base 36 word

Figure 4-8. Data Stack Descriptor Register (DSDR) Format

Description:

A 72-bit register located in the virtual unit that holds a type 0 standard descriptor
that frames the data stack area of memory for the current process

Function:

Privileged Master Mode instructions (LDDSD and STDSD) are available for loading
and storing the data stack descriptor register. The contents of the data stack
descriptor register are used by the hardware when the vector of the Load Descriptor
Register (LDDn) or CLIMB instruction indicates that a working data stack
descriptor is to be generated.

4-12 67 A2 RJ78 REV0OO

Processor Accessible Registers

Debug Mode Register (DMR)

4.9 Debug Mode Register (DMR)

Format:

6 bits

Description:
The Debug Mode Register is used to enable/disable address traps on Virtual or Real

addresses, on Store or Read, on Instruction or Operand, and enable or disable WIC
faults.

Function:

Bit(s) Function
0 Disable Address trap
Enable Address trap

Virtual address type in Address Match Register
Real address type in Address Match Register

Operand
Instruction (ignore bits 3-4)

3-4 00 Unused/disabled

01 Read for basic operation; controller 1 for EIS operation
10 Store for basic operation; controller 2 for EIS operation
11 Read or Store

5 0 WIC fault disabled
1 WIC fault enabled

—_
—_— o m O = O

67 A2 RJ78 REV0OO 4-13

NovaScale 9000 Assembly Instructions Programmer's Guide

Exponent Register (E)

4.10 Exponent Register (E)

Format:
8 bits

00 07 08 35

Exponent 0000O0O0OO0O0OOOOOOOOOOOOOOOOOOOOO
8 28

Figure 4-9. Exponent Register (E) Format

Description:

An 8-bit physical register

Function:

In floating-point binary instructions, holds the exponent value.

4-14 67 A2 RJ78 REV0OO

Processor Accessible Registers

Exponent-Accumulator-Quotient Register (EAQ)

411 Exponent-Accumulator-Quotient Register (EAQ)

Format:
80 bits

00 (E) 0708 (AQ) 80

Exponent Mantissa
8 72

Figure 4-10. Exponent-Accumulator-Quotient Register (EAQ) Format

Description:

A combination of the exponent (E), accumulator (A), and quotient (Q) registers
Although the combined register has a total of 80 bits, only 72 are involved in
transfers to and from main memory. The low-order 8 bits are discarded on store and
zero-filled on load (that is, Q-register bits 28-35 are zero on load; bits 64-71 of the
AQ Register are ignored). See "Floating-Point Arithmetic Instructions" documented
in Section 7.

Function:

In floating-point binary instructions, holds operands and results.

67 A2 RJ78 REV0OO 4-15

NovaScale 9000 Assembly Instructions Programmer's Guide

Fault Register (FLTR)

4.12 Fault Register (FLTR)

Format:

72 bits

Description:

The Fault register is set by hardware at the time of a fault.

Function:

The Fault register can be accessed via the Store Fault Register instruction. The
FLTR content is set with only those bits associated with the fault type altered.

DPS 9000G2/DPS 9000TA/V9000 Systems:

Bit(s) Function

0 if =1 on IPR: Illegal Op Code

1-5 * reserved *

6 if = 1 on IPR: Illegal Decimal Digit
7 * reserved *

8 * unused *

9 if = 1 on SCL2: Attempted write to page whose write enable bit is not set
10 * unused * Forced to zero.

11-17 * reserved for hardware use *

18-23 * unused * Forced to zero.

24-71 * reserved *

4-16 67 A2 RJ78 REV0OO

Processor Accessible Registers

General Index Registers (GXn)

4.13 General Index Registers (GXn)

Format:
36 bits (ES/EI Mode)

00 35

General Index Register (GXn)

36

Figure 4-11. General Index Registers (GXn) Format

Description:

Eight 36-bit physical registers numbered 0 through 7 used in ES/EI mode only;
general register data may occupy the entire 36-bit operand

Function:

May be used as a data operand register with fixed-point operations

However, in the ES mode, GXn registers may be used as the single-precision
operand register.

67 A2 RJ78 REV0OO 4-17

NovaScale 9000 Assembly Instructions Programmer's Guide

IC History Registers (ICHR)

4.14

4-18

IC History Registers (ICHR)

Format:
72 bits each
00 01 02 17 18 35 36 47 48 71
NS: | 00 zeros From IC value |From SEGID(IS) zeros
El: 00 Transfer From IC value From SEGID(IS) zeros
Figure 4-12. IC History Registers (ICHR) Format
Description:

The V9000 ICHR is a 1024 by 2-word circular table. Each double word entry
identifies the source IC and SEGID value of an instruction causing a transfer. Each
entry may specify the destination IC and ISR or WSRn as well as the source IC of

the transfer.

The V9000 ICHR is not locked on fault. However, the 16 most recent entries are
copied to a locked ICHR buffer on fault if ICHR is currently unlocked when the

fault occurs.

Function:

The ICHR consists of 1024 double-word entries where each entry consists of:

Bit(s) Function

0-1 must be zero

2-17 (NS) zeros

18-35 (NS) From IC value
2-35(ED) Transfer From IC value
36-47 From SEGID(IS)

48-71 Zeros

67 A2 RJ78 REV0OO

Processor Accessible Registers

Index Registers (Xn)

4.15 Index Registers (Xn)

Format:
18 bits each (NS Mode)

00 17

Index Register (Xn)
18

Figure 4-13. Index Register (Xn) Format

Description:
Eight 18-bit physical registers numbered 0 through 7

Index register data may occupy the position of either an upper or lower 18-bit half-
word operand.

67 A2 RJ78 REV0OO 4-19

NovaScale 9000 Assembly Instructions Programmer's Guide

Indicator Register (IR)

4.16 Indicator Register (IR)
Format:
36 bits (ES/EI Mode)
0 111222222222 2333333
0 7890123456789 012345
XXXXXXXXXXXXXXXXXX|alb dlelflglhli|j[Kk|!I]mn]p|qglO0
18| 1| af | 1) af 2f o 2 af 2f 2] 2f 2| 2 1| 2| 2

Figure 4-14. Indicator Register (IR) Format

Description:
An assemblage of 15 indicator flags from various units of the processor
The data occupies the position of a lower 18-bit half-word operand. When

interpreted as data, a bit value of 1 corresponds to the ON state of the indicator. A
bit value of 0 corresponds to the OFF state.

Function:

The functions of the individual indicator bits are given below.

Indicator

Key (bit) Name Action

a(18) Zero This indicator is set ON whenever the output of the
main binary adder consists entirely of zero bits for
binary or shifting instructions, or the output of the
decimal adder consists entirely of zero digits for
decimal instructions. Otherwise, it is set OFF.

b (19) Negative This indicator is set ON whenever the output of bit

0 of the main binary adder has value 1 for binary
or shifting instructions, or when the sign character
of the result of a sign character. Otherwise, it is
set OFF.

4-20 67 A2 RJ78 REV0OO

Processor Accessible Registers

Indicator
Key (bit) Name
c (20) Carry
d (1) Overflow
e (22) Exponent
Overflow
f(23) Exponent
Underflow

67 A2 RJ78 REV0OO

Indicator Register (IR)

Action

This indicator is set ON for any of the following
conditions:

» Ifa bit propagates leftward out of bit 0 of the
main binary adder for any binary or left-
shifting instruction;

e If [valuel| <= |value2| for a decimal numeric
comparison instruction; or

e If charl <= char2 for a decimal alphanumeric
comparison instruction.

¢ Otherwise, it is set OFF.

This indicator is set ON if the arithmetic range of a
register is exceeded in a fixed-point binary
instruction or if the target string of a decimal
numeric instruction is too small to hold the integral
part of the result. It remains ON until reset by the
Transfer On Overflow (TOV) instruction or reset
by some other instruction that loads the IR. The
event that sets this indicator ON may also cause an
overflow fault. (See overflow mask indicator
below.)

This indicator is set ON if the exponent of the
overflow result of a floating-point binary or
decimal numeric instruction is greater than +127.
It remains ON until reset by the Transfer On
Exponent Overflow (TEO) instruction or reset by
some other instruction that loads the IR. The event
that sets this indicator ON may also cause an
overflow fault. (See overflow mask indicator
below.)

This indicator is set ON if the exponent of the
underflow result of a floating-point binary or
decimal numeric instruction is less than -128. It
remains ON until reset by the Transfer On
Exponent Underflow (TEU) instruction or by some
other instruction that loads the IR. The event that
sets this indicator ON may also cause an overflow
fault. (See overflow mask indicator.)

4-21

NovaScale 9000 Assembly Instructions Programmer's Guide

Indicator Register (IR)

Key (bit)
g((24)

h (25)

i (26)

127
k (28)

4-22

Indicator
Name

Overflow Mask

Tally Runout

* unused *
* ignored *

Master Mode

Action

This indicator is set to ON or OFF only by the
LDI, RET, and CLIMB instructions. When set
ON, it inhibits the generation of the fault for those
events that normally cause an overflow fault.
When the overflow mask is ON, no overflow fault
is generated if either the overflow or the exponent
overflow indicator is set to ON status. When the
overflow mask is set OFF, an overflow fault is
generated if either the overflow or the exponent
overflow indicator is set to ON status. If the
overflow mask indicator is set OFF after an
overflow event occurs, an overflow fault does not
occur, even though the indicator for that event is
still set ON. The state of the overflow mask
indicator does not affect the setting, testing, or
storing of any other indicator or the overflow fault
caused by the truncation indicator.

This indicator is set OFF at initialization of any
tallying operation. It is then set ON for any of the
following conditions:

* Ifany Repeat instruction terminates because of
tally exhaust;

* [faRepeat Link (RPL) instruction terminates
because of a zero link address;

¢ If atally exhaust is detected for an Indirect then
Tally modifier; the instruction is executed
whether or not tally exhaust occurs; or

» If a string scanning instruction reaches the end
of the string without finding a match condition.

This indicator has no meaning to the hardware.
This indicator is ignored.

This indicator is set ON for an interrupt
acceptance, a fault acceptance, execution of a
PMME instruction, and the execution of an
OCLIMB instruction (when the master mode bit of
the indicator register to be restored is ON).

67 A2 RJ78 REV0OO

Key (bit)
1(29)

m (30)

67 A2 RJ78 REV0OO

Processor Accessible Registers

Indicator
Name

Truncation

Multi-word
Instruction
Interrupt

Indicator Register (IR)

Action

This indicator is affected only by multiword
instructions. It is set to ON during string
instructions when the source string length is
greater than the destination string length, and set to
OFF when the reverse is true. For decimal
arithmetic instructions, it is set to ON when there
are no rounding specifications, and the lowest
digit, or more of the result, is truncated. It is set to
OFF when the reverse is true. The bit is not set if
both the truncated value and the result are zero.
When the highest nonzero digit is lost, the
Overflow Indicator is set ON.

This indicator is set OFF by the execution of the
SPL instruction and by the end of execution of all
interrupt multiword instructions. The indicator has
meaning only when determining the proper restart
resequence for an interrupted multiword
instruction. This indicator is set ON by the
following conditions:

e When any fault or interrupt occurs during the
execution of a multiword instruction (except
CLIMB and vector instructions); or

¢ When any fault or interrupt occurs during the
execution of a vector instruction.

The ON state of this indicator is used during the
CLIMB instruction (after a fault or interrupt); for
example, to save the pointers and lengths data in
order to resume the instruction.

4-23

NovaScale 9000 Assembly Instructions Programmer's Guide

Indicator Register (IR)

Indicator
Key (bity Name Action

n(31) Exponent This indicator can be set ON or OFF only by the
Underflow LDI, RET, or CLIMB instructions. When the
Mask exponent mask underflow mask is set ON, no

overflow fault is generated when the exponent
underflow indicator is set to ON status. In this
instance, if the exponent underflow indicator is set
to ON with binary or hexadecimal floating-point
instructions (including ADE), the exponent of the
result is set to -128, the mantissa of the result is 0,
the zero indicator is set to ON, the negative
indicator set to OFF, and instruction execution is
continued. (See Note below.)

With instructions having decimal floating-point
data as results, when the exponent underflow mask
indicator is ON and the exponent underflow
indicator is set to ON, the exponent of the result is
stored as +127, and the mantissa of the result is
stored as +0.

An overflow fault does not occur when the
overflow mask indicator is ON, even when the
exponent underflow mask indicator is set to OFF
and the exponent underflow indicator is set to ON.

The status of the exponent underflow mask
indicator does not affect the setting, testing, or
storing of the exponent underflow indicator.

NOTE: The A and Q registers remain unchanged
when the exponent underflow mask is set
ON by an ADE instruction.

p (32) Hexadecimal This indicator is set ON or OFF only by the
Exponent instructions that load the IR.

Mode NOTE: When set ON, it causes the floating-point
instructions to be executed in the
hexadecimal exponent mode.

q(33) Fixed-Point This indicator is used to mask fixed-point binary
Overflow Mask and decimal overflows.

(34-35) unused Bits 34-35 must be zero (MBZ).

4-24 67 A2 RJ78 REV0OO

Processor Accessible Registers

Instruction Counter (IC)

4.17 Instruction Counter (IC)

Format:

18 bits (NS, ES modes)
00 17

Instruction Address
18

36 bits (El mode)
00 3334 35

Instruction Address 00
34 2

Figure 4-15. Instruction Counter (IC) Format

Description:
An 18-bit physical register(NS, ES modes)

A 36-bit physical register(EI mode)

Function:

Holds the address of the current instruction being executed

The IC is incremented by 1 by the control unit for the sequential execution of single-
word instructions or by the appropriate amount (2, 3, or 4) for multiword
instructions. The content of the IC is changed by a transfer-of-control instruction or

by a fault or interrupt.

A description of faults and interrupts is contained in Section 6.

67 A2 RJ78 REV0OO 4-25

NovaScale 9000 Assembly Instructions Programmer's Guide

Instruction Segment Register (ISR)

4.18

4-26

Instruction Segment Register (ISR)

Format:
72 bits
00 19 20 28 29 31 32 35
Bound Flags WSR | Type =0 | Even-
20 9 3 4 | word
Odd-
Base 36 word
Figure 4-16. Instruction Segment Register (ISR) Format
Description:

A 72-bit register that holds a type 0 standard descriptor (or type 12 for EI mode) that
describes the current instruction segment for the current domain of the currently
executing process

Function:

The instruction segment register may not be loaded or stored directly. The register
is loaded during the execution of a CLIMB or transfer instruction with bit 29 ON.
The ISR may be stored indirectly by moving its contents to an operand descriptor
register (DRn) and then storing DRn. If bit 29 of an instruction word is zero or the
AR bit in the MF field of a multiword instruction is zero, the instruction segment
register is used in forming the virtual address of the operand. The base and bound
values placed in the ISR are constrained: the 5 least significant bits of the base field
must be zero and the 5 least significant bits of the bound field must be ones.

ES mode is in effect when ISR bit 24 = 1. EI mode is in effect when ISR bit 24 =1
and the descriptor type is 12 (max bound =4 GB). The IC is extended to 34 bits.

NOTE: When ISR bit 24 = 0 and the ISR type is 12, an IPR fault occurs.

67 A2 RJ78 REV0OO

Processor Accessible Registers

Instruction Segment Identity Register - SEGID (IS)

4.19 Instruction Segment Identity Register - SEGID(IS)
Format:
12 bits
000102 11
S D
2 10

Figure 4-17. Instruction Segment ldentity Register - SEGID(IS) Format

Description:

A 12-bit register that is associated with the instruction segment register (ISR) in the
same manner that a SEGIDn register is associated with an operand descriptor
register (DRn); points to the source of the descriptor in the ISR

Function:

The instruction segment identity register may not be loaded or stored directly. It is
loaded with the identity of the source of the descriptor when a transfer or CLIMB

instruction loads the Instruction Segment Register (ISR). The S and D field codes
used in these registers indicate the origin of the descriptor. See the SEGIDn codes.

67 A2 RJ78 REV0OO 4-27

NovaScale 9000 Assembly Instructions Programmer's Guide

Interrupt Registers (INTRp)

4.20

4-28

Interrupt Registers (INTRp)

Format:

9 bits each

Description:

00 03 04 07 08
IPFRp IPMRp '\A/'

Figure 4-18. Interrupt Registers (INTRp) Format

CPUs contain a set of 16 Interrupt Registers (INTRp). Each interrupt register is
associated with one of 16 System Identification numbers (p = SID) with SID =0
reserved for the Host System and the remaining assigned to up to 15 Guest
Operating Systems.

Function:

Each Interrupt register (INTRp) consists of three parts: a 4-bit Interrupt Present Flag
register(IPFRp), a 4-bit Interrupt Mask Flag register(IPMRp) and mask all flag

(ALLFp).

Bit(s) Function

0 IPFRp(0) = 1 if a Fault type interrupt is present

1 IPFRp(1) = 1 if a Terminate type interrupt is present

2 IPFRp(2) = 1 if a Marker type interrupt is present

3 IPFRp(3) = 1 if a Special type interrupt is present

4-7 IPMRp(0-3)
Mask corresponding to the four Interrupt Present flags IPFRp(0-3). If
an IPMRp bit is set, that corresponding interrupt type is masked off.

8 ALLFp
If = 0; all types of interrupt for system p are ignored independent of
the content of IPFRp or IPMRp.

67 A2 RJ78 REV0OO

Processor Accessible Registers

4.21 Linkage Segment Register (LSR)

Linkage Segment Register (LSR)

Format:
72 bits
00 19 20 2829 3132 35
Bound Flags WSR | Type=1
20 9 3 4
Base
36
Figure 4-19. Linkage Segment Register (LSR) Format
Description:

Even-
word

QOdd-
word

A 72-bit register that holds a type 1 standard descriptor that describes the linkage

segment of the current domain of the currently executing process

Function:

The LSR is loaded only by executing a CLIMB instruction. It may be stored by
transferring its contents to an operand descriptor register (DRn) and then storing
DRn. When the bound field of the LSR is loaded, bits 0-6 are forced to zero and bits
17-19 are forced to 111. Thus, the size of the linkage segment is effectively limited

to 1024 descriptors.

