The Linux Knowledge Base and Tutorial
22 October 2007

The Linux Knowledge Base and Tutorial

Table of Contents

[Terms of Use and Disclamier of Warrgnty
[Copyrigh}

[Prefac . :
Chapt em ms .
[1.1 What Is an Operating Sys
]@s . :

S .

1.3 F| es and Directorigs
[L.4 Operating System La

[L5Moving Oh . .
m :

L What Linucis AT ABot
r L
S :
2.1.4 What goes with Liniix

2.2 Linux Documentatign

2.3 Other Resources .

L
Chapter 3 Working with the System

3.1 Backing-up and Restoring Files .

3.2 Interacting with the System

BdloggngOlt . . .

Imw

3.6 Accessing Disks . .

[Chapter 4 Shells and Utilitles

[A.IThe Shel . .

[4.2 The Search P4th

[4.3 Directory Patf}s.

[4.4 Shell Varia

[A.5 Permissions .

[4.6 Regular Exgressmns and Metacharg]cters
4.7 Quotels.

|4.8 Pipes and Re |rect
[.9Tnterpreting the Comm Ind
[4.10 Different Kinds of Shells
[A.11 Command Line Editihg
412 Functions. . . .
[4.13 Job Contrl

14 Aliases . .

14.15 A Few More Constru¢t
AI6The C-Shell . . .
[4.17 Commonly Used Utiliti¢s

4.17.1 Examples of Commonly Used Ut| ifies .

Removing flesm |
[Display the contents of filefess |

www.linux-tutorial.info

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

[Display the contents of files with line humbens]
Display the beginning of filediead .
[Display the end of filesail] .
|Seperating files by columiout |
|ICombining filespaste |
|ICombining filesjoin | . .
|copying and converting filestd

|4.18 Looking for Filgs

[4.19 Looking Through Filgs

20 Basic Shell Scriptifng

[4:22"Shell Odds and Erjds
[Chapter 5 Editing Filgs. .

AV
.1.1 vi Basigs.

o
[T [T [
o |
W[N]
ZQ .
o
e
3 .
Q‘%.
>lka .
of—
=2 le)
2=
515
I

[5.1.4 Searching in Vi
.1.5 vi Buffe .
d.6viMagic. . . .

[5.1.7 Command Output in|vi

[5.1.8 More vi Magit

[5.1.9 vi Odds and Enfds

[5.1.10 Configuring Vi

.2 Sefl . .

ii
&=

a|[oT
W)
2
H

[$2]
N

Pe

[Chapter 6 Basic Administratipn. . .
.1 Starting and Stopping the Syskem.
[6.1.1The BootProcdss . . .
.1.2 Run Levels
[I3TnitScrips . . .

[6.1.4 LILO-The Linux Loadgr

[6.1.5 Stopping the Systém.

m

s . .

16.3.1 Terminal Capabilitigs.
16.3.2 Terminal Settings

|6.4 Printers and Interfages
|6.4.1 advanced formatting .
6.4.2 printcap . S
|6.4.3 remote printirg

[e2)
W
—
[¢)
=
3
=]
Q

&
N|
C
n
D
=
a|[>
oo
o
o
QIc
>
L
"

.5.1 Syslogd

[O))
[5o][00]| 9
|||\

<
NS | L | 1%}

—
<D
gB
ml_
o 12 110
=52
=1 bl G
N ol R
0 «
<
)

—
)
3
=
fal
Q
)

|
(o]
ol
&
o
Q
[
(@]

[O)]
o
C
@
o
@
o)
3.
3
c
5|
o
2
=
>

6.9 Webmin.
|Chapter 7 The X Windowing System
[7.1 Configuring the X-Windows Servyer

=]
N
_|
=y
¢
oy
D
4
o
»
o
=4
X

¢S
.4 Colo

=

<=EE

w)
Py

No|o
[72]
(@]
c
=

1758

N
(6]
)
wn
i=1
Q
<
>
(o]
)
3
>
—
o

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

114
115
116
116
117
118
119
120
127
131
140
141
144
144
144
147
148
149
152
155
157
158
158
161
161
166
172
194
194
194
200
203
207
209
211
216
218
219
220
223
226
228
229
229
229
233
236
237
241
243
249
249
253
256
259
260

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

|7.7 The Window Manager
[7.8 Remote Accebs . . .
|Chapter 8 The Computer ltdelf . ..
[8.1 Basic Input-Output Services and the Systen Bus .
8.2 The ExpansionBps
18.2.1 Industry Standard Architecture ISA
[6:2.3 Extended Industry Standard Architecture EISA
[B.2.4 The Small Computer Systems Interface 5CSI .
2.6 Pdl .

i

.3 Memory . .
3.1 RA . .
[8.3.2 Cache Memofy .
8.4 The Central Processing Unit .
[8.4.1 Intel Processgrs .
4.2 AM . . .
[8.4.3 Alpha Processgrs
4.4 Mip$. . .
4.5 SPARC . . .
18.4.6 ARM Processdrs.
[8.5 Motherboards
.
8.6.2 Serial ATA
8.7 Floppy Drivefs
8.8 Tape Drivegs .
8.9 CD-ROM$.
S.
s ...
[8:12 Video Cards and Monitrs .
18.12.1 Video Card Common Problgms .
[8.14 Printers.
[8.16 Uninterruptable Power Supplies .
[8.18 The Right Hardwajre.
18.19 HW Diagnostigs.
[Chapter 9 Networking .
[9.1.1 IP Addressirlg
[9.1.2 Pseudo Termingls
[9.1.3 Network Servicds
[9.1.4 Network Standards
[9.1.5 Subnet Masks . . .
[9.1.6 Routing and IP Gateways. .
9.1.7 The Domain Name System
19.1.7.1 Configuring the Domain Name System DNS .
19.3.1 The Flow of Things
[9.3.2 When Things Go Wropg .

o)
00| »|[oo
N
\'
>
©

i
)

ii

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

262
267
270
271
273
273
276
277
282
284
286
293
294
295
295
296
300
302
303
313
314
316
316
316
317
319
330
334
337
339
342
344
348
350
353
354
358
365
366
366
368
377
384
384
390
392
393
396
397
399
403
407
424
431
434
435

www.linux-tutorial.info

[.3.3 Automourjt

[9:5 Accesing the Wéb

9.6 Firewallg. .
[9.6.1 Securing the SerVer .

19.6.2 Securing the Internal Netwbrk

19.7 Network Technologigs

©.7.1 Etherngt. .

[9.7.2 Token-Ring .

B.7.3ATM.

9.7.5 Network Hardwale .
[Chapter 10 System Monitorihg .

[10.1 Finding Out About Your Systém

|10.1.1 Hardware and the Kermel
10.1.2 Terminals

|110.1.3 Hard Disks and File Systdms

10.1.4 User Filgs
|10.1.5 Network Filgs
|10.1.6 Important System Flles

|10.2 What the System Is Doing Njow .

10.2.1Usefs . .
10.2.2 Processes . .
|10 2 3 Files and File Systetns .
10.2.4 Checking Other Things .
10.3 Big Brothgr. . . .
s ..
|11 1 Solvin§ Problems Yours|elf .
[L[I.1.1 Preparing Yoursglf .

[L1.1.3 Problem Solvirg

[1.14 Crash Recovdry. . .
[L1.1.5 Hardware Diagnostic Tabls
[1.16 Netiquefle

|11.2 Getting Help
|11.2.1 Calling Suppqrt .
|11.2.2 Consultants. .
|11.2.3 Other Sourcgs .
[Chapter 12 Security
|112.1 Real Threagts
|12.2 Restricting Acceps .
12.3 Passwor(ls .
S.
|12.5 The Root Account
|112.6 The Netwoik .
|112.7 What You Can Do Aboul It .
|112.7.1 Trusted Hosts
'
|12 7. 4 Modem Securlty
:
|12 7 6 The OfflClaI World
|112.7.7 Changing Attitudgs .
[12.7.8 System Securjty.
|112.7.9 Security and the Law
[Chapter 13 Installing and Upgradjng

[L1.1.2 Checking the Sanity of Your Syst

The Linux Knowledge Base and Tutorial

437
443
450
452
454
456
457
457
458
458
458
460
467
467
469
472
472
474
474
475
477
478
479
483
485
486
493
493
493
500
503
508
511
515
516
519
528
535
536
536
541
541
542
542
543
547
553
554
554
555
555
556
558
559
561
564

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

iv

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

[13.1 Getting Your Own Copy. bp4
[[31.1 Preparing for the Installagjon. 565
[3:121Installation Checklst57
|13.1.3 Hardware Requirements b74
13.1.4 Partitioning. b75
[13.1.5Swap Space bas
|13.1.6 Installation Problegns b8s
|113.1.7 Preparing for the Worst. b88

[13.2 Doing the Installatign 588
[[3:2.1Installing the File Syst¢¢ma 588

[[3.3Upgrading an Existing Sysem 59

[[3.4 Adding Hardwale59
[E34.LPreparatidn.59
L3z2cey . 5o
[13.4.4SCSlDevices600
l13.45HardDisks 600
113.4.6 Other SCSIDevides. 603
113.4.7EIDEDrives 603
[13.48CD-ROMs04

|13.5 A Treasure Chest of Choipes 604
|13.5.2 Deutsche Linux DistributonDID. 605
13.5.3Mandrake 606
[@(354RedH&t.606
35505mckwale 606

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

v

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Terms of Use and Disclamier of Warranty

YOU UNDERSTAND AND AGREE THAT YOUR USE OF THIS DOCUMENT AND
ANY CONTENT PROVIDED IS MADE AVAILABLE AND PROVIDED TO YOUAT
YOUR OWN RISK. IT IS PROVIDED TO YOU "AS IS" AND WE EXPRESSLY
DISCLAIM ALL WARRANTIES OF ANY KIND, IMPLIED OR EXPRESSED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.

WE MAKE NO WARRANTY, IMPLIED OR EXPRESS, THAT ANY PART OF THIS
DOCUMENT WILL BE ERROR-FREE, TIMELY, ACCURATE, RELIABLE, OF ANY
QUALITY, NOR THAT ANY CONTENT IS SAFE IN ANY MANNER FOR
DOWNLOAD. YOU UNDERSTAND AND AGREE THAT NEITHER US NOR ANY
PARTICIPANT IN THE SERVICE OF PROVIDING YOU THIS DOCUMENT OR THE
DOCUMENT ITSELF PROVIDES PROFESSIONAL ADVICE OF ANY KIND AND
THAT USE OF SUCH ADVICE OR ANY OTHER INFORMATION IS SOLELXT
YOUR OWN RISK AND WITHOUT OUR LIABILITY OF ANY KIND.

THE OPERATORS OF THE LINUX TUTORIAL AND ANY OTHER PERSONS OR
ORGANIZATIONS THAT MAY PROVIDE THIS DOCUMENT ARE UNDER NO
OBLIGATION TO CONTINUE DOING SO AND MAY, WITHOUT NOTICE OR
LIABAILITY, DISCONTINUE PROVIDING THIS DOCUMENT.

FOR ADDITIONAL DETAILS SEH http://www.linux-tutorial.info/termsofuse.h{ml.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

1

http://www.linux-tutorial.info/termsofuse.html

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Copyright

The material contained in this documented is released under various licenses. All of the
material in this document is the copyright of the original creator (author, artist). Some of this
material has been previously published in various places, but the creator stills own the
copyright. This material is not only protected by the moral obligation to protect the creators’
rights, but also by a number of different laws (which might not discourage some people).
Much of the material was taken from the bobksux User'sResource an8upporting

Windows NT and 2000 Server awdbrkstation, written by James Mohr and which were
published Pearson Education |nc.

All material created by James Mohr is copyrighted 1994-2003 by James Mohr and is licensed
under a modified GNU Free Documentation License. Reproduction and distribution of
material copyrighted by James Mohr or derivative of such material in any standard (paper)
book form is prohibited unless prior permission is obtained from the copyright holder.
Distribution of substantively modified versions of material copyrighted by James Mohr is
prohibited without the explicit permission of the copyright holder. Distribution of material
copyrighted by James Mohr in a commercial product is prohibited without the explicit
permission of the copyright holder. Use of material copyrighted by James Mohr in any
commercial endeavour is prohibited without the explicit permission of the copyright holder. A
"commercial endeavour” includes, but is not limited to training or other educational courses
for which a fee is required. Public education institutions (such a state universities and
colleges, community colleges and similar) are except from this requirement and need only
inform the copyright holder of such use.

A number of pages in the tutorial do not fall within the above mentioned license and are
licensed under various other license agreements. Each author or license holder has the right to
determine the terms of the license under which the material is made available.

FOR ADDITIONAL DETAILS SEH http://www.linux-tutorial.info/copyright.htimnl.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

2

http://www.pearsoned.com/
http://www.linux-tutorial.info/copyright.html

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Preface

This is aBETA release of the "print friendly" version of the Linux Knowledge Base and
Tutorial. Here are a few things to note:

e Due to technical problems, this version donescontain the chapter on Linux operating
system internals.

e Graphics are unchanged from the live tutorial and thus many contain the "Play
Animation" button.

e There is no index, glossary, list of images or list of tables. (I am not sure if | will ever do
all of these).

e Some sections do not have any content, just like the live tutorial.

In that this is BETA release, there are probably a lot of these wrong with it. Please let me
know of anything you are not happy with by sending me feedback through the Linux Tutorial
web site| http://www.linux-tutorial.info/feedback.h{ml.

Please keep in mind that this is not intended to be a commercial produohljtistended as

a convenience for the users of the Linux Knowledge Base and Tutorial. Don’t expect me to be
spending any time getting the exact font g@t | just don’t have the bandwidth. On the

other hand, if more people starting volunteering to help, | would have more time to work on
things like this document.

| am not going to make any promises of how often | will create a "print friendly" version. | am
going to clean up several things before | create a first "official release". However, once that is
done, | am going to work on a number of other things that | have been meaning to do so it will
definitely be several months before | do another "print friendly" version.

Getting the material evenm this far was not a simple task. | had to write some addition code,
as well as become familiar with a couple of new programs. This took time and effort, for
which | am not asking any fee. However, donations to the Jessie Arbogast Medical Fund are
always welcome.

At this point, | am only going to make this document available for download from
SourceForge. My site just doesn’t have the bandwidth.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

3

http://www.linux-tutorial.info/feedback.html

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Chapter 1 Introduction to Operating Systems

It is a common occurrence to find users who are not even aware of what operating system
they are running. On occasion, you may also find an administrator who knows the name of the
operating system, but nothing about the inner workings of it. In many cases, they have no time
as they are often clerical workers or other personnel who were reluctantly appointed to be the
system administrator.

Being able to run or work on a Linux system does not mean you must understand the intricate
details of how it functions internally. However, there are some operating system concepts that
will help you to interact better with the system. They will also serve as the foundation for
many of the issues we’re going to cover in this section.

In this chapter we are going to go through the basic composition of an operating system. First,
we’ll talk about what an operating system is and why it is important. We are also going to
address how the different components work independently and together.

My goal is not to make you an expert on operating system concepts. Instead, | want to provide
you with a starting point from which we can go on to other topics. If you want to go into more
detail about operating systems, | would suglygsiiern Operating Systenby Andrew

Tanenbaum, published by Prentice Hall, @perating System Concefiitg Silberschatz,

Peterson, and Galvin, published by Addison-Wesley. AnotHaside Linuxby Randolph

Bentson, which gives you a quick introduction to operating system concepts from the
perspective of Linux.

1.1 What Is an Operating System

In simple terms, an operating system is a manager. It manages all the available resources on a
computer. These resources can be the hard disk, a printer, or the monitor screen. Even
memory is a resource that needs to be managed. Within an operating system are the
management functions that determine who gets to read data from the hard disk, what file is
going to be printed next, what characters appear on the screen, and how much memory a
certain program gets.

Once upon a time, there was no such thing as an operating system. The computers of forty
years ago ran one program at a time. The computer programmer would load the program he
(they were almost universally male at that time) had written and run it. If there was a mistake
that caused the program to stop sooner than expected, the programmer had to start over.
Because there were many other people waiting for their turn to try their programs, it may have
been several days before the first programmer got a chance to run his deck of cards through
the machine again. Even if the program did run correctly, the programmer probably never got
to work on the machine directly. The program (punched cards) was fed into the computer by
an operator who then passed the printed output back to the programmer several hours later.

As technology advanced, many such programs, or jobs, were all loaded onto a single tape.
This tape was then loaded and manipulated by another program, which was the ancestor of
today’s operating systems. This program would monitor the behavior of the running program

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

4

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

and if it misbehaved (crashed), the monitor could then immediately load and run another.
Such programs were called (logically) monitors.

In the 1960’s, technology and operating system theory advanced to the point that many
different programs could be held in memory at once. This was the concept of
"multiprogramming.” If one program needed to wait for some external event such as the tape
to rewind to the right spot, another program could have access to the CPU. This improved
performance dramatically and allowed the CPU to be busy almost 100 percent of the time.

By the end of the 1960’s, something wonderful happened: UNIX was born. It began as a
one-man project designed by Ken Thompson of Bell Labs and has grown to become the most
widely used operating system. In the time since UNIX was first developed, it has gone
through many different generations and even mutations. Some differ substantially from the
original version, like BSD (Berkeley Software Distribution) UNIX or Linux. Others, still

contain major portions that are based on the original source code. (A friend of mine described
UNIX as the only operating system where you can throw the manual onto the keyboard and
get a real command.)

Linux is an operating system like many others, such as DOS, VMS, OS/360, or CP/M. It
performs many of the same tasks in very similar manners. It is the manager and administrator
of all the system resources and facilities. Without it, nothing works. Despite this, most users
can go on indefinitely without knowing even which operating system they are using, let alone
the basics of how the operating system works.

For example, if you own a car, you don’t really need to know the details of the internal
combustion engine to understand that this is what makes the car move forward. You don’t
need to know the principles of hydraulics to understand what isn’t happening when pressing
the brake pedal has no effect.

An operating system is like that. You can work productively for years without even knowing
what operating system you’re running on, let alone how it works. Sometimes things go wrong.
In many companies, you are given a number to call when problems arise, you report what
happened, and it is dealt with.

If the computer is not back up within a few minutes, you get upset and call back, demanding
to know when "that darned thing will be up and running again." When the technician (or
whoever has to deal with the problem) tries to explain what is happening and what is being
done to correct the problem, the response is usually along the lines of, "Well, | need it back up
now."

The problem is that many people hear the explanation, but don’t understand it. It is common
for people to be unwilling to acknowledge that they didn’t understand the answer. Instead,
they try to deflect the other person’s attention away from that fact. Had they understood the
explanation, they would be in a better position to understand what the technician is doing and
that he/she is actually working on the problem.

By having a working knowledge of the principles of an operating system you are in a better
position to understand not only the problems that can arise, but also what steps are necessary
to find a solution. There is also the attitude that you have a better relationship with things you

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

5

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

understand. Like in a car, if you see steam pouring out from under the hood, you know that
you need to add water. This also applies to the operating system.

In this section, | am going to discuss what goes into an operating system, what it does, how it
does it, and how you, the user, are affected by all this.

Because of advances in both hardware design and performance, computers are able to process
increasingly larger amounts of information. The speed at which computer transactions occur

is often talked about in terms biflionths of a second. Because of this speed, today’s

computers can give the appearance of doing many things simultaneously by actually

switching back and forth between each task extremely fast. This is the concept of

multitasking. That is, the computer is working on multiple tasks "at the same time."

Another function of the operating system is to keep track of what each program is doing. That
is, the operating system needs to keep track of whose program, or task, is currently writing its
file to the printer or which program needs to read a certain spot on the hard disk, etc. This is
the concept of multi-users, as multiple users have access to the same resources.

In subsequent sections, | will be referring to UNIX as an abstract entity. The concepts we will
be discussing are the same for Linux and any other dialect. When necessary, | will specifically
reference where Linux differs.

1.2 Processes

One basic concept of an operating system is the process. If we think of the program as the file
stored on the hard disk or floppy and the process as that program in memory, we can better
understand the difference between a program and a process. Although these two terms are
often interchanged or even misused in "casual”" conversation, the difference is very important
for issues that we talk about later. Often one refers tosaanceof that command or

program.

A process is more than just a program. Especially in a multi-user, multi-tasking operating
system such as UNIX, there is much more to consider. Each program has a set of data that it
uses to do what it needs. Often, this data is not part of the program. For example, if you are
using a text editor, the file you are editing is not part of the program on disk, but is part of the
process in memory. If someone else were to be using the same editor, both of you would be
using the same program. However, each of you would have a different process in memory.
See the figure below to see how this looks graphically.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

6

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

table

location of program
fbinfbash on disk

Iser starts . .
'binfbash
Kernel

IIser? starts .
‘hinfbash '

Image - Reading programs from the hard disk to create processes.

Under UNIX, many different users can be on the system at the same time. In other words,
they have processes that are in memory all at the same time. The system needs to keep track
of what user is running what process, which terminal the process is running on, and what
other resources the process has such as open files. All of this is part of the process.

With the exception of the init process PID 1 every process is the child of another process. In
general, every process has the potential to be the parent of another process. Perhaps the
program is coded in such a way that it will never start another process. However, this is a
limitation of that programm and not the operating system.

When you log onto a UNIX system, you usually get access to a command line interpreter, or
shell. This takes your input and runs programs for you. If you are familiar with DOS, you
already have used a command line interpreter: the COMMAND.COM program. Under DOS,
your shell gives you the C:> prompt or something similar. Under UNIX, the prompt is usually
something like $, #, or %. This shell is a process and it belongs to you. That is, the in-memory
or in-core copy of the shell program belongs to you.

If you were to start up an editor, your file would be loaded and you could edit your file. The
interesting thing is that the shell has not gone away. It is still in memory. Unlike what
operating systems like DOS do with some programs, the shell remains in memory. The editor
is simply another process that belongs to you. Because it was started by the shell, the editor is
considered a "child" process of the shell. The shell ipéinentprocess of the editor. A

process has only one parent, but may have many children.

As you continue to edit, you delete words, insert new lines, sort your text and write it out
occasionally to the disk. During this time, the backup is continuing. Someone else on the
system may be adding figures to a spreadsheet, while a fourth person may be inputting orders
into a database. No one seems to notice that there are other people on the system. For them, it
appears as though the processor is working for them alone.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

7

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Another example we see in the next figure. When you login, you normally have a single
process, which is your login shell bash. If you start the X Windowing System, your shell starts
another process, xinit. At this point, both your shell and xinit are running, but the shell is
waiting for xinit to complete. Once X starts, you may want a terminal in which you can enter
commands, so you stadierm .

bash
Farent: init

®init
Farent bash

“term xclack
Farent: Xinit Farent ®init
ps

Farent: xterm

Image - Relationship between parent and child processes.

From the xterm, you might then start & command, to see what other processes are
running. In addition, you might have something like | do, where a clock is automatically
started when X starts. At this point, your process tree might look like the figure above.

The nice thing about UNIX is that while the administrator is backing up the system, you could
be continuing to edit your file. This is because UNIX knows how to take advantage of the
hardware to have more than one process in memory at a time. Note: It is not a good idea to do
a backup with people on the system as data may become inconsistent. This was only used as
an illustration.

As | write this sentence, the operating system needs to know whether the characters | press are
part of the text or commands | want to pass to the editor. Each key that | press needs to be
interpreted. Despite the fact that | can clip along at about thirty words per minute, the Central
Processing UnitCPU is spending approximately 99 percent of its time doing nothing.

The reason for this is that for a computer, the time between successive keystrokes is an
eternity. Let’s take my Intel Pentium running at a clock speed of 1.7 GHz as an example. The
clock speed of 1.7 GHz means that there are 1.7 billion! clock cycles per second. Because the
Pentium gets close to one instruction per clock cycle, this means that within one second, the
CPU can get close to executing 1.7 billion instructions! No wonder it is spending most of its
time idle. Note: This is an oversimplification of what is going on.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

8

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

A single computer instruction doesn’t really do much. However, being able to do 1.7 billion
little things in one second allows the CPU to give the user an impression of being the only one
on the system. It is simply switching between the different processes so fast that no one is
aware of it.

Each user, that is, each process, gets complete access to the CPU for an incredibly short
period of time. This period of time referred to dsree sliceis typically 1/100th of a second.

That means that at the end of that 1/100th of a second, it's someone else’s turn and the current
process igorcedto give up the CPU. In reality, it is much more complicated than this. We’'ll

get into more details later.

Compare this to an operating system like standard Windows not Windows NT/2000. The
program will hang onto the CPU until it decides to give it up. An ill-behaved program can
hold onto the CPU forever. This is the cause of a system hanging because nothing, not even
the operating system itself, can gain control of the CPU. Linux uses the concept of
pre-emptivemulti-tasking. Here, the system can pre-empt one process or another, to let
another have a turn. Older versions of Windows,caseperativemulti-tasking. This means

the process must be "cooperative" and give up control of the CPU.

Depending on the load of the system how busy it is, a process may get several time slices per

second. However, after it has run for its time slice, the operating system checks to see if some

other process needs a turn. If so, that process gets to run for a time slice and then its someone
else’s turn: maybe the first process, maybe a new one.

As your process is running, it will be given full use of the CPU for the entire 1/100th of a

second unless one of three things happens. Your process may need to wait for some event. For
example, the editor | am using to write this in is waiting for me to type in characters. | said

that | type about 30 words per minute, so if we assume an average of six letters per word,

that's 180 characters per minute, or three characters per second. That means that on average, a
character is pressed once every 1/3 of a second. Because a time slice is 1/100th of a second,
more than 30 processes can have a turn on the CPU between each keystroke! Rather than

tying everything up, the program waits until the next key is pressed. It puts itself to sleep until

it is awoken by some external event, such as the press of a key. Compare this to a "busy loop"
where the process keeps checking for a key being pressed.

When | want to write to the disk to save my file, it may appear that it happens instantaneously,
but like the "complete-use-of-the-CPU myth," this is only appearance. The system will gather
requests to write to or read from the disk and do it in chunks. This is much more efficient than
satisfying everyone’s request when they ask for it.

Gathering up requests and accessing the disk all at once has another advantage. Often, the
data that was just written is needed again, for example, in a database application. If the system
wrote everything to the disk immediately, you would have to perform another read to get back
that same data. Instead, the system holds that data in a special buffer; in other words, it
"caches" that data in the buffer. This is calledlib#er cache

If a file is being written to or read from, the system first checks the buffer cache. If on a read
it finds what it's looking for in the buffer cache, it has just saved itself a trip to the disk.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

9

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Because the buffer cache is in memory, it is substantially faster to read from memory than
from the disk. Writes are normally written to the buffer cache, which is then written out in
larger chunks. If the data being written already exists in the buffer cache, it is overwritten.
The flow of things might look like this:

Application

v 1

Filesystem
Driver

¢ 1

Buffer Cache

y 1

Disk Device
Driver

v 1

Physical
Device

PLAY AHIMATIOH o

Image - Different layers of file access.

When your process is running and you make a request to read from the hard disk, you

typically cannot do anything until you have completed the write to the disk. If you haven't
completed your time slice yet, it would be a waste not to let someone else have a turn. That's
exactly what the system does. If you decide you need access to some resource that the system
cannot immediately give to you, you are "put to sleep” to wait. It is said that you are put to
sleep waiting on an event, the event being the disk access. This is the second case in which
you may not get your full time on the CPU.

The third way that you might not get your full time slice is also the result of an external event.
If a device such as a keyboard, the clock, hard disk, etc. needs to communicate with the
operating system, it signals this need through the use of an interrupt. When an interrupt is
generated, the CPU itself will stop execution of the process and immediately start executing a
routine in the operating system to handle interrupts. Once the operating system has satisfied
this interrupt, it returns to its regularly scheduled process. Note: Things are much more
complicated than that. The "priority" of both the interrupt and process are factors here. We
will go into more detail in the section on the CPU.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

10

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

As | mentioned earlier, there are certain things that the operating system keeps track of as a
process is running. The information the operating system is keeping track of is referred to as
the processontext This might be the terminal you are running on or what files you have

open. The context even includes the internal state of the CPU, that is, what the content of each
register is.

What happens when a process’s time slice has run out or for some other reason another
process gets to run? If things go right and they usually do, eventually that process gets a turn
again. However, to do things right, the process must be allowed to return to the exact place
where it left off. Any difference could result in disaster.

You may have heard of the classic banking problem concerning deducting from your account.
If the process returned to a pldmforeit made the deduction, you would deduct twice. If the
process hadn’t yet made the deduction but started up again at a point after which it would
have made the deduction, it appears as though the deduction was made. Good for you, but not
so good for the bank. Therefore, everything must be put back the way it was.

The processors used by Linux Intel 80386 and later, as well as the DEC Alpha, and SPARC
have built-in capabilities to manage both multiple users and multiple tasks. We will get into

the details of this in later chapters. For now, just be aware of the fact that thes€iBighe
operating system in managing users and processes. This shows how multiple processes might

look in memory:

& @

Process
284

Physical
RAM

Process
4

Image - Processes using differing areas of memory.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

11

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

In addition to user processes, such as shells, text editors, and databases, there are system
processes running. These are processes that were started by the system. Several of these deal
with managing memory and scheduling turns on the CPU. Others deal with delivering mail,
printing, and other tasks that we take for granted. In principle, both of these kinds of processes
are identical. However, system processes can run at much higher priorities and therefore run
more often than user processes.

Typically a system process of this kind is referred to as a daemon process or background
process because they run behind the scenes i.e. in the background without user intervention. It
is also possible for a user to put one of his or her processes in the background. This is done by
using the ampersand & metacharacter at the end of the command line. I'll talk more about
metacharacters in the section on shells .

What normally happens when you enter a command is that the shell will wait for that
command to finish before it accepts a new command. By putting a command in the
background, the shell does not wait, but rather is ready immediately for the next command. If
you wanted, you could put the next command in the background as well.

I have talked to customers who have complained about their systems grinding to a halt after
they put dozens of processes in the background. The misconception is that because they didn’t
see the process running, it must not be taking up any resources. Out of sight, out of mind. The
issue here is that even though the process is running in the background and you can’t see it, it
still behaves like any other process.

1.2.1 Virtual Memory Basics

One interesting aspect about modern operating systems is the fact that they can run programs
that require more memory than the system actually has. Like the Tardis in Dr. Who, Linux
memory is much bigger on the inside than on the outside.

At the extreme end, this means that if your CPU is 32-bit (meaning that it has registers that
are 32-bits), you can access up té Bytes (that 4,294,967,296 ob#lion). That means you
would need 4 Gb of main memory (RAM) in order to to completely take advantage of this.
Although many systems are currently available (2003) with 256 MB or even 512 MB, more
RAM than that is rare; and 4 Gb is extremely rare for a home PC.

The interesting thing is that when you sum the memory requirements of the programs you are
running,you often reach far beyond the physical memory you have. Currently my system
appears to need about 570 Mb. although my machine only has 384 Mb. Surprisingly enough |
don’t notice any performance problems. So, how is this possible?

Well, Linux, Unix and many other operating systems take advantage of the fact that most
programs don’t use all of the memory that they "require”, as you typically do not use every
part of the program at once. For example, you might be using a word processor, but not
currently using the spell checking feature, or printing function, so there is no need to keep
these in memory at the same time. Also, while you are using your word processor, your email
program is probably sitting around doing nothing.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

12

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

From the user’s perspective the email program (or parts of the word processor) are loaded into
memory. However, the system only loads what it needs. In some cases, they might all be in
memory at once. However, if you load enough programs, you eventually reach a point where
you have more programs than you have memory.

To solve this problem, Linux uses something called "virtual memory". It's virtual because it
can use more than you actually have. In fact, with virtual memory you can use the #hole 2
bytes. Basically, what this means is that you can run more programs at once without the need
for buying more memory.

When a program starts, Linux does not load all of it, just the portion it takes to get started.
One aspect of virtual memory is keeping parts of the program that are not needed on the hard
disk. As the process runs, when it finds it needs other parts of the program, it goes and gets
them. Those parts that are never needed are never loaded and the system does not use all of
the memory it appears to "require”.

If you have morealata than physical memory, the system might store it temporarily on the

hard disk should it not be needed at the moment. The process of moving data to and from the
hard disk like this is called swapping, as the data is "swapped" in and out. Typically, when
you install the system, you define a specific partition as the swap partition, or swap "space".
However, Linux can also swap to a physical file, although with older Linux versions this is
much slower than a special partition. An old rule of thumb is that you have at least as much
swap space as you do physical RAM, this ensures that all of the data can be swapped out, if
necessary. You will also find that some texts say that you should have &wleasss much

swap as physical RAM. We go into details on swap in the section in installing and upgrading.

In order to do all this, the system needs to manage your memory. This function is logically
called "memory management" and is one of the core aspects of any modern operating system.
Although the details are different from one operating system to the next, the basic principles
apply, even between different CPU types.

In other sections of the tutorial, we will talk about the details of memory management from
both the perspective of the CPU and the operating system kernel.

1.3 Files and Directories

Another key aspect of any operating system is the concept of a file. A file is nothing more

than a related set of bytes on disk or other media. These bytes are labeled with a name, which
is then used as a means of referring to that set of bytes. In most cases, it is through the name
that the operating system is able to track down the file's exact location on the disk.

There are three kinds of files with which most people are familiar: programs, text files, and
data files. However, on a UNIX system, there are other kinds of files. One of the most
common is a device file. These are often referred teage filesor device nodedJnder

UNIX, every device is treated as a file. Access is gained to the hardware by the operating
system through the device files. These tell the system what specific device driver needs to be
used to access the hardware.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

13

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Another kind of file is a pipe. Like a real pipe, stuff goes in one end and out the other. Some
are named pipes. That is, they have a name and are located permanently on the hard disk.
Others are temporary and are unnamed pipes. Although these do not exist once the process
using them has ended, they do take up physical space on the hard disk. We’ll talk more about
pipes later.

Unlike operating systems like DOS, there is no pattern for file names that is expected or
followed. DOS will not even attempt to execute programs that do not end with .EXE, .COM,

or .BAT. UNIX, on the other hand, is just as happy to execute a program called program as it
is a program called program.txt. In fact, you can use any character in a file name except for "/"
and NULL.

However, completely random things can happen if the operating system tries to execute a text
file as if it were a binary program. To prevent this, UNIX has two mechanisms to ensure that
text does not get randomly executed. The first is the file’s permission bits. The permission bits
determine who can read, write, and execute a particular file. You can see the permissions of a
file by doing a long listing of that file. What the permissions are all about, we get into a little
later. The second is that the system must recogmzagic numbewithin the program

indicating that it is a binary executable. To see what kinds of files the system recognizes, take
a look infetc/magic . This file contains a list of file types and information that the system
uses to determine a file’s type.

Even if a file was set to allow you to execute it, the beginning portion of the file must contain
the right information to tell the operating system how to start this program. If that information
is missing, it will attempt to start it as a shell script similar to a DOS batch file. If the lines in
the file do not belong to a shell script and you try to execute the program, you end up with a
screen full of errors.

What you name your file is up to you. You are not limited by the eight-letter name and
three-letter extension as you are in DOS. You can still use periods as separators, but that’s all
they are. They do not have the same "special" meaning that they do under DOS. For example,
you could have files called

letter.txt
letter.text
letter_txt
letter_to_jim
letter.to.jim

Only the first file example is valid under DOS, but all are valid under Linux. Note that even in
older versions of UNIX where you were limited to 14 characters in a file name, all of these
are still valid. With Linux, | have been able to create file names that are 255 characters long.
However, such long file names are not easy to work with. Note that if you are running either
Windows NT or Windows 95, you can create file names that are basically the same as with
Linux.

Also keep in mind that although you can create file names with spaces in them, it can cause
problems. Spaces are used to seperate the different components on the command line. You

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

14

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

can tell your shell to treat a name with spaces as a single unit by including it in quotes.
However, you need to be careful. Typically, | simply use an underline _ when the file name
ought to have a space. It almost looks the same and | don’t run into problems.

One naming convention does have special meaning in Linux: "dot" files. In these files, the

first character is a "." dot. If you have such a file, it will by default be invisible to you. That is,
when you do a listing of a directory containing a "dot" file, you won't see it.

However, unlike the DOS/Windows concept of "hidden" files, "dot" files can be seen by
simply using the -a all option te , as in Is -a. Is is a command used to list the contents of
directories. With DOS/Windows the "dir" command can show you hidden files and
directories, but has no option to show these along with the others.

The ability to group your files together into some kind of organizational structure is very
helpful. Instead of having to wade through thousands of files on your hard disk to find the one
you want, Linux, along with other operating systems, enables you to group the files into a
directory. Under Linux, a directory is actually nothing more than a file itself with a special
format. It contains the names of the files associated with it and some pointers or other
information to tell the system where the data for the file actually reside on the hard disk.

Directories do not actually "contain" the files that are associated with them. Physically that is,
how they exist on the disk, directories are just files in a certain format. The directory structure
is imposed on them by the program you use, such as Is.

The directories have information that points to where the real files are. In comparison, you
might consider a phone book. A phone book does not contain the people listed in it, just their
names and telephone numbers. A directory has the same information: the names of files and
their numbers. In this case, instead of a telephone number, there is an information node
number, oinodenumber.

The logical structure in a telephone book is that names are grouped alphabetically. It is very
common for two entries names that appear next to each other in the phone book to be in
different parts of the city. Just like names in the phone book, names that are next to each other
in a directory may be in distant parts of the hard disk.

As | mentioned, directories are logical groupings of files. In fact, directories are nothing more
than files that have a particular structure imposed on them. It is common to say that the
directory "contains" those files or the file is "in" a particular directory. In a sense, this is true.
The file that is the directory "contains" the name of the file. However, this is the only
connection between the directory and file, but we will continue to use this terminology. You
can find more details about this in the section on files and file systems.

One kind of file is a directory. What this kind of file can contain are files and more

directories. These, in turn, can contain still more files and directories. The result is a
hierarchical tree structure of directories, files, more directories, and more files. Directories
that contain other directories are referred to apénentdirectory of thechild or subdirectory

that they contain. Most references | have seen refer only to parent and subdirectories. Rarely
have | seen references to child directories.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

15

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

When referring to directories under UNIX, there is often either a leading or trailing slash "/,

and sometimes both. The top of the directory tree is referred to with a single "/" and is called

the "root" directory. Subdirectories are referred to by this slash followed by their name, such

as /bin or /dev. As you proceed down the directory tree, each subsequent directory is

separated by a slash. The concatenation of slashes and directory names is referred to as a path.
Several levels down, you might end up with a path such as
/home/jimmo/letters/personal/chris.txt , Where chris.txt is the actual file and
/homel/jimmol/letters/personal is all of the directories leading to that file. The
directory/home contains the subdirectory jimmo, which contains the subdirectory letters,

which contains the subdirectory personal. This directory contains the file chris.txt.

Movement up and down the tree is accomplished by the means of the cd change directory
command, which is part of your shell. Although this is often difficult to grasp at first, you are
not actually moving anywhere. One of the things that the operating system keeps track of
within the context of each process is the processient directory also referred to as the
current working directoryThis is merely the name of a directory on the system. Your process
has no physical contact with this directory; it is just keeping the directory name in memory.

When you change directories, this portion of the process memory is changed to reflect your
new "location.” You can "move" up and down the tree or make jumps to completely unrelated
parts of the directory tree. However, all that really happens is that the current working
directory portion of your process gets changed.

Although there can be many files with the same name,@anbinationof directories and

file name must be unique. This is because the operating system refers to every file on the
system by this unique combination of directories and file name. In the example above, | have
a personal letter called chris.txt. | might also have a business letter by the same name. Its path
or the combination of directory and file name would be

/home/jimmo/letters/business/chris.txt . Someone else named John might
also have a business letter to Chris. John’s path or combination of path and file name might be
/home/john/letters/business/chris.txt . This might look something like this:

!

bin etc trl*np hc:-lme
I
.| |
jimmo john

|
letters letters
| |
personal business business

| |
chris.txt christxt chris.txt

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

16

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Image - Example of home directories.

One thing to note is that John’s business letter to Chris may be the exact same file as Jim’s. |
am not talking about one being a copy of the other. Rather, | am talking about a situation
where both names point to the same physical locations on the hard disk. Because both files are
referencing the same bits on the disk, they must therefore be the same file.

This is accomplished through the concept ifla Like a chain link, a file link connects two
pieces together. | mentioned above the "telephone number" for a file was its inode. This
number actually points to a special place on the disk calladdbe table with the inode

number being the offset into this table. Each entry in this table not only contains the file’s
physical location on this disk, but the owner of the file, the access permissions, and the
number of links, as well as many other things. In the case where the two files are referencing
the same entry in the inode table, these are referrechar@dinks A soft linkor symbolic

link is where a file is created that containsphéh of the other file. We will get into the

details of this later.

An inode doesot contain the name of a file. The namemdy contained within the directory.
Therefore, it is possible to have multiple directory entries that have the same inode. Just as
there can be multiple entries in the phone book, all with the same phone number. We'll get
into a lot more detail about inodes in the section on filesystems. A directory and where the
inodes point to on the hard disk might look like this:

1412 | letter1.doc
4236 | dataf b)
12 letter_te_jim e
100 | project
4236 | information ’ 9
6753 | memo.boss
: S g)
12 letter _to_john '\ _
4236 | database e
12206| program ’

Physical Disk

Image - The relationship between file names, inodes and physical data on your hard
disk.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

17

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Lets think about the telephone book analogy once again. Although it is not common for an
individual to have multiple listings, there might be two people with the same number. For
example, if you were sharing a house with three of your friends, there might be only one
telephone. However, each of you would have an entry in the phone book. | could get the same
phone to ring by dialing the telephone number of four different people. | could also get to the
same inode with four different file names.

Under Linux, files and directories are grouped into units céilesl/stemsA filesystem is a
portion of your hard disk that is administered as a single unit. Filesystems exist within a
section of the hard disk calledgartition. Each hard disk can be broken down into multiple
partitions and the filesystem is created within the partition. Each has specific starting and
ending points that are managed by the system. Note: Some dialects of UNIX allow multiple
filesystems within a partition.

When you create a filesystem under Linux, this is comparable to formatting the partition
under DOS. The filesystem structure is laid out and a table is created to tell you where the
actual data are located. This table, called the inode table in UNIX, is where almost all the
information related to the file is kept.

In an operating system such as Linux, a file is more than just the basic unit of data. Instead,
almost everything is either treated as a file or is only accessed through files. For example, to
read the contents of a data file, the operating system must access the hard disk. Linux treats
the hard disk as if it were afile. It opens it like a file, reads it like a file, and closes it like a
file. The same applies to other hardware such as tape drives and printers. Even memory is
treated as a file. The files used to access the physical hardware are the device files that |
mentioned earlier.

When the operating system wants to access any hardware device, it first opens a file that
"points" toward that device the device node. Based on information it finds in the inode, the
operating system determines what kind of device it is and can therefore access it in the proper
manner. This includes opening, reading, and closing, just like any other file.

If, for example, you are reading a file from the hard disk, not only do you have the file open
that you are reading, but the operating system has opened the file that relates to the filesystem
within the partition, the partition on the hard disk, and the hard disk itself more about these
later. Three additional files are opened every time you log in or start a shell. These are the
files that relate to input, output, and error messages.

Normally, when you login, you get to a shell prompt. When you type a command on the
keyboard and press enter, a moment later something comes onto your screen. If you made a
mistake or the program otherwise encountered an error, there will probably be some message
on your screen to that effect. The keyboard where you are typing in your data is the input,
referred to as standard input standard istdinand that is where input comes from by

default. The program displays a message on your screen, which is the output, referred to as
standard output standard outstadlout Although it appears on that same screen, the error
message appears on standard esticberr.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

18

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Although stdin and stdout appear to be separate physical devices keyboard and monitor, there
is only one connection to the system. This is one of those device files | talked about a moment
ago. When you log in, the file device is opened for both reading, so you can get data from the
keyboard, and writing, so that output can go to the screen and you can see the error messages.

These three concepts standard in, standard out, and standard error may be somewhat difficult
to understand at first. At this point, it suffices to understand that these represent input, output,
and error messages. We’'ll get into the details a bit later.

1.4 Operating System Layers

Conceptually, the Linux operating system is similar to an onion. It consists of many layers,
one on top of the other. At the very core is the interface with the hardware. The operating
system must know how to communicate with the hardware or nothing can get done. This is
the most privileged aspect of the operating system.

Because it needs to access the hardware directly, this part of the operating system is the most
powerful as well as the most dangerous. What accesses the hardware is a set of functions
within the operating system itself the kernel catlegtice driversif it does not behave

correctly, a device driver has the potential of wiping out data on your hard disk or "crashing"
your system. Because a device driver needs to be sure that it has properly completed its task
such as accurately writing or reading from the hard disk, it cannot quit until it has finished.

For this reason, once a driver has started, very little can get it to stop. We’'ll talk about what
can stop it in the section on the kernel.

Above the device driver level is what is commonly thought of when talking about the
operating system, the management functions. This is where the decision is made about what
gets run and when, what resources are given to what process, and so on.

In our previous discussion on processes, we talked about having several different processes all
in memory at the same time. Each gets a turn to run and may or may not get to use up its time
slice. It is at this level that the operating system determines who gets to run next when your
time slice runs out, what should be done when an interrupt comes in, and where it keeps track
of the events on which a sleeping process may be waiting. It's even the alarm clock to wake
you up when you're sleeping.

The actual processes that the operating system is managing are at levels above the operating
system itself. Generally, the first of these levels is for programs that interact directly with the
operating system, such as the various shells. These interpret the commands and pass them
along to the operating system for execution. It is from the shell that you usually start
application programs such as word processors, databases, or compilers. Because these often
rely on other programs that interact directly with the operating system, these are often
considered a separate level. This is how the different levels or layers might look like
graphically:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

19

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

|
{

l
N - e : 5 .z';
L i = -
\‘“-:f_, \ Sh E I | da—ﬂ-“'—’ff B =

e e

TRl CUITIpI|EI’ i commands __

Image - Operating system layers.

If you are running Linux with a graphical interface e.g. the X Windowing System, you have
an additional layer. Your shell might start the graphical interface, which then starts the other
programs and applications as we discussed.

Under Linux, there are many sets of programs that serve common functions. This includes
things like mail or printing. These groups of related programs are referred to as "System
Services", whereas individual programs such as vi or fdisk are referred to as utilities.
Programs that perform a single function such as Is or date are typically referred to as
commands.

1.5 Moving On

So you now have an understanding of the basics of how Linux works. We talked about the
different functions that the operating system is responsible for, what it manages, and a little
about how everything fits together. As we move on through the book, well build on these
ideas and concepts to give you a complete understanding of a Linux system.

I came from the DOS world before | started on UNIX. | had many preconceptions about the
way an operating system "should" behave and react. The way DOS did things was the "right"
way. As | learned UNIX, | began to see a completely different world. The hardest part was not
that | had to learn a whole new set of commands, but rather that | was fighting myself because
| was so used to DOS.

Therefore, | need to make one general comment about UNIX before | let you move on.
Always remember that UNIX is not DOS. Nor is it any other operating system for that matter.
UNIX is UNIX and Linux is Linux. There are probably as many "dialects" of Linux as there
are dialects of UNIX. All have their own subtle differences. As you go through this book,
keep that in mind.

For example, | believed that the way commands were given arguments or options was better
in DOS. Every time | used a UNIX command, | grumbled about how wrong it was to do
things like that. As | learned more about UNIX, | came to realize that many of the decisions
on how things work or appear is completely arbitrary. There is no right way of doing many

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

20

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

things. There is a DOS way and a UNIX way. Neither is right. You might be used to the DOS
way or whatever system you use. However, that does not make it right.

When | started working with Linux, | had several years experience with a half-dozen different
dialects of UNIX. It was much easier for me to adjust and simply said to myself, "Oh, so this
is the way Linux does it."

If you are new to Linux, keep in mind that there are going to be differences. There are even
differences among the various distributions. If you keep this in mind, you will have a much
more enjoyable time learning about the Linux way.

| have always found that the best way to learn something is by doing it. That applies to
learning a new operating system as well. Therefore, | suggest that when you find something
interesting in this book, go look at your Linux system and see what it looks like on your
system. Play with it. Twist it. Tweak it. See if it behaves the way in which you expect and
understand.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

21

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Chapter 2 Linux Basics

With many UNIX systems that are around, the user is unaware that the operating system is a
UNIX system. Many companies have point-of-sales systems hooked up to a UNIX host. For
example, the users at the cash register may never see what is being run. Therefore, there is
really no need to go into details about the system other than for pure curiosity assuming that
users find out that they are running on a UNIX system.

On the other hand, if you do have access to the command line or interact with the system by
some other means, knowing how the system is put together is useful information. Knowing
how things interact helps expand your knowledge. Knowing what’s on your system is helpful
in figuring out just what your system can do.

That's what this chapter is about: what's out there. We're going to talk about what makes up
Linux. This brings up the question "What is Linux?" There are more than a dozen versions
commercially available, in several different countries, all with their own unique
characteristics. How can you call any one of thileelinux distribution?

The answer is you can’'t. What | will do instead is to synthesize all the different versions into a
single pseudo-version that we can talk about. Although there are differences in the different
versions, the majority of the components are the same. There has been a great deal of effort in
the past few years to standardize Linux, with a great deal of success. | will therefore address
this standard Linux and then mention those areas where specific versions diverge.

2.1 What Linux is All About

Linux is available from many companies and in many versions. Often, a company will
produce its own version with specific enhancements or changes. These are then released
commercially and called distributions. Although Linux is technically only the kernel, it is
commonly considered to be all of the associated programs and utilities. Combined with the
kernel, the utilities and often some applications comprise a commercial distribution.

2.1.1 Guided Tour

Unless you are on familiar ground, you usually need a map to get around any large area. To

get from one place to another, the best map is a road map or street map. If you are staying in
one general area and are looking for places of interest, you need a tourist map. Because we are
staying within the context of Linux and were looking for things of interest, what | am going to
give you now is a tourist map of Linux directories.

In later chapters, we’ll go into detail about many of the directories that we are going to
encounter here. For now, | am going to briefly describe where they are and what their
functions are. As we get into different sections of the book, it will be a lot easier to move
about and know how files relate if we already have an understanding of the basic directory
structure.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

22

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

One thing | would like to point out is that for the most part the directories of most UNIX
systems are laid out according to the functionality of the files and programs within the
directory. One enhancement that Linux makes is allowing things to be in more than one place.
For example, files that the system uses may be in one place and those that normal users need
may be in another place. Linux takes advantage of links to allow the necessary files to be in
both places. We'll talk more about links as we move on.

One question people often ask is why it is necessary to knowallhla¢ directories are for.

Well, it isn’t. It isn’t necessary to know them all, just the more important ones. While working
in tech support, | have talked numerous times with administrators who were trying to clean up
their systems a little. Because they had little experience with UNIX systems, they ended up
removing things that they thought were unnecessary, but turned out to be vital for the
operation of the system. If they knew more about where things were and what they were for,
they wouldn’t have made these mistakes.

As we go through these directories, keep in mind that your system may not be like this. | have
tried to follow the structure of the Linux Filesystem Standard as well as to find some
commonality among the different versions that I've installed. On your system, the files and
directories may be in a different place, have different names, or may be gone altogether.

Note that depending on your distribution and the packages you have installed, these files and
directories will look different. In addition, although my system has every conceivable package
installed well, almost, | did not list all the files and directories | have. | included this list with
the intention of giving you a representative overview. In addition, some of the directories are
not mentioned in the text, as | cannot say too much more than in the popup in the image map
in so little space.

With that said, let’'s have a look.

The top-most directory is the root directory. In verbal conversation, you say "root directory"
or "slash,"” whereas it may be referred to in text as simply "/."

So when you hear someone talking about the /bin directory, you may hear them say "slash
bin." This is also extended to other directories, so /usr/bin would be "slash user, slash bin."
However, once you get the feeling and begin to talk "Linux-ese," you will start talking about
the directories as "bin" or "user bin." Note that usr is read as "user."

Under the root, there are several subdirectories with a wide range of functions. The image
below shows the key subdirectories of /. This representation does not depict every
subdirectory of /, just the more significant ones that appear with most default installations. In
subsequent diagrams, | will continue to limit myself to the most significant directories to keep
from losing perspective.

system.map cdrom etc lib mrt roc tmp wmlinuz
bin data floppy lost+found opt usr windows
boot dewv home medla oracle sbin wvar

Image - Listing of a typical root directory.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

23

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

One of these files, one could say, is the singbdstimportant file: vmlinuz. This file is the
operating system proper. It contains all the functions that make everything go. When referring
to the file on the hard disk, one refers to /vmlinuz, whereas the in-memory, executing version
is referred to as thieernel

The first directory we get to Ibin . Its name is derived from the worbitiary." Often, the

word "binary" is used to refer to executable programs or other files that contains non-readable
characters. Thibin directory is where many of the system-related binaries are kept, hence
the name. Although several of the files in this directory are used for administrative purposes
and cannot be run by normal users, everyone has read permission on this directory, so you can
at least see what the directory contains.

The/boot directory is used to boot the system. There are several files here that the system
uses at different times during the boot process. For example, the files /boot/boot.???? are
copies of the original boot sector from your hard disk. for example boot.0300 Files ending in
.b are "chain loaders," secondary loaders that the system uses to boot the various operating
systems that you specify.

The/dev directory contains the device nodes. As | mentioned in our previous discussion on
operating system basics, device files are the way both the operating system and users gain
access to the hardware. Every device has at least one device file associated with it. If it

doesn’t, you can't gain access to it. We’'ll get into more detail on individual device files later.

The/etc directory contains files and programs that are used for system configuration. Its
name comes from the common abbreviagtmn,for et cetera, meaning "and so on." This
seems to come from the fact that on many systems, /etc contains files that don’t seem to fit
elsewhere.

Under/etc are several subdirectories of varying importance to both administrators and
users. The following image shows a number of important sub-directories. Depending on what
software you have installed you may not have some of these or you may have many more not

listed.
SuSEconfig cron.daily cron.weekly httpd pam_d samba ssh
x11 cron.hourly cups init.d profile.d securlity vmware
cron.d cron.monthly default opt rc.config.d skel

Image - Listing of a key directories under the /etc directory.

In some Linux distributions you will find thetc/lilo directory, which is used for the
Linux loaderlilo . This directory contains a single file, install, which is a link to /sbin/lilo.
This file is used among other things to install the boot configuration options. On some
systems, the lilo configuration file lilo.conf is found directly in teee directory We’'ll get
into this more in the section on starting and stopping your system.

There several directories named /etc/cron*. As you might guess these are used by the cron
daemon. The /etc/cron.d contains configuration files used by cron. Typically what is here are
various system related cron jobs, such as /etc/cron.d/seccheck, which does various security
checks. The directoriéstc/cron.hourly , letc/cron.daily ,

/etc/cron.weekly , letc/cron.monthly contain files with cron jobs which run

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

24

The Linux Knowledge Base and Tutorial www. linux-tutorial.info

hourly, daily, weekly and monthly, respectively. There is a cron job listed in
/etc/crontab that runs the prograrasr/lib/cron/run-crons , which checks the
other files.

The /etc/init.d directory contains scripts that the system uses when starting up or shutting
down. Which files are read depends on whether the system is being started or shut down.
We'll talk more about these directories and their associated files in the section on starting up
and shutting down the system. You may also find that these files are locégtdrind

On SuSE/etc/rc.d is a symbolic link tdetc/init.d

The/etc/skel directory is used when you create a new user with the adduser command.
This is the "skeleton” of files that is copied to the user’'s home directory when it's created
hence the name "skel". If you want to ensure that each user gets other files at startup, place
them in here. For example, you may want everyone to have a configuration vile .fexrc

or for mail .mailrc.

Depending on your Linux distribution, either the /etc/sysconfigtrrc.config.d

directory contains default system configuration information. For example, the keyboard file
defines which keyboard table is to be used and the network file contains network parameters,
such as the hostname.

The/etc/pam.d directory contains configuration files used by the Pluggable

Authentication Modules PAM. PAM is a system of libraries that are responsible for
authentication tasks of applications and services on your system. These libraries provide an
Application Programming Interface API allowing for a standardization of authorization
functions. Previously, where necessary each program did its own authorization/authentication.
With PAM, a single set of configuration files allows for a more consistent security policy. In
some cases, datc/pam.conf file is used instead of thetc/pam.d directory.

The/etc/profile.d directory contains default configuration for many of the shells that
Linux provides. As we talk about in the section on shells, each shell has an environment
which contains a number of different characteristics. Many of the defaults are defined in the
files under /etc/profile.d. The name of each file gives an indication of the appropriate shell.

The/etc/security directory contains security related configurations files. Whereas

PAM concerns itself with the methods used to authenticate any given user, the files under
letc/security are concerned with just what a user can or cannot do. For example, the file
/etc/security/access.conf is a list of what users are allowed to login and from

what host for example, using telnet. Th&/security/limits.conf contains

various system limits, such as maximum number of processes. Yes, these are really related to
security!

Moving back up to the root directory, we next fithdme . As its name implies, this is the
default location for user’s home directories. However, as we’ll talk about later, you can have
the home directory anywhere.

The/lost+foun d directory is used to store files that are no longer associated with a
directory. These are files that have no home and are, therefore, lost. Often, if your system
crashes and the filesystem is cleaned when it reboots, the system can save much of the data

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

25

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

and the files will end up here. Note that a lost+found directory is created automatically for
each filesystem you create. We’'ll get into more detail about this in the section on filesystems.

Thel/lib directory for library contains the libraries needed by the operating system as it is
running. You will also find several sub directories.

The/proc directory takes a little while to get used to, especially if you come from a
non-UNIX world or have used a version of UNIX without this directory. This is a
"pseudo-filesystem” that is used to access information in the running system. Rather than
having you access kernel memory directly i.e., through the special device /dev/ikmem, you can
access the files within this directory. There are directories for every running process as well.
We will get into more detail about this when we talk about monitoring your system. If you are
curious now, check out th@oc 8 man-page.

The/root directory is the home directory for the user root. This is different from many
UNIX dialects that have the root’'s home directory in /. On SUSE, the /root directory is
actually a symbolic link to /home/root.

The/sbin directory contains programs that are used more or less to administer the system.
In other words, theystembinaries. Many documentation sources say that tloslisfor

system administrators. However, most of these files are executable by normal users, as well.
Whether the support files or device nodes are accessible is another matter. If a normal user

cannot access the device nodes or other files, the program won’t run.

The/usr directory contains many user-related subdirectories. Note the ’e’ is missing from
"user". In general, one can say that the directories and files under /usr are used by and related
to users. There are programs and utilities here that users use on a daily basis. Unless changed
on some systems, /usr is where users have their home directory. The figure below shows what
the subdirectories of /usr would look like graphically.

=11 bin doc 1486-1inux include local man share src
X11R6 dict etc 1486-suse-linux 1lib lost+found sbin spool tmp

Image - Listing of a key directories under the /usr directory.

Where/bin contains programs that are used by both users and administkeotsn

contains files that are almost exclusively used by users. However, like everything in UNIX,
there are exceptions. Here again, liive directory contains binary files. In general, you can
say the the programs and utilities that all user more ordessre as stored iin , whereas

the "nice-to-have" programs and utilities are storedsn/bin . Programs and utilities
needs for administrative tasks are storet$loin . Note that is common to seperate files like
this, but it is not an absolute.

The/usr/adm directory contains mostly administrative data. The name "adm" comes from
"administration," which is no wonder considering this contains a lot of the administrative
information that relates to users. This may be a symbolic link ttvéine directory.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

26

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

The/usr/include directory and its various subdirectories contain all the include files.
These contain information that is needed both by the kernel when it is being recreated and by
programs when they are being compiled. For normal users and even most system
administrators, the information here is more a place to get one’s curiosity satisfied. For those
of you who know that this is dramatic over-simplification, all I can say is that you already
know what this directory is for anyway.

The/usr/src directory contains the source code for both the Linux kernel and for any
program that you specifically install.

Many system parameters and values are stored inside the files underneath
lusr/src/linux/include . Because of the information provided in many of the files, |
will be making reference to them through the book. Rather than spelling out the full path of
the directory, | will make a reference to the files relative to the

lusr/src/linux/include directory, the same way that it is done in C source code. For
example, when | refer to something like <linux/user.h>, | mean the full path
lusr/src/linux/include/linux/user.h . When you see something enclosed in
angled brackets like this, you can make the expansion yourself.

The/usr/lib directory is difficult to explain. We could say that it contains the user-related
library files based on its name. However, that still does not accurately describe the complete
contents. One thing it contains is the library files that are less general than those you find in
/lib . This directory contains many of the systemwide configuration files for user-level
programs such as perl and emacs.

The/usr/lib/kbd directory contains files that are used to configure the system console
keyboard. Through these files, you can configure your keyboard to accommodate one of
several different languages. You can even configure it for dialects of the same language, such
as the German keyboard as used in Switzerland or Germany. You can also change these files
to create a totally new keyboard layout, such as the Dvorak.

If you have switched to the more secure npasswd progranusitié/npasswd
directory is used to contain some configuration information.

The/usr/lib/terminfo directory contains both the source files and compiled versions
of the terminfo database. Terminfo is the mechanism by which the system can work with so
many different types of terminals and know which key is being pressed. For more
information, see the terminfo5 man-page.

When configuring UUCP, all the necessary files are contained faghé&b/uucp

directory. Not only are the configuration files here, but this is also home for most of the
UUCP programs. UUCP Unix-to-Unix Copy is a package that allows you to transfer files and
communicate with remote systems using serial lines. We’'ll talk in more detail about this
directory in the section on networking.

There are typically many more directories uner/lib . Most are related to user
programs and operations. We’'ll get to some of them as we move along.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

27

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

The directoryusr/X11R6 contains all the X Windows System files. This makes upgrading
to newer releases of X much easier as the files are not spread out over the entire system. If
you have an older version of Linux, you might still have X11R5 or if a newer release comes
out you might have X11R7. To simplify things even further, the direcusryX1 1 is what
many things look at instead. This is then linked to the appropriate directory i.e.,

/usr/X11R6 , /usr/X11R5

Underneath this directory are the subdirectories bin, lib, and man, which have the same
functionality as those under /usr. In most cases, links in other directories point here. For
example, you should have a directéugr/bin/X11 . This is a symbolic link to the
directory/usr/X11R6/bin . The directoryusr/lib/X11 is a symbolic link to

/usr/X11R6/lib . The reason for this is to maintain the directory structure, but still make
upgrading easy. When X11R7 comes out, all that you need to do is make the links point to the
X11R7 directories and not copy the individual files.

Next, /usr/sbin contains more system binaries, including the daemon programs that run
in the background. In some UNIX dialects, these files may betdn .

Moving back up to théusr directory, we find théusr/local sub-directory. This may or

may not contain anything. In fact, there are no rules governing its contents. It is designed to
contain programs, data files, and other information that is specific to your local system, hence
the name. There is often a bin directory that contains local programs and a lib directory that
contains data files or libraries used by the programssilocal/bin

Also in the/usr directory is/usr/man . This is where the man-pages and their respective
indices are kept. This directory contains the index files, which you can search through to find
a command you are looking for. You can also create and store your own manual pages here.
The/usr/info and/usr/doc directories contain GNU Info documents and other
documentation files.

The/usr/spool directory is the place where many different kinds of files are stored
temporarily. The word "spool” is an acronym sonultaneougeripheraloperationoff-line,

the process whereby jobs destined for some peripheral printer, modem, etc. are queued to be
processed later. This may be a link to /var/spool.

Several subdirectories are used as holding areas for the applicable programs. For example, the
lusr/spool/cro n directory contains the data files used by cron and at. The

/usr/spool/lp directory not only contains print jobs as they are waiting to be printed, it

also contains the configuration files for the printers.

X11R6 cache games lock mail opt spool tmp yp
adm deliver 1lib log named run sgulid uwcd-snmp

The/var directory contains files thamary as the system is running, such as log files. This
was originally intended to be used when the /usr directory is shared across multiple systems.
In such a case, you don’t want things like the mail or print spoolers to be shared.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

28

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

The/var/man/cat directory is a cache for man-pages when they are formatted. Some are
stored in a pre-formatted form, and those that need to be formatted are cached here in case
they are needed again soon.

Many system lock files are keptivar/lock . These are used to indicate that one program
or another is currently using a particular file or maybe even a device. If other programs are
written to check in here first, you don’t have collisions.

As you might guess, thigar/log directory contains log files. ThHear/run contains
information that is valid until the system is rebooted. For example, the process ID of the inetd
daemon can be found here. It is often important to know this information when changes are
made to the system and storing them here makes them quickly accessible.

The/varlyp directory contains the changing files that are used with the Network
Information Service NIS, also know as Yellow Pages, or YP.

As | mentioned before, thasr/adm directory is a link tdvar/adm . There are several

key log files stored here. Perhaps, the most important is the messages file that contains all the
system service, kernel, and device driver messages. This is where the system logs messages
from the syslogd daemon.

There were many directories that | skipped, as | said | would at the beginning of this section.
Think about the comparison that | made to a tourist map. We visited all the museums,
200-year-old churches, and fancy restaurants, but | didn’t show you where the office of city
planning was. Granted, such offices are necessary for a large city, but you really don’t care
about them when you’re touring the city; just as there are certain directories and files that are
not necessary to appreciate and understand the Linux directory structure.

2.1.2 What Linux is Made of

There are many aspects of the Linux operating system that are difficult to define. We can refer
to individual programs as either utilities or commands, depending on the extent of their
functions. However, it is difficult to label collections of files. Often, the labels we try to place

on these collections do not accurately describe the relationship of the files. However, | am
going to try.

Linux comes with essentially all the basic UNIX commands and utilities that you have grown
to know and love plus some that you don’t love so much. Basic commants ld&edcat |,

as well as text manipulation programs lgexl andawk are available. If you don’t come

from a Unix background, then many of the commands may seem a little obscure and even
intimidating. However, as you learn more about them you will see how useful and powerful
they can be, even if it takes longer to learn them.

Linux also comes with a wide range of programming tools and environments, including the
GNU gcc compiler,make, rcs , and even a debugger. Several languages are available,
including Perl, Python, Fortran, Pascal, ADA, and even Modula-3.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

29

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Unless you have an extremely low-level distribution, you probably have X11R6 in the form of
XFree86 3.x, which contains drivers for a wide range of video cards. There are a dozen text
editorsvi , emacs, jove and shellbash, zsh, ash, pdksh , plus a wide range of text
processing tools, like TeX and groff. If you are on a network, there is also a wide range of
networking tools and programs.

Even if you have been working with a Linux or any UNIX dialect for a while, you may have
heard of certain aspects of the operating system but not fully understood what they do. In this
section, I'm going to talk about functions that the system performs as well as some of the
programs and files that are associated with these functions. I'm also going to talk about how
many of the system files are grouped together into what are referred to as "packages," and
discuss some of the more important packages.

To install, remove, and administer these packagesSdackwarederived system, use the
pkgtool tool, which is actually a link to the shell scrgpkgtool . This tool can be called
from the command line directly or by the /sbin/setup program. Each package comes on its
own set of disks. These packages are:

A Base Linux System

AP various applications that do not need X

D Program Development (C, C++, Lisp, Perl, etc.)

E GNU emacs

F FAQ lists, HOWTO documentation

| Info files readable with info, JED, or emacs

IV InterViews Development + Doc and Idraw apps for X
N Networking (TCP/IP, UUCP, Mail, News)

OOP Object-Oriented Programming (GNU Smalltalk 1.1.1)
Q Extra Linux kernels with custom drivers

T TeX ,text processing system

TCL Tcl/Tk/TclX, Tcl language and Tk toolkit for X

X XFree-86 3.1 X Window System

XAP X applications

XD XFree-86 3.1 X11 Server Development System

XV XView 3.2 (OpenLook Window Manager, apps)

Y games (that do not require X)

Why is it important to know the names of the different packages? Well, for the average user,
it really isn’t. However, the average user logs on, starts an application and has very little or no
understanding of what lies under the application. The mere fact that you are reading this says
to me that you want to know more about the operating system and how things work. Because
these packages are the building blocks of the operating system (at least in terms of how it
exists on the hard disk), knowing about them is an important part of understanding the whole
system.

