The Design of the NetBSD
I/O Subsystems

SungWon Chung

Pusan National University

This book is dedicated to the open-source code developers in the NetBSD
community. The original copy of this publication is available in an electronic
form and it can be downloaded for free from http://arXiv.org.

Copyright (c) 2002 by SungWon Chung.

For non-commercial and personal use, this publication may be reproduced,
stored in a retrieval system, or transmitted in any form by any means,
electronic, mechanical, photocopying, recording or otherwise. For commercial
use, no part of this publication can be reproduced by any means without the
prior written permission of the author.

NetBSD is the registered trademark of The NetBSD Foundation, Inc.

Contents

Preface

I Basics to Learn Filesystem

1 Welcome to the World of Kernel !

1.1 How Does a System Call Dive into Kernel from User Program 7 . . .
1.1.1 Example: writesystemcall
1.1.2 Ultra SPARC 0x7c¢ CPU Trap
1.1.3 Jump to the File Descriptor Layer
1.1.4 Arriving at Virtual Filesystem Operations

1.2 General Data Structures in Kernel such as List, Hash, Queue,
1.2.1 Linked-Lists L o
1.22 Tail Queues
1.23 Hash.

1.3 Waiting and Sleeping in Kernel

1.4 Kernel Lock Manager
1.4.1 simplelockand lock
1.4.2 Simplelock Interfaces
1.4.3 Lock Interfaces

1.5 Kernel Memory Allocation

1.6 Resource Pool Manager
1.6.1 Design of Resource-Pool Manager.
1.6.2 [Imitializingapool. L.
1.6.3 Destroyinga Pool
1.6.4 Allocating Items from a Pool
1.6.5 Returning Items toa Pool
1.6.6 Using Cacheto Speed Up
1.6.7 Other Resource-Pool Manager AP

I/O System

2.1 I/O Mapping from User to Device
2.1.1 Device Drivers oo o
21.2 T/OQueueing
2.1.3 Imterrupt Handling

2.2 Block Devices e
2.2.1 Entry Points for Block-Device Drivers
222 Disk Labels oo

2.3 Character Devices
2.3.1 Raw Devices and Physical /O
2.3.2 Entry Points for Character-Device Drivers

2.4 Descriptor Management L oo

14

15

17
17
17
18
24
28
30
30
34
38
39
39
39
40
40
43
43
44
44
45
45
45
45
46

4 CONTENTS
2.4.1 File Descriptor, Descriptor Table, and File Entry 54
2.4.2 What does the File Entry Points 7 55
2.4.3 Movement of Data Inside the Kernel: uiomove function . .. 55

3 Virtual File System 59

3.1 Architecture of Virtual File System 59
3.1.1 Why VFSisneeded 7 59
3.1.2 What Isin the Vnode 7 59
3.1.3 How to Call Vnode Operations 7 61

3.2 Virtual Filesystem Initialization 65
3.2.1 Initializing the namei pathname buffer pool 66
3.2.2 Initializing the vnode table 67
3.2.3 Initializing the Name Cache Buffer 68
3.2.4 Initialize the Special Vnode Operations 68

3.3 Attaching Available Static File System 73
3.3.1 Set vnode attribute to empty L. 73
3.3.2 How is vfs_list_initial initialized 7 74
3.3.3 Establish a filesystem and initialize it 77
3.3.4 Fast Filesystem Initialization 78
3.3.5 Soft Dependency Module Initialization 78
3.3.6 UFS Initialization 82

3.4 Virtual Filesystem Operations 84

3.5 References to Source Code 86
3.5.1 kern/vfs_init.c - 334 lines, 7 functions 86

4 Buffer Cache 87

4.1 Buffer Cache Header 87

4.2 Buffer Cache Contents 89
4.2.1 Allocation Virtual Memory to Buffer Cache 89
4.2.2 Identifying Buffer o o000 90

4.3 BufferHash 90

4.4 Buffer Cache Free Lists 90
441 LOCKED List 91
442 LRULISt e 91
443 AGEList e 91
444 EMPTY List 92

4.5 Buffer Cache Initialization 92
4.5.1 Physical Memory Allocation. 92
4.5.2 Initialization of Hash and Free List 98

4.6 Buffer Cache Operation 102
4.6.1 Finding a Buffer Cache from Hash: incore function 103

4.7 Managing Buffer Cache Free Lists 103
4.7.1 Reusing Old Buffer: bremfree function 103
4.7.2 Allocating a New Buffer: getnewbuf function 106
4.7.3 Adjusting Buffer Size: allocbuf function 108
4.7.4 Getting a Buffer: getblk function 112

4.8 Allocating and Reading Filesystem with Buffer Cache 116
4.8.1 Just Read: bread function 120
4.8.2 Read Ahead Multiple Buffers: breadn function 121
4.8.3 Read Ahead a Single Buffer: breada function 122

4.9 Releasing Buffer Cache o0 122
4.9.1 Just Release: brelse function. 123
4.9.2 Delayed Write: bdwrite function 128

4.9.3 Asynchronous Write: bawrite function 129

CONTENTS 5

4.9.4 Synchronous Write: bwrite function 130

4.10 References to Source Code 132
4.10.1 kern/vfs bio.c - 334 lines, 21 functions 132

5 Vnode 135
5.1 Imtroduction L 135
5.2 Vnode Management Function 135
521 VnodeFlago 136

5.2.2 Reference Counts 137
5.2.3 Vnode Identifier 139
5.2.4 Links to Virtual File System Information 139

525 Vmnode Cache 139
52.6 TypeofObject 139
527 VnodeLock 140

5.2.8 Private Area 141
5.2.9 Other Vnode-Manipulating Functions 141

5.3 Vnode Attributes o 142
5.4 Vnode Operation about Filesystem Hierarchy 143
541 Overview 143
5.4.2 componentname structure L. 144

5.4.3 Pathname Searching 145
5.4.4 Name Creation 145
5.4.5 Name Change/Deletion 146
5.4.6 Attribute Manipulation 146
5.4.7 Object Interpretation 146
54.8 Process Control 146
5.4.9 Object Management 146

5.5 Vnode Operation about Storage 147
5.5.1 Object Creation and Deletion 147
5.5.2 Attribute Update L 147
5.5.3 Object Read and Write 147
5.5.4 Change in Space Allocation 147

5.6 High-Level Vnode Convenient Function 147
5.6.1 Filesystem Hierarchy 147
5.6.2 General FileI/O 148
5.6.3 Advanced I/O Lo 149

5.7 References to Source Code L. 150
5.7.1 vfs_subr.c - 2846 lines, 57 functions 150
5.7.2 vfs_vnops.c - 808 lines, 19 functions 152
5.7.3 vfs_syscalls.c - 3116 lines, 65 functions 153

6 UVM 157
6.1 Introduction 157
6.2 UVM Overview o ittt 157
6.2.1 Virtual Memory Space 158
6.2.2 Memory Map 159
6.2.3 Memory Object 160
6.24 Pager e 161
6.25 Page 162

6.3 UVM External Interface 164
6.4 Memory Mapping Files and Devices 164
6.4.1 Attaching a Memory Object to Vnode: uvn_attach 164
6.4.2 Setting Vnode Size: uvn_vnp_setsize 165

6.4.3 Clearing a Vnode: uvn_vnp zerorange 166

CONTENTS

6.5 Management of Physical Memory
6.5.1 Lock Management for Page Queue: uvm_(un)lock _pageq
6.5.2 Activating Physical Page: uvm_pageactivate
6.5.3 Making Unbusy a Page: uvm_page unbusy
6.5.4 Looking up a Page: uvm_pagelookup

UBC
7.1 Introduction
7.2 Traditional Accessesto File
7.2.1 1/O Subsystem: read() and write()
7.2.2 Virtual Memory Subsystem: mmap()
7.3 File Access with Unified Buffer Cache
7.4 VFES Support for UVM
7.4.1 VOP_GETPAGES Operation
7.4.2 VOP_PUTPAGES Operation
7.5 UVM Support for I/O
7.5.1 wubc_alloc Function, .
7.5.2 ubcrelease Function
7.6 Example
7.6.1 Reading from Disk to Buffer with UBC
7.6.2 Writing from Buffer to Disk with UBC

II Analyzing Fast Filesystem

8 Naming

8.1 Directories. L e
81.1 Chunk
8.1.2 Modification of Directory

8.2 Finding of Names in Directories
8.2.1 Match Algorithm L.
8.2.2 Search Performance Improvement

8.3 Pathname Translation

8.4 The Name Cache,
8.4.1 Vnode’s Capability oL,
8.4.2 Negative Caching
8.4.3 Special Device Handling

85 Links. L
8.5.1 Hard Links
8.5.2 Soft Links
8.5.3 The Differences o oo

8.6 References to Source Code
8.6.1 vfs_cache.c - 537 lines, 17 functions
8.6.2 vfs_lookup.c - 777 lines, 4 functions

Inode

9.1 The Structures of an Inode 0L
9.1.1 FileFlags e
9.1.2 InodeFlags
9.1.3 Inode for Root Directory

9.2 Inode Management
9.2.1 OpeningakFile L oo oL
922 ClosingaFile. L.

9.3 Quotas.

. 168

168
169
169

173
173
173
174
174
174
175
175
175
176
176
176
176
176
178

181

183
183
183
184
184
184
184
185
185
185
185
186
186
186
186
186
186
186
187

CONTENTS 7

9.3.1 Soft and Hard Quota, 195
9.3.2 Quota Imposing Mechanism 195
9.3.3 QuotaRecords 195
9.3.4 Active Quota Entry: dquot 196
9.3.5 Consistency Maintenance 197

9.4 References to Source Code 197
9.4.1 ufs_bmap.c - 325 lines, 3 functions 197
9.4.2 wufs_ihash.c - 194 lines, 7 functions 197
9.4.3 wufs_inode.c - 268 lines, 3 functions 197
9.4.4 ufs_lookup.c - 1216 lines, 9 functions 197
9.4.5 ufs_quota.c - 960 lines, 20 functions 198
9.4.6 ufs._readwrite.c - 481 lines, 4 functions 198
9.4.7 ufs_vfsops.c - 262 lines, 8 functions 199
9.4.8 ufs_vnops.c - 2074 lines, 30 functions 199

10 Berkeley Fast File System 201
10.1 Filestore Serviceso 201
10.1.1 Allocating and Freeing Objects 201
10.1.2 Updating Inode Attribute 202
10.1.3 Manipulating Existing Objects 203
10.1.4 Changing in Space Allocation 204
10.1.5 Virtual Memory System Support 204

10.2 Organizationof the FFS 205
10.2.1 Superblock oo 205
10.2.2 Cylinder Group 209
10.2.3 Fragmento 210

10.3 Reading a File oo oo 211
10.3.1 Regular File Reading Algorithm: using UBC 211
10.3.2 Non-regular File Reading Algorithm: without UBC 211
10.3.3 Implementation Lo oL 212

10.4 Writinga File Lo oo 214
10.4.1 Regular File Writing Algorithm 214
10.4.2 Non-regular File Writing Algorithm 214
10.4.3 Implementation oL 214

10.5 Layout Policies oo 220
10.5.1 Inode Layout Policy 220
10.5.2 Data Block Layout Policy 220

10.6 Data Block Allocation Mechanisms 220
10.6.1 Work Flow 221
10.6.2 Main Function that Does Allocation: ffs_balloc. 221
10.6.3 Cylinder Overflow Algorithm: ffs hashalloc. 223
10.6.4 Global Policy 1 - Extending an Fragment: ffs realloccg . . 223
10.6.5 Global Policy 2 - Get a New Block: ffs_alloc 224
10.6.6 Local Policy - Allocate a Block or Fragment: ffs_alloccg . 225
10.6.7 Searching Fragment Descriptor Table: ffs mapsearch 228
10.6.8 Rotational Layout Table 231

10.7 Inode Allocation Mechanism 231
10.7.1 Global Policy: ffsvalloc 231
10.7.2 Local Policy 1: ffs dirpref 232
10.7.3 Local Policy 2: ffs nodealloccg. 232

10.8 Synchronous Operations 232
10.9 Filesystem Semantics Lo oo 233
10.9.1 Large File Sizes 233

10.10References to Source Code 233

8 CONTENTS

10.10.1fs.h - 574 lines 233
10.10.2ffs_vfsops.c - 1518 lines, 18 functions 235
10.10.3ffs_vnops.c - 580 lines, 6 functions 235
10.10.4ffs_alloc.c - 1895 lines, 18 functions 236
10.10.5ffs_balloc.c - 552 lines, 2 functions 236
10.10.6ffs_inode.c - 582 lines, 3 functions 237
10.10.7ffs_subr.c - 295 lines, 7 functions 237
10.10.8ffs_tables.c - 147 lines, 0 functions 237
10.10.9ffs_swap.c - 158 lines, 3 functions 237

11 Mounting Root File System 239
11.1 System Bootstrapping Lo 0oL 239
11.2 Before Mounting o 240
11.2.1 Creating stopped init process 243
11.2.2 Finding Where is the Root File System 244
11.2.3 Executing Root Mount Hook 249

11.3 Let’s Mount the Root File System !. 251
11.3.1 Telling the VFS to Mount the Root Filesystem 251
11.3.2 Getting Vnode for Root Device 254
11.3.3 Allocating Mount Structure 254
11.3.4 Reading Superblock 254
11.3.5 Mount ! 257

11.4 What Must Be Done after Mount 7 257
11.4.1 Find vnode for ’/’ — root directory 257
11.4.2 Set current working directory of init process 257
11.4.3 Check File System Time 257
11.4.4 Create Kernel Threads about File System 257
11.4.5 Start Up init processor« v v v v v v oo 257

IIT Storage Systems 259
12 Storage Device 261
12.1 Generic Disk Framework 261
12.1.1 disk Structure Lo 261
12.1.2 Disk Interfaces 262
12.1.3 Using the Framework 265

12.2 Disk Labelo 267
12.2.1 What doesit have 7 L. 267
12.2.2 disklabel structure 268
12.2.3 Where is the Disk Label 7 270
12.2.4 General Disk Label Interfaces 270
12.2.5 Reading Diak Label: DIOCGDINFO 271
12.2.6 Writing In-Core Disk Label: DIOCSDINFO 272
12.2.7 Writing On-Disk Disk Label: DIOCWDINFO 272
12.2.8 Restrictions of Disk Label in sparc64 274

12.3 Concatenated Disk Driver 274
12.3.1 Strctureo 274
12.3.2 Gloval Variables 276

12.3.3 Functions oL L L 276

CONTENTS

13 Logical Volume Manager
13.1 RAIDframe
13.1.1 Introduction .

13.1.2 Component Labels

13.1.3 Hot Spares . .

13.1.4 Hierarchical Organization
13.1.5 Kernel Configuration
13.2 VERITAS Volume Manager

13.2.1 Introduction .

13.2.2 Volume Manager Overview

13.2.3 Physical Objects

13.2.4 Volumes and Virtual Objects

Appendix
A. NetBSD Kernel Sources

Bibliography

279
279
279
280
280
280
281
282
282
282
283
283

285
285

287

10

CONTENTS

Preface

Influenced by the documentation of Fast File System (FFS) in NetBSD Operating System Release
1.6, which is a derivative of 4.4BSD-Lite [1], this book aims to provide necessary information to
design and implement a new filesystem by describing the implementation of the NetBSD FES
while trying to answer the following questions. This work contains many direct excerpts from
the books and papers listed in bibliography section as well as text manual entries from the
NetBSD operation system. What I did is merely connecting the concepts in books, papers, and
manuals, to the assembly and C source code of the NetBSD Operating System on 64-bit
UltraSPARC platform.

e How the root filesystem is mounted ?

e How the system call request by application program is executed by the virtual
filesystem layer ?

e How can we add a new filesystem as another virtual filesystem layer ?
o How the UFS integrates FFS as a virtual filesystem layer ?

e How the buffer cache of the kernel works with the filesystem ?

e How the UVM works with the filesystem ?

e How to replace buffer cache ?

I am debted to my project team members, Young-Jin Shin and Woo-Young Park who
generously have offered insightful comments and spiritual encouragement towards the
completion of our project. I am grateful to the USENIX Association for financial support
through the USENIX Student Research Grant program in 2002. I sincerely wish to thank my
project team advisor, Professor Sang-Hwa Chung at the Division of Electrical and Computer
Engineering in Pusan National University.

SungWon Chung
Busan, Korea
27 November 2002

sungwon@ieee.org

A note added in 2016 when archiving this publication to arXiv.org: Since many part of
this book need clarification and correction, the readers' generous understanding will be
greatly appreciated until a second edition is available in the future. This archival version
is the same as the initial 2002 release of this publication except few typo corrections
and updates here in the preface. During the past 14 years, I had switched my main field of
interests from operating system software to integrated circuits design while my two project
members Young-Jin Shin and Woo-Young Park have kept their endeavors and have had
successful careers as well-known technical writers, entrepreneurs, and software engineers. For
the second edition, we are planning to include a simple example of new virtual filesystem
development. Your comments on any other suggestions will be extremely valuable to us.

11

12

Preface

Source Code Copyright

The NetBSD Foundation

The NetBSD specific code contains the following copyright notice.

~
**********************************T

*
~

Copyright (c) 1998, 2000 The NetBSD Foundation, Inc.
A1l rights reserved.

This code is derived from software contributed to The NetBSD Foundation
by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
NASA Ames Research Center.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by the NetBSD
Foundation, Inc. and its contributors.

4. Neither the name of The NetBSD Foundation nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
¢¢“AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

University of California at Berkeley

All the source code in this book that is taken from the 4.4BSD-Lite release contains
the following copyright notice.

Copyright (c) 1989, 1993
The Regents of the University of California. All rights reserved.

This code is derived from software contributed
to Berkeley by John Heidemann of the UCLA Ficus project.