67 A2 RJ78 REV0OO

4-29

NovaScale 9000 Assembly Instructions Programmer's Guide

Low Operand Register (LOR)

4.22

4-30

Low Operand Register (LOR)

Format:
72 bits
00 0700 7100 71
Exponent AQ Register Low Operand Register
Figure 4-20. Low Operand Register Format
Description:

The low operand register (LOR) functions in combination with the exponent (E),
accumulator (A), and quotient (Q) registers in quadruple-precision floating-point

operations.

Function:

The 72-bit low operand register is used for the lower mantissa of quadruple-
precision (four words) with floating-point operations.

67 A2 RJ78 REV0OO

Processor Accessible Registers

Option Register (OR)

4.23 Option Register (OR)

Format:
2 bits
00 17 18 19 20 35
D (S
S |S
Cc|B
FIF
18 16
Figure 4-21. Option Register (OR) Format
Description:

A 2-bit register located in the virtual unit that controls the clearing of data stack
space, bypassing the safe store portion of an inward CLIMB (ICLIMB) instruction,
and bypassing cache memory

Bit 18 is the Data Stack Clear Flag (DSCF) and bit 19 is the Safe Store Bypass Flag
(SSBF).
Function:

The option register is loaded with the Load Option Register (LDO) instruction and
stored with the Store Option Register (STO) instruction.

67 A2 RJ78 REV0OO 4-31

NovaScale 9000 Assembly Instructions Programmer's Guide

Page Directory Base Register (PDBR)

4.24

4-32

Page Directory Base Register (PDBR)

Format:
18 bits in SV mode
36 bits in SVMX mode
SV mode:
0 17 18 26 27 28 35
BASE (mod 1KW) rfu M BND
SVMX mode:
0 45 26 27 28 35
mbz BASE (mod 1KW) M BND
Figure 4-22. Page Directory Base Register (PDBR) Format
Description:

In SV mode: A 36-bit, modulo 1024-word register that contains the 18-bit base
address of the Working Space Page Table Directory (WSPTD) or Directory Base
Table (DBT), a 1-bit M indicator, and an 8-bit Bound specification of the WSPTD
or DBT. Bits 27-35 are ignored in SV mode.

In SVMX mode: A 36-bit, modulo 1024-word register that contains a 5-bit RFU, the

22-bit base address, a 1-bit M indicator, and an 8-bit Bound specification. Bits 27-
35 are ignored in SVMX mode.

67 A2 RJ78 REV0OO

Processor Accessible Registers

Page Directory Base Register (PDBR)

Function:
SV mode:
Bit(s) Function
0-17 BASE
Base address of the WSPTD or DBT in units of 1024 words. The
BASE field with 10 zeroes appended on the right form a 28-bit real
word address.
18-26 RFU
Reserved for future use. Must Be Zero
27 M bit (ignored in SV mode)
0 =DD mode (WSPTD)
1 = ID mode (DBT)
28-35 BND (ignored in SV mode)
Bound specification of the WSPTD(M=0) or DBT(M=1). When M=0
the bound of the WSPTD is BNDf with 11 ones appended on the
right. When M=1 the bound of the DBT is BNDf with 1 one
appended on the right.
SVMX mode:
Bit(s) Function
0-4 RFU
Reserved for future use
5-26 BASE
Base address in units of 1024 words. The BASE field with 10 zeroes
appended on the right form a 32-bit real word address.
27 M bit (ignored in SVMX mode)
0 =DD mode (WSPTD)
1 =ID mode (DBT)
28-35 BND (ignored in SVMX mode)
Bound specification.

Privileged Master Mode instructions (LPDBR, SPDBR) are available for loading
and storing the page directory base register.

67 A2 RJ78 REV0OO

4-33

NovaScale 9000 Assembly Instructions Programmer's Guide

Parameter Segment Register (PSR)

4.25

4-34

Parameter Segment Register (PSR)

Format:
72 bits
00 19 20 2829 3132 35
Bound Flags WSR | Type=1 |Even-
20 9 3 4| word
Base Odd-
36 word
Figure 4-23. Parameter Segment Register (PSR) Format
Description:

A 72-bit register that holds a type 1 standard descriptor that frames the parameter

segment of the current domain of the currently executing process

Function:

Instructions are provided for loading (Privileged Master Mode) and storing the
parameter segment register. The parameter stack register is utilized by and may
have its contents changed by the hardware during the execution of the CLIMB
instruction. When the bound field of the PSR is loaded, bits 0-6 are forced to zero;
if flag-bit 27 = 1 (bound valid), bits 17-19 are forced to 111. Thus, the size of the
parameter segment is effectively limited to 1024 descriptors.

67 A2 RJ78 REV0OO

Processor Accessible Registers

Quotient Register (Q)

4.26 Quotient Register (Q)

Format:
36 bits
00 17 18 35
Q-Upper Q-Lower
18 18
Figure 4-24. Quotient Register (Q) Format
Description:

A 36-bit physical register

Function:

In fixed-point binary instructions, holds operands and results

In floating-point binary instructions, holds the least significant part of the mantissa
In shifting instructions, holds original data and shifted results

In address preparation, may hold two logically independent offsets, Q-upper and Q-
lower, or an extended range bit- or character-string length.

67 A2 RJ78 REV0OO 4-35

NovaScale 9000 Assembly Instructions Programmer's Guide

Safe Store Register (SSR)

4.27 Safe Store Register (SSR)

Format:
72 bits
00 19 20 2223 2829 3132 35
Even
Bound Flags WSR | Type=1
20 QJ 3 4| word
—————————————————— —————— 0 —] (o)
Bound Flags WSN Type = 3 | Even
20 3 9 4| word
Odd
Base 36 word
Figure 4-25. Safe Store Register (SSR) Format
Description:

A 72-bit register located in the virtual unit that holds either a Type 1 or 3 standard
descriptor that describes the safe store stack of the current process

NOTE: The format for a Type 3 descriptor differs in that the Flags field is
truncated at bit 22 to allow the descriptor to contain the actual working
space number (WSN) rather than point to a Working Space Register
(WSR).

Function:

The safe store register describes the safe store stack of the current process. The SSR
is loaded and stored with the Privileged Master mode instructions LDSS and STSS.
A 2-bit hardware Stack Control Register (SCR) is associated with the safe store
register. This register's content determines the size of the safe store frame. (Refer to
the SCR section below.)

4-36 67 A2 RJ78 REV0OO

4.28

Processor Accessible Registers

Segment Descriptor Registers (DRn)

Segment Descriptor Registers (DRn)

Format:

72 bits each

Description:

Eight 72-bit registers that hold segment descriptors describing address space
contained within the current domain of the currently executing process

The format of the descriptors is matches the content of the type fields. Type fields
0,2,4, 6,12, and 14 are used for operand segments and type fields 1 and 3 are used
for descriptor segments.

Function:

Instructions are available for loading and storing the segment descriptor registers
and for modifying their contents. A segment descriptor register is invoked for
developing a virtual operand address when bit 29 of the instruction is 1. Address
bits 0, 1, and 2 specify which one of the combined segment descriptor register
(DRn) and address register n (ARn) is to be used. Each of these eight segment
descriptor registers is associated with a corresponding address register. For
example, an AR3 modification refers to the segment with the contents of DR3 in its
descriptor. For multiword instructions, the use of ARn and the associated DRn is
specified by the AR bit in the MF field. Refer to "Multiword Modification Field"
documented in Section 5.

A segment descriptor must not be loaded with an operand descriptor intended for use
with a multiword instruction.

67 A2 RJ78 REV0OO 4-37

NovaScale 9000 Assembly Instructions Programmer's Guide

Segment Identity Registers (SEGIDn)

4.29 Segment Identity Registers (SEGIDn)

Format:
12 bits each

000102 11

S D
2 10

Figure 4-26. Segment ldentity Register (SEGIDn) Format

Description:

Eight 12-bit registers that have a one-to-one correspondence with the operand
descriptor registers (DRn). The segment identity registers point to the source of the
descriptor in the DRn.

Function:

The Load Pointer Register (LDPn) and Store Pointer (STPn) instructions are
available for directly loading and storing the segment identity registers. The S and
D field codes used in these registers indicate the origin of the descriptor (S =
segment, D = descriptor offset).

When S=0
The D field indicates the location of the segment descriptor loaded into the DRn.

4-38 67 A2 RJ78 REV0OO

Processor Accessible Registers

Segment Identity Registers (SEGIDn)

For D = 1760 through 1777 (octal), the selected register is copied into the DRn.

D=1760
D=1761
D=1762
D=1763
D=1764
D=1765
D=1766
D=1767
D=1770
D=1771
D=1772
D=1773
D=1774
D=1775
D=1776
D=1777
NOTE:

Undefined

The segment descriptor type field is changed. *
Instruction Segment Register (ISR)

Data Stack Descriptor Register (DSDR)

Safe Store Register (SSR)

Linkage Segment Register (LSR)

Argument Stack Register (ASR)

Parameter Segment Register (PSR)

DRO, Descriptor Register 0 }

DRI, Descriptor Register 1 }

DR2, Descriptor Register 2 }

DR3, Descriptor Register 3 }Self-Identifying
DR4, Descriptor Register 4 }

DR5, Descriptor Register 5 }

DR6, Descriptor Register 6 }

DR7, Descriptor Register 7 }

When S =0 with D = 1761, 1763, and 1764, a Command
fault occurs unless the CPU is in the Privileged Master
Mode.

When S =0 with D = 1761 in the Privileged Master Mode
and the type of the segment descriptor in the DRnis T =1 or
3, this segment descriptor type is changed to 0 or 2,
respectively. SEGIDn is set to be self-identifying. No fault
occurs and no operation is performed with the LDDn
instruction when the type in the DRn isnot T =1 or 3.

For D = 0000 through 1757 (octal), the descriptor in DRn was loaded from the
parameter segment and D was the index to the desired descriptor.

The descriptor DRn was loaded from the argument stack using D as the index to the

When S=2
descriptor.
WhenS=1or3

The descriptor in DRn was loaded from the linkage segment using D as the index to

the descriptor.

67 A2 RJ78 REV0OO

4-39

NovaScale 9000 Assembly Instructions Programmer's Guide

Stack Control Register (SCR)

4.30

4-40

Stack Control Register (SCR)

Format:

2 bits (internal)

Description:

An internal register that controls the size of the safe store frame

Function:

The SCR is initialized by execution of the LDSS instruction. This register contains
the code indicating the size of the last safe store frame as. (Refer to the discussion
of the Safe Store Register.)

If SCR = 10 and ISR(24) = 1 (ES or EI mode), safe store size = 80 words. ARn is
entered in words 64-71 and zeros in bits 00-23 of words 16-23. GXn is entered in
words 56-63 and words 40-43 are unpredictable.

If SCR = 11 and ISR(24) = 0 (NS mode), safe store size = 64 words. Xn is entered in
words 40-43 and words 56-63 are unpredictable.

If SCR = 01, safe store size = 24 words. When the mode before the execution of the
CLIMB is ES or EI mode, bits 00-23 of words 16-23 are zeros.

If SCR = 00, safe store size = 16 words.
When a special entry descriptor (T = 7) is specified by the SD field of the CLIMB,
the value set in SCR =11 on a NS to EI transition or SCR = 10 on an ES or EI

transition to the EI mode.

New SCR values are determined by the final segment descriptor and the ISR(24)
value before starting the CLIMB:

Type Field ISR(24) New SCR
Oor8 X 00
9 X 01
10 or 12 1 00
11 1 10
11 0 11

When the frame size is 64 words, the actual number of words stored is 48.

67 A2 RJ78 REV0OO

Processor Accessible Registers

Timer Register (TR)

431 Timer Register (TR)

Format:
27 bits
00 26 27 35
Timer Value 000000000
27 9
Figure 4-27. Timer Register (TR) Format
Description:

A 27-bit settable, free running clock

The value decrements at a rate of 512 KHz. Its range is 1.953125 microseconds to
approximately 4.37 minutes.

Function:

The TR may be loaded with any convenient value with the Load Timer Register
(LDT) instruction. When the value next passes through zero, a timer runout fault is
signaled. If the processor is in Slave mode with interrupts not inhibited or is stopped
at an uninhibited Delay Until Interrupt Signal (DIS) instruction, the fault occurs
immediately. If the processor is in Master or Privileged Master mode or has
interrupts inhibited, the fault is delayed until the processor returns to Slave mode or
stops at an uninhibited Delay Until Interrupt Signal (DIS) instruction.

67 A2 RJ78 REV0OO 4-41

NovaScale 9000 Assembly Instructions Programmer's Guide

Virtual Machine Timer Register (VMTR)

4.32 Virtual Machine Timer Register (VMTR)

Format:
27 bits
00 26 27 35
Timer Value 000000000
27 9
Figure 4-28. Virtual Machine Timer Register (VMTR) Format
Description:

A 27-bit settable, free running clock

The value decrements at a rate of 512 kHz. Its range is 1.953125 microseconds to
approximately 4.37 minutes.

Function:

The TR may be loaded with any convenient value with the Load Timer Register
(LDT) instruction. When the value next passes through zero, a timer runout fault is
signaled. If the processor is in Slave mode with interrupts not inhibited or is stopped
at an uninhibited Delay Until Interrupt Signal (DIS) instruction, the fault occurs
immediately. If the processor is in Master or Privileged Master mode or has
interrupts inhibited, the fault is delayed until the processor returns to Slave mode or
stops at an uninhibited Delay Until Interrupt Signal (DIS) instruction.

4-42 67 A2 RJ78 REV0OO

Processor Accessible Registers

Working Space Registers (WSRn)

4.33 Working Space Registers (WSRn)

Format:
In SV mode, 9 bits each

00 08

Working Space Number
9

Figure 4-29. Working Space Register (WSRn) Format, SV Mode

Description:

Eight 9-bit (SV mode) registers located in the virtual unit, each of which holds a
working space (WS) number that is used to form a virtual address

Function:

A working space register is referred to by the WSR field of a descriptor. The LDWS
and STWS instructions are used to load and store the working space registers,
respectively. To execute these two instructions, the processor must be in Privileged
Master mode. When the processor is initialized and cleared, working space register
0 is set to all zeros. The working space registers provide the means for sharing and
isolating working spaces.

67 A2 RJ78 REV0OO 4-43

NovaScale 9000 Assembly Instructions Programmer's Guide

Notes

4-44 67 A2 RJ78 REV0OO

5.1

5.2

5. Address Modification and Development

This section of the Programmer's Guide describes address modification and
development, organized as follows:

. Section 5.1, Address Modification and Development
e Section 5.2, Address Generation In The NS Mode

e Section 5.3, Address Generation In ES/EI Modes

. Section 5.4, Address Development

* Section 5.5, Paging

Address Modification Features

Address modification features permit the user to alter an address contained in an
instruction (or in an indirect word referenced by an instruction). The address
modification procedure is generally directed by the tag field of the instruction or
indirect word. Address generation differs between the Normal Segmentation (NS)
mode, the Extended Segmentation (ES) and Extended Instruction Segmentation (EI)
modes. The general definition of each of these segment modes is:

Segment | Max. Max. IC length | Xn length | ARn word
Mode Instruction | Data (bits) (bits) field (bits)
Segment Segment
NS 1 MB 1 MB 18 18 18
ES 1 MB 4 GB 18 36 30
EIl 4 GB 4 GB 34 36 30

Address Generation In The NS Mode

The aspects of address generation in the NS mode which are discussed in this
section are: basic modification, indirect addressing, tag fields, types of address
modification, modification octal codes, modification flowchart, floatable code,
address modification with address registers, and operand descriptors.

67 A2 RJ78 REV0OO 5-1

521

522

5-2

NovaScale 9000 Assembly Instructions Programmer's Guide

Basic Modification

Address modification is performed in four basic ways: Register (R), Register Then
Indirect (RI), Indirect Then Register (IR), Indirect Then Tally (IT). A fifth way,
address register modification, is discussed later in this section under "Address
Modification with Address Registers". Each of these basic types has a number of
variations in which selectable registers can be substituted for R in R, RI, and IR and
in which various tallying or other substitutions can be made for T in IT. I indicates
indirect address modification and is represented by the asterisk placed in the variable
field of the program statement as *R or R* when IR or Rl is specified. To indicate
IT modification, only the substitution for T appears in the variable field; the asterisk
is not used.

Indirect Addressing

Generally, in indirect addressing, the content of bits 0-17 in the word addressed by
the instruction address (y) is treated as another address, rather than as the operand of
the instruction. Indirect address modification is performed by the hardware
whenever called for by a program instruction. When I modification is called for by
a program instruction, an indirect word is always obtained from memory. This
indirect word may call for I modification again, or it may specify the effective
address (Y) to be used for the original instruction. Indirect addressing for R, IR,
and IT modification is indicated by a binary 1 in either position of the tag modifier
field (bit positions 30 and 31) of an instruction or indirect word.

NOTE: A "1"in bit position 30 or 31 of an indirect word does not necessarily
mean further indirection.

67 A2 RJ78 REV0OO

Address Modification and Development

523 Tag Field
An address modification procedure generally takes place as directed by the tag field
of an instruction and the tag field of an indirect word. Repeat mode instructions and

character store instructions do not provide for address modification.

The tag field consists of two parts: tag modifier (tm) and tag designator (td) (as

illustrated below).
Bit = 30 31 32 33 34 35
| | | |
€ tm 2> | € td >
€« tag field >

In the illustration of the tag field,

Tm specifies one of four possible modification types: Register (R),
Register Then Indirect (RI), Indirect Then Register (IR), and Indirect
Then Tally (IT);

Td specifies the activity for each modification type;

In the case of tm = R, R1, or IR; td is the register designator and
generally specifies the register to be used in indexing;

In the case of tm = IT; td is the tally designator and specifies the
tallying in detail.