Plus one of the key advantages that Linux has over Windows is the ability to selectively
install and remove packages wittuchfiner granularity. For example, you can add and
remove individual programs to a greater extent with Linux than you can with Windows.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

30

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Further there are fewer groups of programs in Windows (such a group of programs is often
called a "package" in Linux. This allows you to pick and chose what you want to install to a
greater extent. Therefore, knowing where each package resides (or at least having a starting
point) is a big a help.

To be able to do any work on a Linux system, you must first install software. Most people
think of installing software as adding a word processing program or database application; but
any program on the operating system needs to be installed at one time or another. Even the
operating system itself was installed.

Earlier, | referred to the Linux operating system as all the files and programs on the hard disk.
For the moment, | want to restrict the definition of "operating system" to just those files that
are necessary for "normal” operation. Linux (at least Slackware) has defined that set of
programs and files as the Base Linux System, or Base Package. Although there are many files
in the Base Package that could be left out to have a running system, this is the base set that is
usually installed.

Many versions of Linux are now using the Red Hat Package Manager (RPM) format. In fact,
RPM is perhaps the format most commonly found on the Internet. Most sites will have new or
updated programs as RPM files. You can identify this format by the rpm extension to the file
name.

This has proven itself to be a much more robust mechanism for adding and removing
packages, as it is much easier to add and manage single programs than with Slackware. We'll
get into more detail about this when | talk about installing. You will also find that RPM
packages are also grouped into larger sets like those in Slackware, so the concepts are the
same.

Although most commercial distributions use the RPM format, there are often a number of
differences in which package groups there are and which programs and applications appear in
which group. For example, later SUSE distribution has the following package group:

al - Linux Base System (required)

apl - Applications which do not need X

ap4 - Applications which do not need X

d1 - Development (C, C++, Lisp, etc.)

docl - Documentation

doc4 - Documentation

el - Emacs

funl - Games and more

gral - All about graphics

gra3 - All about graphics

k2del - KDE2 - K Desktop Environment (Version 2)
nl - Network-Support (TCP/IP, UUCP, Mail, News)
perll - Perl modules

secl - Security related software

sndl - Sound related software

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

31

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

spll - Spell checking utilities and databases

tcll - Tcl/Tk/TclX, Tcl-Language and Tk-Toolkit for X
tex1 - TeX/LaTeX and applications

x1 - Base X Window System - XFree86\tm

x3d1 - 3D software for X11 and console

xapl - X Applications

xdevl - Development under X11

xsrvl - Several X Servers (XFree86)

xsrv2 - Several X Servers (XFree86)

xsrv3 - Several X Servers (XFree86)

xsrv4 - Several X Servers (XFree86)

xvl - XView (OpenLook, Applications)

xwm1l - Window managers and desktop environments
yastl - YaST Components

zq - source packages

Note that in the case of SUSE, when you are in the administration tool (YAST), the names of
these groups will probably appear somewhat different. For example, there are two groups of
applications: those that need X-Windows and those that do not. When you are in YAST, there
are two dozen application groups, such as spreadsheets, math and databases. The groups listed
above are how you might find them on the CD and date from a time when you did not have
many applications and there were few distributions. Most people got Linux from the net and
these package groups were pretty convenient.

Today, SUSE is on several CDs and just to make things easier, you are also given a DVD or
two depending on which package you get. Also the package groups have changed as you see
in the following figure:

[IMAGE]

If you compare the previous list to the groups you see here, you will notice that the groupings
are similar but not identical. Tools like YaST are able to determine what other packages are
required and today there is really no need to group packages to make downloading easier.
Typically, you will either order or download them. There are a number of places where you
can download complete packages, but you have to spend the time downloading 1SO images
and the burnign the CDs or DVS. Or, you can save yourself time and money by ordering them

from places lik¢ OS Heaven.
2.1.3 What Linux Does

On any operating system, a core set of tasks is performed. On multi-user or server systems
such as Linux, these tasks include adding and configuring printers, adding and administering
users, and adding new hardware to the system. Each of these tasks could take up an entire
chapter in this book. In fact, | do cover all of these, and many others, in a fair bit of detail later
on.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

32

http://www.osheaven.net/

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

I think it's important to briefly cover all of the basic tasks that an administrator needs to
perform in one place. There are a couple of reasons for this. First, many administrators of
Linux systems are not only novice administrators, they are novice users. They get into the
position as they are the only ones in the company or department with computer experience.
(They've worked with DOS before.) Second, by introducing the varied aspects of system
administration here, | hope to lay the foundation for later chapters. If you are not familar with
this issue, you may have trouble later.

Keep in mind that depending on what packages are installed, any Linux distribution can do a
lot more. Here we will be discussing just the basic administrative functions.

The average user may not want to get into the details that the later chapters provide. So here |
give an overview of the more important components. Hopefully, this will give you a better
understanding of what goes into an operating system as well as just how complex the job is
that your system administrator does.

The first job of a system administrator is to add users to the system. Access is gained to the
system only through user accounts. Although it may be all that a normal user is aware of,
these accounts consist of substantially more than just a name and password. Each user must
also be assigned one of the shells, a home directory, and a set of privileges to access system
resources.

Although the system administrator could create a single user account for all users to use to log
in, it ends up creating more problems than it solves. Each user has his/her own password and
home directory. If there were a single user, everyone’s files would be stored in the same place
and everyone would have access to everyone else’s data. This may be fine in certain
circumstances, but not in most.

Users are normally added to the system through the adduser command. Here, when adding a
user, you can input that user’s default shell, his/her home directory as well as his/her access
privileges.

Another very common function is the addition and configuration of system printers. This
includes determining what physical connection the printer has to the system, what
characteristics the printer has (to choose the appropriate model printer) as well as making the
printer available for printing. Generically, all the files and programs that are used to access
and manage printers are called the print spool, although not all of them are in the spool
directory.

Adding a printer is accomplished like in many UNIX dialects: you do it manually with the
primary configuration file/etc/printcap file. The printcap man-page lists all the
capabilities that your version of Linux supports. You must also add the appropriate directory
and enable printing on the port. We’'ll get into more detail about it as we move on.

What happens when you want to remove a file and inadvertently end up removing the wrong
one (or maybe more than one)? If you are like me with my first computer, you're in big

trouble. The files are gone, never to show up again. | learned the hard way about the need to
do backups. If you have a good system administrator, he/she has probably already learned the
lesson and makes regular backups of your system.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

33

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

There are several ways of making backups and several different utilities for doing them.

Which program to use and how often to make backups completely depends on the
circumstances. The system administrator needs to take into account things like how much data
needs to be backed up, how often the data are changed, how much can be lost, and even how
much will fit on the backup media.

There are tasks that an administrator may need to perform at regular intervals, such as
backups, cleaning up temporary directories, or calling up remote sites to check for incoming
mail. The system administrator could have a checklist of these things and a timer that goes off
once a day or every hour to remind him/her of these chores, which he/she then executes
manually.

Fortunately, performing regular tasks can be automated. One basic utility in every UNIX
version is cron. Cron (the "0" is short) is a program that sits in the background and waits for
specific times. When these times are reached, it starts pre-defined programs to accomplish
various, arbitrarily defined tasks. These tasks can be set to run at intervals ranging from once
a minute to once a year, depending on the needs of the system administrator.

Cron "jobs" (as they are called) are grouped together into files, catiadables or crontabs

for short. There are several that are created by default on your system and many users and
even system administrators can go quite a long time before they notice them. These monitor
certain aspects of system activity, clean up temporary files, and even check to see if you have
UUCP jobs that need to be sent.

What about a program that you only want to run one time at a specific time and then never
again? Linux provides a mechanism: at. Like cron, at will run a job at a specific time, but
once it has completed, the job is never run again.

A third command that relates to cron and at, the batch command, differs from the other two in
that batch runs the job you submit whenever it has time; that is, when the system load permits.

Linux supports the idea of virtual consoles (VCs), like SCO. With this, the system console
(the keyboard and monitor attached to the computer itself) can work like multiple terminals.
By default, the system is configured with at least four VCs that you switch between by
pressing the ALT key and one of the function keys F1-F6.

Normally, you will only find the first six VCs active. Also, if you are using the X Windowing
System, it normally starts up on VC 7. To switch from the X-Windows screen to one of the
virtual consoles, you need to press CTRL-ALT plus the appropriate function key.

Keeping the data on your system safe is another important task for the system administrator.
Linux provides a couple of useful tools for this: tar and cpio. Each has its own advantages and
disadvantages. Check out the details on the respective man-page.

2.1.4 What goes with Linux

Throughout this site, we are going to be talking a great deal about what makes up the Linux
operating system. In its earliest form, Linux consisted of the base operating system and many
of the tools that were provided on a standard UNIX system. For many companies or

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

34

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

businesses, that was enough. These companies may have only required a single computer with
several serial terminals attached, running a word processor, database, or other application.
However, when a single computer is not enough, the base Linux package does not provide

you with everything that you need.

Suppose you want to be able to connect all the computers in your company into a computer
network. The first thing that you could use is the networking capabilities of UUCP, which is
included in Linux’s network package. However, this is limited to exchanging files, remotely
executing programs, and simple terminal emulation. Also, it is limited to serial lines and the
speed at which data can be transferred is limited as well.

So it was in the dark recesses of ancient computer history. Today, products exist that allow
simultaneous connection between multiple machines with substantially higher performance.
One such product is TCP/IP (Transmission Control Protocol/Internet Protocol). If a company
decides it needs an efficient network, it might decide to install TCP/IP, which has become the
industry standard for connecting not only UNIX systems, but other systems as well.

There is a problem with TCP/IP that many companies run into. Suppose you want everyone in
the company to be able to access a specific set of files. With TCP/IP you could devise a
scheme that copies the files from a central machine to the others. However, if the files need to
be changed, you need to ensure that the updated files are copied back to your source machine.
This is not only prone to errors, but it is also inefficient.

Why not have a single location where the source files themselves can be edited? That way,
changes made to a file are immediately available to everyone. The problem is that TCP/IP by
itself has nothing built in to allow you to share files. You need a way to make a directory (or
set of directories) on a remote machappearas though it were local to your machine.

Like many operating systems, Linux provides an answer: NFS (Network File System). With
NFS, directories or even entire filesystems can appear as if they are local. One central
computer can have the files physically on its hard disk and make them available via NFS to
the rest of the network.

Two other products are worth mentioning. To incorporate the wonders of a graphical user
interface (GUI), you have a solution in the form of X-Windows. And if you just switched to
Linux and still have quite a few DOS applications that you can't live without, Linux provides
a solution: dosemu or the DOS Emulator package.

2.2 Linux Documentation

Software documentation is a very hot subject. It continues to be debated in all sorts of forums
from USENET newsgroups to user groups. Unless the product is very intuitive, improperly
documented software can be almost worthless to use. Even if intuitive to use, many functions
remain hidden unless you have decent documentation. Unfortunately for many, UNIX is not
very intuitive. Therefore, good documentation is essential to be able to use Linux to its fullest
extent.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

35

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Unlike a commercial UNIX implementation, Linux does not provide you with a bound set of
manuals that you can refer to. The documentation that is available is found in a large number
of documents usually provided with your Linux distribution. Because the documentation was
developed by many different people at many different locations, there is no single entity that
manages it all.

The Linux Documentation Project LDP was organized for this very reason. More and more
documents are being produced as Linux develops. There are many HOWTOs available that
give step-by-step instructions to perform various tasks. These are typically quite long, but go
into the detail necessary to not only solve specific problems, but help you configure detailed
aspects of your system. There are also a number of "mini" HOWTOs, which discuss less
extensive topics.

In many cases, these were written by the program developers themselves, giving you insights
into the software that you normally wouldn’t get. You'll find ASCII versions on the CD under
the doc/HOWTO directory and HTML versions under doc/HTML. The most current

HOWTOs can be found on the LDP Web|site.

Many HOWTOs will have a section of frequently asked questions FAQs. As their name
implies, these are lists of questions that are most frequently asked about the particular topic.
Sometimes these are questions about specific error messages, but are often questions about
implementing certain features. These can also be found pn the LDP Web sjte. The Brigf Linux
BLFAQ provides answers to basic questions about working with Linux.

Unfortunately, in my experience in tech support, few administrators and even fewer users take
the time to read the manuals. This is not good for two important reasons. The first is

obviously the wasted time spent calling support or posting messages to the Internet for help
on things in the manual. The second is that you miss many of the powerful features of the
various programs. When you call support, you usually get a quick and simple answer. Tech
support does not have the time to train you how to use a particular program. Two weeks later,
when you try to do something else with the same program, you're on the phone again.

The biggest problem is that people see the long list of files containing the necessary
information and are immediately intimidated. Although they would rather spend the money to
have support explain things rather than spend time "wading" through documentation, it is not
as easy with Linux. There is no tech support office. There is an increasing number of
consulting firms specializing in Linux, but most companies cannot afford the thousands of
dollars needed to get that kind of service.

The nice thing is that you don’t have to. You neither have to wade through the manuals nor
spend the money to have support hold your hand. Most of the necessary information is
available on-line in the form of manual pages man-pages and other documentation.

Built into the system is a command to read these man-pagesBy typing man

<command>, you can find out many details about the command <command>. There are
several different options to man that you can use. You can find out more about them by typing
man man, which will bring up the man man-page or, the man-page for man.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

36

http://www.tldp.org/
http://www.tldp.org/FAQ
http://www.tldp.org/FAQ/faqs/BLFAQ
http://www.tldp.org/FAQ/faqs/BLFAQ

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

When referring to a particular command in Linux documentation, you very often will see the
name followed by a letter or number in parenthesis, such as Isl. This indicateslthat the
command can be found in section 1 of the man-pages. This dates back to the time when
man-pages came in books as they often still do. By including the section, you could more
quickly find what you were looking for. Here | will be making references to files usually as
examples. | will say only what section the files are in when | explicitly point you toward the
man-page.

For a list of what sections are available, see the table below or the man man-page. If you are
looking for the man-page of a particular command and know what section it is in, it is often
better to specify the section. Sometimes there are multiple man-pages in different sections.
For example, the passwd man-page in section 1 lists the details of the passwd command. The
passwd man-page in section 5, lists the details ottagpasswd file. Therefore,if you

wanted the man-page on the passwd file, you would use the -S option for "section" and then to
specify section 4, you would call up the man-page like this:

man -S 5 passwd

Section Description
1 Commands, Utilities and other executable programs, which are typically user-related
System calls
Library calls

Special files, typically device files in /dev

Games
Macro packages

2
3
4
5 File formats and their respective conventions, layout
6
7
8 System administration commands

9

Kernel routines

Table - Manual Page Sections

Man-pages usually have the same basic format, although not all of the different sections are
there for every man-page. At the very top is the section NAME. This is simply the name of
the command or file being discussed. Next is the SYNOPSIS section, which provides a brief
overview of the command or file. If the man-page is talking about a command or utility, the
SYNOPSIS section may list generalized examples of how the command syntax is put
together. The tar man-page is a good example.

The DESCRIPTION section, is just that: a description of the command. Here you get a
detailed overview about what the command does or what information a particular file
contains. Under OPTIONS, you will find details of the various command line switches and
parameters, if any. The SEE ALSO section lists other man-pages or other documentation, if
any, that contain addition information. Often if there is an info page see below for this
man-page it is listed here. BUGS is a list of known bugs, other problems and limitations the

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

37

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

program might have. Sometimes, there is an AUTHOR section, which lists the authors of the
program and possibly how to contact them.

Note that these sections are just a sampling and not all man-pages have these sections. Some
man-pages have other sections that are not applicable to other man-pages. In general, the
section headings are pretty straightforward. If all else fails, look at the man man-page.

In many cases, each section has its own man page. By running
man -k intro

you can see which sections have an introduction, which sometimes provides useful
information about that section of man-pages.

Sometimes applications will provide their own man-pages and end up putting them in a
directory that the normal man command doesn’t use. If the installation routine for the
application is well written, then you should not have a problem. Otherwise you need to tell the
man command where to look. Some distributions uséetbdnanpath.config file

which has its own man-page, which contains among other things the directories that man
should search. You might also have to define the MANPATH variable explicitly to tell the
system where to look. Note that typically, if the MANPATH variable is set., the
manpath.config file is ignored.

Often the manual pages are not stored in the original form, but in a pre-formatted form "cat
pages". This is done to speed up the display, so that the man pages do not need to be
processed each time they are called. | have worked on some systems where these pages are
not created by default and every single man-page reports "No manual entry for whatever". To
solve this problem simply run the command catman. It may take a while so be patient.

If you want to look at multiple man-pages, you can simply input them on the same line. For
example, to look at the grep and find man-pages, you might have a command that looks like
this:

man grep find

By pressing 'q’ or waiting until the page is displayed, you will be prompted to go to the next
file. If the same term is in multiple sections, you can use the -a option to display all of them.
For example:

man -a passwd

Sometimes it will happen that you know there is a command that performs a certain function,
but you are not sure what the name is. If you don’t know the name of the command, it is hard
to look for the man-page. Well, that is what the -k option is for -k for "keyword". The basic
syntax is:

man -k keyword

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

38

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

where "keyword" is a keyword in the description of the command you are looking for. Note
that "man -k" is the same thing as the apropos command. If you have a command and want to
know what the command does, you can usevintis command. For example, like this:

whatis diff

which would give you this:

diff 1 - find differences between two files>

Paired withwhatis is thewhereis command. Th&hereis command will tell you the

path to the command that is being executed, just likevtheh that we discussed in the

section on directory path. Howevarereis will also show you other information like the
location of the man-pages, source code, and so forth. This might give us something like this:

whereis find

find: /usr/bin/find /usr/share/man/manl/find.1.gz /usr/share/man/mann/find.n.gz>

Should there be other, related files like /usr/bin/passwd and /etc/passwd, whereis will display
these, as well.

For many commands, as well as general system information, there are additional info files that
you access using thiefo command. Although there are not as many info files as there are
commands, the info files contain information on more aspects of your system. In many cases,
the information contained in the info files is identical with the man-pages. To get started,
simply type "info" and the command line. To get the information page for particular

command, like with man you give the command name as an option to the info command. So,
to get information about the tar command, you would input:

info tar

which would bring up something like this:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

39

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

+ Shell - Konsale <23 s 0O ﬂ
Session Edit View Settings Help |

Iiile: tar,.info. Hode: Top., Mex<t: Introduction, Up: (dir

GHU tar: an archiver tool

GHU "tar' creates and extracts files from archives,
Thiz manual documents wersion 1,13.18 of GHU "tar',

The first part of thiz master menu lists the major nodes in this Info
document., The rest of the meru lists all the lower level nodes,

* Menu

Introduction::

Tutorial::

tar inwocationi:

operationsi:

Backupsi:

|--zz-Info: (tar,info,oz)Top, 264 lines
Helcome to Info wversion 4.0, Type C-h for help. w for menu item, —

ey [T

An info page.

EE

*

If you are familiar with the emacs editor, then navigation is fairly easy. However, for the most
part, you can move around fairly well using the arrow keys and the enter key. As you can see
in the image above, menu items are indicated with an asterisk *. Move with an arrow key or
the tab key until the desired item is highlighted and then press enter to select that item.
Depending how your keyboard is layed out, you can move up and down within each page
using the page-up and page-down keys.

Rather than moving through the menu items, you can simply press 'm’ which will prompt you
to input the text of the menu item you want to select. You don’t have to input the complete
text, but just enough to differentiate it from other items.

Some commands including info itself have a tutorial section. This provides examples and
step-by-step instructions how to use the specific command. To reach the info tutorial from the
info page for any command, simply press 'h’ for "help".

SuSE takes this even further by providing you an online copy of their online support
knowledge base. This can also be accessed on the ifiterfet here.

Before installing any Linux system it is best to know if there is anything to watch out for. For
commercial software, this is usually the release notes. Often there is a file in the root directory
of the CD if that's what you are installing from called README or README.1ST which
mentions the things to look out for. Typically when you download software or even source
code from the Internet, there is a README file. If this file does not give you specific
information about installing the software, it will tell you where to find it.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

40

http://sdb.suse.de/sdb/en/html/

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

2.3 Other Resources

The Internet is full of resources to find out more about your Linux system. The most obvious
places are the home page of the particular distribution you have, but there are many, many
more sites that provide information, sucl as Linux.Org and the Linux Documentation| Project,
as we discussed in the section on Linux documentation. For a collection of links that | have
found useful, check out the main "More Info" page.

One extremely useful place to find information is netnews. Actually, it would be more
appropriate to say "places" as there are thousands of newsgroups, hundreds which apply to
computers and dozens which apply specifically to Linux. Most are archived on
Wwww.deja.com, which, as of this writing, is being redirectdd to Google Gfoups. They have a
20 yeararchive of the various news groups, not just those related to computers. Here you can
also post, but you need to register first.

If you have a Internet Services Provider (ISP) that also provides its own news server, then you
might want to consider a local newsreader such as knode, which comes with the KDE. Using

a local reader has the advantage of being able to subscribe to newsgroups from various topics,
such as both Linux and music, allowing you to easily bounce between the groups you like.

Newsgroups are broken into "hierarchies", or general groupings of particular topics. For
example, the "comp" hierarchy is about computers, the "rec" hierarchy is for recreation. For
the comp.os.linux newsgroup, click hére.

Other good sources of information are mailing lists. The difference between a mailing list and
newsgroup is that a copy of each message sent to a mailing list is also sent to every single
member. This means that depending on the mailing list and how many you get, you could
have hundreds of email messages each day. With newsgroups, you download them as you
need them. Depending on your newsreader, you might download all of the messages (which
could take quite a long time) or you can download just the headers and then the contents of
the messages as you need to.

Mailing lists also have the advantage of being able to filter messages into sub-directories
based on their content, sender and so forth. Also, most mailing lists allow only members to
submit messages, whereas typically anyone can post to a newsgroup. This means there is
often a lot of junk in the newsgroups, such as advertisements, Linux opponents who just want
to start arguments and so forth. Since you are required to provide your email address for a
mailing list, you cannot be so anonymous and thingsisuiallya lot more pleasant.

To get a list of some of the currently available mailing lists send a message to
majordomo@vger.kernel.org, which contains just the word "lists". To get detailed help
information send a message with the word "help".

2.3.1 Linux Certification

This article was made available through the courtesy of Linux For[You (www.linuxfofu.com)
-- Asia’s First Linux Magazine.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

41

http://www.linux.org/
http://www.linuxdoc.org/
http://www.deja.com/
http://groups.google.com/
http://groups.google.com/groups?group=comp.os.linux
http://www.linuxforu.com/

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Linux Certification The Right Choice?

If you have Linux experience,it is good.In addition,if you have a Linux certification it is even
better.For an insight into the world of certifications and their advantages,read this article.

For a long time now, news is on IT job cuts and low demand of IT professionals in the
country and abroad as well. But if you have decided on making IT your career, chances are
that you will never be without a job for long. The IT industry is undoubtedly the fastest
growing sector of employment.

For the one wishing to get into IT, Linux provides an area of opportunities. Linux is no longer
of interest only to hackers and the open-source community. Today, there are more Web
servers running on Linux than on any other operating system. According to a study done
recently, more than 75 per cent of the Fortune 500 companies have already deployed Linux or
are considering to do so in near future.

With this booming Linux deployment, comes increased demand for professionals who are
conversant with Linux technology. This includes users, administrators, programmers, as well
as buyers of Linux systems.

LINUX CERTIFICATION

A recognised Linux certification provides a tangible way to show prowess in the operating
system. Many job postings have started quoting Linux Certified Professional in recruitment
advertisements.

If Linux is to be widely accepted into the computing mainstream, | believe a certification
programme is essential. But | would like to state clearly that | do not believe a certification
programme could ever replace experience in the hiring process. However, a certification
program is ultimately a tool, primarily for marketing and recruitment.

While Certification by itself does not make you a recognised Linux Guru, it provides a great
start towards that goal.

Certifications provide an organisational path for students: People who want to learn about
Linux, may read a book on Linux, while others find greater benefit in instructor-led classes.
But what books? What classes? The certification programme gives the answer to the question
where do | begin?

Certification creates industry recognition: Many software and application vendors have spent
millions of dollars convincing the IT industry of the value of certification. People, especially
managers, perceive that there is value and importance in certification. A Linux certification
programme will allow those who value certification to see that Linux has emerged as a viable
option.

Counter the no-support argument: Linux opponents are quick to slam Linux for a perceived
lack of support. Linux community understands the truth... about the support from newsgroups
and mailing lists. But corporate managers are looking for ways to support IT products. New
programs from various Linux distributors allow corporations to purchase support contracts,
certainly one great step in this direction. But the existence of certified individuals is another.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

42

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

A pool of Linux-certified professionals would counter this argument. Organisations would
like to employ certified professionals to ensure optimum utilisation of resources.

Certification turns students into advocates: If students learn all about Linux: how to install,
configure and use the operating system, they will then become advocates for Linux as they
move within the IT industry. This is both due to the knowledge learned during the course of
preparing for certification... and also due to the fact that since a certification candidate has
invested a serious amount of time, energy and money into the product, they want to use that
actual product. People recommend what they know. We need them to know Linux!

Certification provides an organisational mechanism for training centers: Training centers offer
various certification programmes and play a key role in developing skilled manpower. If
training centers want to teach Linux, how do they begin offering classes? A certification
program allows a training center to provide a path for training that can generate good business
and a healthy competition. Further, a Linux certification program will help promote the

overall growth of the Linux operating system through the training programme.

If you're an IT professional working with Linux, you have a handful of options if you want a
certification, and the vendors are jockeying for the position as the dominant product.

There is a cottage industry of Linux training companies, which have grown around the
certifications. Users can choose among a distribution-specific hands-on training and
certification program (Red Hat), a test-and-training combo (Sair Linux and GNU
Certification), or a community-driven test where you choose your own training (Linux
Professional Institute).

Let s look at some of the options:

[CompTIA Linux+ | This is an entry-level, vendor-neutral certification intended to

demonstrate foundation level proficiency with the Linux operating system. Earning it,

requires passing a single exam covering seven domains: planning & implementation;
installation; configuration; administration; system maintenance; troubleshooting; and
identifying, installing, and maintaining system hardware. The exam is in multiple-choice
format and consists of 95 questions. It s available through Prometric and VUE testing centers.

[Linux Professional Institute Certified (LPIC)[The Linux Professional Institute (LPI) is a
non-profit organisation formed specifically for the purpose of creating a vendor-neutral
certification programme for Linux. The group began organising in late 1998 and officially
incorporated on Oct. 25, 1999. The first exams became available in October 2000.

The LPIC programme is designed to offer three certifications signifying increasing skill level,
with each requiring two exams. The first two tiers are fully operational; level 3 is yet to be
developed. The two exams required for Level 1 certification are titled General Linux | and
General Linux Il. They cover topics such as: GNU and UNIX commands; devices; Linux file
systems; boot, initialisation, shutdown, and run levels; documentation; installation and
package management; hardware and architecture; and additional subjects. At Level 2 (again,
two exams) candidates will be queried on advanced administration and networking topics,
including how to track and solve problems, kernel administration, mail and news services,
among other subjects.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

43

http://www.comptia.com/
http://www.lpic.org/

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

[Sair Linux/GNU Certified (LCP/LCA/LCE/ MLCE) | Sair (pronounced zair) is an acronym

for Software Architecture Implementation and Realisation. Sair Inc. started out in 1992 as a
software development firm, only turning its attention to building a Linux certification
programme in 1999. As in a familiar dot-com story, Sair was acquired by Wave Technologies,
which was in turn acquired by Thomson Learning, which is the current owner/operator of the
Sair certification programme.

Sair certification was originally created with three levels: Linux/GNU Certified Administrator
(LCA), Linux/GNU Certified Engineer (LCE), and Master Linux/GNU Certified Engineer
(MLCE), each requiring passage of four exams. The original design was cleanly organised
around four system usage areas (thus four exams at each level): Linux installation; network
connectivity; system administration; and security, ethics, and privacy.

[Red Hat Certified Engineer (RHCE)} Red Hat Inc. has been a favourite in the Linux
marketplace virtually since its inception. It s also a leader in the world of Linux certification.
The first RHCE exam was administered in February 1999, when the vendor-neutral Linux
certification vendors were just getting organised.

To date more than 5,000 people have earned the RHCE title. While not an astounding number,
but to appear for the exams, candidates must travel to a Red Hat testing center.

Unlike the other certification vendors, Red Hat doesn’t offer an entry-level option. There is
only one exam, aimed at intermediate to advanced users of the Red Hat distribution of Linux.
The exam is a three-part affair that includes a written test (1 hour); a server install and
network services configuration lab (2.5 hours); and a diagnostics and troubleshooting lab (2.5
hours).

The exam covers installing and configuring Red Hat Linux; understanding limitations of
hardware; configuring basic networking and file systems; configuring the X Windowing
System; basic security, common network (IP) services, basic diagnostics and troubleshooting,
and Red Hat Linux system administration.

CHOOSING A CERTIFICATION

As you decide which Linux certification to pursue, consider the skill level you ultimately wish
to have, as well as your current abilities. It may be necessary to hop from one certification
programme to another to meet your long-term goals. Neither of the multi-level programmes
has their advanced certifications up nor running yet. This doesn t reflect lack of progress, but
rather a shortage of people who have yet to acquire lower-level certifications.

Linux, as a technology, has matured much faster in its development than any other technology
or operating system. It has changed the information technology landscape for good. In such a
scenario, certification will always play a very vital role in the selection criteria of IT
professionals for organisations. Given the opportunity in today s industry, Experience with
Certification adds weight to being selected. certification

This article was written by Shankar lyer, Head Training, Red Hat India.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

a4

http://www.linuxcertification.com/
http://www.redhat.com/training/

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Chapter 3 Working with the System

Whether you login using the GUI or a character console, the way you interact with a Linux
system is essentially the same. You must first be able to identify yourself to the system by
providing the appropriate information. This information is your user name or login name and

a password. As we discuss in other sections, by default Linux will prompt you for this
information when the system is started. Once you have correctly identified yourself, you are
given access to the system. What happens next will depend on whether you are using the GUI
or a character console.

For simplicities sake, we will first talk about interacting with a system from a character

console, which can also be referred to as a character terminal. One important reason for this is
that even if you are using a GUI, you still have access to a character terminal window and the
way you interact is the same. Also, when you connect to a remote system (i.e. using
something like telnet) the way you interact is the same as well.

3.1 Backing-up and Restoring Files

If you're using Linux in your company, the system administrator probably does regular
backups (assuming he wants to keep his job). However, if you are administering your own
Linux system (i.e. it's your home workstation), then it is up to you to ensure that your data
and important system files are safe.

The computer boom of the 1990’s put a PC in everyone’s house, but it did not provide them
with the same awareness and knowledge that computer users of the 1970’s and 80’s had. With
point-n-click and plug-n-play computers became a "black box" where the insides are an
unknown. You turn on your computer and it just works. When you turn on your computer and

it doesn’t work, people don’t know what to do. It's possible that the computer can be repaired,
but if the hard disk is damaged, the data may be unrecoverable.

If all you use your computer for it to surf the internet, then there may not be any valuable data
on your system. However, if you write letters, manage your bank accounts or many other
things on your computer, you may have files you want to keep. Although you may think it is
safe, it is extremely important how quickly even a small defect can make the data
inaccessible. Therefore, you need to be able to store that data on an external medium to keep
it safe.

The data stored on an external medium like a floppy or CD ROM is called a backup. The
process of storing the data (or making the copy) is called "making a backup". Sometimes, |
will copy files onto a different hard disk. If the first one crashes, | still have access. Even if
you don’t have a different drive, you can still protect your data to a limited extent by copying
it onto a different partition or even a different directory. If the drive develops a problem at the
exact spot where your data is, it might be safe some place else. However, if the whole drive
dies, your data is gone.

One advantage of storing it on an external device, is that if the computer completely crashes
the data is completely safe. In many cases, companies will actually store the data at a different

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

45

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

location in case the building burns down or there is some other disaster (no kidding!).

Linux provides a number of different useful tools to help you backup your system. Perhaps
the most commonly used tool is tar, probably because of its simplicity. For example let's say
you wanted to make a backup copy of the entire diredtlata , the command might look

like this:

tar cvf data.backup /data

Where data.backup is the name of the file in which you want to store the backups of your
files. When tar completes, you have a single file which contains a copy of everything in the
/data directory. One thing that we discussed in another section, is that Linux treats
hardware just like regular files. Therefore instead of using a filename you could use the name
of a device file, like this:

tar cvf /dev/tape /data

Assuming you had a tape drive on your system, and you had nattedtiape , this
command would backup your data to your tape drive.

Note that there are tools available for Linux which allow you to recover files which you have
removed from your system. This goes into too much depth for now, but there is a how-to.

There are other options which you can use with tar that are very useful:

-z compresses - This compresses the file using gzip after it has made the archive. This should
not be done telling tar to use different compression programs. See the tar man-page for
details.

-T, --files-from=FILENAME - Here you can specify a file which contains a list of files you
want to archive. This is useful for system configuration files spread out across your system.
Although you could copy all of your system files into one directory prior to making a backup,
this method is much more efficient.

Typically when files are removed on Linux they’re gone for good. You can create your own
“trash can" by creating a shell function that actually moves the file into a different directory
for example:

function rm() {
mv $1 /home/jimmol/trashcan

}

Then when you want to clear out the trash, you would use the full pathrta dt@mmand:
/bin/rm

Keep in mind that simply being able to backup files is not enough. Often you do not have
enough space on your tapes to do a complete backup of your system every day. Sometimes,
doing a complete backup takes so long that even if you start right as people go home, there is
not enough time to finish before they come back to work. Further, when trying to restore a
complete backup of your system, it will take longer to find the files you need and thus will

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

46

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

takes longer to get people back to work. Therefore, you need a backup strategy, which we
discuss in the section on problem solving.

3.2 Interacting with the System

It is common to have people working on UNIX systems that haverworked on a

computer before or have only worked in pure windowing environments, like on a Macintosh.
When they get to the command line, they are lost. On more than one occasion, | have talked to
customers and | have asked them to type in cd /. There is a pause and | hear:
click-click-click-click-click-click-click-click-click-click-click-click. "Hmmm," | think to

myself, "that’s too many characters.” So | ask them what they typed, and they respond,
"cd-space-slash."”

We need to adhere to some conventions throughout this site to make things easier. One is that
commands that | talk about will be in your path unless | say otherwise. Therefore, to access
them, all you need to do is input the name of the command without the full path.

The second convention is the translation of the phrases "input the command," "enter the
command,” and "type in the command." These are translated to mean "input/enter/type in the
commancdand press Entet | don’t know how many times | have talked with customers and

have said "type in the command" and then asked them for what happens and their response is,
"Oh, you want me to press Enter?" Yes! Unless | say otherwise, always press Enter after
inputting, entering, or typing in a command.

Simply having shell is probably not enough for most users. Although you could probably
come up with an interesting and possibly useful shell script, more than likely you're going to
need some commands to run. There are literally hundreds of different commands that come
with your system by default and there are many more different variations of these commands,
which you can download from the Internet.

Sometimes the commands you issue are not separate files on the hard disk, but rather are
built-in to your shell. For example, tieel command, which is used to change directories, is

part of the shell, whereas tlee command, which is used to display the contents of

directories is a separate program. In some cases one shell has a particular command built-in,
but it is not available in another shell.

In general a command is broke down into three parts:
programname option(s) argument(s)

Note that not all commands have options and you do not always need to have arguments to a
command. For example, tdate does have any arguments and works just fine without any
options. Some command are built-in to the shell you are using, but may be an external
command with a different shell. For example, ¢lsbo is internal to théash shell, but you

will probably also find thébin/echo command on your system.

If you ever run into trouble and are confused about the behavior of your shell, one important
thing to know is what shell you have. If you weren’t told what shell you had when your
account was created or you are installing Linux for the first time and really don’t know, there

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

47

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

are a couple of ways of finding out. The first is to simply ask the shell. This is done by
accessing the $SHELL environment variable. (We discuss environment variables in detail in
the section on shell variables.) This is done usingthe® command like this:

echo $SHELL

As you might guess, the echo command simply displays on the screen exactly what you told

it, in this case we told it to display the $SHELL variable. (We know it is a variable because of
the leading $, which we also will discuss in section on shell variables .) What should probably
happen is you get something like this:

/bin/bash>

In this case, the shell lbin/bash . We can also find out what shell we are using by seeing
which programs we are currently running. With Linux, as with other Unix dialects, a running
program is called a " process", and you check your processes using the ps command (for
process status). You can start it with an argument simply by inpptirasnd pressing the

enter key. This will probably get you something like this:

PIDTTY TIME CMD
21797 pts/1 00:00:00 bash

6060 pts/1 00:00:00 ps
>

In this case we see under the heading CMD (for command) only "bash" and not the full
pathname as in the previous example. However, there are options to the ps command which
will show us the path.

The shell you are using is just one piece of information the system maintains in regard to your
current session. Much of this information is stored in the form of variables, like your shell.
These variables are set for you when you login to the system. You can also set variables
yourself using the set command. This might look like this:

set VAR=value

Where VAR is the variable name and "value" is the value which you assigned to that variable.
Note that it is not until you want to access the value of the variable that you preceded with the
$. To find out the contents of all variables, you would use the set command by itself with no
arguments. This gives you a long list of variables.

When you login to the system you start in your "home" directory, which can be stored in the
$HOME variable. As we discussed earlier, to change your current directory (also called your
working directory) you use the cd command. If you wanted to return to your home directory,
you can issue the command cd $HOME and your shell will pass the value of the $SHOME
variable to the cd, which would then change directories for you. (Note that typically if you use
the cd command with no arguments at all, you change to your home directory by default.)

One part of your environment which is extremely useful to know is the directory you are
currently in. To do this you might want to tell the system to simply print your current working
directory. This is done with the pwd command, which simply displays the full path to your

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

48

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

current directory.

It is also useful to see what files and directories reside in your current directory. This is done
with the Is command (short for "list"). Without the options the Is command provides you a
simple list of what is in your current directory, without any additional information. The output
might look like this:

prompt# Is
letter.txt memo.txt picture.jpg
>

you can use the - option to get a "long" listing of the files and directories. This might show
you something like this:

prompt# Is -

-rw-r--r-- 1 jimmo users 2457 Feb 13 22:00 letter.txt
-rw-r--r-- 1 jimmo users 7426 Feb 15 21:33 memao.txt
-rw-r--r-- 1jimmo wusers 34104 Feb 14 21:31 picture.jpg
>

This information includes the permissions on the file, who owns the file, the size, and so forth.
Details of this can be found in the section on file permissions.

For a more detailed discussion on how various shells behave see the section on shells.

There are many ways to do the things you want to do. Some use a hammer approach and force
the answer out of the system. In many cases, there are other commands that do the exact same
thing without all the gyrations. So, what | am going to try to do here is step through some of

the logic (and illogic) that | went through when first learning Linux. That way, we can all

laugh together at how silly | was, and maybe you won’t make the same mistakes | did.

Every dialect of UNIX that | have seen has the Is command. This gives a directory listing of
either the current directory if no argument is given, or a listing of a particular file or directory
if arguments are specified. The default behavior under Linux for the Is command is to list the
names of the files in a single column. Try it and see.

It is a frequent (maybe not common) misconception for new users to think that they have to be
in a particular directory to get a listing of it. They will spend a great deal of time moving up
and down the directory tree looking for a particular file. Fortunately, they don’t have to do it
that way. The issue with this misunderstanding is that every command is capable of working
with paths, as is the operating system that does the work. Remember our discussion of Linux
basics. Paths can be relative to our current directory, such as ./directory, or absolute, such as
/home/jimmo/directory.

For example, assume that you have a subdirectory of your current working directory called
letters. In it are several subdirectories for types of letters, such as business, school, family,
friends, and taxes. To get a listing of each of these directories, you could write

Is ./letters/business
Is ./letters/school

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

49

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Is ./letters/family
Is ./letters/friends
Is ./letters/taxes

Because the Is command lets you have multiple commands on the same line, you also could
have issued the command like this:

Is ./letters/business ./letters/school ./letters/family
Jletters/friends ./letters/taxes

Both will give you a listing of each of the five directories. Even for five directories, typing all
of that is a pain. You might think you could save some typing if you simply entered

Is ./letters

However, this gives you a listing of all the files and directories in ./letters, not the
subdirectories. Instead, if you entered

Is ./letters/*

the shell would expand the wildcard (*) and give you a listing of both/lgteers

directory as well as the directories immediately belbstters , like the second example
above. If each of the subdirectories is small, then this might fit onto one screen. If, on the
other hand, you have 50 letters in each subdirectory, they are not all going to fit on the screen
at once. Remember our discussion on shell basics? You can use the pipe (]) to send the
command through something like more so that you could read it a page at a time.

It is common to run command one right after the other. If you simply press the enter key after
the first command, the shell executes it before returning to the prompt. Often you want to
issue two commands in sequence. This is done by separating the commands with a
semi-colon, like this:

commandl; command?2

Note that these commands are not really connected in any way. The shell simply executes one
after the other. To actually "connect" the commands, you would need to use a pipe. Details on
pipes can be found in the section on shells

3.3 Logging In

Like many contexts, the name you use as a "real person" is not necessarily the way the system
identifies you. With Linux you see yourself as a particular user, such as jimmo, whereas the
system might see you as the number 12709. For most of the time this difference is pretty

much irrelevant, as the system makes the conversion between user name and this number the
user ID or UID itself. There are a few cases where the difference is important, which we will
get to in other sections. In addition, you could make the conversion yourself to see what your
user ID is, which we will also get to elsewhere.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

50

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

The place where this system makes this conversion is thettilpasswd . You can take a
look at it by typing

cat /etc/passwd

from the command line. Here you find one user per line. The details of this file can be found
in the section on administering user accounts. Note that there are a number of predefined,
system users in thetc/passwd file and they do not relate to real users. For security
reasons, some system administrators will delete many of these users. However, you should
leave them alone unless you know what you are doing.

If you are installing Linux on your system at home, more than likely you are prompted to
select a user name and password during installation. This is the account you should use for
normal day-to-day work. You should not use the system administration account: root. The
root account is "all powerful" and can essentially do anything to the system you can imagine.
If you make a mistake, the system is unforgiving and if you are working as root, the results
can be catastrophic. If you are used to Windows, this is a major difference. If you administer a
Windows NT/2000 system, you are typically in the Administrators group. This means you
automatically have administrator privileges, which means you can accidentally cause damage.
With Linux, you generally have to make a conscious effort to switch to the root user to carry
out your administrative task which is fairly easy and safer.

if you are using a Linux system that someone else installed perhaps at work, then an account
will need to be created for you. The name of the account will more than likely be unique to
your company, so there’s no real need to discuss the different possibilities here. Ask your
system administrator for details.

Keep in mind that both the user name and password are case sensitive. That means it will
make a difference if you spell either with upper or lowercase letters. Using a lowercase letter
when creating the account, then using an uppercase letter when attempting to login, will
prevent you from gaining access to the system.

The process of identifying yourself to the system, whereby you provide your user name and
password, is referred to as " logging in". When the system is ready for you to login you are
presented with a login prompt. That is, you are prompted to login. How the login prompt
looks differs among the various Linux distributions, but generally has the word "login:". Once
you input your username and press the enter key, you are then prompted to input your
password. This is done simply by displaying the word " password:". Typically, you end up
seeing something like this:

getty displays getty calls login starts
login on tty fetcilogin user's shell

init spawns
getty an ty

Jprofile or fetc/profile or
login fetc/bashre

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

promipt sirmilar

sShell < bashrc or

51

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

This example shows a login across a network using telnet.

It is possible that even after installing Linux and rebooting you do not see a login prompt. One
possible reason is that the login prompt is there, but you just don’t see it. Perhaps, some one
turned off a monitor, the machine has gone into power saving mode, and so forth. It is also
possible that your Linux system has been configured to automatically start into the GUI. If the
video card was not correctly configured, you may not be able to see anything on the screen at
all. In this case all is not lost because Linux provides you with something called "virtual
consoles". We go into these in detail in the section on what Linux does.

Bear in mind that the system keeps track of who is currently logged into the system as well as
who has logged in in the past. Since you might be held accountable for things which were
done with your account, it is important to keep your password secret in order to prevent
someone from gaining improper access to the system. This is the reason that when you login
you see your username displayed on the screen as you type it, but not your password. It is
possible that someone could be looking over your shoulder and sees your password as you

type.

Once you login to system it starts your "login shell". In essence, a shell is a command line
interpreter, meaning that the shell interprets and executes the commands you enter. If you are
familiar with either DOS or Windows, the command prompt is basically the same thing as a
Linux shell, in that it is also a command line interpreter. The shell indicates that it is ready to
accept a new command by displaying a shell prompt or command prompt. Typical prompts
are the #,%, or $. It is also possible that your system administrator has defined a different
prompt. It is common to include your username, your current directory, the system you are
working on or other pieces of information. You can find more details about how the system
perceives the shell in the section on processes in the operating system introduction.

One of the first things that you should do when you login to a system where someone else
created the user account for you is to change your password. Obviously, the person creating
your account will have to know your password in order to be able to tell you what it is. Your
password should be something which is easy for you to remember so you do not need to write
it down, but extremely difficult for someone else to guess. What constitutes good and bad
passwords is something we get into in the section on security.

The Linux command which is used to change your password is paksgvd , which you

can start from any shell prompt. As a security feature, the passwd program will first prompt
you for your old password before allowing you to change to a new one. This is to ensure that
you are the person the system thinks you are. Perhaps you have left your desk for a moment
and someone wants to play a trick on you and changes your password.

The exception is the root account. The system administrator must have the ability to change
any password and could not do this in every case if the old password was always required. For
example, you may have forgotten your password and need the administrator to change it for
you. It would do no good to ask the administrator to change your password if he had to know

it first. This is one reason why you need to be careful when you are working with the root user
account.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

52

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

3.4 Logging Out

If you are running Linux at home, then there is probably no need to stop your sessions when
you're finished working. However, if your session is accessible by others, then it is not a bad
idea to "log out" when you're done. Where "logging in" connects you to a session, "logging
out" disconnects you from that session. In most cases it is sufficient simply to type in the
word exit to end your session (exit is actually a command built-in to many shells). It is also
possible to exit a shell session by pressing CTRL-D (holding down the control key and
pressing the letter "d").

After you log out, the system typically sends a new login prompt to your terminal.

The details of this process can be found in the section on logging in .

3.5 When Things Go Wrong

Until you become very accustomed to using Linux you're likely to make mistakes (which also
happens to people who have been working with Linux for a long time). In this section, we’ll
be talking about some common mistakes and problems that occur when you first start using
Linux.

Usually when you make mistakes the system will let you know in some way. When using
using the command line, the system will tell you in the form of error messages. For example,
if you try to execute a command and the command does not exist, the system may report
something like this:

bash: some_command: command not found>

Such an error might occur if the command exists, but it does not reside in a directory in your
search path. You can find more about this in the section on directory paths.

The system may still report an error, even if it can execute the command. For example, if the
command acts on a file that does not exist. For exampleydhe displays the contents of a
file. If the file you want to look at does not exist, you might get the error:

some_file: No such file or directory>

In the first example, the error came from your shell as it tried to execute the command. In the
second case, the error came fromrtittge command as it encountered the error when trying
to access the file.

In both these cases, the problem is pretty obvious. In some cases, you are not always sure.
Often you include such commands within shell scripts and want to change the flow of the
script based on errors or success of the program. When a command ends, it provides its "exit
code" or "return code" in the special variable $?. So after a command fails, running this
command will show you the exit code:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

53

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

echo $?

Note that it is up to the program to both provide the text message and the return code.
Sometimes you end up with a text message that does not make sense (or there is no text at all),
so all you get is the return code, which is probably even less understandable. To make a
translation between the return code and a text message, check the file

lusr/include/asm/errno.h

You need to be aware that errors on one system (i.e. one Linux distribution) are not
necessarily errors on other systems. For example, if you forget the space in this command,
some distributions will give you an errds:|

However, on SUSE Linux, this will generate the same output as if you had not forgotten the
space. This is because ted is an alias to the commaigd-l . As the name implies, an
alias is a way of referring to something by a different name. For details take a look at the
section on aliases.

It has happened before that | have done a directory listing and saw a particular file. When |
tried to remove it, the system told me the file did not exist. The most likely explanation is that

I misspelled the filename, but that wasn'’t it. What can happen sometimes is that a control
character ends up becoming part of the filename. This typically happens with the backspace as
it is not always defined as the same character on every system. Often the backspace is
CTRL-H, but it could happen that you create a file on a system with a different backspace key
and end up creating a filename with CTRL-H. When you display the file it prints out the name
and when it reaches the backspace backs up one character before continuing. For example
your Is output might show you this file:

jimmo>

However trying to erase it you get an error message. To see any " non printable" characters
you would use the -g option to Is. This might show you:

jimmoo?>

Which says the file name actually contains two o0’s and a trailing backspace. Since the
backspace erased the last 0’ in the display, you do not see it when the file name is displayed
normally.

Sometimes you lose control of programs and they seem to "runaway". In other cases, a
program may seem to hang and freeze your terminal. Although it is possible because of a bug
in the software or a flaky piece of hardware, oftentimes the user makes a mistake he was not
even aware of. This can be extremely frustrating for the beginner, since you do not even know
how you got yourself into the situation, let alone how to get out.

When | first started learning Unix (even before Linux was born) | would start programs and
quickly see that | needed to stop them. | knew | could stop the program with some

combination of the control key and some other letter. In my rush to stop the program, | would
press the control key and many different letters in sequence. On some occassions, the program
simply stop and goes no further. On other occasions, the program would appear to stop, but |

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

54

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

would later discover that it was still running. What happened was that | hit a combination that
did not stop the program but did something else.

In the first example, where the program would stop and go no further, | had "suspended” the
program. In essence, I'd put it to sleep and it would wait for me to tell it to start up again. This
is typically done by pressing CTRL-S. This feature can obviously be useful in the proper
circumstance, but when it is unexpected and you don’'t know what you did, it can be very
unnerving. To put things right, you resume the command with CTRL-Q.

In the second example, where the program seemed to have disappeared, | had also suspended
the program but at the same time had put in the "background”. This special feature of Unix
shells dates from the time before graphical interfaces were common. It was a great waste of
time to start a program and then have to wait for it to complete, when all you were interested

in was the output which you could simply write to file. Instead you put a program in the
background and the shell returned to the prompt, ready for the next command. It's sometimes
necessary to do this once a command is started, which you do by pressing CTRL-Z, which
suspends the program, but returns to the prompt. You then issue the bg command, which starts
the previous command in the background. (This is all part of "job control" which is discussed

in another section.)

To stop the program, what | actually wanted to do was to "interrupt” it. This is typical done
with CTRL-C.

What this actually does is to send a signal to the program, in this case an interrupt signal. You
can define which signal is sent when you press any given combination of keys. We talk about
this in the section on terminal settings.

When you put a command in the background which send output to the screen, you need to be
careful about running other programs in the meantime. What could happen is that your output
gets mixed up, making it difficult to see which output belongs to which command.

There have been occasions where | have issued a command and the shell jumps to the next
line, then simply displays a greater than symbol (>). What this often means is that the shell
does not think you are done with the command. This typically happens when you are
enclosing something on the command line quotes in you forget to close the quotes. For
example if | wanted to search for my name in a file | would use the grep command. If | were
to do it like this:

grep James Mohr filename.txt

| would get an error message saying that the file "Mohr" did not exist.

To issue this command correctly | would have to include my name inside quotes, like this:
grep "James Mohr" filename.txt

However, if | forgot the final quote, for example, the shell would not think the command was
done yet and would perceive the enter key that | pressed as part of the command. What |
would need to do here is to interrupt the command, as we discussed previously. Note this can
also happen if you use single quotes. Since the shell does not see any difference between a

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

55

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

single quote and an apostrophe, you need to be careful with what you type. For example if |
wanted to print the phrase "I'm Jim", | might be tempted to do it like this:/P>

echo I'm Jim

However, the system does not understand contractions and thinks | have not finished the
command.

As we will discuss in the section on pipes and redirection, you can send the output of a
command to a file. This is done with the greater than symbol (>). The generic syntax looks
like this:

command > filename

This can cause problems if the command you issue expects more arguments than you gave it.
For example, if | were searching the contents of a file for occurrences of a particular phrase

grep phrase > filename

What would happen is the shell would drop down to the next line and simply wait forever or
until you interrupted the command. The reason is that the grep command can also take input
from the command line. It is waiting for you to type in text, before it will begin searching.

Then if it finds the phrase you are looking for it will write it into the file. If that's not what

you want the solution here is also to interrupt the command. You can also enter the end of file
character (CTRL-D), which would tell grep to stop reading input.

One thing to keep in mind, is that you can put a program in the background even if the shell
does not understand job control. In this case, it is impossible to bring the command back to
the foreground in order to interrupt. You need to do something else. As we discussed earlier,
Linux provides you a tool to display the processes which you are currently running (the ps
command). Simply typing ps on the command line might give you something like this:

PIDTTY TIME CMD
29518 pts/3 00:00:00 bash

30962 pts/3 00:00:00 ps
>

The PID column in thes output is the process identifier (PID).

If not run in the background, the child processes will continue to do its job until its finished

and then report back to its parent when it is done. A little house cleaning is done and the
process disappears from the system. However, sometimes, the child doesn’'t end like it is
supposed to. One case is when it becomes a "runaway"” process. There are a number of causes
of runaway processes, but essentially it means that the process is no longer needed but does
not disappear from the system

The result of this is often the parent cannot end either. In general, the parent should not end
until all of its children are done (however there are cases where it is desired). If processes
continue to run they take up resource and can even bring the system to a stand still.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

56

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

In cases where you have "runaway" processes or any other time where as process is running
that you need to stop, you can send any process a signal to stop execution if you know its PID.
This is thekill command and syntax is quite simple:

kill <PID>

By default, thekill command sends a termination signal to that process. Unfortunately,
there are some cases where a process can ignore that termination signal. However, you can
send a much more urgent "kill" signal like this:

kill -9 <PID>

Where "9" is the number of the SIGKILL or kill signal. In general, you should first try to use
signal 15 or SIGTERM. This sends a terminate singal and gives the process a chance to end
"gracefully”. You should also look to see if the process you want to stop has any children.

For details on what other signals can be sent and the behavior in different circumstances look
at thekill man-page or simply try Kill -I:

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL

5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE

9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2

13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD

18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN

22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ

26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO

30) SIGPWR 31) SIGSYS 35) SIGRTMIN 36) SIGRTMIN+1

37) SIGRTMIN+2 38) SIGRTMIN+3 39) SIGRTMIN+4 40) SIGRTMIN+5
41) SIGRTMIN+6 42) SIGRTMIN+7 43) SIGRTMIN+8 44) SIGRTMIN+9
45) SIGRTMIN+10 46) SIGRTMIN+11 47) SIGRTMIN+12 48) SIGRTMIN+13
49) SIGRTMIN+14 50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12
53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9 56) SIGRTMAX-8
57) SIGRTMAX-7 58) SIGRTMAX-6 59) SIGRTMAX-5 60) SIGRTMAX-4
61) SIGRTMAX-3 62) SIGRTMAX-2 63) SIGRTMAX-1 64) SIGRTMAX

>

Keep in mind that sending signals to a process is not just to kill a process. In fact, sending
signals to processes is a common way for processes to communicate with each other. You can
find more details about signals in the section on interprocess communication.

In some circumstances, it is not easy to kill processes by their PID. For example, if something
starts dozens of other processes, it is ineffective to try to input all of their PIDs. To solve this
problem Linux has thkillall command and takes the command name instead of the PID.
You can also use the -i, --interactiveoption to interactively ask you if the process should be
kill or the -w, --waitoption to wait for all killed processes to die. Note that if processed

ignores the signal or if it is a zombie, thatall may end up waiting forever.

There have been cases where | have frantically tried to stop a runaway program and
repeatedly pressed Ctrl-C. The result is that the terminal gets into an undefined state whereby
it does not react properly to any input, that is when you press the various keys. For example,
pressing the enter key may not bring you to a new line (which it normally should do). If you

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

57

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

try executing a command, it's possible to command is not executed properly, because the
system has not identified the enter key correctly. You can return your terminal to a "sane"
condition by inputting:

stty sane Ctrl-J

The Ctrl-J character is the line feed character and is necessary as the system does not
recognize the enter key.

It has happened to me a number of times, that the screen saver was activated and it was if the
system had simply frozen. There were no error messages, no keys work and the machine did
not even respond across the network (telnet, ping, etc.) Unfortunately, the only thing to do in
this case is to turn the computer off and then on again.

On the other hand, you can prevent these problems in advance. THe most likely cause it that
the Advanced Power Management (APM) is having problems. In this case, you should disable
the APM within the system BIOS. Some machines also have something called "hardware
monitoring". This can cause problems, as well, and should be disabled.

Problems can also be caused by the Advanced Programmable Interrup controller. This can be
deactivated by changing the boot string used by either LILO or grub. In addtion, you can
disable it by adding "disableapic" to your boot line.

3.6 Accessing Disks

For the most part, you need to tell Linux what to do. This gives you a lot of freedom, because
it does what you tell it, but people new to Linux have a number of pre-conceptions from
Windows. One thing you need to do is to tell the system to mount devices like hard disks and
CD-ROMs.

Typically Linux sees the CD-ROMs the same way it does hard disks, since they are usually all
on the IDE controllers. The device /dev/hda is the master device on the first controller,
/dev/hdb is the slave device on the first controller, /dev/hdc is the master on the second
controller and /dev/hdd is the slave device on the second controller.

To mount a filesystem/disk you use theunt command. Assuming that your CD-ROM is
the master device on the second controller you might mount it like this:

mount DEVICE DIRECTORY

mount /dev/hdc /media/cdrom

Sometimegmedia/cdrom does not exist, so you might want to try this.
mount /dev/hdc /mnt

Sometimes the system already know about the CD-ROM device, so you can leave off either
component:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

58

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

mount /media/cdrom
mount /dev/hdc

You can then cd intbmedia/cdrom and you are on the CD.

Details on this can be found in the section on hard disks and file systems.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

59

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Chapter 4 Shells and Utilities

Most UNIX users are familiar with "the shell"; it is where you input commands and get output
on your screen. Often, the only contact users have with the shell is logging in and immediately
starting some application. Some administrators, however, have modified the system to the
point where users never even see the shell, or in extreme cases, have eliminated the shell
completely for the users.

Because the Linux GUI has become so easy to use, it is possible that you can go for quite a
long time without having to input commands at a shell prompt. If your only interaction with
the operating system is logging into the GUI and starting applications, most of this entire site
can only serve to satisfy your curiosity. Obviously, if all you ever do is start a graphical
application, then understanding about shell is not all that important. However, if you are like
most Linux users, understanding the basic workings of the shell will do wonders to improve
your ability to use the system to its fullest extent.

Up to this point, we have referred to the shell as an abstract entity. In fact, in most texts, it is
usually referred to as simply "the shell”, although there are many different shells that you can
use, and there is always a program that must be started before you can interact with "the
shell". Each has its own characteristics (or even quirks), but all behave in the same general
fashion. Because the basic concepts are the same, | will avoid talking about specific shells
until later.

In this chapter, we are going to cover the basic aspects of the shell. We'll talk about how to
issue commands and how the system responds. Along with that, we’ll cover how commands
can be made to interact with each other to provide you with the ability to make your own
commands. We'll also talk about the different kinds of shells, what each has to offer, and
some details of how particular shells behave.

4.1 The Shell

As | mentioned in the section on introduction to operating systems, the shell is essentially a
user’s interface to the operating system. The shell is a command line interpreter, just like

other operating systems. In Windows you open up a "command window" or "DOS box" to

input commands, which is nothing other than a command line interpreter. Through it, you

issue commands that are interpreted by the system to carry out certain actions. Often, the state
where the system is sitting at a prompt, waiting for you to type input, is referred to (among
other things) as being at the shell prompt or at the command line.

For many years before the invention of graphical user interfaces, such as X-Windows (the X
Windowing System, for purists), the only way to input commands to the operating system was
through a command line interpreter, or shell. In fact, shells themselves were thought of as
wondrous things during the early days of computers because prior to them, users had no direct
way to interact with the operating system.

Most shells, be they under DOS, UNIX, VMS, or other operating systems, have the same
input characteristics. To get the operating system to do anything, you must give it a command.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

60

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Some commands, such as the date command under UNIX, do not require anything else to get
them to work. If you type in date and press Enter, that's what appears on your screen: the
date.

Some commands need something else to get them to warky@ament Some commands,
like mkdir (used to create directories), work with only one argument, as in mkdir
directory_name. Others, lilap (to copy files), require multiple arguments, as in

cp filel file2

In many cases, you can pass flags to commands to change their behavior. These flags are
generally referred to agptions For example, if you wanted to create a series of
sub-directories without creating every one individually, you couldwhkdir with the -p

option, like this:

mkdir -p one/two/three/four

In principle, anything added to the command line after the command itself is an argument to
that command. The convention is that an option changes the behavior, whereas an argument is
acted upon by the command. Let’s takertil@ir command as an example:

mkdir dir_name

Here we have a single argument which is the name of the directory to be created. Next, we
add an option:

mkdir -p sub_dir/dir_name

The -p is an option. Using the terminology discussed, some arguments are optional and some
options are required. That is, with some commands you must always have an option, such as
thetar command. Some commands don’t always need to have an argument, tlkéethe
command.

Generally, options are preceded by a dash (-), whereas arguments are not. I've said it before
and | will say it again, nothing is certain when it comes to Linux or UNIX, in general. By
realizing that these two terms are often interchanged, you won’t get confused when you come
across one or the other. | will continue to apdonto reflect something that changes the
command’s behavior aratgumento indicate something that is acted upon. In some places,
you will also see arguments referred to as "operands”. An operand is simply something on
which the shell "operates"”, such as a file, directory or maybe even simple text.

Each program or utility has its own set of arguments and options, so you will have to look at
the man-pages for the individual commands. You can call these up from the command line by

typing in
man <command_name>

where <command_name> is the name of the command you want information about. Also, if
you are not sure what the command is, many Linux versions have the whatis command that
will give you a brief description. There is also #mropos command, which searches

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

61

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

through the man-pages for words you give as arguments. Therefore, if you don’t know the
name of the command, you can still find it.

Arguments (whether they are options or operands) which are enclosed in square brackets ([])
are optional. In some cases, there are optional components to the optional arguments, so you
may end up having brackets within brackets.

An ellipsis (...) Indicates that the preceding arguments can be repeated. For example, the Is
command can take multiple file or directory names as arguments as well as multiple options.
Therefore, you might have a usage message that looks like this:

Is [OPTION] ... [FILE] ...

This tells us that no options are required, but if you wanted you could use multiple options. It
also tells us that no file name is required, but if you wanted you could use multiple ones.

Words that appeared in angle brackets (< >) or possibly in italics in the printed form, indicate
that the word is a place holder. Like in the example below:

man <filename>

Many commands require that an option appear immediately after the command and before
any arguments. Others have options and arguments interspersed. Again, look at the man-page
for the specifics of a particular command.

Often, you just need a quick reminder as to what the available options are and what their
syntax is. Rather than going through the hassle of calling up the man-page, a quick way is to
get the command to give yowaage messag@s its name implies, a usage message reports

the usage of a particular command. | normally use -? as the option to force the usage message,
as | cannot think of a command where -? is a valid option. Your system may also support the
--help (two dashes) option. More recent versions of the various commands will typically give
you a usage message if you use the wrong option. Note that fewer and fewer commands
support the -?.

To make things easier, the letter used for a particular option is often related to the function it
serves. For example, the -a option to Is says to list "all" files, even those that are "hidden". On
older versions of both Linux and Unix, options typically consisted of a single letter, often both
upper and lowercase letters. Although this meant you could have 52 different options it made
remembering them difficult, if they were multiple functions that all began with the same

letter. Multiple options can either be placed separately, each preceded by a dash, or combined.
For example, both of these commands are valid and have the exact same effect:

Is -a -l
Is -al

In both cases you get a long listing which also included all of the hidden files.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

62

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Newer versions of commands typically allow Bmth single letter options and "long options"
which use full words. For example, the long equivalent of -a would be --all. Note that the long
options are preceded witivo dashes because it would otherwise be indistinguishable from

the -a followed by two -l options.

Although it doesn’t happen too often, you might end up with a situation where one of the
arguments to your command starts with a dash (-), for example a file name. Since options
typically start with a dash, the shell cannot figure out that it is an argument and not a long line
of options. Let's assume that some application | had created a file cghied": If | wanted

to do a simple listing of the file, | might try this:

Is -jim

However, since the shell first tries to figure out what options are being used before it shows
you the listing, it thinks that these are all options and gives you the error message:

Is: invalid option -- |
Try ‘Is --help’ for more information.
>

You can solve this problem wigobmecommands by using two dashes to tell the command
that what follows is actually an argument. So to get the listing in the previous example, the
command might look like this:

Is -- -jim

4.2 The Search Path

It may happen that you know there is a program by a particular name on the system, but when
you try to start it from the command line, you are told that the file is not found. Because you
just ran it yesterday, you assume it has gotten removed or you don’t remember the spelling.

The most common reason for this is that the program you want to start is not in your search
path. Your search path is a predefined set of directories in which the system looks for the
program you type in from the command line (or is started by some other command). This
saves time because the system does not have to look through every directory trying to find the
program. Unfortunately, if the program is not in one of the directories specified in your path,
the system cannot start the program unless you explicitly tell it where to look. To do this, you
must specify either the full path of the command or a path relative to where you are currently
located.

Lets look at this issue for a minute. Think back to our discussion of files and directories. |
mentioned that every file on the system can be referred to by a unique combination of path
and file name. This applies to executable programs as well. By inputting the complete path,
you can run any program, whether it is in your path or not.

Lets take a program that is in everyones path, like date (at least it should be). The date
program resides in the /bin directory, so its full path is /bin/date. If you wanted to run it, you
could type in /bin/date, press Enter, and you might get something that looks like this:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

63

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Sat Jan 28 16:51:36 PST 1995>

However, because date is in your search path, you need to input only its name, without the
path, to get it to run.

One problem that regularly crops up for users coming from a DOS environment is that the
only place UNIX looks for commands is in your path. However, even if not specified in your
path, the first place DOS looks is in your current directory. This is not so for UNIX. UNIX
only looks in your path.

For most users, this is not a problem as the current directory is included in your path by
default. Therefore, the shell will still be able to execute something in your current directory.
Root does not have the current directory in its path. In fact, this is the way it should be. If you
want to include the current directory in roots path, make sure it is the last entry in the path so
that all "real" commands are executed before any other command that a user might try to
"force"” on you. In fact, | suggest that every user adds entries émthaf their path.

Assume a malicious user created a "bad" program in his/her directory called more. If root
were to run more in that users directory, it could have potentially disastrous results. (Note that
the current directory normally always appears at the end of the search path. So, even if there
was a program called more in the current directory, the one in /bin would probably get
executed first. However, you can see how this could cause problems for root.) To figure out
exactly which program is actually being run, you can use the (what else?) which command.

Newer versions of the bash-Shell can be configured to not only complete commands
automatically by inputting just part of the command, but also arguments to the command, as
well as directory names. See the bash man-page for more details.

Commands can also be starting by including a directory path, whether or not they are in you
search path. You can use relative or absolute paths, usually with the same result. Details on
this can be found in the section on directory paths.

One very important environment variable is the PATH variable. Remember that the PATH
tells the shell where it needs to look when determining what command it should run. One of
the things the shell does to make sense of your command is to find out exactly what program
you mean. This is done by looking for the program in the places specified by your PATH
variable.

Although it is more accurate to say that the shell looks in the directories specified by your
PATH environment variable, it is commonly said that the shell "searches your path." Because
this is easier to type, | am going to use that convention here.

If you were to specify a path in the command name, the shell does not use your PATH
variable to do any searching. That is, if you issued the command bin/date, the shell would
interpret that to mean that you wanted to execute the command date that was in the bin
subdirectory of your current directory. If you were in / (the root directory), all would be well
and it would effectively execute /bin/date. If you were somewhere else, the shell might not be
able to find a match.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

64

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

If you do not specify any path (that is, the command does not contain any slashes), the system
will search through your path. If it finds the command, great. If not, you get a message saying
the command was not found.