Preface 13

¥ X X X X X K K X XK XK X X X X X X X X K XK XK X X X X X X ¥ ¥ *

*
~

Source: * @(#)i405_init.c 2.10 92/04/27 UCLA Ficus project

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

@(#)vfs_init.c 8.5 (Berkeley) 5/11/95

Washington University

UVM code contains the following copyright notice.

~
*

¥ X X X X X X X X X X X X X * X

Copyright (c) 1997 Charles D. Cranor and Washington University.
A1l rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by Charles D. Cranor and
Washington University.

14

* X X X X X X X X X X X ¥

Preface

4. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ¢‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Part 1

Basics to Learn Filesystem

15

Chapter 1

Welcome to the World of
Kernel !

In this chapter, the procedure involved in mounting root filesystem is described.

1.1 How Does a System Call Dive into Kernel from
User Program ?

In this section, we present how a system call works with an example using a
filesystem related system call.

1.1.1 Example: write system call

Let’s see how a system call such as write, used in the below user application
program, is processed.

hello.c
main() {
char *string = "Hello World ?7";
write(0, string, strlen(string));
}
hello.c

write function is defined in 1ibc library of GNU C compiler. For sparc64
platform, the source code of write function in 1ibc library is shown below.

src/lib/libc/obj/write.S

1 #include "SYS.h"
2 RSYSCALL(write)

src/lib/libc/obj/write.S

RSYSCALL macro used in the above platform-independent write.S code is defined
in a machine independent way in libc library source, src/1ib/libc/arch/sparc64/SYS.h.

src/lib/libe/arch/sparc64/SYS.h

17

18 CHAPTER 1. WELCOME TO THE WORLD OF KERNEL !

87 /*

88 * RSYSCALL is used when the system call should just return. Here

89 * we use the SYSCALL_G7RFLAG to put the ‘success’ return address in %g7
90 * and avoid a branch.

91 x/

92 #define RSYSCALL(x) \

93 ENTRY(x); mov (_CAT(SYS_,x))|SYSCALL_G7RFLAG,%gl; add %07,8,%g7; \
94 t ST_SYSCALL; ERROR()

/src/1ib/1libc/arch/sparc64

src/lib/libe/arch/sparc64/SYS.h

Thus, write system call used in hello.c executes assembly code of 1line 93
where argument x is replaced with write. As a result, system call number is stored
%gl register, and Ultra SPARC CPU Trap is occured by t instruction.

1.1.2 Ultra SPARC 0x7c CPU Trap

Ultra SPARC CPU trap number, ST_SYSCALL is defined as

- arch/sparc64/include/trap.h

106 #define T_SUN_SYSCALL 0x100 /* system call x*/

150 #define ST_SYSCALL (T_SUN_SYSCALL & 0x7f)

- arch/sparc64/include/trap.h

How Ultra SPARC CPU trap is processed is determined by CPU initialization
stage during bootstrap, according to arch/sparc64/sparc64/locore.s. This part
of the kernel source code is listed below.

- arch/sparc64/include/trap.h

636 #define SYSCALL VTRAP (0x100, syscall_setup)

805 .globl _C_LABEL(trapbase)

806 _C_LABEL(trapbase):

807 b dostart; nop; TAS8 ! 000 = reserved —- Use it to boot
808 /* We should not get the next 5 traps */

809 UTRAP (0x001) ! 001 = POR Reset -- ROM should get this
810 UTRAP (0x002) ! 002 = WDR -- ROM should get this
811 UTRAP (0x003) ! 003 = XIR -- ROM should get this
1010 UTRAP (0x0fc); TA32 ! 0x0fc £i1ll_7_other

1011 TABLE(syscall):

1012 SYSCALL ! 0x100 = sun syscall

- arch/sparc64 /sparc64/locore.s

Remember that write function defined in libc library requests CPU Trap,
ST_SYSCALL that is defined as 0x7c. So, according to line 1012 of arch/sparc64/include/trap.h,
jump to syscall_setup label is made.

Source code from the syscall_setup is shown below.

1.1. HOW DOES A SYSTEM CALL DIVE INTO KERNEL FROM USER PROGRAM 719

- arch/sparc64 /sparc64 /locore.s

3905 /x*

3906 * syscall_setup() builds a trap frame and calls syscall().

3907 * sun_syscall is same but delivers sun system call number

3908 * XXX should not have to save&reload ALL the registers just for
3909 =* ptrace...

3910 */

3911 syscall_setup:

3912 #ifdef TRAPS_USE_IG

3913 WIpr %g0, PSTATE_KERN|PSTATE_IG, %pstate ! DEBUG

3914 #endif

3915 TRAP_SETUP (-CC64FSZ-TF_SIZE)

3916

3917 #ifdef DEBUG

3918 rdpr %tt, %ol ! debug

3919 sth %ol, [%sp + CC64FSZ + STKB + TF_TT]! debug

3920 #endif

3921

3922 wrpr %g0, PSTATE_KERN, ’pstate ! Get back to normal globals
3923 stx %gl, [Vsp + CC64FSZ + STKB + TF_G + (1x%8)]

3924 mov %gl, %ol ! code

3925 rdpr %tpc, %o2 I (pc)

3926 stx %g2, [lsp + CC64FSZ + STKB + TF_G + (2x8)]

3927 rdpr %tstate, %gl

3928 stx %g3, [lsp + CC64FSZ + STKB + TF_G + (3%8)]

3929 rdpr %tnpc, %03

3930 stx %g4, [lsp + CC64FSZ + STKB + TF_G + (4x8)]

3931 rd by, %ho4

3932 stx %gb, [hsp + CCBAFSZ + STKB + TF_G + (5%8)]

3933 stx %g6, [lsp + CC64FSZ + STKB + TF_G + (6%8)]

3934 CHKPT (g5, %g6,0x31)

3935 WwIpr %g0, 0, J%tl | return to t1=0

3936 stx %g7, [%hsp + CCB4FSZ + STKB + TF_G + (7%8)]

3937 add %sp, CC64FSZ + STKB, %00 I (&tf)

3938

3939 stx %gl, [%sp + CC64FSZ + STKB + TF_TSTATE]

3940 stx %02, [%sp + CC64FSZ + STKB + TF_PC]

3941 stx %03, [%sp + CC64FSZ + STKB + TF_NPC]

3942 st %o4, [lsp + CC64FSZ + STKB + TF_Y]

3943

3944 rdpr %pil, %gb

3945 stb %gb, [%sp + CC64FSZ + STKB + TF_PIL]

3946 stb %gb, [%sp + CC64FSZ + STKB + TF_OLDPIL]

3947

3948 !'! In the EMBEDANY memory model %g4 points to the start of the data segment.
3949 'l In our case we need to clear it before calling any C-code
3950 clr %g4

3951 wr %g0, ASI_PRIMARY_NOFAULT, %asi ! Restore default ASI
3952

3953 call _C_LABEL(syscall) ! syscall(&tf, code, pc)
3954 wrpr %g0, PSTATE_INTR, ’pstate ! turn on interrupts
3955

3956 /* see ‘proc_trampoline’ for the reason for this label */

20 CHAPTER 1. WELCOME TO THE WORLD OF KERNEL !

3957 return_from_syscall:

3958 Wwrpr %g0, PSTATE_KERN, %pstate ! Disable intterrupts
3959 CHKPT (%01, %02,0x32)

3960 Wwrpr %g0, 0, %tl ! Return to t1l==0

3961 CHKPT (%01, %02,4)

3962 ba,a,pt %icc, return_from_trap

3963 nop

3964 NOTREACHED

arch/sparc64 /sparc64/locore.s

Notice that in line 3953, jump to syscall function defined in arch/sparc64/sparc64/trap.c
trap.c is somewhat complex since it supports system call emulation such as

Solaris or Ultra Linux. Critical part of trap.c managing NetBSD specific system

call is shown below.

- arch/sparc64 /sparc64/trap.s

1721 void

1722 syscall(tf, code, pc)

1723 register_t code;

1724 struct trapframe64 *tf;

1725 register_t pc;

1726 {

1727 int i, nsys, nap;

1728 int64_t *ap;

1729 const struct sysent *callp;

1730 struct proc *p;

1731 int error = 0, new;

1732 union args {

1733 register32_t i[8];

1734 register64_t 1[8];

1735 } args;

1766 p = curproc;

1780 callp = p—>p_emul->e_sysent;

1781 nsys = p->p_emul->e_nsysent;

1851 callp += code;

1876 error = copyin((caddr_t) (u_long)tf->tf_out[6] + BIAS +
1877 offsetof (struct frame64, fr_argx),
1878 &args.1[nap],

1879 (i - nap) * sizeof(register64_t));
1997 error = (*callp->sy_call)(p, &args, rval);

arch/sparc64 /sparc64/trap.s

By line 1997, a function pointed by a function pointer is called. The function
pointer is set by line 1780 and line 1851. To explain what this function pointer
means, kernel structure for a process should briefly described.

Kernel structure to describe a process is struct proc and it contains so called
per-process emulation informationin const struct emul *p_emul structure.

1.1. HOW DOES A SYSTEM CALL DIVE INTO KERNEL FROM USER PROGRAM 721

sys/proc.h

149 struct proc {

173

218
219

264 }

pid_t p_pid; /* Process identifier */
const struct emul *p_emul; /* Emulation information */
void *p_emuldata; /*

)

sys/proc.h

This member is used to run a SUN Solaris or Linux binary on NetBSD/sparc64.
However, for native NetBSD/sparc64 binary, this member is initialized by kern/init main.c
to point a const struct emul emul netbsd structure defined in kern/kern_exec.c.

The source for this initialization is

165 /
166
167
168
169
170
171 v
172 m
173 {
174

188
189
190
191
192
193
194

274

545
546
547
548
549
550
551
552
553
554 }

and,

sys/proc.h

*
* System startup; initialize the world, create process 0, mount root

* filesystem, and fork to create init and pagedaemon. Most of the

* hard work is done in the lower-level initialization routines including
* startup(), which does memory initialization and autoconfiguration.

*/

oid

ain(void)

struct proc x*p;

/*

* Initialize the current process pointer (curproc) before
* any possible traps/probes to simplify trap processing.
*/

simple_lock_init (&procO.p_raslock);

p = &procO;

curproc = p;

p—>p_emul = &emul_netbsd;

/*
* Okay, now we can let init(8) exec! 1It’s off to userland!
x/

start_init_exec = 1;

wakeup ((void *)&start_init_exec);

/* The scheduler is an infinite loop. */
uvm_scheduler();
/* NOTREACHED */

sys/proc.h

22

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

CHAPTER 1. WELCOME TO THE WORLD OF KERNEL !

const struct emul emul_netbsd = {
"netbsd",

kern/kern_exec.h

NULL, /* emulation path */

#ifndef __HAVE_MINIMAL_EMUL
EMUL_HAS_SYS syscall,
NULL,
SYS_syscall,

SYS_NSYSENT,

#endif
sysent,
#ifdef SYSCALL_DEBUG
syscallnames,
#else
NULL,
#endif
sendsig,
trapsignal,
sigcode,
esigcode,
setregs,
NULL,
NULL,
NULL,
#ifdef __HAVE_SYSCALL_INTERN
syscall_intern,

#else
syscall,
#endif
NULL,
NULL,
}s;

where the definition of struct emul structure is

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

kern/kern_exec.h

struct emul {

kern/kern_exec.h

Symbolic name */
Extra emulation path (NULL if none)*/

Miscellaneous flags, see above */
Syscall handling function */
Errno array */

Offset of the nosys() syscall */
Number of system call entries */

System call array */

const char * const *e_syscallnames; /* System call name array */

const char *e_name; /*
const char xe_path; /*
#ifndef __HAVE_MINIMAL_EMUL
int e_flags; /*
/*
const int *e_errno; /*
int e_nosys; /%
int e_nsysent; /*
#endif
const struct sysent *e_sysent; /*
/*

Signal sending function */

void (*xe_sendsig) __P((int, sigset_t *, u_long));
void (*e_trapsignal) __P((struct proc *, int, u_long));

1.1. HOW DOES A SYSTEM CALL DIVE INTO KERNEL FROM USER PROGRAM 723

109 char *xe_sigcode; /* Start of sigcode */

110 char *xe_esigcode; /* End of sigcode */

111 /* Set registers before execution */
112 void (*xe_setregs) __P((struct proc *, struct exec_package *,
113 u_long));

114

115 /* Per-process hooks */

116 void (*e_proc_exec) __P((struct proc *,

117 struct exec_package *));

118 void (*xe_proc_fork) __P((struct proc *p,

119 struct proc *parent));

120 void (*xe_proc_exit) __P((struct proc *));

121

122 #ifdef __HAVE_SYSCALL_INTERN

123 void (*xe_syscall_intern) __P((struct proc *));

124 #else

125 void (*e_syscall) __P((void));

126 #endif

127 /* Emulation specific sysctl */
128 int (*xe_sysctl) __P((int *, u_int , void *, size_t x*,
129 void *, size_t, struct proc *p));

130 int (xe_fault) __P((struct proc *, vaddr_t, int, int));
131 };

kern/kern_exec.h

The emul netbsd structure has a member whose definition is const struct sysent
xe_sysent and this member points, by the initialization of kern/kern_exec.c, to
struct sysent sysent[] array of structure which is defined in init_sysent.c as

kern/init_sysent.h

71 struct sysent sysent[] = {

72 {0,0,0,

73 sys_nosys 1}, /* 0 = syscall (indir) */

74 { 1, s(struct sys_exit_args), O,

75 sys_exit 1}, /* 1 = exit */

76 {0,0,0,

77 sys_fork 1}, /* 2 = fork */

78 { 3, s(struct sys_read_args), O,

79 sys_read 1}, /* 3 = read */

80 { 3, s(struct sys_write_args), O,

81 sys_write 1}, /* 4 = write */

82 { 3, s(struct sys_open_args), O,

83 sys_open 1}, /* 5 = open */
1227 sys_nosys 1}, /* 511 = filler x/
1228 };

kern/init_sysent.h

where struct sysent is defined as

kern/init_sysent.h

24 CHAPTER 1. WELCOME TO THE WORLD OF KERNEL !

131 extern struct sysent { /* system call table */

132 short sy_narg; /* number of args */

133 short sy_argsize; /* total size of arguments */
134 int sy_flags; /* flags. see below */

135 sy_call_t *sy_call; /* implementing function */

136 } sysent[];

kern/init_sysent.h

Now, based on the description up to now, we can exactly understand what the line
1997 means. Actually, It means that jump to the sys_write function.

1.1.3 Jump to the File Descriptor Layer

sys_write function is defined in sys_generic.c as

kern/sys_generic.c

278 /x*

279 * Write system call

280 x/

281 int

282 sys_write(struct proc *p, void *v, register_t *retval)

283 {

284 struct sys_write_args /* {

285 syscallarg(int) fd;

286 syscallarg(const void *) buf;

287 syscallarg(size_t) nbyte;

288 } */ *uap = v;

289 int fd;

290 struct file *fp;

291 struct filedesc *fdp;

292

293 fd = SCARG(uap, fd);

294 fdp = p->p_£fd;

295

296 if ((fp = fd_getfile(fdp, fd)) == NULL)

297 return (EBADF);

298

299 if ((fp->f_flag & FWRITE) == 0)

300 return (EBADF);

301

302 FILE_USE(fp);

303

304 /* dofilewrite() will unuse the descriptor for us */
305 return (dofilewrite(p, fd, fp, SCARG(uap, buf), SCARG(uap, nbyte),
306 &fp->f_offset, FOF_UPDATE_OFFSET, retval));

307 }

308

309 int

310 dofilewrite(struct proc *p, int fd, struct file *fp, const void #*buf,
311 size_t nbyte, off_t *offset, int flags, register_t *retval)
312 {

313 struct uio auio;

314 struct iovec aiov;

1.1. HOW DOES A SYSTEM CALL DIVE INTO KERNEL FROM USER PROGRAM 725

315 size_t cnt;

316 int error;

317 #ifdef KTRACE

318 struct iovec ktriov;

319 #endif

320

321 error = 0;

322 aiov.iov_base = (caddr_t)buf; /* XXX kills const */
323 aiov.iov_len = nbyte;

324 auio.uio_iov = &aiov;

325 auio.uio_iovcnt = 1;

326 auio.uio_resid = nbyte;

327 auio.uio_rw = UIO_WRITE;

328 auio.uio_segflg = UIO_USERSPACE;

329 auio.uio_procp = p;

330

331 /%

332 * Writes return ssize_t because -1 is returned on error. Therefore
333 * we must restrict the length to SSIZE_MAX to avoid garbage return
334 * values.

335 x/

336 if (auio.uio_resid > SSIZE_MAX) {

337 error = EINVAL;

338 goto out;

339 }

340

341 #ifdef KTRACE

342 /%

343 * if tracing, save a copy of iovec

344 */

345 if (KTRPOINT(p, KTR_GENIO))

346 ktriov = aiov;

347 #endif

348 cnt = auio.uio_resid;

349 error = (*fp->f_ops->fo_write) (fp, offset, &auio, fp->f_cred, flags);
350 if (error) {

351 if (auio.uio_resid '= cnt && (error == ERESTART ||
352 error == EINTR || error == EWOULDBLOCK))
353 error = 0;

354 if (error == EPIPE)

355 psignal(p, SIGPIPE);

356 }

357 cnt —-= auio.uio_resid;

358 #ifdef KTRACE

359 if (KTRPOINT(p, KTR_GENIO) && error == 0)

360 ktrgenio(p, fd, UIO_WRITE, &ktriov, cnt, error);
361 #endif

362 *retval = cnt;

363 out:

364 FILE_UNUSE(fp, p);

365 return (error);

366 }

kern/sys_generic.c

26 CHAPTER 1. WELCOME TO THE WORLD OF KERNEL !

Do you think it is the whole kernel source code to process write system call ?
Unfortunately, there remains somewhat long way for us to walk before we reach the
realm of the fast filesystem code. / :)

See the line 349 of kern/sys/generic.c. You may wonder how the f_ops
member of fp structure is set. It is initialized when open system call is executed
as,

kern/vfs_syscalls.c

986 /x*
987 x Check permissions, allocate an open file structure,
988 x and call the device open routine if any.

