
Slide 1 - http://www.pengutronix.de - 19/10/2009

U-Boot-v2

Sascha Hauer <s.hauer@pengutronix.de>
Marc Kleine-Budde <m.kleine-budde@pengutronix.de>

CELF Embedded Linux Conference Europe
Grenoble, 2009-10-16

Slide 2 - http://www.pengutronix.de - 19/10/2009

U-Boot-v2: Agenda

● Bootloaders: What they do and why we (still) need them

● The U-Boot-v2 Project: Motivation for a fork

● Design Decisions: A Bootloader for Kernel Hackers

● Flow of Execution: From Power-On to the Kernel

● Sugar and Candies: Some Highlights

● Future: Perspective & Discussion

Slide 3 - http://www.pengutronix.de - 19/10/2009

Bootloaders: What they do ...

Low Level Hardware Init
RAM, Flash, PLLs + Clocks, ...

Fetch Kernel(s) from Boot Medium
NOR-Flash, NAND-Flash, SD, USB, SATA, Network...

Start Kernel
with kernel command line parameters

● BIOS (PC)
● Bootloader (SoC)

● BIOS (PC)
● Bootloader

(SoC, PC)

● Bootloader
(SoC, PC)

Slide 4 - http://www.pengutronix.de - 19/10/2009

Requirements for Production Systems

● No interaction: power-on and boot
● No delays by the bootloader!

● The bootloader shall stay out of the way!

● no selection screen
● no nothing

Slide 5 - http://www.pengutronix.de - 19/10/2009

Requirements: Development & Maintenance

● Stop boot process in the bootloader:

● key press on keybord (PC)
● serial console key or

hardware button (embedded)

● Choose between pre-existing kernels

● Be able to edit kernel location - where to boot from
(flash partition, disk partition, tftp location, ...)

● Change kernel command line

● Make changes persistent
(change - store - boot with new config)

Slide 6 - http://www.pengutronix.de - 19/10/2009

Requirements on Embedded Systems

● TFTP booting the kernel
(for quick development cycle)

● Redundancy Boot
(start watchdog, boot,
boot other kernel on startup-failure)

● Hardware testing environment:

● have register access from a commandline
while kernel was not ported to a
new platform yet

● have a non-complex environment for
hardware people to test prototypes

Slide 7 - http://www.pengutronix.de - 19/10/2009

Why do we need a Bootloader at all?

● Alternative: use Linux to boot Linux

● Booting from NAND: we need at least a pre-loader

● Boot Time

● kexec needs about 7 s addon-time
● can be avoided by directly starting the production kernel

● U-Boot-v2 is minimal porting effort until the developer is able to see
something on the commandline and has fancy debug possibilities

● high scalability: even if we have linux-only booting in the future,
U-Boot-v2 can be scaled down to the minimum

Slide 8 - http://www.pengutronix.de - 19/10/2009

U-Boot-v2: Agenda

● Bootloaders: What they do and why we (still) need them

● The U-Boot-v2 Project: Motivation for a fork

● Design Decisions: A Bootloader for Kernel Hackers

● Flow of Execution: From Power-On to the Kernel

● Sugar and Candies: Some Highlights

● Future: Perspective & Discussion

Slide 9 - http://www.pengutronix.de - 19/10/2009

The U-Boot-v2 Project:
Motivation for a fork

● Pro:

● „Das U-Boot“ is a great bootloader
for SoC type Linux systems!

● Multi Platform design, runs on
ARM, MIPS, PowerPC, Blackfin etc.

● Good user experience (for us embedded people)

● High level of configurability (environment + saveenv)

● “True” Open Source project
(no hidden development, public git + list)

Slide 10 - http://www.pengutronix.de - 19/10/2009

The U-Boot-v2 Project:
Motivation for a fork
● Contra:

● Usage of U-Boot requires deep board
knowledge

● abuse of the environment for scripting

● no clean driver model and multi instance concepts

● filesystem support is quite inconvenient (fatls, ext2load, ...)