The following table shows the valid mnemonics for address modification and their
relationship to the classes R, RI, IR, and IT.

td tmr00 R tmF01l R tnEl1l IR tnmr10 I T
00 Bl ank *

00 N N* *N F
01 AU AU * AU -

02 08) QU QU -

03 DU - * DU -

04 | C | C *| C SD
05 AL AL* * AL SCR
06 QL Q* QL -

07 DL - * DL -

10 0 0* *0 cl
11 1 1* *1 |

12 2 2% *2 SC
13 3 3* *3 AD
14 4 4* *4 DI
15 5 5* *5 Dl C
16 6 6* *6 | D
17 7 7* *7 | DC

67 A2 RJ78 REV0OO 5-3

524

5-4

NovaScale 9000 Assembly Instructions Programmer's Guide

Types Of Address Modification

The four basic types of modification, their mnemonic substitutions as used in the
variable field of the program statement, and their binary forms are presented in the

following illustration.

Modification Variable

Type Field Binary Forms Example
30 31 32 35
tm td
R BETA, (R 001101 BETA, 5
RI BETA, (R * 011010 BETA, 2*
IR BETA, *(R) 1111111 BETA, *7
I T BETA, (T) 10,1010 BETA, SC

The parentheses enclosing R and T indicate that substitutions should be made by the
user for them (as explained under the separate discussions of R, IR, RI, and IT
modification below). Binary equivalents of the substitution are used in the tm

subfield.

67 A2 RJ78 REV0OO

5241

Address Modification and Development

Register (R)

The processor performs register address modification whenever an R-type variation
is coded. The assembler places binary zeros in both positions of the tm subfield of
the instruction. Accordingly, 1 of 16 variations under R are performed by the
processor, depending upon the bit configurations generated by the assembler, and
placed in the designator subfield (td) of the general instruction. The 16 variations,
their mnemonic substitutions used on the assembler coding sheet, the td field binary
forms presented to the processor, and the effective address Y generated by the
processor are indicated in the following illustration:

Modification | Mnemonic Binary Form | Effective

Variation Substitution | (td field) Address

(R) =XO0 0 1000 Y = y+C(X0)

(R) =Xl 1 1001 Y = y+C(X1)

(R) =X2 2 1010 Y = y+C(X2)

(R) =X3 3 1011 Y = y+C(X3)

(R) =X4 4 1100 Y = y+C(X4)

(R) =X5 5 1101 Y = y+C(X5)

(R) =X6 6 1110 Y = y+C(X6)

(R) =X7 7 1111 Y = y+C(X7)

R) =Ap1y AU 0001 Y = y+C(Ao.17)

(R) =A;g3s | AL 0101 Y = y+C(Aig35)

(R) =Qo.17 QU 0010 Y = y+C(Qo.17)

(R) =Quig3s | QL 0110 Y = y+C(Qis.35)

(R) =1IC IC 0100 Y = y+C(IC)

direct upper | DU 0011 bits 0-17 of operand =y;
bits 18-35 of operand =0

direct lower | DL 0111 bits 0-17 of operand = 0;
bits 18-35 of operand =y

(R) =None | Blankor N 0000 Y=y

(R) = Any Any defined

symbolic symbol*

index register

* Symbol must be defined as one of the index registers by using an

applicable pseudo-operation (EQU or BOOL).

R modification allows for the use of the instruction address field as the operand.
This procedure is called direct operand address modification and can be divided into
two types: Direct Upper (DU) and Direct Lower (DL). With the DU variation, the
address field of the instruction serves as bit positions 0-17 of the operand, and zeros
serve as bit positions 18-35 of the operand. With the DL variation, the address field
of the instruction serves as bit positions 18-35 of the operand, and zeros serve as bit
positions 0-17 of the operand.

IC modification should only be used with an absolute operand. A relative operand
that has IC modification is flagged with a possible relocation error (R) by the
assembler.

67 A2 RJ78 REV0OO 5-5

5-6

NovaScale 9000 Assembly Instructions Programmer's Guide

The following examples show how R-type modification variations are entered and
how they affect effective addresses.

EXAMPLES
1 8 16 Ef fecti ve Address
(1) EAXO 1
LDA B, 0 Y=B+1
(2) LDA =2, DL
LDA C, AL Y=C+2
(3) EAQ 3
LDA M QU Y=M+3
(4) ABC LDA -2,1C Y=ABC- 2
(5) XYz LDA * DU oper and®’=XYz, operand®3%=0
(6) EAX7 ABC
LDA 1,7 Y=ABC+1
(7) LDA 2, DL operand®!7=0, operand®3°=2
(8) LDA B Y=B
(9) LDA B, N Y=B
(10) EAX ALPHA, 10
LDA C, ALPHA
ALPHA EQU 2 Y=C+10

Coding examples of R-type modification

1. (R)=N
ALPHA LDA ADRES1, N
is equivalent to:
ALPHA LDA ADRES1

No address modification results; ADRES] is the effective operand.

67 A2 RJ78 REV0OO

Address Modification and Development

2. (R)=Xnwheren=0to7

ALPHA LDA ADRES2, 5
X35 contains the value 2.
ADRES2 DEC 12
oCT 7777
oCT 123456765432

ADRES2+2 becomes the effective address, and its contents (octal
123456765432) are loaded into the A-register.

A-reqister X5
Before: 773412315026 000002
After: 123456765432 000002

3. (R)=AU, AL, QU, QL

ALPHA LDA ADRES3, QU
Bits 0-17 of the Q-register contain the value 3.
ADRES3 DEC 10

CoCT 12

CoCT 14

ocT 16

ADRES3+3 becomes the effective address and its contents (octal 16) are loaded
into the A-register.

A-reqgister O-register
Bef or e: 123456765432 000003 123456
After: 000000000016 000003 123456

4. (R)=DU,DL
ALPHA LDA ADRES4, DU

No memory access to modify ADRES4 exists. The address represented by the
symbol ADRES4 is placed in bits 0-17 of the A-register, and bits 18-35 are
filled with zeros.

ADRES4 OCT 10 (assunme ADRES4 is at | ocation 001002g)

Bef or e: 00000000016
After: 00100200000

67 A2 RJ78 REV0OO 5-7

5242

5-8

NovaScale 9000 Assembly Instructions Programmer's Guide

A simple program segment, the movement of 50 words from ABC to XYZ, may
help illustrate the power of address modification.

Without Address Modification With Address Modification
1 8 16 1 8 16
START LDX1 =0B17, DU START LDX1 0, DU
LDA ABC LDA ABC, 1
STA XYZ STA XYZ, 1
LDA =1B17 ADLX1 1, DU
ASA START+1 CVPX1 50, DU
ASA START+2 TNC START+1
ADLX1 =1B17

CWPX1 =50B17
TNC START+1

Register then Indirect (RI)

Register Then Indirect address modification is a combination in which both indexing
(register modification) and indirect addressing are performed. For indexing
modification under RI, the mnemonic substitutions for R are the same as those given
under the discussion of register (R) modification, except that DU and DL are invalid
for RI usage. For indirect addressing (1), the processor interprets the contents of the
operand address associated with the original instruction or with an indirect word.

Under RI modification, the effective address Y is found by first performing the
specified register modification on the operand address of the instruction. The result
of this R modification under RI is the address of an indirect word, which is then
retrieved.

After the indirect word has been accessed from memory and decoded, the processor
carries out the address modification specified by this indirect word. If the indirect
word specifies RI, IR, or IT modification (any type specifying indirection), the
indirect sequence is continued. When an indirect word is found that specifies R
modification, the processor performs R modification, using the register specified by
the td field of this last-encountered indirect word and the address field of the same
word, to form the effective address Y.

When used with Register Then Indirect modification (RI), the variations DU and DL
of register modification (R) cause an Illegal Procedure (IPR) fault.

To refer to an indirect word from the instruction itself, without including register
modification of the operand address, the "no modification" variation should be
specified. Under RI modification, this specification is indicated by placing only an
asterisk (*) in the tag position.

67 A2 RJ78 REV0OO

Address Modification and Development

The following examples illustrate the use of RI modification, including the use of
(R) =N (no register modification). The asterisk appearing in the modifier subfield is
the assembler symbol for I (Indirect). The address-subfield, single-symbol
expressions shown are not intended to be realistic coding examples but to show the
relation between operand addresses, indirect addressing, and register modification.

EXAMPLES
Modi fi cati on Ef fective
1 8 16 Type Addr ess
(1) EAA 1
EAX1 2
STA Z, AU (RI) Y=B+2
ORG Z+1
ARG B, 1 (R
(2) EAQ 3
MPY Z* (RI) Y=B+3
Z ARG B, QU (R
(3) EAX3 3
EAX5 5
STQ Z* (RI) Y=M
Z ARG B, 5* (RI)
ORG B+5
ARG C, 3* (RI)
ORG C+3
ZERO M (R

Coding examples of RI modification

L.

(RI) = N*

ALPHA LDA ADRES1, N
is equivalent to:

ALPHA LDA ADRES, *

The indirect word at ADRES] is obtained; if this indirect word specifies further
indirect modification, the process continues until an indirect word is obtained
with (R) modification.

(R) = (Xn)* wheren=0to?7

EAXS5 5
EAX2 2
ALPHA LDA ADRES2, 5*

The indirect word at ADRES2+5 is obtained. If the indirect word at this
location is:

LDQ ADRES3, 2
the effective address is ADRES3+2.

67 A2 RJ78 REV0OO 5-9

5243

5-10

NovaScale 9000 Assembly Instructions Programmer's Guide

Indirect Then Register (IR)

Indirect Then Register address modification is a combination in which both indirect
addressing and indexing (register modification) are performed. However, IR
modification is not a simple inverse of RI; several important differences exist.

Under IR modification, the processor first fetches an indirect word from the memory
location specified by the address field y of the machine instruction. The C(R) of IR
are safe stored for use in making the final index modification to develop the
effective address Y. The address modification, if any, specified by this first indirect
word is then examined. If this modification is again IR, the register from the last IR
modification is safe stored and used for final effective address.

If the indirect sequence produces an RI indirect word, the R-type modification is
performed immediately to form another address, but the I of this RI treats the
contents of the address as an indirect word. At this point the new indirect word
might initiate an RI loop. However, if IR modification is specified, an IPR fault
occurs. When this loop is broken, the remaining modification type is either R or IT.

When either R or IT is encountered, it is treated as type R, where R is the last safe
stored C(R) of an IR modification. At this point the safe stored C(R) is combined
with the y of the indirect word that produced R or IT, and the effective address Y is
developed.

If an indirect modification without register modification is desired, the "no
modification" variation (N) of register modification should be specified in the
instruction. This variation normally will be entered on coding sheets as *N in the
modifier part of the variable field. (The entry * alone is equivalent to N* under RI
modification and must be used in that way.)

NOTE: As described above, if IR modification is detected twice in an indirect
modification chain, an IPR fault occurs.

67 A2 RJ78 REV0OO

Address Modification and Development

Coding examples of IR modification

1. (IR) = *N
ALPHA LDA ADRESL, *N

The indirect word at ADRESI is obtained. If the indirect word at this location
1S:

ADRES1 LDQ ADRES2
The effective address is:
ADRES2

2. IRandthenRorIT

(IR = *(Xn) wheren=0to7
EAX5 15
ALPHA LDA ADRES1, *5

The indirect word at ADRESI is obtained. If the indirect word is:
ADRES1 LDQ ADRES2, (R

or

ADRES1 LDQ ADRES2, (T)

the effective address is:

ADRES2+15

3. IR andthen RI

(IR = *(Xn) wheren =0to 7
EAX5 16
EAX2 17

ALPHA LDA ADRES1, *5
ADRES1 LDQ ADRESZ2, 2*

LDA ADRES4 (in ADRES2+17)
the effective address is:
ADRES4+16

67 A2 RJ78 REV0OO 5-11

NovaScale 9000 Assembly Instructions Programmer's Guide

The following examples illustrate the use of IR-type modification, intermixed with
R and RI types, under the several conditions noted on the previous page.

EXAMPLES
Modi fi cati on Ef fective
1 8 16 Type Addr ess
(1) LDQ 1, DL
LDA Z,*QL (IR Y=M+1
Z ARG M (R
(2) EAX3 2
EAXS5 3
ABC LDA Z,*3 (IR Y=C+2
Z ARG B, 5* (R)
ORG B+3
ARG ClcC (R
(3) EAX3 8
LDQ 9, DL
LDA Z,*DL (IR C(A(18-35)) =M
Z ARG B, 3* (R
ORG B+8
ARG M Q (R
(4) LDA 10, DL
LDA Z, *AL (IR Y=B+10
Z ARG B, AD (17
(5) EAX3 11
LDA Z, *N (IR =B
Z ARG B, 3 (R
(6) EAX5 13
LDA Z* (R) Y=M+13
Z ARG B, *5 (IR
B ARG M DU (R
(7) EAX1 14
LDA X, * (R) Y=7+14
X ARG B, *1 (IR
B ARG Z, 1D (17T)
Z TALLY A 10 (17T)

5-12 67 A2 RJ78 REV0OO

5.24.4

Indirect Then Tally (IT)

Address Modification and Development

Indirect Then Tally address modification is a combination in which both indirect
addressing and automatic incrementing/decrementing of fields in the indirect word
are performed as hardware features, thus relieving the user of these responsibilities.
The automatic tallying and other functions of IT modification allow processing of
tabular data in memory, provide a means for working upon character data, and allow
termination on user-selectable numeric tally conditions. If an unassigned IT tag is
used, an Illegal Procedure (IPR) fault occurs.

The following table shows the variations under IT modification. The mnemonic
substitution for IT is (T). The designator I for indirect addressing in IT is not
represented. (Note that one of the substitutions for T is 1.)

Mnemonic | Binary form | Effect on Processor and Indirect

Variation Substitution | (td Field) (Tally) Word for Each Reference

Faul t F 0000 None. A Fault Tag fault is
generated. The indirect word is not
examined.

Character |Cl 1000 None; applies to TALLY,
TALLYB.

Sequence SC 1010 Obtain the operand address from

Char act er the tally word, then add 1 to the
character position value in the tag
field and subtract 1 from the tally
count field; add 1 to the address
field and set the character position
value to zero when the character
position crosses a word boundary;
applies to TALLY, TALLYB.

Sequence SCR 0101 Subtract 1 from the character

Char act er position value in the tag field and

Rever sed add 1 to the tally count field;

I ndi rect I 1001 None. The operand address is the
word to which the tally word
address field refers; applies to all
tally pseudo-operations.

I ncrenent |ID 1110 Obtain the operand address from

addr ess, the tally word; add 2 to the address

Decr enent field and subtract 1 from the tally

tally count field; applies to all tally
pseudo-operations.

67 A2 RJ78 REV0OO

5-13

5-14

NovaScale 9000 Assembly Instructions Programmer's Guide

Mnemonic | Binary form | Effect on Processor and Indirect

Variation Substitution | (td Field) (Tally) Word for Each Reference

Decrenent |DI 1100 Subtract 1 from the address field,

addr ess add 1 to the tally count field, and

I ncr ement then obtain the operand address

tally from the tally word; applies to all
tally pseudo-operations.

I ncrenent |IDC 1111 Obtain the operand address from

addr ess, the tally word; add 1 to the address

Decr enment field and subtract 1 from the tally

tally, count field. Additional address

and modification will be performed as

Conti nue specified by the tag field; applies to
TALLYC.

Decrenment |DIC 1101 Subtract 1 from the address field,

addr ess, add 1 to the tally count field, obtain

I ncr enment the operand address from the tally

tally, word. Additional address

and modification will be performed as

Conti nue specified by the tag field; applies to
TALLYC.

Add Delta |[AD 1011 Obtain the operand address from
the tally word, add an increment to
the address field, and subtract 1
from the tally count field; applies
to TALLYD.

Subt r act SD 0100 Subtract an increment from the

Del ta address field, add 1 to the tally

count field, and then obtain the
operand address from the tally
word; applies to TALLYD.

67 A2 RJ78 REV0OO

Address Modification and Development

Indirect Word Format

The location of the indirect word is specified by the address field (y) of the

instruction or previous indirect word (IDC or DIC). IT modification causes the
indirect word to be fetched and interpreted as specified by the td subfield of the
instruction or previous indirect word that referred to the indirect word.

The format of the indirect word is:

00 17 18 29 30 35
Tally Tag
18 12 6
where:
y = address field
Tally = tally field
Tag = tag field

Depending upon the prior tally designator, the tag field for the indirect word is used
in one of the following ways:

Tally Designators Taqg Field
30 31 32 33 34 35
I, DI, ID, F Ignored
DIC, IDC, IR, RI tm td
Cl, SC, SCR tb 0 0 cf
AD, SD Delta
where:
tm = tag modifier,
td = tag designator,
tb = character size indicator (0=6-bit, 1=9-hit),
cf = character position field,
Delta = delta field (size of increment).

67 A2 RJ78 REV0OO

5-15

525

5251

5.25.2

5-16

NovaScale 9000 Assembly Instructions Programmer's Guide

Variations Under IT Modification

Fault (T) = F Variation

The Fault variation enables the user to force program transfers to operating system
routines or to corrective routines during the execution of an address modification
sequence by causing a Fault Tag fault. (This fault will usually indicate some
abnormal condition for which the user desires protection.)

Character Indirect (T) = Cl Variation

The Character Indirect (CI) variation is provided for operations on the A register or
Q register in situations where repeated reference to a single character in memory is
required. The character size field (tb) of the indirect word specifies the character
size.

For this variation, the effective address is the address field of the CI indirect word
obtained through the tentative operand address of the instruction or preceding
indirect word that specified the CI variation. The character position field (cf) of the
indirect word is used to specify the character to be involved in the operation.

This variation is similar to the SC variation except that no incrementing or
decrementing of the address, tally, or character position is performed. Some
examples are given below.