989 */

990 int

991 sys_open(p, v, retval)

992 struct proc *p;

993 void *v;

994 register_t *retval;

995 {

996 struct sys_open_args /* {

997 syscallarg(const char *) path;

998 syscallarg(int) flags;

999 syscallarg(int) mode;

1000 } */ *uap = v;

1001 struct cwdinfo *cwdi = p->p_cwdi;

1002 struct filedesc *fdp = p->p_£fd;

1003 struct file *fp;

1004 struct vnode *vp;

1005 int flags, cmode;

1006 int type, indx, error;

1007 struct flock 1f;

1008 struct nameidata nd;

1009

1010 flags = FFLAGS(SCARG(uap, flags));

1011 if ((flags & (FREAD | FWRITE)) == 0)

1012 return (EINVAL);

1013 /* falloc() will use the file descriptor for us */

1014 if ((error = falloc(p, &fp, &indx)) != 0)

1015 return (error);

1016 cmode = ((SCARG(uap, mode) &~ cwdi->cwdi_cmask) & ALLPERMS) &~ S_ISTXT;
1017 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, SCARG(uap, path), p);
1018 p->p_dupfd = -indx - 1; /* XXX check for fdopen */
1019 if ((error = vn_open(&nd, flags, cmode)) != 0) {

1020 FILE_UNUSE(fp, p);

1021 ffree(fp);

1022 if ((error == ENODEV || error == ENXIO) &&

1023 p->p_dupfd >= 0 && /* XXX from fdopen */
1024 (error =

1025 dupfdopen(p, indx, p->p_dupfd, flags, error)) == 0) {
1026 *retval = indx;

1027 return (0);

1028 b

1029 if (error == ERESTART)

1030 error = EINTR;

1.1. HOW DOES A SYSTEM CALL DIVE INTO KERNEL FROM USER PROGRAM 727

1031 fdremove (fdp, indx);

1032 return (error);

1033 }

1034 p->p_dupfd = 0;

1035 vp = nd.ni_vp;

1036 fp—>f_flag = flags & FMASK;

1037 fp->f_type = DTYPE_VNODE;

1038 fp—>f_ops = &vnops;

1039 fp->f_data = (caddr_t)vp;

1040 if (flags & (O_EXLOCK | O_SHLOCK)) {
1041 1f.1_whence = SEEK_SET;

1042 1f.1_start = 0;

1043 1f.1_1en = 0;

1044 if (flags & O0_EXLOCK)

1045 1f.1_type = F_WRLCK;
1046 else

1047 1f.1_type = F_RDLCK;
1048 type = F_FLOCK;

1049 if ((flags & FNONBLOCK) == 0)
1050 type |= F_WAIT;

1051 VOP_UNLOCK (vp, 0);

1052 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &1f, type);
1053 if (error) {

1054 (void) vn_close(vp, fp->f_flag, fp->f_cred, p);
1055 FILE_UNUSE(fp, p);
1056 ffree(fp);

1057 fdremove (fdp, indx);
1058 return (error);

1059 }

1060 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1061 fp->f_flag |= FHASLOCK;

1062 }

1063 VOP_UNLOCK (vp, 0);

1064 *retval = indx;

1065 FILE_SET_MATURE(fp);

1066 FILE_UNUSE(fp, p);

1067 return (0);

1068 }

kern/vfs syscalls.c

You can check that this code segment is described by the page 205-207 of a book
titled as ‘the design and implementation of the 4.4BSD operating system'

For more important, see 1038 of vfs_syscalls.c. Did you have a sense what
this means ? By this code line, the f_ops member of fp structure in line 349 of
kern/sys_generic.c points vnops global variable which is defined as,

kern/vfs_vnops.c

82 struct fileops vnops = {

83 vn_read, vn_write, vn_ioctl, vn_fcntl, vn_poll,
84 vn_statfile, vn_closefile, vn_kqfilter
85 };

kern/vfs_vnops.c

28 CHAPTER 1. WELCOME TO THE WORLD OF KERNEL !

where the definition of struct fileops is embedded in the definition of file struc-
ture as,

sys/file.h
53 /*
54 x Kernel descriptor table.
55 * One entry for each open kernel vnode and socket.
56 x/
57 struct file {
58 LIST_ENTRY(file) f_list; /* list of active files */
59 int f_flag; /* see fcntl.h */
60 int f_iflags; /* internal flags */
61 #define DTYPE_VNODE 1 /* file */
62 #define DTYPE_SOCKET 2 /* communications endpoint */
63 #define DTYPE_PIPE 3 /* pipe */
64 #define DTYPE_KQUEUE 4 /* event queue */
65 #define DTYPE_MISC 5 /* misc file descriptor type */
66 int f_type; /* descriptor type */
67 u_int f_count; /* reference count */
68 u_int f_msgcount; /* references from message queue */
69 int f_usecount; /* number active users */
70 struct ucred *f_cred; /* creds associated with descriptor */
71 struct fileops {
72 int (*fo_read) (struct file *fp, off_t *offset,
73 struct uio *uio,
74 struct ucred *cred, int flags);
75 int (xfo_write) (struct file *fp, off_t *offset,
76 struct uio *uio,
77 struct ucred *cred, int flags);
78 int (xfo_ioctl) (struct file *fp, u_long com,
79 caddr_t data, struct proc *p);
80 int (xfo_fcntl) (struct file *fp, u_int com,
81 caddr_t data, struct proc *p);
82 int (*xfo_poll) (struct file *fp, int events,
83 struct proc *p);
84 int (xfo_stat) (struct file *fp, struct stat *sp,
85 struct proc *p);
86 int (xfo_close) (struct file *fp, struct proc *p);
87 int (xfo_kqfilter) (struct file *fp, struct knote *kn);
88 } *f_ops;
89 off_t f_offset;
90 caddr_t f_data; /* descriptor data, e.g. vnode/socket */
91 };
sys/file.h

Based on the above code, line 349 of kern_sysgeneric.c makes a jump to
vn_write.

1.1.4 Arriving at Virtual Filesystem Operations

The vn_write function is defined in vfs_vnops.c as,

kern/vfs_vnops.c

1.1. HOW DOES A SYSTEM CALL DIVE INTO KERNEL FROM USER PROGRAM 729

526 /*

527 * File table vnode write routine.

528 */

529 static int

530 vn_write(fp, offset, uio, cred, flags)

531 struct file *fp;

532 off_t *xoffset;

533 struct uio *uio;

534 struct ucred *cred;

535 int flags;

536 {

537 struct vnode *vp = (struct vnode *)fp->f_data;
538 int count, error, ioflag = IO_UNIT;

539

540 if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
541 ioflag |= IO_APPEND;

542 if (fp->f_flag & FNONBLOCK)

543 ioflag |= IO_NDELAY;

544 if (fp->f_flag & FFSYNC ||

545 (vp—>v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
546 ioflag |= IO_SYNC;

547 else if (fp->f_flag & FDSYNC)

548 ioflag |= IO_DSYNC;

549 if (fp->f_flag & FALTIO)

550 ioflag |= IO_ALTSEMANTICS;

551 VOP_LEASE(vp, uio->uio_procp, cred, LEASE_WRITE);
552 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);

553 uio—>uio_offset = *offset;

554 count = uio->uio_resid;

555 error = VOP_WRITE(vp, uio, ioflag, cred);

556 if (flags & FOF_UPDATE_OFFSET) {

557 if (ioflag & IO_APPEND)

558 *xoffset = uio->uio_offset;

559 else

560 *xoffset += count - uio—->uio_resid;
561 }

562 VOP_UNLOCK (vp, 0);

563 return (error);

564 }

kern/vfs_vnops.c

By the functions used in line line 551, 555 — VOP_LEASE, VOP_WRITE — are calls
to virtual filesystem operations. Before describing the jump to virtual file system
code by this function, we should explain architecture and source code for virtual
filesystem layer in NetBSD /sparc64. Therefore, we postpone further description to
the next chapter telling about virtual filesystem layer implementation.

Starting from write system call in hello. c, we arrived just before the filesystem
code. Isn’t it interesting ?

30 CHAPTER 1. WELCOME TO THE WORLD OF KERNEL !

1.2 General Data Structures in Kernel such as List,
Hash, Queue, ...

In NetBSD, general data structure manipulation macros are provided. Conceptu-
ally, they are equivalent to templates of C++ language. To use these macro, the
only thing to do is including sys/queue.h header file.

Those built-in macros in NetBSD supports five types of data structures: singly-
linked lists, linked-lists, simple queues, tail queues, and circular queues. They are
used by the various parts of kernel. For example, buffer cache uses lists and tail
queues.

All five data structures support the following four functionality:

e Insertion of a new entry at the head of the list

e Insertion of a new entry before or after any element in the list

e Removal of any entry in the list

e Forward traversal through the list
All doubly linked types of data structures (lists, tail queues, and circle queues)
additionally allow:

e Insertion of a new entry before any element in the list.

e O(1) removal of any entry in the list.

However, code size and execution time of operations (except for removal) is about
twice that of the singly-linked data structures.

1.2.1 Linked-Lists

Linked lists are the simplest of the doubly linked data structures.
Here is an example using linked lists.

An Example

LIST_HEAD(listhead, entry) head;
struct listhead *headp; /* List head. */
struct entry {

LIST_ENTRY(entry) entries; /* List. */
} *nl, *n2, *np;

LIST_INIT(&head); /* Initialize the list. */

nl = malloc(sizeof (struct entry)); /* Insert at the head. */
LIST_INSERT_HEAD(&head, nl, entries);

n2 = malloc(sizeof (struct entry)); /* Insert after. */
LIST_INSERT_AFTER(nl, n2, entries);

n2 = malloc(sizeof (struct entry)); /* Insert before. */
LIST_INSERT_BEFORE(nl, n2, entries);
/* Forward traversal. */

1.2. GENERAL DATA STRUCTURES IN KERNEL SUCH AS LIST, HASH, QUEUE, ...31

LIST_FOREACH(np, &head, entries)
np-> ...
/* Delete. */
while (LIST_FIRST(&head) != NULL)
LIST_REMOVE(LIST_FIRST(&head), entries);
if (LIST_EMPTY (&head)) /* Test for emptiness. */
printf ("nothing to do\n");

From now on, with this example, we will describe how to use built-in macros about
linked-lists.

List Definition

A list is headed by a structure defined by the LIST_HEAD macro. This macro is
defined in sys/queue.h as,

sys/queue.h

87 /*
88 x List definitiomns.
89 x/

90 #define LIST_HEAD(name, type)

91 struct name {

92 struct type *lh_first; /* first element */
93 }

sys/queue.h

This structure contains a single pointer to the first element on the list. The elements
are doubly linked so that an arbitrary element can be removed without traversing
the list. New elements can be added to the list after an existing element, before an
existing element, or at the head of the list. A LIST_HEAD structure is declared as
follows:

LIST_HEAD (HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the type of
the elements to be linked into the list. A pointer to the head of the list can later
be declared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

~ -

32

Declaring Entry

CHAPTER 1. WELCOME TO THE WORLD OF KERNEL !

The macro LIST_ENTRY declares a structure that connects the elements in the list.
This macro is defined in sys/queue.h as,

98 #define

sys/queue.h

LIST_ENTRY (type)

99 struct {

100
101
102 }

struct type *le_next; /* next element */

struct type **le_prev;

sys/queue.h

List Initialization

The macro LIST_INIT initializes the list referenced by head. This marco is defined

as

)

128 #define
129
130 } while

sys/queue.h

LIST_INIT (head) do {
(head)->1h_first = NULL;
(/*CONSTCOND*/0)

Entry Insertion

sys/queue.h

LIST_INSERT_HEAD macro inserts the new element elm at the head of

the list.

LIST_INSERT_AFTER inserts the new element elm after the element 1istelm.

LIST_INSERT_BEFORE inserts the new element elm before the element
listelm.

Those macros are defined in sys/queue.h as,

132 #define
133
134
135
136
137
138
139 } while
140
141 #define
142
143
144
145
146
147 } while
148

sys/queue.h

LIST_INSERT_AFTER(listelm, elm, field) do {

QUEUEDEBUG_LIST_OP((listelm), field)

if (((elm)->field.le_next = (listelm)->field.le_next)
(listelm)->field.le_next->field.le_prev =

&(elm)->field.le_next;

(listelm)->field.le_next = (elm);

(elm)->field.le_prev = &(listelm)->field.le_next;

(/*CONSTCOND*/0)

!= NULL)

LIST_INSERT_BEFORE(listelm, elm, field) do {
QUEUEDEBUG_LIST_OP((listelm), field)
(elm)->field.le_prev = (listelm)->field.le_prev;
(elm)->field.le_next = (listelm);
*(listelm)->field.le_prev = (elm);
(listelm)->field.le_prev = &(elm)->field.le_next;
(/*CONSTCOND*/0)

/* address of previous next element */

~

P

P

1.2. GENERAL DATA STRUCTURES IN KERNEL SUCH AS LIST, HASH, QUEUE, ...33

149 #define LIST_INSERT_HEAD(head, elm, field) do {

150
151
152
153
154

QUEUEDEBUG_LIST_INSERT_HEAD((head), (elm), field)

if (((elm)->field.le_next = (head)->1h_first) != NULL)
(head)->1h_first->field.le_prev = &(elm)->field.le_next;

(head)->1h_first = (elm);

(elm)->field.le_prev = &(head)->1h_first;

PP

155 } while (/*CONSTCOND*/0)

sys/queue.h

From the definition, macros beginning with QUEUEDEBUG is assertion macros. They
are meaningful only if QUEUEDEBUG macro is defined. These macros are defined as

sys/queue.h

107 #if defined(_KERNEL) && defined (QUEUEDEBUG)
108 #define QUEUEDEBUG_LIST_INSERT_HEAD(head, elm, field) \
109 if ((head)->1h_first && \
110 (head)->1h_first->field.le_prev != &(head)->1h_first) \
111 panic("LIST_INSERT_HEAD Y%p %s:%d", (head), __FILE__, __LI
112 #define QUEUEDEBUG_LIST_OP(elm, field) \
113 if ((elm)->field.le_next && \
114 (elm)->field.le_next->field.le_prev != \
115 &(elm)->field.le_next) \
116 panic("LIST_* forw %p %s:%d", (elm), __FILE__, __LINE__);
117 if (x(elm)->field.le_prev != (elm)) \
118 panic("LIST_* back %p %s:%d", (elm), __FILE__, __LINE__);
119 #define QUEUEDEBUG_LIST_POSTREMOVE(elm, field) \
120 (elm)->field.le_next = (void *)1L; \
121 (elm)->field.le_prev = (void *)1L;
122 #else
123 #define QUEUEDEBUG_LIST_INSERT_HEAD (head, elm, field)
124 #define QUEUEDEBUG_LIST_OP(elm, field)
125 #define QUEUEDEBUG_LIST_POSTREMOVE(elm, field)
126 #endif
sys/queue.h
Entry Removal
The macro LIST_REMOVE removes the element elm from the list.
This marco is defined as
sys/queue.h
157 #define LIST_REMOVE(elm, field) do { \
158 QUEUEDEBUG_LIST_OP((elm), field) \
159 if ((elm)->field.le_next != NULL) \
160 (elm)->field.le_next->field.le_prev = \
161 (elm)->field.le_prev; \
162 *x(elm)->field.le_prev = (elm)->field.le_next; \
163 QUEUEDEBUG_LIST_POSTREMOVE((elm), field) \

164 } while (/*CONSTCOND*/0)

sys/queue.h

34 CHAPTER 1. WELCOME TO THE WORLD OF KERNEL !

List Access

LIST_EMPTY macro return true if the list head has no elements.
LIST_FIRST macro returns the first element of the list head.

LIST_FOREACH macro traverses the list referenced by head in the forward
direction, assigning each element in turn to var.

LISTNEXT macro returns the element after the element elm.

Those macros are defined as

sys/queue.h

166 #define

LIST_FOREACH(var, head, field)

167 for ((var) = ((head)->1h_first);

168 (var);

169 (var) = ((var)->field.le_next))
170

171 /*

172 = List access methods.

173 */

174 #define LIST_EMPTY (head)
175 #define LIST_FIRST (head)
176 #define LIST_NEXT(elm, field)

((head)->1h_first == NULL)
((head)->1h_first)
((elm)->field.le_next)

sys/queue.h

Now, if you see again the previous example, you would fully understand how it
works !

1.2.2 Tail Queues

Tail queues add the following one additional functionality:
e Entries can be added at the end of a list.

However,

e All list insertions and removals, except insertion before another
element, must specify the head of the list.

e Code size is about 15slower than linked-lists.

An Example

TAILQ_HEAD(tailhead, entry) head;
struct tailhead *headp; /* Tail queue head. */
struct entry {

TAILQ_ENTRY(entry) entries; /* Tail queue. */
} *nl, *n2, *np;
TAILQ_INIT(&head);

/* Initialize the queue. */

nl = malloc(sizeof (struct entry)); /* Insert at the head. */

~ -

1.2. GENERAL DATA STRUCTURES IN KERNEL SUCH AS LIST, HASH, QUEUE, ...35

TAILQ_INSERT_HEAD(&head, nl, entries);

nl = malloc(sizeof (struct entry)); /* Insert at the tail. */
TAILQ_INSERT_TAIL(&head, nl, entries);

n2 = malloc(sizeof (struct entry)); /* Insert after. */
TAILQ_INSERT_AFTER(&head, nl, n2, entries);

n2 = malloc(sizeof (struct entry)); /* Insert before. */
TAILQ_INSERT_BEFORE(nl, n2, entries);
/* Forward traversal. */
TAILQ_FOREACH(np, &head, entries)
np-> ...
/* Reverse traversal. x/
TAILQ_FOREACH_REVERSE(np, &head, tailhead, entries)
np-> ...
/* Delete. */
while (TAILQ_FIRST(&head) '= NULL)
TAILQ_REMOVE (&head, TAILQ_FIRST(&head), entries);
if (TAILQ_EMPTY (&head)) /* Test for emptiness. */
printf ("nothing to do\n");

If you read the previous subsection about linked-list, you will not have any
problem in understanding the above example. Therefore, instead of describing
usages for each macro, we show the definition of those macros.

sys/queue.h

310 /*
311 * Tail queue definitions.
312 */

313 #define TAILQ_HEAD(name, type)

314 struct name {

315 struct type *tqh_first; /* first element */

316 struct type **tqh_last; /* addr of last next element */
317 }

318

319 #define TAILQ_HEAD_INITIALIZER(head)

320 { NULL, &(head).tgh_first }

321

322 #define TAILQ_ENTRY(type)

323 struct {

324 struct type *tqe_next; /* next element */

325 struct type **tqe_prev; /* address of previous next element */
326 }

327

328 /x*

329 x Tail queue functioms.