Let’'s take a closer look at how this works by looking at my path variable. From the command
line, if | type

echo $PATH
| get
{usr/local/bin:/bin:/usr/bin:/usr/X11/bin:/home/jimmo/bin:/..>

WATCH THE DOT!

If | type in date, the first place in which the shell looks is the /bin directory. Because that's
where date resides, it is executed as /bin/date. If | type in vi, the shell looks in /bin, doesn’t
find it, then looks in /usr/bin, where it does find vi. Now | type in getdev. (This is a program |
wrote to translate major device numbers into the driver name. Don’t worry if you don’t know
what a major number is. You will shortly.) The shell looks in /usr/local/bin and doesn't find it.
It then looks in /bin. Still not there. It then tries /usr/bin and /usr/X11/bin and still can’t find it.
When it finally gets to /home/jimmo/bin, it finds the getdev command and executes it. (Note
that because | wrote this program, you probably won’t have it on your system.)

What would happen if | had not yet copied the program into my personal bin directory? Well,

if the getdev program is in my current directory, the shell finds a match with the last "." in my
path. (Remember that the "." is translated into the current directory, so the program is
executed as ./getdev.) If that final "." was missing or the getdev program was somewhere else,
the shell could not find it and would tell me so with something like

getdev: not found

One convention that | (as well as most other authors) will use with is that commands that we
talk about will be in your path unless we specifically say otherwise. Therefore, to access them,
all you need to do is input the name of the command without the full path.

4.3 Directory Paths

As we discussed in the section on the seach path, you can often start programs simply by
inputting their name, provided they lie in your search path. You could also start a program by
referencing it through eelative path the path in relation to your current working directory.

To understand the syntax of relative paths, we need to backtrack a moment. As | mentioned,
you can refer to any file or directory by specifying the path to that directory. Because they
have special significance, there is a way of referring to eithercgotent directoryor its

parent directory The current directory is referenced by "." and its parent by ".." (often

referred to in conversation as "dot" and "dot-dot").

Because directories are separated from files and other directories by a /, a file in the current
directory could be referenced #de_name and a file in the parent directory would be

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

65

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

referenced as/file_name . You can reference the parent of the parent by just tacking on
another ../, and then continue on to the root directory if you want. So the file

...[fille_name is in a directory two levels up from your current directory. This slash
(/) is referred to as fmrward slashas compared tolzack-slash\), which is used in DOS to
separate path components.

When interpreting your command line, the shell interprets everything up to the last/ as a
directory name. If we were in the root (upper-most) directory, we could access date in one of
several ways. The first two, date and /bin/date, we already know about. Knowirlg that

refers to the current directory means that we could also get to it like/lhgdate . This

is saying relative to our current directory (./), look in the bin subdirectory for the command
date. If we were in the /bin directory, we could start the command like/thage . This is

useful when the command you want to execute is in your current directory, but the directory is
not in your path. (More on this in a moment.)

We can also get the same results from the root directory by starting the command like this:
bin/date. If there is a ./ at the beginning, it knows that everything is relative to the current
directory. If the command contains only a /, the system knows that everything is relative to the
root directory. If no slash is at the beginning, the system searches until it gets to the end of the
command or encounters a slash whichever cdimgslf there is a slash there (as in our

example), it translates this to be a subdirectory of the current directory. So executing the
command bin/date is translated the samébag/date

Let’'s now assume that we are in our home directbgme/jimmo (for example). We can
obviously access the date command simply as date because it's in our path. However, to
access it by a relative path, we could saybin/date . The first../ moves up one

level into /home. The second ../ moves up another level terom there, we look in the
subdirectory bin for the command date. Keep in mind that throughout this whole process, our
current directory does not change. We are stithame/jimmo

Searching your path is only done for commands. If we were to enter vi file_name (vi is a text
editor) and there was no file called file_name in our current directory, vi would start editing a
new file. If we had a subdirectory called text where file_name was, we would have to access it
either as vi ./text/file_name or vi text/file_name. Of course, we could access it with the
absolute path of vi /home/jimmo/text/file_name.

When you input the path yourself (either a command or a file) The shell interprets each
component of a pathname before passing it to the appropriate command. This allows you to
come up with some pretty convoluted pathnames if you so choose. For example:

cd /home/jimmo/data/../bin/../..Ichuck/letters

This example would be interpreted as first changing into the directory
/homel/jimmo/data/ , moving back up to the parent directory (..), then into the
subdirectory bin, back into the parent and its parent (../../) and then into the subdirectory
chuck/letters . Although this is a pretty contrived example, | know many software
packages that rely on relative paths and end up with directory references similar to this
example.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

66

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Relative

Current directory Target directory path

Absolute path

/data/home/jimmol/letter /data/home/jimmol/letter/dave ./dave or dave /data/homel/jimmol/letter/dave

/data/home/jimmo/letter ~ /data/home/jimmo i /data/home/jimmo
/data/home/jimmol/letter /data/home/ e /data/home
/data/home/jimmol/letter /tmp o tmp tmp

4.4 Shell Variables

The shell's environment is all the information that the shell will use as it runs. This includes
such things as your command search path, pagummame(the name you logged in under), and
the terminal type you are using. Collectively, they are referred to agegoionment
variablesand individually, as the "so-and-so" environment variable, such as the TERM
environment variable, which contains the type of terminal you are using.

When you log in, most of these are set for you in one way or another. (The mechanism that
sets all environment variables is shell-dependent, so we will talk about it when we get to the
individual shells.) Each environment variable can be viewed by simply typing echo
$VARIABLE. For example, if | type

echo $SLOGNAME
| get:

jimmo>

Typing

echo $TERM

| get:

ansi>

In general, variables that are pre-defined by the system (e.g. PATH, LOGNAME, HOME) are
written in capital letters. Note that this is not a requirement as there are exceptions.

Note that shell variables are only accessible from the current shell. In order for them to be
accessible to child processes (i.e. sub-processes) they must be made available using the
export command. In the system-wide shell configuration file or "profile" (etc/profile) many
variables, such as PATH are exported. More information on processes can be found in the
section on processes in the chapter "Introduction to Operating Systems".

It is very common that users’ shell prompt is defined by the systems. For example, you might
have something that looks like this:

PS1="\u@\h:\w>"

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

67

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

What this does is to set the first level prompt variable PS1 to include the username, hostname
and the current working directory. This ends up looking something like this:

jimmo@linux:/tmp>>
Adding the \A to display the time, we end up with something that looks like this:

10:09 jimmo@linux:/tmp>
>

Variable Meaning

\u Username

\h Hostname

\H The fully-qualified hostname

\w Current working directory

\d date

\t the current time in 24-hour HH:MM:SS format
\T the current time in 12-hour HH:MM:SS format
\@ the current time in 12-hour am/pm format

\A the current time in 24-hour HH:MM format

\I the basename of the shell’s terminal device
\e Escape character

\n newline

\r carriage return

One way of using the escape character in your prompt is to send a terminal control sequence.
The can be used, for example, to change the prompt so that the time is shown in red:

PS1="\e[31m\A\e[Om \u@\h:\w>"
Which then looks like this:

10:09 jimmo@linux:/tmp>>

4.5 Permissions

All this time we have been talking about finding and executing commands, but there is one
issue that | haven’'t mentioned. That is the concept of permissions. To access a file, you need
to have permission to do so. If you want to read a file, you need to have read permission. If
you want to write to a file, you need to have write permission. If you want to execute a file,
you must have execute permission.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

68

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Permissions are set on a file using the chmod command or when the file is created the details
of which | will save for later. You can read the permissions on a file by using either the |
command or Is -I. At the beginning of each line will be ten characters, which can either be
dashes or letters. The first position is the type of the file, whether it is a regular file -, a
directory d, a block device file b, and so on. Below are some examples of the various file

types.

- - P 1= 1 jimmo support 13868 Sep 15 1005 letter t«t

[1 root fty 4,1 Jul Z 10:05 foewiy

b nie-——- 1 root disk 11 kAar i 0734 fdewihdal
- 2 root kin 2048 May 26 145 fhin

fr--f--f-- 1 root root 0 Jul Z 09:45 fprocilimaps

[P i 1 root root a kA ar 28 1545 Alstibindvi -= elvis

Image - Various file types.

- - regular file

c - character device
b - block device

d - directory

p - named pipe

| - symbolic link

We’'ll get into the details of these files as we move along. If you are curious about the format
of each entry, you can look at the Is man-page.

The next nine positions are broken into three groups. Each group consists of three characters
indicating the permissions. They are, in order, readr, writew, and executex. The first set of
characters indicates what permissions the owner of the file has. The second set of characters
indicates the permissions for the group of that file. The last set of characters indicates the
permissions for everyone else.

If a particular permission is not given, a dash - will appear here. For example, rwx means all
three permissions have been given. In our example above, the symbalisiibkn/vi

has read, write, and execute permissions for everyone. The device nodes /dev/ttyl and
/dev/hdal have permissions rw- for the owner and group, meaning only read and write, but
not execute permissions have been given. The direfttiory has read and execute

permissions for everyone r-x, but only the owner can write to it rwx.

For directories, the situation is slightly different than for regular files. If you do not have read
permission on a directory, you cannot read the contents of that directory. Also, if you do not
have write permission on a directory, you cannot write to it. This means that you cannot create
a new file in that directory. Execute permissions on a directory mean that you can search it or
list its contents. That is, if the execution bit is not set on a directory but the read bit is, you can
see what files are in the directory but cannot execute any of the files or even change into that
directory. If you have execution permission but no read permission, you can execute the files,
change directories, but not see what is in the files.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

69

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Write permission on a directory also has an interesting side effect. Because you need to have
write permission on a directory to create a new file, you also need to have write permission to
remove an existing file. Even if you do not have write permission on the file itself, if you can
write to the directory, you can erase the file.

At first this sounds odd. However, remember that a directory is nothing more than a file in a
special format. If you have write permission to a directory-file, you can remove the references
to other files, thereby removing the files themselves.

If we were to set the permissions for all users so that they could read, write, and execute a file,
the command would look this:

chmod 777 filename

You can also use symbolic permissions to accomplish the same thing. We use the letters u, g,
and o to specify the userowner, group, and others for this file, respectively. The permissions
are then r for read, w for write, and x for execute. So to set the permissions so that the owner
can read and write a file, the command would look like this:

chmod u=rw filename

Note that in contrast to the absolute numbers, setting the permissions symbolically is additive.
So, in this case, we would just change the user’s permissions to read and write, but the others
would remain unchanged. If we changed the command to this

chmod u+w filename

we would be adding write permission for the user of that file. Again, the permissions for the
others would be unchanged.

To make the permissions for the group and others to be the same as for the user, we could set
it like this

chmod go=u filename

which simply means "change the mode so that the permissions for the group and others equals
the user." We also could have set them all explicitly in one command, like this

chmod u=rw,g=rw,o0=rw filename

which has the effect of setting the permissions for everyone to read and write. However, we
don’t need to write that much.

Combining the commands, we could have something that looks like this:
chmod u=rw, go=u filename

This means "set the permissions for the user to read and write, then set the permissions for
group and others to be equal to the user."

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

70

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Note that each of these changes is done in sequence. So be careful what changes are made.
For example, let's assume we have a file that is read-only for everyone. We want to give
everyone write permission for it, so we try

chmod u+w,gu=o filename

This is a typo because we meant to say go=u. The effect is that we added read permissions for
the user, but then set the permissions on the group and user to the same as others.

We might want to try adding the write permissions like this:
chmod +w filename

This works on some systems, but not on the Linux distributions that | have seen. According to
the man-page, this will not change those permissions where the bits in the UMASK are set.
More on this later. See the chmod man-page for detalils.

To get around this, we use a to specify all users. Therefore, the command would be
chmod a+w filename

There are a few other things that you can do with permissions. For example, you can set a
program to change the UID of the process when the program is executed. For example, some
programs need to run as root to access other files. Rather than giving the user the root
password, you can set the program so that when it is executed, the process is run as root. This
is a Set-UID, or SUID program. If you want to run a program with a particular group 1D, you
would use the SGID program with the s option to chmod, like this

chmod u+s program
or
chmod g+s program

There are a few other special cases, but | will leave it up to you to check out the chmod
man-page if you are interested.

When you create a file, the access permissions are determined by their file creation mask.
This is defined by the UMASK variable and can be set using the umask command. One thing
to keep in mind is that this is a mask. That is, it masks out permissions rather than assigning
them. If you remember, permissions on a file can be set using the chmod command and a
three-digit value. For example

chmod 600 letter.john

explicitly sets the permissions on the file letter.john to 600 read and write permission for the
user and nothing for everyone else. If we create a new file, the permissions might be 660
read/write for user and group. This is determined by the UMASK. To understand how the
UMASK works, you need to remember that the permissions are octal values, which are
determined by the permissions bits. Looking at one set of permissions we have

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

71

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

bit: 2 1 0
value: 4 2 1
symbol: row X

which means that if the bit with value 4 is set bit 2, the file can be read,; if the bit with value 2
is set bit 1, the file can be written to; and if the bit with value 1 is set bit O, the file can be
executed. If multiple bits are set, their values are added together. For example, if bits 2 and 1
are set read/write, the value is 4+2=6. Just as in the example above, if all three are set, we
have 4+2+1=7. Because there are three sets of permissions owner, group, others, the
permissions are usually used in triplets, just as in the chmod example above.

The UMASK valuemasksout the bits. The permissions that each position in the UMASK

masks out are the same as the file permissions themselves. So, the left-most position masks
out the owner permission, the middle position the group, and the right most masks out all
others. If we have UMASK=007, the permissions for owner and group are not touched.
However, for others, we have the value 7, which is obtained by setting all bits. Because this is
a mask, all bits are unset. The way | remember this is that the bits are inverted. Where it is set
in the UMASK, it will be unset in the permissions, and vice versa.

The problem many people have is that the umask commanchdidesce permissions, but

rather limits them. For example, if we had UMASK=007, we could assume that any file

created has permissions of 770. However, this depends on the program that is creating the file.
If the program is creating a file with permissions 777, the umask will mask out the last bits

and the permissions will, in fact, be 770. However, if the program creates permissions of 666,
the last bits are still masked out. However, the new file will have permissions afd@dGU0.

Some programs, like the C compiler, do generate files with the execution bit bit O set.
However, most do not. Therefore, setting the UMASK=007 does not force creation of
executable programs, unless the program creating the file does itself.

Lets look at a more complicated example. Assume we have UMASK=047. If our program
creates a file with permissions 777, then our UMASK does nothing to the first digit, but

masks out the 4 from the second digit, giving us 3. Then, because the last digit of the UMASK
is 7, this masks out everything, so the permissions here are 0. As a result, the permissions for
the file are 730. However, if the program creates the file with permissions 666, the resulting
permissions are 620. The easy way to figure out the effects of the UMASK are to subtract the
UMASK from the default permissions that the program sets. Note that all negative values
become 0.

As | mentioned, one way the UMASK is set is through the environment variable UMASK.
You can change it anytime using the umask command. The syntax is simply

umask <new_umask>

Here the <new_umask> can either be the numeric value e.g., 007 or symbolic. For example,
to set the umask to 047 using the symbolic notation, we have

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

72

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

umask u=,g=r,0=rwx

This has the effect of removing no permissions from the user, removing read permission from
the group, and removing all permissions from others.

Being able to change the permissions on a file is often not enough. What if the only person
that should be able to change a file is not the owner? Simple! You change the owner. This is
accomplished with the chown command, which has the general syntax:

chown new_owner filename

Where "new_owner" is the name of the user account we want to sent the owner of the file to,
and "filename" is the file we want to change. In addition, you can use chown to change not
only the owner, but the group of the file as well. This has the general syntax:

chown new_owner.new:group filename

Another useful trick is the ability to set the owner and group to the same ones as another file.
This is done with the --reference= option, which sets to the name of the file you are

referencing. If you want to change just the group, you can use the chgrp command, which has
the same basic syntax as chown. Not that both chgrp and chmod can also take the --reference=
option. Further, all three of these commands take the -R option, which recursively changes the
permissions, owner or group.

4.6 Regular Expressions and Metacharacters

Often, the arguments that you pass to commands are file names. For example, if you wanted
to edit a file called letter, you could enter the command vi letter. In many cases, typing the
entire name is not necessary. Built into the shell are special characters that it will use to
expand the name. These are calteztacharacters

The most common metacharacter is *. The * is used to represent any number of characters,
including zero. For example, if we have a file in our current directory defiest and we
input

vi let*

the shell would expand this to

vi letter

Or, if we had a file simply callel@t , this would match as well.

Instead, what if we had several files called letter.chris, letter.daniel, and letter.david? The
shell would expand them all out to give me the command

vi letter.chris letter.daniel letter.david

We could also type in vi letter.da*, which would be expanded to

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

73

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

vi letter.daniel letter.david

If we only wanted to edit the letter to chris, we could type it in as vi *chris. However, if there
were two files, letter.chris and note.chris, the command vi *chris would have the same results
as if we typed in:

vi letter.chris note.chris

In other words, no matter where the asterisk appears, the shell expands it teveatohme

it finds. If my current directory contained files with matching names, the shell would expand
them properly. However, if there were no matching names, file name expansion couldn’t take
place and the file name would be taken literally.

For example, if there were no file name in our current directory that began with letter, the
command

vi letter*

could not be expanded and we would end up editing a new file called (literally) letter*,
including the asterisk. This would not be what we wanted.

What if we had a subdirectory called letters? If it contained the thredetileschris ,
letter.daniel , andletter.david , we could get to them by typing

vi letters/letter* . This would expand to be:

vi letters/letter.chris letters/letter.daniel
letters/letter.david

The same rules for path names with commands also apply to files names. The command
vi letters/letter.chris

is the same as

vi ./letters/letter.chris

which as the same as

vi /nome/jimmolletters/letter.chris

This is because the shell is doing the expansion before it is passed to the command. Therefore,
even directories are expanded. And the command

vi le*/letter.*
could be expanded as both letters/letter.chris and lease/letter.joe., or any similar combination

The next wildcard is ?. This is expanded by the shell as one, and only one, character. For
example, the command vi letter.chri? is the same as vi letter.chris. However, if we were to
type in vi letter.chris? (note that the "?" comes after the "s" in chris), the result would be that
we would begin editing aewfile called (literally) letter.chris?. Again, not what we wanted.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

74

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

This wildcard could be used if, for example, there were two files named letter.chrisl and
letter.chris2. The command vi letter.chris? would be the same as

vi letter.chrisl letter.chris2

Another commonly used metacharacter is actually a pair of characters: []. The square
brackets are used to represent a list of possible characters. For example, if we were not sure
whether our file was callé@tter.chris or letter.Chris, we could type in the
command as: vi letter.[Cc]hris. So, no matter if the file was cédlter.chris or

letter.Chris , we would find it. What happens if both files exist? Just as with the other
metacharacters, both are expanded and passed iote that in this example, vi

letter.[Cc]hris appears to be the same as vi letter.?hris, but it is not always so.

The list that appears inside the square brackets does not have to be an upper- and lowercase
combination of the same letter. The list can be made up of any letter, number, or even
punctuation. (Note that some punctuation marks have special meaning, such as *, ?, and [],
which we will cover shortly.) For example, if we had five files, letter.chrisl-letter.chris5, we
could edit all of them with vi letter.chris[12435].

A nice thing about this list is that if it is consecutive, we don’t need to list all possibilities.
Instead, we can use a dash (-) inside the brackets to indicate that we mean a range. So, the
command

vi letter.chris[12345]

could be shortened to

vi letter.chris[1-5]

What if we only wanted the first three and the last one? No problem. We could specify it as
vi letter.chris[1-35]

This does not mean that we want files letter.chris1 through letter.chris35! Rather, we want
letter.chrisl, letter.chris2, letter.chris3, and letter.chris5. All entries in the list are seen as
individual characters.

Inside the brackets, we are not limited to just numbers or just letters. we can use both. The
command vi letter.chris[abc123] has the potential for editing six files: letter.chrisa,
letter.chrisb, letter.chrisc, letter.chrisl, letter.chris2, and letter.chris3.

If we are so inclined, we can mix and match any of these metacharacters any way we want.
We can even use them multiple times in the same command. Let’s take as an example the
command

vi *.?hris[a-f1-5]

Should they exist in our current directory, this command would naditcti the following:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

75

www.linux-tutorial.info

The Linux Knowledge Base and Tutorial

letter.chrisa note.chrisa letter.chrisb note.chrisb letter.chrisc
note.chrisc letter.chrisd note.chrisd letter.chrise note.chrise

letter.chris1 note.chrisl letter.chris2 note.chris2 letter.chris3
note.chris3 letter.chris4 note.chris4 letter.chrisb note.chrisb

letter.Chrisa note.Chrisa letter.Chrisb note.Chrisb letter.Chrisc
note.Chrisc letter.Chrisd note.Chrisd letter.Chrise note.Chrise
letter.Chrisl note.Chrisl letter.Chris2 note.Chris2 letter.Chris3
note.Chris3 letter.Chris4 note.Chris4 letter.Chris5 note.Chrisb5

Also, any of these names without the leading letter or note would match. Or, if we issued the
command:

vi *.d*
these would match
letter.daniel note.daniel letter.david note.david

Remember, | said that the shell expands the metacharacters only with respect to the name
specified. This obviously works for file names as | described above. However, it also works
for command names as well.

If we were to type dat* and there was nothing in our current directory that started with dat, we
would get a message like

dat*: not found >

However, if we were to type /bin/dat*, the shell could successfully expand this to be /bin/date,
which it would then execute. The same applies to relative paths. If we were in / and entered
Jbin/dat* or bin/dat*, both would be expanded properly and the right command would be
executed. If we entered the command /bin/dat[abcdef], we would get the right response as
well because the shell tries all six letters listed and finds a match with /bin/date.

An important thing to note is that the shell expands as long as it can before it attempts to
interpret a command. | was reminded of this fact by accident when | input /bin/I*. If you do an

Is /bin/I* you should get the output:

-rwxr-xr-x 1 root root
-r-xXr-xr-x 1 root root
-rwxr-xr-x 1 root root
>

22340 Sep 20 06:24 /bin/In
25020 Sep 20 06:17 /bin/login
47584 Sep 20 06:24 /bin/ls

At first, | expected each one of the files in /bin that began with an "I" (ell) to be executed.
Then | remembered that expansion takes pgiafterethe command is interpreted. Therefore,
the command that | input, /bin/I*, was expanded to be

/bin/In /bin/login /bin/ls

Because /bin/ln was the first command in the list, the system expected that | wanted to link the
two files together (what /bin/In is used for). | ended up with error message:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

76

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

/bin/In: /bin/ls: File exists>

This is because the system thought | was trying to link the file /bin/logmnis , which
already existed. Hence the message.

The same thing happens when | input /bin/I? because the /bin/In is expanded first. If | issue
the command /bin/l[abcd], | get the message that there is no such file. If | type in

/bin/l[a-n]
| get:
/bin/In: missing file argument>

because théin/ln command expects two file names as arguments and the only thing that
matched is /bin/In.

| first learned about this aspect of shell expansion after a couple of hours of trying to extract a
specific subdirectory from a tape that | had made with the cpio command. Because | made the
tape using absolute paths, | attempted to restore the files as /home/jimmo/letters/*. Rather
than restoring the entire directory as | expected, it did nothing. It worked its way through the
tape until it got to the end and then rewound itself without extracting any files.

At first | assumed | made a typing error, so | started all over. The next time, | checked the
command before | sent it on its way. After half an hour or so of whirring, the tape was back at
the beginning. Still no files. Then it dawned on me that hadn’t told the cpio to overwrite
existing files unconditionally. So | started it all over again.

Now, those of you who know cpio realize that this wasn’t the issue either. At least not
entirely. When the tape got to the right spot, it started overwriting everything in the directory
(as I told it to). However, the files that were missing (the ones that | really wanted to get back)
were still not copied from the backup tape.

The next time, | decided to just get a listing of all the files on the tape. Maybe the files |
wanted were not on this tape. After a while it reached the right directory and lo and behold,
there were the files that | wanted. | could see them on the tape, | just couldn’t extract them.

Well, the first idea that popped into my mind was to resteezything That's sort of like

fixing a flat tire by buying a new car. Then | thought about restoring the entire tape into a
temporary directory where | could then get the files | wanted. Even if | had the space, this still
seemed like the wrong way of doing things.

Then it hit me. | was going about it the wrong way. The solution was to go ask someone what

| was doing wrong. | asked one of the more senior engineers (I had only been there less than a
year at the time). When | mentioned that | was using wildcards, it was immediately obvious
what | was doing wrong (obvious to him, not to me).

Lets think about it for a minute. It is tisbellthat does the expansion, not the command itself
(like when I ran /bin/I*). The shell interprets the command as starting with /bin/l. Therefore, |
get a listing of all the files ifbin that start with "I". Withcpio , the situation is similar.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

i

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

When | first ran it, the shell interpreted the files (/home/jimmo/data/*) before passing them to
cpio . Because | hadn'’t told cpio to overwrite the files, it did nothing. When | told cpio to
overwrite the files, it only did so for the files that it was told to. That is, only the files that the
shell saw when it expanded /home/jimmo/data/*. In other words, cpio did what it was told. |
just told it to do something that | hadn’t expected.

The solution is to find a way to pass the wildcards to cpio. That is, the shell must ignore the
special significance of the asterisk. Fortunately, there is a way to do this. By placing a
back-slash (\) before the metacharacter, you remove its special significance. This is referred to
as "escaping" that character.

So, in my situation witlepio , when | referred to the files | wanted as /home/jimmo/data/*,
the shell passed the arguments to cpio as /home/jimmo/data/*. It was then cpio that expanded
the * to mean all the files in that directory. Once | did that, | got the files | wanted.

You can also protect the metacharacters from being expanded by enclosing the entire
expression in single quotes. This is because it is the shell that first expands wildcard before
passing them to the program. Note also that if the wild card cannot be expanded, the entire
expression (including the metacharacters) is passed as an argument to the program. Some
programs are capable of expanding the metacharacters themselves.

As in places, other the exclamation mark (!) has a special meaning. (That is, it is also a
metacharacter) When creating a regular expression, the exclamation mark is used to negate a
set of characters. For example, if we wanted to list all files that did not have a number at the
end, we could do something like this

Is *[!0-9]
This is certainly faster than typing this
Is *[a-zA-Z]

However, this second example does not mean the same thing. In the first case, we are saying
we do not want numbers. In the second case, we are saying we only want letters. There is a
key difference because in the second case we do not include the punctuation marks and other
symbols.

Another symbol with special meaning is the dollar sign ($). This is used as a marker to
indicate that something is a variable. | mentioned earlier in this section that you could get
access to your login name environment variable by typing:

echo $LOGNAME

The system stores your login name in the environment variable LOGNAME (note no "$").
The system needs some way of knowing that when you input this on the command line, you
are talking about the variable LOGNAME and not the literal string LOGNAME. This is done
with the "$".Several variables are set by the system. You can also set variables yourself and
use them later on. I'll get into more detail about shell variables later.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

78

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

So far, we have been talking about metacharacters used for searching the names of files.
However, metacharacters can often be used in the arguments to certain commands. One
example is the grep command, which is used to search for strings within files. The name grep
comes from Global Regular Expression Print (or Parser). As its name implies, it has
something to do with regular expressions. Lets assume we have a text file called documents,
and we wish to see if the string "letter" exists in that text. The command might be

grep letter documents

This will search for and print out every line containing the string "letter.” This includes such
things as "letterbox," "lettercarrier,” and even "love-letter." However, it will not find
"Letterman,” because we did not tell grep to ignore upper- and lowercase (using the -i option).
To do so using regular expressions, the command might look like this

grep [Ll]etter documents

Now, because we specified to look for either "L" or "I" followed by "etter," we get both
"letter" and "Letterman."” We can also specify that we want to look for this string only when it
appears at the beginning of a line using the caret (*) symbol. For example

grep "[LI]etter documents

This searches for all strings that start with the "beginning-of-line," followed by either "L" or

"l," followed by "etter." Or, if we want to search for the same string at the end of the line, we
would use the dollar sign to indicate the end of the line. Note that at the beginning of a string,
the dollar sign is treated as the beginning of the string, whereas at the end of a string, it
indicates the end of the line. Confused? Lets look at an example. Lets define a string like this:

VAR="[Ll]etter

If we echo that string, we simply get "[Ll]etter. Note that this includes the caret at the
beginning of the string. When we do a search like this

grep $VAR documents

it is equivalent to

grep "[LI]etter documents

Now, if write the same command like this
grep VAR documents

This says to find the string defined by the VAR variable(*[Ll]etter) , but only if it is at the end
of the line. Here we have an example, where the dollar sigbdtlasmeanings. If we then
take it one step further:

grep “VAR documents

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

79

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

This says to find the string defined by the VAR variable, but only if it takes up the entry line.
In other words, the line consists only of the beginning of the line (), the string defined by
VAR, and the end of the line ($).

Here | want to side step a little. When you look at the variBEeR$ it might be confusing

to some people. Further, if you were to combine this variable with other characters you may
end with something you do not expect because the shell decides to include as part of the
variable name. To prevent this, it is a good idead to include the variable name within
curly-braces, like this:

${VAR}$

The curly-braces tell the shell what exactly belongs to the variable name. aiwetes
include the variable name within curly-braces to ensure that there is no confusion. Also, you
need to use the curly-braces when comining variables like this:

${VARL}${VAR2}

Often you need to match a series of repeated characters, such as spaces, dashes and so forth.
Although you could simply use the asterisk to specify any number of that particular character,
you can run into problems on both ends. First, maybe you want to maicimaumnumber

of that character. This could easily solved by first repeating that character a certain number of
times before you use the wildcard. For example, the expression

_———

would match at leashreeequal signs. Why three? Well, we have explicitly put in three equal
signs and the wildcard follows the fourth. Since the asterisk caarber more, it could
meanzeroand therefore the expression would only match three.

The next problem occurs when we want to limit the maximum number of characters that are
matched. If you know exactly how many to match, you could simply use that many

characters. What do you do if you have a minimum and a maximum? For this, you enclose the
range with curly-braces: {min,max}. For example, to specify at least 5 and at most 10, it

would look like this: {5,10}. Keep in mind that the curly braces have a special meaning for

the shell, so we would need to escape them with a back-slash when using them on the
command line. So, lets say we wanted to search a file for all number combinations between 5
and 10 number long. We might have something like this:

grep "[0-9]\{5,10\}" FILENAME

This might seem a little complicated, but it would be far more complicated to write an regular
expression that searches for each combination individually.

As we mentioned above, to define a specific number of a particular character you could
simply input that character the desired number of times. However, try counting 17 periods on
a line or 17 lower-case letters ([a-z]). Imagine trying to type in this combination 17 times!

You could specify a range with a maximum ofdia minimum of 17, like this: {17,17}.

Although this would work, you could save yourself a little typing by simply including just the
single value. Therefore, to match exactly 17 lower-case letters, you might have something like

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

80

O O O 0 0O O O

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

this:
grep "[a-z]\{17\}" FILENAME

If we want to specify a minimum number of times, without a maximum, we simply leave off
the maximum, like this:

grep "[a-z]\{17,\}" FILENAME
This would match a pattern of at least 17 lower-case letters.

Another problem occurs when you are trying to parse data that is not in English. If you were
looking for all letters in an English text, you could use something like this: [a-zA-Z].
However, this would not include German letters, like 4,0,8 and so forth. To do so, you would
use the expressions [:lower:], [:upper:] or [:alpha:] for the lower-case letters, upper-case
letters or all letters, respectivelggardlessof the language. (Note this assumes that national
language support (NLS) is configured on your system, which it normally is for newer Linux
distributions.

Other expressions include:

[:alnum:] - Alpha-numeric characters.
[:cntrl:] - Control characters.

[:digit:] - Digits.

[:graph:] - Graphics characters.
[:print:] - Printable characters.
[:punct:] - Punctuation.

[:space:] - White spaces.

One very important thing to note is that the brackets are part of the expression. Therefore, if
you want to include more in a bracket expression you need to make sure you have the
correction number of brackets. For example, if you wanted to match any number of
alpha-numeric or punctuation, you might have an expression like this: [[:alnum:][:digit:]]*.

Another thing to note is that in most cases, regular expression are expanded as much as
possible. For example, let’'s assume | was parsing an HTML file and wanted to mdigt the
tag on the line. You might think to try an expression like this: "<.*>". This says to match any
number of characters between the angle brackets. This works if there is only one tag on the
line. However, if you have more than one tag, this expression would magfthingfrom

the first opening angle-bracket to the last closing angle brackeewetlythinginbetween.

There are a number of rules that are defined for regular expression, the understanding of
which helps avoid confusion:

An non-special character is equivalent to that character.

When preceeded by a backslash (\) is every special character equivalent to itself
A period specifies any single character

An asterisk specifie=ero or more copies of the preceeding chacter

When used by itself, an asterisk species everything or nothing

abhwbdpE

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

81

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

6. A range of characters is specified within square brackets ([])

7. The beginning of the line is specified with a caret (*) and the end of the line with a dollar
sign (%)

8. If included within square brackets, a caren@yatesthe set of characters

4.7 Quotes

One last issue that causes its share of confusion is quotes. In Linux, there are three kinds of
guotesdouble-quotes"), single-quoteg’), andback-quote§’) (also called back-ticks). On

most US keyboards, the single-quotes and double-quotes are on the same key, with the
double-quotes accessed by pressing Shift and the single-quote key. Usually this key is on the
right-hand side of the keyboard, next to the Enter key. On a US-American keyboard the
back-quote is usually in the upper left-hand corner of the keyboard, next to the 1.

To best understand the difference between the behavior of these quotes, | need to talk about
them in reverse order. | will first describe the back-quotes, or back-ticks.

When enclosed inside back-ticks, the shell interprets something to mean "the output of the
command inside the back-ticks." This is referred toasmand substitutioras the output of

the command inside the back-ticks is substituted for the command itself. This is often used to
assign the output of a command to a variable. As an example, lets say we wanted to keep track
of how many files are in a directory. From the command line, we could say

Is | wc

The wc command gives me a word count, along with the number of lines and number of
characters. The | is a "pipe" symbol that is used to pass the output of one command through
another. In this example, the output of the Is command is passed or piped through wc. Here,
the command might come up as:

7761>

However, once the command is finished and the value has been output, we can only get it
back again by rerunning the command. Instead, If we said:

count=‘ls |wc'

The entire line of output would be saved in the variable count. If we then say echo $count, we
get

77 61>

showing me that count now contains the output of that line. If we wanted, we could even
assign a multi-line output to this variable. We could use the ps command, like this

trash="ps’

then we could type in

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

82

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

echo $trash
which gives us:
PID TTY TIME CMD 29519 pts/6 00:00:00 bash 12565 pts/6 00:00:00 ps>

This is different from the output that ps would give when not assigned to the variable trash:

PID TTY TIME CMD
29519 pts/6 00:00:00 bash
12564 pts/6 00:00:00 ps

>

The next kind of quote, the single-quote (), tells the system not amyglexpansion at all.
Lets take the example above, but this time, use single quotes:

count='ls |wc’

If we were to now type
echo $count

we would get

Is |wc

And what we got was exactly what we expected. The shell did no expansion and simply
assigned the literal string "Is | wc" to the variable count. This even applies to the variable
operator "$." For example, if we simply say

echo 'SLOGNAME’

what comes out on the screen is

$LOGNAME>

No expansion is done at all and even the "$" is left unchanged.

The last set of quotes is the double-quote. This has partially the same effect as single-quotes,
but to a limited extent. If we include something inside of double-quotes, everything loses its
special meaning except for the variable operator ($), the back-slash (\), the back-tick (*), and
the double-quote itself. Everything else takes on its absolute meaning. For example, we could
say

echo "‘date
which gives us

Wed Feb 01 16:39:30 PST 1995>

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

83

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

This is a round-about way of getting the date, but it is good for demonstration purposes. Plus,
| often use this in shell scripts when | want to log something and keep track of the date.
Remember that the back-tick first expands the command (by running it) and then the echo
echoes it to the screen.

That pretty much wraps up the quote characters. For details on other characters that have
special meaning to the shell check out the section on regular expressions. You can get more
details from any number of references books on Linux or UNIX in general (if you need it).
However, the best way to see what's happening is to try a few combinations and see if they
behave as you expect.

Previously, | mentioned that some punctuation marks have special meaning, such as *, ?, and
[]. In fact, most of the other punctuation marks have special meaning, as well. We'll get into
more detail about them in the section on basic shell scripting.

It may happen that you forget to close the quotes, and you end up on a new line that starts
with (typically) a greater than symbol >. This is the secondary prompt (PS2) and is simply
telling you that your previous line continues. You can continue the line and the close the
guotes later, like this:

VAR="Now is the time for all good admins
> to come to the aid of their operating system."
>

It is as if you wrote the entire line at once.

Sometimes it is necessary to include the literal quotes in your output variable. This is a
problem because your shell interprets the quotes before assinging the value to the variable. To
get around this you need to "escape" or "protect” the quotes using a backslash", like this:

echo \"hello, world\"

4.8 Pipes and Redirection

Perhaps the most commonly used character is "|", which is referred to as the pipe symbol, or
simply pipe. This enables you to pass the output of one command through the input of
another. For example, say you would like to do a long directory listing dbitne directory.

If you type Is -l and then press Enter, the names flash by much too fast for you to read. When
the display finally stops, all you see is the last twenty entries or so.

If instead we ran the commaltsd-l | more the output of the Is command will be "piped
through more". In this way, we can scan through the list a screenful at a time.

In our discussion of standard input and standard output in Chapter 1, | talked about standard
input as being just a file that usually points to your terminal. In this case, standard output is
also a file that usually points to your terminal. The standard output of the Is command is
changed to point to the pipe, and the standard input of the more command is changed to point
to the pipe as well.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

84

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

The way this works is that when the shell sees the pipe symbol, it creates a temporary file on
the hard disk. Although it does not have a name or directory entry, it takes up physical space
on the hard disk. Because both the terminal and the pipe are seen as files from the perspective
of the operating system, all we are saying is that the system should use different files instead
of standard input and standard output.

Under Linux (as well as other UNIX dialects), there exist the concepts of standard input,
standard output, and standard error. When you log in and are working from the command line,
standard input is taken from your terminal keyboard and both standard output and standard
error are sent to your terminal screen. In other words, the shell expects to be getting its input
from the keyboard and showing the output (and any error messages) on the terminal screen.

Actually, the three (standard input, standard output, and standard error) are references to files
that the shell automatically opens. Remember that in UNIX, everything is treated as a file.
When the shell starts, the three files it opens are usually the ones pointing to your terminal.

When we run a command like cat, it gets input from a file that it displays to the screen.
Although it may appear that the standard input is coming from that file, the standard input
(referred to as stdin) is still the keyboard. This is why when the file is large enough and you
are using something likmore to display the file one screen at a time and it stops after each
page, you can continue by pressing either the Spacebar or Enter key. That's decalasd
input is still the keyboard.

As it is running, more is displaying the contents of the file to the screen. That is, it is going to
standard output (stdout). If you try to do a more on a file that does not exist, the message

file_name: No such file or directory>

shows up on your terminal screen as well. However, although it appears to be in the same
place, the error message was written to standard error (stderr). (I'll show how this differs
shortly.)

One pair of characters that is used quite often, "<" and ">," also deal with stdin and stdout.
The more common of the two, ">," redirects the output of a command into a file. That is, it
changes standard output. An example of this would be Is /bin > myfile. If we were to run this
command, we would have a file (in my current directory) named myfile that contained the
output of the Is /bin command. This is because stdout is the file myfile and not the terminal.
Once the command completes, stdout returns to being the terminal. What this looks like
graphically, we see in the figure below.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

85

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

stdin

stdout

stderr

redirection with: command 2= error file

stdin <
stdout

stderr ——— P zrrorfile

Now, we want to see the contents of the file. We could simply say more myfile, but that
wouldn’t explain about redirection. Instead, we input

more <myfile

This tells the more command to take its standard input from the file myfile instead of from the
keyboard or some other file. (Remember, even when stdin is the keyboard, it is still seen as a
file.)

What about errors? As | mentioned, stdgypearsto be going to the same place as stdout. A
quick way of showing that it doesn’t is by using output redirection and forcing an error. If
wanted to list two directories and have the output go to a file, we run this command:

Is /bin /jimmo > /tmp/junk
We then get this message:

fjimmo not found >

However, if we look inftmp , there is indeed a file called junk that contains the output of the
Is/bin portion of the command. What happened here was that we redirected stdout into the
file tmp/junk . It did this with the listing ofbin . However, because there was no
directory/jimmo (at least not on my system), we got the ejisrmo not found. In other
words, stdout went into the file, but stderr still went to the screen.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

86

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

If we want to get the output and any error messages to go to the same place, we can do that.
Using the same example with Is, the command would be:

Is /bin /jimmo > /tmp/junk 2>&1

The new part of the command is 2>&1, which says that file descriptor 2 (stderr) should go to
the same place as file descriptor 1 (stdout). By changing the command slightly

Is /bin /jimmo > /tmp/junk 2>/tmp/errors

we can tell the shell to send any errors someplace else. You will find quite often in shell

scripts throughout the system that the file that error messages are sent to is /dev/null. This has
the effect of ignoring the messages completely. They are neither displayed on the screen nor
sent to a file.

Note that this command does not work as you would think:
Is /bin /jimmo 2>&1 > /tmp/junk

The reason is that we redirect stderr to the same place aslstflaraive redirect stdout. So,
stderr goes to the screen, but stdout goes to the file specified.

Redirection can also be combined with pipes like this:
sort < names | head

or

ps | grep sh > ps.save

In the first example, the standard input of the sort command is redirected to point to the file
names. Its output is then passed to the pipe. The standard input of the head command (which
takes the first ten lines) also comes from the pipe. This would be the same as the command

sort names | head

which we see here:

£ o
sorf names temparary file head
L on disk

stadnof stadin

In the second example, the ps command (process status) is piped through grep and all of the
output is redirected to the file ps.save.

If we want to redirect stderr, we can. The syntax is similar:
command 2> file

It's possible to input multiple commands on the same command line. This can be
accomplished by using a semi-colon (;) between commands. | have used this on occasion to
create command lines like this:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

87

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

man bash | col -b > man.tmp; vi man.tmp; rm man.tmp

This command redirects the output of the man-page for bash into the file man.tmp. (The pipe
through col -b is necessary because of the way the man-pages are formatted.) Next, we are
brought into the vi editor with the filman.tmp . After | exitvi , the command continues and
removes my temporary filman.tmp . (After about the third time of doing this, it got pretty
monotonous, so | created a shell script to do this for me. I'll talk more about shell scripts
later.)

4.9 Interpreting the Command

When you input a command-line, the shell needs to be able intepret it correctly in order to
know what exactly to do. Maybe you have multiple options or redirect the output to a file. In
any event the shell goes through several steps to figure out that needs to be done.

One question | had was, "In what order does everything get done?" We have shell variables to
expand, maybe an alias or function to process, "real" commands, pipes and input/output
redirection. There are a lot of things that the shell must consider when figuring out what to do
and when.

For the most part, this is not very important. Commands do not get so complex that knowing
the evaluation order becomes an issue. However, on a few occasions | have run into situations
in which things did not behave as | thought they should. By evaluating the command myself

as the shell would, it became clear what was happening. Let’s take a look.

The first thing that gets done is that the shell figures out how many commands there are on the
line. Remember, you can separate multiple commands on a single line with a semicolon. This
process determines how matokensthere are on the command line. In this context, a token
could be an entire command or it could be a control word such as "if." Here, too, the shell

must deal with input/output redirection and pipes.

Once the shell determines how many tokens there are, it checks the syntax of each token.
Should there be a syntax error, the shell will not try to ataybf the commands. If the
syntax is correct, it begins interpreting the tokens.

First, any alias you might have is expanded. Aliases are a way for some shells to allow you to
define your own commands. If any token on the command line is actually an alias that you
have defined, it is expanded before the shell proceeds. If it happens that an alias contains
another alias, they are both expanded before continuing with the next step.

The next thing the shell checks for is functions. Like the functions in programming languages
such as C, a shell function can be thought of as a small subprogram. Check the other sections
for details on aliases and functions.

Once aliases and functions have all been completely expanded, the shell evaluates variables.
Finally, it uses any wildcards to expand them to file names. This is done according to the rules
we talked about previously.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

88

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

After the shell has evaluated everything, gti#l not ready to run the command. It first
checks to see if the first token represents a command built into the shell or an external one. If
it's not internal, the shell needs to go through the search path.

At this point, it sets up the redirection, including the pipes. These obviously must be ready
before the command starts because the command may be getting its input from someplace
other than the keyboard and may be sending it somewhere other than the screen. The figure
below shows how the evaluation looks graphically.

splitinto
tokens

Expand
aliases

Variable
Substitution

Wildcard
Expansion

Set-Up
Redirection

Fun the
Command

Image - Steps in interpreting command line input.

This is an oversimplification. Things happen in this order, though many more things occur in
and around the steps than | have listed here. What | am attempting to describe is the general
process that occurs when the shell is trying to interpret your command.

Once the shell has determined what each command is and each command is an executable
binary program not a shell script, the shell makes a copy of itself using the fork system call.
This copy is a child process of the shell. Thpythen uses the exec system call to overwrite
itself with the binary it wants to execute. Keep in mind that even though the child process is
executing, the original shell is still in memory, waiting for the child to complete assuming the
command was not started in the background with &.

If the program that needs to be executed is a shell script, the program that is created with fork
and exec is another shell. This new shell starts reading the shell script and interprets it, one
line at a time. This is why a syntax error in a shell script is not discovered when the script is
started, but rather when the erroneous line is first encountered.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

89

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Understanding that a new process is created when you run a shell script helps to explain a
very common misconception under UNIX. When you run a shell script and that script changes
directories, your original shell knows nothing about the change. This confuses a lot of people
who are new to UNIX as they come from the DOS world, where changing the directory from
within a batch filedoeschange the original shell. This is because DOS does not have the same
concept of a process as UNIX does.

Look at it this way: The sub-shell's environment has been changed because the current
directory is different. However, this it passed back to the parent. Like "real" parent-child
relationships, only the children can inherit characteristics from their parent, not the other way
around. Therefore, any changes to the environment, including directory changes, are not
noticed by the parent. Again, thisdgferentfrom the behavior of DOS .bat files.

You can get around this by either using aliases or shell functions assuming that your shell has
them. Another way is to use the dot command in front of the shell script you want to execute.
For example:

. myscript <--NOTICE THE DOT!

This script will be interpreted directly by the current sheithoutforking a sub-shell. If the
script makes changes to the environment,thisshell’s environment that is changed.

You can use this same functionality if you ever need to reset your environment. Normally,
your environment is defined by the start-up files in your home directory. On occasion, things
get a little confused maybe a variable is changed or removed and you need to reset things.
You can you the dot command to do so. For example, with either sh or ksh, you can write it
like this:

. SHOME/.profile <--NOTICE THE DOT!
Or, using a function of bash you can also write
. ~/.profile <--NOTICE THE DOT!

This uses the tilde ~, which | haven’t mentioned yet. Under many shells, you can use the tilde
as a shortcut to refer to a particular users home directory.

If you have csh, the command is issued like this:
source $HOME/.login <--NOTICE THE DOT!

Some shells keep track of ydast directory in the OLDPWD environment variable.
Whenever you change directories, the system saves your current directory in OLDPWD
beforeit changes you to the new location.

You can use this by simply entering cd $OLDPWD. Because the variable $OLDPWD is
expanded before the cd command is executed, you end up back in your previous directory.
Although this has more characters than just popd, it's easier because the system keeps track of
my position, current and previous, for you. Also, because it's a variable, | can access it in the
same way that | can access other environment variables.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

90

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

For example, if there were a file in your old directory that you wanted to move to your current
one, you could do this by entering:

cp $OLDPWD/<file_name> ./

However, things are not as difficult as they seem. TypiragliSOLDPWDis still a bit
cumbersome. It is a lot less characters to type in popd -like in the csh. Why isn't there
something like that in the ksh or bash? There is. In fact, it's much simpler. When | first found
out about it, the adjective that first came to mind was "sweet." To change directories to your
previous directory, simply type "cd -".

4.10 Different Kinds of Shells

The great-grandfather of all shells is /bin/sh, called simply sh or the Bourne Shell, named after
its developer, Steven Bourne. When it was first introduced in the mid-1970s, this was almost a
godsend as it alloweadteractionwith the operating system. This is the "standard" shell that

you will find on every version in UNIX (at least all those | have seen). Although many

changes have been made to UNIX, sh has remained basically unchanged.

All the capabilities of "the shell” I've talked about so far applgtio Anything I've talked
about that sh can do, the others can do as well. So rather than going on about what sh can do
(which | already did), | am going to talk about the characteristics of some other shells.

Later, | am going to talk about the C-Shell, which kind of throws a monkey wrench into this
entire discussion. Although the concepts are much the same between the C-Shell and other
shells, the constructs are often quite different. On the other hand, the other shells are
extensions of the Bourne Shell, so the syntax and constructs are basically the same.

Be careful here. This is one case in which | have noticed that the various versions of Linux are
different. Not every shell is in every version. Therefore, the shells | am going to talk about
may not be in your distribution. Have no fear! If there is a feature that you really like, you can
either take the source code from one of the other shells and add it or you can find the different
shells all over the Internet, which is much easier.

Linux includes several different shells and we will get into the specific of many of them as we
move along. In addition, many different shells are available as either public domain,
shareware, or commercial products that you can install on Linux.

As | mentioned earlier, environment variables are set up for you as you are logging in or you
can set them up later. Depending on the shell you use, the files used and where they are
located is going to be different. Some variables are made available to everyone on the system
and are accessed through a common file. Others reside in the user’'s home directory.

Normally, the files residing in a users home directory can be modified. However, a system
administrator may wish to prevent users from doing so. Often, menus are set up in these files
to either make things easier for the user or to prevent the user from getting to the command
line. (Often users never need to get that far.) In other cases, environment variables that
shouldn’t be changed need to be set up for the user.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

91

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

One convention | will be using here is how | refer to the different shells. Often, | will say "the
bash" or just "bash" to refer to the Bourne-Again Shell as a concept and not the program
/bin/bash . I will use "bash" to refer to the "Bourne Shell" as an abstract entity and not
specifically to the prograrbin/sh

Why the Bourne-Again Shell? Well, this shell is compatible with the Bourne Shell, but has
many of the same features as both the Korn Skel Y and C-Shell¢sh). This is especially
important to me as | flail violently when | don’t have a Korn Shell.

Most of the issues | am going to address here are detailed in the appropriate man-pages and
other documents. Why cover them here? Well, in keeping with one basic premise of this book,
| want to show you the relationships involved. In addition, many of the things we are going to
look at are not emphasized as much as they should be. Often, users will go for months or
years without learning the magic that these shells can do.

Only one oddity really needs to be addressed: the behavior of the different shells when
moving through symbolic links. As | mentioned before, symbolic links are simply pointers to
files or directories elsewhere on the system. If you change directories into symbolic links,
your "location” on the disk is different than what you might think. In some cases, the shell
understands the distinction and hides from you the fact that you are somewhere else. This is
where the problem lies.

Although the concept of a symbolic link exists in most versions of UNIX, it is a relatively

new aspect. As a result, not all applications and programs behave in the same way. Let’s take
the directory /usr/spool as an example. Because it contains a lot of administrative information,
it is a useful and commonly accessed directory. It is actually a symbolic link to

Ivar/spool . If we are using ash as our shell, when we do a cd /usr/spool and then pwd, the
system responds with: /var/spool. This is where we are "physically" located, despite the fact
that we did a cd /usr/spool. If we do a cd .. (to move up to our parent directory), we are now
located in /var. All this seems logical. This is also the behavior of csh and sh on some
systems.

If we use bash, things are different. This time, when we do a cd /usr/spool and then pwd, the
system responds withisr/spools . This is where we are "logically”. If we now do a cd ..,

we are located in /usr. Which of these is the "correct” behavior? Well, | woultbdayhere

is nothing to define what the "correct" behavior is. Depending on your preference, either is
correct. | tend to prefer the behaviorksh . However, the behavior of ash is also valid.

4.11 Command Line Editing

When | first started working in tech support, | was given a csh and once | figured out all it
could do, | enjoyed using it. | found the editing to be cumbersome from time to time, but it
was better than retyping everything.

One of my co-workers, Kamal (of IguanaCam fame), was an avid proponent of the Korn
Shell. Every time he wanted to show me something on my terminal, he would grumble when
he forgot that | wasn’t using ksh. Many times he tried to convert me, but learning a new shell
wasn’t high on my list of priorities.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

92

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

| often complained to Kamal how cumbersomewas (at least | thought so at the time). One
day | asked him for some pointers on vi, because every time | saw him do something in vi, it
looked like magic. He agreed with the one condition that | at least tkgkheAll he wanted

to do was to show me one thing and if after that | still wanted to usslthehat was my

own decision. Not that he would stop grumbling, just that it was my own choice.

The one thing that Kamal showed me convinced me of the errors of my ways. Within a week,
| had requested the system administrator to change my login shell to ksh.

What was that one thing? Kamal showed me how to configutkesstheo edit previous

commands using the same syntax asitheditor. | felt like thecsh editing mechanism was

like using a sledge-hammer to pound in a nail. It does what you want, but it is more work than
you need.

Many different shells have a history mechanism. The history mechanism of both the ksh and
bash has two major advantages over that of the csh. First, the information is actually saved to
a file. This is either defined by the HISTFILE environment varibelf®rethe shell is

invoked, or it defaults to .bash_history (for the bash) in your home directory. At any point you
can edit this file and make changes to what the ksh perceives as your command history.

This could be useful if you knew you were going to be issuing the same commands every time
you logged in and you didn’t want to create aliases or functions. If you copied a saved version
of this file (or any other text file) and namedsih_history , you would immediately have
access to this new history. (Rewriting history? | shudder at the ramifications.)

The second advantage is the ability to edit directly any of the lines inkyash_history

file from the command line. If your EDITOR environment variable is set tor you use the
set -0 vi command, you can edit previous commands using many of the standard vi editing
commands.

To enter edit mode, press Esc. You can now scroll through the lines of your history file using
thevi movement keys (h-j-k-I). Once you have found the line you are looking for, you can

use other vi commands to delete, add, change, or whatever you need. If you press "v," you are
brought into the full-screen version of vi (which | found out by accident). For more details,
check out the vi or ksh man-page or the later section on vi.

Note that by default, the line editing commands are similar to the emacs editor. If vi-mode is
activated, you can activate emacs-mode with set -0 emacs". Turning either off can be done
with +0 emacs or +0 vi.

One exciting thing that bash can do is extend the command line editing. There are a large
number of key combinations to which you can get bash to react. You say that the key
combinations are "bound" to certain actions. The command you use is bind. To see what keys
are currently bound, use bind -v. This is useful for finding out all the different editing
commands to which you can bind keys.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

93

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

4.12 Functions

Most (all?) shells have the means of creating new "internal” commands. This is done by
creating shelfunctions Shell functions are just like those in a programming language. Sets of
commands are grouped together and jointly called by a single name.

The format for functions is:

function_name() { first thing to do second thing to do third
thing to do }

Functions can be defined anywhere, including from the command line. All you need to do is
simply type in the lines one at a time, similar to the way shown above. The thing to bear in
mind is that if you type a function from a command line, once you exit that shell, the function
is gone.

Shell functions have the ability to accept arguments, just like commands. A simple example is
a script that looks like this:

display() { echo $1 }
display Hello

The output would be>
Hello

Here we need to be careful. The variable $1 is the positional parameter from the call to the
display function and not to the script. We can see this when we change the script to look like
this:

display() { echo $1 } echo $1

display Hello

Lets call the script display.sh and start it like this:
display.sh Hi

The output would then look like this:

Hi>

Hello>

The first echo shows us the parameter from the command line and the second one shows us
the parameter from the function.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

94

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

4.13 Job Control

Job control is the ability to move processes between the foreground and background. This is
very useful when you need to do several things at once, but only have one terminal. For
example, let's say there are several files spread out across the system that we want to edit.
Because we don’t know where they are, we can’t use full paths. Because they don’'t have
anything common in their names, we can’t use find. So we try Is -R > more.

After a minute or two, we find the first file we want to edit. We can then suspend this job by
pressing Ctrl+Z. We then see something that looks like this:

[1]+ Stopped Is -R | more>

This means that the process has been stopped or suspended. One very important thing to note
is that this process is not in the background as if we had put an "&" at the end. When a
process is suspended, it stops doing anything, unlike a process in the background, which
keeps on working.

Once the Is is in the background, we canwiunWhen we are done with vi, we can bring the
Is command back with the fg (foreground) command.

If we wanted to, we could have more than just one job suspended. | have never had the need
to have more than two running like this, but | have gotten more than ten during tests. One
thing that this showed me was the meaning of the plus sign (+). This is the "current"” job, or
the one we suspended last.

The number in brackets is the process entry in the job table, which is simply a table containing
all of your jobs. Therefore, if we already had three jobs, the next time we suspended a job, the
entry would look like this:

[4]+ Stopped Is -R >> output>

To look at the entire job table, we simply enter the command jobs, which might give us

[1] Stopped Is -R /usr >> output.usr[2] Stopped find / -print > output.find[3]- Stopped Is -R /var >> output.var[4]+ Stopped Is -R >> output.root>

The plus sign indicates the job that we suspended last. So this is the one that gets called if we
run fg without a job number. In this case, it was Job 4. Note that there is a minus sign (-) right
after Job 3. This was the second to last job that we suspended. Now, we bring Job 2 in the
foreground with fg 2 and then immediately suspend it again with Ctrl+Z. The table now looks
like this:

[1] Stopped Is -R /usr >> output[2]+ Stopped find / -print > output.find[3] Stopped Is -R /var >> output[4]- Stopped Is -R >> output
>

Note that Job 2 now has the plus sign following it and Job 4 has the minus sign.

In each of these cases, we suspended a job that was running in the foreground. If we had
started a job and put it in the background from the command line, the table might have an
entry that looked like this:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

95

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

[3] Running Is -R /var >> output &>

This shows us that although we cannot see the process (because it is in the background), it is
still running. We could call it to the foreground if we wanted by running fg 3. And, if we
wanted, we could use the bg command to send one of the stopped jobs to the background. So

bg %1
would send Job 1 to the background just as if we had included & from the command line.

One nice thing is that we don’t have to use just the job numbers when we are pulling
something into the foreground. Because we know that we started a process with the find
command, we can get it by using

fg %find

Actually, we could have used %f or anything else that was not ambiguous. In this case, we
were looking for a process that started with the string we input. We could even look for
strings anywhere within the command. To do this, the command might be

fg %?print

which would have given us the same command. Or, if we had tried
fg %?usr

we would have gotten Job 1 because it contains the string usr.

If we find that there is a job that we want to kill (stop completely), we can use the kill
command. This works the same way, so kill %<nr> kills the job with number <nr>, Kill
%<string> kills the job starting with string, and so on.

Keep in mind that process takes up resources whether they are in the foreground or not. That
is, background processes take up resources,too.

If you do not remember the process ID of the last process that was placed in the background
you can reference it any time using the $! system variable. You can also usatthe
command to stop processing until the particular process is done. The syntax is simply:

wait PID

Although generally considered part of "job control" you can change the default priority a
process has when it starts, as well as the process of a running process. Details of this can be
found in the section on process scheduling.

4.14 Aliases

What is an alias? It isn’t the ability to call yourself Thaddeus Jones when your real name is
Jedediah Curry. Instead, in a Linux-context it is the ability to use a different name for a
command. In principle, personal aliases can be anything you want. They are special names
that you define to accomplish tasks. They aren’t shell scripts, as a shell script is external to

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

96

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

your shell. To start up a shell script, type in its name. The system then starts a shell as a child
process of your current shell to run the script.

Aliases, too, are started by typing them in. However, they are internal to the shell (provided
your shell uses aliases). That is, they are internal to your shell process. Instead of starting a
sub-shell, the shell executes the alias internally. This has the obvious advantage of being
quicker, as there is no overhead of starting the new shell or searching the hard disk.

Another major advantage is the ability to create new commands. You can do this with shell
scripts (which we will get into later), but the overhead of creating a new process does not
make it worthwhile for simple tasks. Aliases can be created with multiple commands strung
together. For example, | created an alias, t, that shows me the time. Although the date
command does that, all | want to see is the time. So, | created an alias, t, like this:

alias t="date | cut -c12-16°
When I type in t, | get the hours and minutes, just exactly the way | want.

Aliases can be defined in either the .profile, .login or the .cshrc, depending on your shell.
However, as | described above, if you want them for all sub-shells, they need to go in

.cshrc . If you are running a Bourne Shell, aliasing may be the first good reason to switch to
another shell.

Be careful when creating aliases or functions so that you don’t redefine existing commands.
Either you end up forgetting the alias, or some other program uses the original program and
fails because the alias gets called first. | once had a call from a customer with a system in
which he could no longer install software. We tried replacing several programs on his system,
but to no avail. Fortunately, he had another copy of the same product, but it, too, died with the
same error. It didn’t seem likely that it was bad media. At this point, | had been with him for
almost an hour, so | decided to hand it off to someone else (often, a fresh perspective is all
that is needed).

About an hour later, one of the other engineers came into my cubicle with the same problem.

He couldn’t come up with anything either, which relieved me, so he decided that he needed to
research the issue. Well, he found the exact same message in the source code and it turned out
that this message appeared when a command could not run the sort command. Ah, a corrupt
sort binary. Nope! Not that easy. What else was there? As it turned out, the customer had
created an alias called sort that he used to sort directories in a particular fashion. Because the
Linux command couldn’t work with this version of sort, it died.

Why use one over the other? Well, if there is something that can be done with a short shell
script, then it can be done with a function. However, there are things that are difficult to do
with an alias. One thing is making long, relatively complicated commands. Although you can
do this with an alias, it is much simpler and easier to read if you do it with a function. | will go
into some more detail about shell functions later in the section on shell scripting. You can also
find more details in the bash man-page.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

97

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

On some systems, you will find that they have already provide a number of aliases for you. To
see what alias are currently configured, justalisms with no options and you might get
something like this:

alias +="pushd .’

alias -="popd’

alias ..='cd ..’

alias ...='cd ../..]

alias beep="echo -en "\007"
alias dir="ls -I

alias I='ls -alF’

alias la='ls -la’

alias lI="ls -I

alias Is='ls $LS_OPTIONS’
alias Is-I="ls -I’

alias md="mkdir -p’

alias o="less’

alias rd="rmdir’

alias rehash='hash -r’

alias unmount="echo "Error: Try the command: umount" 1>&2; false’
alias which="type -p’

alias you="yast2 online_update’

As you can see there are many different ways you can use aliases.

4.15 A Few More Constructs

There are a few more loop constructs that we ought to cover as you are likely to come across
them in some of the system scripts. The first is for a for-loop and has the following syntax:

for var in word1 word?2 ... do list of commands done
We might use this to list a set of pre-defined directories like this:
or dir in bin etc usr do Is -R $dir done

This script does a recursive listing three times. The first time through the loop, the variable dir
is assigned the value bin, next etc, and finally usr.

You may also see that the do/done pair can be replaced by curly braces ({ }). So, the script
above would look like this:

for dir in bin etc usr { Is -R $dir }

Next, we have while loops. This construct is used to repeat a loop while a given expression is
true. Although you can use it by itself, as in

while ($VARIABLE=value)

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

98

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

| almost exclusively use it at the end of a pipe. For example:
cat filename | while read line do commands done

This sends the contents of the filenamethrough the pipe, which reads one line at a time.
Each line is assigned to variable line. | can then process each line, one at a time. This is also
the format that many of the system scripts use.

For those of you who have worked with UNIX shells before, you most certainly should have
noticed that | have left out some constructs. Rather than turning this into a book on shell
programming, | decided to show you the constructs that occur most often in the shell scripts
on your system. | will get to others as we move along. The man-pages of each of the shells
provide more details.

4.16 The C-Shell

One of the first "new" shells to emerge was the csh or C-Shell. It is so named because much
of the syntax it uses is very similar to the C programming language. This isn’t to say that this
shell is only for C programmers, or programmers in general. Rather, knowing C makes
learning the syntax much easier. However, it isn’t essential. (Note: The csh s\gitaais

to C, so don't get your dander up if it's nexactlythe same.)

The csh is normally the shell that users get on many UNIX systems. Every place | ever got a
UNIX account, it was automatically assumed that | wanted csh as my shell. When | first
started out with UNIX, that was true. In fact, this is true for most users. Because they don't
know any other shells, the csh is a good place to start. You might actually have tcsh on your
system, but the principles are the same as for csh.

As you login with csh as your shell, the system first looks in the global file /etc/cshrc. Here,
the system administrator can define variables or actions that should be taken by every csh
user. Next, the system reads two files in your home directory: .login and .cshrc. The .login file
normally contains the variables you want to set and the actions you want to occur each time
you log in.

In both of these files, setting variables have a syntax that is unique to the csh. This is one
major difference between the csh and other shells. It is also a reason why it is not a good idea
to give root csh as its default shell. The syntax for csh is

set variable_name=value
whereas for the other two, it is simply
variable=value

Because many of the system commands are Bourne scripts, executing them with csh ends up
giving you a lot of syntax errors.

Once the system has processed your .login file, your .cshrc is processed. The .cshrc contains
things that you want executed or configured every time you start a csh. At first, | wasn't clear

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

99

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

with this concept. If you are logging in with the csh, don’t you want to start a csh? Well, yes.
However, the reverse is not true. Every time | start a csh, | don’t want the system to behave as
if | were logging in.

Let’s take a look as this for a minute. One of the variables that gets set for you is the SHELL
variable. This is the shell you use anytime you do a shell escape from a program. A shell
escape is starting a shell as a subprocess of a program. An example of a program that allows a
shell escape is vi.

When you do a shell escape, the system starts a shell as a new (child) process of whatever
program you are running at the time. As we talked about earlier, once this shell exits, you are
back to the original program. Because there is no default, the variable must be set to a shell. If
the variable is set to something else, you end up with an error message like the following from
Vi

invalid SHELL value: <something_else>
where <something_else> is whatever your SHELL variable is defined as.

If you are runningsh and your SHELL variable is set foin/csh , every time you do a

shell escape, the shell you get is csh. If you have a .cshrc file in your home directory, not only
is this started when you log in, but anytime you start a new csh. This can be useful if you want
to access personal aliases from inside of subshells.

One advantage that tlesh offered over the Bourne Shell is its ability to repeat, and even

edit, previous commands. Newer shells also have this ability, but the mechanism is slightly
different. Commands are stored in a shell "history list," which, by default, contains the last 20
commands. This is normally defined in yoashrc file, or you can define them from the
command line. The command set

history=100

would change the size of your history list to 100. However, keep in mind that everything you
type at the command line is saved in the history file. Even if you mistype something, the shell
tosses it into the history file.

What good is the history file? Well, the first thing is that by simply typing "history" with
nothing else you get to see the contents of your history file. That way, if you can’t remember
the exact syntax of a command you typed five minutes ago, you can check your history file.

This is a nice trick, but it goes far beyond that. Each time you issue a command from the csh
prompt, the system increments an internal counter that tells the shell how many commands
have been input up to that point. By default, the csh often has the prompt set to be a number
followed by a %. That number is the current command, which you can use to repeat those
previous commands. This is done with an exclamation mark (!), followed by the command
number as it appears in the shell history.

For example, if the last part of your shell history looked like this:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

100

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

21 date

22 vi letter.john
23 ps

24 who

>

You could editetter.john again by simply typing in !122. This repeats the command vi
letter.john and adds this command to your history file. After you finish editing the file, this
portion of the history file would look like

21 date

22 vi letter.john
23 ps

24 who

25 vi letter.john
>

Another neat trick that’s built into this history mechanism is the ability to repeat commands
without using the numbers. If you know that sometime within your history you edited a file
using vi, you could edit it again by simply typing !vi. This searches backward though the
history file until it finds the last time you used vi. If there were no other commands since the
last time you used vi, you could also Enter Iv.

To redo the last command you entered, you could do so simply by typing in !!.

This history mechanism can also be useeldibpreviously issued commands. Lets say that
instead of typing vi letter.john, we had typed in vi letter.jonh. Maybe we know someone
named jonh, but that's not who we meant to address this letter to. So, rather than typing in the
whole command, we can edit it. The command we would issue would be !':s/nh/hn/.