Modi fi cation Ef fective Char act er
1 8 16 Type Addr ess Posi tion
(1) LDA Z,C (1T =B 4
4 TALLY B, ,4 6-bit char. addressing
1 8 16
(2) LDA ADDR, ClI

ADDR TALLY ADD,,3 6-bit char. addressing

or
ADDR TALLYB ADD,,3 9-bit char. addressing

The effective address is ADD. The character in character position 3 is loaded into
the A-register in character position 5 for 6-bit characters or into position 3 for 9-bit
characters. The remainder of the A-register is loaded with all zero bits.

67 A2 RJ78 REV0OO

Address Modification and Development

5.25.3 Sequence Character (T) = SC Variation

The Sequence Character (SC) variation is provided for sequential access to 6-bit or
9-bit characters. The character size field (tb) of the indirect word is used to specify
the character size. Processor instructions that do not allow SC operations are so
indicated in the descriptions for the individual instructions. The operand address is
obtained from the address field of the indirect word referenced by the word
containing the SC tag.

Characters are operated on in sequence from left to right within the machine word.
The character position field (cf) of the indirect word is used to specify the character
position to be involved in the operation. The Tally Runout indicator is set when the
tally field of the indirect word reaches 0. The coding below provides an example.

1 8 16 32

LDA A, SC
A TALLY TABLE, 70, 4 6-bit char. addressing
TABLE BSS 13

In this example, 70 is the count and 4 designates the character position of the tally
start.

For register loads using the SC variation, a character is fetched from the indicated
position of the memory location and is written into the lower end of the register; the
remaining bits of the register are set to zero. For stores under the SC variation, a
character is fetched from the lower end of the register and written into the indicated
position in the memory location. The remaining character positions in the memory
location remain unchanged.

The tally field of the indirect word is used to count the number of times a reference
1s made to a character. Each time an SC reference is made to the indirect word, the
tally is decremented by 1, and the character position is incremented by 1 to specify
the next character position. The tally runout indicator is set when the tally reaches 0.
When character position 5 (for 6-bit characters) or 3 (for 9-bit characters) is
incremented, it is changed to position 0, and the address field of the indirect word is
incremented by 1. All incrementing and decrementing are done after the effective
address has been provided for the current instruction execution.

67 A2 RJ78 REV0OO 5-17

5254

5-18

NovaScale 9000 Assembly Instructions Programmer's Guide

The effect of successive references using SC modification is shown in the following
examples.

Ef fective Char acter
1 8 16 Addr ess Posi tion Ref er ence
LDA Z, SC B 0 1
Z TALLY B, 80, 0 B 1 2
B BSS 14
B 5 6
B+1 0 7
Tally Runout indicator is . .
set on the 80th reference . . .
B+n 0 6n+1
1 8 16
ADD1 LDA ADDR, SC
TTF ADD1
ADDR TALLY ADD, 12,13 (6-bit characters)
or
ADDR TALLYB ADD, 12,13 (6-bit characters)
ADD BSS 4

The first effective address is ADD. The character in character position 3 is loaded
into the A-register in position 5 (for 6-bit characters) or into position 3 (for 9-bit
characters). The second reference will load ADD character 4 (if 6-bit) or ADD+1
character 0 (if 9-bit), etc. The tally is decremented from 12 to 0. The destination in
the A-register does not change.

Sequence Character Reverse (T) = SCR Variation

The SCR variation is the reverse of SC. The character position is decremented by 1
and the tally is incremented by 1 before the indirect word address field and character
position are used as the operand character address. When the character position
attempts to go negative, it is set to the maximum value (3 or 5), and the address is
decremented by 1.

67 A2 RJ78 REV0OO

Address Modification and Development

5.25.5 Indirect (T) = | Variation

The Indirect (I) variation of IT modification is in effect a subset of the ID and DI
variations described below in that all three -- I, ID, and DI -- make use of one
indirect word in order to refer to the operand. The I variation is functionally unique,
however, in that the indirect word accessed by an instruction remains unaltered. No
incrementing/decrementing of the address field or tally occurs. Since the tag field of
the indirect word under I is not interrogated, this word will always terminate the
indirect chain.

The following differences in the coding and the effects of *, *N, and I should be
observed:

1. RI modification is coded as R* for all cases, excluding R=N.

For R=N under RI, the modifier subfield can be written as N* or as * alone,
according to preference.

When N* or just * is coded, the assembler generates a machine word with octal
20 in bit positions 30-35. Octal 20 causes the processor to add 0 to the address
field y of the word containing the N* or * and then to access the indirect word
at memory location y.

2. IR modification is coded as *R for all cases, including R=N.
For R=N under IR, the modifier subfield must be written as *N.

When *N is coded, the assembler generates octal 60 in bit positions 30-35 of
the associated machine word. Octal 60 causes the processor to (1) retrieve the
indirect word at the location (y) specified by the machine word, and (2)
effectively safe store zeros (for possible final index modification of the last
indirect word).

3. IT modification is coded using only a variation designator (I, ID, DI, SC, SCR,
CI, AD, SD, F, IDC, or DIC), that is, no asterisk (*) is written. Thus, a written
IT address modification appears as ALPH,DI; BETA,AD; and so on.

For the variation I under IT, the assembler generates a machine word with octal
51 in bit positions 30-35. Octal 51 causes the processor to examine one indirect
word to be retrieved from memory to obtain the effective address Y.

Modi fication Ef fective
1 8 16 Type Addr ess
EAX5 1
LDA Z, | (1T Y=B
Z ARG B, *5 (IR

67 A2 RJ78 REV0OO 5-19

NovaScale 9000 Assembly Instructions Programmer's Guide

5.2.5.6 Increment Address, Decrement Tally (T) = ID Variation

The ID variation under IT modification provides automatic (hardware) incrementing
or decrementing of an indirect word that is best used for processing tabular operands
(data located at consecutive memory addresses). The indirect word always
terminates the indirect chain.

In the ID variation, the effective address is the address field of the indirect word
obtained through the tentative operand address of the instruction or preceding
indirect word, whichever specified the ID variation. Each time such a reference is
made to the indirect word, the address field of the indirect word is incremented by 1
and the tally portion of the indirect word is decremented by 1. The incrementing and
decrementing are performed after the effective address is provided for the instruction
operation. When the tally reaches zero, the Tally Runout indicator is set.

The following examples show the effect of ID.

Modi fi cation Ef fective
1 8 16 Type Addr ess Ref er ence
LDA Z, 1D (1T B 1
Z TALLY B,12 word addressing B+1 2
B BSS 12 .

1 8 16
ADRES LDA ADRES, | D
TTF ADRES1
ADRES2 TALLY ADRES3, 10 wor d addressi ng
ADRES3 BSS 10

The first effective address is ADRES3; the second is ADRES3 plus 1, etc. The tally
is decremented from 10 to zero. The TTF instruction checks the Tally Runout
indicator. If the tally is not zero, transfer is made to ADRES]1. If the tally is zero,
processing continues with the instruction following TTF. Without the TTF
instruction, only one effective address is obtained.

5-20 67 A2 RJ78 REV0OO

5.2.5.7

Address Modification and Development

Decrement Address, Increment Tally (T) + DI Variation

The DI variation under IT modification provides automatic (hardware) incrementing
and decrementing of an indirect word that is best used for processing tabular
operands (data located at consecutive memory addresses). The indirect word always
terminates the indirect chain.

In the DI variation, the effective address is the modified address field (1 less than the
value before modification) of the indirect word obtained via the tentative operand
address of the instruction or preceding indirect word, whichever one specified the DI
variation. Each time a DI reference is made to the indirect word, the address field of
the indirect word is decremented by 1 and the tally portion is incremented by 1.
When the tally is incremented from 7777 to 0, the tally runout indicator is set. The
incrementing and decrementing are performed before providing the effective address
for the current instruction operation.

The effect of DI is shown in the following examples.

Modi fication Ef fective
1 8 16 Type Addr ess Ref er ence
LDA Z, D (1T B-1 1
z TALLY B,-18 word addressing B-2 2
B BFS 18 : .
B-n n

Tally Runout indicator is set on the 18th reference. There, the 12-bit tally field in the
indirect word overflows and becomes all zeros.

Modi fication Effective
1 8 16 Type Addr ess Ref er ence
ADRES1 LDA ADRES2, DI
' TTF ADRES1
ADRES2 TALLY ADRES3, - 10 word addr essi ng

ADRES3 BFS 10

The first effective address is ADRES3 -1; the second is ADRES3 -2, etc. The tally
increases from -10 to 0.

67 A2 RJ78 REV0OO 5-21

5.2.5.8

5-22

NovaScale 9000 Assembly Instructions Programmer's Guide

Increment Address, Decrement Tally, and Continue (T) = IDC Variation

The IDC variation under IT modification functions in a manner similar to the ID
variation except that, in addition to automatic incrementing/decrementing, it permits
the user to continue the indirect chain in obtaining the instruction operand. Where
the ID variation is useful for processing tabular data, the IDC variation permits
processing of scattered data by a table of indirect pointers. Specifically, the ID
portion of this variation provides the ability to sequentially step through a table, and
the C portion (continuation) allows indirection through the tabular items. The
tabular items may be data pointers, subroutine pointers, or a transfer vector.

The address and tally fields are used as described under the ID variation. The tag
field uses the set of variations for instruction address modification under the
following restrictions: no variation is permitted that requires an indexing
modification in the IDC cycle since the indexing adder is being used by the tally
phase of the operation. Thus, permissible variations are any allowable form of IT or
IR, but if RI or R is used, R must equal N (RI and R forced to N).

The effect of successive references using IDC modification is indicated in the
following examples.

Modi fi cation Ef fective
1 8 16 Type Addr ess Ref er ence
LDA Z,1bDC X 1
z TALLYC B, 10,1 Y 2
B ARG X z 3
ARG Y
ARG z

1 8 16 32
ADRES1 LDA ADRES2, | DC
TTF ADRES1
ADRES2 TALLYC ADRESS, 4, * word addressing and indirect
ADRES3 ARG AD1
ARG AD2
ARG AD3
ARG AD4

ADI1 is the first effective address; AD2 is the second; AD3, the third; and AD4, the
fourth.

67 A2 RJ78 REV0OO

5.2.5.9

Address Modification and Development

Decrement Address, Increment Tally, and Continue (T) = DIC Variation

The DIC variation under IT modification performs in much the same way as the DI
variation except that, in addition to automatic decrementing or incrementing, it
allows the user to continue the indirect chain in obtaining an instruction operand.
The continuation function of DIC operates in the same manner and under the same
restrictions as IDC except that (1) it increments in the reverse direction, and (2)
decrementing/incrementing is performed before obtaining the effective address from
the tally word. (Refer to the first example under IDC and work from the bottom of
the table to the top.) DIC is especially useful in processing last-in, first-out lists (see
the following examples).

Modi fication Ef fective
1 8 16 Type Addr ess Ref er ence
LDA Z
Z TALLYC B
ARG Z
ARG X
ARG Y

B NULL

Assuming an initial tally of -10, the Tally Runout indicator is set on the 10th
reference. There, the 12-bit tally field in the indirect word overflows and becomes
all zeros.

1 8 16 32
ADRES1 LDA ADRES2, DI C
TTF ADRES1
ADRES? TALLYC ADRES3, -4, *N wor d addressing and indirect
ARG AD4, *
ARG AD3
ARG AD2, *N
ARG ADL, *N
ADRES3 BSS 1
ADL ARG A
AD2 ARG B
AD4 ARG C

A 1is the first effective address; B is the second; AD3, the third; and C, the fourth.

67 A2 RJ78 REV0OO 5-23

5.2.5.10

5-24

NovaScale 9000 Assembly Instructions Programmer's Guide

Add Delta (T) = AD Variation

The Add Delta (AD) variation is provided for programming situations where tabular
data to be processed is stored at equally spaced locations (such as data items), each
occupying two or more consecutive memory addresses. It functions in a manner
similar to the ID variation, but the incrementing (delta) of the address field is
selectable by the user.

Each time such a reference is made to the indirect word, the address field of the
indirect word is increased by delta, and the tally portion of the indirect word is
decremented by 1. The addition of delta and decrementing are done after the
effective address is provided for the instruction operation.

The following examples show the effect of successive references using AD
modification.

Modi fi cation Ef fective
1 8 16 Type Addr ess Ref er ence
LDAQ Z, AD (1T B 1
z ETALLY B, 20,2 B+2 2
B EBSS 40 B+4 3
BI+ZQ .D+1

The Tally Runout indicator is set on the 20th reference.

1 8 16 32
ADRES1 LDAQ ADRES2, AD
TTF ADRES1

ADRES2 ETALLYD ADRES3, 10,2 word addressing with DELTA

ADRES3 EBSS

20

The first effective address is ADRES3; the second is ADRES3+2. The tally
decreases from 10 to 0.

67 A2 RJ78 REV0OO

5.25.11

5.2.6

Address Modification and Development

Subtract Delta (T) = SD Variation

The Subtract Delta (SD) variation is useful in processing tabular data in a manner
similar to the AD variation except that the table can be scanned easily from back to
front using a programmer-specified increment. The effective address from the
indirect word is decreased by delta, and the tally is increased by 1 each time an SD
reference is made to the indirect word. This procedure is done before supplying the
operand address to the current instruction, making the SD variation analogous to the
DI variation.

Address Modification Octal Codes

Address modification and 2-digit octal codes for each type of modification are listed
in Table 5-1.

Table 5-1. Address Modification Octal Codes

LOW ORDER OCTAL DIGIT

0 1 2 3 4 5 6 7
H
I 0 N AU | QU DU IC AL QL DL
G
H
1 0 1 2 3 4 5 6 7
0
R 5 N | AU* | Qu* IC* AL* | QL*
D
E
R 3 0* 1* 2* 3* 4* 5* 6* 7*
0
C 4 F SD | SCR
T
A
L & Cl | sC AD DI DIC ID IDC
D
I *N *AU | *QU [*DU *IC *AL QL | *DL
G
|
T 7 *0 *1 *2 *3 *4 *5 *6 *7

67 A2 RJ78 REV0OO 5-25

527

5-26

Address Modification Flowchart

NovaScale 9000 Assembly Instructions Programmer's Guide

The process of address modification is illustrated in flowchart form in Figure 5-1.
(Address register modification is not included in this example.)

Instruction
Containing
y, tm td

v

Fault Routine

Examine tm
Subfield
tm=10 tm=11 tm =01 tm =00
Type IT Type IR Type RI Type R
Modification Modification Modification Modification

Isitthe IT
variable of
a Fault?

v

v

Obtain indirect
word using operand
address. Save reg.

Examine reg.
Field of Indirect
Word

td = 0000
None?

O

Y
©5//td = 0111 or 0011
DU or DL?

Perform type R
Modification
specified by td
to get address
of indirect word.
pull indirect word.

v

v

* R+IT

Reg. specifies
Type RI

Reg. specifies

Type IR

y

©

Reglis used to

modify operand _>

address to obtain

Fetch operand address.

Reg. specifies
none. Modify
address with

saved reg. to

obtain effective

indirect
word

effective address

L_of indirectword, |

Perform incrementing/
decrementing. Get
indirect word and

examine reg.

Is Type R
Modification
specified?

Perform other IT
Modifications (I, ID,

@_’ DI, SC, SCR, CI, AD, SD).
Obtain indirect word.

Obtain effective address
from indirect word.

Is Type RI
Modification
specified?

Obtain operand
—P from effective
address Y.

. Executive

instruction

td = 0011 or
0111
DU or DL?

Add contents of
register specified
by td to operand
address to get
effective address Y.

Convert Type R to
None. Load the

next indirect word.

Figure 5-1. Address Modification Flowchart

67 A2 RJ78 REV0OO

Address Modification and Development

5.2.8 Floatable Code

Program statements may be written in floatable code. Such statements may then be
executed from any location in memory without relocation at load time. Floatable
code is created by use of instruction counter (IC) modification in all references to
locations within a program. Thus, to transfer to location SYM, the following
statement can be written:

TRA SYM*,IC
or
TRA SYM $

The assembler accepts the currency symbol ($) as a valid IC register designator.
The following tag fields in a machine instruction are permitted:

Mnemonic Octal Code
$ 04
$* 24

The assembler computes the difference between the value of the address location
argument of the variable field and the current location as the content of the address
field of the instruction word. The IC is then supplied for modification. *$ is illegal
and will be assembled as *IC.

NOTE: The FLOAT pseudo-operation or $ modification does not apply when used
with SYMREF symbols or within the range of a BLOCK pseudo-
operation.

5.2.9 Address Modification With Address Registers

The address register format allows addressing on a character or bit basis and is used
by the character and bit manipulation instructions of the processor. When an
address register is used to modify an address in which character and/or bit
addressing is not used, the character and bit positions of the address register are
ignored. Address registers (ARn) provide a second-level indexing capability.

67 A2 RJ78 REV0OO 5-27

5291

5-28

NovaScale 9000 Assembly Instructions Programmer's Guide

Single-Word Address Modification

When an address register is to be used in address preparation, its application is
specified in the instruction word. All single-word instructions to which address
modification is applicable have the same instruction word format.

00 0203 04 1718 272829 30 35
TAG 4
AR# | S y OP CODE I| AR
3 1 14 o[1] 1f Tm| Td 4
AR# Address register number, if bit 29 = 1
S Sign bit, if bit 29 =1
y Address field bits 0-17 or bits 3-17, depending on the state of bit
29; must be an absolute value if AR mode is used
OP CODE 10-bit operation code field
I Program interrupt inhibit bit
AR Address register bit:

o Ifbit 29 = 1, use address register specified in bits 0, 1, and 2
of'y field for address modification and use operand descriptor
register specification in bits 0,1, and 2 of y field as the
segment descriptor; bit 3 (sign) is then extended to bits 0, 1,
and 2;

* Ifbit 29 = 0, no address register modification is performed
and the ISR is used as the segment descriptor

TAG Tag field: used to control address modification

* Tm (Bits 30-31): type of address modification

e Td (Bits 32-35): index register or modification variation
designator

NOTE: With some instructions, certain address modification is not permitted, and
if such modification is specified, an Illegal Procedure fault (IPR) occurs.
(Refer to the individual instruction specifications in Sections 8 through

15.)

