
100 Linux Format March 2009

Tutorial GIT Git Tutorial

 Git 1.6.1

user interface updates, one for the file storage optimisation
and perhaps one for the latest stable version. However, it gets
very annoying if the head developer who manages the central
repository won’t give you a branch in the repository for your
current project… Enter Git.

SVN made branching cheaper – you can very quickly
create and work on a new version of the source. Git makes it
cheap and cheerful – you can create a branch that’s available
only in your local repository, so you can keep track of dozens
of ideas each in their own branch before pushing them back to
the central repository.

Getting started
If Git isn’t already running in your installation then a simple
apt-get install git or yum install git should do it. Once you
have Git installed, open up a terminal, type git and see what
you have:
~ $ git
usage: git [--version] [--exec-path[=GIT_EXEC_PATH]] [-p|--
paginate|--no-pager] [--bare] [--git-dir=GIT_DIR] [--work-
tree=GIT_WORK_TREE] [--help] COMMAND [ARGS]
The most commonly used git commands are:
add Add file contents to the index
apply Apply a patch on a git index file and a working
tree
archive Create an archive of files from a named tree
bisect Find the change that introduced a bug by binary
search
...etc

Let’s start by creating a very simple project and initialising
Git on it. Type the following:
cd ~
mkdir myproject && cd myproject

Git: Versioning for the masses
Hardcore Linux Challenge yourself
with advanced projects for power users

What can the creator of Linux do to software versioning? He can make it
simple and at the same time completely confusing, says Dan Frost.

Anyone who’s used SVN, CVS or one of the other
major versioning tools for backing up, reverting and
(trying to) collaborate will understand what drove

Linus Torvalds to give in and write his own. Versioning
software often drives coders mad – and Git has been called
the versioning system that you need a PhD to understand.
The complexity comes from its simplicity and its aim to make
it easier to work in large groups of distributed developers, but
if you approach Git calmly you’ll get a lot from it.

Versioning software traditionally has a central server with
contributors pushing content from their own working
environments, dubbed ‘sandboxes’. CVS and SVN, two of the
biggest open source versioning systems, use this model and
most of the software you’ve downloaded from SourceForge
will have used one or other of these systems.

It works very well. Each user takes a copy of the project
from the central repository and does some work, fixes some
bugs or adds a feature. When the user has finished, they
commit their changes back to the central repository, together
with a message telling everyone else what they’ve done.

This model is easy to get your head around, but it doesn’t
scale in one important way. Open source projects are
maintained by many geographically disparate developers
working on different features at different times and often in
an order that doesn’t make sense. ‘Branching’ enables the
code to split into several concurrent versions – one for the

Last month We used webcams to build a home security system.

 Git comes with a few simple graphical tools. Citool is a
GUI for committing changes.

Dan Frost
is technical
director of 3ev, a
Brighton-based
web development
agency. He has
developed for the
TYPO3 CMS
project and is
currently working
on the ‘Involve’
CMS application
for 3ev.

Our
expert

LXF116.tut_adv 100 19/1/09 3:49:8 pm

Tutorial GIT

March 2009 Linux Format 101

Git Tutorial

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

Now create a simple directory structure and some files:
mkdir public && mkdir doc
touch public/index.php && touch doc/README

What we have now could be any project, written in any
language. The next step is git:
git init
git add .
git commit -m “Setup repository”

You’ve created a new repository in your working directory
– note that the repository is here in your current directory,
rather than on a central repository somewhere. You can now
keep track of your code from within this directory, so start by
editing one of the files. Edit public/index.php to add:
<?php
echo “This is our very empty project... but at least we’ve
started.”;
?>

… and then git status to see a message telling you that the
file has been modified but will not be committed. Unlike with
SVN you actively have to ask Git to include the changes you
made in the commit, although the -a option overrides this.
Next, we add the file to the commit:
git add public/index.php
git commit -m “Added simple message to index file”