At first, this seems a little confusing. The first part, however, should be clear. The "!!" tells
the system to repeat the previous command. The colon (©) tells the shell to expect some
editing commands. The "s/nh/hn/" says to substitute for pattern nh the hn. (If you are familiar
with vi or sed, you understand this. If not, we get into this syntax in the section on regular
expressions and metacharacters.)

What would happen if we had edited a letter to john, done some other work and decided we
wanted to edit a letter to chris instead. We could simply type !22:s/john/chris/. Granted, this is
actually more keystrokes than if we had typed everything over again. However, you hopefully
see the potential for this. Check out the csh man-page for many different tricks for editing
previous commands.

In the default .cshrc are two aliases that | found quite useful. These are pushd and popd. These
aliases are used to maintain a directory "stack”. When you run pushd <dir_name>, your

current directory is pushed onto (added to) the stack and you change the directory to
<dir_name>. When you use popd, it pops (removes) the top of the directory stack and you
change directories to it.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

101

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Like other kinds of stacks, this directory stack can be several layers deep. For example, lets
say that we are currently in our home directory. A "pushd /bin" makes our current directory
/bin with our home directory the top of the stack. A "pushd /etc" brings fescto. We do

it one more time witlpushd /usr/bin |, and now we are in /usr/bin. The directory /usr/bin

is now the top of the stack.

If we runpopd (no argument)usr/bin is popped from the stack aretd is our new
directory. Anothepopd, and/bin is popped, and we are now in /bin. One more pop brings
me back to the home directory. (In all honesty, | have never used this to do anything more
than to switch directories, then jump back to where | was. Even that is a neat trick.)

There is another useful trick built into tbgh for changing directories. This is the concept of

a directory path. Like the execution search path, the directory path is a set of values that are
searched for matches. Rather than searching for commands to execute, the directory path is
searched for directories to change into.

The way this works is by setting the cdpath variable. This is done like any other variable in
csh. For example, if, as system administrator, we wanted to check up on the various spool
directories, we could define cdpath like this:

set cdpath = /usr/spool
Then, we could enter
cdlp

If the shell can’t find a subdirectory named Ip, it looks in the cdpath variable. Because it is
defined as /usr/spool and there is a /usr/spool/lp directory, we jump into /usr/spool/lp. From
there, if we type

cd mail

we jump to /usr/spool/mail. We can also set this to be several directories, like this:
set cdpath = (/usr/spool /usr/lib /etc)

In doing so, each of the three named directories will be searched.

The csh can also make guesses about where you might want to change directories. This is
accomplished through the cdspell variable. This is a Boolean variable (true/false) that is set

simply by typing
set cdspell

When set, the cdspell variable tells the csh that it should try to guess what is really meant
when we misspell a directory name. For example, if we typed

cd /sur/bin (instead of /usr/bin)

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

102

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

the cdspell mechanism attempts to figure out what the correct spelling is. You are then
prompted with the name that it guessed as being correct. By typing in anything other than "n"
or "N," you are changing into this directory. There are limitations, however. Once it finds
what it thinks is a match, it doesn’t search any further.

For example, we have three directories, "a," "b," and "c." If we type "cd d," any of the three
could be the one we want. The shell will make a guess and choose one, which may or may not
be correct.

Note that you may not have the C-Shell on your system. Instead, you might have something
called tcsh. The primary difference is that tcsh does command line completion and command
line editing.

4.17 Commonly Used Utilities

There are hundreds of commands and utilities plus thousands of support files in a normal
Linux installation. Very few people | have met know what they all do. As a matter of fact, |
don’t know anyone who knows what they all do. Some are obvious and we use them
everyday, such atate . Others are not so obvious and | have never met anyone who has
used them. Despite their overwhelming number and often cryptic names and even more
cryptic options, many commands are very useful and powerful.

| have often encountered users, as well as system administrators, who combine many of these
commands into something fairly complicated. The only real problem is that there is often a
single command that would do all of this for them.

In this section, we are going to cover some of the more common commands. | am basing my
choice on a couple of things. First, | am going to cover those commands that | personally use
on a regular basis. These commands are those that | use to do things | need to do, or those that
| use to help end users get done what they need to. Next, | will discuss the Linux system itself.
There are dozens of scripts scattered all through the system that contain many of these
commands. By talking about them here, you will be in a better position to understand existing
scripts should you need to expand or troubleshoot them.

Because utilities are usually part of some larger process (such as installing a new hard disk or
adding a new user), | am not going to talk about them here. | will get to the more common
utilities as we move along. However, to whet your appetite, here is a list of programs used
when working with files.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

103

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

File and Directory Basics

Command Function

cd change directory

cp copy files

file determine a file's contents
Is list files or directories

In make a link to a file

mkdir make a directory

mv move (rename) a file

rm remove a file

rmdir remove a directory

File Viewing

Command Function

cat Display the contents of file

less Page through files

head show the top portion of a file
more display screenfuls of a file

tall display bottom portion of a file

nl count the number of lines in a file
wc count the number of lines, words and characters in a file
od View a binary file

tee display output on stdout and write it to a file simultaneously

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

104

The Linux Knowledge Base and Tutorial

File Management

Command
Is

stat

wc

file

touch
chgrp
chmod
chown
chattr

Isattr

File Manipulation

Command
awk

csplit

cut
dircmp
find

perl

sed

sort

uniqg

xargs

File Editing
Command

Vi

emacs

sed

Function
display file attributes

display file attributes

www.linux-tutorial.info

count the number of lines, words and characters in a file

identify file types

set the time stamp of a file or directory
change the group of a file

change the permissions (mode) of a file
change the owner of a file

change advanced file attributes

display advanced file attributes

Function

pattern-matching, programming language
split a file

display columns of a file paste
compare two directories

find files and directories

scripting language

Stream Editor

sort a file tr

find unique or repeated lines in a file

process multiple arguements

Function
text editor
text editor

Stream Editor

append columns in a file

translate chracters in a file

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

105

www.linux-tutorial.info

Locate Files

Command
find
which

whereis

The Linux Knowledge Base and Tutorial

Function
find files and directories
locate commands within your search path

locate standard files

File Compression and Archiving

Command

gzip
compress
uncompress
bzip2
bunzip2

zZip

unzip

tar
cpio
dump
restore

mt

File Comparison

Command
diff

cmp
comm
md5sum

sum

Function

compress a file using GNU gunzip
Zip

compress a file using UNIX
compress

uncompress a file using UNIX
compress

compress a file using
block-sorting file compressor

uncompress a file using
block-sorting file compressor

compress a file using
Windows/DOS zip

uncompress a file using
Windows/DOS zip

read/write (tape) archives
copy files to and from archives
dump a disk to tape

restore a dump

tape control programm

Function
find differences in two files
compare two files

compare sorted files

uncompress a file using
GNU Zip

compute the MD5 checksum of a file

compute the checksum of a file

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

106

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Disks and File Systems

Command Function

df display free space
du display disk usage
mount mount a filesystem
fsck check aand repair a filesystem
sync Flush disk caches
Printing

Command Function

Ipr print files

Ipg view the print queue

Iprm Remove print jobs

Ipc line printer control program

Process Management

Command Function

ps list processes

w list users’ processes

uptime view the system load, amount of time it has been running, etc.
top monitor processes

free display free memory

kill send signals to processes

killall kill processes by name

nice set a processes nice value

renice set the nice value of a running process.
at run a job at a specific time

crontab schedule repeated jobs

batch run a job as the system load premits
watch run a programm at specific intervals
sleep wiat for a specified interval of time

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

107

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Host Information

Command Function

uname Print system information

hostname Print the system’s hostname

ifconfig Display or set network interface configuration
host lookup DNS information

nslookup lookup DNS information (deprecated)

whois Lookup domain registrants

ping Test reachability of a host

traceroute Display network path to a host

Networking Tools

Command Function

ssh Secure remote access

telnet Log into remote hosts

scp Securely copy files between hosts

ftp Copy files between hosts

wget Recursively download files from a remote host
lynx Character based web-browser

4.17.1 Examples of Commonly Used Ultilities
Directory listings: Is

When doing a long listing of a directory or file and looking at the date, you typically only
want to see the date when the contents of the file washHasted This is the default

behavior with the -I option. However there may be cases, where you want to see when other
aspects of the file were changed, such as the permissions. This is done adding the -c option
i.e. -Ic. Note that if you leave off the -l option you may not see any dates at all. Instead, the
output is sorted in columns by the time the file was changed.

Typically, when you do a simple of a directory, the only piece of information you get is
the filename. However, you could use the -p option to display a little bit more. For example,
you might end up a something that looks like this:

Data/ letter.txt script* script2@ >

Here you can see that at the end of many of the files are a number of different symbols. The /
forward slash indicates it is a directory, the @ says it is a symbolic link, and * asterisk says it
is executable.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

108

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

For many years, this is the extent of what you could do that is, differentiate file types by
which symbol was displayed. However, with newer systems there is a lot more that you can
do. If your terminal can display colors, it is possible to color-code the outfsut dfewer

versions ofs have the option --color=followed by when it should display colors. For
example, never, always, or " auto”. If set to auto, output will only be in color if you are
connected to a terminal. If, for example, you usedany script, it may not be useful to have

the output displayed in color. In fact, it might mess up your script. On some systems, you can
also set it to tty so that color is only turned on when running on the console or terminal that
supports colors.

By default, a number of different file types and their associated colors are specified in the
/etc/DIR_COLORS file. For example, dark red is used for executable files, light red is used
for archivegar , rpm, dark blue is for directories, magenta is for image files and so forth. If
you have a symbolic link that points nowhere i.e the target file does not exist the name will
blink red. If you want to change the system defaults, ¢efgyDIR_ COLORS to

.dir_colors in your home directory.

Some linux distributions, the command is by default an alias and defined like this:
alias Is="/bin/ls $LS_OPTIONS’

where $LS_OPTIONS might contain --color=tty. | have run into cases where the different
colors are very hard to see. In such cases, the easiest thing to do is simply disable the alias like
this:

unalias Is

In many cases, you may have a long list of files where you want to find the most recent ones
such as log file. You could do a long listing and check the date of each one individually to
find the most recent ones. Instead, you could use the -t opti®n tehich sorts the files by

their modification time. That is when the data was last changed. Using the -r tptiprints

them in reverse order, so the most recent ones are at the botton of the list. So, to get the 10
most recent files, you would have a command liek this:

Is -Itr | tail

Removing files:rm

-i queries you before removing the file
-r recursively removes files

-f forces removal

The way files and directories are put together in Linux has some interesting side effects. In the
section on files and filesystems, we talk about the fact that a directory is essentially just a list
of the files and pointers to where the files are on the hard disk. If you were to remove the
entry in the directory list, the system would not know where to find the file. That basically
means you have removed the file. That means that even if you did not have write permission
on a file, you could remove it if you had write permission on its parent directory. The same

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

109

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

thing applies in reverse. If you did not have write permissions on the directory, you could not
remove the file.

Copying files: cp

More than likely you’ll sometimes need to make a copy of an existing file. This is done with
thecp command, which typically takes two arguments, the source name and destination
name. By default, the cp command does not work on directories. To do that, you would use
the -r option which says to recursively copy the files.

Typically thecp command only takes two arguments, the source and destination of the copy.
However, you can use more than two arguments if the last argument is a directory. That way
you could copy multiple files into a directory with a single command.

One thing to keep in mind is that the system will open the target file for writing and if the file
does not yet exist it will be created using default files for permissions, owner and group.
However, if the file already exists, the contents are written to the targer file using the old
values for permissions, owner and group. Assume we have the follwing two files:

-rw-r--r-- 1 root root 29 Mar 19 18:59 filel
-rw-r--r-- 1 jimmo root 538 Mar 19 19:01 file2
>

If | ran as root this command:
cp filel file3

I end up with a new file that looks like this:

-rw-r--r-- 1 root root 29 Mar 19 19:06 file3
>

Howe if | ran this command:
cp filel file2

I end up with a new file and all of the files looks like this:

-rw-r--r-- 1 root root 29 Mar 19 18:59 filel
-rw-r--r-- 1 jimmo root 29 Mar 19 19:09 file2
-rw-r--r-- 1 root root 29 Mar 19 19:06 file3
>

The owner of file2 did not change. This was because the file was not created, but rather the
contents were simply overwritten with the contents of filel. You can use the -p option to
ensure "preserve" the attributes on the new file.

Often times you don not want to overwrite an existing file if it exists. This is where the -i, --
comes in. It will ly query you to ask if the target file should be overwritten or not. The
opposite of this is the -f, --force option which forogsto overwrite the target file.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

110

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

| also use the -R, -r, --recursive to recursively copy a directory tree from one place to another.
That means, all of the files and directories from the source directory are copied into the target.

Option Meaning
-a, --archive same as -dpR
--backup[=CONTROL] make a backup of each existing destination file
-b like --backup but does not accept an argument
--copy-contents copy contents of special files when recursive
-d same as --no-dereference --preserve=link
--no-dereference never follow symbolic links

if an existing destination file cannot be opened, remove it

-f, --force and try again

-i, - prompt before overwrite

-H follow command-line symbolic links

-I, --link link files instead of copying
-L, --dereference always follow symbolic links
-p same as

--preserve=mode,ownership,timestamps

preserve the specified attributes default:
--preserve[=ATTR_LIST] mode,ownership,timestamps, if possible additional
attributes: links, all

--no-preserve=ATTR_LIST don't preserve the specified attributes

-R, -r, --recursive copy directories recursively

-s, --symbolic-link make symbolic links instead of copying

--target-directory=DIRECTORY move all SOURCE arguments into DIRECTORY

u, —-update copy on!y when the SOURCE fil_e is_nevyer _than_ th_e
destination file or when the destination file is missing

-v, --verbose explain what is being done

Renaming and moving filesmv

To rename files, you use thev command for move. The logic here is that you are moving the
files from one name to another. You would also use this command if moving a file between
directories. Theoretically one could say you are "renaming" the entire path to the file,
therefore, "rename" might be a better command name.

You can see the effects of this if compare the time to copy a very large file as opposed to
moving it. In the first case, the entire contents needs to be rewritten. In the second cases only
the filename is changed, which obviously is a lot fast.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

111

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Note that simply changing the file name only works if the source and target files are on the
samefile system. If you move files between files systems the new one must be rewritten and
basically takes the same time as with a copy.

Like thecp commandnv also takes the -i, -- option to query you prior to overwriting an
existing file.
Option Meaning
--backup[=CONTROL] make a backup of each existing destination file

-b like --backup but does not accept
an argument

do not prompt before overwriting equivalent to

-f, --force
--reply=yes
-i, - prompt before overwrite equivalent to --reply=query
-U. —-update move only when the SOURCE file is newer than the is
» up destination file or when the destination file missing
-v, --verbose explain what is being done

Linking files: In

Linux provides a couple of different ways of giving a file multiple names. One place this is
frequently used is for scripts that either start a program or stop it, depending on the name. If
you were to simply copy one file to another, and you needed to make a change, you would
have to change both files. Instead, you would create a "link". Links are nothing more than
multiple files, with different names, but referring to the exact same data on the hard disk.

There are actually two different kinds of links: "hard" and "soft". A hard link simply creates a
new directory entry for that particular file. This new directory entry can be in the current
directory, or any other directory on the same file system. This is an important aspect because
Linux keeps track of files using a numbered table, with each number representing a single set
of data on your hard disk. This number the inode will be unique for each file system.
Therefore, you cannot have hard links between files on different file systems. We'll get into
details of inodes in the section of the hard disk layout. You can actually see this number if you
want by using the -i to the Is command. You might end up with output that looks like this.

184494 -rw-r--r-- 2 root root 2248 Aug 11 17:54 chuck
184494 -rw-r--r-- 2 root root 2248 Aug 11 17:54 jimmo
184502 -rw-r--r-- 1root root 761 Aug 11 17:55 john

>

Look at the inode number associated with files jimmo and chuck; they are the same 184494.
This means that the two files are linked together and therefore are the exact same file. If you
were to change one file the other one would be changed as well.

To solve the limitation that links cannot cross filesystems, you would use a soft or "symbolic"
link. Rather than creating a new directory entry, like in the case of a hard link, a symbolic link

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

112

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

is actually a file that contains the pathname to the other file. Since a symbolic link contains
the path, it can point to files on other file systems, including files on completely different
machines for example, if you are using NFS.

The downside of symbolic links is that when you remove the target file for a symbolic link,
your data is gone, even though the symbolic link still exists. To create either kind of link you
use the In command, adding the -s option when you want to create a symbolic link. The
syntax is basically the same as the cp or mv command:

In [-s] source destination
In this case "source" is the original file and "destination” is the new link.

In addition to being able to link files across file systems using symbolic links, symbolic links
can be used to link directories. Creating links to directories is not possible with hard links.

Display the contents of filescat
You can display the contents of a file usingt¢hé command. The syntax is very simple:

cat filename

If the file is large it may scroll off the screen. In that case you won’t be able to see it all at one
time. In that case, you would probably use eithentbee orless commands. Both allow

you to display the contents of a file, whigss allows you to scroll forward and backward
throughout the files. Howevdgss is not found on every Unix operating system, so

becoming familiar withmore is useful.

One might think that cat isn't useful. However, it is often used to sent the contents of a file
through another file using a pipe. For example:

cat filename | sed 's/James/Jim/g’
This would send the file through teed , replacing all occurrences of "James" with "Jim".

| often use cat to quickly create files without having to use an editor. One common thing is
short-n-sweat shell scripts like this:

cat > script cat textfile | while read line do set -- $line
echo $1 done <CTRL-D>

The first line redirects the standar output of¢he command into the filscript . Since

we did not pass a filenamedat , it reads its input from standard input. The input is read into

| press CTRL-D. | then change the permissions and have an executable shell script. For details
on these constucts, see the section on basic shell scripting.

Note that the CTRL-D key combination is normally the default for the end-of-file character.
This can be displayed and changed usingttye command The end-of-file character is
shown by the value of eof=.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

113

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

cat also has a few options that change it's behaviour. For example, the -E or --show-ends

will show a dollar sign $ at the end of the line. Using -v or --show-nonprinting options will
display non-printable characters. Both of these are useful in determining if there are characters
in your file that you would not normally see.

Option Meaning

-b, --number-nonblank number nonblank output lines

-E, --show-ends display $ at end of each line

-n, --number number all output lines

-S, --squeeze-blank never display more than one single blank line
-T, --show-tabs display TAB characters as "l

-T equivalent to -vT

-v, --show-nonprinting use ~ and M- notation to show non-printable characters, except for LFD and TAB
-e equivalent to -vE

-A, --show-all equivalent to -vET

Thecat command can also be used to combine multiple files. Here we need to consider to
things. First, the cat command simply displays all of the files listed to standard output. So to
display three files we might have this command:

cat filenamel filename?2 filename3

In the section on pipes and redirection, we talked about being able to redirect standard output
to a file using the greater-than symbol >. So combining these concepts we might end up with
this:

cat filenamel filename2 filename3 > new_file

This sends the contents of the three files in the order given into the file "newfile". Note that if
the file already exists, it will be overwritten. As we also discussed, you can also append to an
existing file using two greater-than symbols >>.

Display the contents of filesmore
Display the contents of filesless
Display the contents of files with line numbersnl

As in many other cases, the command does some of the same thing that other commands
do. For example, cat -n will show you you lines numbers in the output, jnktdses.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

114

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Option Meaning
Option Meaning
-b, --body-numbering=STYLE use STYLE for numbering body lines
-d, --section-delimiter=CC use CC for separating logical pages
-f, --footer-numbering=STYLE use STYLE for numbering footer lines
-h, --header-numbering=STYLE use STYLE for numbering header lines
-i, --page-increment=NUMBER line number increment at each line
-l, --join-blank-lines=NUMBER group of NUMBER empty lines counted as one
-n, --number-format=FORMAT insert line numbers according to FORMAT
-p, --no-renumber do not reset line numbers at logical pages
-s, --number-separator=STRING add STRING after possible line number
-v, --first-page=NUMBER first line number on each logical page

-w, --number-width=NUMBER use NUMBER columns for line numbers

Display the beginning of files:head

Thehead command displays the beginning or "head" of a file. By default, it displays the first
10 lines. Using the -n or --lines= option, you can specify how many lines to display. In some
versionsv ohead you can simply preceed the number of lines with a dash, likehtrast

-20

I commonly use the head -1 when | want one just the first line of a file.

You can also specify multiple files on the command line. In which basel will show you
the name of each file before the output. This can be suppressed with the -q or --quiet options.
Also the -v, --verbose will always display the header.

Note thathead can also read frostandard input . This means that it can server as one
end of apipe . Therefore, you can send the output of other command through head. For
example:

sort filename | head -5
This will sort the file and then give you the last five lines.
Option Meaning
-c, --bytes=SIZE print first SIZE bytes
-n, --lines=NUMBER print first NUMBER lines instead of first 10

-q, --quiet, --silent never print headers giving file names

-v, --verbose always print headers giving file names

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

115

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Display the end of files:tail

The counterpart to theead command igail . Instead of printing the start of a fikajl
prints the end of the file.

One very useful option that | use all of the time is -f. This "follows" a file or, in other words, it
continues to display the end of files as they are being written to. | use this quire often when
analyzing log files. Sometimes entries are coming to fast so | have to pipe the whole thing
through more, like this:

tail -f logfile | more

Once this is running, you can end it by pressing Ctrl-C. Or whasttyer says your interrupt
key is.

If you use a plus-sign + along with a number, tail will start at that line number and then
display the read of the file. This is often useful if you want the output of a particular
command, but not the header information the comman displays. For example, | often use it
like this:

vmstat 3 10 | tail +3
This starts at line 3 and displays the rest of the file.

Option Meaning

keep trying to open a file even if it is inaccessible when tail starts or if it

—retry becomes inaccesible later -- useful only with -f

-C, --bytes=N output the last N bytes

-f, output appended data as the file grows; -f, --follow, and
--follow[={name|descriptor}] --follow=descriptor are equivalent

-F same as --follow=name
--retry

Seperating files by column:cut

Thecut command is, as its name implies, used to cut up files. This can be done after a
specific number of characters or at specific "fields" within the file. If you look in the
/etc/init.d/ directory, you will find that there are quite a few scripts thatusein

one way or another.

In some cases, the file or output has fields that are a certain width. For example, a particular
column always starts at character 18 and the next one started at character 35. If you wanted to
display just the one field, your command might look like this:

cut -c18-34 filename

Note that if you only specific a single number, you will get the single character at that
position. If you leave of the last number, tieenn will display everything from the given

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

116

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

position to the end of the line.

If the file or output seperates the fields with a particular character e.g. tab or semi-colon, you
cannot split the file at a specific character number, instead you need to split it by field
number. For example, if you wanted a list of the real names of all users in the

letc/passwd , your command might look like this:

cut -f 5 -d: /etc/passwd

Here too, you can specify a range of fields. For example, -f 5-8 would display fields 5 through
8. If you wanted specific, non-ajoining fields you seperate them with a comma. For example,
to display the 1st and 5th fields in the previous example, the command might look like this:

cut -f 1,5 -d: /etc/passwd

Option Meaning
-b, --bytes=LIST output only these bytes
-c, --characters=LIST output only these characters
-d, --delimiter=DELIM use DELIM instead of TAB for field delimiter
£ —fields=LIST output_or_ﬂy these fields; also print any line that contains-s op_ti_on is
no delimiter character, unless the specified
-n ignored
-s, --only-delimited do not print lines not containing delimiters

use STRING as the output delimiter the default is to use

--output-delimiter=STRING the input delimiter

Combining files: paste

Thepaste command is used to combine files. Lines in the second file that correspond
sequentially to lines in the first file are appended to the lines in the first file. Assume the first
file consists of these lines:

jim

david

daniel

and the second file looks like this:

jan

dec

sept

When you paste the two together you end up with this:
jim jan

david dec

daniel sept

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

117

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Option Meaning
-d, --delimiters=LIST reuse characters from LIST instead of TABs

-s, --serial paste one file at a time instead of in parallel

Combining files: join

You can think ofoin as an enhance versionpEste . However, in the case @in , the
files you are combining must have a field in common. For example, assume the first file
consists of these lines:

jim jan

david dec

daniel sept

and the second looks like this:

jim pizza
david soda
daniel ice cream

When you join the two together you end up with this:

join three four

jim jan pizza

david dec soda
daniel sept ice cream

This only works because both of the files have a common field. Note that the common field is
not as it would be had you usedste .

To avoid problems with not being able to find matches, | suggest that you first sort the files
before you usgpin . Note that you do not necessarily need to match on the first field as we
did in the example. If necessary, the fields that match can be in any position in either file. The
-1 option defines which file do use in file one, and -2 defines the field to use in file 2.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

118

The Linux Knowledge Base and Tutorial

www.linux-tutorial.info

Option Meaning
-a FILENUM print unpairable lines coming from file FILENUM, where
FILENUM is 1 or 2, corresponding to FILE1 or FILE2
-e EMPTY replace missing input fields with EMPTY

-i, --ignore-case ignore differences in
case when comparing fields

-j FIELD obsolescent equivalent to ‘-1 FIELD -2 FIELD’

-j1 FIELD obsolescent equivalent to -1 FIELD’

-j2 FIELD obsolescent equivalent to ‘-2 FIELD’

-0 FORMAT obey FORMAT while constructing output line

-t CHAR use CHAR as input and output field separator

-v FILENUM like -a FILENUM, but suppress joined output lines
-1 FIELD join on this FIELD of file 1

-2 FIELD join on this FIELD of file 2

copying and converting files:dd

Thedd command is used to create a "digital dump" of a file. It works very simply by opening
the source and destination files in binary mode and copying the contents of one to the other. In
essence, this is what thp command does. Howeveld also works with device nodes.

Thus, you can usgd to copy entire devices from one to the other.

Note that if you would use thaddl command to copy a filesystem from one device to another
for example /dev/hdal to /dev/hdb1, you would not be copying invidivual files. Instead you
would be copying an image of the filesystem. This means that all of the the metadata for the
file system i.e. inode table would be overwritten and you would loose any existing data. If the
target device was smaller, you won'’t be able to get all of the old on the new one. Further, if
the target device is just one of several partition you may end up overwritting parts of other
filesystems.

In it's simplest formdd looks like this:
dd if=input_file of=output_file
Where it reads from the input file and writes to the output file.

Two very useful options are ibs= input bytes and obs=output bytes. Here yaal beiv

many bytes to read or write at the same time. When used properly this can save a great deal of
time. For example, if you are copying from one hard disk to another, the system reads one
block and then writes it. Because of the the latency of the spinning hard disk, it takes time for
the disk to rotate back to the correct position. If you choose a block size equal to the sector
size of the hard disk, you can read the whole sector at once, thus saving time.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

119

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Thedd command can also be used when converting from one encoding to another. For
example you can convert files from ASCII to EBCDIC.

Option Meaning
bs=BYTES force ibs=BYTES and obs=BYTES
cbs=BYTES convert BYTES bytes at a time

conv=KEYWORDS convert the file as per the comma separated keyword list

count=BLOCKS copy only BLOCKS input blocks

ibs=n input block size defaults to 512 byte blocks
if=FILE read from FILE instead of stdin

obs=n output block size defaults to 512 byte blocks
of=FILE write to FILE instead of stdout

seek=BLOCKS skip BLOCKS obs-sized blocks at start of output
skip=BLOCKS skip BLOCKS ibs-sized blocks at start of input

4.18 Looking for Files

In the section on Interacting with the System we talked about using the Is command to look
for files. There we had the example of looking in the sub-directietyers/taxes for
specific files. Usinds , command we might have something like this:

Is ./letters/*

What if the taxes directory contained a subdirectory for each year for the past five years, each
of these contained a subdirectory for each month, each of these contained a subdirectory for
federal, state, and local taxes, and each of these contained 10 letters?

If we knew that the letter we we’re looking for was somewhere in the taxes subdirectory, the
command

Is ./letters/taxes/*

would show us the sub-directories of taxes (federal, local, state), and it would show their
contents. We could then look through this output for the file we were looking for.

What if the file we were looking for was five levels deeper? We could keep adding wildcards
(*) until we reached the right directory, as in:

Is ./letters/taxes/*/*/**/*

This might work, but what happens if the files were six levels deeper. Well, we could add an
extra wildcard. What if it were 10 levels deeper and we didn’t know it? Well, we could fill the
line with wildcards. Even if we had too many, we would still find the file we were looking

for.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

120

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Fortunately for us, we don’t have to type in 10 asterisks to get what we want. We can use the
-R option to Is to do a recursive listing. The -R option also avoids the "argument list too long"
error that we might get with wildcards. So, the solution here is to use the Is command like
this:

Is -R ./letters/taxes | more

The problem is that we now have 1,800 files to look through. Piping them through more and
looking for the right file will be very time consuming. If we knew that it was there, but we
missed it on the first pass, we would have to run through the whole thing again.

The alternative is to have the more command search for the right file for you. Because the
output is more than one screen, more will display the first screen and at the bottom display
--More--. Here, we could type a slash (/) followed by the name of the file and press Enter.
Now more will search through the output until it finds the name of the file. Now we know that
the file exists.

The problem here is the output of the Is command. We can find out whether a file exists by
this method, but we cannot really tell where it is. If you try this, you will see that more jumps
to the spot in the output where the file is (if it is there). However, all we see is the file name,
not what directory it is in. Actually, this problem exists even if we don’t execute a search.

If you use more as the command and not the end of a pipe, instead of just seeing --More--,
you will probably see something like

--More--(16%)>
This means that you have read 16 percent of the file.

However, we don’'t need to usere for that. Because we don’t want to look at the entire
output (just search for a particular file), we can use one of three commands that Linux
provides to do pattern searchimgep , egrep , andfgrep . The names sound a little odd to

the Linux beginner, but grep stands gdobalregularexpressiormprint. The other two are

newer versions that do similar things. For example, egrep searches for patterns that are full
regular expressions and fgrep searches for fixed strings and is a bit faster. We go into details
about the grep command in the section on looking through files.

Let's assume that we are tax consultants and have 50 subdirectories, one for each client. Each
subdirectory is further broken down by year and type of tax (state, local, federal, sales, etc.).

A couple years ago, a client of ours bought a boat. We have a new client who also wants to
buy a boat, and we need some information in that old file.

Because we know the name of the file, we can use grep to find it, like this:
Is -R ./letters/taxes | grep boat

If the file is called boats, boat.txt, boats.txt, or letter.boat, the grep will find it because grep is
only looking for the pattern boat. Because that pattern exists in all four of those file names, all
four would be potential matches.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

121

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

The problem is that the file may not be called boat.txt, but rather Boat.txt. Remember, unlike
DOS, UNIX is case-sensitive. Therefore, grep sees boat.txt and Boat.txt as different files. The
solution here would be to tell grep to look for both.

Remember our discussion on regular expressions in the section on shell basics? Not only can
we use regular expressions for file names, we can use them in the arguments to commands.
The term regular expression is even part of grep’s name. Using regular expressions, the
command might look like this:

Is -R ./letters/taxes | grep [Bb]oat
This would now find both boat.txt and Boat.txt.

Some of you may see a problem with this as well. Not only does Linux see a difference
between boat.txt and Boat.txt, but also between Boat.txt and BOAT.TXT. To catch all
possibilities, we would have to have a command something like this:

Is -R ./letters/taxes | grep [Bb][Oo0][Aa][Tt]

Although this is perfectly correct syntax and it will find the files, it does not matter what case
the word "boat" is in, it is too much work. The programmers who developed grep realized that
people would want to look for things regardless of what case they are in. Therefore, they built
in the -i option, which simply says ignore the case. Therefore, the command

Is -R ./letters/taxes | grep -i boat

will not only find boats, boat.txt, boats.txt, and letter.boat, but it will also find Boat.txt and
BOAT.TXT as well.

If you've been paying attention, you might have noticed something. Although the grep
command will tell you about the existence of a file, it won’t tell you where it is. This is just
like piping it throughmore. The only difference is that we’re filtering out something.
Therefore, it still won’t tell you the path.

Now, this isn’t greps fault. It did what it was supposed to do. We told it to search for a
particular pattern and it did. Also, it displayed that pattern for us. The problem is still the fact
that the Is command is not displaying the full paths of the files, just their names.

Instead of Is, let’s use a different command. Let’s use find instead. Just as its name implies,
find is used to find things. What it finds is files. If we change the command to look like this:

find ./letters/taxes -print | grep -i boat
This finds what we are looking for and gives us the paths as well.

Before we go on, let’s look at the syntax of the find command. There are a lot of options and
it does look foreboding, at first. We find it is easiest to think of it this way:

find <starting_where> <search_criteria> <do_something>

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

122

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

In this case, the "where" ietters/taxes . Therefore, find starts its search in the
Jletters/taxes directory. Here, we have no search criteria; we simply tell it to do
something. That something was to -print out what it finds. Because the files it finds all have a
path relative to/letters/taxes , this is included in the output. Therefore, when we pipe

it through grep, we get the path to the file we are looking for.

We also need to be careful because the find command we are using will also find directories
named boat. This is because we did not specify any search criteria. If instead we wanted it just
to look for regular files (which is often a good idea), we could change the command to look
like this:

find ./letters/taxes -type f -print | grep -i boat

Here we see the option -type f as the search criteria. This will find all the files of type f for
regular files. This could also be a d for directories, c for character special files, b for block
special files, and so on. Check out tilel man-page for other types that you can use.

Too complicated? Let’s make things easier by avoiding grep. There are many different things
that we can use as search criteria for find. Take a quick look at the man-page and you will see
that you can search for a specific owner, groups, permissions, and even names. Instead of
having grep do the search for us, let's save a step (and time) by having find do the search for
us. The command would then look like this:

find ./letters./taxes -name boat -print

This will find any file named boat and list its respective path. The problem here is that it will
only find the files named boat. It won’t find the files boat.txt, boats.txt, or even Boat.

The nice thing is that find understands about regular expressions, so we could issue the
command like this:

find ./letters./taxes -name '[Bb]oat’ -print

(Note that we included the single quote (') to avoid the square brackets ([]) from being first
interpreted by the shell.)

This command tells find to look for all files named both boat and Boat. However, this won’t
find BOAT. We are almost there.

We have two alternatives. One is to expand the find to include all possibilities, as in
find ./letters./taxes -name '[Bb][Oo][Aa][Tt] -print

This will find all the files with any combination of those four letters and print them out.
However, it won't findboat.txt . Therefore, we need to change it yet again. This time we
have

find ./letters./taxes -name '[Bb][Oo][Aa][Tt]*" -print

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

123

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Here we have passed the wildcard (*) to find to tell it took find anything that starts with
"boat" (upper- or lowercase), followed by anything else. If we add an extra asterisk, as in

find ./letters./taxes -name "*[Bb][O0][Aa][Tt]*" -print

we not only geboat.txt , but alsocnewboat.txt , which the first example would have
missed.

This works. Is there an easier way? Well, sort of. There is a way that is easier in the sense that
there are less characters to type in. This is:

find ./letters/taxes -print | grep -i boat

Isn’t this the same command that we issued before? Yes, it is. In this particular case, this
combination of find and grep is the easier solution, because all we are looking for is the path
to a specific file. However, these examples show you different options of find and different
ways to use them. That’'s one of the nice things about Linux. There are many ways to get the
same result.

Note that more recent versions of find do not require the -print options, as this is the default
behavior.

Looking for files with specific names is only one use of find. However, if you look at the

find man-page, you will see there are many other options you can use. One thing |
frequently do is to look for files that are older than a specific age. For example, on many
systems, | don’t want to hang on to log files that are older than six months. Here | could use
the -mtime options like this:

find /usr/log/mylogs -mtime +180

Which says to find everything in the /usr/log/mylogs directory which is older than 180 days
(Not exactly six months, but it works.) If | wanted, | could have used the -name option to have
specified a particular file pattern:

find ./letters./taxes -name "*[Bb][O0][Aa][Tt]*' -mtime +180

One problem with this is what determines how "old" a file is? The first answer for many
people is that the age of a file is how long it has been since the file was created. Well, if |
created a file two years ago, but added new data to it a minute ago, is it "older" than a file that
| created yesterday, but have not changed since then? It really depends on what you are
interested in. For log files, | would say that the time the data in that was last changed is more
significant than when the file was created. Therefore, the -mtime is fitting as it bases its time
on when the data was changed.

However, that's not always the case. Sometimes, you are interested in the last time the file
was used, or accessed. This is when you would use the -atime option. This is helpful in find
old files on your system that no one has used for a long time.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

124

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

You could also use the -ctime option, which is based on when the files "status" was last
changed. The status is changed when the permissions or file owner is changed. | have used
this option in security contexts. For example, on some of our systems there are only a few
places that contain files that should change at all. For exafwatdog . If | search on all

files that were changed at all (content or status), it might give me an indication of improper
activity on the system. | can run a script a couple of times an hour to show me the files that
have changed within the last day. If anything shows up, | suspect a security problem
(obviously ignoring files that are supposed to change.)

Three files that we specifically monitor detc/passwd |, /etc/group and

letc/shadow . Interestingly enough, weantto have these files change once a month
(/fetc/shadow). This is our "proof" that the root password was changed as it should be at
regular intervals. Note that we have other mechanisms to ensure that it was the root password
that was changed and not simply changing something else in the file, but you get the idea.
One place you see this mechanism at work is your /ustr/lib/cron/run-crons file, which is started
from /etc/crontab every 15 minutes.

One shortcoming of -mtime and the others is that it measures time in 24 hour increments
starting from now. That means that you cannot find anything that was changed within the last
hour, for example. For this newer versions of find have the -cmin, -amin and -mmin options,
which measure times in minutes. So, to find all of the files changed within the last hour (i.e.
last 60 minutes) we might have something like this:

find / -amin -60

In this example, the value was preceded with a minus sign (-), which means that we are
looking for files with a valuéessthan what we specified. In this case, we want vdkss

than 60 minutes. In the example above, we use a plus-sign (+) before the value, which means
values greater that what we specified. If you use neither one, then the éxaetigwhat you
specified.

Along the same vein, are the options -newer, -anewer, -cnewer, which find files which are
newerthan the file specified.

Note also that these commands fenerythingin the specified path older or younger than
what we specify. This includes files, directories, device nodes and so forth. Maybe this is
what you want, but not always. Particularly if you are using the -exec option and what to
search through each file you find, looking for "non-files" is not necessarily a good idea. To
specify a file type, find provides you with the -type option. Among the possible file type are:

b - block device

c - character device

d - directory

p - named pipe (FIFO)
f - regular file

| - symbolic link

s - socket

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

125

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

As you might expect, you can combine the -type option with the other options we discussed,
to give you something like this:

find ./letters./taxes -name "*[Bb][O0][Aa][Tt]*" -type f -mtime
+180

The good newandthe bad news at this point is that there are many, many more options you
can use. For example. you can search for files based on their permissions (-perm), their owner
(-users), their size (-size), and so forth. Many | occasionally use, some | have never used. See
the find man-page for a complete list.

In addition, to the -execoption, there are a number of other ones that are applied to the files
that are found (rather than used to restrict what files are found). Note that in most
documentation, the options used to restrict the search are temlisaihd the options that

perform an operation on the files are cabietions One very simple action is -Is, which does

a listing of the files the same as using the -dils options to the Is command.

A variant of the -exec action is -ok. Rather than simply performing the action on each file, -ok
with first ask you to confirm that it should do it. Pressing "Y" or "y" will run the command,
pressing anything else will not.

With what we have discussed so far, you might run into a snag if there is more than one
criterion you want to search on (i.e. more than one test). Find addresses that by allowing you
to combine tests using either OR (-0 -or) or AND (-a -and). Furthermore, you can negate the
results of any tests (! -not). Let’s say we wanted to find all of the HTML files that were not
owned by the user jimmo. Our command might look like this:

find ./ -name *.html -not -user jimmo

This brings up an important issue. In the section on interpreting the command, we talk about
the fact that the shell expands wildcards before passing them to the command to be executed.
In this example, if there was a file in the current directory ending in .html, the shell would

first expand the .html to that narbheforepassing it to find. We therefore need to "protect" it
before we pass it. This is done using single quotes and the resulting command might look like
this:

find ./ -name *.html’ -not -user jimmo
For details on how quoting works, check out the section on quotes.

It is important to keep in mind the order in which things are evaluated. First, negation (-not !
), followed by AND (and -a), then finally OR (-0 -or). In order to force evaluation in a
particular way, you can include expressions in parentheses. For example, if we wanted all of
the files or directories owned by either root or bin, the command might look like this:

find / \(-type f -0 -type d \) -a \(-user root -0 -user bin
\)

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

126

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

The requires a little explanation. | said that you would use parentheses to group the tests
together. However, they are preceded here with a back-slash. The reason is that the shell will
see the parentheses and try to execute what is inside in a separate shell, which is not what we
wanted.

4.19 Looking Through Files

In the section on looking for files, we talk about various methods for finding a particular file

on your system. Let's assume for a moment that we were looking for a particular file, so we
used the find command to look for a specific file name, but none of the commands we issued
came up with a matching file. There was not a single match of any kind. This might mean that
we removed the file. On the other hand, we might have named it yacht.txt or something
similar. What can we do to find it?

We could jump through the same hoops for using various spelling and letter combinations,
such as we did for yacht and boat. However, what if the customer had a canoe or a junk? Are
we stuck with every possible word for boat? Yes, unless we know something about the file,
even if that something is in the file.

The nice thing is that grep doesn’t have to be the end of a pipe. One of the arguments can be
the name of a file. If you want, you can use several files, because grep will take the first
argument as the pattern it should look for. If we were to enter

grep [Bb]oat ./letters/taxes/*

we would search the contents of all the files in the directmtyers/taxes looking
for the word Boat or boat.

If the file we were looking for happened to be in the directibeyters/taxes , then all
we would need to do is run more on the file. If things are like the examples above, where we
have dozens of directories to look through, this is impractical. So, we turn back to find.

One useful option to find is -exec. When a file is found, you use -exec to execute a command.
We can therefore use find to find the files, then use -exec to run grep on them. Still, you might
be asking yourself what good this is to you. Because you probably don’t have dozens of files
on your system related to taxes, let's use an example from files that you most probably have.

Let’s find all the files in théetc directory containingbin/sh . This would be run as
find ./etc -exec grep /bin/sh {} \;

The curly braces ({ }) are substituted for the file found by the search, so the actual grep
command would be something like

grep /bin/sh ./etc/filename

The "\;" is a flag saying that this is the end of the command.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

127

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

What the find command does is search for all the files that match the specified criteria then
run grep on the criteria, searching for the pattern [BbJoat. (in this case there were no criteria,
so it found them all)

Do you know what this tells us? It says that there is a file somewhere under the directory
Jletters/taxes that contains either "boat" or "Boat." It doesn’t tell me what the file name is
because of the way the -exec is handled. Each file name is handed off one at a time, replacing
the {}. It is as though we had entered individual lines for

grep [Bb]oat ./letters/taxes/filel
grep [Bb]oat ./letters/taxes/file2
grep [Bb]oat ./letters/taxes/file3

If we had entered
grep [Bb]oat ./letters/taxes/*

grep would have output the name of the file in front of each matching line it found. However,
because each line is treated separately when using find, we don’t see the file names. We could
use the -l option to grep, but that would only give us the file name. That might be okay if there
was one or two files. However, if a line in a file mentioned a "boat trip" or a "boat trailer,"

these might not be what we were looking for. If we used the -l option to grep, we wouldn’t see
the actual line. It's a catch-22.

To get what we need, we must introduce a new command: xargs. By using it as one end of a
pipe, you can repeat the same command on different files without actually having to input the
command multiple times.

In this case, we would get what we wanted by typing
find ./letters/taxes -print | xargs grep [Bb]oat

The first part is the same as we talked about earlier. The find command simply prints all the
names it finds (all of them, in this case, because there were no search criteria) and passes them
to xargs. Next, xargs processes them one at a time and creates commands using grep.
However, unlike the -exec option to find, xargs will output the name of the file before each
matching line.

Obviously, this example does not find those instances where the file we were looking for
contained words like "yacht" or "canoe" instead of "boat." Unfortunately, the only way to

catch all possibilities is to actually specify each one. So, that's what we might do. Rather than
listing the different possible synonyms for boat, lets just take the three: boat, yacht, and canoe.

To do this, we need to run the find | xargs command three times. However, rather than typing
in the command each time, we are going to take advantage of a useful aspect of the shell. In

some instances, the shell knows when you want to continue with a command and gives you a
secondary prompt. If you are running sh or ksh, then this is probably denoted as ">."

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

128

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

For example, if we typed
find ./letters/taxes -print |

the shell knows that the pipe (|) cannot be at the end of the line. It then gives us a > or ?
prompt where we can continue typing

> xargs grep -i boat

The shell interprets these two lines as if we had typed them all on the same line. We can use
this with a shell construct that lets us do loops. This is the for/in construct for sh and ksh, and
the foreach construct in csh. It would look like this:

for j in boat ship yacht > do > find ./letters/taxes -print |
xargs grep -i $j > done

In this case, we are using the variable j, although we could have called it anything we wanted.
When we put together quick little commands, we save ourselves a little typing by using single
letter variables.

In thebash /sh/ksh example, we need to enclose the body of the loop inside the do-done
pair. In thecsh example, we need to include the end. In both cases, this little command we
have written will loop through three times. Each time, the variable $j is replaced with one of
the three words that we used. If we had thought up another dozen or so synonyms for boat,
then we could have included them all. Remember also that the shell knows that the pipe (|) is
not the end of the command, so this would work as well.

for j in boat ship yacht > do > find ./letters/taxes -print | >
xargs grep -i $j > done

Doing this from the command line has a drawback. If we want to use the same command
again, we need to retype everything. However, using another trick, we can save the command.
Remember that both the ksh and csh have history mechanisms to allow you to repeat and edit
commands that you recently edited. However, what happens tomorrow when you want to run
the command again? Granted, ksh hasshehistory file, but what about sh and csh?

Why not save commands that we use often in a file that we have all the time? To do this, you
would create a basic shell script, and we have a whole section just on that topic.

When looking through files, | am often confronted with the situation where | am not just
looking for a single text, but possible multiple matches. Imagine a data file that contains a list
of machines and their various characteristics, each on a separate line, which starts with that
characteristic. For example:

Name: lin-db-01
IP:192.168.22.10
Make: HP

CPU: 700

RAM: 512
Location: Room 3
>

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

129

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

All' I want is the computer name, the IP address and the location, but not the others. | could do
three individual greps, each with a different pattern. However, it would be difficult to make

the association between the separate entries. That is, the first time | would have a list of
machine’s names, the second time a list of IP addresses and the third time a list of locations. |
have written scripts before that handle this kind of situation, but in this case it would be easier
to use a standard Linux commaedrep .

The egrep command is an extension of the basic grep command. (The e’ stands for extended)
In older versions of grep, you did not have the ability to use things like [:alpha:] to represent
alphabetic characters, so extended grep was born. For details on representing characters like
this check out the section in regular expressions.

One extension is the ability to have multiple search patterns that are checked simultaneously.
That is, if any of the patterns are found, the line is displayed. So in the problem above we
might have a command like this:

egrep "Name:|IP:|Location:" FILENAME

This would then list all of the respective linesorder, making association between name and
the other values a piece of cake.

Another variant of grep is fgrep, which interprets the search pattern as dikstatrings,
separated by newlines, any of which is to be matched. On some systems, grep, egrep and
fgrep will all be a hard link to the same file.

| am often confronted with files where | want to filter out the "noise". That is, there is a lot of
stuff in the files that | don’t want to see. A common example, is looking through large shell
scripts or configuration files when | am not sure exactly what | am looking for. | know when |
see it, but to simplgrep for that term is impossible, as | am not sure what it is. Therefore, it
would be nice to ingore things like comments and empty lines.

Once again we could usgrep as there are two expressions we want to match. However,

this type we also use the -v option, which simply flips or inverts the meaning of the match.
Let’'s say there was a start-up script that contained a variable you were looking for, You might
have something like this:

egrep -v ""$|"#" /etc/rc.d/*|more

The first part of the expressions says to match on the beginning of the line (*) followed
immediately by the end of the line ($), which turn out to be all empty lines. The second part of
the expression says to match on all lines that start with the pound-sign (a comment). This ends
up giving me all of the "interesting" lines in the file. The long option is easier to remember:
--invert-match.

You may also run into a case where all you are interested in is which files contain a particular
expression. This is where the -l option comes in (long version: --files-with-matches). For
example, when | made some style changes to my web site | wanted to find all of the files that
contained a table. This means the file had to contain the <TABLE> tag. Since this tag could
contain some options, | was interested in all of the file which contained "<TABLE". This

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

130

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

could be done like this:
grep -| '<TABLE’ FILENAME

There is an important thing to note here. In the section on interpreting the command, we learn
that the shell sets up file redirection before it tries to execute the command. If we don’t
include the less-than symbol in the single quotes, the shell will try to redirect the input from a
file name "TABLE". See the section on quotes for details on this.

The -l option (long version: --files-with-matches) says to simply list the file names. Using the
-L option (long version: --files-without-match) we have the same effect as using both the -v
and the -1 options. Note that in both cases, the lines containing the matchesdisplayed,

just the file name.

Another common option is -q(long: --quiet or --silent). This does not display anything. So,
what'’s the use in that? Well, often, you simply want to know if a particular value exists in a
file. Regardless of the options you use, grep will return O if any matches were found, and 1 if
no matches were found. If you check the $? variable after running grep -q. If it is 0, you found
a match. Check out the section on basic shell scripting for details on the $? and other
variables.

Keep in mind that you do not need to use grep to read through files. Instead, it can be one end
of a pipe. For example, | have a number of scripts that look through the process list to see if a
particular process is running. If so, then | know all is well. However, if the process is not
running, a message is sent to the administrators.

4.20 Basic Shell Scripting

In many of the other sections of the shell and utilities, we talked about a few programming
constructs that you could use to create a quick script to perform some complex task. What if
you wanted to repeat that task with different parameters each time? One simple solution is to
is to re-type everything each time. Obviously not a happy thing.

We could use vi or some other text editor to create the file. However, we could take advantage
of a characteristic of the cat command, which is normally used to output the contents of a file
to the screen. You can also redirect the cat to another file.

If we wanted to combine the contents of a file, we could do something like this:
cat filel file2 file3 >newfile
This would combine filel, file2, and file3 into newfile.

What happens if we leave the names of the source files out? In this instance, our command
would look like this:

cat > newfile

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

131

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Now, cat will take its input from the default input file, stdin. We can now type in lines, one at
a time. When we are done, we tell cat to close the file by sending it an end-of-file character,
Ctrl-D. So, to create the new command, we would issueghecommand as above and type

in our command as the following:

for j in boat ship yacht do find ./letters/taxes -print | xargs
grep -i $j done

<CTRL-D>

Note that here the secondary prompt, >, does not appear because it is cat that is reading our
input and not the shell. We now have a file containing the five lines that we typed in that we
can use as a shell script.

However, right now, all that we have is a file named newfile that contains five lines. We need

to tell the system that it is a shell script that can be executed. Remember in our discussion on
operating system basics that | said that a file’s permissions need to be set to be able to execute
the file. To change the permissions, we need a new command: chmod. (Read as "change
mode" because we are changing the mode of the file.)

The chmod command is used to not only change access to a file, but also to tell the system

that it shouldry to execute the command. | said "try" because the system would read that file,
line-by-line, and would try to execute each line. If we typed in some garbage in a shell script,
the system would try to execute each line and would probably report not found for every line.

To make a file execute, we need to give it execute permissions. To give everyone execution
permissions, you use the chmod command like this:

chmod +x newfile

Now the file newfile has execute permissions, so, in a sense, it is executable. However,
remember that | said the system would read each line. In order for a shell script to function
correctly, it also needs to be readable by the person executing it. In order to read a file, you
need to have read permission on that file. More than likelyalready have read permissions

on the file since you created it. However, since we gave everyone execution permissions, let’s
give them all read permissions as well, like this:

chmod +r newfile

You now have a new command called newfile. This can be executed just like any the system
provides for you. If that file resides in a directory somewhere in your path, all you need to do

is type it in. Otherwise, (as we talked about before) you need to enter in the path as well. Keep
in mind that the system does not need to be able to read binary programs. All it needs to be
able to do is execute them. Now you have your first shell script and your first self-written

UNIX command.

What happens if, after looking through all of the files, you don’t find the one you are looking
for. Maybe you were trying to be sophisticated and used "small aquatic vehicle" instead of
boat. Now, six months later, you cannot remember what you called it. Looking through every
file might take a long time. If only you could shorten the search a little. Because you

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

132

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

remember that the letter you wrote was to the boat dealer, if you could remember the name of
the dealer, you could find the letter.

The problem is that six months after you wrote it, you can no more remember the dealer’'s
name than you can remember whether you called it a "small aquatic vehicle" or not. If you are
like me, seeing the dealer’'s name will jog your memory. Therefore, if you could just look at

the top portion of each letter, you might find what you are looking for. You can take

advantage of the fact that the address is always at the top of the letter and use a command that
is designed to look there. This is the head command, and we use it like this:

find ./letters/taxes -exec head {} \;

This will look at the first 10 (the default for head) lines of each of the files that it finds. If the
addressee were not in the first ten lines, but rather in the first 20 lines, we could change the
command to be

find ./letters/taxes -exec head -20 {} \;

The problem with this is that 20 lines is almost an entire screen. If you ran this, it would be
comparable to running more on every file and hitting g to exit after it showed the first screen.
Fortunately, we can add another command to restrict the output even further. This is the tail
command, which is just the opposite of head as it shows you the bottom of a file. So, if we
knew that the address resided on lines 15-20, we could run a command like this:

find ./letters/taxes -exec head -20 {} \; | tail -5

This command passes the first 20 lines of each file through the pipe, and then tail displays the
last five lines. So you would get lines 15-20 of every file, right? Not quite.

The problem is that the shell sees these addiensThat is, two separate commands: find
Jletters/taxes -exec head -20 {} \; and tail -5. All of the output of the find is sent to the pipe
and it is the last five lines of this that tail shows. Therefore, if the find | head had found 100
files, we would not see the contents of the first 99 files!

The solution is to add two other shell constructs: while and read. The first command carries
out a particular command (or set of commands) while some criteria are true. The read can
read input either from the command line, or as part of a more complicated construction. So,
using cat again to create a command as we did above, we could have something like this:

find ./letters/taxes -print | while read FILE do echo $FILE
head -20 $FILE | tail -5 done

In this example, the while and read work together. The while will continue so long as it can
read something into the variable FILE; that is, so long as there is output coming from find.
Here again, we also need to enclose the body of the loop within the do-done pair.

The first line of the loop simply echoes the name of the file so we can keep track of what file
is being looked at. Once we find the correct name, we can use it as the search criteria for a
find | grep command. This requires looking through each file twice. However, if all you need
to see is the address, then this is a lot quicker than doing a more on every file.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

133

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

If you have read through the other sections, you have a pretty good idea of how commands
can be put together to do a wide variety of tasks. However, to create more complicated scripts,
we need more than just a few commands. There are several shell constructs that you need to
be familiar with to make complicated scripts. A couple (the while and for-in constructs) we
already covered. However, there are several more that can be very useful in a wide range of
circumstances.

There are several things we need to talk about before we jump into things. The first is the idea
of arguments. Like binary programs, you can pass arguments to shell scripts and have them
use these arguments as they work. For example, let's assume we have a script called myscript
that takes three arguments. The first is the name of a directory, the second is a file name, and
the third is a word to search for. The script will search for all files in the directory with any

part of their name being the file name and then search in those files for the word specified. A
very simple version of the script might look like this:

Is $1 | grep $2 | while read file do grep $3 ${1}/${file} done
The syntax is:
myscript directory file_name word

| discussed the while-do-done construct when | discussed different commands like find and
grep. The one difference here is that we are sending the output of a command through a
second pipe before we send it to the while.

This also brings up a new construct: ${1}/${file}. By enclosing a variable name inside of

curly braces, we can combine variables. In this case, we take the name of the directory (${1}),
and tack on a "/" for a directory separator, followed by the name of a file that grep found
(${file}). This builds up the path name to the file.

When we run the program like this
myscript /home/jimmo trip boat

the three arguments /home/jimmo, trip, and boat are assigned to the positional parameters 1, 2,
and 3, respectively. "Positional” because the number they are assigned is based on where they
appear in the command. Because the positional parameters are shell variables, we need to
refer to them with the leading dollar sign ($).

When the shell interprets the command, what is actually run is

Is /home/jimmo | grep trip | while read file do grep boat
/home/jimmo/${file} done

If we wanted, we could make the script a little more self-documenting by assigning the values
of the positional parameters to variables. The new script might look like this:

DIR=$1 FILENAME=$2 WORD=$3 Is -1 $DIR | grep $FILENAME | while
read file do grep $WORD ${DIR}/${file} done

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

134

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

If we started the script again with the same arguments, first /home/jimmo would get assigned
to the variable DIR, trip would get assigned to the variable FILENAME, and boat would get
assigned to WORD. When the command was interpreted and run, it would still be evaluated
the same way.

Being able to assign positional parameters to variables is useful for a couple of reasons. First
is the issue of self-documenting code. In this example, the script is very small and because we
know what the script is doing, we probably would not have made the assignments to the
variables. However, if we had a larger script, then making the assignment is very valuable in
terms of keeping track of things.

The next issue is that it might seem that many older shells can only reference 10 positional
parameters. The first $0 refers to the script itself. What this can be used for, we’ll get to in a
minute. The others, $1-$9, refer to the arguments that are passed to the script. What happens if
you have more than nine arguments? This is where the shift instructions come in. These move
the arguments "down" in the positional parameters list.

For example, let's assume we changed the first part of the script like this:
DIR=%$1 shift FILENAME=$1

On the first line, the value of positional parameter 1 is /home/jimmo and we assign it to the
variable DIR. In the next line, the shift moves every positional parameter down. Because $0
remains unchanged, what was in $1 (/home/jimmo) drops out of the bottom. Now, the value
of positional parameter 1 is trip, which is assigned to the variable FILENAME, and positional
parameter 2 (boat) is assigned to WORD.

If we had 10 arguments, the tenth would initially be unavailable to us. However, once we do
the shift, what was the tenth argument is shifted down and becomes the ninth. It is now
accessible through the positional parameter 9. If we had more than 10, there are a couple of
ways to get access to them. First, we could issue enough shifts until the arguments all moved
down far enough. Or, we could use the fact that shift can take as an argument the number of
shifts it should do. Therefore, using

shift 9
makes the tenth argument positional parameter 1.

What about the other nine arguments? Are they gone? If you never assigned them to a
variable, then yes, they are gone. However, if you assigned them to a Vagfainéou

made the shift, you still have access to their values. New versions of many shells (such as
bash) can handle greater number of position parameters.

However, being able to shift positional parameters comes in handy in other instances, which
brings up the issue of a new parameter: $*. This parameter refers to all the positional
parameters (except $0). So, we had 10 positional parameters and did a shift 2 (ignoring
whatever we did with the first two), the parameter $* would contain the value of the last eight
arguments.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

135

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

In our sample script above, if we wanted to search phraseand not just a single word, we
could change the script to look like this:

DIR=$1 FILENAME=$2 shift 2 WORD=%* Is -1 $DIR | grep $FILENAME
| while read file do grep "$WORD" ${DIR}/${file} done

The first change was that after assigning positional parameters 1 and 2 to variables, we shifted
twice, effectively removing the first two arguments. We then assigned the remaining

argument to the variable WORD (WORD=$*). Because this could have been a phrase, we
needed to enclose the variable in double-quotes ("$WORD"). Now we can search for phrases
as well as single words. If we did not include the double quotes, the system would view our
entry as individual arguments to grep.

Another useful parameter keeps track of the total number of parameters: $#. In the previous
script, what would happen if we had only two arguments? The grep would fail because there
would be nothing for it to search for. Therefore, it would be a good thing to keep track of the
number of arguments.

We need to first introduce a new construct: if-then-fi. This is similar to the while-do-done
construct, where the if-fi pair marks the end of the block (fi is simply if reversed). The
difference is that instead of repeating the commands within the block while the specific
condition is true, we do it only once, if the condition is true. In general, it looks like this:

if [condition] then do something fi

The conditions are all defined in the test man-page. They can be string comparisons,
arithmetic comparisons, and even conditions where we test specific files, such as whether the
files have write permission. Check out the test man-page for more examples.

Because we want to check the number of arguments passed to our script, we will do an
arithmetic comparison. We can check if the values are equal, the first is less than the second,
the second is less than the first, the first is greater than or equal to the second, and so on. In
our case, we want to ensure that thereaiteastthree arguments, because having more is

valid if we are going to be searching for a phrase. Therefore, we want to compare the number
of arguments and check if it is greater than or equal to 3. So, we might have something like
this:

if [$# -ge 3] then body_of_script fi

If we have only two arguments, the test inside the brackets is false, the if fails, and we do not
enter the loop. Instead, the program simply exits silently. However, to me, this is not enough.
We want to know what’s going on, therefore, we use another construct: else. When this
construct is used with the if-then-fi, we are saying that if the test evaluates to true, do one
thing; otherwise, do something else. In our example program, we might have something like
this:

if [$# -ge 3]
then
DIR=%$1
FILENAME=%$2

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

136

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

shift 2
WORD=%*
Is -1 $DIR | grep $FILENAME | while read file
do
grep "$WORD" ${DIR}/${file}
done
else
echo "Insufficient number of arguments"
fi

If we only put in two arguments, the if fails and the commands between the else and the fi are
executed. To make the script a little more friendly, we usually tell the user what the correct
syntax is; therefore, we might change the end of the script to look like this:

else echo "Insufficient number of arguments" echo "Usage: $0
<directory> <file_name> <word>" fi

The important part of this change is the use of the $0. As | mentioned a moment ago, this is
used to refer to the program itself not just its name, but rather the way it was called. Had we
hard-coded the line to look like this

echo "Usage: myscript <directory> <file_name> <word>"

then no matter how we started the script, the output would always be
Usage: myscript <directory> <file_name> <word>>

However, if we used $0 instead, we could start the program like this
/homel/jimmo/bin/myscript /home/jimmo file

and the output would be

Usage: /home/jimmo/bin/myscript <directory> <file_name>
<word>>

On the other hand, if we started it like this
Jbin/myscript /home/jimmo file

the output would be

Usage: ./bin/myscript <directory> <file_name> <word>>

One thing to keep in mind is that the else needs to be within the matching if-fi pair. The key
here is the wordhatching We could nest the if-then-else-fi several layers if we wanted. We
just need to keep track of things. The key issues are that the ending fi matdhstfitaad

the else is enclosed within an if-fi pair. Here is how multiple sets might look:

if [$condition1 = "TRUE"] then if [$condition2 = "TRUE"]
then if [$condition3 = "TRUE"] then echo "Conditions 1, 2 and
3 are true" else echo "Only Conditions 1 and 2 are true" fi

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

137

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

else echo "Only Condition 1 is true" fi else echo "No
conditions are true" fi

This doesn’t take into account the possibility that conditionl is false, but that either
condition2 or condition3 is true or that conditions 1 and 3 are true, but 2 is false. However,
you should see how to construct nested conditional statements.

What if we had a single variable that could take on several values? Depending on the value
that it acquired, the program would behave differently. This could be used as a menu, for
example. Many system administrators build such a menu into their user’s .profile (or .login)
so that they never need to get to a shell. They simply input the number of the program that
they want to run and away they go.

To do something like this, we need to introduce yet another construct: the case-esac pair. Like
the if-fi pair, esac is the reverse of case. So to implement a menu, we might have something
like this:

read choice case $choice in a) program1l;; b) program2;; c)
program3;; *) echo "No such Option";; esac

If the value of choice that we input is a, b, or ¢, the appropriate program is started. The things
to note are the in on the first line, the expected value that is followed by a closing parenthesis,
and that there are two semi-colons at the end of each block.

It is the closing parenthesis that indicates the end of the possibilities. If we wanted, we could
have included other possibilities for the different options. In addition, because the double
semi-colons mark the end of the block, we could have simply added another command before
we got to the end of the block. For example, if we wanted our script to recognized either
upper- or lowercase, we could change it to look like this:

read choice case $choice in aJA) programl program?2 program3;;
b|B) program?2 program3;; c|C) program3;; *) echo "No such
Option";; esac

If necessary, we could also include a range of characters, as in

case $choice in [a-z]) echo "Lowercase";; [A-Z]) echo
"Uppercase";; [0-9]) echo "Number";; esac

Now, whatever is called as the result of one of these choices does not have to be a UNIX
command. Because each line is interpreted as if it were executed from the command line, we
could have included anything as though we had executed the command from the command
line. Provided they are known to the shell script, this also includes aliases, variables, and even
shell functions.

A shell function behaves similarly to functions in other programming languages. It is a
portion of the script that is set off from the rest of the program and is accessed through its
name. These are the same as the functions we talked about in our discussion of shells. The
only apparent difference is that functions created inside of a shell script will disappear when
the shell exits. To prevent this, start the script with a . (dot).

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

138

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

For example, if we had a function inside a script called myscript, we would start it like this:
Jmyscript

One construct that | find very useful is select. With select, you can have a quick menuing
system. It takes the form

select name in word1 word?2 ... do list done

where each word is presented in a list and preceded by a number. Inputting that number sets
the value ohameto the word following that number. Confused? Lets look at an example.
Assume we have a simple script that looks like this:

select var in date "Is -I" w exit do $var done
When we run this script, we get
1) date 2) Is -I 3) w 4) exit #7?

The "#?" is whatever you have defined as the PS3 (third-level prompt) variable. Here, we
have just left it at the default, but we could have set it to something else. For example:

export PS3="Enter choice: "

This would make the prompt more obvious, but you need to keep in mind that PS3 would be
valid everywhere (assuming you didn’t set it in the script).

In our example, when we input 1, we get the date. First, however, the word "date" is assigned
to the variable "var." The single line within the list expands that variable and the line is
executed. This gives us the date. If we were to input 2, the variable "var" would be assigned
the word "Is -I" and we would get a long listing of the current directory (not where the script
resides). If we input 4, when the line was executed, we would exit from the script.

In an example above we discussed briefly the special parameter $#. This is useful in scripts, as
it keeps track of how many positional parameters there were and if there are not enough, we
can report an error. Another parameter is $*, which contains all of the positional parameters.

If you want to check the status of the last command you execute using the $? variable.

The process ID of the current shell is stored in the $$ parameter. Paired with this is the $!
parameters, which is the process ID of the last command executed in the background.

One thing | sort of glossed over up to this point was the tests we made in the if-statements in
the examples above. In one case we had this:

if [$# -ge 3]

As we mentioned, this checks the number of command-line arguments ($#) and tests whether
it is greater than or equal to 3. We could have written it like this:

if test $# -ge 3

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

139

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

With the exact same result. In the case of the bash, both [and test are built into the shell.
However, with other shells, they are external commands (however they are typically
together). If you look at either the test or bash man-page, you will see that there are many
more things we can test. In our examples, we were either testing two strings or testing
numerical values. We can also test many different conditions related to files, not just variables
as we did in these examples.

It is common with many of the system scripts (i.e. those under /etc/rc.d) that they will first test
if a particular file exists before proceeding. For example, a script might want to test if a
configuration file exists. If so, it will read that file and use the values found in that file.
Otherwise it will use default values. Sometimes these scripts will check whether a file exists
and is executable. In both cases, a missing file could mean an error occurred or simply that a
particular package was not installed.

4.21 Managing Scripts

A very common use of shell scripts that you write is to automate work. If you need to run the
command by hand each time, it often defeats the intent of the automation. Therefore, it is also
very common that commands are started from cron.

As Murphy’s Law would have it, sometimes something will prevent the script from ending.
However, each time cron starts, a new process is started, so you end up with dozens, if not
hundreds of processes. Depending on the script, this could have a dramatic effect on the
performance of your system. The solution is to make sure that the process can only start once,
or if it is already running, you want to stop any previous instances.

So, the first question is how to figure out what processes are running, which is something we
go into details about in another section. In short, you can use the ps command to see what
processes are running:

pS aux | grep your_process_name | grep -v grep

Note that when you run this command, it will also appear in the process table. Since your
process name is an argument todhep command, grep ends up finding itself. The grep -v
grep says to skip entries that containing the word "grep" which means you do not find the
command you just issued. Assuming that the script is only startectfoom, the only entries
found will be those started by cron. If the return code of the command is 1, you know the
process is running (or at least grep found a match.)