● Hard to configure: many macros have to be edited by hand to
configure the features of U-Boot

● “Must not break existing boards” policy
(makes it hard to change designs)

Slide 11 - http://www.pengutronix.de - 19/10/2009

The U-Boot-v2 Project:
Motivation for a fork

● U-Boot-v2 was started as a technology study

● Idea: How can the U-Boot principle be improved when...

● ... we take proven concepts from the Linux kernel

● ... we ”think POSIX”

● ... we don't have to care about stability
 of 10 year old platforms

● Why can't a bootloader feel more like Linux?

Slide 12 - http://www.pengutronix.de - 19/10/2009

U-Boot-v2: Agenda

● Bootloaders: What they do and why we (still) need them

● The U-Boot-v2 Project: Motivation for a fork

● Design Decisions: A Bootloader for Kernel Hackers

● Flow of Execution: From Power-On to the Kernel

● Sugar and Candies: Some Highlights

● Future: Perspective & Discussion

Slide 13 - http://www.pengutronix.de - 19/10/2009

Design Decisions:
A Bootloader for Kernel Hackers

● Some design decisions we made for U-Boot-v2:

● more abstraction
(devices instead of direct memory access + special knowledge)

● multi instance, driver model from kernel
(no global variables, “ethaddr”, “eth1addr” etc. any more)

● file system abstraction (but still simple)

● frameworks instead of multiple-drivers-with-(almost-)same-api

● “usual” commands: rm, cp, mount, ...

Slide 14 - http://www.pengutronix.de - 19/10/2009

Design Decisions:
A Bootloader for Kernel Hackers

● Some design decisions we made for U-Boot-v2:

● scripts are scripts, no “runnable environment variables”

● environment consists of ramdisk + tar archive for persistence

● make local variables possible (saveenv saves everything in v1)

● KBuild + Kconfig (configuration, parallel build)

● clocksource model taken from Linux

● kernel coding style

● “best of U-Boot and Linux”

Slide 15 - http://www.pengutronix.de - 19/10/2009

Design Decisions:
A Bootloader for Kernel Hackers

● But:

● U-Boot should not increase in binary size

● Code size is still more important than
performance and feature completeness.

Slide 16 - http://www.pengutronix.de - 19/10/2009

U-Boot-v2: Agenda

● Bootloaders: What they do and why we (still) need them

● The U-Boot-v2 Project: Motivation for a fork

● Design Decisions: A Bootloader for Kernel Hackers

● Flow of Execution: From Power-On to the Kernel

● Sugar and Candies: Some Highlights

● Future: Perspective & Discussion

Slide 17 - http://www.pengutronix.de - 19/10/2009

U-Boot-v2: Startup sequence

● Board specific lowlevel init

● Relocation to RAM if necessary

● Common entry point start_uboot()

● Initcall sequence: First subsystems, then drivers

● Mount ramfs to /

● Mount devfs to /dev

● Load environment to /env

● Execute /env/bin/init script

Slide 18 - http://www.pengutronix.de - 19/10/2009

“Hello World” in U-Boot-v2

● Here is a typical startup from U-Boot-v2:

U-Boot 2.0.0-rc10-00262-g7c693db-dirty (Sep 10 2009 - 11:16:13)

Board: Phytec phyCard-i.MX27
NAND device: Manufacturer ID: 0x20, Chip ID: 0x36 (ST Micro NAND 64MiB

1,8V 8-bit)
Malloc space: 0xa7a00000 -> 0xa7f00000 (size 5 MB)
Stack space : 0xa79f8000 -> 0xa7a00000 (size 32 kB)
running /env/bin/init...

Hit any key to stop autoboot: 3

type update_kernel nand|nor [<imagename>] to update kernel into flash
type update_root nand|nor [<imagename>] to update rootfs into flash

uboot:/

Slide 19 - http://www.pengutronix.de - 19/10/2009

File System

● During startup, a RAM filesystem is mounted to /

● A device filesystem is mounted to /dev

● The environment is copied to /env

● At the prompt, the well known commands like ‘ls’,‘rm’, ‘cp’ work
the way we are used to:

uboot:/ ls
. .. dev env

Slide 20 - http://www.pengutronix.de - 19/10/2009

Devices

● Drivers can create device nodes under /dev
which can be accessed like normal files:

uboot:/ ls /dev/
zero defaultenv mem nand0 ram0
phy0 self_raw self0 env_raw env0

Slide 21 - http://www.pengutronix.de - 19/10/2009

Accessing Memory

● /dev/mem is a special file which represents the whole address space
and is the device the memory display (md) command normally works on

