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U-Boot-v2:  Agenda

● Bootloaders: What they do and why we (still) need them

● The U-Boot-v2 Project: Motivation for a fork

● Design Decisions: A Bootloader for Kernel Hackers

● Flow of Execution: From Power-On to the Kernel

● Sugar and Candies: Some Highlights

● Future: Perspective & Discussion
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Bootloaders: What they do ...

Low Level Hardware Init
RAM, Flash, PLLs + Clocks, ...

Fetch Kernel(s) from Boot Medium
NOR-Flash, NAND-Flash, SD, USB, SATA, Network...

Start Kernel
with kernel command line parameters

● BIOS (PC)
● Bootloader (SoC)

● BIOS (PC)
● Bootloader

(SoC, PC)

● Bootloader
(SoC, PC)
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Requirements for Production Systems

● No interaction: power-on and boot
● No delays by the bootloader!

● The bootloader shall stay out of the way!

● no selection screen
● no nothing
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Requirements: Development & Maintenance

● Stop boot process in the bootloader:

● key press on keybord (PC)
● serial console key or

hardware button (embedded)

● Choose between pre-existing kernels

● Be able to edit kernel location - where to boot from
(flash partition, disk partition, tftp location, ...)

● Change kernel command line

● Make changes persistent
(change - store - boot with new config)
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Requirements on Embedded Systems

● TFTP booting the kernel
(for quick development cycle)

● Redundancy Boot
(start watchdog, boot,
boot other kernel on startup-failure)

● Hardware testing environment:

● have register access from a commandline
while kernel was not ported to a
new platform yet

● have a non-complex environment for
hardware people to test prototypes
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Why do we need a Bootloader at all?

● Alternative: use Linux to boot Linux

● Booting from NAND: we need at least a pre-loader

● Boot Time

● kexec needs about 7 s addon-time
● can be avoided by directly starting the production kernel

● U-Boot-v2 is minimal porting effort until the developer is able to see 
something on the commandline and has fancy debug possibilities

● high scalability: even if we have linux-only booting in the future,
U-Boot-v2 can be scaled down to the minimum
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● The U-Boot-v2 Project: Motivation for a fork

● Design Decisions: A Bootloader for Kernel Hackers

● Flow of Execution: From Power-On to the Kernel
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The U-Boot-v2 Project:
Motivation for a fork

● Pro:

● „Das U-Boot“ is a great bootloader
for SoC type Linux systems!

● Multi Platform design, runs on 
ARM, MIPS, PowerPC, Blackfin etc.

● Good user experience (for us embedded people)

● High level of configurability (environment + saveenv)

● “True” Open Source project
(no hidden development, public git + list)
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The U-Boot-v2 Project:
Motivation for a fork
● Contra:

● Usage of U-Boot requires deep board
knowledge

● abuse of the environment for scripting

● no clean driver model and multi instance concepts

● filesystem support is quite inconvenient (fatls, ext2load, ...)

● Hard to configure: many macros have to be edited by hand to
configure the features of U-Boot

● “Must not break existing boards” policy
(makes it hard to change designs)
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The U-Boot-v2 Project:
Motivation for a fork

● U-Boot-v2 was started as a technology study

● Idea: How can the U-Boot principle be improved when...

● ... we take proven concepts from the Linux kernel

● ... we ”think POSIX”

● ... we don't have to care about stability
    of 10 year old platforms

● Why can't a bootloader feel more like Linux?
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Design Decisions:
A Bootloader for Kernel Hackers

● Some design decisions we made for U-Boot-v2:

● more abstraction
(devices instead of direct memory access + special knowledge)

● multi instance, driver model from kernel
(no global variables, “ethaddr”, “eth1addr” etc. any more)

● file system abstraction (but still simple)

● frameworks instead of multiple-drivers-with-(almost-)same-api

● “usual” commands: rm, cp, mount, ...
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Design Decisions:
A Bootloader for Kernel Hackers

● Some design decisions we made for U-Boot-v2:

● scripts are scripts, no “runnable environment variables”

● environment consists of ramdisk + tar archive for persistence

● make local variables possible (saveenv saves everything in v1)

● KBuild + Kconfig (configuration, parallel build)