In your script, you check for the return code and if it is 1, the script exits, otherwise it does the
intended work. Alternatively, you can make the assumption that if it is still running, there is a
problem and you want to kill the process. You couldpssggrep , andawk to get the PID

of that processes (or even multiple processes). However, it is a lot easier upidgfthe
command. You end up with something like this:

kill ‘pidof your_process_name"

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

140

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

The problem with that is the danger of killing a process that you hadn’t intended. Therefore,
you need to be sure that you Kkill the correct process. This is done by storing the PID of the
process in a file and then checking for the existence of that file each time your scripts starts. If
the file does not exist, it is assumed the process is not running, so the very next thing the
script does is create the PID file. This could be done like this:

echo $$ > PID_file

This is already done by many system processes and typically these files are stored in
/var/run and have the ending .pid. Therefore, the file containing the PID of your HTTP
server igvar/run/httpd.pid . You can then be sure you get the right process with a
command like this:

kill ‘cat PID_file*

Note that in your script, you should first check for the existence of the PID file before you try

to Kkill the process. If the process does not exist, but the PID file does, maybe the process died.
Depending on how long ago the process died, it is possible that the PID has been re-used and
now belongs to a completely different process. So as an added safety measure you could
verify that the PID belongs to the correct process.

To get some ideas on how existing scripts manage processes take a look at the init scripts in
/etc/rc.d

Details on if-then constructs in scripts can be found here.
Details on using back-quotes can be found here.
Details on file redirection can be found here.

4.22 Shell Odds and Ends

This section includes a few tidbits that | wasn’t sure where to put.

You can get the shell to help you debug your script. If you place set -x in your script, each
command with its corresponding arguments is printed as it is executed. If you want to just
show a section of your script, include the set -x before that section, then another set +x at the
end. The set +x turns off the output.

If you want, you can capture output into another file, without having it go to the screen. This

is done using the fact that output generated as a result of the set -x is going to stderr and not
stdout. If you redirect stdout somewhere, the output from set -x still goes to the screen. On the
other hand, if you redirect stderr, stdout still goes to your screen. To redirect sterr to a file
start, the script like this:

mscript 2>/tmp/output
This says to send file descriptor 2 (stderr) to the/titlgp/output

To create a directory that is several levels deep, you do not have to change directories to the
parent and then run mkdir from there. The mkdir command takes as an argument the path

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

141

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

name of the directory you want to create. It doesn’t matter if it is a subdirectory, relative path,
or absolute path. The system will do that for you. Also, if you want to create several levels of
directories, you don’t have to make each parent directory before you make the subdirectories.
Instead, you can use the -p option to mkdir, which will automatically create all the necessary
directories.

For example, imagine that we want to create the subdirectory
Jletters/personal/john , but the subdirectory letters does not exist yet. This also
means that the subdirectory personal doesn’t exist, either. If wakdin like this:

mkdir -p ./letters/personal/john

then the system will creatdetters , then./letters/personal , and then
Jletters/personal/john

Assume that you want to remove a file that has multiple links; for example, assume that Is, Ic,
Ix, If, etc., are links to the same file. The system keeps track of how many names reference the
file through the link count (more on this concept later). Such links are called hard links. If you
remove one of them, the file still exists as there are other names that reference it. Only when
we remove the last link (and with that, the link count goes to zero) will the file be removed.

There is also the issue of symbolic links. A symbolic link (also called a soft link) is nothing
more than a path name that points to some other file, or even to some directory. It is not until
the link is accessed that the path is translated into the "real” file. This has some interesting
effects. For example, if we create a link like this

In -s /home/jimmol/letter.john /home/jimmo/text/letter.john

you would see the symbolic link as something like this:

drw-r--r-- 1 jimmo support 29 Sep 15 10:06 letter.john-> /home/jimmo/letter.john>

Then,the fileelhome/jimmo/text/letter.john is a symbolic link to
/home/jimmol/letter.john . Note that the link count on

/home/jimmol/letter.john doesn’t change, because the system sees these as two
separate files. It is easier to think of the fdi@me/jimmo/text/letter.john as a

text file that contains the path Aimome/jimmol/letter.john . If we remove
/home/jimmol/letter.john , ’Thnome/jimmol/text/letter.john will still exist.
However, it will point to something that doesn’t exist. Even if there are other hard links that
point to the same file likbhome/jimmo/letter.john , that doesn’t matter. The

symbolic link,/home/jimmo/text/letter.john , points to thepath
/home/jimmol/letter.john . Because the path no longer exists, the file can no longer

be accessed via the symbolic link. It is also possible for you to create a symbolic link to a file
that doeshot exist, as the system does not check until you access the file.

Another important aspect is that symbolic links can extend across file systems. A regular or
hard link is nothing more than a different name for the same physical file and used the same
inode number. Therefore it must be on the same filesystem. Symbolic links contain a path, so
the destination can be on another filesystem (and in some cases on another machine). For

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

142

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

more on inodes, see the section on filesystems.

The file command can be used to tell you the type of file. With DOS and Windows, it’s fairly
obvious by looking at the file’s extension to determine the files type. For example, files
ending in .exe are executables (programs), files ending in .txt are text files, and files ending in
.doc are documents (usually from some word processor). However, a program in UNIX can
just as easily have the ending .doc or .exe, or no ending at all.

The file command uses the filetc/magic to make an assumption about the contents of a
file. The file command reads the header (first part of the file) and uses the information in
/etc/magic to make its guess. Executables of a specific type (a.out, ELF) all have the same
basic format, so file can easily recognize them. However, there are certain similarities
between C source code, shell scripts, and even text files that could confuse file.

For a list of some of the more commonly used commands, take a look here.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

143

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Chapter 5 Editing Files

Because my intent here is not to make you sheinde programming experts, there are
obviously things that we didn’t have a chance to cover. However, | hope | have given you the
basics to create your own tools and configure at least your shell environment the way you
need or want it.

Like any tool or system, the way to get better is to practice. Therefore, my advice is that you
play with the shell and programs on the system to get a better feeling for how they behave. By
creating your own scripts, you will become more familiar with bothand shell script

syntax, which will helpyou to create your own tools and understand the behavior of the
system scripts. As you learn more, you can add awk and sed components to your system to
make some very powerful commands and utilities.

5.1 Vi

No one can force you to learn vi, just as no one can force you to do backups. However, in my
opinion, doing both will make you a better administrator. There will come a time when having
done regular backups will save your career. There may also come a time when knowing vi
will save you the embarrassment of having to tell your client or boss that you can’t
accomplish a task because you need to edit a file and the only editor is the system default: vi.

On the other hand it is my favorite editor. In fact, most of my writing is done using vi. That
includes both books and articles. | find it a lot easier than using a so-called wysiwyg editor as
I generally don’t care what the text is going to look like as my editors are going to change the
appearance anyway. Therefore, whether | am writing on Linux, Solaris, or even Windows, |
have the same, familiar editor.

Then there is the fact that the files edited with vi are portable to any word processor,
regardless of the operating system. Plus it makes making global changes a whole lot easier.

5.1.1 vi Basics

The uses and benefits of any editor like vi are almost religious. Often, the reasons people
choose one editor over another are purely a matter of personal taste. Each offers its own
advantages and functionality. Some versions of UNIX provide other editors, such as emacs.
However, the nice thing about vi is that every dialect of UNIX has it. You can sit down at any
UNIX system and edit a file. For this reason more than any other, | think it is worth learning.

One problem vi has is that can be very intimidating. | know, | didn’t like it at first. |

frequently get into discussions with people who have spent less than 10 minutes using it and
then have ranted about how terrible it was. Often, | then saw them spending hours trying to
find a free or relatively cheap add-on so they didn’t have to learn vi. The problem with that
approach is that if they has spent as much time learning vi as they did trying to find an
alternative, they actually could have become quite proficient with vi.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

144

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

There is more to vi than just its availability on different UNIX systems. To me, vi is magic.
Once you get over the initial intimidation, you will see that there is a logical order to the way
the commands are laid out and fit together. Things fit together in a pattern that is easy to
remember. So, as we get into it, let me tempt you a little.

Among the "magical” things vi can do:

Automatically correct words that you misspell often

Accept user-created vi commands

Insert the output of UNIX commands into the file you are editing
Automatically indent each line

Shift sets of lines left or right

Check for pairs of {}, and [] great for programmers
Automatically wrap around at the end of a line

Cut and paste between documents

| am not going to mention every single vi command. Instead, | am going to show you a few
and how they fit together. At the end of this section, there is a table containing the various
commands you can use inside vi. You can then apply the relationships to the commands |
don’t mention.

To see what is happening when you enter commands, first find a file that you can poke around
in. Make a copy of the termcap file /etc/termcap in a temporary directory and then edit it cd
/tmp; cp /etc/termcap . ; vi termcap. The termcap file contains a list of the capabilities of
various terminals. It is usually quite large and gives you a lot of things to play with in vi.

Before we can jump into the more advanced features of vi, | need to cover some of the basics.
Not command basics, but rather some behavioral basics. In vi, there are two modes: command
mode and input mode. While you are in command mode, every keystroke is considered part of
a command. This is where you normally start when you first invoke vi. The reverse is also

true. While in input mode, everything is considered input.

Well, that isn't entirely true and we’ll talk about that in a minute. However, just remember

that there are these two modes. If you are in command mode, you go into input mode using a
command to get you there, such as append or insert I'll talk about these in a moment. If you
want to go from input mode to command mode, press Esc.

When vi starts, it goes into full-screen mode assuming your terminal is set up correctly and it
essentially clears the screen see the following image. If we start the command as

vi search

at the bottom of the screen, you see

"search" [New File]>

Your cursor is at the top left-hand corner of the screen, and there is a column of tildes ~ down
the left side to indicate that these lines are nonexistent.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

145

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

In the image below we see a vi session started from a terminal window running under
X-Windows. This is essentially the same thing you will see when starting vi from any
command line.

E B Konsole L =
File Sessions Setlings Help

"gearch" [Mew File] 0.0-1 All :
(3 o [orsoe |

Image - Main vi window.

As with most text editors or word processors, vi gives you the ability to save the file you are
editing without stopping the program. To issue the necessary command we first input a colon :
when in command mode. When then press w for write and the press the entry key. This might
look like the following figure:

:wl H
Ij NEWJ @Kunsule @Shell Mo 2 |

Image - Writing a file in vi.

After you press the enter key, you end up with something like the following image:

"search" 13L. 95C written 13.0-1 ALl

Ij NewJ @Knnsnle @Shell Mo 2

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

146

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Image - Writing a file in vi.

If you are editing a file that already existing and try to save it like this, you may get an error
message that says the file is read only. You will also get this message, when trying to save a
file from "view", which is the "read-only" version of vi. To force the file to be written, you
follow the w with an exclamation mark. :w!

The ex-mode or command mode also allows you to do many other things with the file itself.
Among them are

:q to quit the file :q! if the file has been changed and you don’t want to save the changes
‘w(to write the file and quit

‘e to edit a new file or even the same file

'r to read in a new file starting at the current location

5.1.2 Changing Text in vi

In addition to "standard" editing, there are a several special editing commands. Pressing dd
will delete the entire line you are on; 5dd would then delete five complete lines. To open up a
line for editing, we press o to open the line after the line you are currently on and O for the
line before. Use x to delete the character (including numbers) that the cursor is on.

When we want to move something we just deleted, we put the cursor on the spot where we
want it. Then press either p poit that text after the current cursor position or pubit

before the current position. A nice trick that | always use to swap characters is xp. The x
deletes the character you are on and the p immediately inserts it. The result is that you swap
characters. So if | had typed the word "into" as "inot," | would place the cursor on the "o" and
type xp, which would swap the "o" and the "t."

To repeat the edit we just did, be it deleting 18 lines or inputting "I love you," we could do so

by pressing "." (dot) from command mode. In fact, any edit command can be repeated with
the dot.

To make a change, press c followed by a movement command or number and movement
command. For example, to change everything from where you are to the next word, press cw.
To change everything from where you are to the end of the line, press C or c$. If you do that,
then a dollar sign will appear, indicating how much you intend to change.

If we go back into command mode (press Esc) before we reach the dollar sign, then
everything from the current position to the dollar sign is removed. When you think about this,
it is actually logical. By pressing C, you tell vi that you want to change everything to the end
of the line. When you press Enter, you are basically saying that you are done inputting text;
however, the changes should continue to the end of the line, thereby deleting the rest of the
line.

To undo the last edit, what would we press? Well, whats the first letter of the word "undo”?
Keep in mind that pressing u will only undo the last change. For example, lets assume we
enter the following:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

147

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

o to open a new line and go into input mode
I love

Esc to go back to command mode

a to append from current location

you

Esc to return to command mode

The result of what we typed was to open a new line with the text "l love you." We see it as
one change, but from the perspective of vi, two changes were made. First we entered "l love,"
then we entered "you." If we were to press u, only "you" would be removed. However, if u
undoes that last change, what command do you think returns the line to its original state?
What else: U. As you are making changes, vi keeps track of the original state of a line. When
you press U, the line is returned to that original state.

If you want to replace all of the text on the current line, you could simply delete the line and
insert a new one. However, you could aisplacethe existing line by using the R (for

replace) command. This puts vi into replace mode and each character you type replaces the
existing characters as you write.

5.1.3 Moving Around in vi

Most editing and movement commands are single letters and are almost always the first letter
of what they do. For example, to insert text at your current cursor position, press i. To append
text, press a. To move forward to the beginning of the next word, press w. To move back to
the beginning of the previous word, press b.

The capital letter of each command has a similar behavior. Use | to insert at the beginning of a
line. Use A to start the append from the end of the line. To move "real" words, use W to move
forward and B to move back.

Real words are those terminated by whitespaces (space, tab, newline). Assume we wanted to
move across the phrase ’static-free bag'. If we start on the ’s’, pressing 'w’, will move me to
the ’-’. Pressing 'w’ again, we move to the 'f and then to the 'b’. If we are on the 's’ and

press 'W’, we jump immediately to the 'b’. That is, to the next "real" word.

Moving in vi is also accomplished in other ways. Depending on your terminal type, you can
use the traditional method of arrow keys to move within the file. If vi doesn’t like your
terminal type, you can use the keys h-j-k-1. If we want to move to the left we press 'h’. If you
think about it, this make sense since ’'h’ is on the left end of these four characters. To move
right, press I. Again, this makes sense as the 'l is on the right end.

Movement up and down is not as intuitive. One of the two remaining characters (j and k) will
move us up and the other will move us down. But which one moves in which direction?
Unfortunately, | don’t have a very sophisticated way of remembering. If you look at the two
letters physically, maybe it helps. If you imagine a line running through the middle of these

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

148

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

characters, then you see that j hangs down below that line. Therefore, use j to move down. On
the other hand, k sticks up above the middle, so we use k to move up. However, in most cases,
the arrow keys will work, so you won't need to remember. But it is nice to know them, as you
can then leave your fingers on the keyboard.

As | mentioned, some keyboard types will allow you to use the arrow keys. However, you
might be surprised by their behavior in input mode. This is especially true if you are used to a
word processor where the arrow and other movement keys are the same all the time. The
problem lies in the fact that most keyboards actually send more than one character to indicate
something like a left-arrow or page-up key. The first of these is normally an escape (Esc).
When you press one of these characters in input mode, the Esc is interpreted as your wish to
leave input mode.

If we want to move to the first character on a line, we press '0’ (zero) or ''. To move to the

last character, press $. Now, these are not intuitive. However, if you think back to our
discussion on regular expressions, you’ll remember that » (caret) represents the beginning of a
line and $ (dollar sign) represents the end of a line. Although, these two characters do not
necessarily have an intuitive logic, they do fit in with other commands and programs that you
find on a Linux system.

We can also take advantage of the fact that vi can count as well as combine movement with
this ability to count. By pressing a number before the movement command, vi will behave as
if we had pressed the movement key that many times. For example, 4w will move us forward
four words or 6j will move us six lines down.

If we want to move to a particular line we input the number and G. So, to move to line 43, we
would press 42G, kind of like 42-Go! If instead of G we press Enter, we would move ahead
that many lines. For example, if we were on line 85, pressing 42 and Enter would put us on
line 127. (No, you don’t have to count lines; vi can display them for you, as we’ll see in a
minute.)

As you might have guessed, we can also use these commands in conjunction with the
movement keys (all except Ctrl-u and Ctrl-d). So, to delete everything from your current
location to line 83, we would input d83G. (Note that delete begins with d.) Or, to change
everything from the current cursor position down 12 lines, we would input c12+ or press c12
Enter.

5.1.4 Searching in vi

If you are trying to find a particular text, you can get vi to do it for you. You tell vi that you
want to enter a search pattern by pressing / (slash). This will bring you down to the bottom
line of the screen where you will see your slash. You then can type in what you want to look
for. When you press Enter, vi will start searching from your current location down toward the
bottom of the file. If you use press ? instead of /, then vi will search from your string toward
the top of the file.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

149

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

If the search is successful, that is, the string is found, you are brought to that point in the text.
If you decide that you want to search again, you have three choices. You can press ? or / and
input the search string again; press n, which is the first letter of the word "next"; or simply
press ? or / with no text following it for vi to continue the search in the applicable direction. If
you wanted to find the next string that matches but in the opposite direction, what do you
think the command would be? (Hint: the capital form of the "next" command.)

Once you have found what you are looking for, you can edit the text all you want and then
continue searching. This is because the search string you entered is kept in a buffer. So, when
you press /, ?, n, or N, the system remembers what you were looking for.

You can also include movement commands in these searches. First, you enclose the search
pattern with the character used to search (/ or ?), then add the movement command. For
example, if you wanted to search backward for the phrase "hard disk" and then move up a
line, you would enter ?hard disk?-. If you wanted to search forward for the phrase "operating
system™ and then move down three lines, you would enter /operating system/+3.

All this time, we have been referring to the text patterns as search strings. As you just saw,
you can actually enter phrases. In fact, you can use any regular expression you want when
searching for patterns. For example, if you wanted to search for the pattern "Linux," but only
when it appears at the beginning of a line, you would enter /ALinux. If you wanted to search
for it at the end of the line, you would enter /Linux$.

You can also do more complicated searches such as /*new [Bb][Oo][Aa][Tt], which will
search for the word "new" at the beginning of a line, followed by the word "boat" with each
letter in either case.

No good text editor would be complete without the ability to not only search for text but to
replace it as well. One way of doing this is to search for a pattern and then edit the text.
Obviously, this starts to get annoying after the second or third instance of the pattern you want
to replace. Instead, you could combine several of the tools you have learned so far.

For example, lets say that everywhere in the text you wanted to replace "Unix" with "UNIX."
First, do a search on Unix with /Unix, tell vi that you want to change that word with cw, then
input UNIX. Now, search for the pattern again with /, and simply press . (dot). Remember that
the dot command repeats your last command. Now do the search and press the dot command
again.

Actually, this technique is good if you have a pattern that you want to replace, but not every
time it appears. Instead, you want to replace the pattern selectively. You can just press n (or
whatever) to continue the search without carrying out the replacement.

What if you know that you want to replace every instance of a pattern with something else?
Are you destined to search and replace all 50 occurrences? Of course not. Silly you. There is
another way.

Here | introduce what is referred to as escape or ex-mode, because the commands you enter
are the same as in the ex editor. To get to ex-mode, press : (colon). As with searches, you are
brought down to the bottom of the screen. This time you see the : (colon). The syntax is

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

150

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

: <scope> <command>
An example of this would be:
:45,100s/Unix/UNIX/

This tells vi the scope is lines #%rough100. The command is s/Unix/UNIX/, which says

you want to substitute (s) the first pattern (Unix) with the second pattern (UNIX). Normally in
English, we would say "substitute UNIX for Unix." However, the order here is in keeping
with the UNIX pattern of source first, then destination (or, what it was is first, and what it will
become is second, like mv source destination).

Note that this only replaces the first occurrence on each line. To get all occurrences, we must
include g for global at the end of each line, like this:

:45,100s/Unix/UNIX/g

A problem arises if you want to modify only some of the occurrences. In this instance, you
could add the modifier ¢ for confirm. The command would then look like this:

:45,100s/Unix/UNIX/gc
This causes vi to ask for confirmation before it makes the change.

If you wanted to search and replace on every line in the file, you could specify every line,

such as :1,48., assuming there were 48 lines in the file. (By the way, use Citrl-g to find out
what line you are on and how many lines there are in the file.) Instead of checking how many
lines there are each time, you can simply use the special character $ to indicate the end of the
file. (Yes, $ also means the end of the line, but in this context, it means the end of the file.)
So, the scope of the command would look like :1,$.

Once again, the developers of vi made life easy for you. They realized that making changes
throughout a file is something that is probably done a lot. They included a special character to
mean the entire file: %. Therefore, the command is written as % = 1,$.

Here again, the search patterns can be regular expressions. For example, if we wanted to
replace every occurrence of "boat” (in either case) with the word "ship," the command would
look like this:

:%s/[Bb][Oo][Aa][Tt])/ship/g

As with regular expressions in other cases, you can use the asterisk (*) to mean any number of
the preceding characters or a period (.) to mean any single character. So, if you wanted to look
for the word "boat" (again, in either case), but only when it was at the beginning of a line and
only if it were preceded by at least one dash, the command would look like this:

:%s/"--*[Bb][O0][Aa][Tt]/ship/g

The reason you have two dashes is that the search criteria spatciéastone dash. Because
the asterisk can kenynumber, including zero, you must consider the case where it would
mean zero. That is, where the word "boat" was at the beginning of a line and there were no

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

151

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

spaces. If you didn’t care what the character was as long as there was at least one, you could
use the fact that in a search context, a dot means any single character. The command would
look like this:

:%s/..*[Bb][O0][Aa][Tt]/ship/g

5.1.5 vi Buffers

Remember when we first starting talking about searching, | mentioned that the expression you
were looking for was held in a buffer. Also, whatever was matched by /[Bb][Oo0][Aa][Tt] can

be held in a buffer. We can then use that buffer as part of the replacement expression. For
example, if we wanted to replace every occurrence of "UNIX" with "Linux,"” we could do it

like this:

:%s/UNIX/Linux/g

The scope of this command is defined by the %, the shortcut way of referring to the entire
text. Or, you could first save "UNIX" into a buffer, then use it in the replacement expression.
To enclose something in a buffer, we enclose it within a matching pair of back slashes \(and
\) to define the extent of a buffer. You can even have multiple pairs that define the extent of
multiple buffers. These are reference by \#, where # is the number of the buffer.

In this example
:%s/\(UNIX\)/Linux \1/g

the text "UNIX," is placed into the first buffer. You then reference this buffer with \1 to say to
vi to plug in the contents of the first buffer. Because the entire search pattern is the same as
the pattern buffer, you could also have written it like this

:%s/N\(UNIX\)/Linux &/g
in which the ampersand represents the entire search pattern.

This obviously doesn’t save much typing. In fact, in this example, it requires more typing to
save "UNIX" into the buffer and then use it. However, if what you wanted to save was longer,
you would save time. You also save time if you want to use the buffer twice. For example,
assume you have a file with a list of other files, some of them C language source files. All of
them end in .c. You now want to change just the names of the C files so that the ending is
"old" instead of .c. To do this, insert mv at the beginning of each line as well as produce two
copies of the file name: one with .c and one with .old. You could do it like this:

:%s/M(.*\)\.c/mv \1.c \1.0ld/g
In English, this line says:

e For every line (%)

e substitute (s)

e for the pattern starting at the beginning of the line (*), consisting of any number of
characters (\(.*\)) (placing this pattern into buffer #1) followed by .c

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

152

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

e and use the pattern mv, followed by the contents of buffer #1 (\1), followed by a .c, which
is again followed by the contents of buffer #1, (\1) followed by .old
e and do this for every line (g), (i.e., globally)

Now each line is of the form

mv file.c file.old >

Note the slash preceeding the dot in the expression "\.c". The slash "protects” the dot from
being interpreted as the metacharacter for "any character". Instead, you want to search for a
literal dot, so you need to protect it.

We can now change the permissions to make this a shell script and execute it. We would then
move all the files as described above.

Using numbers like this is useful if there is more that one search pattern that you want to
process. For example, assume that we have a three-column table for which we want to change
the order of the columns. For simplicity’s sake, lets also assume that each column is separated
by a space so as not to make the search pattern too complicated.

Before we start, we need to introduce a new concept to vi, but one that you have seen before: [
]. Like the shell, the square bracket pair ([]) of vi is used to limit sets of characters. Inside of
the brackets, the caret (") takes on a new meaning. Rather than indicating the beginning of a
line, here it negates the character we are searching for. So we could type

%sN\([™) \([* 1)
\([* VA3 \1\2/g

Here we have three regular expressions, all referring to the same thing: \([*]*\). As we
discussed above, the slash pair \(and \) delimits each of the buffers, so everything inside is the
search pattern. Here, we are searching for []*, which is any number of matches to the set
enclosed within the brackets. Because the brackets limit a set, the set is #, followed by a
space. Because the ” indicates negation, we are placing any number of characterstthat is
space into the buffer. In the replacement pattern, we are telling vi to print pattern3, a space,
patternl, another space, then pattern2.

In the first two instances, we followed the pattern with a space. As a result, those spaces were
not saved into any of the buffers. We did this because we may have wanted to define our
column separator differently. Here we just used another space.

| have often had occasion to want to use the pattern buffers more than once. Because they are
not cleared after each use, you can use them as many times as you want. Using the example
above, if we change it to

%sN([™ ¥V \([* TV \([* T*OA3\1\2 \1/g
we would get pattern3, then patternl, then pattern2, and at the end, patternl again.

Believe it or not, there are still more buffers. In fact, there are dozens that we haven't touched
on. The first set is the numbered buffers, which are numbered 1-9. These are used when we
delete text and they behave like a stack. That is, the first time we delete something, say a

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

153

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

word, it is placed in buffer number 1. We next delete a line that is placed in buffer 1 and the
word that was in buffer 1 is placed in buffer 2. Once all the numbered buffers all full, any new
deletions push the oldest ones out the bottom of the stack and are no longer available.

To access these buffers, we first tell vi that we want to use one of the buffers by pressing the
double-quote (). Next, we specify then the number of the buffer, say 6, then we type either p
or P to put it, as in "6p. When you delete text and then do a put without specifying any buffer,
it automatically comes from buffer 1.

There are some other buffers, in fact, 26 of them, that you can use by name. These are the
named buffers. If you can’t figure out what their names are, think about how many of them
there are (26). With these buffers, we can intentionally and specifically place something into a
particular buffer. First, we say which buffer we want by preceding its name with a
double-quote ("); for example, "f. This says that we want to place some text in the named
buffer f. Then, we place the data in the buffer, for example, by deleting an entire line with dd
or by deleting two words with d2w. We can later put the contents of that buffer with "fp. Until
we place something new in that buffer, it will contain what we originally deleted.

If you want to put something into a buffer without having to delete it, you can. You do this by
"yanking it." To yank an entire line, you could done one of several things. First, there is yy.
Next, Y. Then, you could use y, followed by a movement commands, as in y-4, which would
yank the next four lines (including the current one), or y/expression, which would yank
everything from your current position up to and including expression.

To place yanked data into a named buffer (rather than the default buffer, buffer number 1), it
is the same procedure as when you delete. For example, to yank the next 12 lines into named
buffer h, we would do "h12yy. Now those 12 lines are available to us. Keep in mind that we
do not have to store full lines. Inputting "h12yw will put the next 12 words into buffer h.

Some of the more observant readers might have noticed that because there are 26 letters and
each has both an upper- and lowercase, we could have 52 named buffers. Well, up to now, the
uppercase letters did something different. If uppercase letters were used to designate different
buffers, then the pattern would be compromised. Have no fear, it is.

Instead of being different buffers than their lowercase brethren, the uppercase letters are the
samebuffer. The difference is that yanking or deleting something into an uppercase buffer
appends the contents rather that overwriting them.

You can also have vi keep track of up to 26 different places with the file you are editing.
These functions are just like bookmarks in word processors. (Pop quiz: If there 26 of them,
what are their names?)

To mark a spot, move to that place in the file, type m for mark (what else?), then a single back
quote ('), followed by the letter you want to use for this bookmark. To go back to that spot,
press the back quote (), followed by the appropriate letter. So, to assign a bookmark q to a
particular spot, you would enter ‘q. Keep in mind that reloading the current file or editing a
new one makes you lose the bookmarks.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

154

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Note that with newer version of vi (particularly vim) you don’t press the backquote to set the
mark, just m followed by the appropriate letter.

5.1.6 vi Magic

| imagine that long before now, you have wondered how to turn on all that magic | said that vi
could do. Okay, let’s do it.

The first thing | want to talk about is abbreviations. You can tell vi that when you type in a
specific set of characters it is supposed to automagically change it to something else. For
example, we could have vi always change USA to United States of America. This is done
with the abbr command.

To create a new abbreviation, you must get into ex-mode by pressing the colon (:) in
command mode. Next, type in abbr, followed by what you want to type in, and what vi should
change it to. For example:

:abbr USA United States of America

Note that the abbreviation cannot contain any spaces because vi interprets everything after the
second word as being part of the expansion.

If we later decide we don’t want that abbreviation anymore, we enter
:unabbr USA

Because it is likely that we will want to use the abbreviation USA, it is not a good idea to use
an abbreviation that would normally occur, such as USA. It would be better, instead, to use an
abbreviation that doesn’t occur normally, like Usa. Keep in mind, that abbreviations only
apply to complete words. Therefore, something like the name "Sousa" won't be translated to
"SoUSA." In addition, when your abbreviation is followed by a space, Tab, Enter, or Esc, the
change is made.

Lets take this one step further. What if we were always spelling "the" as "teh." We could then
create an abbreviation

:abbr teh the

Every time we misspell "the" as "teh," vi would automatically correct it. If we had a whole list
of words that we regularly misspelled and created similar abbreviations, then every time we
entered one of these misspelled words, it would be replaced with the correctly spelled word.
Wouldn't that be automatic spell correction?

If we ever want to "force" the spelling to be a particular way (that is, turn off the abbreviation
momentarily), we simply follow the abbreviation with a Ctrl-V. This tells vi to ignore the

special meaning of the following character. Because the next character is a white space, which
would force the expansion of the abbreviation (which makes the white space special in this
case), "turning off" the white space keeps the abbreviation from being expanded.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

155

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

We can also use vi to re-map certain sequences. For example, | have created a command so
that all | need to do to save a file is Ctrl-W (farite). If | want to save the file and quit, |
enter Ctrl-X with the "map" command.

The most common maps that | have seen have used control sequences, because most of the
other characters are already taken up. Therefore, we need to side-step a moment. First, we
need to know how to access control characters from within vi. This is done in either command
mode or input mode by first pressing Ctrl-V and then pressing the control character we want.
So to get Ctrl-W, | would type Ctrl-V, then Ctrl-W. This would appear on the screen as *"W.
This looks like two characters, but if you inserted it into a text and moved over it with the
cursor, you would realize that vi sees it as only one character. Note that although | pressed the
lowercase w, it will appear as uppercase on the screen.

So, to map Ctrl-W so that every time we press it, we write our current file to disk, the
command would be

map "W :w*M

This means that when we press Ctrl-W, vi interprets it as though we actually typed :w and
pressed Enter (the Ctrl-M, *M). The Enter at the end of the command is a good idea because
you usually want the command to be executed right away. Otherwise, you would have to
press Enter yourself.

Also keep in mind that this can be used with the function keys. Because | am accustomed to
many Windows and DOS applications in which the F2 key means to save, | map F2 to Ctrl-V,
then F2. It looks like this:

map [N :w*M (The A[[N is what the F2 key displays on the screen)

If we want, we can also use shifted function characters. Therefore, we can map Shift-F2 to
something else. Or, for that matter, we can also use shifted and control function keys.

It has been my experience that, for the most part, if you use Shift and Ctrl with non-function
keys, vi only sees Ctrl and not Shift. Also, Alt may not work because on the system console,
Alt plus a function key tells the system to switch to multiscreens.

| try not to use the same key sequences that vi already does. First, it confuses me because |

often forget that | remapped something. Second, the real vi commands are then inaccessible.
However, if you are used to a different command set (that is, from a different editor), you can
"program" vi to behave like that other editor.

Never define a mapping that contains its own name, as this ends up recursively expanding the
abbreviation. The classic example is :map! n banana. Every time you typed in the word
"banana,” you'd get

bababababababababababababababababa...>

and depending on what version you were running, vi would catch the fact that this is an
infinite translation and stop.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

156

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

5.1.7 Command Output in vi

It often happens that we want the output of UNIX commands in the file we are editing. The
sledgehammer approach is to run the command and redirect it to a file, then edit that file. If
that file containing the commands output already exists, we can use the :r from ex-mode to
read it in. But, what if it doesn’t yet exist. For example, | often want the date in text files as a
log of when | input things. This is done with a combination of the :r (for read) from ex-mode
and ashell-escape

A shell-escape is when we start from one program and jump out of it (escape) to a shell. Our
original program is still running, but we are now working in a shell that is a child process of
that program.

To do a shell-escape, we need to be in ex-mode. Next, press the exclamation mark (!)
followed by the command. For example, to see what time it is, type :!date. We then get the
date at the bottom of the screen with the message to press any key to continue. Note that this
didn’t change our original text; it just showed us the output of the date command.

To read in a command’s output, we need to include the :r command, as in :r'date. Now, the
output of the date is read into the file (iinsertedinto the file). We could also have the

output replace the current line by pressing ! twice, as in !'date. Note that we are brought down
to the last line on the screen, where there is a single !.

If we want, we can also read in other commands. What is happening is that vi is seeing the
output of the command as a file. Remember that :r <file_name> will read a file into the one
we are editing. Why not read from the output of a file? With pipes and redirection, both stdin
and stdout can be files.

We can also take this one step further. Imagine that we are editing a file containing a long list.
We know that many lines are duplicated and we also want the list sorted. We could do
:%!sort, which, if we remember from our earlier discussion, is a special symbol meaning all
the lines in the file. These are then sent through the command on the other side of the . Now
we can type

:%!uniq
to remove all the duplicate lines.

Remember that this is a shell-escape. From the shell, we can combine multiple commands
using pipes. We can do it here as well. So to save time, we could enter

:%!sort | uniq

which would sort all the lines and remove all duplicate lines. If we only wanted to sort a set of
lines, we could do it like this

:45,112!sort

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

157

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

which would sort lines 45 through 112. We can take this one step further by either writing
lines 45-112 to a new file with :45,112w file_name or reading in a whole file to replace lines
45-112 with :45,112r file_name.

5.1.8 More vi Magic
If we need to, we can also edit multiple files. This is done like this:
vi filel file2 file3

Once we are editing, we can switch between files with :n for the next file and :p for the
previous one. Keep in mind that the file names do not wrap around. In other words, if we keep
pressing :n and get to file3, doing it again does not wrap around and bring me to filel. If we
know the name of the file, we can jump directly there, with the ex-mode edit command, as in

e file3

The ability to edit multiple files has another advantage. Do you remember those numbered
and named buffers? They are assigned for a single instance of vi, not on a per-file basis.
Therefore, you can delete or yank text from one file, switch to the next and then insert it. This
is a crude but effective cut and paste mechanism between files.

You can specify line numbers to set your position within a file. If you switch to editing
another file (using :n or :r), or reload an original file (using :rew!), the contents of the deletion
buffers are preserved so that you can cut and paste between files. The contents of all buffers
are lost, however, when you quit vi.

5.1.9 vi Odds and Ends

You will find as you work with vi that you will often use the same vi commands over and
again. Here too, vi can help. Because the named buffers are simply sequences of characters,
you can store commands in them for later use. For example, when editing a file in vi, | needed
to mark new paragraphs in some way as my word processor normally sees all end-of-line
characters as new paragraphs. Therefore, | created a command that entered a "para-marker"
for me.

First, | created the command. To do this, | opened up a new line in my current document and
typed in the following text:

Para

Had | typed this from command mode, it would have inserted the text "Para" at the beginning
of the line. | next loaded it into a named buffer with "pdd, which deletes the line and loads it
into buffer p. To execute it, | entered @p. The @ is what tells vi to execute the contents of the
buffer.

Keep in mind that many commands, abbreviations, etc., are transitive. For example, when |
want to add a new paragraph, | don’t write Para as the only characters on a line. Instead, | use
something less common: {P}. | am certain that | will never have {P} at the beginning of a

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

158

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

line; however, there are contexts where | might have Para at the beginning of a line. Instead, |
have an abbreviation, Para, that | translated to {P}.

Now, | can type in Para at the beginning of a line in input mode and it will be translated to
{P}. When | execute the command | have in buffer p, it inserts Para, which is then translated
to {P}.

So why don’t | just have {P} in buffer p? Because the curly braces are one set of movement
keys that | did not mention yet. The { moves you back to the beginning of the paragraph and }
moves you forward. Because paragraphs are defined by vi as being separated by a blank line
or delimited by nroff macros, | never use them nroff is an old UNIX text processing language.
Because vi sees the brackets as something special in command mode, | need to use this
transitivity.

If you are a C programmer, you can take advantage of a couple of nifty tricks of vi. The first
is the ability to show you matching pairs of parentheses , square brackets [], and curly braces
{}. In ex-mode :, type set showmatch. Afterward, every time you enter the closing
paren’thesis, bracket, or brace, you are bounced back to its match. This is useful in checking
whether or not you have the right number of each.

We can also jump back and forth between these pairs by using %. No matter where we are
within a curly braces pair {}, pressing % once moves us to the first opening brace. Press %
again and we are moved to its match the closing brace. We can also place the cursor on the
closing brace and press % to move us to the opening brace.

If you are a programmer, you may like to indent blocks of code to make things more readable.
Sometimes, changes within the code may make you want to shift blocks to the left or right to
keep the spacing the same. To do this, use << two less-than signs to move the text one
"shift-width" to the left, and >> two greater-than signs to move the text one "shift-width" to

the right. A "shift-width" is defined in ex-mode with set shiftwidth=n, where n is some

number. When you shift a line, it moves left or right n characters.

To shift multiple lines, input a number before you shift. For example, if you input 23>>, you
shift the next 23 lines one shiftwidth to the right.

There are a lot of settings that can be used with vi to make life easier. These are done in
ex-mode, using the set command. For example, use :set autoindent to have vi automatically
indent. To get a listing of options which have been changed from their default, simply input
":.set" and you get something like in the following image:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

159

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

File Sessions Settings Help

mowve the el
11 <gloszaryrtext<s/glozszary> one "shift-width" to the left,. and agtraot:

tuo greater-than signs) to
12 move the text one "shift-width" to the right, A "shift-width" is define
d in ex-mode with =et
13 shiftwidth=n. where n iz zome numnkber, When you shift a line. it moves 1
eft or right n
14 characters,</F»

17 <P>To shift multiple lines. input a number before you shift, For exampl
e, if you input 23zt raotr.

18 you =hift the next 23 lines one shiftwidth to the right,</P>

19

20

21 <P*There are a lot of =zettingz that can be uzed with vi to make life ea
zier, These are done in

22 ex-mode. uszing the =et command, For example. uze i=zet autoindent to haw
e vi automatically indent,

23
i=et
-— Options ———
auto incent ruler ttyfast
mod if ied zcroll=12 ttymouse=xtermns -
numoET showmst.ch t._Co= =

it EHTER or type command to continue

Ij Newv @-Kunsnle @Shell

Image - Vi set command.

Inputting ":set all" will show you the value of all options. Watch out! There are a lot and
typically spread across multiple screens. See the viC man-page for more details of the set
command and options.

Some useful set commands include:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

160

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

® wrapmargin=n automatically "word wraps" when you get to within n spaces of the
end of the line

e showmode tells you whether you are in insert mode
® number displays line numbers at the left-hand edge of the screen
® autowrite Saves any changes that have been made to the current file when you

issue the :n, :rew, or :! command
® ignorecase Ignores the case of text while searching

e |ist Prints end-of-line characters such as $ and tab characters such as "I,
which are normally invisible

e tabstop=n Sets the number of spaces between each tab stop on the screen to n

® shiftwidth Sets the number of spaces << and >> shifts each line

5.1.10 Configuring vi

When we first started talking about vi, | mentioned that there were a lot things we could do to
configure it. There are mappings and abbreviations and settings that we can control. The
problem is that once we leave vi, everything we added is lost.

Fortunately, there is hope. Like many programs, vi has its own configuration file: .exrc (note
the dot at the front). Typically, vi just uses its standard settings and does not create this file.
However, if this file resides in our home directory, it will be valid every time we start vi
unless we have an .exrc file in our current directory which will then take precedence. Having
multiple .exrc files is useful when doing programming as well as when editing text. When
writing text, | don’t need line numbers or autoindent like | do when programming.

The content and syntax of the lines is exactly the same as in vi; however, we don’t have the
leading colon. Part of the .exrc file in my text editing directory looks like this:

map! ~X :wgmap x :wgmap! "W :wmap w :wset showmodeset wm=3abbr Unix UNIXabbr btwn betweenabbr teh theabbr refered referredabbr waht what abbr Para {P}abbr inot into>

5.2 Sed

Suppose you have a file in which you need to make some changes. You could load up vi and
make the changes that way, but what if what you wanted to change was the output of some
command before you sent it to a file? You could first send it to a file and then edit that file, or
you could use sed, which isaeameditor that is specifically designed to edit data streams.

If you read the previous section or are already familiar with either the search and replace
mechanisms in vi or the editor ed, you already have a jump on learning sed. Unlike vi, sed is
non-interactive, but can handle more complicated editing instructions. Because it is
non-interactive, commands can be saved in text files and used over and over. This makes
debugging the more complicated sed constructs much easier. For the most part, sed is

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

161

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

line-oriented, which allows it to process files of almost any size. However, this has the
disadvantage that sed cannot do editing that is dependent on relative addressing.

Unlike the section on vi, | am not going to go into as many details about sed. However, sed is
a useful tool and | use it often. The reason | am not going to cover it in too much detail is
three-fold. First, much of what is true about pattern searches, addressing, etc., in vi is also true
in sed. Therefore, | don't feel the need to repeat. Second, it is not that important that you
become a sed expert to be a good system administrator. In a few cases, scripts on a Linux
system will use sed. However, they are not that difficult to understand, provided you have a
basic understanding of sed syntax. Third, sed is like any programming language, you can get
by with simple things. However, to get really good, you need to practice and we just don't
have the space to go beyond the basics.

In this section, | am going to talk about the basics of sed syntax, as well as some of the more
common sed commands and constructs. If you want to learn more, | recommendsgeting
awkby Dale Dougherty from O’Reilly and Associates. This will also help you in the section

on awk, which is coming up next.

The way sed works is that it reads input one line at a time, and then carries out whatever
editing changes you specify. When it has finished making the changes, it writes them to
stdout. Like commands such as grep and sort, sed acts like a filter. However, with sed you can
create very complicated programs. Because | normally use sed as one end of a pipe, most of
the sed commands that | use have the following structure:

first_cmd | sed <options> <edit_description>

This is useful when the edit descriptions you are using are fairly simple. However, if you want
to perform multiple edits on each line, then this way is not really suitable. Instead, you can put
all of your changes into one file and start up sed like this

first_cmd | sed -f editscript
or
sed -f editscript <inputfile

As | mentioned before, the addressing and search/replace mechanisms within sed are basically
the same as within vi. It has the structure

[addressl[,address?2]] edit_description [arguments]

As with vi, addresses do not necessarily need to be line numbers, but can be regular
expressions that sed needs to search for. If you omit the address, sed will make the changes
globally, as applicable. The edit_description tells sed what changes to make. Several
arguments can be used, and we’ll get to them as we move along.

As sed reads the file, it copies each line intpatern spaceThis pattern space is a special
buffer that sed uses to hold a line of text as it processes it. As soon as it has finished reading
the line, sed begins to apply the changes to the pattern space based on the edit description.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

162

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Keep in mind that even though sed will read a line into the pattern space, it will only make
changes to addresses that match the addresses specified and does not print any warnings when
this happens. In general, sed either silently ignores errors or terminates abruptly with an error
message as a result of a syntax error, not because there we no matches. If there are no lines
that contain the pattern, no lines match, and the edit commands are not carried out.

Because you can have multiple changes on any given line, sed will carry them each out in
turn. When there are no more changes to be made, sed sends the result to its output. The next
line is read in and the whole process starts over. As it reads in each line, sed will increment an
internal line counter, which keeps track of tb&al number of lines read, not lines per file.

This is an important distinction if you have multiple files that are being read. For example, if
you had two 50-line files, from sed’s perspective, line 60 would be the tenth line in the second
file.

Each sed command can have 0, 1, or 2 addresses. A command with no addresses specified is
applied to every line in the input. A command with one address is applied to all lines that
match that address. For example:

/mike/s/fred/john/

substitutes the first instance of "john for "fred only on those lines containing "mike. A
command with two addresses is applied to the first line that matches the first address, then to
all subsequent lines until a match for the second address is processed. An attempt is made to
match the first address on subsequent lines, and the process is repeated. Two addresses are
separated by a comma.

For example
50,100s/fred/john/

substitutes the first instance of "john for "fred from line 50 to line 100, inclusive. (Note that
there should be no space between the second address and the s command.) If an address is
followed by an exclamation mark (!), the command is applied only to lines that do not match
the address. For example

50,100!s/fred/john/
substitutes the first instance of "john for "fred everywhere except lines 50 to 100, inclusive.

Also, sed can be told to do input and output based on what it finds. The action it should
perform is identified by an argument at the end of the sed command. For example, if we
wanted to print out lines 5-10 of a specific file, the sed command would be

cat file | sed -n 5,10p
The -n is necessary so that every line isn’t outpadulitionto the lines that match.

Remember the script we created in the first section of this chapter, where we wanted just lines
510 of every file. Now that we know how to use sed, we can change the script to be a lot more
efficient. It would now look like this:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

163

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

find ./letters/taxes -print | while read FILE do echo $FILE cat
$FILE | sed -n 5-10p done

Rather than sending the file through head and then the output through tail, we send the whole
file through sed. It can keep track of which line is line 1, and then print the necessary lines.

In addition, sed allows you to write lines that match. For example, if we wanted all the
comments in a shell script to be output to a file, we could use sed like this:

cat filename | sed -n /"#/w filename

Note that there must be exactly one space between the w and the name of the file. If we
wanted to read in a file, we could do that as well. Insteadwdbawrite, we could use anto

read. The contents of the file would be appended after the lines specified in the address. Also
keep in mind that writing to or reading from a file are independent of what happens next. For
example, if we write every line in a file containing the name "John," but in a subsegdent
command change "John" to "Chris," the file would contain references to "John," as no
changes are made. This is logical becaesk works on each line and the lines are already in
the file before the changes are made.

Keep in mind that every time a line is read in, the contents of the pattern space are
overwritten. To save certain data across multiple commands, sed provides what is called the
"hold space.” Changes are not made to the hold space directly, rather the contents of either
one can be copied into the other for processes. The contents can even be exchanged, if
needed. The table below contains a list of the more consercommands, including the
commands used to manipulate the hold and pattern spaces.

Table sed Commands

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

164

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

a append text to the pattern space

b branch to a label

(o append text

d delete text

delete all the characters from the start of the pattern space up to and including the firgt new
line

g overwrite the pattern space with the holding area

G appends the holding area to the pattern space, separated with a new line

h overwrite holding area with pattern space

append
H s the pattern space to the holding area, separated

by a newlinewith a new line

i insert text

I list the contents of the pattern space

n add a new line to the pattern space

N append the next input line to the pattern space, separated lines with a new line

p print the pattern space

P print from the start of the pattern space up to and including the first new line

r read in a file

S substitute patterns

t branch only if a substitution has been made to the current pattern space

w writes to a file

interchange the contents of the pattern space and the holding area (the maximum nuber of
addresses is two)

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

165

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

5.3 Awk

Another language that Linux provides and is standard on many (most?) UNIX systems is awk.
The abbreviation awk is an acronym composed of the first letter of the last names of its
developers: Alfred Aho, Peter Weinberger, and Brian Kernighan. Like sed, awk is an
interpreted pattern-matching language. In addition, awk, like sed, can also read stdin. It can
also be passed the name of a file containing its arguments.

The most useful aspect of awk (at least useful for me and the many Linux scripts that use it) is
its idea of a field. Like sed, awk will read whole lines, but unlike sed, awk can immediately
break into segments (fields) based on some criteria. Each field is separatezldy a

separator By default, this separator is a space. By using the -F option on the command line or
the FS variable within an awk program, you can specify a new field separator. For example, if
you specified a colon (:) as a field separator, you could read in the lines from the
/etc/password file and immediately break it into fields.

A programming language in its own right, awk has become a staple of UNIX systems. The
basic purposes of the language are manipulating and processing text files. However, awk is
also a useful tool when combined with output from other commands, and allows you to format
that output in ways that might be easier to process further. One major advantage of awk is that
it can accomplish in a few lines what would normally require dozens of lines in sh or csh shell
script, or may even require writing something in a lower-level language, like C.

The basic layout of an awk command is
pattern { action }

where the action to be performed is included within the curly braces ({}). Like sed, awk reads
one input a line at a time, aut awk sees each line as a record broken up into fields. Fields are
separated by an input Field Separator (FS), which by default is a Tab or space. The FS can be
changed to something else, for example, a semi-colon (;), with FS=;. This is useful when you
want to process text that contains blanks; for example, data of the following form:

Blinn, David;42 Clarke Street;Sunnyvale;California;95123;33

Dickson, Tillman;8250 Darryl Lane;San Jose;California;95032;34
Giberson, Suzanne;102 Truck Stop Road;Ben Lomond;California;26
Holder, Wyliam; 1932 Nuldev Street;Mount Hermon;California;95431;42
Nathanson, Robert;12 Peabody Lane;Beaverton;Oregon;97532;33
Richards, John;1232 Bromide Drive;Boston;Massachusetts;02134;36
Shaffer, Shannon;98 Whatever Way;Watsonville;California;95332;24

Here we have name, address, city, state, zip code, and age. Without using ; as a field
separator, Blinn and David;42 would be two fields. Here, we would want to treat each name,
address city, etc., a single unit, rather than as multiple fields.

The basic format of an awk program or awk script, as it is sometimes called, is a pattern
followed by a particular action. Like sed, each line of the input is checked by awk to see if it
matches that particular pattern. Both sed and awk do well when comparing string values,
However, whereas checking numeric values is difficult with sed, this functionality is an

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

166

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

integral part of awk.

If we wanted, we could use the data previously listed and output only the names and cities of
those people under 30. First, we need an awk script, called awk.scr, that looks like this:

FS=; $6 < 30 { print $1, $3 }

Next, assume that we have a data file containing the seven lines of data above, called
awk.data. We could process the data file in one of two ways. First

awk -f awk.scr awk.data

The -f option tells awk that it should read its instructions from the file that follows. In this
case, awk.scr. At the end, we have the file from which awk needs to read its data.

Alternatively, we could start it like this:

cat awk.data | awk -f awk.scr

We can even make string comparisons. as in
$4 == "California" { print $1, $3 }

Although it may make little sense, we could make string comparisons on what would
normally be numeric values, as in

$6 == "33" { print $1, $3 }

This prints out fields 1 and 3 from only those lines in which the sixth field equals the string
33.

Not to be outdone by sed, awk will also allow you to use regular expressions in your search
criteria. A very simple example is one where we want to print every line containing the
characters "on." (Note: The characters must be adjacent and in the appropriate case.) This line
would look like this:

Jon/ {print $0}

However, the regular expressions that awk uses can be as complicated as those used in sed.
One example would be

/["s]on[;)/ {print $0}

This says to print every line containing the pattern on, but only ihibtipreceded by an s

nor followed by a semi-colon(®;). The trailing semi-colon eliminates the two town names
ending in "on" (Boston and Beaverton) and the leading s eliminates all the names ending in
"son.”" When we run awk with this line, our output is

Giberson, Suzanne;102 Truck Stop Road;Ben Lomond;California;96221;26
>

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

167

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

But doesn’t the name "Giberson" end in "son"? Shouldn’t it be ignored along with the others?
Well, yes. However, that’s not the case. The reason this line was printed out was because of
the "on" in Ben Lomond, the city in which Giberson resides.

We can also use addresses as part of the search criteria. For example, assume that we need to
print out only those lines in which the first field name (i.e., the persons last name) is in the
first half of the alphabet. Because this list is sorted, we could look for all the lines between
those starting with "A" and those starting with "M." Therefore, we could use a line like this:

INALIMM {print $0)

When we run it, we get

What happened? There are certainly several names in the first half of the alphabet. Why didn’t
this print anything? Well, it printed exactly what we told it to print. Like the addresses in both

vi and sed, awk searches for a line that matches the criteria we specified. So, what we really
said was "Find the first line that starts with an A and then print all the lines up to and

including the last one starting with an M." Because there was no line starting with an "A," the
start address didn’t exist. Instead, the code to get what we really want would look like this:

INA-M]/ {print $0}

This says to print all the lines whose first character is imaghge A-M. Because this checks
every line and isn’t looking for starting and ending addresses, we could have even used an
unsorted file and would have gotten all the lines we wanted. The output then looks like this:

yyyyyyyy L V Giberson, Suzanne;102 Truck Stop Road;Ben Lomond;California;96221,26 Holder, Wyliam; 1932 Nuldev Street;Mount Hermon;Califormia95431;42

If we wanted to use a starting and ending address, we would have to specify the starting letter
of the name that actually existed in our file. For example:

I7BI,/AHT {print $0)

Because printing is a very useful aspect of awk, its nice to know that there are actually two
ways of printing with awk. The first we just mentioned. However, if you use printf instead of
print, you can specify the format of the output in greater detail. If you are familiar with the C
programming language, you already have a head start, as the format of printf is essentially the
same as in C. However, there are a couple of differences that you will see immediately if you
are a C programmer.

For example, if we wanted to print both the name and age with this line
$6 >30 {printf"%20s %5d\n",$1,$6}

the output would look like this:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

168

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Blinn, David 33
Dickson, Tillman 34
Holder, Wyliam 42
Nathanson, Robert 33
Richards, John 36

The space used to print each name is 20 characters long, followed by five spaces for the age.

Because awk reads each line as a single record and blocks of text in each record as fields, it
needs to keep track of how many records there are and how many fields. These are denoted by
the NR variable.

Another way of using awk is at the end of a pipe. For example, you may have multiple-line
output from one command or another but only want one or two fields from that line. To be
more specific, you may only want the permissions and file names from an Is -l output. You
would then pipe it through awk, like this

Is -1 | awk { print $1" "$9 ¥

and the output might look something like this:

-rw-r--r-- mike.letter -rw-r--r-- pat.note -rw-r--r-- steve.note -rw-r--r-- zoli.letter >

This brings up the concept of variables. Like other languages, awk enables you to define
variables. A couple are already predefined and come in handy. For example, what if we didn’t
know off the tops of our heads that there were nine fields in the Is -| output? Because we
know that we wanted the first and the last field, we can use the variable that specifies the
number of fields. The line would then look like this:

Is -1 | awk *{ print $1" "$NF ¥

In this example, the space enclosed in quotes is necessary; otherwise, awk would print $1 and
$NR right next to each other.

Another variable that awk uses to keep track of the number of records read so far is NR. This
can be useful, for example, if you only want to see a particular part of the text. Remember our
example at the beginning of this section where we wanted to see lines 5-10 of a file (to look
for an address in the header)? In the last section, | showed you how to do it with sed, and now
I'll show you with awk.

We can use the fact that the NR variable keeps track of the number of records, and because
each line is a record, the NR variable also keeps track of the number of lines. So, we’ll tell
awk that we want to print out each line between 5 and 10, like this:

cat datafile | awk '{NR >=5 && NR <= 10}

This brings up four new issues. The first is the NR variable itself. The second is the use of the
double ampersand (&&). As in C, this means a logical AND. Both the right and the left sides
of the expression must be true for the entire expression to be true. In this example, if we read
a line and the value of NR is greater than or equal to 5 (i.e., we have read in at least five lines)
andthe number of lines read is not more than 10, the expression meets the logical AND

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

169

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

criteria. The third issue is that there is no print statement. The default action of awk, when it
doesn’t have any additional instructions, is to print out each line that matches the pattern.
(You can find a list of other built in variables in the table below)

The last issue is the use of the variable NR. Note that here, there is no dollar sign ($) in front
of the variable because we are looking for the value of NR, not what it points to. We do not
need to prefix it with $ unless it is a field variable. Confused? Lets look at another example.

Lets say we wanted to print out only the lines where there were more than nine fields. We
could do it like this:

cat datafile | awk '{ NF > 9}
Compare this
cat datafile | awk { print $NF }

which prints out the last field in every line. (You can find a list of other built in variable in the
table below)

Up to now, we’ve been talking about one line awk commands. These have all performed a
single action on each line. However, awk has the ability to do multiple tasks on each line as
well as a task before it begins reading and after it has finished reading.

We use the BEGIN and END pair as markers. These are treated like any other pattern.
Therefore, anything appearing after the BEGIN pattern is done before the first line is read.
Anything after the END pattern is done after the last line is read. Lets look at this script:

BEGIN { FS=";"} {printf"%s\n", $1} {printf"%s\n", $2} {printf"%s, %s\n",$3,$4} {printf"%s\n", $5} END {print "Total Names:" NR}
>

Following the BEGIN pattern is a definition of the field separator. This is therefore done
before the first line is read. Each line is processed four times, where we print a different set of
fields each time. When we finish, our output looks like this:

Blinn, David 42 Clarke Street Sunnyvale, California 95123

Dickson, Tillman 8250 Darryl Lane San Jose, California95032

Giberson, Suzanne 102 Truck Stop Road Ben Lomond, California 96221
Holder, Wyliam 1932 Nuldev Street Mount Hermon, California 95431
Nathanson, Robert 12 Peabody Lane Beaverton, Oregon 97532
Richards, John 1232 Bromide Drive Boston, Massachusetts 02134
Shaffer, Shannon 98 Whatever Way Watsonville, California 95332

Total Names:7

>

Aside from having a pre-defined set of variables to use, awk allows us to define variables
ourselves. If in the last awk script we had wanted to print out, lets say, the average age, we
could add a line in the middle of the script that looked like this:

{total = total + $6 }>

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

170

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Because $6 denotes the age of each person, every time we run through the loop, it is added to
the variable total. Unlike other languages, such as C, we don't have to initialize the variables;
awk will do that for us. Strings are initialized to the null string and numeric variables are
initialized to O.

After the END, we can include another line to print out our sum, like this:
{print "Average age: " total/NR }

Table awk Comparison Operators

Operator Meaning

< less than

<= less than or equal to
== equal to

1= not equal to

>= greater than or equal to
> greater than

Table Default Values of awk Built-in Variables

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

171

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Variable Meaning Default
ARGC number of command-line arguments -
ARGV array of command-line arguments -
FILENAME name of current input file -

FNR record number in current file -

FS input field separator space or tab
NF number of fields in the current record -

NR number of records read -

OFMT numeric output format %.69
OFS output field separator space
ORS output record separator new line
RS input record separator new line

Is that all there is to it? No. In fact, we haven'’t even touched the surface. awk is a very
complex programming language and there are dozens more issues that we could have
addressed. Built into the language are mathematical functions, if and while loops, the ability
to create your own functions, strings and array manipulation, and much more.

Unfortunately, this is not a book on UNIX programming languages. Some readers may be
disappointed that | do not have the space to cover awk in more detail. | am also disappointed.
However, | have given you a basic introduction to the constructs of the language to enable
you to better understand the more than 100 scripts on your system that use awk in some way.

5.4 Perl

This section is old and incomplete, even as an introduction. Although it covers a number of different
aspects of perl, this section really needs to be redone. Any volunteers?

If you plan to do anything serious on the Web, | suggest that you learn perl. In fact, if you
plan to do anything serious on your machine, then learning perl is also a good idea. Although
not available on a lot of commercial versions, perl is almost universally available with Linux.

Now, | am not saying that you shouldn’t learn sed, awk, and shell programming. Rather, | am
saying that you should learn all four. Both sed and awk have been around for quite a while, so
they are deeply ingrained in the thinking of most system administrators. Although you could
easily find a shell script on the system that didn’t have elements of sed or awk in it, you would
be very hard pressed to find a script that had no shell programming in it. On the other hand,

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

172

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

most of the scripts that process information from other programs use either sed or awk.
Therefore, it is likely that you will eventually come across one or the other.

perl is another matter altogether. None of the standard scripts have perl in them. This does not
say anything about the relative value of perl, but rather the relative availability of it. Because

it can be expected that awk and sed are available, it makes sense that they are commonly used.
perl may not be on your machine and including it in a system shell script might cause trouble.

In this section, | am going to talk about the basics of perl. We'll go through the mechanics of
creating perl scripts and the syntax of the perl language. There are many good books on perl,
so | would direct you to them to get into the nitty-gritty. Here we are just going to cover the
basics. Later on, we’ll address some of the issues involved with making perl scripts to use on
your Web site.

One aspect of perl that | like is that it contains the best of everything. It has aspects of C,
shell, awk, sed and many other things. perl is also free. The source code is readily available
and the versions that | have came with configuration scripts that determined the type of
system | had and set up the make-files accordingly. Aside from Linux, | was able to compile
the exact same source on my Sun Solaris workstation. Needless to say, the scripts that | write
at home run just as well at work.

| am going to make assumptions as to what level of programming background you have. If

you read and understood the sections on sed, awk, and the shell, then you should be ready for
what comes next. In this section, | am going to jump right in. | am not going to amaze you

with demonstrations of how perl can do I/O, as that’s what we are using it for in the first

place. Instead, | am going to assume that you want to do I/O and jump right into how to do it.

Lets create a shell script called hello.pl. The pl extension has no real meaning, although | have
seen many places where it is always used as an extension. It is more or less conventional to do
this, just as text files traditionally have the extension .txt, shell scripts end in .sh, etc.

We'll start off with the traditional
print "Hello, World'\n";

This shell script consists of a single perl statement, whose purpose is to output the text inside
the double-quotes. Each statement in perl is followed by a semi-colon. Here, we are using the
perl print function to output the literal string "Hello, World'\n" (including the trailing new

line). Although we don't see it, there is the implied file handle to stdout. The equivalent
command with the explicit reference would be

print STDOUT "Hello, World\n";

Along with STDOUT, perl has the default file handlers STDIN and STDERR. Here is a quick
script that demonstrates all three as well as introduces a couple of familiar programming
constructs:

while (<STDIN>)

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

173

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

{

if ($_eq"\n")

{

print STDERR "Error: \n";
} else {

print STDOUT "Input: $_ \n";

}
}

Functioning the same as in C and most shells, the while line at the top says that as long as
there is something coming from STDIN, do the loop. Here we have the special format
(<STDIN>), which tells perl where to get input. If we wanted, we could use a file handle
other than STDIN. However, we’ll get to that in a little bit.

One thing that you need to watch out for is that you must include blocks of statements (such
as after while or if statements) inside the curly braces ({}). This is different from the way you
do it in C, where a single line can follow while or if. For example, this statement is not valid
in perl:

while ($a < $b)

$a++;

You would need to write it something like this:
while ($a < $b) {

$a++;

}

Inside the while loop, we get to an if statement. We compare the value of the special variable
$_to see if it is empty. The variable $_ serves several functions. In this case, it represents the
line we are reading from STDIN. In other cases, it represents the pattern space, as in sed. If
the latter is true, then just the Enter key was pressed. If the line we just read in is equal to the
newline character (just a blank line), we use the print function, which has the syntax

print [filehandler] "text_to_print";

In the first case, filehandler is stderr and in the second case stdout is the filehandler. In each
case, we could have left out the filehandler and the output would go to stout.

Each time we print a line, we need to include a newline (\n) ourselves.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

174

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

We can format the print line in different ways. In the second print line, where the input is not
a blank line, we can print "Input: " before we print the line just input. Although this is a very
simple way of outputting lines, it gets the job done. More complex formatting is possible with
the perl printf function. Like its counterpart in C or awk, you can come up with some very
elaborate outputs. We'll get into more details later.

One more useful function for processing lines of input is split. The split function is used to, as
its name implies, to split a line based on a field separator that you define. Say, for example, a
space. The line is then stored in an array as individual elements. So, in our example, if we
wanted to input multiple words and have them parsed correctly, we could change the script to
look like this:

while (<STDIN>)

{

@field = split(,$);
if ($_eq"\n")

{

print STDERR "Error: \n";
}else {

print STDOUT "$_ \n";
print $field[0];

print $field[1];

print $field[2];

}

}

The split function has the syntax

split(pattern,line);

where pattern is our field separator and line is the input line. So our line
@field = split(,$);

says to split the line we just read in (stored in $_) and use a space () as the field separator.
Each field is then placed into an element of the array field. The @ is needed in front of the
variable field to indicate that it's an array. In perl, there are several types of variables. The
first kind we have already met before. The special variable $_is an example of a scalar
variable. Each scalar variable is preceded by a dollar sign ($) and can contain a single value,
whether a character string or a number. How does perl tell the difference? It depends on the

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

175

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

context. perl will behave correctly by looking at what you tell it to do with the variable. Other
examples of scalars are

$name = "jimmo";
$initial = j;
$answertolifetheuniverseandeverything = 42;

Another kind of variable is an array, as we mentioned before. If we precede a variable with %,
we have an array. But don’'t we have an array with @? Yes, so whats the difference? The
difference is that arrays, starting with the @, are referenced by numbers, while those starting
with the % are referenced by a string. We'll get to how that works as we move along.

In our example, we are using the split function to fill up the array @field. This array will be
referenced by number. We see the way it is referenced in the three print statements toward the
end of the script.

If our input line had a different field separator (for example, %), the line might look like this:
@field = split(%,$_);

In this example, we are outputting the first three words that are input. But what if there are
more words? Obviously we just add more print statements. What if there are fewer words?
Now we run into problems. In fact, we run into problems when adding more print statements.
The question is, where do we stop? Do we set a limit on the number of words that can be
input? Well, we can avoid all of these problems by letting the system count for us. Changing
the script a little, we get

while (<STDIN>)

{

@field = split(,$);
if($_eq"\n")

{

print STDERR "Error: \n";
} else {

foreach $word (@field){
print $word,"\n";

}

}

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

176

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

}

In this example, we introduce the foreach construct. This has the same behavior as a for loop.
In fact, in perl, for and foreach are interchangeable, provided you have the right syntax. In this
case, the syntax is

foreach $variable (@array)

where $variable is our loop variable and @array is the name of the array. When the script is
run, @array is expanded to its components. So, if we had input four fruits, our line might have
looked like this:

foreach $word(apple,bananna,cherry,orange);

Because | don’t know how many elements there are in the array field, foreach comes in
handy. In this example, every word separated by a space will be printed on a line by itself,
like this:

perl script.pl
one two three
one

two

three

D

Our next enhancement is to change the field separator. This time we’ll use an ampersand (&)
instead. The split line now looks like this:

@field = split(&,$_);

When we run the script again with the same input, what we get is a bit
different:

perl script.pl

one two three

one two three

The reason why we get the output on one line is because the space is no longer a field
separator. If we run it again, this time using &, we get something different:

perl script.pl

one&two&three

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

177

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

one
two

three

This time, the three words were recognized as separate fields.

Although it doesn’t seem too likely that you would be inputting data like this from the
keyboard, it is conceivable that you might want to read a file that has data stored like this. To
make things easy, | have provided a file that represents a simple database of books. Each line
is a record and represents a single book, with the fields separated by %.

To be able to read from a file, we must create a file handle. To do this, we add a line and
change the while statement so it looks like this:

open (INFILE,"< bookdata.txt");
while (<INFILE>)

The syntax of the open function is
open(file_handle,openwhat_& how);

The way we open a file depends on the way we want to read it. Here, we use standard shell
redirection symbols to indicate how we want to read the specified file. In our example, we
indicate redirectiofrom the file bookdata.txt. This says we want to r&ac the file. If we
wanted to open the file for writing, the line would look like this:

open (INFILE,"> bookdata.txt");

If we wanted to append to the file, we could change the redirections so the line would look
like this:

open (INFILE,">> bookdata.txt");

Remember | said that we use standard redirection symbols. This also includes the pipe
symbol. As the need presents itself, your perl script can open a pipe for either reading or
writing. Assuming that we want to open a pipe for writing that sends the output through sort,
the line might look like this:

open (INFILE,"| sort");

Remember that this would work the same as from the command line. Therefore, the output is
not being written to a file; it is just being piped through sort. However, we could redirect the
output of sort , if we wanted. For example:

open (INFILE,"| sort > output_file");

This opens the file output_file for writing, but the output is first piped through sort . In our
example, we are opening the file bookdata.txt for reading. The while loop continues through
and outputs each line read. However, instead of being on a single line, the individual fields

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

178

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

(separated by &) are output on a separate line.