To see the results, we investigate the logs using git log:
$ git log
commit f5737c51c4b645617fa3017389e873628eec0edc
Author: Dan Frost <user@example.com>
Date: Thu Nov 20 19:51:00 2008 +0000
Added simple message to index file

commit 03f5c27f3bf3ef72c5c92618a323a814eb76767b
Author: Dan Frost <dan@3ev.com>
Date: Thu Nov 20 19:41:28 2008 +0000
Started repo

Show me by SHA1
So, what on Earth are those stupidly long strings? They’re
version numbers. Wouldn’t version numbers be easier – 1, 2,
3 etc? Actually, this is only easier if you work alone:
numbering version 1, 2, 3 and so on simply doesn’t work if
you have more than one repository. My version 2535 would
be your version 102, and someone else’s version 8745.

Git dispenses with the niceties of simple, integer version
numbers in place of the mighty SHA1. This cryptographic hash
enables Git to identify every part of every repository (not just
yours) uniquely – the files, commits, trees and so on – and
store them in its object database. The git show command
enables you to inspect the object database by doing:
git show 03f5c27f3bf3ef72c5c92618a323a814eb76767b

This will show you exactly what corresponds to the SHA1.
Almost every report makes use of the SHA1 – for example,
git log as we saw above:

Pick any of the SHA1s from this message and use them
with the git show command to see what they correspond to.
A full SHA1 is quite often an effort to type, so Git enables you
to use enough of it that it isn’t ambiguous:
$ git show c3e59317

Now you should be able to edit the files some more, create
new files and add them all to Git. The basic commands of git
add, git commit and git log are enough for even the most
versioning-averse coder to get some use out of Git.

But what changed?
Git’s logs can be viewed using the git log command,
producing a simple log of all changes that have been made.
But there’s more to be seen, such as producing patches:
git log –p
git log --pretty=raw

Once you’ve found the version that used to work before
someone else got their hands on your code, you can use git
diff to inspect the changes:
$ git diff f5737c51c4b645617fa3017389e873628eec0edc
diff --git a/public/index.php b/public/index.php
index da4d4c6..95fdaa6 100644
--- a/public/index.php
+++ b/public/index.php
@@ -1,3 +1,4 @@
<?php
echo “This is our very empty project... but at least we’ve
started.”;
?>
+Added this

There’s also a shorthand for diffing to the previous version,
the one before that and so on:

Git: Versioning for the masses
Hardcore Linux Challenge yourself
with advanced projects for power users

What can the creator of Linux do to software versioning? He can make it
simple and at the same time completely confusing, says Dan Frost.

 The Gitk GUI
gives a graphical
representation
of branches and
merges, and
the commits
that happened
between them.

LXF116.tut_adv 101 19/1/09 3:49:8 pm

102 Linux Format March 2009

Tutorial Git Git Tutorial

git diff HEAD
Shows differences between the current working directory and
the HEAD, while git diff HEAD^ Shows them between the
current directory and the version prior to the last commit.

You can compare a specific revision with the version
before last by doing:
git diff 06c831d0a30833e0a037f0f1a4b11fd7e1ef226f HEAD^

Often, you have a pretty good idea of when the offending
revisions occurred, so Git offers two ways of referring to time,
both of which are nicely human-readable:
git diff “@{90 minutes ago}”
git diff “@{2008-10-01 17:30:00}”

Finally, a really useful command is whatchanged, which
unsurprisingly shows what changed in a particular file:
git whatchanged public/index.php

Sharing your work
The ego of the average programmer means that their code
won’t stay private for very long. What happens when you
want to share your beautifully crafted and versioned code?

There are several methods of sharing Git repositories. Git
has its own protocol, which is highly efficient, and it can also
run over HTTP or SSH. We’ll share over SSH, as it’s probably
easier to set up if you have a couple of Linux machines.