● clocksource model taken from Linux

● kernel coding style

● “best of U-Boot and Linux”
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Design Decisions:
A Bootloader for Kernel Hackers

● But:

● U-Boot should not increase in binary size

● Code size is still more important than
performance and feature completeness.
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U-Boot-v2: Startup sequence

● Board specific lowlevel init

● Relocation to RAM if necessary

● Common entry point start_uboot()

● Initcall sequence: First subsystems, then drivers

● Mount ramfs to /

● Mount devfs to /dev

● Load environment to /env

● Execute /env/bin/init script
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“Hello World” in U-Boot-v2

● Here is a typical startup from U-Boot-v2:

U-Boot 2.0.0-rc10-00262-g7c693db-dirty (Sep 10 2009 - 11:16:13)

Board: Phytec phyCard-i.MX27
NAND device: Manufacturer ID: 0x20, Chip ID: 0x36 (ST Micro NAND 64MiB 

1,8V 8-bit)
Malloc space: 0xa7a00000 -> 0xa7f00000 (size  5 MB)
Stack space : 0xa79f8000 -> 0xa7a00000 (size 32 kB)
running /env/bin/init...

Hit any key to stop autoboot:  3

type update_kernel nand|nor [<imagename>] to update kernel into flash
type update_root nand|nor [<imagename>] to update rootfs into flash

uboot:/
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File System

● During startup, a RAM filesystem is mounted to /

● A device filesystem is mounted to /dev

● The environment is copied to /env

● At the prompt, the well known commands like ‘ls’,‘rm’, ‘cp’ work
the way we are used to:

uboot:/ ls
.          ..         dev        env
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Devices

● Drivers can create device nodes under  /dev
which can be accessed like normal files:

uboot:/ ls /dev/
zero      defaultenv    mem         nand0         ram0
phy0      self_raw      self0       env_raw       env0



Slide 21 - http://www.pengutronix.de - 19/10/2009

Accessing Memory

● /dev/mem is a special file which represents the whole address space
and is the device the memory display (md) command normally works on

● md internally works by opening /dev/mem and lseeking to the desired 
position and reading the contents:

uboot:/ md 0x0
00000000: e59ff00c e51ff11c e51ff11c e51ff11c ................
00000010: e51ff11c d8000000 e51ff120 e51ff120 ........ ... ...
00000020: 000000a0 00000000 00000000 00000000 ................
00000030: e51ff018 00000000 00000000 00000000 ................
00000040: 0000000a 584d2e69 43003732 7279706f ....i.MX27.Copyr
00000050: 74686769 29632820 30303220 72462035 ight (c) 2005 Fr
00000060: 63736565 20656c61 2e636e49 6c6c4120 eescale Inc. All
00000070: 67697220 20737468 65736572 64657672 rights reserved
00000080: 0000002e 00000000 00000000 00000000 ................
00000090: 00000317 000004b9 000004e5 00000000 ................
000000a0: e321f0d3 e59fd008 e59f0008 e12fff10 ..!.........../.
000000b0: ea000001 ffffb79c 000000f1 e321f0d3 ..............!.
000000c0: e59fd014 e59f0014 e3a0106c e5c01000 ........l.......
000000d0: e59f000c e12fff10 eafffff7 ffffb79c ....../.........
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Accessing Other Devices

● While  /dev/mem  is the default “file” for the memory commands,
it can be changed:

uboot:/ md -w -s /dev/phy0
00000000: 1000 786d 0022 1613 01e1 45e1 0007 2001 ..mx"......E...
00000010: 0000 0000 0000 0000 0000 0000 0000 0000 ................

● This displays the contents of /dev/phy0 (-s) in 16 bit wordsize (-w)
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Copying Things

● Not only the memory display/write (md, mw) commands work this way, 
but also memcpy and friends

● Copy memory at <src> of <count> bytes to <dst>:

uboot:/ memcpy
Usage: memcpy [OPTIONS] <src> <dst> <count>

options:
  -b, -w, -l   use byte, halfword, or word accesses
  -s <file>    source file (default /dev/mem)
  -d <file>    destination file (default /dev/mem)

● This would copy a 1k chunk from /dev/nand0
from offset 1 M to the file ‘nand’:

uboot:/ memcpy -s /dev/nand0 -d nand 1M 0x0 1k
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Partitioning