67 A2 RJ78 REV0OO

Address Modification and Development

The address preparation for a single-word instruction with bit 29 = 1 is listed below.

1. The three most-significant bits of y (0, 1, 2) are decoded to determine which of
the eight address registers is to be used.

2. Bit 3 of the y field is extended to fill bit positions 2, 1, and 0, thus forming a
two's complement signed number.

3. The two's complement y field is then added to the contents of the specified
address register. The character and bit positions of the address register are
ignored, and the contents of the address register remain unchanged.

4. Address modification continues as specified by the tag field of the instruction
word.

Address preparation is described as follows:

00 020304 17
y field of instruction
AR#3 Sl 1 with bit 3 extended
+
00 17 181920 23
' contents of an
AR B Bit address register
18 2 4
00 17 181920 23
. sum of y field and
y+AR 18 B ’ Bit 4 address register
All legal modifications
Continue modification are allowed. Indirect
as specified by tag field. words cannot specify
an address register.
00 17 181920 23
Effective Address B Bit operand address
18 2 4

When bit 29 = 0, the first step of the address modification procedure using the
address register is omitted. The tag field specifies the only address modification
performed.

67 A2 RJ78 REV0OO 5-29

NovaScale 9000 Assembly Instructions Programmer's Guide

When an address register is specified, extending bit 3 of the y field to form a two's
complement signed number effectively designates bit 3 as a sign bit. This extension
leaves 14 bits, 4 through 17, with which to designate an address offset. Thus, an
address offset with values between -2**14 and 2**14-1 can be specified. An
address register, then, contains a complete 18-bit memory address, which may be

offset £16K by the partial address contained in the y field of the instruction (as
shown on the next page).

0
L L]
— T Memory —
AR))
Points Here - 16K Offset Range y field, bit3=1
>
+ 16K Offset Range y field, bit3=0
256K

Coding Examples

1. LDQ 4,N,2
Effective Address= 4 + bits 0-17 of C(AR2)

2. LDQ -4,N,2
Effective Address= -4 + bits 0-17 of C(AR2)

5-30 67 A2 RJ78 REV0OO

Address Modification and Development

5.2.9.2 Multiword Address Modification

The general format of a multiword instruction is given below.

Memory
Location ¢ 17 18 27 28 29 35
0 - . Instruction
Variable Field OP CODE | | MF1 Word
1 Operand Descriptor 1 or Indirect Word Descriptor 1
2 Operand Descriptor 2 or Indirect Word Descriptor 2
3 Operand Descriptor 3 or Indirect Word Descriptor 3
where:
Variable Field contains additional information concerning the operation
to be performed, depending on the particular instruction.
When descriptors 2 and 3 are present, most instructions
provide a corresponding MF2 (bits 11-17) and MF3 (bits
2-8) within the variable field to describe the address
modification to be performed on these operands, when
present. Exceptions to these structures are the CMPCT,
MVT, SCD, SCDR, SCM, SCMR, TCT, and TCTR
instructions.
OP CODE is the 10-bit operation code field. Octal representation
consists of three octal digits corresponding to bit
positions 18-26 and a 1 for bit position 27.
I is the program interrupt inhibit bit.
MF1 is the Modification Field 1 (MF1) which describes

address modification that is to be performed for
descriptor 1.

67 A2 RJ78 REV0OO 5-31

NovaScale 9000 Assembly Instructions Programmer's Guide

5.29.3 Multiword Modification Field

Each modification field (MF) contained in a multiword instruction is a 7-bit field
specifying address modification to be performed on the operand descriptors. The
modification field is interpreted in the following way.

2 3 4 5 through 8 ~— bits (MF 3)
11 12 13 14 through 17 ~4— hits (MF 2)
29 30 31 32 through 35 ~4— hits (MF 1)
AR | RL| ID REG e¢— subfield
1 1 1 4 —a— number of bits
AR= Address Register Specifier
0 No address register used.
1 Bits 0-2 of the operand descriptor address field specify

the address register to be used in computing the
effective address of the operand. Bits 0 - 2 also specify
the operand descriptor register that defines the segment
containing the operand.

RL= Register or Length
0 Operand length is specified in the N field (bits 32-35)
of the operand descriptor.

1 The length of operand is contained in the register that is
specified by code in the N field (bits 32-35) of the
operand descriptor, in the machine format of REG (the
coding format is different).

ID = Indirect Operand Descriptor
0 The operand descriptor follows the instruction word in
its sequential memory location.

1 The operand descriptor location contains an indirect
word that points to the operand descriptor. Only one
level of indirection is allowed.

REG Address Modification Register
Selects the address modification register for R-type
modification of the operand descriptor address field.
The REG codes are approximately the same as the
single-word modifications. In addition, for indirect
string length specification (RL = 1), the N field codes
are similar to the REG field. A comparison of these
codes is shown in Table 5-2.

5-32 67 A2 RJ78 REV0OO

Address Modification and Development

Table 5-2. Register Codes

REG in
Indirect Bits 32-35

Octal REG in Word when of N when Td Field
Code MF (1) ID=1(2) RL=1 of Tag
0000 None None | PR Faul t None
0001 AU AU AU AU
0010 QU QU QU QU
0011 DU | PR Faul t | PR Faul t DU
0100 I C I C | PR Faul t I C
0101 A (3) A (3) A (3) AL
0110 Q (3 Q(3) Q(3) QL
0111 | I PR Fault | PR Faul t | PR Faul t DL
1000 X0 X0 X0 X0
1001 X1 X1 X1 X1
1010 X2 X2 X2 X2
1011 X3 X3 X3 X3
1100 X4 X4 X4 X4
1101 X5 X5 X5 X5
1110 X6 X6 X6 X6
1111 X7 X7 X7 X7

Notes for Table 5-2:

1. The register content is interpreted as character or bit index. For alphanumeric

descriptor, this index is the number of 9-bit, 6-bit, or 4-bit characters,

depending data type specified in the descriptor. For a numeric descriptor, it is

the number of 9-bit or 4-bit characters, also depending on the data type

specified. For a bit descriptor, it is the number of bits.

2. Register contents are interpreted as a word index.

3. The A- and Q-registers provide for indexing number greater than 2**18-1.
When the A or Q register is specified, the number of right-justified bits for

indexing depends on the type of unit reference that is specified in the operand
referring to the A- or Q-register:

All addressing is "modulo addressing". For example, when software indexes

18 bits for full-word (36-bits) operations,
21 bits for 9-bit and 6-bit character operations,

22 bits for 4-bit character operations,

24 bits for bit operations.

backwards by N words, it actually indexes forward by 2**18-N words. This same
method is also used in character and bit indexing.

67 A2 RJ78 REV0OO

5-33

5-34

NovaScale 9000 Assembly Instructions Programmer's Guide

Unit No. Units/Word No. to Effectively Yield -N
Word 1 2*%%18 - N

9-bit 4 4 *2*¥*¥[8 -N (2*¥*20-N)
4-bit 8 8 *2*¥*18 -N (2**21 -N)
6-bit 6 6 * 2*¥*18 - N

1 bit 36 36 *2*¥*18 - N

For indexing 9-bit, 6-bit, 4-bit, and 1-bit characters, A and Q can be loaded with 4,
DU; 6,DU; 8,DU; or 36,DU; respectively. Then N can be subtracted.

The index register designations may be specified by a symbol defined by the user to
have a value in the octal range of 0, 1, ...,7. An indirect descriptor may be
designated (e.g., 10, 11,...,17) when the RL usage is in a descriptor that does not
immediately follow the multiword instruction.

Examples
1 8 16
XA BOOL 17

M.R (0,1),(0,1)
ADSCO A 0, XA
ADSC9 B, 0, XA

This procedure is used to specify a move of the number of characters specified by
the current value of index register 7. Similarly, the following code provides for the
sending address of the move to be specified indirectly in the word labeled LA:

1 8 16
MR (0,1,1),(0,1)
ARG LA

ADSC9 B, 0, XA

LA ADSCO A 0, XA

As a precaution, all index register symbols should be defined with octal values in the
range 10, 11,...,17 because the assembler uses only the low-order 3 bits (in all
contexts except the indirect descriptor, where the symbol cannot be identified from
context as an index register designation).

The content of the IC is always interpreted as a word address when used in address
modification. During the entire execution of a multiword instruction, the IC points
to the instruction word. Thus, if IC address modification is involved with a
descriptor word, the instruction word address is used.

Specifying DU or DL type address modification in the REG field of an indirect
operand descriptor is illegal and causes an IPR fault. DU address modification is
legal for MF2 of the SCD, SCDR, SCM, and SCMR instructions. For all other
instructions, an IPR fault occurs.

67 A2 RJ78 REV0OO

Address Modification and Development

5.2.10 Operand Descriptors
The operand descriptors describe the data to be used in the operation and provide the
basic address for obtaining the data from memory. A unique operand descriptor

format is required for each of the three data types: bit string, alphanumeric, and
numeric.

5.2.10.1 Bit String Operand Descriptor

00 0203 1718 19 20 23 24 35

AR# y c b N
3 15 2 4 12

The coding format for the bit string descriptor (BDSC) is given below.

BDSC Bit descriptor

BDSC LOCSYM N, ¢, b, AM

5.2.10.2 Alphanumeric Operand Descriptors

00 02 03 17 18 20 21 22 23 24 25 29 30 35
S

AR# y CN TA or SF N
SX

Coding formats for the alphanumeric descriptors are listed below.

1. ADSC9 - ASCII alphanumeric descriptor

ADSC9 LOCSYM CN, N, AM

ADSC9 sets the TA field for 9-bit ASCII characters.

2. ADSCG6 BCI alphanumeric descriptor

ADSC6 LOCSYM CN, N, AM

ADSCS6 sets the TA field for 6-bit BCI characters.

67 A2 RJ78 REV0OO 5-35

NovaScale 9000 Assembly Instructions Programmer's Guide

3. ADSC4 Packed decimal alphanumeric descriptor

ADSC4 LOCSYM CN, N, AM

ADSC4 sets the TA field for 4-bit packed decimal characters.

5.2.10.3 Numeric Operand Descriptors

00 02 03 17 18 20 21 22 23 24 29 30 35
T S
AR# y CN N or SF N
SX

Coding formats for the numeric descriptors are listed below.

1. NDSC9 ASCII numeric descriptor

NDSC9 LOCSYM CN, S, SF, AM

NDSC9 sets the TN field for 9-bit ASCII characters.

2. NDSC4 Packed decimal numeric descriptor

NDSC4 LOCSYM CN, N, S, SF, AM

NDSCH4 sets the TN field for 4-bit packed decimal characters.

Legend for the machine and coding formats of the descriptors

y= starting data word address;
18 bits (0-17) if address register not specified in MF

15 bits (3-17) if address register specified in MF, with bit 3
extended, i.e., if bit 3 is zero, bits 0-2 are also considered to
be zero; if bit 3 is 1, bits 0-2 are also considered to be 1s.

5-36 67 A2 RJ78 REV0OO

Address Modification and Development

c= starting character position within a word of 9-bit characters;
Code Char
00 0
01 1
10 2
11 3
b= starting bit position within a 9-bit character
Code Bit
0000 0
0001 1
0010 2
0011 3
0100 4

0101 5 All other combinations of
0110 6 these 4 bits are illegal

0111 7 codes and will cause an
1000 8 IPR fault.
N= either the number of characters or bits in the data string if

RL =0 in MF or a 4-bit code (bits 32-35) that specifies a
register (see Table 5-2) that contains the number of characters
or bits if RL = 1 in MF

CN= starting character number within the data word specified by the
starting data word address; legal codes for the CN depends on
the data type as shown below; coding entry is by the character
shown under CN Character

Data CN Legal Illegal
Type Character Codes Codes
9-bit 0 000 001

1 010 011

2 100 101

3 110 111
6-bit 0 000 110

1 001 111

2 010

3 011

4 100

5 101
4-bit 0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

67 A2 RJ78 REV0OO 5-37

5-38

TA

TN

SX =

SF =

AM

NovaScale 9000 Assembly Instructions Programmer's Guide

a code that defines which type of alphanumeric character is
used in the data

Code Data Type

00 9-bit
01 6-bit
10 4-bit
11 illegal - causes IPR fault

a code that defines which type of numeric character is specified
Code Data Type

0 9-bit (unpacked data)

1 4-bit (packed data)
Character Code Description
0 00 Floating point, leading sign
1 01 Scaled fixed-point, leading sign
2 10 Scaled fixed-point, trailing sign
3 11 Scaled fixed-point, unsigned

sign and scaling (for X operation codes)

if TN = 0 (unpacked data)
00 leading sign, overpunched, scaled
01 leading sign, separate, scaled
10 trailing sign, separate, scaled
11 trailing sign, overpunched, scaled

if TN =1 (packed data)
00 leading sign, overpunched, scaled
01 leading sign, separate, scaled
10 trailing sign, separate, scaled
11 trailing sign, overpunched, scaled

scaling factor

a two's complement binary number that gives the scale point
position for scaled decimal numbers

The decimal point is assumed to be immediately to the right of
the least-significant digit. The scaling factor is treated as a
power of ten exponent where a positive number moves the
scaled decimal point to the right and a negative number moves
it to the left. Since the SF field is 6 bits, the largest number
expressible is M x 10**31 and the smallest number is M x
10**-32, where M is the value of the data described by the
numeric operand descriptor.

This field is ignored if S = 00.

Example: If data = 12345, S is not 00, and SF = -3, the value is
12.345.

address register modification, used when AR = 1 in MF field

67 A2 RJ78 REV0OO

5.2.10.4

Address Modification and Development

Indirect Word

The basic instruction word containing the operation code is followed by either zero,
two, or three descriptor words, with the number of descriptor words being
determined by the particular instruction. The descriptor words contain either the
operand descriptor or an indirect word that points to the operand descriptor. When
an indirect word points to the descriptor, the format of the indirect word is structured
as shown below.

00 0203 17 18 28 29 303132 35
AR# Address Ignored AR| 00| REG
3 15 11 1 2 4
Register
Address Register Number Modification
(if bit 29 specifies address Specifier

register modification . . o
g fication) Address Register Modification Specifier

The AR and REG fields are identical in function to the corresponding modification
fields in the instruction word, except that the register content specified by the REG
field of an indirect word is interpreted as word index only.

Indirect words can be generated with the ARG pseudo-operation:

1 8 16

"""" ARG LOCSYMRMAM
where

LOCSYM address

RM register modification

AM address register modification
Example

1 8 16

"""" ARG DFPRSS,.4

67 A2 RJ78 REV0OO 5-39

5.2.10.5

5-40

NovaScale 9000 Assembly Instructions Programmer's Guide

Operand Descriptor Address Preparation Flowchart

A flowchart of the operations involved in operand descriptor address preparation is
shown in Figure 5-2. The chart depicts the address preparation for operand
descriptor 1 of a multiword instruction as described by modification field 1 (MF1).
A similar type address preparation would be carried out for each operand descriptor
as specified by its MF code.

1.
2.

10.

11.

12.

The multiword instruction is obtained from memory.

The indirect (ID) bit of MF1 is queried to determine if the descriptor for
operand 1 is present or is an indirect word.

This step is reached only if an indirect word was in the operand descriptor
location. Address modification for the indirect word is now performed. If the
AR bit of the indirect word is 1, address register modification step 4 is
performed.

The y field of the indirect word is added to the contents of the specified address
register.

A check is now made to determine if the REG field of the indirect word
specifies that a register type modification be performed.

The indirect address as modified by the address register is now modified by the
contents of the specified register, producing the effective address of the operand
descriptor.

The operand descriptor is obtained from the location determined by the
generated effective address in item 6.

Modification of the operand descriptor address begins. This step is reached
directly from 2 if no indirection is involved. The AR bit of MF1 is checked to
determine if address register modification is specified.

Address register modification is performed on the operand descriptor as
described under "Address Modification with Address Registers" above. The
character and bit positions of the specified address register are used in one of
two ways, depending on the type of operand descriptor, i.e., whether the type is
a bit string, a numeric, or an alphanumeric descriptor.

The REG field of MF1 is checked for a legal code. If DU is specified in the
REG field of MF2 in one of the four multiword instructions (SCD, SCDR,
SCM, or SCMR) for which DU is legal, the CN field is ignored and the
character or characters are arranged within the 18 bits of the word address
portion of the operand descriptor.

The count contained in the register specified by the REG field code is
appropriately converted and added to the operand address.

The operand is retrieved from the calculated effective address location.

67 A2 RJ78 REV0OO

Address Modification and Development

Operand descriptor address preparation is illustrated in the flowchart in Figure 5-2.
Procedures for the preparation of bit string addresses and alphanumeric/ numeric

addresses follow.

Fetch
Instruction
from Memory

No

No,

Modify y of
Operand
Descriptor
by AR

Yes

Modify y of
Indirect Word

with AR

No,

> ®

Yes

Modify y of
Operand
Descriptor
with REG

] ©

Fetch
Operand
from
Memory

e

Indirect

Modify y of
Indirect Word
with REG

—L@

Fetch
Operand
Descriptor
from Memory

O

Figure 5-2. Flowchart for Operand Descriptor Address Preparation

67 A2 RJ78 REV0OO

5-41

NovaScale 9000 Assembly Instructions Programmer's Guide

5.2.10.6 Operand Descriptor Bit String Address Preparation

00 0203 17 1819 20 23
y, ¢, and b fields
- y c b of descriptor with
3 15 2 4] bit 3 of y extended
+
00 17 1819 20 23
contents of address
WORD CHAR BIT register specified by
18 2 4] bits 0,1, 2 of y
yields
00 17 1819 20 23
modified
Y C B descriptor
18 2 4| address
where:
Y =WORD +vy
C=CHAR +cC
B=BIT+b

1. If(BIT + b) exceeds 8, a carry is generated to character position
Cand B=(BIT+b)-9

BIT+b =12 carry 1 to Cand B =12 -9 = 3

2. If (CHAR + ¢ + carry from B) exceeds 3, a carry is generated to the word
address and C = (CHAR + ¢ + carry from B) -4:

CHAR = 2
c = 3
carry + 1
= 6, carry 1 to word address and

C=6-4=2

5-42 67 A2 RJ78 REV0OO

Address Modification and Development

5.2.10.7 Operand Descriptor Alphanumeric/Numeric Address Preparation

First, the data type designator (TA for alphanumeric, TN for numeric) is checked to
determine the character size. If the data is in 9-bit characters, then the descriptor
address and CN fields can be added directly to the address register contents.