We can now take this one step further. Lets now assume that a couple of the fields are actually
composed of subfields. These subfields are separated by a plus sign (+). We now want to
break up every field containing + into its individual subfields.

As you have probably guessed, we use the split command again. This time, we use a different
variable and instead of reading out of the input line ($_), we read out of the string $field.
Therefore, the line would look like this:

@subfield = split(\+,$field);

Aside from changing the search pattern, | added the back slash (\) because + is used in the
search pattern to represent one or more occurrences of the preceding character. If we don’t
escape it, we generate an error. The whole script now looks like this:

open(INFILE,"<bookdata.txt");
while (<INFILE>)

{

@data = split(&,$);
if ($_eq"\n")

{

print STDERR "Error: \n";

} else {

foreach $field (@data){
@subfield = split(\+,$field);
foreach $word (@subfield){
print $word,"\n";

}

}

}

}

If we wanted, we could have written the script to split the incoming lines at both & and +.
This would have given us a split line that looked like this:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

179

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

@data = split([&\+],$);

The reason for writing the script like we did was that it was easier to separate subfields and
still maintain their relationships. Note that the search pattern used here could have been any
regular expression. For example, we could have split the strings every place there was the
pattern Di followed by e, g, or r, bootif it was followed by i. The regular expression would

be

Di[reg][i]
so the split function would be:
@data = split(Di[reg]["i],$);

At this point, we can read in lines from an ASCII file, separate the lines based on what we
have defined as fields, and then output each line. However, the lines don’t look very
interesting. All we are seeing is the content of each field and do not know what each field
represents. Let’'s change the script once again. This time we will make the output show us the
field names as well as their content.

Lets change the script so that we have control over where the fields end up. We still use the
split statement to extract individual fields from the input string. This is not necessary because
we can do it all in one step, but | am doing it this way to demonstrate the different constructs
and to reiterate that in perl, there is always more than one way do to something. So, we end up
with the following script:

open(INFILE,"< bookdata.txt");
while (<INFILE>)

{

@data = split(&,$);

if ($_eqg"\n")

{

print STDERR "Error: \n";
}else {

$fields = 0;

foreach $field (@data){
$fieldarray[$fields] = $field;
print $fieldarray[$fields++]," ";

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

180

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

}
}
}

Each time we read a line, we first split it into the array @data, which is then copied into the
fields array. Note that there is no new line in the print statement, so each field will be printed
with just a space and the newline read at the end of each input line will then be output. Each
time through the loop, we reset our counter (the variable $fields) to 0.

Although the array is re-filled every time through the loop and we lose the previous values,
we could assign the values to specific variables.

Lets now make the output a little more attractive by outputting the field headings first. To
make things simpler, lets label the fields as follows

title, author, publisher, char0, charl, char2, char3, char4, char5

where charO-char5 are simply characteristics of a book. We need a handful of if statements to
make the assignment, which look like this:

foreach $field (@data){
if ($fields ==0){

print "Title: ", $field;

}

if ($fields ==1){

print "Author: ", $field;

}

*
*

*

if ($fields ==8){
print "Char 5: ", $field;
}

Here, too, we would be losing the value of each variable every time through the loop as they
get overwritten. Lets just assume we only want to save this information from the first line (our
reasoning will become clear in a minute). First we need a counter to keep track of what line

we are on and an if statement to enter the block where we make the assignment. Rather than a
print statement, we change the line to an assignment, so it might look like this:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

181

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

$title = $field;

When we read subsequent lines, we can output headers for each of the fields. We do this by
having another set of if statements that output the header and then the value, which is based
on its position.

Actually, there is a way of doing things a little more efficiently. When we read the first line,
we can assign the values to variables on a single line. Instead of the line

foreach $field (@data) {

we add the if statement to check if this is the first line. Then we add the line
($field0,$field1,$field2,Sfield3,$field4,$field5,Sfield6,$field7,$field8)=
split(&,$);

Rather than assigning values to elements in an array, we are assigning them to specific
variables. (Note that if there are more fields generated by the split command than we specified
variables for, the remaining fields are ignored.) The other advantage of this is that we saved
ourselves a lot of space. We could also call these $field1, $field2, etc., thereby making the

field names a little more generic. We could also modify the split line so that instead of several
separate variables, we have them in a single array called field and we could use the number as
the offset into the array. Therefore, the first field would be referenced like this:

$field[0]
The split command for this would look like this
@field=split(&,$);

which looks like something we already had. It is. This is just another example of the fact that
there are always several different ways of doing things in perl.

At this point, we still need the series of if statements inside of the foreach loop to print out the
line. However, that seems like a lot of wasted space. Instead, | will introduce the concept of
an associated list. An associated list is just like any other list, except that you reference the
elements by a label rather than a number.

Another difference is that associated arrays, also referred to as associated lists, are always an
even length. This is because elements come in pairs: label and value. For example, we have:

%list= (name,James Mohr, logname, jimmo, department,IS);

Note that instead of $ or @ to indicate that this is an array, we use %. This specifies that this
IS an associative array, so we can refer to the value by label; however, when we finally
reference the value, we use $. To print out the name, the line would look like this:

print "Name:",$list{fname};

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

182

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Also, the brackets we use are different. Here we use curly braces ({}) instead of square
brackets ([]).

The introduction of the associate array allows us to define field labels within the data itself
and access the values using these labels. As | mentioned, the first line of the data file
containing the field labels. We can use these labels to reference the values. Lets look at the
program itself:

open(INFILE,"< bookdata.txt");
$lines=0;

while (<INFILE>)

{

chop;

@data = split(&,$);
if ($lines==0)

{

@headlist=split(&,$);

foreach $field (0..@headlist-1){
%headers = ($headlist[$field],);

}

$lines++;

} else {

foreach $field (0..@data-1){
$headers{$headlist[$field]}=@data[$field];
print $headlist[$field],": ", $headers{$headlist[$field]},"\n";
}

}

}

At the beginning of the script, we added the chop function, which "chops" off the last
character of a list or variable and returns that character. If you don’t mention the list or
variable, chop affects the $_ variable. This function is useful to chop off the newline character
that gets read in. The next change is that we removed the block that checked for blank lines
and generated an error.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

183

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

The first time we read a line, we entered the appropriate block. Here, we just read in the line
containing the field labels and we put each entry into the array headlist via the split function.
The foreach loop also added some new elements:

foreach $field (0..@headlist-1){
%headers = ($headlist[$field],);

}

The first addition is the element (0.. @headlist-1). Two numbers separated by two dots

indicate a range. We can use @headlist as a variable to indicate how many elements are in the
array headlist. This returns a human number, not a computer number (one that starts at 0).
Because | chose to access all my variables starting with 0, | needed to subtract 1 from the
value of @headlist. There are nine elements per line in the file bookdata.txt; therefore, their
range is 0..9-1.

However, we don’t need to know that! In fact, we don’t even know how many elements there
are to make use of this functionality. The system knows how many elements it read in, so we
don’t have to. We just use @headlist-1 (or whatever).

The next line fills in the elements of our associative array:
%headers = ($headlist[$field],);

However, we are only filling in the labels and not the values themselves. Therefore, the
second element of the pair is empty (). One by one, we write the label into the first element of
each pair.

After the first line is read, we load the values. Here again, we have a foreach loop that goes
from O to the last element of the array. Like the first loop, we don’t need to know how many
elements were read, as we let the system keep track of this for us. The second element in each
pair of the associative list is loaded with this line:

$headers{$headlist[$field]}=@data[$field];

Lets take a look at this line starting at the left end. From the array @data (which is the line we
just read in), we are accessing the element at the offset that is specified by the variable $field.
Because this is just the counter used for our foreach loop, we go through each element of the
array data one by one. The value retrieved is then assigned to the left-hand side.

On the left, we have an array offset being referred to by an array offset. Inside we have
$Sheadlist[$field]

The array headlist is what we filled up in the first block. In other words, the list of field
headings. When we reference the offset with the $field variable, we get the field heading. This
will be used as the string for the associative array. The element specified by

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

184

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

$headers{$headlist[$field]}
corresponds to the field value. For example, if the expression
$headlist[$field]}

evaluated to title, the second time through the loop, the expression $headers{$headlist[$field}
would evaluate to "2010: Odyssey Two."

At this point, we are ready to make our next jump. We are going to add the functionality to
search for specific values in the data. Lets assume that we know what the fields are and wish
to search for a particular value. For example, we want all books that have scifi as field charO.
Assuming that the script was called book.pl, we would specify the field label and value like
this:

perl book.pl charO=scifi

Or we could add #!/usr/bin/perl to the top of the script to force the system to use perl as the
interpreter. We would run the script like this:

book.pl charO=scifi

The completed script looks like this:
($searchfield,$searchvalue) = split(=,$ARGV[0]);
open(INFILE,"< bookdata.txt");
$lines=0;

while (<INFILE>)

{

chop;

@data = split(&,$);

if ($_eq"\n")

{

print STDERR "Error: \n";

} else {

if ($lines==0)

{

@headlist=split(&,$);

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

185

www.linux-tutorial.info

foreach $field (0..@headlist-1){

%headers = ($headlist[$field],);

}

$lines++;

} else { foreach $field (0..@data-1){
$headers{$headlist[$field]}=@data[$field];

if (($searchfield eq $headlist[$field]) &&
($searchvalue eq $headers{$headlist[$field]})) {
$found=1;

}

}

}

}

if ($found ==1)

{

foreach $field (0..@data-1){

print $headlist[$field],": ", $headers{$headlist[$field]},"\n";

}

}
$found=0;
< P>}

The Linux Knowledge Base and Tutorial

We added a line at the top of the script that splits the first argument on

the command line:

($searchfield,$searchvalue) = split(=,$ARGV[0]);

Note that we are accessing ARGVIO0]. This is not the command being called, as one would
expect in a C or shell program. Our command line has the string charO=scifi as its $ARGV/[0].

After the split, we have $searchfield=charO and $searchvalue=scifi.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

186

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Some other new code looks like this:

if (($searchfield eq $headlist[$field]) &&
($searchvalue eq $headers{$headlist[$field]})) {
$found=1;

Instead of outputting each line in the second foreach loop, we are changing it so that here we
are checking to see if the field we input, $searchfield, is the one we just read in
$headlist[$field] and if the value we are looking for, ($searchvalue), equals the one we just
read in.

Here we add another new concept: logical operators. These are just like in C, where &&
means a logical AND and || is a logical OR. If we want a logical comparison of two variables
and each has a specific value, we use the logical AND, like

if ($a==1&& $b =2)

which says if $a equals 1 AND $b equals 2, execute the following block. If we wrote it like
this

if ($a==1|$b="2)

it would read as follows: if $a equals 1 OR $b equals 2, execute the block. In our example, we
are saying that if the search field ($searchfield) equals the corresponding value in the heading
list ($headlist[$field]) AND the search value we input ($searchvalue) equals the value from
the file ($headers{$headlist[$field]}), we then execute the following block. Our block is

simply a flag to say we found a match.

Later, after we read in all the values for each record, we check the flag. If the flag was set, the
foreach loop is executed:

if ($found ==1)

{

foreach $field (0..@data-1){

print $headlist[$field],": ", $headers{$headlist[$field]},"\n";
}

Here we output the headings and then their corresponding values. But what if we aren’t sure
of the exact text we are looking for. For example, what if we want all books by the author
Eddings, but do not know that his first name is David? Its now time to introduce the perl
function index. As its name implies, it delivers an index. The index it delivers is an offset of
one string in another. The syntax is

index(STRING,SUBSTRING,POSITION)

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

187

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

where STRING is the name of the string that we are looking in, SUBSTRING is the substring
that we are looking for, and POSITION is where to start looking. That is, what position to
start from. If POSITION is omitted, the function starts at the beginning of STRING. For
example

index(pie,applepie);

will return 5, as the substring pie starts at position 5 of the string applepie. To take advantage
of this, we only need to change one line. We change this

if (($searchfield eq $headlist[$field]) &&

($searchvalue eq $headers{$headlist[$field]})) {

to this

if ((index($headlist[$field],$searchfield)) I= -1 &&
index($headers{$headlist[$field]},$searchvalue) !=-1) {

Here we are looking for an offset of -1. This indicates the condition where the substrang is
within the string. (The offset comes before the start of the string.) So, if we were to run the
script like this

script.pl author=Eddings

we would look through the field author for any entry containing the string Eddings. Because
there are records with an author named Eddings, if we looked for Edding, we would still find
it because Edding is a substring of "David Eddings."

As you might have noticed, we have a limitation in this mechanism. We must ensure that we
spell things with the right case. Because Eddings is uppercase both on the command line and
in the file, there is no problem. Normally names are capitalized, so it would make sense to
input them as such. But what about the title of a book? Often, words like "the" and "and" are
not capitalized. However, what if the person who input the data, input them as capitals? If you
looked for them in lowercase, but they were in the file as uppercase, you'd never find them.

To consider this possibility, we need to compare both the input and the fields in the file in the
same case. We do this by using the tr (translate) function. It has the syntax

tr/SEARCHLIST/REPLACEMENTLIST/[options]

where SEARCHLIST is the list of characters to look for and REPLACEMENTLIST is the
characters to use to replace those in SEARCHLIST. To see what options are available, check
the perl man-page. We change part of the script to look like this:

foreach $field (0..@data-1){
$headers{$headlist[$field]}=@data[$field];

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

188

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

($searchl = $searchfield) =~ tr/A-Z/a-z/;

($search2 = $headlist[$field]) =~ tr/A-Z/a-z/,

($search3 = $searchvalue)=~tr/A-Z/a-z/;

($search4 = $headers{$headlist[$field]})=~tr/A-Z/a-z/;

if ((index($search2,$searchl) !=-1) && (index($search4,$search3) !=-1)) {
$found=1;

}
}

In the middle of this section are four lines where we do the translations. This demonstrates a
special aspect of the tr function. We can do a translation as we are assigning one variable to
another. This is useful because the original strings are left unchanged. We must change the
statement with the index function and make comparisons to reflect the changes in the
variables.

So at this point, we have created an interface in which we can access a "database" and search
for specific values.

When writing conditional statements, you must be sure of the condition you are testing. Truth,
like many other things, is in the eye of the beholder. In this case, it is the perl interpreter that
is beholding your concept of true. It may not always be what you expect. In general, you can
say that a value is true unless it is the null string (), the number zero (0), or the literary string
zero ("0").

One important feature of perl is the comparison operators. Unlike C, there are different
operators for numeric comparison and for string comparison. They're all easy to remember
and you have certainly seen both sets before, but keep in mind that they are different. Table
0-8 contains a list of the perl comparison operators and Table 0-9 contains a list of perl
operations.

Table -8 perl Comparison Operators

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

189

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Numeric String Comparison
== eq equal to
I= ne not equal to
> gt greater than
< It less than
>= ge greater than or equal to
<= le less than or equal to
<=> cmp not equal to and sign is returned
(O - strings equal, 1 - first string less, -1 - first string greater)

Another important aspect that you need to keep in mind is that there is really no such thing as
a numeric variable. Well, sort of. perl is capable of distinguishing between the two without
you interfering. If a variable is used in a context where it can only be a string, then that's they
way perl will interpret it as a string.

Lets take two variables: $a=2 and $b=10. As you might expect, the expression $a < $b
evaluates to true because we are using the numeric comparison operator <. However, if the
expression were $a It $b, it would evaluate to false. This is because the string "10" comes
before "2" lexigraphically (it comes first alphabetically).

Besides simply translating sets of letters, perl can also do substitution. To show you this, | am
going to show you another neat trick of perl. Having been designed as a text and file
processing language, it is very common to read in a number of lines of data and processing
them all in turn. We can tell perl that it should assume we want to read in lines although we
don’t explicitly say so. Lets take a script that we call fix.pl. This script looks like this:

s/James/JAMES/qg;
s/Eddings/EDDINGS/g;

This syntax is the same as you would find in sed; however, perl has a much larger set of
regular expressions. Trying to run this as a script by itself will generate an error; instead, we
run it like this:

perl -p fix.pl bookdata.pl

The -p option tells perl to put a wrapper around your script. Therefore, our script would
behave as though we had written it like this:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

190

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

while (<>) {
s/James/JAMES/q;
s/Eddings/EDDINGS/g;
} continue {

print;

}

This would read each line from a file specified on the command line, carry out the
substitution, and then print out each line, changed or not. We could also take advantage of the
ability to specify the interpreter with #!. The script would then look like

#!/usr/bin/perl -p
s/James/JAMES/qg;
s/Eddings/EDDINGS/g;

Another command line option is -i. This stands for "in-place," and with it you can edit files
"in-place." In the example above, the changed lines would be output to the screen and we
would have to redirect them to a file ourselves. The -i option takes an argument, which
indicates the extension you want for the old version of the file. So, to use the option, we
would change the first line, like this:

#!/usr/bin/perl -pi.old

With perl, you can also make your own subroutines. These subroutines can be written to
return values, so that you have functions as well. Subroutines are first defined with the sub
keyword and are called using &. For example:

#!/usr/bin/perl

sub usage {

print "Invalid arguments: @ARGV\n";
print "Usage: $0 [-t] filename\n";

}

if (@ARGV <1 || @ARGV >2){
&usage;

}

This says that if the number of arguments from the command line @ARGYV is less than 1 or
greater than 2, we call the subroutine usage, which prints out a usage message.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

191

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

To create a function, we first create a subroutine. When we call the subroutine, we call it as
part of an expression. The value returned by the subroutine/function is the valutasf the
expression evaluated.

Lets create a function that prompts you for a yes/no response:
#!/usr/bin/perl

if (&getyn("Do you *really* want to remove all the files in this directory? ")
eq "y\n")

{

print "Don’t be silly\n"

}

sub getyn{

print @_;

$response = (<STDIN>);

}

This is a very simple example. In the subroutine getyn, we output everything that is passed to
the subroutine. This serves as a prompt. We then assign the line we get from stdin to the
variable $response. Because this is the last expression inside the subroutine to be evaluated,
this is the value that is returned to the calling statement.

If we enter "y" (which would include the new line from the Enter key), the calling if statement
passes the actual prompt as an argument to the subroutine. The getyn subroutine could then be
used in other circumstances. As mentioned, the value returned includes the new line;

therefore, we must check for "y\n." Thisnst"y" or "n," but rather "y#" followed by a

newline.

Alternatively, we could check the response inside the subroutine. In other words, we could
have added the line

$response =~ /"Yli;

We addressed the =~ characters earlier in connection with the tr function. Here as well, the
variable on the left-hand side is replaced by the "evaluation” of the right. In this case, we use a
pattern-matching construct: /Ay/i. This has the same behavior as sed, where we are looking for
a y at the beginning of the line. The trailing i simply says to ignore the case. If the first
character begins with ay or Y, the left-hand side ($response) is assigned the value 1; if not, it
becomes a null string.

We now change the calling statement and simply leave off the comparison to "y\n". Because
the return value of the subroutine is the value of the last expression evaluated, the value

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

192

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

returned now is either "1" or ". Therefore, we don’t have to do any kind of comparison, as the
if statement will react according to the return value.

I wish | could go on. | haven’t even hit on a quarter of what perl can do. Unfortunately, like

the sections on sed and awk, more details are beyond the scope of this book. Instead, | want to
refer you to a few other sources. First, there are two books from O’Reilly and Associates. The
first is Learning perlby Randal Schwartz. This is a tutorial. The othétregramming perl

by Larry Wall and Randal Schwartz. If you are familiar with other UNIX scripting languages,

| feel you would be better served by getting the second book.

The next suggestion | have is that you get the perl CD-ROM from Walnut Creek CD-ROM
(www.cdrom.com This is loaded with hundreds of megabytes of perl code and the April

1996 version, which | used, contains the source code for perl 4 (4.036) and perl5 (5.000m). In
many cases, | like this approach better because | can see how to do the things | need to do.
Books are useful to get the basics and reminders of syntax, options, etc. However, seeing
someone else’s code shows me how to do it.

Another good CD-ROM is the Mother of PERL CD from InfoMagieviyv.infomagic.com
It, too, is loaded with hundreds of megabytes of perl scripts and information.

There are a lot of places to find sample scripts while you are waiting for the CD to arrive. One
place is the Computers and Internet: Programming Languages: Perl hierarchy at Yahoo.
(www.yahoo.com You can use this as a springboard to many sites that not only have
information on perl but data on using perl on the Web (e.g., in CGI scripts).

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

193

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Chapter 6 Basic Administration

It's difficult to put together a simple answer when I’'m asked about the job of a system
administrator. Every aspect of the system can fall within the realm of a system administrator.
Entire books have been written about just the software side, and for most system
administrators, hardware, networks, and even programming fall into their laps.

| work for the largest developer of online broker software in Germany. In addition to the
software, we also run the data centers for several online brokers. | am responsible for
monitoring the systems and providing reports on several levels, performance and many other
things. | am expected to understand how our software works with all of its various
components, how they work with third party products; as well as the workings of the network,
firewalls, Solaris, Linux, Windows 2000 and XP, perl, shell scripting, and so forth.

There is very little here on my site that does not directly relate to my job as a system
administrator. For the most part, you need to be a jack of all trades. Although Linux has come
a long way in the last few years and you no longer need to be a "guru” to get it to work,
knowing how to administer your system allows you to go beyond what is delivered to you out
of the box.

In this chapter, we are just going to go through the basics. We won’t necessarily be talking
about individual steps or processes used by the administrator, but rather about functional
areas With this, | hope to be able to give you enough background to use the programs and
utilities that the system provides for you.

6.1 Starting and Stopping the System

Almost every user and many administrators never see what happens while the system boots,
and those who do often do not understand what they are seeing. Those who do often are not
sure what is happening. From the time you flip the power switch to the time you get that first
login: prompt, dozens of things must happen, many of which happen long before the system
knows that it’'s running Linux. Knowing what is happening as the system boots and in what
order it is happening is very useful when your system does not start the way it should.

In this chapter, | will first talk about starting your system. Although you can get it going by
flipping on the power switch and letting the system boot by itself, there are many ways to
change the behavior of your system as it boots. How the system boots depends on the
situation. As we move along through the chapter, we’ll talk about the different ways to
influence how the system boots.

After we talk about how to start your system, we’ll look at a few ways to alter your system’s
behavior when it shuts down.

6.1.1 The Boot Process

The process of turning on your computer and having it jump through hoops to bring up the
operating system is calldmboting which derives from the terbwotstrappingThis is an
allusion to the idea that a computer pulls itself up by its bootstraps, in that smaller pieces of

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

194

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

simple code start larger, more complex pieces to get the system running.

The process a computer goes through is similar among different computer types, whether it is
a PC, Macintosh, or SPARC Workstation. In the next section, | will be talking specifically
about the PC, though the concepts are still valid for other machines.

The first thing that happens is the Power-On Self-Test POST. Here the hardware checks itself
to see that things are all right. It compares the hardware settings in the CMOS Complementary
Metal Oxide Semiconductor to what is physically on the system. Some errors, like the floppy
types not matching, are annoying, but your system still can boot. Others, like the lack of a
video card, can keep the boot process from continuing. Often, there is nothing to indicate what
the problem is, except for a few little "beeps."

Once the POST is completed, the hardware jumps to a specific, predefined location in RAM.
The instructions located here are relatively simple and basically tell the hardware to go look
for a boot device. Depending on how your CMOS is configured, the hardware first checks
your floppy and then your hard disk.

When a boot device is found let’s assume that it's a hard disk, the hardware is told to go to the
Oth first sector cylinder 0, head 0, sector 0, then load and execute the instructions there. This
is the master boot record, or MBR for you DOS-heads sometimes also called the master boot
block. This code is small enough to fit into one block but is intelligent enough to read the
partition table located just past the master boot block and find the active partition. Once it
finds the active partition, it begins to read and execute the instructions contained within the
first block.

It is at this point that viruses can affect/infect Linux systems. The master boot block has the
same format for essentially all PC-based operating systems and it does is find and execute
code at the beginning of the active partition. But if the master boot block contains code that
tells it to go to the very last sector of the hard disk and execute the code there, which then tells
the system to execute code at the beginning of the active partition, you would never know
anything was wrong.

Let’'s assume that the instructions at the very end of the disk are larger than a single 512-byte
sector. If the instructions took up a couple of kilobytes, you could get some fairly complicated
code. Because it is at the end of the disk, you would probably never know it was there. What
if that code checked the date in the CMOS and, if the day of the week was Friday and the day
of the month was 13, it would erase the first few kilobytes of your hard disk? If that were the
case, then your system would be infected with the Friday the 13th virus, and you could no
longer boot your hard disk.

Viruses that behave in this way are called "boot viruses," as they affect the master boot block
and can only damage your system if this is the disk from which you are booting. These kinds
of viruses can affect all PC-based systems. Some computers will allow you to configure them
more on that later so that you cannot write to the master boot block. Although this is a good
safeguard against older viruses, the newer ones can change the CMOS to allow writing to the
master boot block. So, just because you have enabled this feature does not mean your system
is safe. However, | must point out that boot viruses can only affect Linux systems if you boot

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

195

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

from an infected disk. This usually will be a floppy, more than likely a DOS floppy.
Therefore, you need to be especially careful when booting from floppies.

Now back to our story...

As | mentioned, the code in the master boot block finds the active partition and begins
executing the code there. On an MS-DOS system, these are the 10.SYS and MSDOS.SYS
files. On an Linux system, this is often the LILO or Linux loader "program.” Although
10.SYS and MSDOS.SYS are "real" files that you can look at and even remove if you want
to, the LILO program is not. The LILO program is part of the partition, but not part of the file
system; therefore, it is not a "real" file. Regardless of what program is booting your system
and loading the kernel, it is generally referred to as a "boot loader".

Often, LILO is installed in the master boot block of the hard disk itself. Therefore, it will be
the first code to run when your system is booted. In this case, LILO can be used to start other
operating systems. On one machine, | have LILO start either Windows 95 or one of two
different versions of Linux.

In other cases, LILO is installed in the boot sector of a given patrtition. In this case, it is
referred to as a "secondary” boot loader and is used just to load the Linux installed on that
partition. This is useful if you have another operating system such as OS/2 or Windows NT
and you use the boot software from that OS to load any others. However, neither of these was
designed with Linux in mind. Therefore, | usually have LILO loaded in the master boot block
and have it do all the work.

Assuming that LILO has been written to the master boot record and is, therefore, the master
boot record, it is loaded by the system BIOS into a specific memory location 0x7C00 and then
executed. The primary boot loader then uses the system BIOS to load the secondary boot
loader into a specific memory 0x9B000. The reason that the BIOS is still used at this point is
that by including the code necessary to access the hardware, the secondary boot loader would
be extremely large at least by comparison to its current size. Furthermore, it would need to be
able to recognize and access different hardware types such as IDE and EIDE, as well as SCSI,
and so forth.

This limits LILO, because it is obviously dependant on the BIOS. As a result, LILO and the
secondary boot loader cannot access sectors on the hard disk that are above 1023. In fact, this
is a problem for other PC-based operating systems, as well. There are two solutions to this
problem. The original solution is simply to create the partitions so that the LILO and the
secondary boot loader are at cylinder 1023 or below. This is one reason for the moving the
boot files into the /boot directory which is often on a separate file system, that lies at the start
of the hard disk.

The other solution is something called "Logical Block Addresses" LBA. With LBA, the BIOS
"thinks" there are less sectors than there actually are. Details on LBA can be found in the
section on hard disks.

Contrary to common belief, it is actually the secondary boot loader that provides the prompt
and accepts the various options. The secondary boot loader is what reads the /boot/map file to
determine the location of kernel image to load.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

196

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

You can configure LILO with a wide range of options. Not only can you boot with different
operating systems, but with Linux you can boot different versions of the kernel as well as use
different root file systems. This is useful if you are a developer because you can have multiple
versions of the kernel on a single system. You can then boot them and test your product in
different environments. We’'ll go into details about configuring LILO in the section on

Installing your Linux kernel.

In addition, | always have three copies of my kernel on the system and have configured LILO
to be able to boot any one of them. The first copy is the current kernel | am using. When |
rebuild a new kernel and install it, it gets copiedvtalinuz.old , which is the second

kernel | can access. | then have a copy calledinuz.orig , Which is the original kernel

from when | installed that particular release. This, at least, contains the drivers necessary to
boot and access my hard disk and CD-ROM. If | can get that far, | can reinstall what | need to.

Typically on newer Linux versions, the kernel is no longer stored in the root directory, but
rather in the /boot directory. Also, you will find that it is common that the version number of
the respective kernel is added onto the end. For example, /boot/vmlinuz.2.4.18, which would
indicate that this kernel is version 2.4.18. What is important is that the kernel can be located
when the system boots and not what it is called.

During the course of this writing this material, | often had more than one distribution of Linux
installed on my system. It was very useful to see whether the application software provided
with one release was compatible with the kernel from a different distribution. Using various
options to LILO, | could boot one kernel but use the root file system from a different version.
This was also useful on at least one occasion when | had one version that didn’t have the
correct drivers in the kernel on the hard disk and | couldn’t even boot it.

Once your system boots, you will see the kernel being loaded and started. As it is loaded and
begins to execute, you will see screens of information flash past. For the uninitiated, this is
overwhelming, but after you take a closer look at it, most of the information is very
straightforward.

Once you're booted, you can see this information in theudgddm/messages

Depending on your system, this file might béviar/adm or even/var/log , although

Ivar/llog seems to be the most common, as of this writing. In the messages file, as well as
during the boot process, you'll see several types of information that the system logging
daemon syslogd is writing. The syslogd daemon usually continues logging as the system is
running, although you can turn it off if you want. To look at the kernel messages messages
after the system boots, you can usedimesg command.

The general format for the entries is:
time hostname program: message

wheretime is the system time when the message is generated, hostname is the host that
generated the message, program is the program that generated the message, and message is
the text of the message. For example, a message from the kernel might look like this:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

197

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

May 13 11:34:23 localhost kernel ide0O: do_ide_reset: success
>

As the system is booting, all you see are the messages themselves and not the other
information. Most of what you see as the system boots are messages from kernel, with a few
other things, so you would see this message just as

ide0: do_ide_reset: success>

Much of the information that the syslogd daemon writes comes from device drivers that
perform any initialization routines. If you have hardware problems on your system, this is
veryuseful information. One example | encountered was with two pieces of hardware that
were both software-configurable. However, in both cases, the software wanted to configure
them as the same IRQ. | could then change the source code and recompile so that one
assigned a different IRQ.

You will also notice the kernel checking the existing hardware for specific capability, such as
whether an FPU is present, whether the CPU has the hlt halt instruction, and so on.

What is logged and where it is logged is based ovetioésyslog.conf file. Each entry

is broken down into facility.priority, where facility is the part of the system such as the kernel
or printer spooler and security and priority indicate the severity of the message. The
facility.priority ranges from none, when no messages are logged, to emerg, which represents
very significant events like kernel panics. Messages are generally logged to one file or
another, though emergency messages should be displayed to everyone usually done by
default. See the syslog.conf man-page for details.

One last thing that the kernel does is start the init process, which reaelsngtab

file. It looks for any entry that should be run when the system is initializing the entry has a
sysinit in the third field and then executes the corresponding command. I'll get into details
about different run-levels and these entries shortly.

The first thing init runs out of the inittab is the sc¥giic/rc.d/rc.sysinit , Which is
similar to the bcheckrc script on other systems. As with everything else/etwles.d ,

this is a shell script, so you can take a look at it if you want. Actually, | feel that looking
through and becoming familiar with which scripts does what and it what order is a good way
of learning about your system.

Among the myriad of things done here are checking and mounting file systems, removing old
lock and PID files, and enabling the swap space.

Note that if the file system check notes some serious problems, the rc.sysinit will stop and
bring you to a shell prompt, where you can attempt to clean up by hand. Once you exit this
shell, the next command to be executed aside from an echo is a reboot. This is done to ensure
the validity of the file systems.

Next, init looks through inittab for the line with initdefault in the third field. The initdefault
entry tells the system what run-level to enter initially, normally run-level 3 without X
Windows or run-level 5 with X Windows. Other systems have the default run-level 1 to bring
you into single-user or maintenance mode. Here you can perform certain actions without

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

198

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

worrying users or too many other things happening on your system. Note: You can keep users
out simply by creating the file /etc/nologin. See the nologin man-page for details.

What kind of actions can you perform here? The action with the most impact is adding new or
updating software. Often, new software will affect old software in such a way that it is better
not to have other users on the system. In such cases, the installation procedures for that
software should keep you from installing unless you are in maintenance mode.

This is also a good place to configure hardware that you added or otherwise change the

kernel. Although these actions rarely impact users, you will have to do a kernel rebuild. This
takes up a lot of system resources and degrades overall performance. Plus, you need to reboot
after doing a kernel rebuild and it takes longer to reboot from run-level 3 than from run-level

1.

If the changes you made do not require you to rebuild the kernel say, adding new software,
you can go directly from single-user to multi-user mode by runnib@ . The argument

to init is simply the run level you want to go into, which, for most purposes, is run-level 3.
However, to shut down the system, you could bring the system to run-level O or 6. See the init
man-page for more details.

Init looks for any entry that has a 3 in the second field. This 3 corresponds to the run-level
where we currently are. Run-level 3 is the same as multi-user mode.

Within the inittab, there is a line for every run level that starts the getgdtc.d/rc ,
passing the run level as an argument. /Et&'rc.d/rc script, after a little housekeeping,
then starts the scripts for that run level. For each run level, there is a directory underneath
letc/rc.d , such as rc3.d, which contains the scripts that will be run for that run level.

In these directories, you may find two sets of scripts. The scripts beginning with K are the kill
scripts, which are used to shutdown/stop a particular subsystem. The S scripts are the start
scripts. Note that the kill and start scripts are links to the filéstafrc.d/init.d f

there are K and S scripts with the same number, these are both linked to the same file.

This is done because the scripts are started with an argument of either start or stop. The script
itself then changes its behavior based on whether you told it to start or stop. Naming them
something slightly different allows us to start only the K scripts if we want to stop things and
only the S scripts when we want to start things.

When the system changes to a particular run level, the first scripts that are started are the K
scripts. This stops any of the processes that should not be running in that level. Next, the S
scripts are run to start the processes that should be running.

Let's look at an example. On most systems, run-levebBnsstthe same as run-level 2. The
only difference is that in run-level 2, NFS is not running. If you were to change from run-level
3 to run-level 2, NFS would go down. In run-level 1 maintenance mode, almost everything is
stopped.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

199

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

6.1.2 Run Levels

Most users are only familiar with two run states or run levels. The one that is most commonly
experienced is what is referred to a multiuser mode. This is where logins are enabled on
terminals when the network is running and the system is behaving "normally." The other run
level is system maintenance or single-user mode, when only a single user is on the system
(root), probably doing some kind of maintenance tasks. Although it could be configured to
allow logins by other users, usually the system is so configured that only one login is allowed
on the system console.

On every system that | have encountered, Linux will automatically boot into run-level 3. This
is the normal operating mode. To get to a lower run level (for example, to do system
maintenance), the system administrator must switch levels manually.

It is generally said that the "system" is in a particular run-level. However, it is more accurate
to say that the init process is in a particular run level, because init determines what other
processes are started at each run-level.

In addition to the run levels most of us are familiar with, there are several others that the
system can run in. Despite this fact, few of them are hardly ever used. For more details on
what these run levels are, take a look at the init man-page.

The system administrator can change to a particular run level by using that run level as the
argument to init. For example, running init 2 would change the system to run-level 2. To
determine what processes to start in each run level, init reatitdheittab file. This

is defined by the second field in thedc/inittab file. Init reads this file and executes

each program defined for that run level in order. When the system boots, it decides what run
level to go into based on the initdefault entryatc/inittab

The fields in the inittab file are:

id unigue identity for that entry
rstate run level in which the entry will be processed
action tells init how to treat the process specifically

process what process will be started

One thing | need to point out is that the entries in inittab are n@xactlyaccording to the

order in which they appear. If you are entering a run level other than S for the first time since
boot-up, init will first execute those entries with a boot or bootwait inhing column. These

are those processes that should be started before users are allowed access to the system, such
as checking then mounting the status of the file systems.

In run-level 3, the /sbin/mingetty process is started on the terminals specified. The getty
process gives you your login: prompt. When you have entered your logname for the first time,
getty starts the login process, which asks you for your password. If your password is incorrect,
you are prompted to input your logname again. If your password is correct, then the system
starts your "login shell. " Note that what gets started may not be a shell at all, but some other

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

200

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

program. The term "login shell" is the generic term for whatever program is started when you
login. This is defined by thiast field of the corresponding entry in /etc/passwd.

Keep in mind that you can move in either direction, that is, from a lower to higher run level or
from a higher to lower run level without having to first reboot. init will read the inittab and
start or stop the necessary processes. If a particular process is not defined at a particular run
level, then init will kill it. For example, assume you are in run-level 3 and switch to run-level
1. Many of the processes defined do not have a 1 in the second field. Therefore, when you
switch to run-level 1, those processes and all their children will be stopped.

If we look at the scripts in rcl.d, we see there all the scripts are kill scripts, with the exception
of one start script. It is this start script that actually kills all the processes. It does exec init -t1
S, which brings the system into maintenance mode in one (-t1) minute.

To shutdown the system immediately, you could run
init 0

which will bring the system immediately into run-level 0. As with run-level 1, there is only
one start script for run-level 0. It is this script that Kills all the processes, unmounts all the file
systems, turns off swap, and brings the system down.

After it has started the necessary process from inittab, init just waits. When one of its
"descendants" dies (a child process of a child process of a child process, etc., of a process that
init started), init rereads the inittab to see what should be done. If, for example, there is a
respawn entry in the third field, init will start the specified process again. This is why when

you log out, you immediately get a new login: prompt.

Because init just waits for processes to die, you cannot simply add an entry to inittab and
expect the process to start up. You have to tell init to reread the inittab. However, you can
forceinit to reread the inittab by running init (or telinit) Q.

In addition to the run levels we discussed here, several more are possible. There are three
"pseudo” run-levels a, b, and c. These are used to start specific programs as needed or "on
demand". Any listed in inittab with the approapriate run-level will be started, however no
actual run-level change occurs. If you're curious about the details, take a look at the init(8)
man-page or the section on init-scripts.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

201

www.linux-tutorial.info

The Linux Knowledge Base and Tutorial

Action Meaning

boot Executed during system boot.

bootwait Executed during system boot, but init waits until they have completed.

initdefault The default run level init starts after the system boots.

ondemand Executed when one of the "on demand" run levels is called (a,b, and c)
powerwait Executed when the system power fails. Init will wait until the command completes.
powerfail Executed when the system power fails, but init will not wait for completion.
powerokwait Executed when init is informed that power has been restored.

powerfailnow

Executed when init is informed that the external battery is empty.

resume Executed when init is told by the kernel that "Software Suspend"

sysinit Executed during system boot before any boot or bootwait entries.

respawn Restarted if the processes stops.

wait Started once when the specific run-level is entered and init waits for completion.

once Started once when the specific run-level is entered but init does not wait for completion.
ctrlaltdel Execute when someone on the system console presses CTRL-ALT-DEL.

Table - List of inittab actions.

If necessary, you can add your own entries fetd/inittab . However, what is typically

done is that init-scripts are added to the appropriate directory for the run-level where you want
to start it. Depending on your Linux distribution, you could simply copy it into /etc/rc.d and

use the appropriate admin tool, like Yast2 to add the script to the appropriate directory. For
more details see the section on init-scripts.

Note however, that simply changirejc/inittab is not enough. You need to tell the init
process to re-read it. Normally init will re-read the file when it changes run levels or by
sending it a hangup signal with

kill -HUP <PID_OF _ID>.
Also running the command
telinit g

will tell init to reread it.

Be extremely careful if you edit théetc/inittab file by hand. An editing mistake could
prevent your system from booting into a specific run level. If you use the boot, bootwait or
sysinit actions, you could prevent your system from booting at all. Therefore, like with any
system file it is good idea to make a backup copy first. If you make a mistake that prevents a
particular program from starting, and the action is respawned, init might get caught in a loop.
That is, init tries to start the program, cannot, for whatever reason and then tries to start it

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

202

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

again. If init finds that it is starting the program more than 10 times within 2 minutes, it will
treat this as an error and stops trying. Typically you will get messages in the system log that
the process is "respawning too rapidly".

6.1.3 Init Scripts

If you were to just install the Linux operating system on your hard disk, you would not be
able to do very much. What actually makes Linux so useful is all of the extra things which are
brought with it. This is essentially true for every operating system.

What makes Linux so useful as well as powerful are all the of services, which are generally
referred to as daemons. These daemons typically run without user intervention providing
everything from printing to file services to Web pages and beyond. Because they are not part
of the operating system proper they are normally loaded separately from the kernel. Although
many of these services could be made part of the kernel, they are mostly separate programs.
Because they are separate programs something needs to configure and start them.

In most cases, simply installing a particular package is sufficient to activate the appropriate
daemon. However, there are times when you need to make changes to how these demons
behave, which often means changing the way the program starts up. In order to be able to do
that, you obviously need to know just how and where these daemons are started in the first
place. That's exactly what we're going to talk about here.

Once the kernel is loaded, one of the last things it does is to start the init process. The job of
the init process (or simply init) is to start all of the daemons at the appropriate time. What the
appropriate time is depends on a number of different things. For example, you may be
performing administrative tasks and you do not want certain daemons to be running. Although
you can stop those demons you do not need, the system provides a mechanism to do this
automatically.

To understand this mechanism we need to talk about something called "run states" or "run
levels". Most users (and many administrators, for that matter) are familiar with only one run
level. This is the run level in which the system is performing all of its normal functions. Users
can login, submit print jobs, access Web pages, and do everything else one would expect. This
run level is commonly referred to as multiuser mode. In contrast, maintenance or single user
mode is normally recommended for administrative tasks.

Each run level is referred to by its number. When the system is not doing anything, that is the
system is stopped, this is run level 0. Single user mode is run-level 1. Multiuser mode is
actually multiple runs levels. Depending on which distribution or which version of Unix you
ahve, this can be run-level 2, run-levedrdl run-level 5. Most Linux systems automatically
booting into run-level 3 when the system starts. Run level 2 is very similar to run level 3,
although a number of things do not run in level 2. In fact, on some systems (SCO UNIX for
example), run level 2 is the standard multi-user mode. Run-level 5 is where the GUI starts
automatically. (For more details on the run levels, take a look at the init(8) man-page.)

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

203

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Like many other aspects of the system, init has its own configuratiorefténittab

(see the table below). This file contains the init table (inittab), which tells it init what to do
and when to do it. Each activity init does is represented by a single line in the inittab, which
consists of four entries, separated by a colon. The first field is a unique identifier for that
entry, which enables init to keep track of each daemon as it runs. The second field is the run
level in which each particular entry is run.

The third entry is the action, which tells init how to behave in regard to this entry. For
example, some entries are only processed when the system boots. Others are automatically
re-started should that particular process stop (such as terminal logins). The last entry is what
program will be started and often a number of options for that program.

If you take look in inittab on your system you may notice something peculiar. More than
likely, you are not going to find any entries for the system demons we have been talking
about. The reason is quite simply that the daemons are not started through the inittab, but
rather through scripts which are started from the inittab. These scripts we see as the entries
labeled 10 through 16, for run levels 0 through 6 (the letter "ell", not the number one).

In the example below, the "action" is that init waits until the program has terminated before
continuing on and processing other entries for this run level. This also means that the entry
will only be processed once as the system enters that particular one level.

The key to all of this is the program which is run for each run level. In every case, it is the
shell script rc, which is given the appropriate run level as an argument. This script is often
called the "run level master script" as it is responsible for loading all of the other init scripts.
Where this script lies and what it is called will be different for different Linux distributions.
Under older versions of SuSe it/etc/rc.d , but now it’s infetc/init.d/ . Under
Caldera the script resides undetc/rc.d . Note that starting with version 8.0, SuSe also
has anetc/rc.d directory, which is actually a symbolic link tsbin/init.d

Not just the location of the script is different between distributions, but so is the actual code.
However, the basic functionality is generally the same. That is, to start other scripts which
finally start the daemons we have been talking about all along.

One of the key aspects is how the system determines which daemon to start in which run
level. As you might guess, this is accomplished through the run-level that is passed as an
argument to the RC script. At least that’s part of it. In addition, the system needs a list of
which scripts should be started in which run level. This is accomplished not by a text file, but
rather by separating the programs or scripts into different directories, one for each run level.

If you look in the/sbin/init.d or/etc/rc.d directory you'll see a number of
subdirectories of the form rc#.d, where # is a particular run level. For example, the directory
rc3.d is for run level 3. Within the subdirectories are not the actual scripts, as you might have
guessed, but rather symbolic links to the actual scripts. The primary reason for this is that a
script can be started in more than one run level. If the files were not links, but rather copies,
any change would have to be made to every copy. The reason they are symbolic links, is that
they may point to files on other file systems which is only possible by using symbolic links.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

204

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

With SuSe, thésbin/init.d directory is also where the real scripts reside. On Caldera,
the scripts reside undéastc/rc.d/init.d

At first glance, the filenames may be a little confusing. Although it is fairly simple to figure
out what daemon is started by looking at the name, the way these links are named takes a little
explanation.

As you might guess, the link ending in "apache" points to the script which starts the Apache
Web server.

However, you'll see there are two files with this ending. The really odd thing is that both of
these links point to the exact same file. So, what'’s the deal?

Part of the explanation lies in the first letter of each of these links. As you see, each starts with
either the letter S or the letter K. Those which begin with the letter S are used to start the
particular service and those which begin with the letter K are used to stop or kill that same
service.

That leaves us with just the numbers. These are used to define the order in which the scripts
are run. When the files are listed, they automatically appear in numerical order. In this way,
the system can ensure the scripts are run in the correct order. For example, you do not want to
start the Apache Web server before you start the network. Therefore, the linked used to start
the network is SO5network whereas the link used to start Apache is S20apache as SO5 comes
before S20 no matter what comes afterwards.

Note also, the same applies when the system shuts down. K20apache is used to shut down the
Apache server and K40network is used to shut down network. As in the first case, the network
is not shutdown until after Apache has.

It is interesting to note that this system could work even if the name of the link consisted of
just S or K and the appropriate number. That is, it would still work if the link told us nothing

of the service being started. There is actually more to it than making things simpler for us
non-computers. Having the names at the end allows the system to avoid unnecessary the
unnecessary stopping and starting of the various services. When a lower level is entered, only
those of services are started which were not started in previous run level. When leaving a run
level, the only services that are stopped are those that are not started in the new level.

Let's look at an example. In the directdegc/init.d/rc3.d (for run level 3), there are

links used to both start and stop the network. However, this means the network will always be
re-started when moving from run level 1 to run level 3. This also means the network will
always be stopped when moving from run level 3 to run level 1. On the other hand, both links
exist in rc.2 (for run level 2). Therefore, when leaving either run level 2 or 3 and moving to
the other, the network is not stopped as there is a start link for it in the new run level. When
entering the new run level, the network is not started, as there was already a start link for the
previous level. However, in moving from a run level when network is running (e.g. 2,3 or 5)

to run level 1, the network is stopped because there is no link to start the network in run level
1.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

205

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

We're not done yet.

Since the links to both start and stop a service can be to the exact same file, the script needs
some way of knowing whether it should start or stop the service. This is done by passing an
argument to the script: start to start the service and stop to stop the service (simple, huh?).
Inside each script, this argument is read (typically $1) and different activities are performed
based on what the argument was.

Note that for many scripts, you can pass other arguments than just start and stop. For example,
one common argument is restart. As its name implies, this is used to stop then start the service
again, in other words, restart a running service. Many will also accept the argument status,
which is used to deliver status information about that service.

Default runlevel.
id:3:initdefault:

System initialization.
si::sysinit:/etc/rc.d/rc.modules default
bw::bootwait:/etc/rc.d/rc.boot

What to do in single-user mode.

~1:S:wait:/etc/rc.d/rc 1
~~:S:wait:/sbhin/sulogin

[0:0:wait:/etc/rc.d/rc O
[1:1:wait:/etc/rc.d/rc 1
[2:2:wait:/etc/rc.d/rc 2
13:3:wait:/etc/rc.d/rc 3
|4:4:wait:/etc/rc.d/rc 4
[5:5:wait:/etc/rc.d/rc 5
16:6:wait:/etc/rc.d/rc 6

Figure - Excerpts from the /etc/inittab file

On some systems, the scripts we have talked about so far are not the only scripts which are
started when the system boots. Remember that init reads the inittab to find out what to do, so
there are any number of things that "could” be started through the inittab, as compared to the
rc-scripts. Even so, for people who are used to other versions of UNIX, the inittab looks pretty
barren.

One type of script that is often run from the inittab deals with system initialization. For
example, the boot script, which is found directlyshin/init.d . The entry in the inittab
might look like this:

si:l:bootwait:/sbin/init.d/boot

The run level this script runs in is "I", which is not a traditional run level, but used by some
distributions (i.e. SuSe) to indicate system initialization. However, because the action is
bootwait, the run-level field is ignored. Bootwait means that this entry will be processed while
the system boots, and init will wait until the command or script has completed.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

206

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

In this case, the script isbin/init.d/boot , Which performs basic system initialization
such as starting the bdflush daemon (which writes dirty buffers to the disk), checking the
filesystems (with fsck), mounting filesystems, starting the kernel module daemon (kerneld),
and many other things. Other versions (as well as other UNIX dialects) may have several
different entries in the inittab that combine to do the same work as the /sbin/init.d/boot script
under SuSe Linux.

The counterpart to thisbin/init.d/boot script/sbin/init.d/halt . These are

the procedures that are carried out when the system is brought down. In general, these are the
reverse of the procedures in the boot scripts, such as stopping kerneld and unmounting
filesystems.

SuSe also uses the system configuration file /etc/rc.config. This file contains a large number
of variables that are used to configure the various services. Reading this file and setting the
variables is one of the first things done by the scsip/init.d/rc . The counterpart to

this file on Caldera igetc/syconfig/daemons . Instead of a single configuration file,

you will find separate files for a number of different daemons.

Creating your own init scripts

Sometimes the scripts your particular distribution provides are not sufficient and you need to
add your own. On a number of systems where | have needed to add my own system services, |
have needed to create my own init scripts. The method that works on any system is to simply
follow the conventions used by your distribution.

SuSe has realized the need for creating your own init scripts, so has provided a template for
you. This is the filésbin/init.d/skeleton and as its name implies, is a "skeleton"

init script. In its default state, this is a completely runnable init script. At the same time it is
completely useless as there is no daemon behind it. Instead, you simply uncomment the lines
you need, change the name of the daemon or service and you are ready to run.

6.1.4 LILO-The Linux Loader

In the section on the boot process, we briefly discussed the Linux boot loader LILO. (Short
for LInuxLOader). This is basically a set of instructions to tell the operating system how to
boot. These instructions include what operating system to boot and from what partition, as
well as a number of different options. If LILO is installed in your master boot record, it can be
used to boot basically any operating system that you can install on that hardware. For
example, on my machine, | have had LILO boot various Windows versions (including NT),
SCO Unix, Sun Solaris, and, of course, Linux. Actually, most of the work was done by the
boot loader of the respective operating system, but LILO was used to load start the boot
process.

In this section we are going to talk about some of the basics of LILO from a user’s
perspective. In the section on Installing your Linux kernel, we’ll go into more details of
configuring and installing LILO.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

207

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

When your system reaches the point where LILO is executed, you are usually given the
prompt:

LILO:
>

By simply pressing the enter key, LILO will execute it's default instructions, which usually
means loading and executing a Linux kernel. However, starting Linux is not a requirement. In
the before time, when | typically worked on Windows, rather than Linux, | had LILO as my
boot loader, but it booted Windows 95 by default. Either | pressed the enter key at the LILO
prompt or simply waited until LILO had reached the configured timeout (which | configured

to be 10 seconds).

In order to boot different operating systems, you need to be able to tell LILO what to boot.
This is done by simply inputting the appropriate text at the LILO prompt. This text is
configured in the LILO configuration filgdtc/lilo.conf). A problem arises three

months later when you have forgotten what text you used. Fortunately, to get a list of
available options, all you need to do is press the TAB key, which will display the different
texts. For example, | had three, which were labeled "win95", "linux" and "linuxgood". The
win95 was the default (before | knew better), linux started my current kernel and linuxgood
was a kernel that | had compiled with just the basic options that | knew worked and | used it
as a failsafe should something go wrong when installing a new kernel. Interestingly enough,
SuSE added their own LILO entry in the meantime, which they simply called "failsafe" with
the same purpose as my entry.

In addition to accepting the tag, or label, for a specific entry, you can pass configuration
options to LILO directly at the prompt. One thing | commonly pass is the location of the root
filesystem. | used to have a couple of different Linux distributions on my system, particularly
when a new version came out.l would install the new version on a different partition to make
sure things worked correctly. | could then boot from either the new or old kernel and select
which root filesystem | wanted. This might be done like this:

linux root=/dev/hda6

Here /dev/hda6 is the partition where my root filesystem is. Note that LILO does not do
anything with these options, instead they are passed to the kernel. LILO is not very smart, but
knows enough to pass anything given it at the LILO prompt to the kernel. You can also pass
options to tell the kernel that the root filesystem is read-only (root=/dev/hda6,ro) or read-write
(root=/dev/hda6,rw).

Another useful option is the keyword "single". This tells the kernel to boot into "single-user
mode", which is also referred to as "maintenance mode". As the names imply, only a single
user can log into the system and it is used to perform system maintenance.

If it runs into problems while booting, LILO will provide you information about what went

wrong (albeit not as obviously as you might hope). When loading, the letters of "LILO" are

not printed all at once, but rather as each phase of the boot process is reached. Therefore, you
can figure out where the boot process stopped by how much of the word LILO is displayed.
The following table shows you the various stages and what possible problems could be.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

208

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Characters Description

none LILO has not yet started. Either it was not installed or the patrtition is not active
L The first stage boot loader has been loaded and started. However, the second stage boot
loader cannot be loaded. Tarorcodetypically indicates a media problem, such as a hard
errorcode . .)
disk error or incorrect hard disk geometry.
L] The second stage boot loader was loaded, but could not be executed. Either a geometry
mismatch has occurred or boot/boot.b was moved without running the map installer.
LIL Second stage boot loader starts, but cannot load the descriptor table from the map file.
Typcially a media failure or by a geometry mismatch.
Second stage boot loader loaded at an incorrect address. Typically caused by a geometry
LIL? - - . . .
mismatch or by moving /boot/boot.b without running the map installer.
Descriptor table is corrupt. Typically caused by either a geometry mismatch or by moving
LIL- . : !
/boot/boot.b without running the map installer.
LILO Everything successfully loaded and executed.

Table - LILO boot stages and possible problems.

6.1.5 Stopping the System

For those of you who hadn’t noticed, Linux isn’t like DOS or Windows. Despite the
superficial similarity at the command prompt and similarities in the GUI, they have little in
common. One very important difference is the way you stop the system.

In DOS or Windows 95/98/ME, you are completely omnipotent. You know everything that's
going on. You have complete control over everything. If you decide that you've had enough
and flip the power switch, you are the only one doing so will effect. However, with dozens of
people working on an Linux system and dozens more using its resources, simply turning off
the machine is not something you want to do. Despite the fact that you will annoy quite a few
people, it can cause damage to your system, depending on exactly what was happening when
you killed the power. (Okay, you could also create problems with a DOS system, but with

only one person, the chances are less likely).

On a multi-user system like Linux, many different things are going on. You many not see any
disk activity, but the system may still have things its buffers which are waiting for the chance
to write to the hard disk. If you turn off the power before this data is written, what is on the
hard disk may be inconsistent.

Normally, pressing Ctrl-Alt-Delill reboot your system. You can prevent this by creating the
file /etc/shutdown.allow , Which contains a list (one entry per line) of users. If this file
exists, the system will first check whether one of the users listed in shutdown.allow is logged
in on the system console. If none are, you see the message

shutdown: no authorized users logged in

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

209

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

To make sure that things are stopped safely, you need to shut down your system "properly."
What is considered proper can be a couple of things, depending on the circumstances. Linux
provides several tools to stop the system and allows you to decide what is proper for your
particular circumstance. Flipping the power switchasshutting down properly.

Note that the key combination Ctrl-Alt-Del is just a convention. There is nothing magic about
that key combination, other than people are used to it from DOS/Windows. By default, the
combination Ctrl-Alt-Del is assigned to the special keymap "Boot". This is typically defined
by default in the fildusr/src/linux/drivers/char/defkeymap.map , Which is

the keyboard mapping the kernel uses when it boots. However, you can use the loadkeys
program to change this if you need to.

If necessary, you could define that the combination Ctrl-Alt-Del is not assigned to anything,
therefore it would not shutdown your system. However, should the system get stuck in a state
that you cannot correct, shutting it down with Ctrl-Alt-Del is often the only safe alternative

(as compared with simply flipping the power switch.)

When you press the "boot" key combination, the init program is sent the signal SIGINT. What
init does will depend on how tHetc/inittab is configured. In the section on run levels,

we talked about the various actiongetc/inittab that tell init what to do when the key
combination Ctrl-Alt-Del is pressed (one being ctraltdel). On my system it is defined as
"/sbin/shutdown -r -t 4 now", which says to run the shutdown command immediately (now)
and reboot (-r), waiting four seconds between the time the warning message is sent and the
shutdown procedure is started (-t 4).

The first two tools to stop your system are actually two linksbm : halt andreboot |,
that link to the same file. If either of these is called and the system is not in run-level O or 6,
thenshutdown (also in/shin) is called instead.

Running shutdown is really the safest way of bringing your system down, althougbudu

get away with running init 0. This would bring the system down, but would not give the users
any warning. Shutdown can be configured to give the users enough time to stop what they are
working on and save all of their data.

Using the shutdown command, you have the ability not only to warn your users that the
system is going down but also to give them the chance to finish up what they were doing. For
example, if you were going to halt the system in 30 minutes to do maintenance, the command
might look like this:

shutdown -h +30 "System going down for maintenance. Back up
after lunch."

This message will appear on everyone’s screen immediately, then at increasing intervals, until
the system finally goes down.

If you have rebuilt your kernel or made other changes that require you to reboot your system,
you can use shutdown as well, by using the -r option.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

210

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Option Description
-d Do not write to thévar/log/wtmp
-f Force a reboot, i.e. do not call shutdown.

-i Shutdown the network interfaces before halting or rebooting.

-n Do not sync (write data to disk) before halting or rebooting.
-p Power off after shutdown.
-wW Do not actually stop the system, just write to /var/log/wmtp.

Table - Options to halt and reboot.

Option Description

-C Cancel a shutdown that is in progress.

-f Don't runfsck when the system reboots (i.e. a "fast" reboot).

-F Forcefsck on reboot.

-h Halt the system when the shutdown is completed.

-k Send a warning message, but do not actually shutdown the system.
-n Shutdown without calling init. DEPRECATED.

-r Reboot the system after shutdown.

-t seconds Seconds to wait before starting the shutdown.

-z Shutdown using "software suspend”.
Table - Options to shutdown.

6.2 User Accounts

Users gain access to the system only after the system administrator hasuseasedounts
for them. These accounts are more than just a user name and password; they also define the
environment the user works under, including the level of access he or she has.

Users are added to Linux systems in one of two ways. You could create the necessary entries
in the appropriate file, create the directories, and copy the start-up files manually. Or, you
could use the adduser command, which does that for you.

Adding a user to a Linux system is often referred to as "creating a user" or "creating a user
account”. The terms "user" and "user account" are often interchanged in different contexts.

For the most part, the term "user" is used for the person actually working on the system and
"user account" is used to refer to the files and programs that create the user’s environment
when he or she logs in. However, these two phrases can be interchanged and people will know
what you are referring to.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

211

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

When an account is created, a shell is assigned along with the default configuration files that
go with that shell. Users are also assigned a home directory, which is their default directory
when they login, usually in the form /home/<username>. Note that the parent of the user’s
home directories may be different.

When user accounts are created, each user is assigned a User Name (login name or logname),
which is associated with a User ID (UID). Each is assigned to at least one group, with one
group designated as thé&gin group Each group has an associated Group ID (GID). The

UID is a number used to identify the user. The GID is a number used to identify the login

group of that user. Both are used to keep track of that user and determine what files he or she
can access.

In general, programs and commands that interact with us humans report information about the
user by logname or group name. However, most identification from the operating system’s
point of view is done through the UID and GID. The UID is associated with the user’s
logname. The GID is associated with the user’s login group. In general, the group a user is a
part of is only used for determining access to files.

User accounts are defined/etc/passwd and groups are defined/etc/group . If you

look on your system, you will see that everyone can read both of these files. Years ago, my

first reaction was that this was a security problem, but when | was told what this was all

about, | realized that this was necessary. | was also concerned that the password be accessible,
even in encrypted format. Because | know what my password is, | can compare my password

to the encrypted version and figure out the encryption mechanism, right? Nope! Its not that
easy.

At the beginning of each encrypted passwordssed Using this seed, the system creates the
encrypted version. When you login, the system takes the seed from the encrypted password
and encrypts the password that you input. If this matches the encrypted password, you are
allowed in.Nowhere on the system is thenencrypted password stored, nor do any of the
utilities or commands generate it.

Next, lets talk about the need to be able to access this information. Remember that the
operating system knows only about numbers. When we talked about operating system basics,
I mentioned that the information about the owner and group of a file was stored as a number
in the inode. However, when you do a long listing of a file (Is -I), you don’t see the number,
but rather, a name. For example, if we do a long listingiofmkdir , we get:

-rwxr-xr-x 1 root root 7593 Feb 25 1996 /bin/mkdir>
The entries are:
permissions links owner group size date filename

Here we see that the owner and group of the file is root. Because the owner and group are
stored as numerical values in the inode table, the systestbe translating this information
before it displays it on the screen. Where does it get the translation? From the
letc/passwd and/etc/group files. You can see what the "untranslated" values are by
entering

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

212

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Is -In /bin/mkdir

which gives us:

-rwxr-xr-x 10 O 7593 Feb 25 1996 /bin/mkdir>

If we look in/etc/passwd , we see that the 0O is the UID for root, and if we look in

letc/group , we see that O is also the GID for the group root, which are the numbers we got
above. If thdetc/passwd and/etc/group files were not readable by everyone, then no
translation could be made like this without some major changes to most of the system
commands and utilities.

On a number of occasions, | have talked to customers who claimed to have experienced
corruption when transferring files from one system to another. Sometimes it's with cpio,
sometimes it's tar. In every case, files have arrived on the destination machine and have had
either "incorrect” owners or groups and sometimes both. Sometimes, the "corruption" is so
bad that there are no names for the owner and group, just numbers.

Numbers, you say? Isn’t that how the system stores the owner and group information for the
files? Exactly. What does it use to make the translation from these numbers to the names that
we normally see? As | mentioned, it uses /etc/passwdedeidroup . When you transfer

files from one system to another, the only owner information that is transferred are the
numbers. When the file arrives on the destination machine, weird things can happen. Lets
look at an example.

At work, my user name was jimmo and | had UID 12709. All my files were stored with 12709
in the owner field of the inode. Lets say that | create a user on my machine at home, also
named jimmo. Because there are far fewer users on my system at home than at work, jimmo
ended up with UID 500. When | transferred files from work to home, the owner of all "my"
files was 12709. That is, where there normally is a name when | do a long listing, there was
the number 12709, not jimmo.

The reason for this is that the owner of the file is stored as a number in the inode. When |
copied the files from my system at work, certain information from the inode was copied along
with the file, including the owneNot the user’'s name, but the numerical value in the inode.
When the files were listed on the new system, there was no user with UID 12709, and
therefore no translation could be made from the number to the name. The only thing that
could be done was to display the number.

This makes sense because what if there were no user jimmo on the other system? What value
should be displayed in this field? At least this way there is some value and you have a small
clue as to what is going on.

To keep things straight, | had to do one of two things. Either | create a shell script that
changed the owner on all my files when | transferred them or | figure out some way to give
jimmo UID 12709 on my system at home. So | decided to give jimmo UID 12709.

Here, too, there are two ways | can go about it. | could create 12208 users on my system so
the 12709th would be jimmo. (Why 122087? By default, the system starts with a UID 500 for

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

213

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

normal users.) This bothered me though, because | would have to remove the user jimmo with
UID 500 then create it again. | felt that this would be a waste of time.

The other alternative was to change the system files. Now, there is nothing that Linux
provides that would do that. | could change many aspects of the user jimmo; however, the
UID was not one of them. After careful consideration, | realized that there was a tool that
Linux provided to make the changes: vi. Because this information is kept in simple text files,
you can use a text editor to change them. After reading the remainder of this chapter, you
should have the necessary information to make the change yourself.

One thing | would like to point out is that vi is not actually the tool you should use. Although
you could use it, something could happen while you are editing the file and your password file
could get trashed. Linux provides you with a tool (that's actually available on many systems)
specifically designed to edit the password file: vipw (for "vi password").

What vipw does is create a copy of the password file, which is what you actually edit. When
you are finished editing, vipw replaces the /etc/passwd with that copy. Should the system go
down while you are editing the file, the potential for problems is minimized. Note that despite
its name, the editor that is called is defined by your EDITOR environment variable.

On many systems, the adduser program is used to add users (what else?). Note that when you
create a user, you are assigned a value for the UID, usually one number higher than the
previously assigned UID. Because adduser is a shell script, you can change the algorithm
used, if you really want to.

When the first customer called with the same situation, | could immediately tell him why it
was happening, how to correct it, and assure him that it worked.

You can also change a user’s group if you want. Remember, however, that all this does is
change the GID for that user/fetc/passwd . Nothing else! Therefore, all files that were
created before you make the change will still have the old group.

You can change your UID while you are working by using the su command. What does su
stand for? Well, that's a good question. | have seen several different translations in books and
from people on the Internet. | say that it means "switch UID, " as that’s what it does.

However, other possibilities include "switch user" and "super-user.” This command sets your
UID to a new one. The syntax is

Su <user_name>

where <user_name> is the logname of the user whose UID you want to use. After running the
command, you have a UID of that user.

The shortcoming with this is that all that is changed is the UID and GID; you still have the
environment of the original user. If you want the system to "pretend" as though you had
actually logged in, include a dash (-). The command would then be

Su - <user_nhame>

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

214

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

What is actually happening is that you are running a new shell as that user. (Check the ps
output to see that this is a new process.) Therefore, to switch back, you don’t need to use su
again, but just exit that shell.

We need to remember that a shell is the primary means by which users gain access to the
system. Once they do gain access, their ability to move around the system (in terms of reading
files or executing programs) depends on two things: permissions and privileges.

In general, there is no need to switch groups. A user can be listed in more than one group in
/etc/group and the system will grant access to files and directories accordingly.

Permissions are something that most people are familiar with if they have ever worked on an
Linux (or similar) system before. Based on what has been granted, different users have
different access to files, programs, and directories. You can find out what permissions a
particular file has by doing a long listing of it. The permissions are represented by the first 10
characters on the line. This is something that we covered in a fair bit of detail in the section on
shell basics, so there is no need to repeat it here.

Removing users is fairly straightforward. Unfortunately, | haven’t found a utility that will
remove them as simply as you can create them. Therefore, you will need to do it manually.
The simplest way is to use vipw to remove the users entry from /etc/passwd and to remove its
home directory and mailbox.

However, this is not necessarily the best approach. | have worked in companies where once a
user was created, it was never removed. This provides a certain level of accountability.

Remember that the owner is simply a number in the inode table. Converting this number to a
name is done through the entry/@c/passwd . If that entry is gone, there can be no
conversion. If a new user were to get the UID of an old, removed user, it may suddenly have
access to a file that it shouldn’t (i.e., a file owned by the old user that it now owns).