● md internally works by opening /dev/mem and lseeking to the desired
position and reading the contents:

uboot:/ md 0x0
00000000: e59ff00c e51ff11c e51ff11c e51ff11c
00000010: e51ff11c d8000000 e51ff120 e51ff120
00000020: 000000a0 00000000 00000000 00000000
00000030: e51ff018 00000000 00000000 00000000
00000040: 0000000a 584d2e69 43003732 7279706fi.MX27.Copyr
00000050: 74686769 29632820 30303220 72462035 ight (c) 2005 Fr
00000060: 63736565 20656c61 2e636e49 6c6c4120 eescale Inc. All
00000070: 67697220 20737468 65736572 64657672 rights reserved
00000080: 0000002e 00000000 00000000 00000000
00000090: 00000317 000004b9 000004e5 00000000
000000a0: e321f0d3 e59fd008 e59f0008 e12fff10 ..!.........../.
000000b0: ea000001 ffffb79c 000000f1 e321f0d3!.
000000c0: e59fd014 e59f0014 e3a0106c e5c01000l.......
000000d0: e59f000c e12fff10 eafffff7 ffffb79c/.........

Slide 22 - http://www.pengutronix.de - 19/10/2009

Accessing Other Devices

● While /dev/mem is the default “file” for the memory commands,
it can be changed:

uboot:/ md -w -s /dev/phy0
00000000: 1000 786d 0022 1613 01e1 45e1 0007 2001 ..mx"......E...
00000010: 0000 0000 0000 0000 0000 0000 0000 0000

● This displays the contents of /dev/phy0 (-s) in 16 bit wordsize (-w)

Slide 23 - http://www.pengutronix.de - 19/10/2009

Copying Things

● Not only the memory display/write (md, mw) commands work this way,
but also memcpy and friends

● Copy memory at <src> of <count> bytes to <dst>:

uboot:/ memcpy
Usage: memcpy [OPTIONS] <src> <dst> <count>

options:
 -b, -w, -l use byte, halfword, or word accesses
 -s <file> source file (default /dev/mem)
 -d <file> destination file (default /dev/mem)

● This would copy a 1k chunk from /dev/nand0
from offset 1 M to the file ‘nand’:

uboot:/ memcpy -s /dev/nand0 -d nand 1M 0x0 1k

Slide 24 - http://www.pengutronix.de - 19/10/2009

Partitioning

● Device files can be partitioned to get a convenient access
to flashes and to get a consistent partition layout between
U-Boot and Linux:

uboot:/ addpart nor0 256k(u-boot),128k(u-boot-env),2M(kernel),-(rootfs)
uboot:/ ls -l /dev/nor0*
crw------- 31064064 /dev/nor0.root
crw------- 2097152 /dev/nor0.kernel
crw------- 131072 /dev/nor0.ubootenv
crw------- 262144 /dev/nor0.uboot
crw------- 33554432 /dev/nor0

● The partition description for the “addpart” command is the same
as the Linux mtd layer uses for command line partitioning,
so this string can be directly given to the Kernel

Slide 25 - http://www.pengutronix.de - 19/10/2009

Environment

● In U-Boot-v1: environment can be made persistent with “saveenv”

● In U-Boot-v2, “saveenv” is different:

● Save the contents of /env to /dev/env0
● You can think of saveenv/loadenv as a simple tar command
● /env and /dev/env0 are only defaults which can be changed on

the command line so that it is possible to have multiple environment
sectors.

● The environment can be changed by editing the files under /env,
using the internal editor (edit)

● The changes are then made persistent with saveenv

● Due to the file nature of the environment it is of course possible to store
arbitrary files in the environment, for example splash images.