00 0203 04 17 18 19 20
y and CN fields of the
-*+—S y CN [O numeric or alphanumeric
3] 1 14 2| 1| descriptor, bit 3 extended
+
00 17 18 19
contents of WORD and
WORD CHAR CHAR positions of address
18 2 register designated by bits
0,1,2o0fy
yields
00 17 18 19
modified
WORD +y S HC'?\]R character
18 2 address

Bits 20-23 of the address register are ignored. CHAR is added to bits 18 and 19 of
CN. Bit 20 of the descriptor is zero and is not used. If CHAR + CN is greater than
3, a carry is generated to WORD + y and CHAR + CN = (CHAR + CN) -4.

If the data is in 4- or 6-bit characters, the 9-bit character representation contained in
the CHAR and BIT portions of the specified address register is interpreted to
determine the corresponding 4- or 6-bit character position within the memory word.
Translation to a 4-bit character location can be accomplished in the following way:

C=2 (CHAR) + [(BIT + 4)/9 truncated].

If CHAR = 3 and BIT = 7,
then C=2(3) + 1 =7.
If CHAR = 3 and BIT = 4,
then C=2(3) + 0 = 6.

67 A2 RJ78 REV0OO 5-43

5-44

NovaScale 9000 Assembly Instructions Programmer's Guide

A 6-bit character location can be translated in this way:

9 (CHAR) + BIT
(o= (truncat ed)

If CHAR = 3 and BIT = 7,

9 (3) +7

The remainder of 4 (which represents the bit position within character position 5) is
ignored, forcing the address register to point to the next lower character boundary.

The address modification can now take place.

00 0203 04 17 18 20
y and CN fields of the numeric
7S y CN or alphanumeric
3] 1 14 3| descriptor, bit 3 extended
+
00 17 18 20
WORD CAR contents of WORD position
18 3 of address register
designated by bits 0, 1, 2
yields of y; CAR is the character
00 1718 20 location translated from
CHAR and BIT of
WORD +y CN + address register
18 CAR 3

For 4-bit character mode, if CN + CAR is greater than 7, a carry is generated to
WORD +yand CN + CAR = (CN + CAR) -8.

For 6-bit character mode, a carry is generated to WORD + y when CN + CAR is
greater than 5 and CN + CAR = (CN + CAR) -6.

67 A2 RJ78 REV0OO

Address Modification and Development

In the next step of operand descriptor address preparation (item 10 in the flowchart
of Figure 5-2), the REG field is checked for a legal code. If DU is specified in the
REG field of MF2 in one of the four multiword instructions (SCD, SCDR, SCM, or
SCMR) for which DU is legal, the CN field is ignored, and the following
arrangement of character or characters within the 18 bits of the word address portion
of the operand descriptor results.

Operand descriptor word address field (y) Character type (TA)

00 0809 17
CHAR 0O CHAR 1 9-bit characters

9 9

00 05 06 1112 17
CHAR O CHAR 1 ignored 6-bit characters

6 6 6

0001 0405 0809 17
0| CHARO| CHAR 1 ignored 4-bit characters

4 4 9

In cases where only one character is involved (SCM, SCMR), only character 0 is
used.

In step 11 of the flow chart (Figure 5-2), the count contained in the register specified

by the REG field code is appropriately converted and added to the operand address.
The count conversion required depends upon the type of data.

67 A2 RJ78 REV0OO 5-45

5.2.10.8

5-46

NovaScale 9000 Assembly Instructions Programmer's Guide

Operand Descriptor Address Preparation - Bit Operations

The bit count contained in the register is effectively divided by 36 to give a word
count (WD) with a bit remainder (BR). Dividing the bit remainder by 9 gives a
character count with a bit remainder. Thus, the original bit count (BC) is converted
to a word count, 9-bit character count (CC) and bit remainder, which is in proper
form to add to the bit operand address. An example of the effective conversion is

shown below.

bit count fromregister/36 = Wb and BR
BR/'9 = CC and BC

expressed as a 24-bit address modifier

00 17 18 19 20 23
WD CC BC
18 2 4
+
00 17 18 19 20 23
ym cm bm
18 2 4
yields YCB:
00 17 18 19 20 23
CcC BC
WD +ym + +
18| cm2 bm 4

converted bit
count

modified bit
descriptor
operand
address

effective bit
address

Carries may occur from (BC + bm) to (CC + cm) and from (CC + c¢cm) to (WD +
ym) as described in step 9.

67 A2 RJ78 REV0OO

Address Modification and Development

The formation of WD involves two conditions:

1. If WD is a small number (expressible in less than 18 bits), it is right justified in
the 18-bit word area with zero-fill in the most-significant bit positions. Thus,
bit counts are always positive, are not two's complement, and have no bit
extensions.

2. If the bit count comes from the A- or Q-registers, division by 36 may produce a
WD greater than 2**18-1. In this case, the result is interpreted modulo 2**18.
For example, if the bit count is (2*%24)-1:

(2**24)-1 = 466, 033 with BR =27
36
Thus, WD = 466,033 -262, 144 =203, 899
And, BR/9 = 27/9 = 3 with 0 remainder
Sothat, WD = 203, 889
C = 3
BC = 0

No errors occur. The operation is legal and the results are predictable.

67 A2 RJ78 REV0OO 5-47

5.2.10.9

5-48

NovaScale 9000 Assembly Instructions Programmer's Guide

Operand Descriptor Address Preparation - Character Operations

The character count contained in the register is divided by 4, 6, or 8 (depending
upon the data type), which gives a word count with a character remainder. The word
and character counts are then appropriately arranged in 21 bits (18-word address and
3 for character position) and added to the modified descriptor operand address. The
appropriate carries occur from the character positions to the word when the summed
character counts exceed the number of characters in a 36-bit word. When the A- or
Q-registers are specified, large counts can cause the result of the division to be
greater than 2**18-1, which is interpreted modulo 2**18, the same as for bit
addressing.

As the final step (see 12 in Figure 5-2), the calculated effective address location is
used to retrieve the operand.

EXAMPLES
1 8 16 32
* OPERAND DESCRI PTOR EXAMPLES
MR, , 020, 1 nove bl anks to output record
ADSC6 ., 0
ADSC6 PRTQUT, 0, 55+80- 31
M.R move col unms 31-80

ADSC6 RDWRK+5, 0, 80-31+1 to print colums 55-104
ADSC6 PRTOUT+9, 0, 80- 31+1

LDX7 31-1, DU ditto
LDX6 55-1, DU

LARS =V18/ RDWRK

LAR4 =Vv18/ PRTOUT

M.R (1,,,7),(1,,,6)
ADSC6 ,,80-31+1,5

ADSC6 ,,80-31+1, 4

LARS =V18/ RDWRK ditto
LAR4 =Vv18/ PRTOUT

LDX3 80-31+1, DU

MR (1,1),(1,1)

ADSC6 5,0, X3,5
ADSC6 9,0, X3, 4

67 A2 RJ78 REV0OO

5.3

53.1

5.3.2

Address Modification and Development

Address Generation In ES/El Modes

This subsection discusses the generation of effective addresses only insofar as it
differs from the NS mode.

The instruction field and register used in the generation of an effective address are
interpreted in a number of ways. See the subsections below.

Instruction Address Field

Address preparation for all instructions starts with the address field of an instruction
word (or the address field of an indirect word or data descriptor). All instruction
words have the same format:

00 0203 04 1718 272829 30 35
TAG ¢

AR# | S y OP CODE 1| AR
3| 1 14 10/2] 2| Tm| Td 4

Definitions for the individual fields of this format are found under "Single-Word
Address Modification" in this section. The diagrams that follow start with only the
address portion of an instruction field (bits 0 - 17).

Address Modification With No AR Indicated

When bit 29 = 0, no AR modification is specified. The sign (S) of (y) is extended 16
bits to the left, starting at bit 0.

16 bits
|"—'I.] 00 17
_______ As seen by Effective
53 Sl y 17["®= = Address Adder
00 * 33 34 39
Intermediate Word Address 34 000000 6

67 A2 RJ78 REV0OO 5-49

5-50

NovaScale 9000 Assembly Instructions Programmer's Guide

When bit 29 = 0, address generation proceeds in the following way.

0 17
Bit29 =0. No AR
y = = Modif. Address field
16 bits = bits 0-17
§ v 0 17
SSm e ——— sl s y As seen by Effective

wst= = = Address Adder

01 2 35
XX A/QGXn Register Contents
B 33
0 33 34 36 39
Effective Address BYTE| BIT

The y field of an instruction/indirect word/data descriptor is interpreted as given in
the two's complement form. Bit 0 is assumed as a sign. To generate the effective
address, bit 0 is extended 16 bits to the left. Bit 17 expresses the word location. Up
to 128KW-1 can be used to represent addresses in the positive direction. When the
A, Q, or a GXn register is used in the R modification of a basic instruction (single-
word), bits 2 through 35 are treated as word address and bits 0 and 1 are ignored.
An AL/QL specification in the tag field modification specifies 36-bit A/Q registers.
An AU/QU specification results in an IPR fault. Address modification specified by
the tag field is performed, resulting in the effective address.

In EI mode only, IC modification causes bits 0—33 of the IC to be used as a word
offset.

EXAMPLES
EFFECTI VE
1 8 16 ADDRESS
(1) EAX4 1
LDA B, 4 Y = B+l
B
(2) LDA =4, DL
LDQ C AL Y = C+4
C
(3) EAQ 3
STA B, QL Y = B+3
B

With no AR modification specified, address modification is processed in the same
way as address modification in NS mode, with the exception of the AU/QU
modification.

67 A2 RJ78 REV0OO

Address Modification and Development

5.3.3 Address Modification With AR Indicated

Address register modification is performed when instruction word bit 29 =1 or
when the AR bit of a multiword instruction's MF field is 1.

0234 17
Bit 29 = 1 with AR
AR|S y Modif. Address field
3| 1 14| === = pjts 3-17
19 bits
' 0 2 3| 17
As seen by Effective
Smmm—m——- S|SSS| S y ~= == Address Adder
311 14
: 0 33 -w= == EA bit positions
ARn 0 1 * 29 30 32 35
ssss| s Word value of ARn BYTE| BIT | Contents
1 28 2 4| ©ofARn
: +
0 1:2 35
XX A/QGXn Register Contents
2 34
0 = 33
0 33 34 36 39
Effective Address BYTE| BIT
34 2 4

AR+y carry is ignored

Bits 3 through 17 of an instruction/indirect word/data descriptor are interpreted as
given in a two's complement form. Bit 3 is assumed as a sign. To generate an
effective address, bit 3 is extended 19 bits to the left. Bit 17 expresses the word
location.

The address register ARn is interpreted as extended to 36 bits as indicated in the
previous format. ARn is interpreted as given in a two's complement form with bit 0
as a sign bit. In effective address generation, bit 0 is extended 4 bits to the left. Bits
0 through 29 are interpreted as a word address, bits 30 and 31 as a byte address
within the word, and bits 32 through 35 as a bit address within the byte. If BIT > 8§,
BIT = 8 is assumed.

Every specification of an index register (Xn) is interpreted as specifying a 36-bit
GXn. An AL/QL specification in the register modification (R modification, REG
modification, N when RL = 1) specifies the 36-bit A/Q registers. Any AU/QU
specification results in an IPR fault. When GXn is used in the R modification of a
basic instruction (single-word instruction), bits 2 through 35 are treated as a word
address. When GX/A/Q is used in the REG modification of a multiword instruction,
bits 0 through 35 are treated as the number of bytes specified by the bit number in
the data descriptor.

67 A2 RJ78 REV0OO 5-51

5-52

NovaScale 9000 Assembly Instructions Programmer's Guide

EXAMPLES
EFFECTI VE
1 8 16 ADDRESS
(1) EAX2 2 (X2=2)
AVDX 1,2,3 AR3 = 3/0/0
ST1Z B, 2,3 Y = B+5
(2) EAX3 1 (X3=1)
AVDX 2,3, 1 AR1=3/0/0
LDA B, , Y=B+3
(3) AVDX 4,.,3 AR=4/0/0
EAX4 B X4= address of B
STA 1,4,3 Y=B+5
(4) EAX4 B
AWDX 0,4,2 AR2= address of B
STA 2 Y=B+2

67 A2 RJ78 REV0OO

Address Modification and Development

534 Tag Field Modification

In a basic instruction (single-word instruction), a tag field modification is performed
after the AR modification (see format below).

Instruction bits ————>» 30

31 32

35

tm

td

tag field

The interpretation of a tag field and the accompanying modification method are the

same as in the NS mode except that the address modification by the register
(A/Q/GXn/IC is altered as illustrated below. This modification generates the

following items:

* an operand address in R modification (tm = 00),

* an indirect word address in RI modification (tm = 01), and

e an operand address in IR modification (tm = 10).

The following should be noted with A/Q/GXn modification:
1. EA (effective address) may be represented as Y

The GXn specification code is identical to the Xn specification code;

2
3. The A/Q specification code is identical to the AL/QL specification code; and
4. An AU/QU specification results in an IPR fault.

67 A2 RJ78 REV0OO

5-53

NovaScale 9000 Assembly Instructions Programmer's Guide

EXAMPLES
EFFECTI VE
1 8 16 ADDRESS
R- Type
(1) EAX2 1
LDA B, 2 Y=B+1
(2) LDQ =3, DL
LDA B, QL Y=B+3
Rl - Type
Z ARG B
ARG A, 2%
ORG A+5
A ARG B, 5*
ORG B+1
(1) EAX2 1
LDA Z,2* Y=B+1
(2) EAX1 0
STQ Z, 1* =B
(3) EAX2 3
STA Z, 2* Y=A+5
I R- Type
(1) LDQ 3, DL
LDA Z,*QL Y=B+4
z ORG B+1
(2) EAX1 3
LDQ X, *1 Y=B+8
X ORG B+5

5-54

67 A2 RJ78 REV0OO

Address Modification and Development

5.35 IC Modification

IC modification is the only case where effective address generation is different for

ES and EI modes.

5.35.1 ES Mode

When IC modification is specified, effective address development in ES mode is
structured in the following way.

0 33 34 36 39
AR +y Word B BIT
Value 34 2 4
: 16 bits + :
| —"—— 0 17:
n | .
0 W 0 IC
: 18 : :
0 - 33134 136 39
EA (y) Effective Address B BIT
34 2 4

Carry ignored

The contents of the instruction counter extended on the left with 16 bits zero filled is
added to the contents of AR +y.

EXAMPLES
1 8 16 EFFECTI VE ADDRESS
| C added to AR
(1) AVDX 0,Q.,3
AVDX 1,Q,4
AVDX 2,Q,2
SZN TEST
TZE TEST Y=I C+AR3
™ 0,%,4 Y=| C+AR4
TRA 0,%,2 Y=| C+AR2
(2) AVDX 1, AL, 2
LDA 2,%,2 Y=| C+AR2

67 A2 RJ78 REV0OO

5-55

5.3.5.2

5-56

NovaScale 9000 Assembly Instructions Programmer's Guide

El Mode

A 34-bit IC is added to the contents of AR +y in EI mode. When the instruction
TAG specifies IC REG modification, IC(0-33) is used as a word address.

When IC modification is specified, effective address development in EI mode is

structured in the following way.

0 3334 36 39
AR +y Word B | BIT
34 2 4
'. . |
‘0 33
IC Word
‘0 - 33:34 ‘36 39
EA Word
34

When DU/DL modification is specified, effective address modification interprets the

operand data in the following way.

For DU
0 17 18 35
A(AR +y) 16-33 00 == == == = ——— - 0
18 18
For DL
0 1 2 35
00 AR +y AR +y bit
positions
00 33
EXAMPLES
EFFECTI VE
1 8 16 ADDRESS
Conmpare GX1 to AR3
(1) EAX1 A GX1 = address of A
CVPX 1,DL, 3
Load AU with contents of AR2
(2) EAX3 B
AWDX 0,3,2 AR2=addr ess of B
LDA 0, DU, 2

67 A2 RJ78 REV0OO

5.3.6

Address Modification and Development

Operand Descriptor Modification

When REG modification is specified in the MF field of a multiword instruction, it is
processed in the following way.
When A/Q/GXn is specified,

1. the 36 bits of A/Q/GXn are used as the character number which is the character
address and

2. an AU/QU specification results in an IPR fault.

EXAMPLES

EFFECTI VE
1 8 16 ADDRESS
(1) This code nobves the string "SOURCE" to the first six
characters of "TO. The contents of X3 act as an
offset into the source text.

LDX3 =11,DL
MR (,,,3),,040

ADSC9 FROM 1, 6
ADSC9 TG0, 0,6

FROM AéCI I 9, TH S I S THE SOURCE TEXT
TO BSS 2

(2) The string "LE " is noved to XB, starting at the third
character of XB. The Qregister can be used in the

same way.
LDA =4, DL
'\/LR (”’A)!(!!;;);040
ADSC9 XA 0, 3
ADSC9 XB, 2,3
XA ASCI| 5, SAVPLE TEXT TO MOVE
XB BSS 3

When IC is specified in the REG modification, it is treated as an 18-bit word
address. However, when the CPU is in EI mode and IC REG modification is
specified in the MF field of a multiword instruction, IC(0-33) is used as a word
address.