330 */

331 #if defined (_KERNEL) && defined(QUEUEDEBUG)

332 #define QUEUEDEBUG_TAILQ_INSERT_HEAD(head, elm, field)

333 if ((head)->tgh_first &&

334 (head)->tqh_first->field.tqe_prev != &(head)->tqh_first)

s

~ - -

CHAPTER 1. WELCOME TO THE WORLD OF KERNEL !

335 panic ("TAILQ_INSERT_HEAD %p %s:%d", (head), __FILE__, __LINE__);
336 #define QUEUEDEBUG_TAILQ_INSERT_TAIL(head, elm, field) \
337 if (*(head)->tqh_last != NULL) \
338 panic("TAILQ_INSERT_TAIL %p %s:%d", (head), __FILE__, __LINE__);
339 #define QUEUEDEBUG_TAILQ_OP(elm, field) \
340 if ((elm)->field.tqge_next && \
341 (elm)->field.tqe_next->field.tqe_prev != \
342 &(elm)->field.tqge_next) \
343 panic("TAILQ_* forw %p %s:%d", (elm), __FILE__, __LINE__);\
344 if (x(elm)->field.tqge_prev != (elm)) \
345 panic("TAILQ_* back %p %s:%d", (elm), __FILE__, __LINE__);
346 #define QUEUEDEBUG_TAILQ_PREREMOVE(head, elm, field) \
347 if ((elm)->field.tqe_next == NULL && \
348 (head)->tgh_last != &(elm)->field.tqe_next) \
349 panic ("TAILQ_PREREMOVE head %p elm %p %s:%d", \
350 (head), (elm), __FILE__, __LINE__);

351 #define QUEUEDEBUG_TAILQ_POSTREMOVE(elm, field) \
352 (elm)->field.tqe_next = (void *)1L; \
353 (elm)->field.tqe_prev = (void *)1L;

354 #else

355 #define QUEUEDEBUG_TAILQ_INSERT_HEAD(head, elm, field)

356 #define QUEUEDEBUG_TAILQ_INSERT_TAIL (head, elm, field)

357 #define QUEUEDEBUG_TAILQ_OP(elm, field)

358 #define QUEUEDEBUG_TAILQ_PREREMOVE(head, elm, field)

359 #define QUEUEDEBUG_TAILQ_POSTREMOVE(elm, field)

360 #endif

361

362 #define TAILQ_INIT(head) do { \
363 (head)->tqh_first = NULL; \
364 (head)->tqh_last = &(head)->tqh_first; \
365 } while (/*CONSTCOND*/0)

366

367 #define TAILQ_INSERT_HEAD(head, elm, field) do { \
368 QUEUEDEBUG_TAILQ_INSERT_HEAD((head), (elm), field) \
369 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
370 (head) ->tqh_first->field.tqe_prev = \
371 &(elm)->field.tqe_next; \
372 else \
373 (head)->tgh_last = &(elm)->field.tqe_next; \
374 (head)->tqh_first = (elm); \
375 (elm)->field.tqe_prev = &(head)->tqh_first; \
376 } while (/*CONSTCOND*/0)

377

378 #define TAILQ_INSERT_TAIL(head, elm, field) do { \
379 QUEUEDEBUG_TAILQ_INSERT_TAIL((head), (elm), field) \
380 (elm)->field.tqe_next = NULL; \
381 (elm)->field.tqe_prev = (head)->tgh_last; \
382 *(head)->tqh_last = (elm); \
383 (head)->tqh_last = &(elm)->field.tqe_next; \
384 } while (/*CONSTCOND*/0)

385

386 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
387 QUEUEDEBUG_TAILQ_0P((listelm), field) \

388 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\

1.2. GENERAL DATA STRUCTURES IN KERNEL SUCH AS LIST, HASH, QUEUE, ...37

389 (elm)->field.tqe_next->field.tqe_prev = \
390 &(elm)->field.tqge_next; \
391 else \
392 (head)->tgh_last = &(elm)->field.tqe_next; \
393 (listelm)->field.tqge_next = (elm); \
394 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
395 } while (/*CONSTCOND*/0)

396

397 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
398 QUEUEDEBUG_TAILQ_0P((listelm), field) \
399 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
400 (elm)->field.tqge_next = (listelm); \
401 *(listelm)->field.tqe_prev = (elm); \
402 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
403 } while (/*CONSTCOND*/0)

404

405 #define TAILQ_REMOVE(head, elm, field) do { \
406 QUEUEDEBUG_TAILQ_PREREMOVE((head), (elm), field) \
407 QUEUEDEBUG_TAILQ_OP((elm), field) \
408 if (((elm)->field.tqe_next) != NULL) \
409 (elm)->field.tqe_next->field.tqe_prev = \
410 (elm)->field.tqge_prev; \
411 else \
412 (head)->tgh_last = (elm)->field.tqe_prev; \
413 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
414 QUEUEDEBUG_TAILQ_POSTREMOVE((elm), field); \
415 } while (/*CONSTCOND*/0)

416

417 /*

418 * Tail queue access methods.

419 =x/

420 #define TAILQ_EMPTY (head) ((head)->tgh_first == NULL)

421 #define TAILQ_FIRST(head) ((head)->tgh_first)

422 #define TAILQ_NEXT(elm, field) ((elm)->field.tqge_next)

423

424 #define TAILQ_LAST (head, headname) \

425 (*(((struct headname *) ((head)->tgh_last))->tgh_last))

426 #define TAILQ_PREV(elm, headname, field) \

427 (*(((struct headname *) ((elm)->field.tqe_prev))->tgh_last))

428

429 #define TAILQ_FOREACH(var, head, field) \
430 for ((var) = ((head)->tgh_first); \
431 (var); \
432 (var) = ((var)->field.tqe_next))

433

434 #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
435 for ((var) = (x(((struct headname *) ((head)->tqh_last))->tqh_last)); \
436 (var); \
437 (var) = (*(((struct headname *) ((var)->field.tqe_prev))->tgh_last)))

sys/queue.h

38 CHAPTER 1. WELCOME TO THE WORLD OF KERNEL !

1.2.3 Hash

The hash implementation in NerBSD kernel is so simple that it has only two func-
tions: hashinit, hashfree. Only just read the source code will be adequate de-
scription for how to use hash in kernel.

kern/kern_subr.c

314 /%

315 * General routine to allocate a hash table.

316 * Allocate enough memory to hold at least ‘elements’ list-head pointers.
317 * Return a pointer to the allocated space and set *hashmask to a pattern
318 * suitable for masking a value to use as an index into the returned array.
319 */

320 void =*

321 hashinit(elements, htype, mtype, mflags, hashmask)

322 u_int elements;

323 enum hashtype htype;

324 int mtype, mflags;

325 u_long *hashmask;

326 {

327 u_long hashsize, i;

328 LIST_HEAD(, generic) *hashtbl_list;

329 TAILQ_HEAD(, generic) *hashtbl_tailq;

330 size_t esize;

331 void *p;

332

333 if (elements == 0)

334 panic("hashinit: bad cnt");

335 for (hashsize = 1; hashsize < elements; hashsize <<= 1)
336 continue;

337

338 switch (htype) {

339 case HASH_LIST:

340 esize = sizeof (x*hashtbl_list);

341 break;

342 case HASH_TAILQ:

343 esize = sizeof (xhashtbl_tailq);

344 break;

345 #ifdef DIAGNOSTIC

346 default:

347 panic("hashinit: invalid table type");

348 #endif

349 }

350

351 if ((p = malloc(hashsize * esize, mtype, mflags)) == NULL)
352 return (NULL);

353

354 switch (htype) {

355 case HASH_LIST:

356 hashtbl_list = p;

357 for (i = 0; i < hashsize; i++)

358 LIST_INIT(&hashtbl_list[il);

359 break;

360 case HASH_TAILQ:

1.3. WAITING AND SLEEPING IN KERNEL 39

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

}

/%

hashtbl_tailq = p;
for (i = 0; i < hashsize; i++)
TAILQ_INIT(&hashtbl_tailql[il);
break;
}
*hashmask = hashsize - 1;
return (p);

* Free memory from hash table previosly allocated via hashinit().

*/

void

hashdone (hashtbl, mtype)

void *hashtbl;
int mtype;

free(hashtbl, mtype);

kern/kern_subr.c

1.3 Waiting and Sleeping in Kernel

1.4 Kernel Lock Manager

The lock functions provide synchronisation in the kernel by preventing multiple
threads from simultaneously executing critical sections of code accessing shared
data. A number of different locks are available:

1.4.1

simplelock and lock

struct simplelock

Provides a simple spinning mutex. A processor will busy-wait
while trying to acquire a simplelock. The simplelock operations
are implemented with machine-dependent locking primitives.

Simplelocks are usually used only by the high-level lock manager
and to protect short, critical sections of code. Simplelocks
are the only locks that can be be used inside an interrupt han-
dler. For a simplelock to be used in an interrupt handler, care
must be taken to disable the interrupt, acquire the lock, do any
processing, release the simplelock and re-enable the interrupt.
This procedure is necessary to avoid deadlock between the inter-
rupt handler and other threads executing on the same processor.

struct lock

Provides a high-level lock supporting sleeping/spinning until
the lock can be acquired. The lock manager supplies both exclu-
sive—-access and shared-access locks, with recursive exclusive-
access locks within a single thread. It also allows upgrading a
shared-access lock to an exclusive-access lock, as well as down-

40 CHAPTER 1. WELCOME TO THE WORLD OF KERNEL !

grading an exclusive-access lock to a shared-access lock.

If the kernel option LOCKDEBUG is enabled, additional facilities are pro-
vided to record additional lock information. These facilities are pro-
vided to assist in determining deadlock occurrences.

1.4.2 Simplelock Interfaces

simple_lock_init(slock)
The simplelock slock is initialised to the unlocked state. A
statically allocated simplelock also can be initialised with the
macro SIMPLELOCK_INITIALIZER. The effect is the same as the dy-
namic initialisation by a call to simple_lock_init. For exam-
ple,

struct simplelock slock = SIMPLELOCK_INITIALIZER;

simple_lock(slock)
The simplelock slock is locked. If the simplelock is held then
execution will spin until the simplelock is acquired. Care must
be taken that the calling thread does not already hold the sim-
plelock. In this case, the simplelock can never be acquired.
If kernel option LOCKDEBUG is enabled, a "locking against my-
self" panic will occur.

simple_lock_try(slock)
Try to acquire the simplelock slock without spinning. If the
simplelock is held by another thread then the return value is O.
If the simplelock was acquired successfully then the return val-
ue is 1.

simple_lock_unlock(slock)
The simplelock slock is unlocked. The simplelock must be locked
and the calling thread must be the one that last acquired the
simplelock. If the calling thread does not hold the simplelock,
the simplelock will be released but the kernel behaviour is un-
defined.

simple_lock_freecheck(start, end)
Check that all simplelocks in the address range start to end are
not held. If a simplelock within the range is found, the kernel
enters the debugger. This function is available only with ker-
nel option LOCKDEBUG. It provides a mechanism for basic simple-
lock consistency checks.

simple_lock_dump(void)
Dump the state of all simplelocks in the kernel. This function
is available only with kernel option LOCKDEBUG.

1.4.3 Lock Interfaces

lockinit(lock, prio, wmesg, timo, flags)
The lock lock is initialised according to the parameters provid-
ed. Arguments are as follows:

1.4. KERNEL LOCK MANAGER 41

lock

prio

wmesg

timo

flags

The lock.

The thread priority when it is woken up after sleeping
on the lock.

A sleep message used when a thread goes to sleep wait-
ing for the lock, so that the exact reason it is sleep-
ing can easily be identified.

The maximum sleep time. Used by tsleep(9).

Flags to specify the lock behaviour permanently over
the lifetime of the lock. Valid lock flags are:

LK_NOWAIT
Threads should not sleep when attempting to
acquire the lock.

LK_SLEEPFAIL
Threads should sleep, then return failure when
acquiring the lock.

LK_CANRECURSE
Threads can acquire the lock recursively.

lockmgr(lock, flags, slock)
Set, change or release a lock according to the parameters pro-

vided.

lock

slock

flags

Arguments are as follows:
The lock.

Simplelock interlock. If the flag LK_INTERLOCK is set
in flags, slock is a simplelock held by the caller.
When the lock lock is acquired, the simplelock is re-
leased. If the flag LK_INTERLOCK is not set, slock is
ignored.

Flags to specify the lock request type. In addition to
the flags specified above, the following flags are
valid:

LK_SHARED
Get one of many possible shared-access locks.
If a thread holding an exclusive-access lock
requests a shared-access lock, the exclusive-
access lock is downgraded to a shared-access
lock.

LK_EXCLUSIVE
Stop further shared-access locks, when they
are cleared, grant a pending upgrade if it ex-
ists, then grant an exclusive-access lock.
Only one exclusive-access lock may exist at a

42

CHAPTER 1. WELCOME TO THE WORLD OF KERNEL !

time, except that a thread holding an exclu-
sive—access lock may get additional exclusive-
access locks if it explicitly sets the LK_CAN-
RECURSE flag in the lock request, or if the
LK_CANRECURSE flag was set when the lock was
initialised.

LK_UPGRADE

The thread must hold a shared-access lock that
it wants to have upgraded to an exclusive-ac-
cess lock. Other threads may get exclusive
access to the protected resource between the
time that the upgrade is requested and the
time that it is granted.

LK_EXCLUPGRADE

The thread must hold a shared-access lock that
it wants to have upgraded to an exclusive-ac-
cess lock. If the request succeeds, no other
threads will have acquired exclusive access to
the protected resource between the time that
the upgrade is requested and the time that it
is granted. However, if another thread has
already requested an upgrade, the request will
fail.

LK_DOWNGRADE

The thread must hold an exclusive-access lock
that it wants to have downgraded to a shared-
access lock. If the thread holds multiple
(recursive) exclusive-access locks, they will
all be downgraded to shared-access locks.

LK_RELEASE

LK_DRAIN

Release one instance of a lock.

Wait for all activity on the lock to end, then
mark it decommissioned. This feature is used

before freeing a lock that is part of a piece

of memory that is about to be freed.

LK_REENABLE

Lock is to be re-enabled after drain. The
LK_REENABLE flag may be set only at the re-
lease of a lock obtained by a drain.

LK_SETRECURSE

Other locks while we have it OK.

LK_RECURSEFAIL

LK_SPIN

Attempt at recursive lock fails.

Lock spins instead of sleeping.

1.5. KERNEL MEMORY ALLOCATION 43

LK_INTERLOCK
Unlock the simplelock slock when the lock is

acquired.

lockstatus (lock)
Determine the status of lock lock. Returns LK_EXCLUSIVE or

LK_SHARED for exclusive-access and shared-access locks respec-
tively.

lockmgr_printinfo(lock)
Print out information about state of lock lock.

spinlockinit(lock, wmesg, flags)
The lock lock is initialised as a spinlock according to the pa-
rameters provided. Arguments are as follows:

lock The lock.

wmesg This is a simple name for lock.
flags Flags to specify the lock behaviour. Valid lock flags
are the same as outlined above.

spinlockmgr (lock, flags, slock)
Set, change or release a lock according to the parameters pro-
vided. Arguments are as follows:

lock The spin lock.

flags Flags to specify the lock request type. Valid lock
flags are the same as outlined above.

slock Simplelock interlock. The simplelock slock is set by
the caller. When the lock lock is acquired, the sim-
plelock is released.

1.5 Kernel Memory Allocation

1.6 Resource Pool Manager

Before describing virtual filesystem initialization, there needs to be brief mention of
resource-pool manager which is used as base library in implementating (1) names
pathname buffers, (2) vnode management data structures, (3) file structures, (4)
current working directory structures, (5) file descriptor structures, and so forth.

resource-pool manager is implemented in kern/subr_pool.c. Instead of in-
vestigating details of this code, we present the API of pool allocator defined in
sys/pool.h to minimize the basic knowledge to access to the essentials of fast
filesystem code.

Theses utility routines provide management of pools of fixed-sized areas of mem-
ory. Resource pool set aside an amount of memory for exclusive use by the resource
pool owner.

44

CHAPTER 1. WELCOME TO THE WORLD OF KERNEL !

1.6.1 Design of Resource-Pool Manager

Memory is allocated in pages which are split into pieces according to the pool item
size. Each page is kept on a list headed by ‘pr_pagelist* in the pool structure. The
individual pool items are on a linked list headed by ‘ph_itemlist‘ in each page header.

208
209
210
211
212
213
214
215
216
217
218

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

void

void

void

void
void
int

int

void
void
void
void

/*

sys/pool.h

pool_init(struct pool *, size_t, u_int, u_int,
int, const char *, struct pool_allocator *);
pool_destroy(struct pool *);

pool_set_drain_hook(struct pool *,
void (%) (void *, int), void *);

*xpool_get (struct pool *, int);
pool_put(struct pool *, void *);
pool_reclaim(struct pool *);

pool_prime(struct pool *, int);

pool_setlowat (struct pool *, int);

pool_sethiwat (struct pool *, int);

pool_sethardlimit (struct pool *, int, const char *, int);
pool_drain(void *);

* Debugging and diagnostic aides.