On a machine that you’re happy for others to access,
create a directory to contain the share repository:
mkdir /var/git/project.git
cd /var/git/project.git
git init --bare

You’ll notice that we add the --bare option here. If you
return to the repository you created earlier and do ls -a, you’ll
notice a .git directory. This directory is the Git repository –
similar to the one that was created in our working directory
earlier. All of the commits and changes are stored in this.

When we make a bare repository we’re actually making a
Git repository without the working directory – ie, we’re
making the .git directory. If you have a look at the contents of
our newly created bare repo and the .git directory created
earlier you’ll see very few differences.

Once you’ve created the repository for sharing, go back to
your local machine and into your working directory. Start by
adding the newly created bare repository as a remote:
git remote add sharing-server ssh://www.example.com/var/
git/project.git
git push sharing-server master

The first command adds the server’s URL under the name
sharing-server, while the second pushes your master branch
to that server. If at any time you want to see what remote
servers you’ve configured, do:
git remote

Once you’ve pushed to the remote repo, you’ll want
people to grab your brilliant new app. The simplest way of
doing this is for users to clone:
mkdir ~/my-sandbox/ && cd ~/my-sandbox/
git clone ssh://myserver.com/var/git/myapp.git

This gives you a complete copy of the app to edit or
deploy. Like svn checkout, anyone working with you or just
using your software can grab the code with this method.

Unlike SVN, if you commit changes in your working
version they won’t show up in the ‘remote’ version until you
push them up again using git push sharing-server master.
Even though you and the collaborator can keep track of
detailed changes to the code, your individual changes aren’t
automatically shared – this is distributed versioning.

Your collaborator can push changes to this repository with
git push, after which you can pull them back down using:
git pull sharing-server master

This is similar to SVN commit and update, except that you
can track changes locally before sharing them. And you can
have your own branches…

Branches
Just before you start creating branches, you should add this
useful little tweak (thanks to simplisticcomplexity.com) to
your .bash_profile so that you can always see which branch
you’re working on:
parse_git_branch() {
 git branch 2> /dev/null | sed -e ‘/^[^*]/d’ -e ‘s/* \(.*\)/(\1)/’
}
PS1=”\w\$(parse_git_branch) $ “

This will show which branch you’re on at any given time.
Creating a branch in Git is very easy – the following creates
the new branch based on the last commit you made. Git
moves you into the branch to begin work:
git checkout -b my-new-branch

Once in the branch you can make any changes without
worrying about breaking the ‘master’ branch. To switch
between branches, use the checkout command again:
git checkout master
git checkout my-new-branch
git checkout -b my-new-idea

Never miss another issue Subscribe to the #1 source for Linux on page 6.

Your own private stash
Got an idea again? Just tried it out, but now need to get on with some real work?
Stash it.
/www/gitarticle/working1(master) $ git stash
Saved “WIP on master: a6d6f31... merge other styling in”
HEAD is now at a6d6f31... merge other styling in

Now you’re back to your previous commit but your recent changes have been
‘stashed’. To get them back, just:
git stash apply stash@{1}

Or create a branch from the stash with:
git stash branch stash@{1}

 Git hosting is available for your open source project from a few sources.
GitHub provides Git hosting plus some cool features.

LXF116.tut_adv 102 19/1/09 3:49:9 pm

March 2009 Linux Format 103

Tutorial Git Git Tutorial

Try this in the Git clone repository we created earlier –
you’ll find you can edit, move, create and remove files in the
branch independently of the master branch that you cloned.
And if you’re not ready to commit your changes back to the
remote repository, then switch back to the master to
continue working on the main code with git checkout
master and using git pull to update your source.

Of course, at some point you’ll want to merge the changes
you made in your branch back into the master and push
them to the remote repository. You first switch back to the
master, then merge the branch into the master and push your
changes to the remote repository:
git checkout master
git merge my-branch

After merging, you might have conflicts. As with CVS and
SVN, these are indicated in the source files:
<<<<<<< HEAD:public/index.php
 Hello!
 =======
 Hello, World!
>>>>>>> update-message:public/index.php

The first section shows the current branch’s content, while
the second shows the merged-in branch. When you’ve fixed
the conflict use git add to add the file into the next commit.
This indicates to Git that the conflict has been resolved.