Even if no new users get that UID, what do you do if you find an "unowned" file on your
system, that is, one with just a number as the owner and without associated entry in
/etc/passwd? What you do is up to your company, but | think it is safer to "retire" that user.

You could remove its home directory and mailbox. However, change its password to
something like NOLOGIN. This password is shorter than an encrypted password, so it is
impossiblethat any input password will encrypt to this. Then change its login shell to

something likgbin/true . This closes one more door. By making it /bin/true, no error
message will be generated to give a potential hacker a clue that there is "something" about this
account. Alternatively, you could replace the login shell with a message to say that the

account has been disabled and the owner should report to have it re-activated. This helps to
dissuade would-be hackers.

Another useful tool for thwarting hackers is password shadowing. With this, the encrypted
password is not kept ietc/passwd , but rathevetc/shadow . This is useful when
someone decides to steal your password file. Why is this a problem? | will get into details
about it later, but lets say now that the password file could be used to crack passwords and
gain access to the system.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

215

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Because you must have tletc/passwd file word-readable to make translations from

UID to user name, you cannot protect it simply by changing the permission. However, the
/etc/shadow password, where the real password is stored, is not readable by regular users
and therefore is less of a security risk. (I say "less" because if an intruder gets in as root, all
bets are off).

6.2.1 logging in

Users gain access to the system through "accounts." This is the first level of security.
Although it is possible to configure applications that start directly on specific terminals,
almost everyone has logged into an Linux system at least once. More that likely, if you are
one of those people who never login, you never see a shell prompt and are probably not
reading this book.

Most Linux systems have a standard login. The figure below shows what the login process
looks like. You see the name of the system, followed by a brief message the contents of
letclissue and the login prompt, which usually consists of the system name and the word
login. This is a text file, so you can edit it as you please. Because it is read dynamically, the
changes will appear the next time someone tries to log in. After the contents of

letclissue , you see the login prompts, such as

jmohrllogin: >

When you login, you are first asked your user name and your password. Having been
identified and your password verified, you are allowed access to the system. This often means
that the system starts a shell for you. However, many programs can be used in place of a shell.

init spawns I:lwt_tyQisplays getty calls login starts

qetty on tty login an thy fetc/login user's shell
shell bashrc or Jrofile or fetc/profile or
prompt similar login [etc/bashre

Image - The login process.

One entry in the password file is your home directory, the directory that you have as your
current directory when you log in. This is also the place to which the shell returns you if you
enter cd with no arguments.

After determining your login shell and placing you in your home directory, the system will set
up some systemwide defaults. If you have a Bourne or Bourne Again-shell, these are done
through théeetc/profile file. If bash is your login shell, the system runs through the
commands stored in the .profile in your home directory then the .bashrc file, provided they
exist. If you have sh, then there is no equivalent for the .bashrc file. If you have a Z-shell, the
system defaults are established in/#te/zprofile file. The system then executes the
commands in theshrc and.zlogin files in your home directory, provided they exist.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

216

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

See the appropriate man-page and the section on shell basics for more detalils.

During the login process, you are shown several pieces of information about the local system.
Before the login prompt, you usually see the contents dkthAssue file, as |

mentioned earlier. After your login is successful, you will normally see a message about the
last login and the message of the day. The message of the day is the contents of the file
/etc/motd

In some cases, all of this information is bothersome. For example, many businesses have
either menus that their users log into or applications that start from theirpredie or
Jdogin . In some cases, the information is of little value.

In some cases, even knowing that this is an UNIX system could be a problem. There are many
hackers in the world who would just love the chance to try to crack your security. By not even
telling them what kind of system you have, you reduce the amount by which they are tempted.
At least, that's one more piece of information that they need to figure out. Therefore, we need
a way to disable these messages.

The two obvious ways are by usifec/issue and/etc/motd . By default, both of
these files contain information about your system. By either changing the contents or
removing the files altogether, you can eliminate that source of information.

Another way is the login: prompt itself. Again, by default, this prompt contains the name of
your system. This may not concern most system administrators, however, in cases where
security is an issue, | might like to disable it. The prompt comes from the

letc/gettydefs file. The gettydefs file contains information the getty program uses
when it starts the login program on a terminal. The more common lines in the gettydefs file
contain an entry that looks like this:

@S login:
Take a look at the
login:>

prompt and you will see that it also contains the literal string login: immediately following the
name of the system. The name of the system comes from @S. By changing either of the parts
or both, you can change the appearance of your login prompt, even removing the name of the
system, if you want.

The gettylm man-page contains a list of the different information that you can include with
the login: prompt. If you are providing PPP services, | recommend that you do not cahnge

anything in your login prompt, such as the date/time or the port name. This makes creating
chat scripts difficult, as the users trying to login will not know what to expect.

At this point, we are left with the last login messages. Unfortunately, these are not contained
in files that are as easily removedes/motd and/etc/issue . However, bycreating

a file, the file .hushlogin in your home directory, we can remove them. It has no contents;
rather, the existence of this file is the key. You can create it simply by changing to a users
home directory yours, if you are that user and running

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

217

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

touch .hushlogin

Often administrators want to keep users’ knowledge of the system as limited as possible. This
is particularly important for systems with a high level of security in which users start
applications and never see the shell prompt. One give-away to what kind of system you are on
is the following line when you login:

Last login: ...>

System administrators often call support asking for a way to turn this feature off. Fortunately,
there is a way. This, too, is disabled by creating the .hushlogin file. Once this functionality is
enabled, you can simplify things by having this file created every time a new user is created.
This is done by simply adding the .hushlogin file to/#te/skel directory. As with every
other file in this directory, it will be copied to the user’'s home directory whenever a new user
is created.

One thing to consider before you turn this feature off is that seeing when the last login was
done may indicate a security problem. If you see that the last login was done at a time when
you were not there, it may indicate that someone is trying to break into your account.

You can see who is currently logged in by running either the who or w command. These
commands are kept in the file utmp in your system log diredtisryadm , /var/log
etc. Once the system reboots, this information is gone.

You can also see the history of recent logins by using the last command. This information is
kept in wtmp in the system log directory. This command is kept between reboots and,
depending on how active your system gets, | have seen this file grow to more than a
megabyte. Therefore, it might not be a bad idea to truncate this file at regular intervals. Note
that some Linux distributions do this automatically.

One way to limit security risks is to keep the root account from logging in from somewhere
other than the system console. This is done by setting the appropriate terminals in
/etc/securetty. If root tries to log into a terminal that is not listed here, it will be denied access.
It is a good idea to list only terminals that are on the system console ttyl, tty2, etc..

If you really need root access, you can use telnet from a regular account and then su to root.
This then provides a record of who used su.

6.3 Terminals

Unless your Linux machine is an Internet server or gateway machine, there probably will be
users on it. Users need to access the system somehow. Either they access the systems across a
network using a remote terminal program like telnet, rlogin, or access file systems using NFS.
Also, like users typically do on Windows, they might log in directly to the system. With

Linux, this (probably) is done from a terminal and the system must be told how to behave

with the specific terminal that you are using.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

218

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Increasingly people are using graphical user interfaces (GUIs) to do much of their work. With
many distributions a lot of the work is still done using the command line, which means they
need a terminal, whether or not it is displayed within a graphical window.

In live environments that use Linux (such as where | work), you do not have the access to a
graphical interface on all systems (for security reasons, among other things). Therefore, the
only way to remotely administer the system is through telnet, which typically requires a
terminal window. In cases like this, it is common to move from one operating system type to
another (Linux to Sun, or vis-versa). Therefore, knowledge of terminal settings capabilities is
often very useful.

When we talk about terminals, we are not just talking about the old fashioned CRT that is
hooked up to your computer through a serial port. Instead, we are talking about any
command-line (or shell) interface to the system. This includes serial terminals, telnet
connections and even the command-line window that you can start from your GUI.

6.3.1 Terminal Capabilities

If you are interacting with the system solely through command line input, you have few
occasions to encounter the terminal capabilities. As the name implies, terminal capabilities
determine what the terminal is capable of. For example, can the terminal move the cursor to a
specific spot on the screen?

The terminal capabilities are defined by one of two databases. Older applications generally
use termcap, while newer ones use terminfo. For the specifics on each, please see the
appropriate man-page. Here | am going to talk about the concept of terminal capabilities and
what it means to you as a user.

Within each of these databases is a mapping of the character or character sequence the
terminal xxpects for certain behavior. For example, on some terminals, pressing the backspace
key sends a Ctrl-? character. On others, Crtl-H is sent. When your TERM environment

variable is set to the correct one for your terminal, pressing the backspace key sends a signal
to the system which, in turn, tells the application that the backspace characteristic was called.
The application is told not just that you pressed the key with the left arrow (
FACE="Symbol">-) on it. Instead, the application is told that that key was the backspace. It

is then up to the application to determine what is to be done.

The key benefit of a system like this is that you do not have to recompile or rewrite your
application to work on different terminals. Instead, you link in the appropriate library to
access either termcap or terminfo and wait for the capability that OS will send to you. When
the application receives that capabilityp{the key), it reacts accordingly.

There are three types of capabilities. The first capabilities are Boolean, which determine
whether that terminal has a particular feature. For example, does the terminal have an extra
"status” line? The next type is numeric values. Examples of this capability are the number of
columns and lines the terminal can display. In some cases, this may not remain constant, as
terminals such as the Wyse 60 can change between 80- and 132-column mode. Last are the
string capabilities that provide a character sequence to be used to perform a particular

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

219

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

operation. Examples of this would be clearing the line from the current cursor position to the
end of the line and deleting the contents of an entire line (with or without removing the line
completely).

Despite that there are hundreds of possible capabilities, any given terminal will have only a
small subset of capabilities. In addition, many of the capabilities do not apply to terminals, but
rather to printers.

Both the termcap and terminfo databases have their own advantages and disadvantages. The
termcap database is defined by the/gtie/termcap , an ASCII file that is easily

modified. In contrast to this is the terminfo database, which starts out as an ASCII file but
must be compiled before it can be used.

The termcap entries can be converted to terminfo with the captoinfo command and then
compiled using tic, the terminfo compiler. The tic utility will usually place the compiled
version in a directory undéusr/lib/terminfo based on the name of the entry. For
example, the ANSI terminal ends up/ursr/lib/terminfo/a and Wyse terminals end
up in/usr/lib/terminfo/w

6.3.2 Terminal Settings

Whenever you work with an application, what you see is governed by a couple of
mechanisms. If you have a serial terminal, the flow of data is controlled by the serial line
characteristics, including the baud rate, the number of data bits, parity, and so on. One aspect
that is often forgotten or even unknown to many users is the terminal characteristics, which
are used to control the physical appearance on the screen. However, most of the
characteristics still apply, even if you are not connected through a serial terminal.

The reason is that these conventions date back to the time of tele-typewriters. You had a
keyboard on one end of the connection connected to a printer that printed out every single
character you typed. At that time, it was essential that both ends knew what characteristics the
connection had. Even as technology advanced there was still a need to ensure both sides
communicated in the exact same way. Since you could not guarantee that the default settings
were the same on both ends, you needed a way to change the characteristics so that both ends
matched.

As | mentioned elsewhere, the serial line characteristics are initially determined by the
gettydefs file. The characteristics are often changed within the users’ startup scripts (.profile,
Jogin, etc.). In addition, you can change them yourself by usingfthe command. Rather

than jumping to changing them, lets take a look at what our current settings are, which we
also do with the stty command. With no arguments, stty might give us something like this:

speed 38400 baud; line = 0;
-brkint ixoff -imaxbel

-iexten -echoctl

>

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

220

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

This is pretty straightforward. Settings that are Boolean values (on or off) are listed by
themselves if they are on (ixoff) or have a minus sign in front if they are turned off (-brkint).
Settings that can take on different values (like the baud rate) appear in two formats: one in
which the value simply follows the setting name (speed 38400 baud) and one in which an
equal sign is between them (line=0).

In general, if a setting has discrete values, like the baud rate, there is no equal sign. There is
only a discrete number of baud rates you could have (i.e., there is no 2678 baud). If the stty
setting is for something that could take on "any" value (like the interrupt key), then there is an
equal sign. Normally, the interrupt key is something like Ctrl-C or the Delete key. However, it
could be the f key or the Down-Arrow or whatever.

This example shows the more "significant” terminal (stty) settings. The top line shows the
input and output speed of this terminal, which is 38400. On the second line, we see that
sending a break sends an interrupt signal (-brkint).

Setting these values is very straightforward. For Boolean settings (on or off), the syntax is
simply

stty <setting>

to turn it on or

stty -<setting> (note the minus sign in front)
to turn it off.

For example, if | wished to turn on input stripping (in which the character is stripped to 7
bits), the command would look like this:

stty istrip

Settings that require a value have the following syntax:

stty <setting> <value>

So, to set the speed (baud rate) to 19200, the syntax would look like this:
stty speed 19200

To set the interrupt character to Ctrl-C, we would enter

stty intr ~C

Note that *C is not two separate characters. Instead, when you type it, hold down the Ctrl key
and press "c." In most documentation you will see that the letter appears as capital although
you actually press the lowercase letter. Sometimes you want to assign the particular
characteristic to just a single key. For example, it is often the case that you want to use the
backspace key to send an "erase" character. What the erase character does is tell the system to
erase the last character, which is exactly what the backspace is supposed to do. Just like the
case where you press the control key and the character, stty settings for single keys are done

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

221

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

the same way. For example, you would type "stty erase " and the press the backspace key
(followed by the enter key, or course). What you would see might look like this:

stty erase "?

The ~? is typically what the backspace key will send (at least that is the visual representation
of what the backspace sends). You can get the same result by press CTRL-?.

If the default output does not show the particular characteristic you are looking for, you can
use the -a option to show all the characteristics. You might end up with output like this:

speed 38400 baud; rows 25; columns 80; line = 0;

intr = ~C; quit = "\; erase = ?; kill = ~U; eof = "D; eol = <undef>;

eol2 = <undef>; start = ~Q; stop = \S; susp = "Z; rprnt = *R; werase = "W,
Inext = AV; flush = *O; min = 1; time = 0;

-parenb -parodd cs8 hupcl -cstopb cread -clocal -crtscts

-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon ixoff
-iuclc -ixany -imaxbel opost -olcuc -ocrnl onlcr -onocr -onlret -ofill

-ofdel nl0 crO tab0 bs0 vt0 ffO

isig icanon -iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt
-echoctl echoke

>

Here were see a number of well-known characteristics, such as the baud rate, the numbers of
rows and columns, interrupt character, end of file character and so on. Some of which we
talked about in the section on working with the system. For details on what the rest of these
mean, please see thity (1L) man-page.

In principle, you can set any key to any one of the terminal characteristics. For example, |
could set the interrupt key to be the letter g:

stty intr g

Although this not does make too much sense, it is possible. What does make more sense is to
set the characteristic to something fitting for your keyboard. For example, you might be using
telnet to move between system. The key sequence that your backspace sends may not be *?
(often it is *H) and you want to set it accordingly (or the case is reversed, as we discussed
above.)

To save, change, and then restore the original values obitgur settings, use the -g option.
This option outputs the stty settings as a strings of hexadecimal values. For example, | might
get something like this:

stty -g

500:5:d050d:3b:7f:1¢:8:15:4:0:0:0:0:0:1a:11:13:0:0:0:0:0:0:0:0:0
>

We can run the stty command to get these values and make the changes, then run stty again
and use these values as the argument. We don’t have to type in everything manually; we
simply take advantage of the fact that variables are expanded by the shell before being passed
to the command. You could use this to add an additional password to your system:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

222

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

echo "Enter your password: \c"
oldstty="stty -g'

stty -echo intr /-

read password

stty $oldstty
>

Assign the output of the stty command to the variable old, then change the stty settings so that
the characters you input are not echoed to the screen and the interrupt key is disabled (this is
done withstty -echo intr /-). Then read a line from the keyboard and reset the stty
settings to their old value.

6.4 Printers and Interfaces

Under Linux, printing is managed and administered by several commands and files located in
various parts of the system. The primary administrative directéungiisspool/ . Each

printer that you have configured has its own subdirectory, /usr/spool/lpd/<name>, where
<name> is the name of the printer. In this subdirectory, you will find status information about
the printer, as well as information about the jobs currently being printed.

The actual printing is done by the Ipd daemon. On system start-up, Ipd is started through one
of the rc scripts (normally somewhere unfic/rc.d). As it starts, Ipd looks through the
printer configuration file/etc/printcap , and prints any files still queued (normally after

a system crash).

In each spool directory is a lock file that contains the process id (PID) of the Ipd process. The
PID helps keep multiple printer daemons from running and potentially sending multiple jobs
to the same printer at the same time. The second line in the lock file contains the control file
for the current print job.

Management of the print system, or print spool, is accomplished throulgt thatility. This

is much more than a "command" because it performs a wide range of functions. One function
is enabling printing on a printer. By default, there is probably one printer defined on your
system (often Ip). The entry is a very simple print definition that basically sends all the
characters in the file to the predefined port. (For the default printer on a parallel port, this is
probably /dev/Ipl.)

When a job is submitted to a local printer, two files are created in the appropriate directory in
lusr/spool . (For the default printer, this would lgsr/spool/lpl). The first file,

starting with cf, is the control file for this print job. Paired with the cf file is the data file,

which starts with df and is the data to be printed. If you are printing a pre-existing file, the df
file will be a copy of that file. If you pipe a command to the Ipr command, the df file will
contain the output of the command. Using the -s option, you can force the system to create a
symbolic link to the file to be printed.

The cf file contains one piece of information on each of several lines. The first character on
each line is an abbreviation that indicates the information contained. The information
contained within the cf file includes the name of the host from which the print job was
submitted (H), the user/person who submitted the job (P), the job name (J), the classification

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

223

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

of the print job (C), the literal string used on the banner page to identify the user (L), the file
containing the data (this is the df file) (f), which file to remove or "unlink” when the job is
completed (U), and the name of the file to include on the banner page (N). If you check the
Ipd man-page, you will find about a dozen more pieces of information that you could include
in the cf file. However, this list represents the most common ones.

In the same directory, you will find a status file for that printer. This file is called simply
"status" and normally contains a single line such as

printing disabled>
If you were to re-enable the printer, the line would then change to
Ip is ready and printing>

Looking at this line, you might have noticed something that might seem a little confusing.
(Well, at least it confused me the first time). That is, we've been talking about the directory

Ip1 all along, but this says the printer is Ip. Does this mean that we are talking about two
separate printers? No, it doesn’t. The convention is to give the directory the same name as the
printer, but there is no rule that says you have to. You can define both the printer name and
the directory any way you want.

This is probably a good time to talk about the printer configuration'diie/printcap

This file contains not only the printer definitions but the printer "capabilities" as well. In
general, you can say the printcap file is a shortened version of the termcap file (/etc/termcap),
which defines the capabilities of terminals.

In the printcap file, you can define a wide range of capabilities or characteristics, such as the
length and width of each line, the remote machine name (if you are remote printing), and, as
we discussed, the name of the spool directory. | will get into shortly what each of the entries
means.

As we talked previously, the Ipc command is used to manage the print spooler. Not only can
you use it to start and stop printing, but you can use it to check the status of all the printer
gueues and even change the order in which jobs are printed.

There are two ways of getting this information and to manage printer queues. The first is to
call Ipc by itself. You are then given the Ipc> prompt, where you can type in the command
you want, such as start, disable, or any other administrative command. Following the
command name, you must either enter "all," so the command will be for all printers, or the
name of the printer.

The Ipc program will also accept these same commands as arguments. For example, to disable
our printer, the command would be

Ipc disable Ip1

For a list of options, see the Ipc man-page. A list of printer queue commands can be found in
Table 0-1.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

224

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

One aspect of the Linux print system that might be new to you is that you enable or disable
the printing functionality within the kernel. Even though printer functionality is configured,
you may not be able to print if you have hardware conflicts. When your run 'make configure’
one of the options is to enable printing.

Once you have added the printer support to the kernel, the first thing you should do is test the
connectivity by using the Is command and sending the output to the printer device. This will
probably be /dev/Ip0, /dev/lpl, or /dev/lp2, which corresponds to the DOS device LPT1,
LPT2, and LPT3, respectively. For example, to test the first parallel port you could use

Is > /dev/IpO

What results is:

INSTALL@ dead.letter linux@ lodlinl5.txt lodlin15.zip
mbox sendmail.cf tests/
>

However, if you were to issue the command without the redirection, it would probably look
like this:

INSTALL@
dead.letter
linux@
lodlin15.txt
lodlin15.zip
mbox
sendmail.cf
tests/

>

The reason for this is that the Is command puts a single new-line character at the end of the
line. Normally, the shell sees that new-line character and is told to add a carriage return onto
the line. However, the printer has been told. Therefore, when it reaches the end of the line
with the sendmail.cf, just a new line is sent. Therefore, the printer drops down to the next
(new) line and starts printing again. This behavior is called "stair-stepping" because the output
looks like stair steps. When a carriage return is added, the shell returns back to the left of the
screen as it adds the new line.

Table - Print Queue Commands

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

225

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Command Function

Ipc Printer control program

Ipd Print spooler daemon

Ipr Print program

Ipg Print queue administration program
Iprm Remove jobs from print queue

pr Convert text files for printing

6.4.1 advanced formatting

Being able to output to paper is an important issue for any business. Just having something on
paper is not all of the issue. Compare a letter that you type on a typewriter to what you print
with a word processor. With a word processor, you can get different sizes or types of fonts
and sometimes you can even create drawings directly in the word processor.

Many of you who have dealt with UNIX before might have the misconception that UNIX is
only capable of printing simple text files. Some of you might have seen UNIX systems with a
word processor that did fancy things with the output. Fortunately for us, these fancy tricks are
not limited to the word processing packages. Using vi and a couple of commonly available
tools, you can output in a wide range of styles.

Readily available from a number of sites, the TeX or LaTeX pronounced Tech and Lahtech
text formatting package can be used to create professional-looking output. Many academic
and research institutions running UNIX use LaTeX as their primary text processing system.
Not only is it free but the source code is also available, allowing you to extend it to suit your
needs. In many cases, the only way to get it onto your system is to get the source code and
compile it.

Like the *roff family, TeX is input directly by the writer. These source files are then run
through a processor that formats the output based on codes that were input. This process
generates a device independent file, usually with the extension .dvi. The .dvi files are
analogous to .o files in C because they need to be manipulated further to be useful.
Unfortunately, this does not work for every kind of printer.

If your printer does not understand the .dvi file, the dvips program will convert the .dvi file to
PostScript. If your printer doesn’t support PostScript, you can use ghostview to output to a
format your printer can understand.

Included on your system provided you installed the TeX package is the dvips program, which
converts the .dvi files to PostScript. These PostScript files can be printed out on any
compatible printer.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

226

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

At first this may sound a little confusing and annoying. You have to use so many tools that
just to get a simple printout. First, if all you really need is a simple printout, you probably
won’t need to go through all of these steps. This demonstrates that no matter what standard
you choose to use, there are Linux tools available to help you get your job done.

Many different programs are available to allow you to print out, view, and manipulate
PostScript files. Ghostscript is a program used to view PostScript files. These need not be files
that you generated on your local machine, but any PostScript files you have. Ghostscript can
also be used to print PostScript files to print the file to non-PostScript-compatible printers.

Ghostscript supports the resolutions that most printers can handle. However, if you are
printing to a dot-matrix printer, you need to be especially careful about getting the right
resolution because it is not normally the standard 300 DPI.

| have to pause here to remind you about working with PostScript files and printers.
Sometimes the printer is PostScript-compatible, but you have to tell it to process the file as
PostScript and not as raw text. This applies to older models of certain laser jet printers. Once,
| wanted to print out a 50-page document and forgot to set the flag to say that it was a
PostScript file. The result was that instead of 50 pages, | ended up with more than 500 pages
of PostScript source.

Under Linux, printers are not the only way you can get words on paper. As of this writing,
there are at least three packages with which you can fax documents from your Linux system.
First, however, you must have a fax modem with which you can connect.

Here | need to side-step for a minute. The older type of fax, Class 1 faxes, did not have as
much processing power distributed in the hardware. Instead, the software took over this job. It
works fine on single-user systems like Windows, but under pre-emptive multitasking systems
like Linux, you can run into timing problems. Pre-emptive multitasking is where the operating
system decides which process will run and therefore could pause the fax program at a crucial
moment. More details can be found in the section on processes.

In addition to Class 1, faxes fall into different groups. To work correctly, the fax software
needs to convert the document you are sending into a group-lll-compatible image. This can be
done with Ghostscript.

The GNU netfax program accepts several different file formats as of this writing, PostScript,
dvi, and ASCII. Originally available froqrep.ai.mit.eduit is no longer supported by the

GNU. More extensive than netfax is HylaFlex renamed from FlexFax available to avoid
trademark conflicts. This is available as of this writing with ftp fismncomunder /sgi/fax/.

With this package, not only can you send faxes, but you can configure it to receive them as
well.

Man-pages are something that you may need to print. If you have files in ASCII format the cat
pages, this is not an issue. However, with pages that have been formatted with *roff
formatting, you have a couple of choices. The man program has the ability to process files
with *roff formatting. By redirecting the output on man to a file often piping it through col,

you can get clean ASCII text that you can then print.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

227

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

6.4.2 printcap

As with the termcap file, each entry in the printcap file is separated by a colon. Boolean
characteristics, such as suppressing the header (sh), exist by themselves. Characteristics that
can take on a value, such as the name of the output device, are followed by an equal sign (=)
and the value (Ip=/dev/lpl). For a complete list of characteristics, see the printcap man-page.

Each entry in théetc/printcap file consists of single logical line. There is one entry for
each printer on your system. To make the entry easier to read, you can break each logical line
into several physical lines. As an example, lets look at the entry for the default, generic
printer:

Ip:Ip=/dev/Ipl:sd=/usr/spool/lpl:sh

The first part of the line is the nhame of the printer, in this case, Ip. Each field is separated from
the others with a colon, so in this example, there are three fields (plus the printer name).

If we were to break this example into multiple physical lines, it might look like this:

Ip:\
:Ip=/dev/Ip1:\
:sd=/usr/spool/lp1:\
:sh

At the end of each physical line, there is a back-slash to tell Ipd that the logical line continues.
You'll also see that each field now has a colon before it and after it.

Although it is not necessary, you may find a file minfree in each of the spool directories. This
is a simple text file that contains the number of disk blocks that should be left to keep the print
spooler from filling up the disk. As a safety mechanism on a system with a lot of print jobs,

the spool directory can be put on a separate file system. Should it fill up, the rest of the system
won’t suffer.

Often, data is sent directly to the printer devices, either because it is supposed to be raw
ASCII text or because the program that created the data did its own formatting. This is
referred to as raw data as the system doesn’t do anything with it.

Sometimes the data is sent by the Ipd daemon through another program that processes the data
in preparation of sending it to the printer. Such programs are called filters. The stdin of the

input filters receive what the lpd puts out. The stdout of the filter then goes to printer. Such

filters are often called input filters and are specified in the printcap file with if=.

Because of this behavior, a print filter can be anything that understands the concept of stdin
and stdout. In most cases on Linux, the input filters that | have seen are simply shell scripts.
However, they can also be perl scripts.

With the exception of an input filter or a log file (which is specified using If=), | have rarely
used any other option for local printing. However, using the printcap file, you can configure
your printer to print on a remote system, which is the subject of the next section.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

228

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

6.4.3 remote printing

Setting up your system to print from another machine requires just a couple of alterations in
your printcap file. Use the rm= field to specify the remote machine and the rp= field to

specify the remote printer on that machine. Sending the print job to the printer is the last thing
that happens, so any other options, including input filters, are also honored.

On the destination side, you must be allowed to access the other machine. If you are already a
trusted host and have an entryetc/hosts.equiv , then there is no problem. If not, you
will be denied access. (This is a good time to start thinking about a log file.)

If the sole reason the remote machine needs to trust your machine is to do remote printing, |
would recommendotincluding it in the hosts.equiv file. This opens up more holes. Instead,
put your host name in the filetc/hosts.Ipd . The only thing this file does is decide

who can access the printers remotely. Putting remote machine names here is much safer.

6.5 System Logging

| am regularly confronted by Windows NT users who are overwhelmed by how much
information you can collect and process using the Windows NT Event Viewer. It is S0 nice,
they maintain, that occurrences (events) are sorted by system, security and applications. They
go on with how much you can filter the entries and search for specific values.

The problem is, that's where it stops. With the exception of a few security related events,
what you are able to log (or not log) is not configurable under Windows NT. You get
whatever Microsoft has decided is necessary. No more and no less. You can filter what is
displayed, but there is little you can do to restrict what is logged.

With Linux the situation is completely different. Not only can you tell the system what the
system should log but exactly where it should log it. On the other hand, Windows NT always
logs specific events to a specific file. In addition, Windows NT differentiates between only
three different types of logs. This means you may need to wade through hundreds if not
thousands of entries looking for the right one. Not only can you say what is logged and what
not, you can specifically define where to log any given type of message, including sending all
(or whatever part you define) to another machine, and even go so far as to execute commands
based on the messages being logged.

6.5.1 Syslogd

The workhorse of the Linux logging system is the system logging daemon or syslogd. This
daemon is normally started from the system start-up (rc) scripts when the system goes into run
level 1. Once running, almost any part of the system, including applications, drivers, as well

as other daemons can make log entries. There is even a command line interface so you can
make entries from scripts or anywhere else.

With Windows NT, each system maintains its own log files. There is no central location
where they are all stored. Although the Event Viewer can access event logs on other
machines, this can often take a great deal of time especially when there are a lot of entries and

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

229

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

you have a slow connection.

Instead, syslogd can be configured to send all (or just some) of the messages to a remote
machine, which processes them and writes them to the necessary files. It is thus possible that
all the log messages of a particular type from all machines in your network are stored in a
single file, which make accessing and administering them much easier.

Another advantage is due to the fact that syslogd stores configuration information and log
entries in text files. Therefore, it is a simple matter of writing a script that parses the entries
and splits them into separate files, or processes them in other ways.

Part of this ability lies in the standard format of each log entry. Although it is possible that a
rogue program could write information in any order, all system daemons and most programs
follow the standard, which is:

date time system facility message

Here "system" is the host name which generated the message. The "facility” is a component of
the system generating the message. This could be anything like the kernel itself, system
daemons and even applications. Finally, there is the text of the message itself. Here are two
messages on the system jupiter. One is from syslogd and the other from the kernel:

Jun 5 09:20:52 jupiter syslogd 1.3-0: restart.
>

Jun 5 09:20:55 jupiter kernel: VFS: Mounted root (ext2 file system) readonly.
>

As you can see, even if you could not separate the log entries into different files, it would be
fairly easy to separate them using a script.

Configuring syslogd

What is done and when it is done is determined by the syslogd configuration file, syslog.conf,
which is usually in /etc. (I have never seen it anywhere else.) This is a typical Linux
configuration file with one item (or rule) per line and comment lines begin with a pound-sign
(#). Each rule consists of selector portion, which determines the events to react to and the
action portion, which determines what is to be done.

The selector portion is itself broken into two parts, which are separated by a dot. The facility
part says what aspect of the system is to be recorded and the priority says what level of
messages to react to. The selector has the general syntax:

facility.priority
You can see a list of facilities in table 1 and a list of the priorities in table 2.

For both facilities and priorities there is a "wildcard" that can be used (an asterisk - *) which
means any facility or any priorities. For example, *.emerg would mean all emergency
messages. mail.* would mean all messages coming from the mail facility. Logically, *.*
means all priorities of messages from all facilities.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

230

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

The word "none" is used to refer to no priority for the specified facility. For example, the
selector mail.none would say not to perform the action for any mail event. At first, this might
not make sense. Why not simply leave off that facility? The answer lies in the previous
paragraph. Using the wildcard, you could say that all info messages were to be logged to a
certain file. However, for obvious reasons, you want all of the security (regardless of the
priority) written to another file.

Another possibility is to specify a sub-set of facilities, rather than all of them. This is done by
separating the facilities with a comma and then the priority follows the last facility listed. For
example, to refer to information messages for mail, uucp and news, the selector entry would
look like this:

mail,uucp,news.info

One thing | need to point out here is that when you specify a priority, you are actually
specifying everything at that priority or *higher*. Therefore, in this example, we are selecting
all of the priorities at info and higher.

There are three primary things you can do with these events (the actions). Probably the most
common action is to write them to a file. However, there is more to this than it appears.
Remember that Linux (as well as other UNIX dialects) treat devices as files. Therefore, you
can send the logging messages to a specific device.

Here, | not talking about sending them a tape drive (although that might not be a bad idea).
Instead, | am talking about something like the system console (/dev/console). It is a common
practice to send emergency messages to the system console, where someone will see the
messages no matter to what console terminal they are logged on. In other cases, kernel
messages are sent to one of the console terminals (e.g. /dev/tty7). You might end with
something like this:

kernel.* /devitty7

When writing to files, you want to consider that the system will actually write the information
to the disk with each event. This ensures the entry actually makes it to the file if the system
should crash. The problem is that writing to the harddisk takes time. That's why the system
normally saves up a number of writes before sending them all to the disk.

If overall system performance becomes an important factor in regard to logging, you can tell
syslogd **not** to sync the disk each time it writes to a log file. This is done by putting a
minus sign (-) in front of the file name, like this:

Ipr.info -/var/fadm/printer.log

If you disable syncing the log file like this, one important thing to remember is that you stand
the chance of losing information. If the system goes down for some reason before the
information is written to the file, you may lose an important clue as to why the system went
down. One solution would be to have a central log server where all of the information is sent
and where you doot disable syncing. That way no matter what, you have a record of what
happened.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

231

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Sending the log messages to another machine is done by using an at-sign (@) in front of the
machine name as the action. For example:

*.emerg @logserver

This sends all emergency message to the machine logserver. | would suggest that you do not
create a log server that is connected to the Internet. A ill-intended person might be able to
bring the system to a halt or at least affect its performance by flooding it with erroneous log
messages.

Another useful feature is the ability to send messages to named pipes. This is done by
preceding the name of the pipe by the pipe-symbol (|). | find this a useful way of sending log
messages to other programs, where | can process them further. Named pipes are created using
the mkfifo(1) command and must exist prior to syslogd starting.

Another action is the ability to send messages to particular users, provided they are logged in
at the moment. To do this you simply put their username as the action. To send it to multiple
users, separate the names by a comma. This might give you something like this:

*.emerg root,jimmo

By using an asterisk in place of the list of user names, you can send a message to everyone
logged in.

In some cases, you want multiple actions for a specific facility or priority. This is no problem.
You simply create multiple rules. One common example is broadcasting all of the emergency
messages to every user, as well as writing them to a log file **and** sending them to another
server in case the local machine crashes. This might be done like this:

.emerg Ivarladm/messages.emerg ** emerg @logserver

Previously, | mentioned the ability to cause a single action based on the same kind of
messages for multiple facilities. This is still an example sihgleselector resulting in a

specific action. Taking this one step further, you might want multiple selectors all to result in
a specific action. Although it could be done with multiple rules, it possible to have multiple
selectors all on the same line. This is done by separating the selectors with a semi-colon (;).

*.emerg;kernel.critical root,jimmo

This would notify the users root and jimmo for all emergency messages as well as critical
messages from the kernel facility.

The Linux syslogd has added a couple of functions that are not available in other versions of
UNIX. By preceding a priority with an equal-sign (=), you tell syslogd only to react to that

one priority. This is useful since syslogd normally reacts to everything with that priority and
higher. One place where this is useful is when you want all debugging messages to be logged
to a specific file, but everything logged to another file.

You can also explicitly exclude priorities by preceding them with an exclamation mark. Note
that this will exclude the priorities listed as well as anything higher. You can combine the
equal-sign and exclamation mark equal-sign and exclamation mark and therefore exclude a

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

232

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

specific priority. If you do so, you need to precede the equal sign with the exclamation mark
as what you are saying is not to include anything that equal a particular priority.

All of these features can be combined in many different ways. For example, you can have
multiple selectors, which include as well as exclude specific priorities. For example:

* warn;mail.=info;lpr.none;uucp.!crit /devittyQ7

This would send warning messages from all priorities to the system console terminal
/dev/tty7, plus the mail log messages at only the info priority, no printer messages at all, and
finally excluding just the uucp critical messages. Granted this is a rather contrived example,
but it does show you how complex you can get.

Note that multiple selectors on a single line can cause some confusion when there are
conflicting components within a selector. The thing to keep in mind is that the last component
takes precedence. In the previous example, we specified warning messages for all facilities
and then "overwrote" portions of that for the mail, Ipr and uucp facilities.

6.5.2 Managing System Logs

Often times it is useful to log messages from scripts. This can done using the logger command
(usually found infusr/bin). Without any options it takes the user name as the facility and
"notice" as the priority. However, you can specify both a facility and priority from the

command line by using -p option for example:

logger -p kern.warning The kernel has been recompiled.

This would send the specified message to the same place other kernel messages are sent. For
details on the other options, see the logger(1) man-page.

One common problem is what to do with all of the log messages. If you do a lot of logging
(particularly if everything is sent to a central server), you can fill up your filesystem faster
than you think. The most obvious and direct solution is to remove them as after a specific
length of time or when they reach a particular size.

It is a fairly simple matter to write a shell script that is started from cron, which looks at the
log files and takes specific actions. The nice thing is that you do not have to. Linux provides
this functionality for you in the form of the logrotate command.

As its name implies, the goal of the logrotate program is to "rotate" log files. This could be as
simple as moving a log file to a different name and replacing the original with an empty file.
However, there is much more to it.

Two files define how logrotate behaves. The state file (specified with the -s or --state option)
basically tells logrotate when the last actions were taken. The default is
Ivar/state/logrotate

The configuration file tells logrotate when to rotate each of the respective files. If necessary,
you can have multiple configuration files which can all be specified on the same command
line or you include configuration files within another one.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

233

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

The logrotate configuration file is broken into two parts. At the beginning are the global
configuration options, which apply to all log files. Next, there are the configuration sections
of each of the individual files (the logfile definitions). Note that some options can be global or
for a specific log file, which then overwrites the global options. However, there are some that
can only be used within a logfile definition.

A very simple logrotate configuration file to rotate thiar/log/messages might look
like this:

errors root@logserver
compress

Ivar/log/messages {
rotate 4
weekly
postrotate
/sbin/killall -HUP syslogd
endscript

}

At the top are two global options, followed by a logfile definition for
Ivar/log/messages . In this case, we could have included the global definitions within
the log file definition. However, there is normally more than one logfile definition.

The first line says that all error messages are sent (mailed) to root at the logserver. The second
line says that log files are to be compressed after they are rotated.

The logfile definition consists of the logfile name and the directives to apply, which are
enclosed within curly brackets. The first line in the logfile definition says to rotate the 4 times
before being removed. The next line says to rotate the files once a week. Together these two
lines mean that any given copy of thar/log/messages file will be saved for 4 weeks
before it is removed.

The next three lines are actually a set. The postrotate directive says that what follows should
be done immediately after the log file has been rotated. In this case, syslogd is sent a HUP
signal to restart itself. There is also a prerotate directive, which has the same basic
functionality, but does everythirigefore the log is rotated.

It is also possible to specify an entire directory. For example, you could rotate all of the samba
logs by specifying the directory /var/log/samba.d/*.

As | mentioned, you can also rotate logs based on their size. This is done by using the size=
option. Sitting size=100K would rotate logs larger than 100 Kb and 100M would rotate logs
larger than 100 Mb.

Although you can ease the management of your log files with just the options we discussed,
there are an incredible number of additional options which you can use. Table 3 contains a list
of options you can use with a brief explanation. For more details see the logrotate(1)
man-page.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

234

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Table 1
authpriv
cron
daemon
kern

lpr

mail
mark
news
security
syslog
user
uucp
localO through local7.

The facility "security" should no longer be used and the "mark" facility is used internally and
should not be used within applications. The facilities localO through local8 are intended for
local events on you local system when there is no other applicable facility.

Table 2 - Syslogd Priorities in increasing significance
debug

info

notice

warning or warn

err or error

crit

alert

emerg or panic

The priorities error, warn and panic are deprecated and should no longer used.
Table - logrotate options

compress/nocompress - compresses or does not compress old versions of logs.
delaycompress - Wait until the next cycle to compress the previous log.

create mode owner group - Log file is recreated with this mode, owner and group. (nocreate
overrides this.)

daily, weekly, monthly - Rotate logs in the indicated interval.
errors address - Send errors to the address indicated.
ifempty - Rotate the logs even if they are empty. (notifempty overrides this.)

include file_or_directory - Include the indicate file at this point. If a directory is given, all real
files in that directory are read.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

235

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

mail address - Logs rotate out of existence are mailed to this address. (nomail overrides this)

olddir directory - old logs are moved to this directory, which must be on the same physical
device. (noolddir overrides this.)

postrotate/endscript - delimits commands run after the log is rotated. Both must appear on a
line by themselves.

prerotate/endscript - delimits commands before after the log is rotated. Both must appear on a
line by themselves.

rotate count - Rotates the log times before being removed.
size size - Log files greater than are removed.

tabooext [+] list - list of files not to include. A plus-sign means the files are added to the list
rather than replacing it.

6.6 Backups

In the section on backing up and restoring files under Working with the System, we talked
briefly about the process of backing up files and how to restore them. However, simply
knowing what tools you need is usually not enough. You might not have enough time or space
to do a complete backup, or restoring from a complete backup is not efficient. An advantage

of doing a complete backup every day is that it is very simple. If everything fits on a single
tape, you stick in a tape when you are done for the day and have something like cron schedule
a backup in the middle of the night. If you have more than will fit on one tape, there are
hardware solutions, such as multiple tape drives or a tape loader.

Rather that doing a complete back up every day, there are a number of different strategies that
you can employ to keep your data safe. For example, one way is to back up all of the data at
regular intervals and then once a day backup only the files that have changed since this full
backup. If you need to restore, you can load your master back and one extra tape.

Alternatively, you could make a full backup and then each day, only backup the files that
changed on that day. This is can be a problem if you have made changes to files on several
different days and need to load each time. This can be very time consuming.

What this basically says it that you need to make some kind of decision about what kind of
backup strategy you will use. Also consider that the backup strategy should have backups
being done at a time which has the least influence on users, for example in the middle of the
night or on weekends.

Details of all this, | actually save for the section on problem solving.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

236

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

6.7 cron

cron is a commonly confusing and misconfigured aspect of the operating system. Technically,
cron is just the clock daemofugr/sbin/cron or perhapgustr/sbin/crond) that

executes commands at specific times. However, a handful of configuration files and programs
go into making up the cron package. Like many system processes, cron never ends.

The controlling files for cron are the cron-tables or crontabs. The crontabs are often located in
Ivar/spool/cron/crontab . However, on SUSE you will find them in

Ivar/spool/cron/tabs . The names of the files in this directory are the names of the
users that submit the cron jobs.

Unlike other UNIX dialects, the Linux cron daemon does not sleep until the next cron job is
ready. Instead, when cron completes one job, it will keep checking once a minute for more
jobs to run. Also, you should not edit the files directly. You can edit them with a text editor
like vi, though there is the potential for messing things up. Therefore, you should use the tool
that Linux provides: crontab. (see the man-page for more details)

The crontab utility has several functions. It is the means by which files containing the cron
jobs are submitted to the system. Second, it can list the contents of your crontab. If you are
root, it can also submit and list jobs fomyuser. The problem is that jobs cannot be submitted
individually. Using crontab, you must submit all of the jobs at the same time.

At first, that might sound a little annoying. However, let’s take a look at the process of
"adding" a job. To add a cron job, you must first list out the contents of the existing crontab
with the -| option. If you are root and wish to add something to another user’s crontab, use the
-u option followed by the user’s logname. Then redirect this crontab to a file, which you can
then edit. (Note that on some systems crontab has -e (for "edit"), which will do all the work

for you. See the man-page for more details.)

For example, lets say that you are the root user and want to add something to the UUCP user’s
crontab. First, get the output of the existing crontab entry with this command:

crontab -l -u uucp >/tmp/crontab.uucp

To add an entry, simply include a new line. Save the file, get out of your editor, and run the
crontab utility again. This time, omit the - to list the file but include the name of the file. The
crontab utility can also accept input from stdin, so you could leave off the file name and
crontab would allow you to input the cronjobs on the command line. Keep in mind that any
previous crontab is removed no matter what method you use.

The file /tmp/crontab.uucp now contains the contents of UUCPs crontab. It might look
something like this:

39,9 * * * * Jusr/lib/uucp/uudemon.hour > /dev/null

10 ** * * Jusr/lib/uucp/uudemon.poll > /dev/null

45 23 * * * ylimit 5000; /ust/lib/uucp/uudemon.clean > /dev/null
48 10,14 * * 1-5 /usr/lib/uucp/uudemon.admin > /dev/null

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

237

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Despite its appearance, each crontab entry consists of only six fields. The first five represent
the time the job should be executed and the sixth is the actual command. The first five fields
are separated by either a space or a tab and represent the following units, respectively:

minutes (0-59)

hour (0-23)

day of the month (1-31)

month of the year (1-12)

day of the week (0-6, 0=Sunday)

To specify all possible values, use an asterisk (*). You can specify a single value simply by
including that one value. For example, the second line in the previous example has a value of
10 in the first field, meaning 10 minutes after the hour. Because all of the other four time

fields are asterisks, this means that the command is run every hour of every day at 10 minutes
past the hour.

Ranges of values are composed of the first value, a dash, and the ending value. For example,
the fourth line has a range (1-5) in the day of the week column, meaning that the command is
only executed on days 1-5, Monday through Friday.

To specify different values that are not within a range, separate the individual values by a
comma. In the fourth example, the hour field has the two values 10 and 14. This means that
the command is run at 10 a.m. and 2 p.m.

Note that times are additive. Lets look at an example:
10 * 1,16 * 1-5 /usr/local/bin/command

The command is run 10 minutes after every hour on the first and sixteenth, as well as Monday
through Friday. If either the firstlr the sixteenth were on a weekend, the command would still
run because the day of the month field would apply. However, this does not mean that if the
first is a Monday, the command is run twice.

The crontab entry can be defined to run at different intervals thaeveisthour oreveryay.
The granularity can be specified to every two minutes or every three hours without having to
put each individual entry in the crontab.

Lets say we wanted to run the previous command not at 10 minutes after the hour, but every
ten minutes. We could make an entry that looked like this.:

0,10,20,30,40,50 * 1,16 * 1-5 /usr/local/bin/command

This runs every 10 minutes: at the top of the hour, 10 minutes after, 20 minutes after, and so
on. To make life easier, we could simply create the entry like this:

*/10 * 1,16 * 1-5 /usr/local/bin/command

This syntax may be new to some administrators. (It was to me.) The slash (/) says that within
the specific interval (in this case, every minute), run the command every so many minutes; in
this case, every 10 minutes.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

238

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

We can also use this even when we specify a range. For example, if the job was only
supposed to run between 20 minutes after the hour and 40 minutes after the hour, the entry
might look like this:

20-40 * 1,16 * 1-5 /usr/local/binfcommand

What if you wanted it to run at these times, but only every three minutes? The line might look
like this:

20-40/3 * 1,16 * 1-5 /usr/local/bin/command

To make things even more complicated, you could say that you wanted the command to run
every two minutes between the hour and 20 minutes after, every three minutes between 20
and 40 minutes after, then every 5 minutes between 40 minutes after and the hour.

0-20/2,21-40/3,41-59/5 * 1,16 * 1-5 /usr/local/bin/command

One really nice thing that a lot of Linux dialects do is allow you to specify abbreviations for
the days of the week and the months. Its a lot easier to remember that fri is for Friday instead
of 5.

With the exception of certain errors in the time fields, errors are not reported until cron runs
the command. All error messagasd output is mailed to the users. At least that's what the
crontab man-page says and that is basically true. However, as you see in the previous
examples, you are redirecting stdout to /dev/null. If you wanted to, you could also redirect
stderr there and you would never see whether there were any errors.

Output is mailed to the user because there is no real terminal on which the cronjobs are being
executed. Therefore, there is no screen to display the errors. Also, there is no keyboard to
accept input. Does that mean you cannot give input to a cron job? No. Think back to the
discussion on shell scripts. We can redefine stdin, stdout and stderr. This way they can all
point to files and behave as we expect.

One thing | would like to point out is that | do not advocate doing redirection in the command
field of the crontab. | like doing as little there as possible. Instead, | put the absolute path to a
shell script. | can then test the crontab entry with something simple. Once that works, | can
make changes to the shell script without having to resubmit the cronjob.

Keep in mind that cron is not exact. It synchronizes itself to the top of each minute. On a busy
system in which you lose clock ticks, jobs may not be executed until a couple minutes after
the scheduled time. In addition, there may be other processes with higher priorities that delay
cron jobs. In some cases, (particularly on very busy systems) jobs might end up being skipped
if they are run every minute.

Access is permitted to the cron facility through two files, botletin . If you have a file
cron.allow, you can specify which users are allowed to use cron. The cron.deny says who are
specifically not allowed to use cron. If neither file exists, only the system users have access.
However, if you want everyone to have access, create an entry cron.deny file. In other words,
no one is denied access.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

239

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

It is often useful for root to run jobs as a different user without having to switch users (for
example, using the su command). Most Linux dialects provide a mechanism in the form of the
/etc/crontab file. This file is typically only writable by root and in some cases, only root
can read it (which is often necessary in high security environments). The general syntax is the
same as the standard crontabs, with a couple of exceptions.

The first difference is the header, which you can see here:

SHELL=/bin/sh

PATH=/usr/bin:/usr/sbin:/sbin:/bin:/usr/lib/news/bin

MAILTO=root

#

check scripts in cron.hourly, cron.daily, cron.weekly, and cron.monthly
#

59 * *** root rm -f /var/spool/cron/lastrun/cron.hourly
140 *** root rm -f /var/spool/cron/lastrun/cron.daily
290 **6 root rm -f /var/spool/cron/lastrun/cron.weekly
440 1** root rm -f /lvar/spool/cron/lastrun/cron.monthly

The SHELL variable defines the shell under which each command will run. The PATH
variable is like the normal PATH environment variable and defines the search path. The
MAILTO variable says who should get email messages, which includes error messages and
the standard output of the executed commands.

The structure of the actual entries is pretty much the same with the exception of the user name
(root in each case here). This way, the root users (or whoever can edit /etc/crontab) can define
which user executes the command. Keep in mind that this can be a big security hole. If
someone can write to this file, they can create an entry that runs as root and therefore has
complete control of the system.

The next command in the cron "suite" is at. Its function is to execute a command at a specific
time. The difference is that once the at job has run, it disappears from the system. As for cron,
two files, at.allow and at.deny, have the same effect on the at program.

The batch command is also used to run commands once. However, commands submitted with
batch are run when the system gets around to it, which means when the system is less busy,
for example, in the middle of the night. Its possible that such jobs are spread out over the
entire day, depending on the load of the system.

One thing to note is the behavior of at and batch. Both accept the names of the commands
from the command line and not as arguments to the command itself. You must first run the
command to be brought to a new line, where you input the commands you want execute. After
each command, press Enter. When you are done, press Ctrl-D.

Because these two commands accept commands from stdin, you can input the command
without having to do so on a new line each time. One possibility is to redirect input from a
file. For example

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

240

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

at now +1 hour < command_list

where command _list is a file containing a list of commands. You could also have at (or batch)
as the end of a pipe

cat command_list | at now + 1 hour
cat command_list | batch

Another interesting thing about both at and batch is that they create a kind of shell script to
execute your command. When you run at or batch, a file is created in
/usr/spool/cron/atjobs . This file contains the system variables that you would
normally have defined, plus some other information that is contained in /usr/lib/cron.proto.
This essentially creates an environment as though you had logged in.

6.8 User Communication

If you are running a multiuser system like Linux, you should expect to find other users on
your system. (I guess that's why it is a multi-user system.) Although there are many built-in
mechanisms to keep users separated, sometimes you will want to communicate with other
users.

Linux provides several tools to do this, depending on exactly what you want to accomplish. If
you simply want to send a quick message to someone, for example, to remind him or her of a
meeting, you might use the write program, which sends (writes) a message to his or her
terminal.

In contrast to some other systems (say, the winpop mechanism under Windows), each line is
sent when you press Enter. If you are on the receiving end of the message, the system lets you
know who sent you the message.

If the person you are trying to contact is logged in more than once, you need to specify the
terminal to which you want to send the message. So, if | wanted to talk to the user jimmo on
terminal tty6, the command would look like this:

write jimmo tty6

If you omit the terminal, write is kind enough to let you select which terminal to which you
want to send the message.

It might happen that someone tries the above command and receives the following message:
write: jimmo has messages disabled.>

This message means that jimmo has used the mesg command to turn off such messages. The
syntax for this command is

mesg n

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

241

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

to turn it off and
mesg y

to turn it on. Unless the system administrator has decided otherwise, the command is on by
default. | have worked on some systems in which the administrator changed the default to off.

An extension of write is the wall command. Instead of simply writing the message to a single
user, wall writes as if it were writing on a (where else) wall. That is, everyone can see the
message when it is written on a wall, and so can every user. The wall command is often used
by root to send messages about system status (e.g. when the system is about to be shutdown.
Even if a user has disabled messages, the root user can still send them messages using wall.

If you want to have an interactive session, you could send write messages back and forth. On
the other hand, you could use the talk program that was designed to do just that. When talk
first connects to the other user, that other user sees on his or her screen

Message from TalkDaemon@source_machine...

talk: connection requested by callers_name@his_machine
talk: respond with: talk callers_name@his_machine

>

As the message indicates, to respond, you would enter
talk callers_name@his_machine

You might have noticed that you can use talk to communicate with users on other machines.
If you omitted the machine name, talk would try to contact the user on the local machine
(localhost). The preceding message would simply say

talk: connection requested by callers_name@Iocalhost
>

You can also disable talk by using the mesg command.

It is common practice to use a couple of terms from radio communication when using talk.
Because you cannot always tell when someone is finished writing, it is common to end the
line with -o (or use a separate line) to indicate that your turn is "over." When you are finished
with the conversation and wish to end it, use oo (over and out).

Both of these mechanisms have some major problems if the user is not logged in: they don’t
work! Instead, there’s mail or, more accurately, electronic mail (or e-mail).

On most UNIX systems (including Linux), e-mail is accessed through the mail command.
Depending on your system, the mail program may be linked to something else. On my system,
the default was to link to /usr/bin/mail.

There are several different programs for sending and viewing mail. You could use one mail
program (or mailer) to send the message and another to read it. Often the program that you
use to read your mail is called a mail reader or, simply, reader. Before we go on to the more
advanced mail programs, | want to talk about the most common mail program and the one that

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

242

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

is most likely to be on your system. (From here on, | will be referring to e-mail simply as
mail.)

Mail comes in units callechessages/Nhether you use UUCP or the Internet, mail is sent

back and forth in messages. However, once the message has reached its destination, it is
usually tacked onto the end of an existing mail file. There is usually one mail file per user, but
that single file contains all of a user’'s messages (that is, all those that haven't yet been
deleted).

To read your mail, you can use three primary character-based programs: elm, pine, and the
default reader, mail. Actually, you can use all three programs to send mail as well as read it.
Each program has its own advantages and disadvantages. Although the mail interface looks
menu-driven, it simply scrolls the information across the screen. Both elm and pine have
much more complex menuing systems. Because of this, mail is easier to learn, but you can do
much more with the other two programs.

All three programs understand the concept of a "folder” in which you can store messages.

This allows you to develop a hierarchy of files that is no different from the normal file system.
How the folders are created and managed depends on the program you are using. Therefore, |
would suggest that once you decide to use a specific program, stick with it because the files
may not be compatible.

In keeping with the basic premise of this book, | must treat these programs as applications.
Therefore, | won'’t go into any more detail about them. Instead, | suggest that you install all
three and see which one suits your needs best. If you have the space, you may consider
providing all three for your users. The man-pages provide a great deal of information and each
program has its own on-line help.

If you are using the X-Windowing System and a desktop environment such as the KDE, you
have a much larger and varied choice, such as my fayorite]JKmail. Prior to using kmail, | was
using Netscape Communicator. Although the Netscape Communicator has many useful
features, Kmail had the features | really need. Plus, | use the KDE as my desktop environment
and Kmail fits into the KDE architecture. (I will talk more about the KDE and many of the
programs when | get the time.)

6.9 Webmin

Linux advocates regularly hear from fans of other operating systems about how unstable
Linux is. They say there is no support for Linux and there are no applications. Some go so far
as to claim Linux is nothing more that a collection of programs creating by a small group of
hackers and inexperienced programmers.

The sheer number of Linux Internet servers attests to Linux’s stability. Even a quick search of
any of a number of Linux sites leads to hundreds of companies tht provide Linux support. The
fact that major software vendors like Corel and Oracle have already ported their products to
Unix, demonstrates that the applications are there. Looking glancing even at some of the
names responsible for the Linux source code shows the quality of the people working on the
various components of Linux.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

243

http://kmail.kde.org/

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

All of these aspects seem to show that these statements of Linux opponents are blatantly
untrue and demonstrate the ability of Linux to fit in well in most any environment. However,
one place where Linux advocates often loose the battle is when talking about graphical
administration tools. Especially when compared to Windows NT, Linux seems to be lagging
behind.

Or so it seems.

In my mind, one of the of problems lies in the modularity of Linux. Although Linux is
technically just the kernel, the name is now used to include the all of the files, scripts and
programs that are delivered with the various distributions. However, no two distributions are
identical and the tools each provides vary sometimes greatly. What this means is that the tools
are often not always easy to find, which leads some people to believe that the tools do not
exist. In some cases, the tools that are provided are lacking in some and functionality.

The real truth is that powerful graphical administration tools are not lacking. In fact, like
many aspects of Linux, you actually have a choice of several different packages. It is just a
simple matter of what tools you like working with.

One tool that | have grown fond of recently is Webmin, developed by Jamie Cameron. As you
might be able to tell from its name, Webmin is used to administer your system using a Web
browser. That means, you can administer your system from any system with a web browser.
Webmin has taken this one step further by enabling you to administer a wide range of
systems, including several different Linux distributions, Solaris, DEC OSF1, AIX, HP/UX,

Irix and FreeBSD.

In essence, Webmin provides an mini-HTTP server written in perl, which creates the forms,
processes the input, and executes the commands. Because you need to be root to make most of
the administration changes to you system, Webmin needs to be able to do that as well. This
means that Webmin runs by default with super-user privileges.

Some people may wince at the thought of allowing root access through a web browser.
Although there are some potential security holes, Webmin has a number of different features
which increase the overall security.

The first place where Webmin addresses the issue of security is by requiring an extra
username and password to access the server. By default this is the user "admin" who has the
same password as root. | would suggest that once you have Webmin installed, you change
both the account name and the password.

Webmin also allows you to assign administration to different users. You can create additional
users, to which you can then assign privileges to administer different aspects of your system.
For example, it is possible to define a user or users who are allowed to just administer the
printers, whereas another user can administer just DNS. This is done using the Webmin Users
module, which also gives you an overview of which users have which privileges.

One of the basic security problems HTTP has is that the information is transferred across your
network or the Internet in clear text. That is, it is possible to intercept the connection and read
the administrator’s password. Webmin can easily protect against this by using the Secure

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

244

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Socket Layer SSL, provided you have the Perl SSL libraries installed on your system.

wy— Webornin 1070 onsaturn fimmoccom (SUSE Linus 8.0 - Kanguerar |E@E
Location Edit Wiew Go Bookmarks Tools Seftings Window Help

@G0 FEDYURARKXS .

B " w hitpdlocalhost:10000¢] Location: [»

B Feedback | # ¢ Log Out

sermin Webmin actions Webmin Webmin Servers
Configuration Log Configuration Index

Webmin Users

root logged into Wehbmin 1.070 on saturn jimmao.com (SUSE Linux 8.0)

= Ta - = = = T

The figure above shows you the initial start up page for Webmin. As you can see the interface
is very simple, while at the same time being very practical. Behind each of the buttons is a
different administrative function which is contained within a single Webmin module. One of
the modules is used to administer the modules themselves. Part of the administration is to
remove or install the modules as needed.

Because Webmin is modular, it is very easy to add your own modules, without the need of
changing any of the existing scripts. Although the developer of a particular module needs to
make sure the right components are available, anyone using the module can plop it in like a
Netscape plug-in.

When witting your own modules, there are two requirements that need to be followed. First,
there needs to be an icon for that module, which is stored as <module>/images/icon.qgif.
Second, there is the <module>/module.info. In both cases, <module> is the name of the
particular module. The module.info file is a set of parameters, which take the form parameter

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

245

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

= value and contains information about the module, like its name, a description, what
operating system it supports and so on.

By convention, the module, should produce a page which looks like the other Webmin
modules. This can be done by using any programming language, such as C. However, one of
the design goals of Webmin is to have it run unchanged on as many platforms as possible.
Therefore, if you write a module in C, or the module uses any special programs, you will need
to recompile on each new machine. By convention modules are written in perl, which makes
them portable across platforms.

Webmin has a particular advantage for administrators who are either new to a particular
aspects of administering a system or new to Linux in general, in that it already knows the
syntax of the various configuration files. This ensures that that syntax is correct. | also know
experienced administrators who use Webmin to setup the basic configuration and then edit the
files by hand to make any additional changes.

The first step is to get Webmin from the Webmin home [page, which is provided as a gzipped
tar archive. When you unpack the archive it creates a sub-directory based on the version you
have. For example, the current version as of this writing might create the directory
/usr/local/webmin-0.73 . This becomes the root directory for the HTTP server, so
make sure you are extracting it in the right place before you go on.

Next change into the directory where the Webmin archive was extracted and run the script
setup.sh. This is the primary setup/configuration script. This asks you a series of questions
such as where to put the configuration directory for Webmin, which defaults to /etc/webmin.

The setup script also asks you your operating system, administrator’'s username and password,
and other details about your existing configuration. Make sure that you choose the right
operating system and, if available, the right version. This is extremely important as the

location of the scripts and program, which Webmin uses, as well as their options, are be
different among different operating systems. In addition, Webmin uses this information to
determine what modules it should it include. If you don’t get this right, Webmin won’t work

right.

During the setup process the script will also ask you if Webmin should be started when the
system boots. This adds the Webmin startup script to the appropriate rc-directory i.e.
/etc/rc.d/rc2.d to start in run-level 2. In addition, if you have a previous version of
Webmin in the config directory, Webmin knows to upgrade it.

Part of the configuration process is to include the necessary modules. In many cases, the same
module can be used for multiple operating systems with little or no changes. In other cases,
there are specific modules for different operating systems. For example, there are separate
modules to configure NFS on a number of different systems. This is one reason why it is
important to chose the correct operating system during the setup.

If you look in the configuration directory, you will see that it contains a few scripts, text files
and a large number of directories. Here you find the start and stop scripts, which are called
from the appropriate rc-script if you have configured Webmin to start at boot time. The file
miniserv.conf contains the configuration information for the mini-server, such as the port it

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

246

http://www.webmin.com/

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

uses, hostname, whether SSL is used and so forth. Some of these values are assigned when
you first setup Webmin and they can be changed using Webmin itself.

If you look at the directory name, it is fairly straightforward to figure out what each script
does, even if you have never used Webmin before. There is a directory for each module,
which contains the configuration information for that module. These directories mirror the
directories under the server root directory, which contain all of the various perl scripts.

When you connect to the server using the defined port, the script index.cgi in the server root
directory is run. This checks for which modules are installed and displays the necessary icons
for each module. Since index.cgi is a script, the menu it presents is dynamic. Therefore, if a
module is removed or added there is no need to edit any pages to reflect change you make.

The icons you see are hyperlinks to their respective directories. Here too the default page is
the script index.cgi, which once again builds the page as appropriate based on the current
configuration. These scripts are dynamic as well. Therefore, as | mentioned previously, it is
possible to edit the normal system configuration files by hand and then re-load the
configuration from Webmin. That means, there is no conflict if one administrator prefers to

edit the files by hand and another chooses to use Webmin. When you access the particular
module, the appropriate configuration files are read with any changes that have been made by
hand.

With many of the modules, the first page is simply an overview of what can be configured.
For example, clicking on the Samba button brings you the page in Figure 2. At the top is a list
of the configured shares. Clicking on one allows you to configure that particular share. At the
bottom of the page are the global configuration options.

There are two modules which | feel require special attention as they are not directly related to
configuring your system. The first is the File Manager module which is just that. It is a Java
applet, which provides you a full-featured file manager which affects the files and directories
on the remote system the one being administered. This includes all of the expected features,
such as copy, delete, move, rename, cut, paste, and so forth. You even have the ability to view
text files.

Sometimes configuring the files through Webmin or even the File Manager is not enough. For
example, you may need to execute commands on the remote machine. Webmin makes this a
lot easier by providing you a Java telnet client. This means you don’t need to start an external
program and can do it right from Webmin. Note that this is truly a telnet client, so if root is
denied telnet access, it will also be denied through this Webmin applet.

As of this writing, there are 8 Webmin third party modules in addition to the over 30 modules
that form the base product. The third party modules typically provide functionality which is
only necessary for user with specific applications, such as managing the secure shell SSH,
configuring the SAP router/proxy, administering MiniVend shops, and or managing Qmail or
Zmail.

There is also a set of network utilities from Tim Niemueller
http://mww.niemueller.de/webmin-modules/nettools/ that use the Webmin interface to give
you access to standard monitoring tools, such as ping, traceroute and nslookup. It also

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

247

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

provides an "IP subnet Calculator,” which calculates the smallest possible network i.e.
netmask for a given number of nodes.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

248

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Chapter 7 The X Windowing System

I've seen the X-Windows system described as the "distributed, graphical method of working,"
and that probably fits the best. It's distributed because you could run the display on your
monitor in Virginia even though the program is actually running on a computer in California
or Calcutta, and it's graphical because you see a lot of nice pictures on your screen.

Despite the extent to which it has spread in the UNIX world, the X-Windows system is not a
UNIX product. The X-Windows system, affectionately called X, was developed by the
Massachusetts Institute of Technology and runs on a wide range of computers, even
MS-Windows-based versions.

The first version was developed at MIT in 1984. Several versions have been developed since,
with the most current version, X version 11 (X11), first released in 1987. X11 has been
adopted as the industry standard windowing system, with the support of a consortium of
major computer industry companies such as DEC, HP, SUN, and IBM.

Although you could probably find a system that is still running release 5, the newest release
(as of this writing) is release 6. You will see references to the release as X11Rn, where n is
the release number. So, the current release would be X11R6.

In this section we are going to talk about the basics of the X-Windowing System, rather than
the desktop environments like KDE and Gnome. The reason is quite simply that this material
was first written in 1996 and neither KDE nor Gnome had really established itself. A lot of
things have happened in the meantime and | just haven’t gotten around to updating this. Any
volunteers?

7.1 Configuring the X-Windows Server

On all current distributions (as far as | can tell), you will be getting a copy of the Xfree86
X-Windows system. Although this is almost completely compatible with commercial
versions, this one is free like other products under the GNU public license.

Although you can get away with 4Mb of physical RAM and an additional 12Mb of swap
space, you won’t be happy. With this minimal configuration, you will probably get X started
and a couple of windows open and then you will want to start swapping. Experience has
taught me that without at least 16Mb of physical RAM, the system is too slow to be enjoyable
to work in. Considering how low RAM prices have dropped, there really isn’'t any excuse any
more to purchase more RAM.

When you install your copy of Linux, you will (should) be asked a series of questions about
your video system to configure your X server. Even if you don’t know what video chipset you
use or the video card manufacturer, you can get away with using the standard SVGA card.
However, the performance and appearance will dramatically improve if you are able to
specify exactly what you have.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

249

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Even if there isn’t an exact match, you can try something close and still get decent
performance. If it is an exact match, | would recommend using a low resolution, like

640x480, to test the configuration. Once you are sure that everything works correctly, you can
move to higher resolutions.

Once X-Windows is running, you can use the configuration progf&86config , which

will again ask you a series of questions about your configuration. Here you really ought to
know about the hardware, including your monitor. What hardware X-Windows supports is
listed in the latest Xfree86 HOWTO, which you should find on your CD-ROM.

When you install your X server, note that you are not running just a single program. Instead,
quite a few different programs are running. Which one runs depends on the options you
specified during the configuration. Because most only run on a single video card or chipset,
you definitely need to know about your hardware.