*/
void
void

int

/%

pool_print(struct pool *, const char *);

pool_printit(struct pool *, const char *,
void (*) (const char *, ...));

pool_chk(struct pool *, const char *);

* Pool cache routines.

*/

void

void
void
void
void
void

pool_cache_init(struct pool_cache *, struct pool x*,

int (*ctor) (void *, void *, int),

void (*dtor) (void *, void *),

void *);
pool_cache_destroy(struct pool_cache *);
*xpool_cache_get (struct pool_cache *, int);
pool_cache_put(struct pool_cache *, void *);
pool_cache_destruct_object(struct pool_cache *, void *);
pool_cache_invalidate(struct pool_cache *);

sys/pool.h

1.6.2 Initializing a pool

The pool_init function declared in line 208 initializes a resource pool. This
function allow other kernel parts to declare static pools that must be initialized
before malloc kernel function is available.

The arguments are, in order,

1.6. RESOURCE POOL MANAGER 45

struct pool *pp is the handle identifying the pool resource instance
size_t size specifies the size of the memory items managed by the pool

u-int align specifies the memory address alignment of the items re-
turned by pool_get function. This argument must be a power
of two. If zero, the alignment defaults to a architecture specific
natural alignment.

u-int ioff

int flags

const char *wchan set the wait channel passed on to tsleep function,
a kernel function similar to sleep in C library, if pool_get must

wait for items to be returned to the pool. If you run top program,
you may see this string in the state field.

struct pool_allocator *palloc is called to add additional memory if
the pool is depleted.

1.6.3 Destroying a Pool

pool_destroy function declared in line 210 destroys a resource pool. It takes a
single argument identifying the pool resource instance.

1.6.4 Allocating Items from a Pool

pool_get function allocates an item from the pool and returns a pointer to it. The
arguments are, in order,

struct pool *pp is the handle identifying the pool resource instance

int flags defines behavior in case the pooled resources are depleted. If
no resources are available and PR_WAITOK is given, this function will
wait until items are returned to the pool. If both PR_.LIMITFAIL
and PR_WAITOK is specified, and the pool has reached its hard limit,
pool_get function will return NULL without waiting, allowing the
caller to do its own garbage collection.

1.6.5 Returning Items to a Pool

pool_put function declared in line 216 returns the pool item to the resource pool.
If the number of available items in the pool exceeds the maximum pool size set by
pool_sethiwat function and there are no outstanding requests for pool items, the
excess items will be returned to the system.

The arguments are, in order,

struct pool *pp is the handle identifying the pool resource instance.

void *item is a pointer to a pool item previously obtained by pool_get
function.

1.6.6 Using Cache to Speed Up

Pool caches provide a way for constructed objects to be cached. This can lead
to performance improvements by avoiding needless object construction/destruction
that is deferred until absolutely necessary.

Caches are grouped into cache groups. Each cache group references up to 16
constructed objects. The pool cache is initialized by pool_cache_init function.

46 CHAPTER 1. WELCOME TO THE WORLD OF KERNEL !

When a cache allocates an object from the pool, it calls the object’s constructor
and places it into a cache group. When a cache group frees an object back to
the pool, it first calls the object’s destructor. This allows the object to persist in
constructed form while freed to the cache.

Though pool_cache is initialized by virtual filesystem, it is not used.

1.6.7 Other Resource-Pool Manager API

There are some resource-pool manager API that is not described such as pool prime,
pool_sethiwat, pool_setlowat, pool_set_drain hook, pool_reclaim, pool_drain,
pool_sethardlimit, and so forth.

Although this API is designed and implemented by the resource-pool manager
designer, it is not used in filesystem code.

Chapter 2

I/O System

2.1 I/0 Mapping from User to Device
There are four main kinds of I/O in 4.4BSD.

o filesystem
e character-device interface
e block-device interface

e socket interface

The character device interface provides unstructured access to the underlying
hardware, whereas the block device provides structured acess to the underlying
hardware.

All I/O executed by block-device interface is done to or from I/O buffers that
resides in the kernel’s address space, the buffer cache. This approach requires at
least one memory-to-memory copy operation to satisfy a user request.

For character-device interface, I/O operations do not go through the buffer
cache; instead, they are made directly between the device and buffers in the appli-
cation’s virtual address space.

2.1.1 Device Drivers
A device driver is divided into three main sections:
1. Autoconfiguration and initialization routines
2. The top half: routines for servicing I/O requests

3. The bottom half: interrupt service routines

2.1.2 I/0 Queueing

Queue Processing Procedure

The I/O queues are the primary means of communication bewteen the top and
bottom halves of a device dirver. When an input or output request is received by
the top half of the driver,

1. it is recorded in a data structure that is placed on per-device queue for pro-
cessing.

47

48 CHAPTER 2. 1/O SYSTEM

2. When an input or output operation completes, the device dirver receives an
interrupt from the controller.

3. The interrupt service routine removes the appropriate request from the de-
vice’s queue,

4. notifies the requester that the command has completed, and then

5. starts the next request from the queue.

Maintaing Queue Consistency

Because I/0O queues are shared among asynchronous routines, access to the queues
must be synchronized. Routine that make up the top half of a device driver must
raise the processor priority level using splbio(), spltty(), etc. to prevent the
bottom half from being entered as a result of an interrupt while a top-half routine
is manipulating an I/O queue.

2.1.3 Interrupt Handling

The system arranges for the unit-number parameter to be passed to the interrupt
service routine for each device by installing the address of an auxiliary glue routine
in the interrupt-vector table. This glue routine, rather than the actual interrupt
service routine, is invoked to service the interrupt.

2.2 Block Devices

The task of the block-device interface is to convert from the user abstraction of
a disk as an array of bytes to the structure imposed by the underlying physical
medium. This operation of converting random access to an array of bytes to reads
and writes of disk serctors is known as block I/0.

2.2.1 Entry Points for Block-Device Drivers

open commonly verify the integrity of the associated medium. open entry point
will be called for each open or mount system call on a block special device file.

strategy start a read or write operation, and return immediately. Block I/0
routines such as bread or bwrite routines call the device’s strategy routine
to read or write data not in the buffer cache. If the request is synchronous,
the caller must sleep until I/O completes.

close Disk devices have nothing to do when a device is closed.
dump write all physical memory to the device.

psize returns the size of a disk-drive partition. This entry point is used during the
bootstrap procedure to calculate the location at which a crash dump should
be placed and to determine the sizes of the swap devices.

2.2.2 Disk Labels
What is in it ?

Disk label contains the information about the geometry of the disk and about the
layout of he partitions.

2.3. CHARACTER DEVICES 49

How is it used ?

When the machine is powered up or the reset button is pressed, the CPU executes
the hardware bootstrap code from the ROM. The hardware bootstrap code typically
reads the first few sectors on the disk into the main memory, then branches to the
address of the first location that it read. The program stored in these first few
sectors is the second-level bootstrap. Having the disk label stored in the part of the
disk read as part of the hardware bootstrap allows the second-level bootstrap to
have the disk-label information. This information gives it the ability to find the
root filesystem and hence the files, such as kernel, needed to bring up 4.4BSD.

Format of Disk Label

The size and location of the second-level bootstrap are dependent on the require-
ments of the hardware bootstrap code. Since there is no standard for disk-label for-
mats and the hardware bootstrap code usually understands only the vendor lavel,
it is often necessary to support both the vendor and the 4.4BSD disk labels. Here,
the vendor label must be placed where the hardware bootstrap ROM code expects
it; the 4.4BSD label must be placed out of the way of the vendor label but within
the are that is read in by the hardware bootstrap code, so that it will be available
to the second-level bootstrap.

2.3 Character Devices

A character device ususally maps the hardware interface into a byte stream. The
character interface for disks and tapes is also called the raw device interface. Its
primary task is to arrange for direct I/O to and from the device. It also handles the
asynchronous nature of I/O by maintaing and ordering an active queue of pending
transfers.

2.3.1 Raw Devices and Physical I/0

Most raw devices differ from block devices only in the way that they do I/0.
Whereas block devices read and write to and from the system buffer cache, raw
device bypasses the buffer cache. This eliminates the memory-to-memory copy, but
denies the benefits of data caching. To preserve consistency between data in the
buffer cache and data written directly to the device via character-device interface,
the raw device should be used only when the block device is idle.

Buffers for Character-Device Interface

Because raw devices bypass the buffer cache, they are responsible for managing their
own buffer structures. The read and write entry points for raw device driver uses
physio function to start a raw I/O operatin. The strategy funtion manages buffers
to map the user data buffer. This buffer is completely different and separated from
buffer cache used by block-device driver.

The strategy function of kern/kern physio.c is shown below. You may un-
derstand details after you read chapters about UVM and buffer cache. Now, just
see the algorithm described in comments !

kern/kern_physio.c

69 /*
70 * Do "physical I/0" on behalf of a user. "Physical I/0" is I/0 directly
71 * from the raw device to user buffers, and bypasses the buffer cache.

CHAPTER 2. 1/O SYSTEM

72
73 * Comments in brackets are from Leffler, et al.’s pseudo-code implementation.
74 %/

75 int

76 physio(strategy, bp, dev, flags, minphys, uio)

77 void (*strategy) __P((struct buf *));

78 struct buf *bp;

79 dev_t dev;

80 int flags;

81 void (*minphys) __P((struct buf *));

82 struct uio *uio;

83 {

84 struct iovec *iovp;

85 struct proc *p = curproc;

86 int error, done, i, nobuf, s;

87 long todo;

88

89 error = 0;

90 flags &= B_READ | B_WRITE;

91

92 /* Make sure we have a buffer, creating one if necessary. */
93 if ((nobuf = (bp == NULL)) !'= 0) {

94

95 bp = getphysbuf) ;

96 /* bp was just malloc’d so can’t already be busy */
97 bp->b_flags |= B_BUSY;

98

99 } else {

100

101 /* [raise the processor priority level to splbio;] */
102 s = splbio();

103

104 /* [while the buffer is marked busy] */

105 while (bp->b_flags & B_BUSY) {

106 /* [mark the buffer wanted] */

107 bp->b_flags |= B_WANTED;

108 /* [wait until the buffer is available] */
109 tsleep((caddr_t)bp, PRIBIO+1, "physbuf", 0);
110 b

111

112 /* Mark it busy, so nobody else will use it. */
113 bp->b_flags |= B_BUSY;

114

115 /* [lower the priority level] */

116 splx(s);

117 I

118

119 /* [set up the fixed part of the buffer for a transfer] */
120 bp->b_dev = dev;

121 bp—>b_error = 0;

122 bp—>b_proc = p;

123 LIST_INIT(&bp->b_dep);

124

125 /*

2.3. CHARACTER DEVICES 51

126 * [while there are data to transfer and no I/0 error]

127 * Note that I/O errors are handled with a ’goto’ at the bottom
128 * of the ’while’ loop.

129 */

130 for (i = 0; i < uio->uio_iovent; i++) {

131 iovp = &uio->uio_iov[i];

132 while (iovp->iov_len > 0) {

133

134 /%

135 * [mark the buffer busy for physical I/0]

136 * (i.e. set B_PHYS (because it’s an I/0 to user
137 * memory, and B_RAW, because B_RAW is to be

138 * "Set by physio for raw transfers.", in addition
139 * to the "busy" and read/write flag.)

140 */

141 bp->b_flags = B_BUSY | B_PHYS | B_RAW | flags;
142

143 /* [set up the buffer for a maximum-sized transfer] x*/
144 bp->b_blkno = btodb(uio->uio_offset);

145 bp->b_bcount = iovp->iov_len;

146 bp—->b_data = iovp->iov_base;

147

148 /*

149 * [call minphys to bound the transfer size]

150 * and remember the amount of data to transfer,
151 * for later comparison.

152 */

153 (*minphys) (bp) ;

154 todo = bp->b_bcount;

155 #ifdef DIAGNOSTIC

156 if (todo <= 0)

157 panic("todo(%1ld) <= O; minphys broken", todo);
158 if (todo > MAXPHYS)

159 panic("todo(%1d) > MAXPHYS; minphys broken",
160 todo) ;

161 #endif

162

163 /*

164 * [lock the part of the user address space involved
165 * in the transfer]

166 * Beware vmapbuf(); it clobbers b_data and

167 * saves it in b_saveaddr. However, vunmapbuf ()
168 * restores it.

169 */

170 PHOLD (p) ;

171 error = uvm_vslock(p, bp->b_data, todo,

172 (flags & B_READ) 7

173 VM_PROT_WRITE : VM_PROT_READ);
174 if (error) {

175 bp->b_flags |= B_ERROR;

176 bp->b_error = error;

177 goto after_vsunlock;

178 }

179 vmapbuf (bp, todo);

52

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

after_vsunlock:

CHAPTER 2. 1/O SYSTEM

/* [call strategy to start the transfer] */
(*strategy) (bp);

/*

Note that the raise/wait/lower/get error
steps below would be done by biowait(), but
we want to unlock the address space before
we lower the priority.

* ¥ X ¥ ¥ %

[raise the priority level to splbio]
*/
s = splbio();

/* [wait for the transfer to complete] */
while ((bp->b_flags & B_DONE) == 0)
tsleep((caddr_t) bp, PRIBIO + 1, "physio", 0);

/* Mark it busy again, so nobody else will use it. */
bp->b_flags |= B_BUSY;

/* [lower the priority level] =/
splx(s);

/*
* [unlock the part of the address space previously
* locked]
*/

vunmapbuf (bp, todo);

uvm_vsunlock(p, bp->b_data, todo);

PRELE(p) ;
/* remember error value (save a splbio/splx pair) */

if (bp->b_flags & B_ERROR)
error = (bp->b_error ? bp->b_error : EIO);

/%

* [deduct the transfer size from the total number
* of data to transfer]

*/

done = bp->b_bcount - bp->b_resid;
KASSERT (done >= 0);
KASSERT (done <= todo);

iovp->iov_len -= done;

iovp->iov_base = (caddr_t)iovp->iov_base + done;
uio->uio_offset += done;

uio->uio_resid -= done;

/%
* Now, check for an error.
* Also, handle weird end-of-disk semantics.

*/

2.3. CHARACTER DEVICES 53

234 if (error || done < todo)

235 goto done;

236 b

237 b

238

239 done:

240 /*

241 * [clean up the state of the buffer]

242 * Remember if somebody wants it, so we can wake them up below.
243 * Also, if we had to steal it, give it back.
244 */

245 s = splbio();

246 bp->b_flags &= ~(B_BUSY | B_PHYS | B_RAW);

247 if (nobuf)

248 putphysbuf (bp) ;

249 else {

250 /*

251 x [if another process is waiting for the raw I/0 buffer,
252 * wake up processes waiting to do physical I/0;
253 */

254 if (bp->b_flags & B_WANTED) {

255 bp->b_flags &= “B_WANTED;

256 wakeup (bp) ;

257 b

258 b

259 splx(s);

260

261 return (error);

262 }

263

264 /x*

265 * allocate a buffer structure for use in physical I/0.
266 */

267 struct buf *

268 getphysbuf ()

269 {

270 struct buf *bp;

271 int s;

272

273 s = splbio();

274 bp = pool_get (&bufpool, PR_WAITOK) ;
275 splx(s);

276 memset (bp, 0, sizeof (*bp));

277 return(bp) ;

278 }

279

280 /x*

281 * get rid of a swap buffer structure which has been used in physical I/0.
282 x/

283 void

284 putphysbuf (bp)

285 struct buf *bp;

286 {

287 int s;

54 CHAPTER 2. 1/O SYSTEM

288

289 if (__predict_false(bp->b_flags & B_WANTED))

290 panic("putphysbuf: private buf B_WANTED");
291 s = splbio();

292 pool_put (&bufpool, bp);

293 splx(s);

294 }

295

296 /x*

297 x Leffler, et al., says on p. 231:

298 * "The minphys() routine is called by physio() to adjust the
299 * size of each I/0 transfer before the latter is passed to
300 * the strategy routine..."

301 =

302 * so, just adjust the buffer’s count accounting to MAXPHYS here,
303 * and return the new count;

304 */

305 void

306 minphys (bp)

307 struct buf *bp;

308 {

309

310 if (bp->b_bcount > MAXPHYS)

311 bp->b_bcount = MAXPHYS;

312 }

kern/kern_physio.c

2.3.2 Entry Points for Character-Device Drivers
open
clode
ioctl

mmap Map a device offset into a memory address. This entry point is called by the
virtual-memory system to convert a logical mapping to a physical address.

read
reset
select
stop

write

2.4 Descriptor Management

2.4.1 File Descriptor, Descriptor Table, and File Entry

For user process, all I/O is done through file descriptors. System calls that refer to
open files take a file descriptor as an argument to specify the file. The file descriptor
is used by the kernel to index into the descriptor table for the current process to
locate a file entry.

2.4. DESCRIPTOR MANAGEMENT 55

2.4.2 What does the File Entry Points ?

File entry can point to vnode structure or socket.

vnode The file entry provides a file type and a pointer to an underlying
object for the descriptor. For data files, the file entry points to a
vnode structure.

Special files do not have data blocks allocated on the disk; they
are handled by the special-device filesystem that calls appropriate
drivers to haldle I/O for them.

The virtual-memory system supports the mapping of files into a
process’s address space. Here, the file descriptor must reference a
vnode that will be partially or completely mapped into the user’s
address space.

socket The file entry may also reference a socket. The Sockets have a
different file type, and the file entry points to a system block that
is used in doing interprocess communication.

2.4.3 Movement of Data Inside the Kernel: uiomove function

Within the kernel, I/O data are described by an array of vectors. Each I/O vector
or iovec has a base address and a length. The kernel maintains another structure,
called a uio structure. All I/O within the kernel is described with iovec and uio
structures. Movement of data is processed as following steps.

1.

System calls such as read and write that are not passed an iovec create a
uio to describe their arguemnts.