● Device files can be partitioned to get a convenient access
to flashes and to get a consistent partition layout between
U-Boot and Linux:

uboot:/ addpart nor0 256k(u-boot),128k(u-boot-env),2M(kernel),-(rootfs)
uboot:/ ls -l /dev/nor0*
crw-------   31064064 /dev/nor0.root
crw-------    2097152 /dev/nor0.kernel
crw-------     131072 /dev/nor0.ubootenv
crw-------     262144 /dev/nor0.uboot
crw-------   33554432 /dev/nor0

● The partition description for the “addpart” command is the same
as the Linux mtd layer uses for command line partitioning,
so this string can be directly given to the Kernel
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Environment

● In U-Boot-v1: environment can be made persistent with “saveenv”

● In U-Boot-v2, “saveenv” is different:

● Save the contents of  /env  to  /dev/env0
● You can think of saveenv/loadenv as a simple tar command
● /env  and  /dev/env0  are only defaults which can be changed on 

the command line so that it is possible to have multiple environment 
sectors.

● The environment can be changed by editing the files under /env, 
using the internal editor (edit)

● The changes are then made persistent with saveenv

● Due to the file nature of the environment it is of course possible to store 
arbitrary files in the environment, for example splash images.
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Device Variables

● Design criterium: ”avoid magic variables”

● Introduction of “device variables”:  eth0.ipaddr

● Device variables can be displayed using the devinfo command:

uboot:/ devinfo eth0
base  : 0x00000000
size  : 0x00000000
driver: none

Parameters:
          ipaddr = 192.168.24.26
         ethaddr = 00:50:c2:a5:bb:87
         gateway = 192.168.1.1
         netmask = 255.255.0.0
        serverip = 192.168.23.2

● The device variables can be used like any other variable:

uboot:/ eth0.serverip=192.168.23.123
uboot:/ echo $eth0.serverip
192.168.23.123
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Getting the Kernel via TFTP

● Most important networking commands:

● dhcp (configure the network adapter)
● tftp (transfer files via tftp)

● tftp normally writes to files but can be used to write directly to flash:

uboot:/ erase /dev/nand0.kernel.bb
uboot:/ dhcp
phy0: Link is up - 100/Full
BOOTP broadcast 1
DHCP client bound to address 192.168.24.26
uboot:/ tftp zImage-pca100 /dev/nand0.kernel.bb
phy0: Link is up - 100/Full
TFTP from server 192.168.23.2; our IP address is 192.168.24.26
Filename 'zImage-pca100'.
Loading: ###########################################################
         ###########################################################
         ###########################################################
done
Bytes transferred = 1815016 (1bb1e8 hex)
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Build System

● Building should be familiar to kernel hackers:

# export ARCH=arm
# export CROSS_COMPILE=arm-linux-
# make pcm038_defconfig
# make menuconfig
# make
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Sandbox

● U-Boot-v2 can be built as a normal Linux binary
(inspired by user mode linux)

● Features:

● Working on U-Boot-v2 without real hardware
● Run U-Boot under gdb
● Networking using a tap device

● To compile the sandbox: pass  ARCH=sandbox  while compiling
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Sugar & Candies: Highlights

● Minimum port (2nd stage):

● v2 can be used as a payload of an existing bootloader
● getting the features without having to do the hardware init part first

● Quickboot: Booting Linux Fast & Fancy:

● U-Boot-v2 brings up splash screen in < 0.5 s
● Kernel starts in < 3 s (i.MX27 @ 400 MHz)
● Soft fading into Qt 4.5 application

● Integrated editor:

● “edit /path/to/file” opens a full screen editor
(even on serial line)

● ctrl-d (save)  /  ctrl-c (cancel)
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Sugar & Candies: Highlights

● “1-image-starts-everywhere”

● MMU support

● USB host/device support

● DFU (Device firmware update) support

● Module support
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Perspective & Discussion

● Do we need yet-another-bootloader?
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Thanks for Listening - Questions?
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Literature

● Web Site for U-Boot-v2:
http://www.pengutronix.de/software/u-boot/v2/

● Source Code:
git clone git://www.denx.de/git/u-boot-v2.git

● Mailing List:
http://lists.denx.de/mailman/listinfo/u-boot