Keep in mind that just because you can run the Linux command line does not mean that Linux
supports your video card. The command line is run in text mode, which uses well-known
standard video modes to access the video card. However, once the X server is running, you
are accessing the video card directly and need to know all the details.

Also available are several commercial X servers such as Accelerated-X and Metro-X, which
provide better performance than the default X servers Xfree86 provides.

The primary configuration file for your X server is (normallgic/XF86Config or
/etc/X11/XF86Config . This is a text file, which is generated new every time you run
xf86config. This is broken down into three sections. The Screen section is the primary section
and often comes last. It defines what you see on the screen based on the other two sections.
The Device section describes your video card (which is often referred to as a video device).
The Monitor section describes, as you might expect, your monitor.

Each section has a header line that defines what section it is and an EndSection line to close it
up. The general form is

Section
"SectionName"
section info
EndSection

Because the X server decides what to show on the screen based on the Screen section, that is
probably a good place for me to start. Within the Screen section, the server can give you
several subsections for each of the "Display” types. The subsections are the logical
configurations of your monitor and determine such things as the number of colors that can be
displayed, the resolution, and whether there is a "logical”" screen.

The Screen section on one of my machines looks like this:

Section
"Screen"
Driver "accel"
Device "SPEA Mercury 64"

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

250

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Monitor "Sony17sf"
Subsection "Display"
Depth 8
Modes

"800x600" "1024x768"
ViewPort 00
Virtual 800 600

EndSubsection
Subsection "Display"
Depth 16
Modes
"800x600" "1024x768"
ViewPort 00
Virtual 1024 768

EndSubsection
Subsection "Display"
Depth 32
Modes "800x600"
ViewPort 00
Virtual 800 600

EndSubsection
EndSection

The Driver line indicates which X server will be used. In this case, | am using the "accel"
driver for "accelerated" servers, which basically means that they have faster performance than
other cards. The other kinds of drivers are vga2 (for vga cards in 2-color mode), vgal6
(16-color vga), and svga (super-VGA, 256 color, 640x480).

The Device line indicates the name of the video card. Because that’s the card | have, this line
is set to "SPEA Mercury 64." The monitor indicates the monitor type. Note that in my case
there was a specific entry for the SPEA Mercury card. However, there was no specific entry
for my monitor, though one was close. The system uses this information to choose the best
driver for you. However, you can still choose another driver.

As | mentioned previously, the Display subsection determines what is displayed on your
screen. In this case, we have three different Display subsections, which are distinguished by
the Depth line, which defines the color depth, or number of colors, that can be displayed. This
indicates the number of bytes that are used to describe the colors. Therefore, in the first entry,
we have 8 bits, or a total of 256 possible colors.

The Modes line defines the possible resolutions that your monitor can support. Normally, the
lower the depth, the more modes the server can handle. In my case, the system did not
configure this. Each of the modes has an entry for 640x480. Because | never wanted my
server coming up in that mode, | was able to remove the modes. (Note that this is one option
in the xf86config program.)

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

251

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

When it starts up, the X server will take the first entry it finds. In my case, this is 800x600 and
256 colors. However, you can use options to startx, which then passes the first entry on to
xinit. If | wanted to increase the color depth to 24 bits, | could start the server like this:

startx -- -bpp 24

The Device section describes the characteristics of your video card. On my machine, it looks
like this:

Section "Device"
Identifier "SPEA Mercury 64"
VendorName "Unknown"
BoardName "Unknown"
VideoRam 2048
EndSection

The Identifier entry is used in other sections to match displays with Devices. Although the
VendorName in this case is SPEA and the BoardName is Mercury 64, it does not matter that
these two fields are empty.

Last, we get to the Monitor section. An except from the monitor section on my system follows
(with a lot of things removed to save spaces). Note that you could have multiple Monitor
sections if you were going to connect different monitors.

Section "Monitor"
Identifier "Sony17sf"
VendorName "Sony"
ModelName "17sfll"
HorizSync 31.5-57.0
VertRefresh 50-70
640x400 @ 70 Hz, 31.5 kHz hsync
Modeline "640x400" 25.175 640 664 760 800 400 409 411 450
640x480 @60 Hz, 31.5 kHz hsync
Modeline "640x480" 25.175 640 664 760 800 480 491 493 525
800x600 @ 56 Hz, 35.15 kHz hsync
ModeLine "800x600" 36 800 824 896 1024 600 601 603 625
1024x768 @ 87 Hz interlaced, 35.5 kHz hsync
Modeline "1024x768" 44.9 1024 1048 1208 1264 768 776 784 817

Like the Devices section, the Identifier is used to match monitors and displays. Here the
physical characteristics of the monitor are described, including the vertical refresh rate (how
many times per second the screen can be redrawn) and the horizontal synchronization (which
is based on the resolution and vertical refresh rate).

The most important part of the Monitor section are the modeline entries. If you have a
common video card and monitor, you don’t have to worry about this because the xf86config
utility will create them for you. If you do need to create them, you should check the latest
Xfree86 HOWTO.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

252

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

7.2 The Basics of X

An X session is usually composed of several windows, each running a separate program or
client. Like programs on any other system, programs running under X vary in functionality.
Some interact completely with the user, like the XTerm terminal emulator. Others simply
display output on the screen, like the xload system monitor.

The background window is referred to as the root window. Application windows, or clients,
are displayed on top of the root window. Like UNIX processes, these windows are grouped
together, or related, in a family hierarchy. As init is the great-grandmother of all processes,
the root window is the great-grandmother of all windows. Clients displayed on the root
window are children of the root window, and the root window is their parent. This hierarchy
actually extends to different parts of a window. For example, menus are often considered
children of the parent window as they inherit characteristics, but also can be configured and
react independently of the parent window.

X consists of two sides: a server side and a client side. The basic functionality is similar to the
way all client-server models work in that the X server has certain resources that it provides to
the client. It is a common misconception that the server and clients are on the same machine.
Because X is integrated with the TCP/IP stacks, requests can come from any client and can be
requested of any server. In addition, because X is not a program but more a protocol,
machines can communicate with completely different architectures. For example, a Digital
OSF/1 server can provide services to both a Linux and an AIX client, as well as either of the
others providing services to the OSF/1 machine. Just like other network applications, a single
machine can be both client and server.

The server acts as the interface between the client programs and the physical hardware. When
you input data through either the keyboard or pointer, the server accepts that input and is
responsible for passing it along to the client. This information is passed to the clsenan
Pressing a key or moving the pointer causes an event, to which the client may react. Often that
reaction is in the form of changing the display on the screen. For example, a client receives
the event that a particular menu was clicked on. It responds by requesting the server to display
the pull-down menu. The server then passes the information on to the hardware, which shows
the pull-down menu as a screen. It gives it to the server, which then passes it to the hardware.
As a result of this separation of functionality, one client could display information on more

than one server.

To start anything, an X server needs to be running somewhere. Despite that fact that you can
access servers anywhere on the network, a common configuration is one in which the server is
running on the same machine as the client.

Some systems have a graphic login that automatically starts when the system boots for
example, the Common Desktop Environment, KDE, Gnome and so on. Another common way
for the system to start is through the startx shell script, which reads the twgifiigs
and.xserverrc file in your home directory and treats them in the same way as your shell
would treat the .cshrc and .kshrc files. Here is where your initial clients are started, such as
terminal emulator and the window manager. If you don’t haxenérc file in your home
directory, then startx will read the system default/gle/X11/xinit/xinitrc .In

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

253

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

reality, the X server is started by tieit program. Howevelstartx starts xinit for you.

Contrary to popular belief, neither the X server nor the clients are responsible for the
appearance of the windows on the screen as we understand them. Instead, this falls to a
window "manager." Most Linux distributions provide two window managers: The F? Virtual
Window Managefvwm and the Tab Windows Manag&rm. In most cases that | have seen,
the default window managerfiavm.

What you can do to each part of a window is important in understanding the basic concepts of
X. These parts are shown in Figure 0-Icli&k is used to active a button. This is done by

quickly pressing down and releasing one of the mouse buttons. Because there is only one
mouse button on many systems, the mouse button used to click is usually button number one.
On a right-handed mouse, this is the left button. A double-click is when the button is clicked
twice in rapid succession.

title bar maximize button -,
- ¥ T T \\\
Smenu minimize button - ™
/ 2y

wind ow menu R T4 f=p =i rop Manager

LT D i

Mz Hazzad Lroup Full Manc Hanz dirczbory

il |||—|'ia el L bl | “ral..
oy s S = in tozuec bin 211 “bin
window frame P cacnon o3inc dacnar dcron #aEin

zdn -oz<EC adn adv Auzrdadn

Tinkal 1|.l |.|.l .’..'—.r .fr:p||||'| -’"||_||

LT cozaec rook =4 d=Ein

hutdas oZ<ec rook 2L tdoun b [R

ait Loz<EC Fook qalt Asbin "

A Lozaec nail Wil e spaolimas]

e SOZNCE RCHE AZE Ayt spoaldncus

Al | Dractivate | Reactivale | Remawe | Felit, |
M\\ |I|l ,.—'/" f.l"II
g [scroll bar”

* arfion buttan -~
Description of the Various Parts of a Window

To drag an object, select that object by placing the pointer somewhere on that object, then
pressing down and holding the first mouse button. In many cases, such as in XTerm, you must
click on the title bar. You then see the outline of that window, which you can move to a new
location. You can also select the window by clicking Move in the Window Menu. To drop the
object onto another, drag that object over another object and release the mouse button. This
only works in appropriate circumstances, for example, dropping a document onto the printer
icon to print it.

It can also be said that you, the user, manage the windows. You determine the size and
location of the window, as well as determine which is the active window. You can change the
size of the window in several different ways. By moving the pointer, yogredrany corner

of the window by pressing and holding down the left mouse button. You can then move that
corner in any direction, thus changing both the horizontal and vertical proportions of the
window. You can also grab an edge and change the horizontal or vertical edge, depending on
which edge you grab. In addition, you can choose the Size option from the window menu and

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

254

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

then move the pointer to the edge or corner with which you want to resize. This time, though,
do not hold down the left mouse button.

There are also two buttons in the upper right hand corner of the window. The inner button is
the maximize button. When you click it, the window will fill the screen it maximizes. When
you click it again, it returns to its previous size not the default, but the size it was before you
clicked the maximize button. The other button is the iconify button. This turns the window
into a miniature version of its former self. This is a "representation” of that window. These
little images are referred to as icons. Double-clicking the icon returns it to the size it was
before you clicked it to iconify it.

When you choose which window is active, ysmi the focusThere are two types of focus
policies used: explicit and pointer. In explicit focus, you must click somewhere within the
window to set the focus. In pointer focus, the focus is set when the pointer enters a window.

If the default is explicit focus, | suggest you leave it as such until you are very familiar with
moving around windows or have a compelling reason to change it. The problem with pointer
focus is that you could be typing away in one window and accidentally push the mouse so the
pointer is in another window allowing, all of a sudden, the new window to accept input. On
slower machines, the opposite effect might happen. You may move the pointer intentionally
to a new window and start typing. However, because the focus takes a moment to "catch up”
with you, the input is sent to the previous window.

To change this, edit your .fvwmrc file and look for the entry that says AutoRaise. This item
defines how long in milliseconds the system will wait until it automatically raises the window
over which you have moved the cursor. This is pointer focus. Comment out this entry by
placing a pound-sign # in front of the line. Just below it, is the entry ClickToFocus. This is the
explicit mode. This means that you have to explicitely click on a window to change the focus.

In the.fvmwrc file, these focus modes are referred ta@®-raisemode andocus-follows
mousanode. Most of the other documentation refers to explicit and auto focus; use what you
like.

Common to every windowing system at least every one | have ever seen is the concept of a
menu. Like a menu in a restaurant, a menu in X presents a list of choices. Windows in X come
in two types: pull-down and pop-up. Pull-down menus are almost universally associated with
a particular location on the window. When you click on that location, a menu appears to drop
down from that location. In a sense, you are pulling down that menu. By default, each window
has Window Menu, which is a small square with a horizontal bar running through it, located

in the upper left corner. Some people describe it as looking like a filing cabinet drawer with a
handle. When you click on the Window Menu, you are give options that are related to the
window itself. These include moving, resizing, or changing the windows position in the
windows "stack" raising or lowering it.

Pop-up menus are usually not associated with any particular location on the window. These
menus "pop-up” from the current cursor position. An example of a pop-up menu is the Root
Menu that pops up anytime you click on an exposed area of the root window.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

255

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Earlier | mentioned that the window manager determines the "look and feel" of an application.
This is not entirely true. Although what is presented is a function of the window manager, the
underlying routines used to represent a button or a scrollbar can be different. Many of the
Linux-provided clients use a set of routines called the X Toolkit Xt, which is actually two
libraries the X Toolkit Intrinsics and the Athena Widget set [Xaw] used to create the interface
components buttons, menus, etc., referred to as "widgets."

Keep in mind that X does not provide a graphical-user interface GUI. X is simply the
windowing mechanism, but some other component provides the GUI. To produce such a GUI,
the Open Software Foundation OSF developed the Motif Toolkit, which is based on the X
Toolkit Intrinsics and a set of widgets developed by DEC and HP. This was originally
designed to emulate the look and feel of the IBM/Microsoft Presentation Manager used in
0s/2.

On Linux, you will find both Motif and standard X applications. Motif applications are those
that use the Motif Toolkit and all have a common look and feel. One standard X application is
the xclipboard. If you run it along with some other application such as xv a graphics viewer,
you will notice some distinct differences, the most dramatic of which is the overall
appearance. Motif-based applications appear three-dimensional, whereas standard X
applications look "flat" two-dimensional.

7.3 Resources

If we wanted, we also could have included the geometry along with the colors, which would
give us a command that is almost too long for the screen. Even now it is a long command that
takes a long time to type in, and you can easily make mistakes. One solution would be to write
everything in a shell script and start that script instead of typing everything on the command
line.

The nice thing is we don’t have to do this. X provides a mechanism to change the appearance
and sometimes the behavior of a client to fit our personal preferences. This is the concept of a
resource. Up to now, we have specified the resource from the command line, such as
foreground color and geometry. However, there are resource files that we can edit to change
the default characteristics of a given client.

Resource files for most applications are founfust/lib/X11/app-defaults . The
general form of the resource specification is

appname*subname*subsubname...:value

The application is the name of the program you are starting,usually with the first letter
capitalized. Note the word "usually.” | don’t know how many times I've tried to change a
resource and not have it work, only to find out that this one applications name is written in
lowercase. In the case of the filedusr/lib/X11/app-defaults , N0 appname is
necessary because there is one file for each client and X knows what client is meant when it
reads these files. If set, X will search the path specified by the XFILESEARCHPATH
variable for the resource information.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

256

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Unless you want to change the system defaults, | suggest that you leave these files alone.
Instead, you can create a user- or machine-specific resource file. Normally, this is
$HOME/.Xdefaults--hostname , Where hostname is the name of the host to which

these resource specifications apply. If the .Xdefaults file is to apply to the local host, you can
omit the hostname. If you want to specify an alternative file, you can use the
ENVIRONMENT variable.

These resources are organized into classes, which enables you to set groups of individual
resources all at once. Individual resources are referred to as an instance. By convention,the
class name begins with an uppercase letter and the instance begins with a lowercase letter. We
can generally say that a resource (both class and instance)is named for the aspect of
appearance that it controls. For example, the class called Foreground sets the foreground
color. An instance of the Foreground class would be specified with a lowercase "F":

foreground. Keep in mind that different parts of the clients are affected by the class
Foreground, such as the text color, cursor color, and pointer color.

Basically all applications have resources. In each case, the class name has an initial capital.
Examples of this are

background window background color

border Width width in pixels of the window border
border Color windowborder color

foreground window foreground color

The distinction between classes and instances is very useful if you want to set several
resources at once. For example, if you define the foreground color for all aspects of the
XTerm, the resource definition would look like this:

XTerm*Foreground: blue
This would be equivalent to

XTerm*foreground: blue
XTerm*cursorColor: blue
XTerm*pointerColor: blue

This means that the foreground color of text, cursor, and pointer are all blue. If we then
defined the pointerColor instance to be something else, only it changes. For example, if we
made the following definition

XTerm*pointerColor: red>
the color is now red, although all the others remain blue.

Although the asterisk is perhaps the most commonly used delimiter, it's not the only one. The
asterisk delimiter is used to indicatéoase bindingin which there can be several layers in

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

257

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

the object hierarchy. It's easy to think of the asterisk as having the same function as on the
command line, that is, as a wild card. Here, the asterisk represents 0 or more intermediate
layers between the root object and the resource we are defining.

If there are no intermediate layers between the objects, this referredtigrdaanding If

you wanted this, yoaould specify the binding with the asterisk because it means O or more
intermediate levels. However, the symbol used to explicitly specify a tight binding is a dot (.).
Because | know that the level just before the pointerColor in the hierarchy is "ansi," | can
make the specification like this:

XTerm*.ansi.pointerColor: red

However, because the loose binding specifier (*) can be used any place though the tight
binding specifier (.) can be used only when appropriate, it is easier always to use the loose
binding specifier.

Both the resource specifications and binding can bring up some conflicts. In the example
above, we said to use blue freryforeground color related to the client "XTerm." We also
said to use red for the foreground color of pointer. Now this seems like a conflict, which it is.
However, in this case, the instance of the pointerColor took precedence over the class of
Foreground.

Consider these lines from axdefaults file:

XTerm*Foreground: blue
XTerm*pointerColor: red
XTerm*ansi.pointerColor: green

We first defined the Foreground class to be blue. Next, we defined the instance of the
pointerColor to be red. Both of these are done with loose bindings. We then defined the
instance of the pointerColor for an ANSI terminal to be green. Because tight bindings have
precedence over loose bindings, the pointer is green.

Taking this one step further, we change the class specification so it contains a tight binding.
However, we leave the instance specification a loose binding. So, we end up with these two
lines:

XTerm*ansi.Foreground: blue
XTerm*pointerColor: red

In this case, there is a tightly bound class specification that is followed by a loosely bound
instance specification. When we start the XTerm, the pointer is blue, not red. In general, we
can say that the more specific a specification is, the greater the precedence.

There are a limited number of options that we can use from the command line, although there
are many more resources that we might want to change. To accommodate a large number of
resource without increasing the number of options, we use the -xrm option. For example, if
we wanted to change the tty modes of XTerm (what the characters are for erase, delete, quit,
etc.), we could do this using the -xrm option and specifying an instance of the TtyModes
class. For example, to change the interrupt key from the default of Del to Ctrl+C, the

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

258

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

command would look like this:

XTerm -xrm XTerm*ttyModes: intr "C &

Keep in mind that this resource specification is only valid for this one XTerm that we are
starting here. If we wanted it to be valid for all XTerms, we would either change the default in
lusr/lib/X11/app-default s or define the resource in tR&efaults file.

7.4 Colors

Although you may be satisfied with the default colors that X gives you, | am sure that
eventually you will want to make some changes. In previous sections, | talked about how you
can change the color of X clients either from the command line or by changing the appropriate
resource. The only problem with that is you might not like the colors that Linux offers.

You might ask, "Why doesn’t the system just give me a list with every possible color?" Well,
you would need to have that list in a file somewhere. If you did, you would have a list that
was more than 20Mb because of the way Linux stores colors.

Each color is represented by one byte for each of the three colors: red, green, and blue
referred to as the RGB scheme. Each byte can have one of 256 values that represent the
intensity of each color. In other words, the value represents how much of each color is
included in a shade. If all three colors have the value 255, the shade is pure white. If each
color has the value 0, the shade is black.

The/usr/lib/X11/rgb.txt file contains names of colors and, often, variations in that
name. This is usually the case when the name of the color actually consists of two words, for
example, antique white. In such a case, you would also find the color antique-white. Each
entry contains the RGB values and the name of the color. For example, the antique white
entry would look like this:

250 235 215 antique-white

This means that the intensity of red in this color is 250/255 of full intensity, the intensity of
green is 235/255, and the intensity of blue is 215/255. What this really means is how much
energy is sent to each phosphor. For details on what phosphors are and what part they play in
displaying an image, see the section on monitors in the chapter on hardware.

If you specify the color as a resource either from the command line or a resource file, you
specify the color as a hexadecimal value. The key thing to note is that you must specify the
value for each color, even if it is 0. Because the hexadecimal values range from 0000 to FFFF,
you have many more possible combinations of colors. When you specify colors in this way,
the hex string you use must be preceded by a pound-sign #.

If you don’t want to specify all four hexadecimal digits, you do not have to. However, all

three colors need to be represented with the same number of digits because the system would
not be able to tell what value goes with which settings. If we look at an example, this will be
clearer.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

259

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Lets assume you want to set the intensity of red to F, the intensity of green to 4, and the
intensity of blue to 2. You might then have a resource specification that looked like this:

*background: #F42

If we wanted the intensity of green to be 45 instead of 4, the resource specification might look
like this:

*background: #F452

So what is it? Do we have red at F4, green at 5, and blue at 2? Or do we have red at F, green
at 4, and blue at 52? Tloaly way to keep things straight is if there are the same number of
digits for each color.

Remember that not all video systems are created equal. You may not get the same color on
your system as someone else does, even if you use the exact same hex values.

7.5 Displaying Clients

When the clients connect to the server, one key piece of information it needs is the display
name. The display is of the form

hostname:displaynumber.screennumber

The hostname identifies the name of the machine to which the display is physically
connected. The most common form of hostname is simply the node name, as more than likely
the server is in the same network. However, it is possible to use a fully qualified domain or
even an IP address for the hostname.

Unless you have some special hardware, you probably have only one physical display per
server. However, each display is given a number starting at 0. If you only have one, then you
will always access hostname:0. The screen number is only used in cases where a single
keyboard and mouse are associated with multiple monitors. Like displays, screens are counted
starting at 0. Because multiple screens are far less common than multiple displays, you can
omit the screen number when specifying the display. Generally, the default display is stored in
the DISPLAY variable, which is then used by default. However, many X clients have a

-display option, with which you can specify the display.

The next important issue is the concepg@dmetry One advantage of a system like X is the
ability not only to move windows around the screen but also to change their size and shape as
well. Rather than using the window manager to change the shape of the window, you can
specify the shape and size when the application is started by specifying the clients geometry.

The geometry is represented by four characteristics: width, height, the distance from left or
right, and the distance from the top or bottom. These are referenced by width, height, xoff,
and yoff, respectively. Depending on the application, the height and width are measured in
either pixels or characters, whereas the xoff and yoff values are measured only in pixels. Both
xoff and yoff are measured in relationship to the screen. The general syntax of the geometry
specification is

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

260

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

application -geometry widthxheight+xoff+yoff

Here the + (plus sign) before xoff and yoff indicate a distance from the left and top edges of
the screen, respectively. By changing + to -, you change the offset to be from the right and
bottom instead of left and top. For example, if you wanted to start the analog clock 30 pixels
to the right of the upper left corner, the command would look like this:

oclock -geometry 90x90+30+0 &

(It's a good idea to run all clients in the background, otherwise you don’t get your prompt
back until the client terminates.) Now, if we wanted to start the clock 30 pixels to the left of
the upper right corner, the command would look like this:

oclock -geometry 90x90-30+0 &

Now, if we wanted to start the clock 30 pixels to the left of the lower right corner, the
command would look like this:

oclock -geometry 90x90-30-0 &

The four corners are thus mapped like this:
+0+0 -0+0

+0-0 -0-0

You can also specify negative offsets that would then start the client outside of the respective
edge of the screen. For example, if we change the above command to look like this

oclock -geometry 90x90--30+0 & ;

It will start the client so that the right edge of the clock is 30 pixels outside of the right edge of
the screen. (Be careful not to have spaces in there.) This does not mean that the entire clock is
outside of the right edge of the screen. This is a misconception that many people have
(including me, at first). On many systems, there is something magical about the upper left
corner of the client. Offsets from the edge of the screen are in relationship to this magical
corner. This is not so with X.

A +xoff value is the distance of theft edge of the client from the left edge of the screen. A
-xoff value is the distance of thight edge of the client from the right edge of the screen. This
also means that a +yoff value is the distance of the top of the client to the top of the screen,
and -yoff is the distance from the bottom of the client to the bottom of the screen.

Note that the geometry is specified in pairs. So, if you specify the height, you must also
specify the width. Also, if you specify the x-offset, you must also specify the y-offset.
However, you don’t have to specify the offsets if you only want to specify the size. Therefore,
you could start the clock like this:

oclock -geometry 90x90 &

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

261

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

This gives me a 90x90 clock at the default location. If you only want the offset to take the
default size, it might look like this:

oclock -geometry +100+42 &

The thing that bothers me about this clock is that it is pretty boring. The colors are drab and it
really doesn’t have any life to it. The nice thing is that we can change the colors. With the
analog clock, we can change several different things. If we wanted the background color to be
cornflower blue, we would enter the command

oclock -bg cornflowerblue &

This creates an analog clock with the default size at the default location with a background of
cornflower blue. However, it still looks boring. | want a foreground of red. So, lets run the
command like this:

oclock -bg cornflowerblue -fg red &

Now it's beginning to have a little life to it. However, having both hands red is still not good
enough. | want the hour hand red but the minute hand white, and | want the jewel at the top of
the clock yellow. The command would then look like this:

oclock -bg cornflowerblue -hour red -minute white -jewel yellow
&

Thats not all. We can use a couple more options. However, these are listed in the oclock(X)
man-page, so you can take a look there if you want. Other clients have different options
because some of them don’t make sense with an analog clock. For example, the digital clock
(dclock) has an option to specify the font (-fn). Because there are no characters on the analog
clock, an option to change the font wouldn't make sense.

7.6 Fonts

Although not applicable to every client, fonts play a major role in many applications. Defined

as a set of characters for displaying text and symbols, fonts share a common appearance in
terms of size, boldness, and other physical characteristics. Fonts themselves can be grouped
together into font families. Additionally, font families are grouped by resolutions

(dots-per-inch, or DPI) into directories. Font families are so named because they were initially
stored together in the same directory in the file system. Each directory contains a database that
the server uses to translate font names into data that the server uses to display the characters
on the screen. How the name of a font is translated, we see in Figure 0-2.

If the X client has a font menu like MS-Windows or Macintosh, life would be easy when it
came to fonts. Instead, you need to choose the font as you start the application. If you were
tired of the boring font used by default on XTerms, you could choose something a little more
fancy, perhaps one that looked like cursive. For example, we could start xterm like this:

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

262

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

xterm -fn
-bitstream-charter-bold-i-normal--12-120-75-75-p-74-iso8859-1

At first, this appears rather intimidating. There are several hundred fonts on an Linux system
and learning them all is a pain. More than that, it is a waste of time. Two utilities make like
easier for you: xIsfont and xfontsel. The xlsfont utility simply lists all the available fonts with
their complete name, as in the previous examplexidrgsel is a real X client that

enables you to pick and choose a font based on different criteria. What those criteria are is
helpful in understanding more about fonts.

-bitstream-character-bold-i-normal-12-120-75-75-p-74-1s08 559-1
L character-set

avg. width

spacing
vertical dpi
harizontal dpi

tenths of a point

pixels
set width
slant
weight

fant family

foundary

Characteristics of the Font Name

Thefoundryis the fonts developer. Here we have bitstream, which, as one might guess, is
from the company Bitstream, the same people who develop so many fonts for MS-Windows.
The font family (here, charter) is a convenient way of organizing the fonts by certain
appearance characteristics.

The weight of a font can be thought of as its thickness. Common weights are medium and
bold. The slant, as you might guess, is the change in orientation of the character from the
vertical. A Roman slant is upright, italic is tilted, but the characters are given a slightly
different shape to make them more esthetically pleasing, and oblique is just tilted with no
changes to the characters shape. In the example in Figure 0-2 we have an italic slant.

The set width is a general description of the average width. Common set widths are normal,
condensed, and double-width. The size of the font on the screen is determined by several
aspects of the font name. These characteristics are the pixels, points, and both vertical and
horizontal DPI. Because the appearance on your screen depends on your monitor as well as
what fonts you choose, it's safe to gauge the font size by the points. A point is an old printers
measurement that represents 1/72 of an inch. In the example in Figure 0-2 we have 120 tenths
of a pitch, therefore the size of each character is 1/6 of an inch.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

263

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Another important characteristic is the font spacing, which determines whether the font is
proportional or monospacedA proportional font is one in which the width of each character

is different. Although this looks good on paper or on a word processor, it is not really suited
for applications like terminal emulators. The monospaced font, in which every character takes
up the same space, is better for such applications.

The character set is basically another way of saying what letters are represented. In this
example and most others in Linux, this field will be iso8859-1, which represents the ISO

Latin 1 character set, which is a superset of the standard ASCII character set. In addition to
American English characters, iso8859-1 contains the special characters used in most European
languages.

So now that we know what goes into font name, we can easily come up with the right font.
Well, maybe. Fortunately, we don’t have to. We can use a wild card for the parts of the font
that we either don’t think are important or don’t want to guess at. Any one of the
specifications can be wild carded and the system will do it's best to find a match. By "do its
best,” | mean that there can and will be cases in which multiple fonts match the specification.
A rather simple example would be:

XTerm -fn -bitstream-charter*

On most systems there are 60 matches. So, which one does the system choose? Easy enough:
the first one it finds. Unless you are more specific or know that the first one the system will

find is the font you want, you might not get the font you want. Fonts are sorted in alphabetical
order, and because bold comes before medium, we get the bold version of this font instead of
the medium.

Pop quiz: Why did we enclose the font name in this example inside single quotes though we
didn’t in the first example? Remember that the shell expands everything into tokens before it
passes things off to the command. If we didn’t use the single quotes, the shell would try to
expand the font name and we would get a message indicating that the system cannot find that
font. Details on using quotes can be found here.

Life is even simpler than that. We don’t need remember any long, drawn-out font names or try
20 different combinations to find the font we want. We can take advantage of the fact that the
system understands font aliases, which are stored in the font directories in the file fonts.alias.
These files are ASCII files with the alias in the first column and the font name in the second
column.

There are two things to keep mind. First, although you can edit these files and make changes,
the system will not recognize the new alias unless you reset the font path wisketthe
command, which is simply done as;

xset fp

Next, unless you are absolutely positive about what fonts each user is using and how they are
being referenced, it is not a good idea to remove aliases. If you remove an alias that some
client is expecting, the results are unpredictable.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

264

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

If you always want to use a particular font with a particular application, you don’t need to
always specify the -fn option when starting the client. Because the font is just another
resource, you can instead make the change to your resource definition file. An example in our
Xdefaults file might look like this:

XTerm*font: ibm10x20

If you looked though the directory files, you wouldn’t find a font simply named ibm10x20;
this is actually an alias. However, you could specify the full name of the font. Also, just like
specifying the font from the command line, we can use wild cards to specify the
"we-don’t-cares."

The directories in which the fonts are found by the server are referred to by the font path. This
is the XFONTS variable, which defaults to /usr/lib/X11/fonts but can be changed using the
xset command. Because the server displays the information on the screen, the font path is on
the server, not on the client machine. Therefore it is important to ensure that the server is able
to display a particular font before changing it for any given client. There are five

subdirectories under /usr/lib/X11/fonts varying in size and appearance.

The font database is contained in the fonts.dir file in each directory. You use this database
when you select a font. The system knows what file to read to be able to show the proper
characters on the screen. The fonts.dir files are ASCII files with the name of the font file in

the first column and the font name in the second column. When the system is installed, the
mkfontdir reads the font files found in the font path and creates the fonts.dir files. You can use
mkfontdir yourself, but the details of fonts creation and management goes beyond the scope
of this book.

Rather than requiring every machine on the network to have a full compliment of fonts, the
system has something calletbat serverLike a file server that provides files across the
network, a font server provides fonts across the network. Just like files, if the font you want is
not available by the server but is available locally, there is no problem. You can access it as
well.

The font server programfs , is not started by default but can be started in one of several
different ways. Although starting it manually might be good for testing purposes, it is more
efficient to have the font server start up every time the system goes into multiuser mode. As
with many of the differenromant aspects of the system, this is accomplished through a script
in the/etc/rc.d directory. However, there is no script there by default. Obviously, you
could write the script yourself, but you ought to let the system do it for you.

Starting the font server from the command line is not recommended for everyday use. To be
able to use the fonts provided by the font server, you need to tell your X session about it. The
best place to do this is inside y@BHHOME/.xinitrc file. Although the system

administrator (you?) can change th&/xinitrc file, everyone using the default gets to

use it, so you need to remember those people who already have their own .startxrc file. Before
any clients are started, use st command to specify where the font server is. The

general syntax is

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

265

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

xset fp=tcp/server:port

where the server is the name of the machine on which the font server is running, and port is
the TCP broadcast port, which is 7000 by default. For example, to access the font server on
the machine siemau, the command would be

xset fp=tcp/siemau:7000
Or, if you want to use local fonts as well, the line might look like this:
xset fp=tcp/boston:7000,/usr/X11/fonts/100dpi

The font servers configuration file igsr/lib/X11/fs/config . Here you can limit

what fonts will be made available through the font server by changing the catalog entry and
specifying the full paths to the directories with the appropriate fonts. For example, if you only
wanted to have access to the 100 dpi fonts, the line might look like this:

catalogue = /usr/lib/X11/fonts/100dpi

To make the changes take effect, either stop and restart the font server or use the
letc/fontserv command to re-read the configuration file and flush the cached entries:

fontserv re-read
fontserv flush

Like name servers in TCP/IP, which get name information from other name servers, you can
have font server get fonts from other font servers. This is also done with the catalogue entry.
For example, if | wanted to make the local 100 dpi fonts available, as well as the from the
remote host scoburg, the entry might look like this

catalogue = /ust/lib/X11/fonts/100dpi,tcp/scoburg:7000

assuming that scoburg has its font server configured to use port 7000. Changing the port is
also accomplished by changing thsr/lib/X11/fs/config file. On a line by itself,

add a line specifying the appropriate port. For example, if you wanted to change it to 7042,
the entry would look like this:

port=7042

Once the change is made, the font server needs to be stopped and restarted. If any other
machines were using this server, they need to be told that it is now set for port 7042.

You can use the -cf option when starting the font server to specify an alternate configuration
file. Reconfigure any X servers that use the font server. Note: Use care when you reference
other font servers. Font server connections place a heavy demand on network resources and
bandwidth. Also, be careful not to let the number of references to other font servers become
so large that your system font server becomes unmanageable.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

266

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

7.7 The Window Manager

Because the window manager is an important aspect of X, | need to cover it in more detail. As
| mentioned eatrlier, in most versions of Linux, you will find a couple of window managers.
The fvwm seems to be the most common, although | do see twm quite often.

The following sections describe the basic default behavior of windows, icons, the icon box,
input focus, and window stacking. The appearance and behavior of the window manager can
be altered by changing the configuration of specific resources.

One way to control your windows is thougbcelerator keyslso called hotkeys. By default,
several accelerator keys perform various functions. Its quite possible that on your system
these bindings have been commenting out of your .fvwmrc file. I'll get to how to change
entries in a moment.

These functions probably can be reached through the window menu as well. It all depends on
what is configured in your .fvwmrc file. Any windows managed by fvwm will have these

keys, which are explicitly defined and can be changed by modifying the appropriate resource
which I'll get to in a moment. These keys are

Alt+F1 Run popup "Utilities"
Alt+F2 Run popup "Window Ops"
Alt+F3 Run FvwmWinList Module
Alt+F4 Iconify the window

Alt+F5 Move the window

Alt+F6 Resize the window

Alt+F7 Circulate window up
Alt+F8 Circulate window down
Alt+F9 Iconify the window

The window manager is also responsible for managing icons. As | mentioned earlier, icons are
small graphic representations of clients. Iconifying turning into an icon a client is a good way
to reduce the space taken by clients that are currently not being used. Although the pager
enables you to move clients from one virtual screen to another, icons are a good way of being
able to instantly access a particular client. This is done with an "icon box." The icon box that
you will find on your system is called FvwmiconBox and, in most cases, you will have to
configure the system to start it. I'll discuss this shortly.

A nice thing about the icon box is that it represents all running clients, not just those that have
been iconified. This makes finding the client you want easy, because by double-clicking its
icon in the icon box, it immediately is made the active window and is brought to the front.

If you have a lot of icons, using the icon box is a good way to manage them. The author of the
FvwmiconBox describes it as a "clutter-reduction program.” The icon box is simply another
client that manages the icon images. The icon box can be moved and resized, even iconified.
If there are more icons in the icon box that can be shown in the box, scroll bars will appear.

One strong point of both window managers is the ability to configure them to our tastes. Up to
now we have basically been talking about the appearance of fvwm. What is really fun is to

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

267

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

modify its behavior. One way to accomplish this is through the resource description file,

which contains descriptions of resources that are easily defined in the resource files. The
descriptions of resources include such things as the behavior when buttons are pressed and the
individual entries in each menu.

The default resource description fileésc/X11/fvwm/system.fvwmrc or
letc/X11/fvwm/system.twmrc . Here again, unless you want to institute systemwide
changes, | recommend that you copy the appropriate file into the users home directory. This
copy then has the nar&lOME/.fvwmrc or SHOME/.twmrc . Here is where your default
menus and default bindings are defined. When you click the root window, the root menu pops
up, as defined in thévwmrc or.twmrc file, which is very easy to modify to your

personal tastes and preferences.

Three types of resources can be described here: buttons, keys, and menus. It is said that
window manager functions ab®undto button or key-press events. The relationship between
the button or key press is calletiading

Because the resource description file is an ASCII text file, it is easy to edit to make the
changes you want. The format of each type of resource is slightly different, but in each case,
the fields are separated by white spaces. Any text from an unquoted pound sign # to the end of
the line is considered a comment. Therefore, if any description must be contained the #, it
must be quoted. Single characters can be "quoted" by escaping them using the back-slash.
Any line containing a ! exclamation mark as the first character is also treated as a comment.

When an event occurs button or key is pressed or menu item is selected, a particular window
manager function is called. In general, we can say that the functions have the following
syntax:

function function_arguments

You can call dozens of functions that relate to everything from resizing the particular window
or icon to shuffling the order, moving, and all the other functions we talked about. All of these
are detailed in the fvwm man-page, so | don'’t feel the need to cover them all. However, | will
discuss some of the more common functions as | describe the syntax of the resource
descriptions.

The first thing we’ll talk about is the idea of a popup menu. This is not like the menus in most
programs where you see a list of options at the top of the screen and when you click the list, a
menu suddenly appears. These are called pull-down menus because you pull them down from
the menu list. Popup menus seem to popup out of nowhere. With other window managers,
pop-ups are referred to as menus.

You will probably see on your system that when you click an open area of your desktop with
the left mouse button, a menu called "Program Menu" will pop up. This menu is defined in
your .fvwmrc file. Each popup menu is defined with the following syntax:

Popup "Popup Name"
functions to call
EndPopup

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

268

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

In the case of our "Program Menu," the pop-ups name is actually "Applications," so look for
the line

Popup "Applications"

When you find it, you will see all the same entries that would appear when you click the
desktop. When you click one entry in the list, that particular program or module will start. A
module is a program used by the window manager and cannot be started in any other way.

You'll see that some of the entries have an arrow on the right side. When you click the arrow,
it brings up another popup that is defined somewhere else in the .fvwmrc file. These pop-ups
could then have entries that go to other pop-ups. Although | have tested this to five levels
deep, | have never really had a need to go beyond three levels of popup menus.

To start a particular program or module from within the menu, use the Exec function. The
syntax for the Exec definition is

Exec name exec <arguments>>

An example would be

Exec "k3b" exec k3b &

The name in each line is the symbol that will appear in the menu pane for that entry, here,
"K3B." Labels containing spaces or tabs must be enclosed within double quotes, as in our
example. To start another popup, the syntax would be

Popup "Menu Entry" Popup_Name

Here the "Menu Entry" is just what appears in the menu. The Popup_Name is what it actually
will be called.

The title function within a popup is what appears at the top of the menu when it's started. For
example, our applications popup was called "Applications" and that is how the system
referred to it. However, when we started it, the words "Program Menu" appeared at the top.
This is the title of the menu and has no other function.

If the function called is the no-operation function Nop, the function is invalid and/or is the
equivalent of adding a separator in other window manager. If you use just two double quotes "
" as the name, you will see a line between entries. However, you could include a line of
something like an equal sign = to give your menu a different effect.

The accelerator keys syntax is

Key <keyname> <context> <modifiers> <function>

Here <keyname> is the name of a key like F1 for the F1 function key or Tab for the Tab key.
The <context> is when this key press should be valid. Unlike mouse actions, a key press
should be valid in all cases, so you can use an A. The <modifiers> is used for an addition key
that should be pressed as well, such as "C" for the Ctrl key, "A" for the Alt key, "M" for the
Meta key, and "S" for the Shift key. As | mentioned earlier, your accelerator keys may have

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

269

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

been commented out, so look for the section starting "Keyboard Accelerators."
One example looks like this:
Key F1 A M Popup "Utilities"

Note that in contrast to key presses, key bindings to window manager functions are just for
the keypressesKey releases have no meaning in this context. Also, the modifiers are
exclusive, which means that no other modifier key can be pressed. Because | specified just
Meta+F1 and not SHIFT+Meta+F1, pressing SHIFT+Meta+F1 would have no effect unless |
had defined it to something already. If you want, you could use something like "SM" to
indicate pressing both the Shift and Meta keys.

Each button binding has the following syntax:

Mouse button context modifier function

The button field defines what button to which this function should apply 1, 2, 3. The context
is when the particular function should be in effect. Valid contexts are:

A -Any context except for the title bar
Root window

Application window

Window title bar

Window side, top, or bottom
Window frame corners

Icon window

—Tn-Hs 3>

You can define certain characteristics of the windows. You can define certain characteristics,
such as the foreground and background color, geometry, etc., when the client is started or by
defining that particular resource, using the Style command within .fvwmrc. In many cases,
resources define the same characteristics. See the fvwm man-page for details.

The syntax of the Style command is

Style <windowname> <options>

The <windowname> can be something other than the windows name, for example, a class or
resource string. The <options> are a common separated list of values. Some options require
arguments like Icon, which requires the name of the icon that you want to use when the
window is iconified.

7.8 Remote Access

One of the powers of Linux is the wide range of features you can use to remotely access
systems. Usingelnet (or better yetssh) you have the full command line features you
would if you were logged in locally.

One disadvantage of this is when running graphical applications that share data. If you are
accessing a database, network protocols allow you to share a common data source. Problems
arise when using applications that do not have the built in features. You could save your data

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

270

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

locally and copy it to the remote machine, or you could mount a remote filesystem. Both are
possible and even useful, from time to time. The X Windowing system allows you to go one
step further by running the application on the remote machine and lagpedras if it is

running locally. The keyword is "appear" as only the display (that is, the appearance) is local.

For those of you who are familiar with the Microsoft Windows Terminal Server or products
like Cirtix’ Metaframe, the X Windowing protocol is similar in functionality. One key

difference is X is much smaller allows you to work on slower connections. The X Windowing
protocol is also an open standard and not propriatary, unlike the Windows Terminal Server or
Metaframe.

Another key difference is the ability to redirect when the application is displayed. For
example, | can tell the X application to start on a compeltely different machine. That is, not
the machine where my X Windows sessions is running or where the application is running.

There are two basic ways of using X Windows to start applications on remote machines.

7.8.1 XDMCP

As its name implies, the X Display Manager Control Protocol (XDMCP) is used to manage
your display. One thing this means is that XDMCP is capable of provide an X server with a
graphiclogin from a remote machine, and behave as if you had actually logged in locally to
that machine.

In practice, this has many applications. For one, several years ago it was common to find
X-terminals, which were little more than a monitor, keyboard and mouse. Like the serial
terminals you had a remote connection to a server. Instead of a simple character-based
session, X-terminals provided a graphical sessions. Although the use of X-terminals has
declined in recent years, the same basic principle can be used with older PCs. As long as the
PC is capable of running an X-server, it can run XDMCP. This is is useful in many cases
where you cannot afford new computers for each user, but still want to give the access to new
applications

Although my laptop is capable of running a full version of Linux (and it does), | take
advantage of this same capability at home. Sometimes when my family is watching TV, |
would like to work on things (for example this site) in their company. | could copy the site on
to the laptop or telnet to my server and change the display on my web development
environment[(Quanka) to the laptop. However, when | am working on my laptop likalthat,

of the work is being done on the server. That would mean that for every application | have to
redirect the display to the laptop. Instead, | use XDMCP to provide me a graphical login on
the server and then the entire behaves as if | were logged in locally to the server.

In this situation, all that is really necessary on the laptop (or PC) is the X server. All of the
other applications, be it my web development environment, KMail or anything else is running
on the remote machine. Since everything is running on the server, the local machine can run
with far fewer resources than if all the applications were running locally. (Note in this
discussion | have been referring to the server as the machine on which the applications run.
However, when talking about the X-Windowing System, the server is the machine with the

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

271

http://quanta.sourceforge.net/

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

display.)

As far as X is concerned, the X terminal will be running nothing but an X server. This X
server will be configured to talk to a remote host using XDMCP (the X Display Manager
Control Protocol). It will ask the remote host for an X session. The remote host will put up a
login window on the X terminal, and after login it will run an X session with all bells and
whistles, including the window manager, all using remote X to display on the X terminal.

You will probably notice that the remote host is acting like a server, though not an X server.
The remote host is providing X sessions to X servers that ask for one. So, with respect to
XDMCP, the remote host is actually a server, providing X sessions, also known as an
XDMCP server. The X server is playing the role of an XDMCP client! Are you still with me?

The program that provides the XDMCP service on the XDMCP server is xdm. So, in order to
get an X terminal up and running, you must configure two programs: X (the XDMCP client)
on the X terminal, and xdm (the XDMCP server) on the remote host.

You must always remember that the X protocol (and the XDMCP protocol) are not encrypted.
If you use remote X, everything that goes over the network can be sniffed by other hosts on
the network. This is especially bad with remote X sessions, since the first thing that happens is
logging in by giving a username and password. So, you must run remote X over a trusted
network only!

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

272

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Chapter 8 The Computer Itself

During the several years | spent on the phone in tech support, it was common for people to
call in with no idea of what kind of computer they had. | remember one conversation with a
customer in which he answered "I don’t know" to every questioned | asked about his
hardware. Finally, he got so frustrated and said, "Look! Im not a computer person. | just want
you to tell me what’s wrong with my system."

Imagine calling your mechanic to say there is something wrong with your car. He asks you
whether the car has four or eight cylinders, whether it has fuel injection, whether it is
automatic or manual, and whether it uses unleaded or leaded gas. You finally get frustrated
and say, "Look. I'm not a engine person. | just want you to tell me what’s wrong with my
car."

The solution is to drive your car to the mechanic to have it checked. However, you can’t
always do that with your computer system. Dozens of people rely on it to do their work.
Without it, the business stops. To better track down and diagnose hardware problems, you
need to know what to look for.

This section should serve as a background for many issues I've covered elsewhere. This
chapter is designed to familiarize you with the concepts rather than make you an expert on
any aspect of the hardware. If you want to read more about PC hardware, an excellent book is
the Winn Rosch Hardware Bible from Brady Books (its more than 1000 pages and, as of this
writing (March 2005), it’s in it's sixth edition).

In the following sections, | will be talking primarily about PC hardware. Many of the concepts
are the same as on Alpha machines or Macs, but when | talk about specific interactions with
the hardware, they probably only apply to the PC, for two reasons. Despite the fact that Linux
runs on several platforms, it was first developed on the PC and only recently successfully
ported to the other architectures. The second reason is that my expertise is in PCs. | have
several of them myself and have worked with them for years, so | have the experience to
know what | am talking about.

In addition, the first commercial port to the Alpha is fairly recent. Therefore, there are not as
many people using them. However, keep in mind that although the DEC Alpha is a different
processor, the rest of the hardware is usually the same.

8.1 Basic Input-Output Services and the System Bus

A key concept for this discussion is the bus. So, just what is a bus? In computer terms, it has a
similar meaning as your local county public transit, as it is used to move something from one
place to another. The county transit bus moves people; a computer bus moves information.

The information is transmitted along the bus as electric signals. If you have ever opened up a
computer, you probably saw that there is one central printed circuit board with the CPU, the
expansion cards, and several chips sticking out of it. The electronic connections between these
parts is referred to as a bus.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

273

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

The signals that move along a computer bus comes in two basic forms: control and data.
Control signals do just that: they control things. Data signals are just that: data. | will get to
how this happens and what each part does as we move along.

In todays PC computer market, there are several buses, many of which have the same
functions but approach things quite differently. In this section, | am going to talk about the
different bus types, what goes on between the different devices on the bus, and what the main
components are that communicate along the bus.

Despite differences in bus types, certain aspects of the hardware are common among all PCs.
The Basic Input Output System BIOS, interrupts, Direct Memory Access channels, and base
addresses are just a few. Although once the kernel is loaded, Linux almost never needs the
system BIOS. However, understanding the function and purpose of the BIOS is useful in
understanding the process that the computer goes through when booting. That is, from the
time you hit the power switch to when Linux has full control of the hardware.

The BIOS is the mechanism DOS uses to access the hardware. DOS or a DOS application
makes BIOS calls that then transfer the data to and from the devices. Except for the first few
moments of the boot process and the last moment of a shutdown, Linux may never use it
again.

The standard BIOS for PCs is the IBM BIOS, but that's simply because "PC" is an IBM
standard. However, "standard" does not mean "most common," as there are several other
BIOS vendors, such as Phoenix and AMI.

DOS or a DOS application makes devimdependentalls to the BIOS to transfer data. The
BIOS then translates this into devdependeninstructions. For example, DOS or the
application requests that the hard disk read a certain block of data. The application does not
care what kind of hard disk hardware there is, nor should it. It is the BIOS’s job to make that
translation to something the specific hard disk can understand.

In Linux, on the other hand, a special program called a device driver handles the functions of
the BIOS. As we talked about in the section on the kernel, device drivers are sets of routines
that directly access the hardware, just as the BIOS does.

The fact that Linux by-passes the BIOS and goes directly to the hardware is one reason why
some hardware will work under DOS but not under Linux. In some instances, the BIOS has
been specially designed for the machine on which it runs. Because of this, it can speak the
same dialect of "machine language" that the rest of the hardware speaks. However, because
UNIX does not speak the same dialect, things get lost in the translation.

The Intel 80x86 family of processors has an I/O space that is distinct from memory space.
What this means is that memory or RAM is treated differently than 1/0. Other machine
architectures, such as the Motorola 68000 family, see accessing memory and I/O as the same
thing. Although the addresses for I/O devices appears as "normal” memory addresses and the
CPU is performing a read or write as it would to RAM, the result is completely different.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

274

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

When accessing memory, either for a read or write, the CPU utilizes the same address and
data lines as it does when accessing RAM. The difference lies in the M/IO# line on the CPU.
For those not familiar with digital electronics, this can also be described as the "Memory/Not
10" line. That is, if the line is high there is a signal on the line, the CPU addresses memory. If
it is low no signal, it addresses an I/O device.

Although the Linux operating system is much different from DOS, it still must access the
hardware in the same fashion. There are assembly language instructions that allow an
operating system or any program for that matter to access the hardware correctly. By passing
these commands the base address of the 1/0 device, the CPU knows to keep the M/IO# line
low and therefore access the device and not memory.

You can often see the base address of each device on the system when you boot. The
hardware screen shows you the devices it recognizes along with certain values such as the
base address, the interrupt vector, and the DMA channel. You can also see this same
information by looking in the /var/log/messages and several files in the /proc file system.

If your motherboard only uses 10 address lines, devices on the motherboard that have an 1/0
address such as the DMA controller and PIC will appear at their normal address, as well as at
"image" addresses. This is because the higher 6 bits are ignored, so any 16-bit address in
which the lower 10 bits match will show up as an "image" address. Because 6 bits are
ignored, there are 63 possible "image" addresses 64 minus the one for the "real" address.

These image addresses may cause conflicts with hardware that have 1/0 addresses higher than
Ox3FF 1023, which is the highest possible with only 10 address lines. Therefore, if your
motherboard only has 10 bits of I/O addresses, you shouldn’t put devices at addresses higher
than Ox3FF.

When you install, it is vital that no two devices have overlapping or identical base addresses.
Though you can share interrupts and DMA channels on some machines, you can never share
base addresses. If you attempt to read a device that has an overlapping base address, you may
get information from both devices.

If you are installing a board whose default base address is the same as the one already on the
system, you must change one address before they both will work. Additionally, you are

almost always asked for the base address of a card when you install it. Therefore, you will
need to keep track of address. See the section on troubleshooting for tips on maintaining a
notebook with this kind of information.

The table below contains a list of the more common devices and the base address ranges that
they use.

Table - Common Hex Addresses

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

275

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

HexRange Device

000-0ff Motherboard devices DMA Controller, PIC, timer chip, etc.
1f0-1f8 Fixed disk controller WD10xx

278-27f Parallel port 2

2f8-2ff Serial port 2

378-37f Parallel port 1

3bc-3bf Monochrome display and parallel port 2
3c0-3cf EGA or VGA adapter

3d0-3df CGA, EGA, or VGA adapter

3f0-3f7 Floppy disk controller

3f8-3ff Serial port 1

8.2 The Expansion Bus

It is generally understood that the speed and capabilities of the CPU is directly related to the
performance of the system as a whole. In fact, the CPU is a major selling point of PCs,
especially among less-experienced users. One aspect of the machine that is less understood
and therefore less likely to be an issue is the expansion bus.

The expansion bus, simply put, is the set of connections and slots that enable users to add to,
or expand, their system. Although it's not really an "expansion” of the system, you often find
video cards and hard disk controllers attached to the "expansion™ bus.

Anyone who has opened his or her machine has seen parts of the expansion bus. The slots
used to connect cards to the system are part of this bus. Note that people will often refer to
this bus asthe bus' Though it will be understood what is meant, there are other buses on the
system. Just keep this in mind as you go through this chapter.

Most people are aware of the differences in CPUs, whether the CPU is 16, 32 or 64-bit, what
the speed of the processor is, whether there is a math co-processor, and so on. The concepts of
BIOS and interrupts are also commonly understood.

One part of the machines hardware that is somewhat less known and often causes confusion is
the bus architecture. This is the basic way in which the hardware components (usually on the
motherboard) all fit together. Linux will run on several different kinds of buses. The most
common are those in PCs, which | will talk about first. (Note: Here | am referring mhaeiine

system bus, although Linux can access devices on other buses.)

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

276

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

The three major types of bus architectures used are the Industry Standard Architecture (ISA),
the Extended Industry Standard Architecture (EISA), and the Micro-Channel Architecture
(MCA). Both ISA and EISA machines are manufactured by a wide range of companies, but
only a few (primarily IBM) manufacture MCA machines. As of this writing, no commercial
distributions are available for MCA, but a development project is underway.

In addition to these three architectures, a few other bus types can be used in conjunction with
or to supplement the three, including the Small Computer System Interface (SCSI), Peripheral
Component Interconnect (PCI), and the Video Electronics Standards Association Local Bus
(VLB or VL-Bus).

Both PCI and VLB exist as separate buses on the computer motherboard. Expansion cards
exist for both these types of buses. You will usually find either PCI or VLB in addition to
either ISA or EISA. Sometimes, however, you can alsoldwtti PCl and VLB in addition to

the primary bus. In addition, it is possible to have machines that only have PCI because itis a
true system bus and not an expansion bus like VLB. Because of the advantages of the
PCI-Bus, some manufacturers are beginning to manufacture machines with only the PCI-Bus.
However, as of this writing, only a few machines provide PCI-only expansion buses.

SCSI, on the other hand, complements the existing bus architecture by adding an additional
hardware controller to the system. There are SCSI controllers (more commonly referred to as
host adapters) that fit in ISA, EISA, MCA, PCI, or VLB slots.

8.2.1 Industry Standard Architecture ISA

As | mentioned before, most people are generally aware of the relationship between CPU
performance and system performance. However, every system is only as strong as its weakest
component. Therefore, the expansion bus also sets limits on the system performance.

There were several drawbacks with the original expansion bus in the original IBM PC. First, it
was limited to only 8 data lines, which meant that only 8 bits could be transferred at a time.
Second, the expansion bus was, in a way, directly connected to the CPU. Therefore, it
operated at the same speed as the CPU, which meant that to improve performance with the
CPU, the expansion bus had to be altered as well. The result would have been that existing
expansion cards would be obsolete.

In the early days of PC computing, IBM was not known to want to cut its own throat. It has
already developed quite a following with the IBM PC among users and developers. If it
decided to change the design of the expansion bus, developers would have to re-invent the
wheel and users would have to buy all new equipment. There was the risk that users and
developers would switch to another platform instead of sticking with IBM.

Rather than risk that, IBM decided that backward compatibility was a paramount issue. One
key change was severing the direct connection between the expansion bus and CPU. As a
result, expansion boards could operate at a different speed than the CPU, enabling users to
keep existing hardware and enabling manufacturers to keep producing their expansion cards.
As a result, the IBM standard became the industry standard, and the bus architecture became
known as the Industry Standard Architecture, or ISA.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

277

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

In addition to this change, IBM added more address and data lines. They doubled the data
lines to 16 and increased the address lines to 24. This meant that the system could address up
to 16 megabytes of memory, the maximum that the 80286 CPU Intel’s newest central
processor at the time could handle.

When the 80386 came out, the connection between the CPU and bus clocks were severed
completely because no expansion board could operate at the 16MHz or more that the 80386
could. The bus speed does not need to be an exact fraction of the CPU speed, but an attempt
has been made to keep it there because by keeping the bus and CPU synchronized, it is easier
to transfer data. The CPU will only accept data when it coincides with its own clock. If an
attempt is made to speed the bus a little, the data must wait until the right moment in the

CPUs clock cycle to pass the data. Therefore, nothing has been gained by making it faster.

One method used to speed up the transfer of data is Direct Memory Access, or DMA.
Although DMA existed in the IBM XT, the ISA-Bus provided some extra lines. DMA enables
the system to move data from place to place without the intervention of the CPU. In that way,
data can be transferred from, lets say, the hard disk to memory while the CPU is working on
something else. Keep in mind that to make the transfer, the DMA controller must have
complete control of both the data and the address lines, so the CPthitsalfaccess

memory at this time. What DMA access looks like graphically we see in Figure 0-1.

RAM

DMA
CPU Controller

hard disk
or other
device

Image - Direct Memory Access

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

278

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

Lets step back here a minute. It is somewhat incorrect to say that a DMA transfer occurs
without intervention from the CPU, as it is the CPU that must initiate the transfer. Once the
transfer is started, however, the CPU is free to continue with other activities. DMA controllers
on ISA-Bus machines use "pass-through” or "fly-by" transfers. That is, the data is not latched
or held internally but rather is simply passed through the controller. If it were latched, two
cycles would be needed: one to latch into the DMA controller and another to pass it to the
device or memory depending on which way it was headed.

Devices tell the DMA controller that they wish to make DMA transfers through one of three
"DMA Request" lines, numbered 13. Each of these lines is given a priority based on its
number, 1 being the highest. The ISA-Bus includes two sets of DMA controllers: four 8-bit
channels and four 16-bit channels. The channels are labeled 07, 0 having the highest priority.

Each device on the system capable of doing DMA transfers is given its own DMA channel.
The channel is set on the expansion board usually by means of jumpers. The pins to which
these jumpers are connected are usually labeled DRQ, for DMA Request.

The two DMA controllers both Intel 8237, each with four DMA channels, are cascaded
together. The master DMA controller is the one connected directly to the CPU. One of its
DMA channels is used to connect to the slave controller. Because of this, there are actually
only seven channels available.

Everyone who has had a baby knows what an interrupt-driven operating system like Linux
goes through on a regular basis. Just like a baby when it needs its diaper changed, when a
device on the expansion bus needs servicing, it tells the system by generating an interrupt the
baby cries. For example, when the hard disk has transferred the requested data to or from
memory, it signals the CPU by means of an interrupt. When keys are pressed on the keyboard,
the keyboard interface also generates an interrupt.

On receiving such an interrupt, the system executes a set of functions commonly referred to as
an Interrupt Service Routine, or ISR. Because the reaction to a key being pressed on the
keyboard is different from the reaction when data is transferred from the hard disk, there
needs to be different ISRs for each device. Although the behavior of ISRs is different under
DOS than UNIX, their functionality is basically the same. For details on how this works under
Linux, see the chapter on the kernel.

On the CPU, there is a single interrupt request line. This does not mean that every device on
the system is connected to the CPU via this single line, however. Just as a DMA controller
handles DMA requests, an interrupt controller handles interrupt requests. This is the Intel
8259 Programmable Interrupt Controller, or PIC.

On the original IBM PC, there were five "Interrupt Request" lines, numbered 27. Here again,
the higher the number, the lower the priority. Interrupts 0 and 1 are used internally and are not
available for expansion cards.

The ISA-Bus also added an additional PIC, which is "cascaded" off the first PIC. With this
addition, there were now 1615 interrupt values on the system 2x8-1 because the second is
cascaded of the first. However, not all of these were available to devices. Interrupts 0 and 1
were still used internally, but so were interrupts 8 and 13. Interrupt 2 was something special.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

279

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

It, too, was reserved for system use, but instead of being a device of some kind, an interrupt
on line 2 actually meant that an interrupt was coming from the second PIC, similar to the way
cascading works on the DMA controller.

A question | brought up when | first started learning about interrupts was "What happens
when the system is servicing an interrupt and another one comes in?" Two mechanism can
help in this situation .

Remember that the 8259 is a "programmable” interrupt controller. There is a machine
instruction called Clear Interrupt Enable, or CLI. If a program is executing what is called a
critical sectionof code a section that should not be stopped in the middle, the programmer can
call the CLI instruction and disable acknowledgment of all incoming interrupts. As soon as
the critical section is finished and closed, the program should execute a Set Interrupt Enable,
or STI, instruction somewhat shortly afterward.

| say "should" because the programmer doesn’t have to do this. A CLI instruction could be in
the middle of a program somewhere and if the STl is never called, no more interrupts will be
serviced. Nothing, aside from common sense, prevents the programmer from doing this.
Should the program take too long before it calls the STI, interrupts could get lost. This is
common on busy systems when characters from the keyboard "disappear.”

The second mechanism is that the interrupts are priority based. The lower the interrupt request
level, or IRQ, the higher the priority. This has an interesting side effect because the second
PIC or slave is bridged off the first PIC or master at IRQZ2. The interrupts on the first PIC are
numbered 07, and on the second PIC the interrupts are numbered 8-15. However, the slave
PIC is attached to the master at interrupt 2. Therefore, the actual priority is 0, 1, 8-15, 3-7.

Table 0-2 contains a list of the standard interrupts.

Table -2 Default Interrupts

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

280

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

IRQ Device

0 System timer

1 Keyboard

2 Second level interrupt
3 COM 2

4 COM1

5 Printer 2

6 Floppy

7 Printer 1

8 Clock

9 Not assigned

10 Not assigned

11 Not assigned

12 Not assigned

13 Math coprocessor
14 Hard Disk

15 Hard Disk

There’s one thing you should consider when dealing with interrupts. On XT machines, IRQ 2
was a valid interrupt. Now on AT machines, IRQ 2 is bridged to the second PIC. So, to ensure
that devices configured to IRQ 2 work properly, the IRQ 2 pin on the all the expansion slots
are connected to the IRQ 9 input of the second PIC. In addition, all the devices attached to the
second PIC are associated with an IRQ value where they are attached to the PIC, and they
generate an IRQ 2 on the first PIC.

The PICs on an ISA machine adge-triggeredwhich means that they react only when the
interrupt signal is making the transition from low to high, that is, when it is on a transition
edge This becomes an issue when you attempt to share interrupts, that is, where two devices
use the same interrupt.

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

281

www.linux-tutorial.info The Linux Knowledge Base and Tutorial

Assume you have both a serial port and floppy controller at interrupt 6. If the serial port
generates an interrupt, the system will "service" it. If the floppy controller generates an
interrupt before the system has finished servicing the interrupt for the serial port, the interrupt
from the floppy is lost. There is another way to react to interrupts called "level triggered,”
which I will get to shortly.

As | mentioned earlier, a primary consideration in the design of the AT Bus as the changed
PC-Bus came to be called was that its maintain compatibility with it predecessors. It
maintains compatibility with the PC expansion cards but takes advantage of 16-bit
technology. To do this, connectors were not changed, only added. Therefore, you could slide
cards designed for the 8-bit PC-Bus right into a 16-bit slot on the ISA-Bus, and no one would
know the difference.

8.2.2 MCA

The introduction of IBM’s Micro-Channel Architecture (MCA) was a redesign oétttiee

bus architecture. Although IBM developed the original AT architecture, which later became
ISA, many companies produced machines that followed this standard. The introduction of
MCA meant that IBM could produce machines to which it alone had the patent rights.

One of the most obvious differences is the smaller slots required for MCA cards. ISA cards
are 4.75 x 13.5 inches, compared with the 3.5 x 11.5-inch MCA cards. As a result, the same
number of cards can fit into a smaller area. The drawback was that ISA cards could not fit into
MCA slots, and MCA cards could not fit into ISA slots. Although this might seem as though
IBM had decided to cut its own throat, the changes they made in creating MCA made it very
appealing.

Part of the decrease in size was a result of surface mount components, or surface mount
technology (SMT). Previously, cards used "through-hole" mounting, in which holes were

drilled through the system board (hence the name). Chips were mounted in these holes or into
holders that were mounted in the holes. Surface mount does not use this and as a result, looks
"flattened" by comparison. This saves not only space but also time and money, as SMT cards
are easier to produce. In addition, the spacing between the pins on the card (0.050")
corresponds to the spacing on the chips, which makes designing the boards much easier.

Micro-Channel also increases speed because there is a ground on every fourth pin, which
reduces interference, and as a result, the MCA-Bus can operate at ten times the speed of
non-MCA machines and still comply with FCC regulations in terms of radio frequency
interference.

Another major improvement was the expansion of the data bus to 32 bits. This meant that
machines were no longer limited to 16 megabytes of memory, but could now access 4
gigabytes.

One key change in the MCA architecture was the concémrdfvare-mediated bus

arbitration. With ISA machines, devices could share the bus, and the OS was required to
arbitrate who got a turn. With MCA, that arbitration is done at the hardware level, freeing the
OS to work on other things. This also enables multiple processors to use the bus. To

This document contains copyrighted material. All right reserved. See http://www.linux-tutorial.info/copyright.html for details.

282

The Linux Knowledge Base and Tutorial www.linux-tutorial.info

implement this, the bus has several new lines. Four lines determindithetian bus priority
level which represents the 16 different priority levels that a device could have. Who gets the
bus depends on the priority.

From the users perspective, the installation of MCA cards is much easier than that of ISA
cards due to the introduction of the Programmable Option Select, or POS. With POS, the
entire hardware configuration is stored in the CMOS. When new cards are added, you are
required to run the machinesference diskin addition, each card comes with@stions disk
that contains configuration information for the card. With the combination of reference disk
and options disk, conflicts are all but eliminated.

Part of the MCA spec is that each card has its own unique identifying number encoded into

the firmware. When the system boots, the settings in the CMOS are compared to the cards that
are found on the bus. If one has been added or removed, the system requires you to boot using
the reference disk to ensure that things are set up correctly.

As | mentioned, on each options disk is the necessary configuration information. This
information is contained within the Adapter Description File (ADF). The ADF contains all the
necessary information for your system to recognize the expansion card. Because it is only a
few kilobytes big, many ADF files can be stored on a floppy. This is useful in situations like
those we had in tech support. There were several MCA machines in the department with
dozens of expansion cards, each with its own ADF file. Rather than having copies of each
disk, the analysts who supported MCA machines (myself included) each had a single disk
with all the ADF files. (Eventually that, too, became burdensome, so we copied the ADF files
into a central directory where we could copy them as needed.) Any time we needed to add a
new card to our machines for testing, we didn’'t need to worry about the ADF files because
they were all in one place.

Because each device has its own identification number and this number is stored in the ADF,
the reference diskette can find the appropriate number with no problem. All ADF files have
names such as @BFDF.ADF, so it isn’t obvious what kind of card the ADF file is for just by
looking at the name. However, because the ADF files are simply text files, you can easily
figure out which file is which by looking at the contents.

Unlike ISA machines, the MCA architecture enaladsrrupt sharing Beca