. The uio structure reaches the part of the kernel responsible for moving the

data to or from the process address space: the filesystem, the network, or a
device driver.

In general, these parts of the kernel arrange a kernel buffer to hold the data,
then use uiomove function to copy the data to or from the buffer or buffers
describved by the uio structure.

uiomove function is called with a pointer to kernel data area, a data count,
and a uio structure. As it moves data, it updates the counters and pointers
of the iovec and uio structures by a corresponding amount.

If the kernel buffer is not as large as the area described by the uio structure,
the uio structure will point to the part of the process address space just
beyond the location completed most recently. Thus, while servicing a request,
the kernel may call uiomove function multiple times, each time giving a pointer
to a new kernel buffer for the next block of data.

The source for the definition of iovec, uio structure is

sys/uio.h
54 struct iovec {
55 void *iov_base; /* Base address. */
56 size_t iov_len; /* Length. */
57 };
58

59 #if !defined(_POSIX_C_SOURCE) && !defined(_XOPEN_SOURCE)

56 CHAPTER 2. 1/O SYSTEM

60 #include <sys/ansi.h>

61

62 #ifndef off_t

63 typedef __off_t off_t; /% file offset */
64 #define off_t __off_t

65 #endif

66

67 enum uio_rw { UIO_READ, UIO_WRITE };

68

69 /* Segment flag values. */
70 enum uio_seg {

71 UIO_USERSPACE, /* from user data space */

72 UIO_SYSSPACE /* from system space */

73 };

74

75 struct uio {

76 struct iovec *uio_iov; /* pointer to array of iovecs */
77 int uio_iovcnt; /* number of iovecs in array */

78 off_t uio_offset; /* offset into file this uio corresponds to */
79 size_t wuio_resid; /* residual i/o count */

80 enum uio_seg uio_segflg; /* see above */

81 enum uio_rw uio_rw; /* see above */

82 struct proc *uio_procp;/* process if UIO_USERSPACE x*/
83 };

sys/uio.h

The source for uiomove function is

kern/kern_subr.c

140 int

141 uiomove(buf, n, uio)

142 void *buf;

143 size_t n;

144 struct uio *uio;

145 {

146 struct iovec *iov;

147 u_int cnt;

148 int error = 0;

149 char *cp = buf;

150 struct proc *p = uio->uio_procp;
151

152 #ifdef DIAGNOSTIC

153 if (uio->uio_rw '= UIO_READ && uio->uio_rw != UIO_WRITE)
154 panic("uiomove: mode") ;

155 #endif

156 while (n > 0 && uio->uio_resid) {
157 iov = uio->uio_iov;

158 cnt = iov->iov_len;

159 if (cnt == 0) {

160 uio—->uio_iov++;

161 uio—->uio_iovcnt——;

162 continue;

163 }

2.4. DESCRIPTOR MANAGEMENT o7

164 if (cnt > n)
165 cnt = n;
166 switch (uio->uio_segflg) {
167
168 case UIO_USERSPACE:
169 if (curproc->p_cpu->ci_schedstate.spc_flags &
170 SPCF_SHOULDYIELD)
171 preempt (NULL) ;
172 if (__predict_true(p == curproc)) {
173 if (uio->uio_rw == UIO_READ)
174 error = copyout(cp, iov->iov_base, cnt);
175 else
176 error = copyin(iov->iov_base, cp, cnt);
177 } else {
178 if (uio->uio_rw == UIO_READ)
179 error = copyout_proc(p, cp,
180 iov->iov_base, cnt);
181 else
182 error = copyin_proc(p, iov->iov_base,
183 cp, cnt);
184 }
185 if (error)
186 return (error);
187 break;
188
189 case UIO_SYSSPACE:
190 if (uio->uio_rw == UIO_READ)
191 error = kcopy(cp, iov->iov_base, cnt);
192 else
193 error = kcopy(iov->iov_base, cp, cnt);
194 if (error)
195 return (error);
196 break;
197 }
198 iov->iov_base = (caddr_t)iov->iov_base + cnt;
199 iov->iov_len -= cnt;
200 uio->uio_resid -= cnt;
201 uio—->uio_offset += cnt;
202 cp += cnt;
203 KDASSERT (cnt <= n);
204 n —-= cnt;
205 }
206 return (error);
207 }
kern /kern_subr.c
where
int

copyin(const void *uaddr, void *kaddr, size_t len);

Copies len bytes of data from the user-space address uaddr
to the kernel-space address kaddr.

58 CHAPTER 2. 1/O SYSTEM

int
copyout (const void *kaddr, void *uaddr, size_t len);

Copies len bytes of data from the kernel-space address
kaddr to the user-space address uaddr.

Character device drivers that do not copy data from the process generally do
not interpret the uio structure. Instead, there is one low-level kernel routine that
arranges a direct transfer to or from the address space of the process. Here, a
separate I/O operation is done for each iovec element.

Block device drivers does not use uio structures. User operations on block devies
are done through the buffer cache.

Chapter 3

Virtual File System

The virtual filesystem, VFS, is the kernel interface to filesystems. The interface
specifies the calls for the kernel to access filesystems. It also specifies the core
functionality that a filesystem must provide to the kernel. The focus of VF'S activity
is the wvnode and is discussed in the other chapter.

3.1 Architecture of Virtual File System
3.1.1 Why VFS is needed ?

In earlier BSD, the file entries directly referenced the local filesystem inode. An
inode is a data structure that describes the contents of a file. However, with the
advent of multiple filesystem types, the architecture had to be generalized. Thus, it
was easier and more logical to add a new layer to the system below the file entry and
above the inode. This new layer was first implemented by Sun Microsystems, which
called it the virtual-node, or vnode, later. A vnode used by a local filesystem would
refer to an inode. A vnode used by a remote filesystem would refer to a protocol
control block that described the location and naming information necessary to access
the remote file.

3.1.2 What Is in the Vnode ?

The vnode is an extensible object-oriented interface. It contains information that is
generically useful independent of the underlying filesystem object that it represents.
vnode structure is defined as,

sys/vnode.h

86 struct vnode {

87 struct uvm_object v_uobj; /* the VM object */
88 #define v_usecount v_uobj.uo_refs

89 #define v_interlock v_uobj.vmobjlock

90 voff_t v_size; /* size of file */
91 int v_flag; /* flags */
92 int v_numoutput; /* number of pending writes */
93 long v_writecount; /* reference count of writers */
94 long v_holdcnt; /* page & buffer references */
95 u_long v_id; /* capability identifier */
96 struct mount *v_mount ; /* ptr to vfs we are in */
97 int (x*v_op) __P((void *)); /* vnode operations vector x/

99

60

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

CHAPTER 3. VIRTUAL FILE SYSTEM

TAILQ_ENTRY(vnode) v_freelist;

LIST_ENTRY (vnode)
struct buflists
struct buflists
LIST_ENTRY (vnode)
union {

struct mount

v_mntvnodes;
v_cleanblkhd;
v_dirtyblkhd;
v_synclist;

*vu_mountedhere;

/*
/*
/*
/*
/*

/*

struct socket *vu_socket; /*
struct specinfo *vu_specinfo; /*
struct fifoinfo *vu_fifoinfo; /*
T v_un;
struct nqlease *v_lease; /*
enum vtype v_type; /%
enum vtagtype v_tag; /%
struct lock v_lock; /*
struct lock *v_vnlock; /*
void *xv_data; /%
struct klist v_klist; /*
#ifdef VERIFIED_EXEC
char fp_status; /*
#endif
}s;
#define v_mountedhere v_un.vu_mountedhere
#define v_socket v_un.vu_socket
#define v_specinfo v_un.vu_specinfo
#define v_fifoinfo v_un.vu_fifoinfo

vnode freelist

vnodes for mount point
clean blocklist head
dirty blocklist head
vnodes with dirty buffers

ptr to mounted vfs (VDIR)
unix ipc (VSOCK)

device (VCHR, VBLK)

fifo (VFIFO)

Soft reference to lease
vnode type

type of underlying data
lock for this vnode
pointer to lock

private data for fs
knotes attached to vnode

fingerprint status
(see below)

The information stored in a vnode includes the following:

sys/vnode.h

v_usecount is the number of file entries that are open for reading
and/or writing that reference the vnode.

v_numoutput is the number of buffer write operations in progress. To
speed the flushing of dirty data, the kernel does this operation by

doing asynchronous writes on all the dirty buffers at once.

For

local filesystem, this simultaneous push causes all the buffers to be
put into the disk queue, so that they can be sorted into an optimal
order to minimize seeking. System calls that return until the data
are on stable store, such as fsync system call, can sleep on the
count of pending output operations, waiting for the count to reach

Zero.

v_writecount is the number of file entries that are open for writing

that reference the vnode.

v_holdent is the number of pages and buffers that are associated with

the vnode.

v_mount describes the filesystem that contains the object represented

by the vnode.

v_op is a pointer to the set of vnode operations defined for the object.

v_freelist is a list linking together all the vnodes in the system that
are not being used actively. The free list is used when a filesystem

needs to allocate a new vnode.

*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/

3.1. ARCHITECTURE OF VIRTUAL FILE SYSTEM 61

v_mntvnodes is a list linking together all the vnodes associated with
a specific mount point. Thus, when sync system call is executed
for a filesystem, the kernel can traverse this list to visit all the files
active within that filesystem.

v_cleanblkhd is the header of vnode clean-buffer list. This list stores
all the buffers, about the vnode, that have not been modified, or
have been written back since they were last modified.

This list is used to free buffers when a file is deleted. Since the
file is never be read again, the kernel can immediately calcel any
pending I/O on its dirty buffers, and reclaim all its clean and dirty
buffers and place them at the head of the buffer free list, ready for
immediate reuse.

v_dirtyblkhd is the header of vnode dirty-buffer list. This list stores
all the buffers, about the vnode, that have been modified, but not
yet been written back.

v_un is a reference to state about special devices, sockets, and FIFOs.

v_lease is used with NFS. So you need not regard it if you are only
interested in local filesystem code.

v_type is the type of the underlying object such as regular file, di-
rectory, character device, and etc. This type information is not
strictly necessary, since a vnode client could always call a vnode
operation to get the type of the underlying object. However, be-
cause the type often is needed, the type of underlying objects does
not change, and it takes time to call through the vnode interface,
the object type is cached in the vnode.

This field has a value among VNON, VREG, VDIR, VBLK, VCHR,
VLNK, VSOCK, VFIFO, VBAD.

v_lock is used for locking the vnode.

v_data is a pointer to private information needed for the underlying
object. For the local filesystem, this pointer will reference an inode.

3.1.3 How to Call Vnode Operations ?

Kernel manipulates vnode by passing requests to the underlying object through a
set of defined operations.

As part of the booting process, each filesystem registers the set of vnode opera-
tions that is able to support. The kernel then builds a table that lists the union of
all operations supported by any filesystem.

Supported operations are filled in with the entry point registered by the filesys-
tem. Filesystems amy opt to have unsupported operations filled in with either a
default routine, or a routine that returns the characteristic error.

When a filesystem is mounted on a directory, the previous contents of the direc-
tory are hidden; only the contents of the root of the newly mounted filesystem are
visible. The mount command pushes a new layer onto a vnode stack; an unmount
command removes a layer.

When a file access such as open, read, stat, or close occurs to a vnode in the
stack, that vnode has several options as

e Do the requested operation and resutn a result

e Pass the operation without change to the next-lower vnode on the satck.

62 CHAPTER 3. VIRTUAL FILE SYSTEM

e Modify the operations provided with the request, then pass it to the next-lower
vnode. When the operation returns from the lower vnode, it may modify the
results, or simply return them.

If an operation is passed to the bottom of the stack without any layer taking
action on it, then the interface will return the error ”operation not supported.”

To make pass-operation efficient, the kernel places the vnode operation name
and its arguments into an argument structure. This structure is then passed as a
single parameter to the vnode operation. Thus all call on a vnode operation will
always have exactly one parameter, which is the pointer to the argument structure.

Let’s see how this design policy is implemented in NetBSD. When user level
write system call is executed, kernel executes vn_write function of kern/vfs_syscalls.c
as we have read in the previous chapter. The code of vn_write function is again
listed here for easy reference.

kern/vfs_init.c

526 /*
527 * File table vnode write routine.
528 x/

529 static int
530 vn_write(fp, offset, uio, cred, flags)

531 struct file *fp;

532 off_t *xoffset;

533 struct uio *uio;

534 struct ucred *cred;

535 int flags;

536 {

537 struct vnode *vp = (struct vnode *)fp->f_data;
538 int count, error, ioflag = IO_UNIT;

539

540 if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
541 ioflag |= IO_APPEND;

542 if (fp->f_flag & FNONBLOCK)

543 ioflag |= IO_NDELAY;

544 if (fp->f_flag & FFSYNC ||

545 (vp—>v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
546 ioflag |= I0O_SYNC;

547 else if (fp->f_flag & FDSYNC)

548 ioflag |= IO_DSYNC;

549 if (fp->f_flag & FALTIO)

550 ioflag |= IO_ALTSEMANTICS;

551 VOP_LEASE(vp, uio->uio_procp, cred, LEASE_WRITE);
552 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);

553 uio—>uio_offset = *offset;

554 count = uio->uio_resid;

555 error = VOP_WRITE(vp, uio, ioflag, cred);

556 if (flags & FOF_UPDATE_OFFSET) {

557 if (ioflag & IO_APPEND)

558 *xoffset = uio->uio_offset;

559 else

560 xoffset += count - uio->uio_resid;
561 }

562 VOP_UNLOCK (vp, 0);

563 return (error);

3.1. ARCHITECTURE OF VIRTUAL FILE SYSTEM 63

564 }

kern/vfs_init.c

The second virtual file system operation in this function is VOP_WRITE.

VOP_WRITE(vp, uio, ioflag, cred) write to a file. The argument vp
is the vnode of the file to write to, uio is the location of the data
to write, ioflag is a set of flags and cred are the credentials of the
calling process.

The ioflag argument is used to give directives and hints to the
file system. The low 16 bits are a bit mask which can contain the
same flags as VOP_READ().

Zero is returned on success, otherwise an error is returned. The
vnode should be locked on entry and remains locked on exit.

This function is defined in kern/vnode_if.c ans kern/vnode_if.h twice ! In one
way, it is defined as an inline function, equivalent to macro. And the other way,
it is defined as a general function. Loadable Kernel Module (LKM) used general
function, and normal kernel uses a fast inline function. The code list shown below
is inline function version.

sys/vnode_f.h

374 static __inline int VOP_WRITE(vp, uio, ioflag, cred)

375 struct vnode *vp;

376 struct uio *uio;

377 int ioflag;

378 struct ucred *cred;

379 {

380 struct vop_write_args a;

381 a.a_desc = VDESC(vop_write);
382 a.a_vp = vp;

383 a.a_uio = uio;

384 a.a_ioflag = ioflag;

385 a.a_cred = cred;

386 return (VCALL(vp, VOFFSET(vop_write), &a));
387 }

sys/vnode_f.h

VCALL and VOFFSET macros are defined as,

sys/cdefs.h

469 /x*

470 * VOCALL calls an op given an ops vector. We break it out because BSD’s
471 * vclean changes the ops vector and then wants to call ops with the old
472 * vector.

473 */

474 /*

475 * actually, vclean doesn’t use it anymore, but nfs does,

476 * for device specials and fifos.

477 */

478 #define VOCALL(OPSV,OFF,AP) ((*((OPSV) [(OFF)]1)) (AP))

479

64

480
481
482
483
484
485

CHAPTER 3. VIRTUAL FILE SYSTEM

/*
* This call works for vnodes in the kernel.
*/
#define VCALL(VP,O0FF,AP) VOCALL((VP)->v_op, (OFF), (AP))
#define VDESC(OP) (& __CONCAT(OP, _desc))
#define VOFFSET(0OP) (VDESC(OP)->vdesc_offset)

sys/cdefs.h

VOFFSET macro used in line 1476 of sys/vnode_if.h is expanded as

Therefore

VOFFSET (vop_write)
--> (VDESC(vop_write)->vdesc_offset)
-—> ((& __CONCAT(vop_write))->vdesc_offset,_desc)
--> (vop_write_desc->vdesc_offset)

VCALL macro used in line 1476 is expanded as,

VCALL(vp, VOFFSET(vop_write), &a))
--> VCALL(vp, vop_write_desc->vdesc_offset, &a)
--> VOCALL((vp)->v_op, (vop_write_desc->vdesc_offset), (&a))
-=> (C *(((vp)->v_op) [((vop_write_desc->vdesc_offset))])) (&a))

Thus line 1476 is equivalent to

1476

<====>

return (VCALL(vp, VOFFSET(vop_write), &a));

return (*((vp->v_op) [vop_write_desc->vdesc_offset])) (&a)

| +——— + |

vop_write_desc is defined in kern/vnode_if.c as,

109
110
111
112
113
114
115
116
117
118
119

kern/vnode_if.h

const struct vnodeop_desc vop_bwrite_desc = {
2,
"vop_bwrite",
0,
vop_bwrite_vp_offsets,
VDESC_NO_QOFFSET,
VDESC_NO_QOFFSET,
VDESC_NO_QOFFSET,
VDESC_NO_QOFFSET,
NULL,

3

kern/vnode_f.h

where the struct vnodeop.desc is defined in sys/vnode.h as,

sys/vnode.h

)

3.2. VIRTUAL FILESYSTEM INITIALIZATION 65

389 /x

390 * This structure describes the vnode operation taking place.

391 */

392 struct vnodeop_desc {

393 int vdesc_offset; /* offset in vector--first for speed */
394 const char *vdesc_name; /* a readable name for debugging */
395 int vdesc_flags; /* VDESC_x* flags */

396

397 /*

398 * These ops are used by bypass routines to map and locate arguments.
399 * Creds and procs are not needed in bypass routines, but sometimes
400 * they are useful to (for example) transport layers.

401 * Nameidata is useful because it has a cred in it.