67 A2 RJ78 REV0OO 5-57

NovaScale 9000 Assembly Instructions Programmer's Guide

EXAMPLES

EFFECTI VE
1 8 16 ADDRESS
The string "HSIS" is noved to Y, beginning with the
first character.

EAX3 Y
AWDX 0,3,2 AR2=addr ess of Y

MR (,,,10,(1,,,), 040

ADSCO 3,1

ADSC9 0, 0,
a4, T
2

X ASCl | ,S 'S THE TEXT

Y BSS

When DU/DL is specified,
1. DL an IPR fault occurs;
2. DU permitted only in the SCD, SCDR, SCM, and SCMR instructions.

The effective address (EA(y)) generated by the operand descriptor is treated as
follows:

For 9-bit characters, Bits 16 through 33 of the effective address (EA(y)) are
interpreted as character data according to its data format (TA or TN field of the
descriptor).

00 15 16 24 25 33 34 35

9-bit

Char 0 Char 1
characters

16 9 9 2

For 6-bit characters, Bits 16 through 27 of the effective address (EA(y)) are
interpreted as character data according to its data format (TA or TN field of the
descriptor).

00 15 16 21 22 27 28 35

Char 0 Char 1 6-bit
characters

16 6 6 8

For 4-bit characters, Bits 17 through 24 of the effective address (EA(y)) are
interpreted as character data according to its data format (TA or TN field of the

descriptor).
00 16 17 20 21 24 25 35
Char 0 | Char 1 4-bit
characters
17 4 4 11

For the SCM or SCMR instructions, only CHARO indicated in the diagrams is used.
The shaded portions are ignored during effective address generation.

5-58 67 A2 RJ78 REV0OO

5.4

541

Address Modification and Development

Address Development

This section discusses the following details of address development: virtual memory
addressing, virtual address generation for NS mode, virtual address generation for
ES/EI modes; and working space zero.

Virtual Memory Addressing

Virtual memory provides the processor with a virtual memory capability, consisting
of a directly addressable virtual space of 2**43 bytes and the mechanisms for
translating this virtual memory address to a real memory address. Memory paging is
an integral part of the translation process for this conversion. In both NS and ES
modes, the hardware can also enter working space 0 and use page tables prepared by
the Maintenance System Operating Supervisor when the system was initialized. In
WSO, a total of 2**28 bytes can be accessed.

To provide for virtual memory management, assignment, and control, the 2**43
byte virtual memory space is divided into smaller units called working spaces and
segments.

Working Spaces (WS)

The 2**43 bytes of virtual memory space are divided into 512 2**34-byte working
spaces (WS). WS numbers used to generate a particular virtual memory address are
obtained from one of the eight WS registers or a segment descriptor register (Dr).
The WS number is the contents of the 9-bit WS registers or a 9-bit WSN field in a
segment descriptor register.

Segments

A segment is part of a working space and may be as small as one byte or as large as
2**32 bytes for an extended segment. (GCOS disallows the use of contiguous
working spaces for a single segment.) Thus, unlike the fixed size of a WS, a
segment size is variable. Segments are described by a 72-bit data item called a
descriptor.

When a virtual address is generated, the descriptor (more commonly referred to as
the segment descriptor) is contained in a register such as the instruction segment
register (ISR). For operands, the descriptor may be contained in other segment
descriptor registers. The area of virtual memory constituting a segment is "framed"
by the segment descriptor by defining a base value relative to the base of the WS
and a bound value relative to the base of the segment.

Virtual memory affects memory address development for both instructions and
operands in Privileged Master, Master and Slave modes of operation.

67 A2 RJ78 REV0OO 5-59

54.1.1

54.1.2

5-60

NovaScale 9000 Assembly Instructions Programmer's Guide

Operand Address Procedure

In the first phase of address generation, the effective address (EA) of the operand is
generated as previously described for effective address generation. The EA is that
address obtained after all register modification and indirect processing has taken
place. It is an 18-bit word, 20-bit byte, or 24-bit bit address in the NS mode, and a
30-bit word, 32-bit byte, or 36-bit bit address in the ES/EI mode.

After the EA has been formed, the processor hardware forms the virtual memory
address of the operand using the base, bound, and WS values from 1 of 9 segment
descriptors. If bit 29 of the instruction for which the operand address is being
prepared is zero, then the operand resides in the instruction segment, and the base,
bound, and WS from the instruction segment register (ISR) are used to form the
virtual address of the operand. If bit 29 of the instruction is one, then descriptor
register n (Dr) specified by bits 0, 1, and 2 of the address field of the instruction is
used.

NOTE: Specifying DRn constitutes specifying ARn and vice versa.

When indirect EA development is involved, the following rules apply.

a) When DRn and ARn are involved (instruction bit 29 = 1), ARn is applied only
to the first address in a chain of indirect addresses. However, the base, bound,

and WS from DRn are applied to each memory reference in the indirect chain.

b) When no DRn/ARn is specified (instruction bit 29 = 0), the base, bound, and
WS of the ISR are applied to each memory reference in an indirect chain.

¢) A word in an indirect chain cannot specify a DRn.

d) An XEC or XED instruction does not constitute an indirect chain. Therefore,
the instruction executed may specify a different DRn from the XEC/XED
instruction, or no DRn. If the instruction executed by the XEC/XED does not

specify a DRn, the base, bound, and WS from the ISR are used to form the
virtual address of the operand.

Instruction Address Procedure

Virtual addresses for instructions are always formed using the value in the
instruction counter (IC) and the base, bound, and WS from the ISR.

67 A2 RJ78 REV0OO

54.2

5421

Address Modification and Development

Virtual Address Generation For NS Mode

For all memory accesses, a virtual address must be generated. The mechanics of
generating the virtual memory address depend on whether the involved segment
descriptor is a standard descriptor or a super descriptor. Thus, the procedure
described below for generating the operand virtual address with a standard
descriptor also applies to virtual address generation for accessing the instruction,
argument, parameter, and linkage segments (the registers holding the descriptors that
define these segments may only contain standard descriptors).

Standard Descriptor NS Mode

The method of forming an operand virtual address with a standard descriptor is
shown in Figure 5-3. If instruction bit 29=0, the ISR is used. If bit 29=1, then DRn
is used.

0 17 18 20 23 0 19
a_ 0 EFFECTIVE B | BIT DRn Bound or
__ ADDRESS 18 2 4 ISR Bound 20
E S S R S
: : Bound Check
:0 333435
Bou.nd Fault if Carry — —— SEGMENT BASE B
is generated From DRn or ISR 34 2
Bound Fault if
Out of Bounds
Bits 0 and 1 saved 10 2 333435 :))
to make WSN Access |- —— EA + BASE p [=—————— Relative Virtual
Control Check 2 34 2 : Address
: OR
0 678
WSN
1 2
‘0 g9 40 42 43 46
EFFECTIVE WORD ADDRESS Resulting Virtual
WORKING WITHIN WORKING B | BIT [g———__ Address
SPACE ¢ SPACE 32 2 4
where B = page byte

WSN = working space number

Figure 5-3. Virtual Address Generation Using Standard Descriptor (NS Mode)

67 A2 RJ78 REV0OO 5-61

54.2.2

5-62

NovaScale 9000 Assembly Instructions Programmer's Guide

The bound check is applied to the effective address at the byte level. The bound
check is shown for byte or bit instructions. The checks for single-word or multiword
instructions require inclusion of the base in upper- and lower bound algorithms.

If a carry is generated when the EA is added to the base, an out-of-bound situation
exists, resulting in a Bound fault.

The effective WSN is formed by ORing the low-order two bits of the working space
number with bits 0 and 1 of the sum of EA + BASE.

The bit address from the EA becomes the bit address of the virtual address.

Super Descriptor NS Mode

The processor does not use the super descriptor directly for address generation.
Instead, each time a DRn is loaded with a super descriptor or the LDEAn instruction
is executed, the processor generates a standard descriptor from the super descriptor
and holds this generated descriptor in a temporary working register. Then, when a
DRn containing a super descriptor is referenced for address generation, the
processor uses the standard descriptor previously generated. This procedure is
transparent to software and improves the efficiency of the processor when super
descriptors are used. Any software operation (such as copy to another DR or store
in memory) with a super descriptor contained in a DRn is performed using the super
descriptor, not the generated standard descriptor.

The following steps describe how the processor generates a standard descriptor from
a super descriptor.

1. The base for the standard descriptor is formed as shown in Figure 5-4. Ifa
carry occurs, flag bit 27 of the formed descriptor is forced to zero (bound not
valid). Thus, any attempt to generate an address using the formed standard
descriptor will result in a Bound fault.

00 09 10 35
DRn BASE 000000000000000000000000O0O
10
+
00 35
LOCATION from DRn

36

00 35
BASE for Standard Descriptor
36

Figure 5-4. BASE For Standard Descriptor

67 A2 RJ78 REV0OO

Address Modification and Development

2. The bound for the standard descriptor is formed as shown in Figure 5-5.

a) Ifresulting bits 0-15 are zero, bits 16-35 become the 20-bit bound field.

b) Ifresulting bits 0-15 are not zero, the 20-bit bound field of the standard
descriptor is forced to all ones.

c) Ifaborrow occurs in this operation, flag bit 27 of the formed descriptor is
forced to zero (bound not valid). Thus, any attempt to access the segment
using the formed standard descriptor will result in a Bound fault.

00 09 10 35
DRn BOUND 11111111111111111111111111
10 26
()
00 35

LOCATION from DRn

36

00 15 16 - 35
20-Bit BOUND

16 20

Figure 5-5. Bounds For Standard Descriptor

When a T = 6 descriptor is loaded into a DRn register, a "standardized" descriptor is
formed. If this standardized descriptor is to be marked "bound not valid" (i.e., bit 27
= 0), the instruction loading the DRn will terminate with a Bound fault. This action

is required since T = 2, 3, 6 descriptors are assumed to have bit 27 = 1.

67 A2 RJ78 REV0OO 5-63

NovaScale 9000 Assembly Instructions Programmer's Guide

5.4.2.3 Extended Segment Descriptor NS Mode

The method of forming an operand virtual address with an extended segment
descriptor is shown in Figure 5-6 and is the same as that with a standard segment
descriptor except in the bound check.

16 Bits i i
1718 20 23 2B, 19 _12Bis
0-_ 0 EFFECTIVE B |BIT | |0000] DRn Bound n--1
L ADDRESS 18 2l 4 20|
; I S -0
: : : Bounds Check
-0 33 35
SEGMENT BASE from DR B
N o34 2
Bound Fault if : : Bound Fault if
. Carry is Generated : : Out of Bounds
01 2 33 38
Bits 0-1 saved .]
to make WSN EA + BASE B | w-—-———— Relative Virtual
2 32 2 Address
Access Control 4
Check : : :
OR:
0 67 8
WSN
7 2
0 89 40:41 43 46
EFFECTIVE WORD ADDRESS leg¢ —— —— Resulting Virtual
WORKING WITHIN WORKING B | BIT Address
SPACE ¢ SPACE 30| 2 4
where B= page byte
WSN = working space number

Figure 5-6. Virtual Address Generation Using Extended Segment Descriptor
(NS Mode)

5-64

67 A2 RJ78 REV0OO

543

5431

Address Modification and Development

Virtual Address Generation For ES/El Modes

The generation of the virtual address for a standard descriptor in ES/EI mode is
similar to that for NS mode. In the ES/EI mode, a 36-bit effective address is added
to a segment descriptor to generate a virtual address. The method used for
generation of virtual addresses differs depending upon whether the related segment
descriptor is a standard segment descriptor or an extended segment descriptor.
Super descriptors must not be used for address generation in ES/EI mode as any
attempt to do so results in an IPR fault.

Standard Descriptor ES Mode

The method of forming an operand virtual address with a standard descriptor in ES
mode is shown in Figure 5-7. If instruction bit 29=0, the ISR is used. If bit 29=1,
then DRn is used.

16 Bits

0 33 353639 _ . 0 19
EFFECTIVE B |BIT 00———0 DR, or
ADDRESS 34 2| 4 ISR Bound 20

‘0 33 35 Bounds Check
SEGMENT BASE B I
from DR n or ISR 34 2 _
; . Bound Fault if
* Bound Fault if : : Out of Bounds
. Carry is Generated : :
. 01 33 35
Bits 0-1 saved))
to make WSN 1 EA + BASE 34 B | -w———————— Relative Virtual
Access Control 2 2 Address
Check ORE
0 6:78
WSN
7 2
0 g9 40 41 43 46
EFFECTIVE WORD ADDRESS [————— Resulting Virtual
WORKING | WITHIN WORKING SPACE B | BIT Address
SPACE ¢ 32 2 4
where B= byte

WSN = working space number

Figure 5-7. Virtual Address Generation Using Standard Descriptor (ES Mode)

67 A2 RJ78 REV0OO 5-65

NovaScale 9000 Assembly Instructions Programmer's Guide

5.4.3.2 Extended Segment Descriptor ES Mode

The method of forming an operand virtual address with an extended segment
descriptor is shown in Figure 5-8 and is the same as that with a standard segment

descriptor except in the bound check.

16 Bits

. 1718 20 23 2B, 19 1381
0—_0 EFFECTIVE B | BIT | |oood DRn Bound 11--1
L ADDRESS 18 2| 4 20
g i A S S -0
: : : Bounds Check
-0 33 35
SEGMENT BASE from DR B
N 34 2
Bound Fault if Bound Fault if
. Carry is Generated Out of Bounds
01 2 33 35
Bits 0-1 saved) .
to make WSN EA + BASE B | w————— Relative Virtual
2 32 2 Address
Access Control 4
Check : :
: OR:
0 67 8
WSN
7 2
0 89 40:41 43 46
EFFECTIVE WORD ADDRESS l«¢ —— — — Resulting Virtual
WORKING WITHIN WORKING B BIT Address
SPACE ¢ SPACE 32 2 4
where B= page byte
WSN = working space number

Figure 5-8. Virtual Address Generation Using Extended Segment Descriptor
(ES Mode)

5-66

67 A2 RJ78 REV0OO

Address Modification and Development

5.4.3.3 Virtual Address Generation in El Mode

The method of forming an operand virtual address with a standard descriptor in EI
mode is shown in Figure 5-9. The bounds check is the same as ES mode.

0 33 3 19 12 8IS
IC 00 I:oooo ISR Bound 11-— 1
" " :
T~ Do
e
: + : : Compare IC (0-33) //00 with
-0 33 35 | 0000//ISRBOUND// 11-—1
ISR BASE B
Bound Fault if
= : Out of Bounds
0 2 33 35
) IC + BASE B
on 5
0 678
WSN
7| 2 :
0 89 4q 42
WSQ WORD B
9
where B= byte

WSN = working space number

Figure 5-9. Virtual Address Generation Using Standard Descriptor (E1 Mode)

67 A2 RJ78 REV0OO

544

5-68

NovaScale 9000 Assembly Instructions Programmer's Guide

Working Space Zero

The CPU supports paging in working space zero in NS, ES, and EI modes. Virtual
addresses are generated when the CPU is in the working space zero. However,
virtual addresses are a maximum of 2**28 bytes representing real addresses as seen
from the operating system. When the CPU references working space zero for the
operating system, the hardware is actually paging, using page tables of working
space zero that were prepared by the Service Processor (SP) when the system was
initialized.

When the content of a WSR or a particular segment's WSN field is zero, the CPU
references working space zero. If WSR1 contained a zero and was referenced by the
ISR descriptor, the instruction would be fetched from working space zero. On the
other hand, if the instruction specified descriptor register modification, and its
associated working space register contained a 1, then the virtual address would be
developed in working space one.

To reference working space zero, the CPU must be in Privileged Master Mode with
the privileged bit of the Instruction Segment Register (ISR) ON. If these conditions
are not satisfied, a Command fault occurs when an attempt is made to reference
working space zero.

After the resulting virtual address has been generated and bound checks have been
made, the processor performs the checks indicated in Figure 5-10.

00 06 070809 1213 40 41 42
EFFECTIVE EFFECTIVE WS
WORKING 0ofo0o0O0O BYTE B
SPACE 5 2 4 ADDRESS 28 2
Bits 7 through 12 Used as a 30-bit absolute
must be zero or a byte address of real memory
Bound Fault occurs for the operating system, but

paging is performed by the hardware

Figure 5-10. Virtual Address Check

67 A2 RJ78 REV0OO

5.5

Address Modification and Development

Paging

After generation of a virtual address, an address translation process for mapping a
virtual memory address to a real memory address is performed by paging in order to
create a real memory address for accessing the real memory.

Paging does not depend upon whether the CPU is in the NS, ES, or EIl mode. Each
of the 512 working spaces is supported by one page table or one section table. The
location of the page table or section table supporting a given WS is indicated by a 9-
bit WSN. This WSN indexes the working space page table directory (WSPTD)
which is a 512-word table that contains the real memory address of a page table or
section table. The section table consists of up to 4K words and includes the real
memory address of the page table. The individual words of the section table are
called page table base words (PBW). When paging is performed using section
tables, PBWs cause the page table to be divided into 1K blocks and distributed
throughout memory.

67 A2 RJ78 REV0OO 5-69

NovaScale 9000 Assembly Instructions Programmer's Guide

551 Page Table Directory Word Format — SV Mode

The format of the page table directory word in SV mode is given in Figure 5-11.

0 17181920212223 24 35
PT/SCTBase (mod 1KW) Q |P| T (ru PTSize
Figure 5-11. Page Table Directory Word (PTDW) Format in SV mode

Bits Description

0-17 the modulo 1024 base address (real memory address) of a page table
(PT) or a section table (SCT)

18,19 These bits provide a hardware method to force the isolation of the WS.