Slide 26 - http://www.pengutronix.de - 19/10/2009

Device Variables

● Design criterium: ”avoid magic variables”

● Introduction of “device variables”: eth0.ipaddr

● Device variables can be displayed using the devinfo command:

uboot:/ devinfo eth0
base : 0x00000000
size : 0x00000000
driver: none

Parameters:
 ipaddr = 192.168.24.26
 ethaddr = 00:50:c2:a5:bb:87
 gateway = 192.168.1.1
 netmask = 255.255.0.0
 serverip = 192.168.23.2

● The device variables can be used like any other variable:

uboot:/ eth0.serverip=192.168.23.123
uboot:/ echo $eth0.serverip
192.168.23.123

Slide 27 - http://www.pengutronix.de - 19/10/2009

Getting the Kernel via TFTP

● Most important networking commands:

● dhcp (configure the network adapter)
● tftp (transfer files via tftp)

● tftp normally writes to files but can be used to write directly to flash:

uboot:/ erase /dev/nand0.kernel.bb
uboot:/ dhcp
phy0: Link is up - 100/Full
BOOTP broadcast 1
DHCP client bound to address 192.168.24.26
uboot:/ tftp zImage-pca100 /dev/nand0.kernel.bb
phy0: Link is up - 100/Full
TFTP from server 192.168.23.2; our IP address is 192.168.24.26
Filename 'zImage-pca100'.
Loading: ###
 ###
 ###
done
Bytes transferred = 1815016 (1bb1e8 hex)

Slide 28 - http://www.pengutronix.de - 19/10/2009

Build System

● Building should be familiar to kernel hackers:

export ARCH=arm
export CROSS_COMPILE=arm-linux-
make pcm038_defconfig
make menuconfig
make

Slide 29 - http://www.pengutronix.de - 19/10/2009

U-Boot-v2: Agenda

● Bootloaders: What they do and why we (still) need them

● The U-Boot-v2 Project: Motivation for a fork

● Design Decisions: A Bootloader for Kernel Hackers

● Flow of Execution: From Power-On to the Kernel

● Sugar and Candies: Some Highlights

● Future: Perspective & Discussion

Slide 30 - http://www.pengutronix.de - 19/10/2009

Sandbox

● U-Boot-v2 can be built as a normal Linux binary
(inspired by user mode linux)

● Features:

● Working on U-Boot-v2 without real hardware
● Run U-Boot under gdb
● Networking using a tap device

● To compile the sandbox: pass ARCH=sandbox while compiling

Slide 31 - http://www.pengutronix.de - 19/10/2009

Sugar & Candies: Highlights

● Minimum port (2nd stage):

● v2 can be used as a payload of an existing bootloader
● getting the features without having to do the hardware init part first

● Quickboot: Booting Linux Fast & Fancy:

● U-Boot-v2 brings up splash screen in < 0.5 s
● Kernel starts in < 3 s (i.MX27 @ 400 MHz)
● Soft fading into Qt 4.5 application

● Integrated editor:

● “edit /path/to/file” opens a full screen editor
(even on serial line)

● ctrl-d (save) / ctrl-c (cancel)

Slide 32 - http://www.pengutronix.de - 19/10/2009

Sugar & Candies: Highlights

● “1-image-starts-everywhere”

● MMU support

● USB host/device support

● DFU (Device firmware update) support

● Module support

Slide 33 - http://www.pengutronix.de - 19/10/2009

U-Boot-v2: Agenda

● Bootloaders: What they do and why we (still) need them

● The U-Boot-v2 Project: Motivation for a fork

● Design Decisions: A Bootloader for Kernel Hackers

● Flow of Execution: From Power-On to the Kernel

● Sugar and Candies: Some Highlights

● Future: Perspective & Discussion

Slide 34 - http://www.pengutronix.de - 19/10/2009

Perspective & Discussion

● Do we need yet-another-bootloader?

Slide 35 - http://www.pengutronix.de - 19/10/2009

Thanks for Listening - Questions?

Slide 36 - http://www.pengutronix.de - 19/10/2009

Literature

● Web Site for U-Boot-v2:
http://www.pengutronix.de/software/u-boot/v2/

● Source Code:
git clone git://www.denx.de/git/u-boot-v2.git

● Mailing List:
http://lists.denx.de/mailman/listinfo/u-boot