402 */

403 const int xvdesc_vp_offsets; /* list ended by VDESC_NO_OFFSET */
404 int vdesc_vpp_offset; /* return vpp location */
405 int vdesc_cred_offset; /* cred location, if any */
406 int vdesc_proc_offset; /* proc location, if any */
407 int vdesc_componentname_offset; /* if any */

408 /*

409 * Finally, we’ve got a list of private data (about each operation)
410 * for each transport layer. (Support to manage this list is not

411 * yet part of BSD.)

412 */

413 caddr_t *vdesc_transports;

414 };

sys/vnode.h
Therefore line 1476 is equivalent to

==== return (*((vp->v_op) [vop_lease_desc->vdesc_offset])) (&a);
==== return (*((vp->v_op) [2])) (&a);
<==== return ffs_write (&a);

In the next section, we will explain how the vp->v_op pointer is initialized.

3.2 Virtual Filesystem Initialization

Virtual filesystem initialization is initiated in main function of kern/init main.c
which is practically the first function executed after machine bootstrap. At there,
visinit function of kern/vfs_init.c is called.

That function calls vfsinit function of kern/vfs_init.c

kern/vfs_init.c

320 /*

321 * Initialize the vnode structures and initialize each file system type.
322 */

323 void

324 vfsinit()

325 {

326 extern struct vfsops * const vfs_list_initiall];

327 int i;

328

66 CHAPTER 3. VIRTUAL FILE SYSTEM

329 /*

330 * Initialize the namei pathname buffer pool and cache.
331 */

332 pool_init (&pnbuf_pool, MAXPATHLEN, O, O, O, "pnbufpl",
333 &pool_allocator_nointr);

334 pool_cache_init (&pnbuf_cache, &pnbuf_pool, NULL, NULL, NULL);
335

336 /*

337 * Initialize the vnode table

338 */

339 vntblinit () ;

340

341 /*

342 * Initialize the vnode name cache

343 */

344 nchinit();

345

346 #ifdef DEBUG

347 /*

348 * Check the list of vnode operations.

349 */

350 vis_op_check();

351 #endif

352

353 /*

354 * Initialize the special vnode operations.

355 */

356 vis_opv_init(vfs_special_vnodeopv_descs);

357

358 /*

359 * Establish each file system which was statically
360 * included in the kernel.

361 */

362 vattr_null (&va_null);

363 for (i = 0; vfs_list_initial[i] !'= NULL; i++) {

364 if (vfs_attach(vfs_list_initialli])) {

365 printf ("multiple ‘Js’ file systems",
366 vfs_list_initial[i]->vfs_name);
367 panic("vfsinit");

368 }

369 }

370 }

kern/vfs_init.c

Now, we describes each portion of vfsinit function with related source codes.

3.2.1 Initializing the namei pathname buffer pool

At line 332, vfsinit function initializes the namei pathname buffer pool. MAXPATHLEN
specifies the size of the memory items managed by the pool and is defined to 1024 at
sys/param.h and sys/syslimits.h. The next three zero parameter means there

is no alignment constraint in initializing pool and logging facility is not used. When
the top program executes, we will see ”pnbufpl” in the state field when kernel is
waiting for allocation of item for pool.

3.2. VIRTUAL FILESYSTEM INITIALIZATION 67

At line 334, vfsinit function initializes the pool cache for namei pathname
buffer pool. This cache, however, is not used anywhere; It is only executed here,
but it may be useful for future release of NetBSD operating system.

3.2.2 Initializing the vnode table

Vnode table is initialized by calling vatblinit function, at line 339 of vfs_subr.c.

kern/vfs_subr.c

190 void

191 vntblinit()

192 {

193

194 pool_init (&vnode_pool, sizeof (struct vnode), 0, 0, O, "vnodepl",
195 &pool_allocator_nointr);

196

197 /*

198 * Initialize the filesystem syncer.
199 */

200 vn_initialize_syncerd();

201 }

kern/vfs_subr.c

Just the same way as namei buffer cache pool is initialized, at line 194 of
vis_subr.c, pool for vnode management data structures is initialized.
At line 200, vn_initialize_syncerd function calls filesystem syncer that flushes
cached data to disk at regular intervals.
Surpringly, filesystem syncer daemon uses a special kind of virtual filesystem
called as syncfs filesystem ! Syncfs virtual filesystem is implemented in miscfs/syncfs
directory. When a filesystem is mounted, syncfs is installed, as a virtual filesystem
layer, on top of the filesystem by creating a new filesystem syncer vnode for the spec-
ified mount point by calling vfs_allocate_syncvnode function of miscfs/syncfs/sync vnops.c.
Source code of vn_initialize_syncerd function is

miscfs/syncfs_subr.c

70 void

71 vn_initialize_syncerd()

72 {

73 int i;

74

75 syncer_last = SYNCER_MAXDELAY + 2;

76

77 syncer_workitem_pending = malloc(
syncer_last * sizeof (struct synclist),

78 M_VNODE, M_WAITOK);

79

80 for (i = 0; i < syncer_last; i++)

81 LIST_INIT(&syncer_workitem_pending[i]);

82

83 lockinit (&syncer_lock, PVFS, "synclk", 0, 0);

84 }

miscfs/syncfs_subr.c

68 CHAPTER 3. VIRTUAL FILE SYSTEM

line 75 SYNCER_MAXDELAY is maximum delay interval between syncer daemon works
and it is defined to 32 seconds by default.

3.2.3 Initializing the Name Cache Buffer

kern/vfs_cache.c

401 void

402 nchinit(void)

403 {

404

405 TAILQ_INIT(&nclruhead);

406 nchashtbl =

407 hashinit(desiredvnodes, HASH_LIST, M_CACHE, M_WAITOK, &nchash);
408 ncvhashtbl =

409 #ifdef NAMECACHE_ENTER_REVERSE

410 hashinit(desiredvnodes, HASH_LIST, M_CACHE, M_WAITOK, &ncvhash);
411 #else

412 hashinit(desiredvnodes/8, HASH_LIST, M_CACHE, M_WAITOK, &ncvhash);
413 #endif

414 pool_init (&namecache_pool, sizeof (struct namecache), 0, 0, O,

415 "ncachepl", &pool_allocator_nointr);

416 }

kern/vfs_cache.c

3.2.4 Initialize the Special Vnode Operations

This initialization process is started by line 356 of kern/vfs_init.c that we have
already listed. We list here again for easy reference.

kern/vfs_init.c

356 vis_opv_init(vfs_special_vnodeopv_descs);

kern/vfs_init.c

The vfs_special _vnodeopv_descs argument used in line 356 of kern/vfs_init.c
is defined in kern/vfs_init.c as

kern/vfs_init.c

119 const struct vnodeopv_desc * const vfs_special_vnodeopv_descs[] = {

120 &dead_vnodeop_opv_desc,
121 &fifo_vnodeop_opv_desc,
122 &spec_vnodeop_opv_desc,
123 &sync_vnodeop_opv_desc,
124 NULL,

125 };

kern/vfs_init.c

where struct vnodeopv_desc is defined in sys/vnode.h as

sys/vnode.h

3.2. VIRTUAL FILESYSTEM INITIALIZATION 69

449 struct vnodeopv_desc {

450 /* ptr to the ptr to the vector where op should go */

451 int (***opv_desc_vector_p) (void *);

452 const struct vnodeopv_entry_desc *opv_desc_ops; /* null terminated list */
453 };

sys/vnode.h

For example, the one of the four members contained in vfs_special _vnodeopv_descs
array, sync_vnodeop_opv_desc is defined in miscfs/syncfs/sync vnops.c as

miscfs/syncfs/sync_vnops.c

47 int (x*sync_vnodeop_p) __P((void *));
48 const struct vnodeopv_entry_desc sync_vnodeop_entries[] = {

49 { &vop_default_desc, vn_default_error 1},

50 { &vop_close_desc, sync_close 1}, /* close */

51 { &vop_fsync_desc, sync_fsync 1}, /* fsync */

52 { &vop_inactive_desc, sync_inactive 1}, /* inactive */
53 { &vop_reclaim_desc, sync_reclaim }, /* reclaim */
54 { &vop_lock_desc, sync_lock }, /* lock */

55 { &vop_unlock_desc, sync_unlock 1}, /* unlock */
56 { &vop_print_desc, sync_print 7}, /* print */

57 { &vop_islocked_desc, sync_islocked 1}, /* islocked */
58 { &vop_putpages_desc, sync_putpages 7, /* islocked */
59 { NULL, NULL }

60 };

61

62 const struct vnodeopv_desc sync_vnodeop_opv_desc =

63 { &sync_vnodeop_p, sync_vnodeop_entries };

miscfs/syncfs/sync_vnops.c

where struct vnodeopv_entry_desc is defined in sys/vnode.h as,

sys/vnode.h

445 struct vnodeopv_entry_desc {

446 const struct vnodeop_desc *opve_op; /* which operation this is */
447 int (*opve_impl) (void *); /* code implementing this operation */
448 };

sys/vnode.h

where struct vnodeop_desc is defined in sys/vnode.h and we showed this code
in the previous section.

To prevent your confusion, we summarized the relation between vnodeopv_desc,
vnodeopv_entry_desc, vnodeop._desc structures.

[1177771777/7777777
// Vnode Operation Vector Description Table (vfs_init.c)

//

const struct vnodeopv_desc vfs_special_vnodeopv_descs[] = {

&sync_vnodeop_opv_desc,

70 CHAPTER 3. VIRTUAL FILE SYSTEM

};

LITTT77777077177777777777777
// Vnode Operation Vector Description (miscfs/syncfs/sync_vnops.c)
//
int (**sync_vnodeop_p) __P((void *));
const struct vnodeopv_desc sync_vnodeop_opv_desc = {
&sync_vnodeop_p, sync_vnodeop_entries

};

[1177717/7777777
// Vnode Operation Vector Entry Description Table (misc/syncfs/sync_vnops.c)
//

const struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
{ &vop_fsync_desc, sync_fsync 1}, /* fsync */

{ NULL, NULL }
};

[1177/7777777
// Vnode Operation Vector Entry Description (kern/vnode_if.c)
//
const int vop_fsync_vp_offsets[] = {
VOPARG_OFFSETOF (struct vop_fsync_args,a_vp),
VDESC_NO_OFFSET
};
const struct vnodeop_desc vop_fsync_desc = {
19,
"vop_fsync",
0,
vop_fsync_vp_offsets,
VDESC_NO_OFFSET,
VOPARG_OFFSETOF (struct vop_fsync_args, a_cred),
VOPARG_OFFSETOF (struct vop_fsync_args, a_p),
VDESC_NO_OFFSET,
NULL,
};

LITITI7777777777077777770777777777777777707777777777777777777777777777

// Vnode Operation (misc/syncfs/sync_vnops.c)

//

int

sync_£fsync(v)
void *v;

{

}

Before going on reading this book, you should clearly understand the relation be-
tween vnode operation vector description table, vnode operation vector description,
vnode operation vector entry description table, vnode operation vector entry descrip-
tion, and wvnode operation, from the above summary. Only when if you know the

3.2. VIRTUAL FILESYSTEM INITIALIZATION 71

relation without confusion, you can clearly understand how vfs_opv_init function

work.

vEs_opv_init function is defined in kern/vfs_init.c as,

kern/vfs_init.c

240 void
241 vfs_opv_init(vopvdpp)

242
243 {
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272 }

const struct vnodeopv_desc * const *vopvdpp;

int (**opv_desc_vector) __P((void *));
int i;

/*
* Allocate the vectors.
*/
for (i = 0; vopvdpp[i] != NULL; i++) {
/* XXX - shouldn’t be M_VNODE */
opv_desc_vector =
malloc (VNODE_OPS_COUNT * sizeof (PFI), M_VNODE, M_WAITOK) ;
memset (opv_desc_vector, 0, VNODE_OPS_COUNT * sizeof (PFI));
* (vopvdpp [i] ->opv_desc_vector_p) = opv_desc_vector;
DODEBUG (printf ("vector at %p allocated\n",
opv_desc_vector_p));

}

/*

* ...and fill them in.

*/

for (i = 0; vopvdppl[i] != NULL; i++)
vis_opv_init_explicit (vopvdppl[il);

/*

* Finally, go back and replace unfilled routines

* with their default.

*/

for (i = 0; vopvdppl[i] != NULL; i++)
vfs_opv_init_default (vopvdpp[il);

kern/vfs_init.c

for loop used in line 250-258 executes 4 times with vopvdpp variable set respec-
tively to dead_vnodeop_opv_desc, fifo_vnodeop_opv_desc, spec_vnodeop_opv.desc,
and sync_vnodeop-opv_desc. line 252-255 makes room for storing array of func-
tion pointer indicating each available vnode operation function.

VNODE_OPS_COUNT and PFI are defined as,

kern/vfs_init.c

1640 #define VNODE_OPS_COUNT 50

and

kern/vfs_init.c

72

CHAPTER 3. VIRTUAL FILE SYSTEM

127 /*
128
129 *
130 *
131 *
132 */

kern/vfs_init.c

This code doesn’t work if the defn is **vnodop_defns with cc.
The problem is because of the compiler sometimes putting in an
extra level of indirection for arrays. It’s an interesting
"feature" of C.

133 typedef int (¥PFI) __P((void *));

kern/vfs_init.c

After completion of this loop, for example, the value of sync_vnodeop_p used in
line 63 of miscfs/syncfs/sync_vnops. c changes from NULL to a allocated memory
by line 252-253 of kern/vfs_init.c

Now, we will analyze vfs_init_explicit and vfs_init_default functions which
fill the allocated array with function pointers pointing to vnode operation functions.
The code for this function is,

kern/vfs_init.c

176 vis_opv_init_explicit(vfs_opv_desc)

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

{

const struct vnodeopv_desc *vfs_opv_desc;

int (**opv_desc_vector) __P((void *));
const struct vnodeopv_entry_desc *opve_descp;

opv_desc_vector = *(vfs_opv_desc->opv_desc_vector_p);

for (opve_descp = vfs_opv_desc->opv_desc_ops;

opve_descp->opve_op;

opve_descp++) {

/*

Sanity check: 1is this operation listed
in the list of operations? We check this
by seeing if its offest is zero. Since
the default routine should always be listed
first, it should be the only one with a zero
offset. Any other operation with a zero
offset is probably not listed in
vEfs_op_descs, and so is probably an error.

A panic here means the layer programmer

has committed the all-too common bug

of adding a new operation to the layer’s
list of vnode operations but

not adding the operation to the system-wide
list of supported operations.

¥ X X X X X X X X ¥ X X X ¥ X

*/
if (opve_descp->opve_op->vdesc_offset == 0 &&
opve_descp->opve_op->vdesc_offset != VOFFSET(vop_default)) {
printf ("operation %s not listed in %s.\n",
opve_descp->opve_op->vdesc_name, "vfs_op_descs");
panic ("vfs_opv_init: bad operation");

3.3. ATTACHING AVAILABLE STATIC FILE SYSTEM 73

210

211 /*

212 * Fill in this entry.

213 */

214 opv_desc_vector [opve_descp->opve_op->vdesc_offset] =
215 opve_descp—>opve_impl;
216 b

217 }

218

219 static void

220 vfs_opv_init_default(vfs_opv_desc)

221 const struct vnodeopv_desc *vfs_opv_desc;

222 {

223 int j;

224 int (**opv_desc_vector) __P((void *));

225

226 opv_desc_vector = *(vfs_opv_desc->opv_desc_vector_p);

227

228 /*

229 * Force every operations vector to have a default routine.
230 */

231 if (opv_desc_vector [VOFFSET (vop_default)] == NULL)

232 panic("vfs_opv_init: operation vector without default routine.");
233

234 for (j = 0; j < VNODE_OPS_COUNT; j++)

235 if (opv_desc_vector[j] == NULL)

236 opv_desc_vector[j] =

237 opv_desc_vector [VOFFSET (vop_default)];
238 }

kern/vfs_init.c

If you keep in mind the summary about structures related with vnode operation,

only reading the source code would be sufficient to understand how vfs_opv_init_explicit
and vfs_opv_init_default function initialize opv_desc_vector_p member in vnode
operation vector description structure.

3.3 Attaching Available Static File System

line 362-369 of kern/vfs_init.c attaches available static filesystem.

3.3.1 Set vnode attribute to empty

line 362 of kern/vfs_init.c creates vanull global variable, defined in kern/vfs_init.c,
as a null vnode.

kern/vfs_init.c

318 struct vattr va_null;

kern/vfs_init.c

This variable is not directly used, but used with VATTR _NULL macro used to clear a
vnode. This macro is defined in sys/vnode.h as,

74 CHAPTER 3. VIRTUAL FILE SYSTEM

kern/vfs_init.c

281 #define VATTR_NULL(vap) (*(vap) = va_null) /* initialize a vattr */

kern/vfs_init.c

Now we list the source code for vattr null function which creates a null vnode.
The reason why kernel source uses VATTR NULL macro instead of directly calling
vattr_null function, is simple since the later is faster.

kern/vfs_subr.c

372 void

373 vattr_null(vap)

374 struct vattr *vap;

375 {

376

377 vap->va_type = VNON;

378

379 /*

380 * Assign individually so that it is safe even if size and
381 * sign of each member are varied.
382 */

383 vap->va_mode = VNOVAL;

384 vap->va_nlink = VNOVAL;

385 vap->va_uid = VNOVAL;

386 vap->va_gid = VNOVAL;

387 vap->va_fsid = VNOVAL;

388 vap->va_fileid = VNOVAL;

389 vap->va_size = VNOVAL;

390 vap->va_blocksize = VNOVAL;

391 vap->va_atime.tv_sec =

392 vap->va_mtime.tv_sec =

393 vap->va_ctime.tv_sec = VNOVAL;
394 vap->va_atime.tv_nsec =

395 vap->va_mtime.tv_nsec =

396 vap->va_ctime.tv_nsec = VNOVAL;
397 vap->va_gen = VNOVAL;

398 vap->va_flags = VNOVAL;

399 vap->va_rdev = VNOVAL;

400 vap->va_bytes = VNOVAL;

401 vap->va_vaflags = 0;

402 }

kern/vfs_subr.c

3.3.2 How is vfs_list_initial initialized ?

vis_list_initial is array of pointer to virtual filesystem operation. The source
code for initializing this variable is not included in the kernel source: the needed
code is generated automatically when we compile kernel.