Q) When one or more WS is allocated to a process, software will record
in these bit positions of the associated PTDW the relative WSN within
the set of up to four possible numbers. These bits are used to check
the WSN at translation from a virtual memory address to a real
memory address. A fault occurs if an illegality is detected.

20 0 The PT/SCT is not present.

(P) (A missing working space fault occurs.)
1 The PT/SCT is present.

21,22 00 The PT/SCT indicated by this word is a dense page table.

(T) 10 The PT/SCT indicated by this word is a fragmented page table (not

used in GCOS)

01 The PT/SCT indicated by this word is an SCT.
11 A missing working space fault occurs

23 Reserved for future use

24-35 These bits indicates the size of the PT/SCT.

5-70

— For a dense page table, bits 24 to 35 indicate the modulo 64 size of
the PT.

— For a section table, bits 30 to 35 indicate the modulo 64 size of the
SCT.

— If bits 30 to 35 are zero, a size of 64 words is assumed. In this
case, bits 24 to 29 are ignored.

67 A2 RJ78 REV0OO

Address Modification and Development

5.5.2 Page Table Directory Word Format - SVMX Mode

The format of the page table directory word in SVMX mode is given in Figure 5-12.

0 45 26 27 35
mbz PT/SCT/DVT Base (mod 1KW) rfu
36 53545556575859 71
rfu Q |P| T PT/SCT/DVT Size

Figure 5-12. Page Table Directory Word (PTDW) Format in SVMX mode

Bits
0-4

5-26

27-35
36-53

54-55
Q)

56
(P)

57-58
(D)

59-71

67 A2 RJ78 REV0OO

Description
Must Be Zero

The modulo 1024 base address (real memory address) of a PT, SCT,
or DVT.

Reserved for future use
Reserved for future use

These bits provide a hardware method to force the isolation of the WS.
When one or more WS is allocated to a process, software will record
in these bit positions of the associated PTDW the relative WSN within
the set of up to four possible numbers. These bits are used to check
the WSN at translation from a virtual memory address to a real
memory address. A fault occurs if an illegality is detected.

0 The PT/SCT/DVT is not present.
(A missing working space fault occurs.)
1 The PT/SCT/DVT is present.

00 The PT/SCT/DVT indicated by this word is a dense page table (not
used by GCOS in SVMX mode).

10 The PT/SCT/DVT indicated by this word is a fragmented page
table (not used in GCOS)

01 The PT/SCT/DVT indicated by this word is an SCT.

11 a missing working space fault occurs

PT/SCT/DVT Size (modulo 64)

5-71

NovaScale 9000 Assembly Instructions Programmer's Guide

55.3 Page Table Base Word Format

The format of the page table base word is given in Figure 5-13.

SV mode:
0 17 18 19 20 21 31 32 35
BASE (mod 1KW) rfu |P rfu BND
SVMX mode:
0 45 26 27 28 31 32 35
rfu BASE (mod 1KW) P rfu BND

Figure 5-13. Page Table Base Word (PBW) Format

SV mode bit definitions:

Bits

0-17

18-19

20

21-31

32-35

5-72

Description

BASE

These bits indicate the modulo 1024 base address (real memory
address) of a dense page table. The BASE field with 10 zeroes
appended on the right form a 28-bit real word address.

reserved for future use

P

0 this bit indicates that the PT is not present.
(A missing working space fault occurs.)

1 indicates that the PT is present

reserved for future use

BND

These bits indicate the modulo 64 size of a dense page table. If 0, the

size of 64 words is assumed.

67 A2 RJ78 REV0OO

Address Modification and Development

SVMX mode bit definitions:

Bits Description
0-4 reserved for future use
5-26 BASE

These bits indicate the modulo 1024 base address (real memory
address) of a dense page table.

27 P

0 this bit indicates that the PT is not present.
(A missing working space fault occurs.)

1 indicates that the PT is present

28-31 reserved for future use

32-35 BND
These bits indicate the modulo 64 size of a dense page table. If 0, the
size of 64 words is assumed.

67 A2 RJ78 REV0OO 5-73

NovaScale 9000 Assembly Instructions Programmer's Guide

554 Page Table Word Format

The format of the page table word is given in Figure 5-14.

SV mode:
0 17 18 19 20 21 31 32 35
BASE (mod 1KW) rfu |P rfu BND
SVMX mode:
0 45 26 27 28 31 32 35
rfu BASE (mod 1KW) P rfu BND

Figure 5-14. Main Memory Page Table Word (PTW) Format

SV Mode bit definitions:

Bits Description

0-17 MM Page Address
This field, appended with 10 zeros on the right, specifies a 28-bit real
word address in main memory.

18-28 RFU
Software can store information related to the page specified by this
PTW. Hardware ignores this field.

29 E=0

The E bit is used to indicate if the memory page is in real memory or
in the EMU. The E bit is set when the page is for an EMU page.

NOTE: DPS 9000G2 Systems do not support the EMU.

30-35 Control Field

5-74

30 MM page present
31 Write permitted
32 Housekeeping bit
33 10 page present
34 Page modified

35 Page accessed

67 A2 RJ78 REV0OO

Address Modification and Development

SVMX Mode bit definitions:

Bits Description
0-4 RFU
5-26 MM Page Address

This field, appended with 10 zeroes on the right, specifies a 32-bit real
word address in main memory.

27-28 RFU
Reserved for future extension.

29 E=0
The E bit is used to indicate if the memory page is in real memory or
in the EMU. The E bit is set when the page is for an EMU page.

NOTE: DPS 9000G2 Systems do not support the EMU.

30-35 Control Field
30 MM page present
31 Write permitted
32 Housekeeping bit
33 10 page present
34 Page modified
35 Page accessed

Mapping a virtual address to a real address in the VS/XA mode is the same as in the
VS/Basic mode in that if a prior memory reference to the same page has already
mapped that page to real memory, and if that mapping is still present in the page
table associative memory of the processor, the mapping is accomplished by
concatenating the word field of the virtual address to the modulo 1024 real address
of the page. This process produces the real address for the memory reference.
Otherwise, the mapping proceeds by locating and obtaining the PTDW.

The mapping procedure uses the page tables previously described. Bits O to 8 of the
virtual address are used to access the WSPTD in order to read the PTDW. Bits 21
and 22 that contain the type (T) of this PTDW are then checked, and address
translation is executed in accordance with the content of these two bits.

If PTDW.T=00, then the page table is a dense page table.

If PTDW.T=10, then the page table is a fragmented page table (not used in GCOS).

67 A2 RJ78 REV0OO 5-75

NovaScale 9000 Assembly Instructions Programmer's Guide

555 Dense Page Table
When a dense page table is used, the CPU interprets the virtual address as shown in
Figure 5-15.
00 0809 1213 3031 40414243 46
EFFECTIVE WSN | MBZ PAGE NUMBER WORD B BIT

9 4 18 10 2 4

Figure 5-15. Virtual Address

Figures 5-16 5-17 5-18 and 5-19 illustrate virtual to real mapping using a dense page
table.

1. The dense page table base address is modulo 1024 words.

2. PTW bits 0 to 17 are the page start address.

00 16 Mod

PDBR 512w WSPTD

- Page Table Base

(MOD 1024W) PT
PT
f - Page Base

9-bit WSN#

- PTDW (MOD 1024W)

Page
18-bit Page# [, PTw -

All addresses = =
are real.

Word within - L—pe
the page

Addressed Word

1 KW

Figure 5-16. Address Mapping Using a Dense Page Table

5-76 67 A2 RJ78 REV0OO

Address Modification and Development

00 16 0 8
Real Memory Address from PDBR Effective WSN
17 9
00 25
PTDW WORD ADDRESS
26

Figure 5-17. PTDW Address

00 17 18 27
PT BASE ADDRESS FROM PTDW 0————— 0
18 10
+
00 14 15 30 24 35
O 0 16-Bit PAGE # From PT SIZE From L
VIRTUAL ADDRESS PTDW MOD 64
15 16 12 6
(Carry Ignored) , ;
T — > ()
L
'
00 2%
PTW ADDRESS
28
SIZE CHECK

If page # > (PT size) 1----1, a bound fault occurs.
If bits 9 to 12 of VA are not 0, a bound fault occurs.

Figure 5-18. PTW Address

00 17 31 40
PAGE ADDRESS from PTW WORD PART OF Real Address
Bits 0 - 17 VIRTUAL ADDRESS from PTW
18 Bits 31-40 10
00 27

WORD ADDRESS IN REAL MEMORY

28

Figure 5-19. Word Address

67 A2 RJ78 REV0OO 5-77

NovaScale 9000 Assembly Instructions Programmer's Guide

55.6 Section Table

The section table allows the page table for a working space to be fragmented into
sections. The PTDW specifies the base of the section table, which contains up to 4K
of page table base words (PBW), each of which defines a page table for a section.
When a section table (SCT) is specified by the PTDW, the virtual address is
interpreted as shown in Figure 5-20

00 08 09 20 21 30 31 40 41 43 46

EFFECTIVE WSN SECTION NUMBER PAGE NUMBER WORD B BIT
9 12 10 19 2 4

Figure 5-20. Virtual Address

Bits Description

0-8 working space to be accessed

9-20 section number; an offset of the SCT base for accessing the PBW
in the SCT
The SC number is a value relative to the SCT base indicated by
the PTDW.

21-30 Page number is used as an offset or index into the PT for this

WSN, for locating the PTW. The page number is relative to the
PT base address (real memory address) indicated by the PBW.

31-40 These bits determine which word within the 1024-word page is
being addressed
41-46 byte and bit positions within the word, if applicable

Figure 5-21 illustrates virtual to real mapping when using a section table.

5-78 67 A2 RJ78 REV0OO

Address Modification and Development

00 16 Mod
PDBR 512w WSPTD _
- Section Table Base
(MOD 1024W) SCT
SCT
. Page Base
9-bit WSN o (MOD 1024W)
- PTDW
PT
- Page Base
PBW (MOD 1024K)
12-bit SC#
7 = Page
Max. 4KW
All addresses . PTW
are real. 10-bit Page# —™
Max. KW p-| Addressed Word

Figure 5-21. Address Mapping Using a Section Table

Figures 5-22 5-23 and 5-24 illustrate the development of a word address from a
section table.

00 17 18 27
SCT BASE ADDRESS FROM PTDW 0————— 0
18 10
: 16 Bits * .
) - 20 30 35
) 0 SC # From
VIRTUAL ADDRESS SCT SIZE From PTW [1—— _ 1
. (Carry Ignored) 12 6 16
.00 2%
PBW ADDRESS :
28
SIZE CHECK

If SC# > SCT size, a bound fault occurs.

Figure 5-22. PBW Address

67 A2 RJ78 REV0OO 5-79

5-80

NovaScale 9000 Assembly Instructions Programmer's Guide

00 17 18 27
PT BASE ADDRESS FROM PBW O 0
18 10
+
‘00 17 21 30 32 35
PAGE # From
o 0 | VIRTUAL ADDRESS PT SIZE From PBW |11 —— 1
18 10 4 6
«(Carry Ignored) T 1
r > ()
‘00 2%
PTW WORD ADDRESS
28
SIZE CHECK

If page # > (PT size) 11----1, a bound fault occurs.

Figure 5-23. PTW Address

00 17 31 40
PAGE ADDRESS From PTW WORD PART OF
BITS 2-17 VIRTUAL ADDRESS
18 Bits 31-40 10
-00 ”7

WORD ADDRESS IN REAL MEMORY

28

Figure 5-24. Word Address

67 A2 RJ78 REV0OO

55.7

5.5.8

55.8.1

Address Modification and Development

Address Truncation

The instruction set contains instructions that operate on words, double words, 9-bit
bytes, 6-bit characters, 4-bit characters, and bits. Instructions and indirect and tally
words that specify 6- or 9-bit characters are considered word instructions. In
accessing the operand, the full byte level virtual address is determined. The address
is then truncated in accordance with the address type of the instruction, and the
access is also in accordance with the type of instruction.

An exception to this procedure applies to the 8-word instructions, such as LREG and
SREG. The effective address is truncated to a modulo 8 word address before adding
the base. Following the addition of the base, the virtual address is then truncated to
a double-word address.

The user is responsible for ascertaining correctness of operation of an instruction as
influenced by such address truncation.

Bounds Checking

One of the capabilities provided by virtual memory is that of specifying the base and
bound of a segment to the 9-bit byte level, enabling a higher level of security control
and more efficient use of main memory. Since the processor interfaces with word-
oriented main memories, certain restrictions are also imposed to minimize the
impact on performance and hardware complexity. The size of a segment described
by a super descriptor is modulo 2**26 bytes. Therefore, the bounds checking is
always the same: BOUND (lower extended with 26 one bits) greater than or equal to
LOCATION + EFFECTIVE ADDRESS. The following information applies only to
standard descriptors.

Word and Double-Word Operations

Word, double word, or a succession of word accesses as in the LREG and SREG
instructions are made to real memory word or double word boundaries. Segments
that begin or end on byte or word positions and that do not correspond to word or
double-word boundaries may be accessed by word or double word instructions. The
processor adds the 2-bit byte position held in an address register (if selected) to the
byte position of the base before truncating the final virtual address to point to a word
or double word. If this truncation results in the virtual address dropping below the
base value, a lower bound check will declare an out-of-bounds condition in this case
and a Bound fault occurs. Thus, the first word or double word of a segment may be
accessed with word-oriented instructions only when the word or double word is
entirely within the segment.

67 A2 RJ78 REV0OO 5-81

55.8.2

5-82

NovaScale 9000 Assembly Instructions Programmer's Guide

Half-word accesses such as the LXLn instruction are treated as word accesses in
both the lower-and upper-bounds check. If a segment begins in the middle of a
word, the LXLn and SXLn instructions cannot be used to access the lower half-
word. If the segment ends in the middle of a word, the LDXn, STXn, LXLn, ADXn,
etc., instructions cannot be used to access the upper half-word.

The STCA, STCQ, STBA, and STBQ instructions store 6-bit or 9-bit characters into
character/byte locations within a word. These instructions are considered as word
accesses and require the entire word to be within the segment.

Indirect and tally words that specify character/byte locations are considered as
addressing words that must be fully contained in the segment. The virtual address is
truncated to the next lowest word boundary (i.e., the character position in the base is
not added to the character position held in the indirect and tally word).

NOTE: The preceding information is included to provide a warning for operating
system and user software. If segments are "shrunk" (see the LDDn and
CLIMB instructions), and the byte portion of the virtual base is changed, a
word or double-word access to the new segment may be truncated to a
different location within the segment.

All instruction segments must begin at a 0 modulo 8 location and end at a 7 modulo
8 location. Any transfer or CLIMB instruction that attempts to load the instruction
segment register must specify a segment base whose 5 least-significant bits are Os,
and a segment bound whose five least-significant bits are 1s. This condition allows
the processor to access blocks of eight words for LPL, SPL, LREG, SREG, LAREG,
and SAREG instructions with the assurance that if the first word is on an assigned
page and is within the segment boundary, the other words will also be so located.

All descriptors loaded into the SSR, PSR, LSR, ASR, or DSDR registers must begin
and end on double-word boundaries (the three least-significant bits of the base are Os
and the three least-significant bits of the bound are 1s).

Byte Operations

For all 9-bit and 4-bit character operations using multiword instructions, the upper-
bound check is made at the 9-bit byte level. A lower-bound check is not required
since the effective address is always greater than or equal to zero.

For all 6-bit character operations using multiword instructions, the boundary
checking is on a double-word basis, meaning that a double word containing any 6-
bit character of the operand must be fully in bounds. If access is attempted to a
segment with a base or bound not on a double-word boundary, a Bound fault is
generated.

67 A2 RJ78 REV0OO

Address Modification and Development

5.5.8.3 Bit Strings and Table of Translate Instruction

Multiword bit string instructions and the index table of the translate instructions
(MVT, TCT, and TCTR) have double word bound checking applied. Thus, a double
word that includes any part of these operands must be fully in bounds. If access is
attempted to a segment that has a base or bound not on a double-word boundary, a
Bound fault is generated.

5.5.84 Bound Check Equations

The address truncation procedure forces bounds checking to vary, depending upon
the type of instruction specified. The resulting three upper bound and lower-bound
checks are listed in Table 5-3. A Bound fault is generated if the bound checks are

violated.
Table 5-3. Bound Check Equations
Instruction Bound Check
Double-Word Upper (BASE+EA)0-32 || 111 < BASE+BOUND

(includes bit string and 6- | Lower (BASE+EA)0-32 || 000 > BASE
bit character instructions)

Single-Word Upper (BASE+EA)0-33 || 11 < BASE+BOUND
Lower (BASE+EA)0-33 | 00> BASE

Byte Upper (EA)0-19 < BOUND

(includes 9-bit byte, 4-bit | Lower always satisfied

byte)

The base, bound, and effective address (EA) addresses represented in the bound
check equations are for 9-bit bytes. For 4-bit byte and bit instructions, the effective
address represents the 9-bit byte in which these small quantities are contained. The
single- and double word bound check equations include the effect of address
truncation. The truncated address is then extended to the largest byte contained
therein for the upper-bound check and to the lowest byte for the lower-bound check.
The byte checks refer to the byte accessed. In multibyte instructions such as MLR,
the access checks are applied to each byte.

Physical accesses, which may be larger than those corresponding to a given

instruction (and which therefore may include bytes not contained in the segment) are
not bound checked beyond the byte range corresponding to the instruction.

67 A2 RJ78 REV0OO 5-83

5.5.9

5-84

NovaScale 9000 Assembly Instructions Programmer's Guide

Bound checking is also performed on page table sizes for dense page tables. The
page number from the virtual address is bounded by

page number 15-30 € WSPTD PT BOUND 26-35 |[111111
and page number 9-14 must be zero.

When in working space 0, the virtual address is checked for the 26-bit range of byte
address.

Virtual address 9-14 must be zero.

Multiprocessor Memory Management

Virtual memory management permits the base and bound of segments to be located
on a byte boundary, both as a virtual address and