When you’ve merged and mended everything, you’re
ready to push it all to the remote server:
git push

Then the original author can pull your changes and see
them in his log. This way of working – by committing locally
and then pushing to a remote server – shows how the
distributed model differs from the central server model, and
how Git is geared towards collaboration.

Multiple remotes
The example above creates a clone of the master repository,
but you can also create your own working repository into
which you pull from multiple remote repositories. This is
where the magic of Git kicks in – you can work with 20
collaborators, each with their own repositories, and selectively
pull in changes from each of them. To do this, create a
repository and attach new remote repository to it:
git init
git remote add remote-server ssh://www.example.com/var/
git/project.git
git pull remote-server master

You can use any combination of remote servers and
branches. Each time you add one, you’re getting a copy of an
author’s changes copied into your local Git repository. Using
this, you can easily perform diffs, merges and more on
multiple authors’ content. You can also take any branch of
yours and push it to your own server:
git remote add my-server ssh://www.my-example.com/var/
git/my-fork.git
git push my-server my-branch

Your collaborators then add this server as a remote to
their working repositories in order to get a copy of your
changes. The idea of pushing and pulling from multiple
repositories can be confusing, but makes a lot of sense as
you start working with large groups. Git is designed to make it
easier to work like this, so that you can simply grab someone
else’s source, make a change and push it to another person.

For example, I might grab your recent changes:
git pull your-server master

… have a play with them, add some features I think you
should have built and then:
git push my-server master

Too many branches
Branches are brilliant for working without people looking over
your shoulder, but they’re also an ideal way of losing what you
were working on. As with any versioning or code management
system, Git does require some discipline but also comes with
tools to help you find out what’s going on.

The show-branch function gives a somewhat graphical
outline of the state of your branches.
$ git show-branch --all
! [mybranch] Add nasty styling
* [master] add some lines to index.php
--
+ [mybranch] Add nasty styling
+ [mybranch^] Add crazy blue style
* [master] add some lines to index.php
+* [mybranch~2] Change message on homepage

The first section is a list of branches where * denotes the
current branch and ! denotes the HEAD of all other branches.
In this example, everything under the -- is prefixed by two
columns, one for each of the two branches (master and
mybranch). A + means that the commit exists in the
corresponding branch, while a blank space means that it does
not. The names in brackets can be used in place of an SHA1 –
for example, git show mybranch~2.

Going back in time
If you or someone else has broken something or you want to
see how the app used to work, you can check out a specific
revision. The revision numbers are pretty ugly – punching in a
SHA1 every time you want to see what happened is
cumbersome, so there are a few shortcuts. You can revert to a
previous time using a human-readable statement:
git checkout “@{10 minutes ago}”

Now you’ve gone back in time, so if you find something
good back here you might want to start a branch:
git checkout -b what-might-have-been

The new branch can be worked on just like any other, with
commits, merges from the master branch of other branches
and sharing with collaborators. When you want to merge it
into some production code, merge just as you did previously.
git commit –m “Found some good changes here”
git checkout master
git merge my-new-branch

The world is flocking to Git – check out github.com to see
the likes of Rails, Scriptaculous and MooTools moving there.
It’s easy to see why. The flexibility of the decentralised model
and really cheap branching is too tempting to ignore. LXF

Next month Get building with Google App Engine’s big box o’ code.

Watch the Gitters
Watch these videos to see why Git was created and what it can do:

 Tech Talk – Linus Torvalds on Git
http://uk.youtube.com/watch?v=4XpnKHJAok8

 Git – a Talk by Randal Schwartz
http://video.google.com/videoplay?docid=-3999952944619245780&

LXF116.tut_adv 103 19/1/09 3:49:9 pm