Berfore compiling kernel, we executes config program. For example, we gener-
ates new kenel as

3.3. ATTACHING AVAILABLE STATIC FILE SYSTEM 5

cd /usr/src/syssrc/sys/arch/sparc64/conf
config MY_KERNEL

cd

make depend; make

../compile/MY_KERNEL

In the above sample session, config program generates Makefile, and many

header files under

../compile/MY KERNEL directory. There is, however, only four C

source code is generated: devsw.c, ioconf.c, param.c, swapnetbsd.c, vers.c
From these automatically generated C source files by config program, ioconf.c
contains the definition of vfs_list_initial variable.
For instance, if kernel configuration file contains,

152
1563
154
155
156
157
158
159
160
161
162
163
164
165
166

File systems.
file-system
file-system
file-system
file-system
file-system
file-system
file-system
file-system
file-system
file-system
file-system
file-system
file-system
file-system

- arch/sparc64/conf/ GENERIC32

You probably need at least one of FFS or NFS.

FFS
NFS
KERNFS
NULLFS

OVERLAY

MFS
FDESC
UMAPFS
LFS
PORTAL
PROCFS
CD9660
UNION

MSDOSFS

#

H OH HF HHHEHHHH B HH

then, ioconf.c would contain

Berkeley Fast Filesystem

Sun NFS-compatible filesystem client
kernel data-structure filesystem

NULL layered filesystem

overlay file system

memory-based filesystem

user file descriptor filesystem
uid/gid remapping filesystem
Log-based filesystem (still experimental)
portal filesystem (still experimental)
/proc

IS0 9660 + Rock Ridge file system
union file system

MS-DOS FAT filesystem(s).

arch/sparc64/conf/ GENERIC32

arch/sparc64/compile/MY KERNEL /ioconf.c

1643 struct vfsops * const vfs_list_initiall[] = {

1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659 };

&ffs_visops,
&nfs_vfsops,
&kernfs_vfsops,
&nullfs_vfsops,
&overlay_vfsops,
&mfs_vfsops,
&fdesc_visops,
&umapfs_vfsops,
&lfs_vfsops,
&portal_vfsops,
&procfs_visops,
&cd9660_visops,
&union_vfsops,
&msdosfs_vfsops,
NULL,

76 CHAPTER 3. VIRTUAL FILE SYSTEM

arch/sparc64/compile/MY KERNEL /ioconf.c

where struct vfsops is defined in sys/mount.h as,

sys/mount.h

344 struct visops {

345 const char *vfs_name;

346 int (*xvfs_mount) __P((struct mount *mp, const char *path,
347 void *data, struct nameidata *ndp,

348 struct proc *p));

349 int (xvfs_start) __P((struct mount #*mp, int flags,

350 struct proc *p));

351 int (*vfs_unmount) __P((struct mount *mp, int mntflags,

352 struct proc *p));

353 int (xvfs_root) __P((struct mount *mp, struct vnode **vpp));
354 int (xvfs_quotactl) __P((struct mount *mp, int cmds, uid_t uid,
355 caddr_t arg, struct proc *p));

356 int (xvfs_statfs) __P((struct mount *mp, struct statfs *sbp,
357 struct proc *p));

358 int (xvfs_sync) __P((struct mount *mp, int waitfor,

359 struct ucred *cred, struct proc *p));
360 int (xvfs_vget) __P((struct mount *mp, ino_t ino,

361 struct vnode **vpp));

362 int (xvfs_fhtovp) __P((struct mount *mp, struct fid *fhp,

363 struct vnode **vpp));

364 int (xvfs_vptofh) __P((struct vnode *vp, struct fid *fhp));
365 void (*vfs_init) __P((void));

366 void (*vfs_reinit) __P((void));

367 void (xvfs_done) __P((void));

368 int (xvfs_sysctl) __P((int *, u_int, void *, size_t *, void *,
369 size_t, struct proc *));

370 int (*vfs_mountroot) __P((void));

371 int (xvfs_checkexp) __P((struct mount *mp, struct mbuf #*nam,
372 int *extflagsp, struct ucred **credanonp));
373 const struct vnodeopv_desc * const *vfs_opv_descs;

374 int vis_refcount;

375 LIST_ENTRY(vfsops) vis_list;

376 };

sys/mount.h

For example, £fs_vfsops variable appeared in line 1644 of arch/sparc64/compile/MY KERNEL/ioconf.c
is initialized in ufs/ffs/ffs vfsops.c as

ufs/ffs/ffs_vfsops.c

97 struct vfsops ffs_vfsops = {

98 MOUNT_FFS,

99 ffs_mount,
100 ufs_start,
101 ffs_unmount,
102 ufs_root,

103 ufs_quotactl,
104 ffs_statfs,

105 ffs_sync,

3.3. ATTACHING AVAILABLE STATIC FILE SYSTEM T

106
107
108
109
110
111
112
113
114
115

116 };

ffs_vget,
ffs_fhtovp,
ffs_vptofh,
ffs_init,
ffs_reinit,
ffs_done,
ffs_sysctl,
ffs_mountroot,
ufs_check_export,
ffs_vnodeopv_descs,

ufs/ffs/ffs_vfsops.c

You may wonder how Makefile for kernel compile know where the filesystem

related files are.

Makefile in ufs directory specifies the location of filesystem

related kernel sources recursively with the help of system-wide makefile script,
/usr/share/mk/bsd.kinc.mk.

With this information, we can plant our own filesystem with a different name
onto NetBSD kernel !

3.3.3 Establish a filesystem and initialize it

line 363-369 of vfs_init.c attaches and initializes all available virtual filesystem
layers such as FFS, NFS and LFS, by calling vfs_attach function.

2634 int

kern/vfs_subr.c

2635 vfs_attach(vfs)

2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660

{

struct vfsops *vfs;

struct visops *v;
int error = 0;

/*

* Make sure this file system doesn’t already exist.
*/

LIST_FOREACH(v, &vfs_list, vfs_list) {

if (strcmp(vfs->vfs_name, v->vfs_name) == 0) {
error = EEXIST;
goto out;
}
}
/*

* Initialize the vnode operations for this file system.
*/

vis_opv_init(vEs->vfs_opv_descs);

/*
* Now initialize the file system itself.
*/

(xvfs—>vfs_init));

78 CHAPTER 3. VIRTUAL FILE SYSTEM

2661

2662 /*

2663 * ...and link it into the kernel’s list.
2664 */

2665 LIST_INSERT_HEAD (&vfs_list, vfs, vfs_list);
2666

2667 /*

2668 * Sanity: make sure the reference count is O.
2669 */

2670 vis—->vfs_refcount = 0;

2671

2672 out:

2673 return (error);

2674 }

kern/vfs_subr.c

In the case of FFS, line 2660 of kern/vfs_subr.c calls ffs_init function, since
ffs_vfsops variable used in line 1644 of arch/sparc64/compile/MY KERNEL/ioconf.c
is initialized so that its vfs_init member is set to ffs_init by line 97-116 of
ufs/ffs/vis ffsops.c.

3.3.4 Fast Filesystem Initialization

Fast Filesystem as a virtual filesystem layer is initialized by ffs_init function. This
ffs_init function called by vfs_attach function that we just described is shown
below.

kern/vfs_subr.c

1368 void

1369 ffs_init()

1370 {

1371 if (ffs_initcount++ > 0)
1372 return;

1373

1374 softdep_initialize();

1375 ufs_init () ;

1376

1377 pool_init (&ffs_inode_pool, sizeof (struct inode), O, 0, 0, "ffsinopl",
1378 &pool_allocator_nointr);
1379 }

1380

1381 void

1382 ffs_reinit()

1383 {

1384 softdep_reinitialize();

1385 ufs_reinit();

1386 }

kern/vfs_subr.c

3.3.5 Soft Dependency Module Initialization

To use soft dependency support, 14 additional caches for meta data structure is
needed. It is only 5 caches, however, when Fast File System(FFS) without soft de-

3.3. ATTACHING AVAILABLE STATIC FILE SYSTEM 79

pendency support is considered. For simplicity, we do not consider caches for soft de-
pendency. For not to use soft dependency support in NetBSD Sparc64, it is sufficient
for you to remove a line saying "options SOFTDEP" in arch/sparc64/sparc64/conf/GENERIC32
kernel configuration file.
Be sure to know that even if you turn off the switch, 14 additional caches for soft
dependency support is initialized, but they are never used, since every call to soft de-
pendency related functions are avoided by checking mnt _flag in structure mount.
Soft dependency module initialization function, softdep_initalize is shown be-
low.

ufs/ffs/ffs_softdep.c

1050 /*
1061 * Executed during filesystem system initialization before
1052 * mounting any file systems.

1053 */

1054 void

1055 softdep_initialize()

1056 {

1057 int i;

1058

1059 LIST_INIT(&mkdirlisthd) ;

1060 LIST_INIT(&softdep_workitem_pending) ;

1061 max_softdeps = desiredvnodes * 4;

1062 pagedep_hashtbl = hashinit(desiredvnodes / 5, HASH_LIST, M_PAGEDEP,
1063 M_WAITOK, &pagedep_hash);

1064 sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0);

1065 inodedep_hashtbl = hashinit(desiredvnodes, HASH_LIST, M_INODEDEP,
1066 M_WAITOK, &inodedep_hash);

1067 sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0);

1068 newblk_hashtbl = hashinit(64, HASH_LIST, M_NEWBLK, M_WAITOK,
1069 &newblk_hash) ;

1070 sema_init(&newblk_in_progress, "newblk", PRIBIO, 0);

1071 pool_init (&sdpcpool, sizeof (struct buf), 0, 0, 0, "sdpcpool",
1072 &pool_allocator_nointr);

1073 for (i = 0; i < PCBPHASHSIZE; i++) {

1074 LIST_INIT(&pcbphashhead[i]);

1075 }

1076

1077 pool_init (&pagedep_pool, sizeof (struct pagedep), 0, 0, O,

1078 "pagedeppl", &pool_allocator_nointr);

1079 pool_init(&inodedep_pool, sizeof (struct inodedep), 0, 0, O,
1080 "inodedeppl", &pool_allocator_nointr);

1081 pool_init (&newblk_pool, sizeof (struct newblk), 0, 0, O,

1082 "newblkpl", &pool_allocator_nointr);

1083 pool_init (&bmsafemap_pool, sizeof (struct bmsafemap), 0, 0, O,
1084 "bmsafemappl", &pool_allocator_nointr);

1085 pool_init(&allocdirect_pool, sizeof (struct allocdirect), 0, 0, O,
1086 "allocdirectpl", &pool_allocator_nointr);

1087 pool_init(&indirdep_pool, sizeof(struct indirdep), 0, 0, O,
1088 "indirdeppl", &pool_allocator_nointr);

1089 pool_init(&allocindir_pool, sizeof (struct allocindir), O, O, O,
1090 "allocindirpl", &pool_allocator_nointr);

1091 pool_init (&freefrag pool, sizeof(struct freefrag), 0, 0, O,

80 CHAPTER 3. VIRTUAL FILE SYSTEM

1092 "freefragpl", &pool_allocator_nointr);

1093 pool_init (&freeblks_pool, sizeof(struct freeblks), 0, 0, O,
1094 "freeblkspl", &pool_allocator_nointr);

1095 pool_init(&freefile_pool, sizeof(struct freefile), 0, 0, O,
1096 "freefilepl", &pool_allocator_nointr);

1097 pool_init(&diradd_pool, sizeof (struct diradd), 0, 0, O,
1098 "diraddpl", &pool_allocator_nointr);

1099 pool_init (&mkdir_pool, sizeof (struct mkdir), 0, 0, O,

1100 "mkdirpl", &pool_allocator_nointr);

1101 pool_init(&dirrem_pool, sizeof (struct dirrem), 0, 0, O,
1102 "dirrempl", &pool_allocator_nointr);

1103 pool_init (&newdirblk_pool, sizeof (struct newdirblk), 0, O,
1104 "newdirblkpl", &pool_allocator_nointr);

1105 }

ufs/ffs/ffs softdep.c

All jumps to the soft dependency code, lives in ffs mount, ffs_reload, ffs mountfs,
ffs_unmount, ffs_vget functions of ufs/ffs/ffs vfsops.c

ffs mount and ffs_unmount functions are called respectively when the mount
and umount system call is executed. ffs_mountfs is subroutine of ffs mount func-
tion and is also used for ffs mountroot function. ffs_reload function reloads all
incore data for a filesystem after running fsck on the root filesystem and finding
things to fix. ffs_vget function is called to look up a FFS dinode number to find
its incore vnode.

These code are shown in the following list. You do not need to understand it all,
since the point is soft dependency functions are not called when kernel configuration
is set up so.

ufs/ffs/ffs_vfsops.c

177 int

178 ffs_mount (mp, path, data, ndp, p)

179 struct mount *mp;

180 const char *path;

181 void *data;

182 struct nameidata *ndp;

183 struct proc *p;

184 {

307 if (mp->mnt_flag & MNT_SOFTDEP)

308 error = softdep_flushfiles(mp, flags, p);
309 else

310 error = ffs_flushfiles(mp, flags, p);

338 if ((fs->fs_flags & FS_DOSOFTDEP) &&

339 ! (mp->mnt_flag & MNT_SOFTDEP) && fs->fs_ronly == 0) {
340 #ifdef notyet

341 flags = WRITECLOSE;

342 if (mp->mnt_flag & MNT_FORCE)

343 flags |= FORCECLOSE;

344 error = softdep_flushfiles(mp, flags, p);

345 if (error == 0 && ffs_cgupdate(ump, MNT_WAIT) == 0)
346 fs->fs_flags &= "FS_DOSOFTDEP;

347 (void) ffs_sbupdate(ump, MNT_WAIT);

3.3. ATTACHING AVAILABLE STATIC FILE SYSTEM

348
349
350
351

382
383
384
385
386
387

427

442
443
444
445
446
447

586
587

646

651
652
653
654
655
656

894
895
896
897
898
899
900

916

950
951
952
953
954

#elif defined(SOFTDEP)
mp->mnt_flag |= MNT_SOFTDEP;

#endif
}
if ((£s->fs_flags & FS_DOSOFTDEP)) {
error = softdep_mount(devvp, mp, fs,
p->p_ucred) ;
if (error)
return (error);
}
}
int

ffs_reload(mountp, cred, p)
struct mount *mountp;
struct ucred *cred;
struct proc *p;

{
if ((fs—>fs_flags & FS_DOSOFTDEP))
softdep_mount (devvp, mountp, fs, cred);
}
int

ffs_mountfs(devvp, mp, p)
struct vnode *devvp;
struct mount *mp;
struct proc *p;

{
if (ronly == 0 && (fs->fs_flags & FS_DOSOFTDEP)) {
error = softdep_mount(devvp, mp, fs, cred);
if (error) {
free(fs->fs_csp, M_UFSMNT);
goto out;
}
}
}
int

ffs_unmount (mp, mntflags, p)
struct mount *mp;
int mntflags;
struct proc x*p;

81

82 CHAPTER 3. VIRTUAL FILE SYSTEM

955 {

964 if (mp->mnt_flag & MNT_SOFTDEP) {

965 if ((error = softdep_flushfiles(mp, flags, p)) != 0)
966 return (error);

967 } else {

968 if ((error = ffs_flushfiles(mp, flags, p)) != 0)
969 return (error);

970 }

1006 }

1191 int

1192 ffs_vget(mp, ino, vpp)

1193 struct mount *mp;

1194 ino_t ino;

1195 struct vnode **vpp;

1196 {

1286 if (DOINGSOFTDEP(vp))

1287 softdep_load_inodeblock(ip);

1288 else

1289 ip—>i_ffs_effnlink = ip->i_ffs_nlink;
1290 brelse(bp);

1319 }

ufs/ffs/ffs_vfsops.c
The DOINGSOFTDEP () macro used in the above list is defined in ufs/inode.h as

#define DOINGSOFTDEP (vp) ((vp)->v_mount->mnt_flag & MNT_SOFTDEP)
As you have seen the codes, there is no need to worry about the operation of

soft dependency facility if you removed the kernel option from kernel configuration
file, although 14 caches for soft dependency is initialized.

3.3.6 UFS Initialization

In line 1375 of ufs/ffs/ffsvfsops.c, ffs_init function calls ufs_init, UFS
initialization function that is defined as,

ufs/ufs/ufs_visops.c

225 /*

226 x Initialize UFS filesystems, done only once.
227 */

228 void

229 ufs_init()

230 {

231 if (ufs_initcount++ > 0)

232 return;

233

3.3. ATTACHING AVAILABLE STATIC FILE SYSTEM

234

ufs_ihashinit();

235 #ifdef QUOTA

236
237
238

#endif
}

dqinit Q) ;

83

ufs/ufs/ufs_vfsops.c

where ufs_ihashint function that initializes inode hash table is shown below.

61
62
63
64

/*

* Initialize inode hash table.

*/

void

65 ufs_ihashinit ()

66
67
68
69
70
71

{

}

ufs/ufs/ufs_ihash.c

lockinit (&ufs_hashlock, PINOD, "ufs_hashlock", 0, 0);

ihashtbl =

hashinit(desiredvnodes, HASH_LIST, M_UFSMNT, M_WAITOK, &ihash);

simple_lock_init(&ufs_ihash_slock);

ufs/ufs/ufs_ihash.c

Note the line 69 which creates hash table that can store ‘desiredvnodes’ elements.
desiredvnodes global variable is also defined by param.c — autogenerated source
code by config program.

107
108
109
110
111
112
113
114
115
116

int
int
int
int
int
int
int
int
u_long
int

hz = HZ;

tick = 1000000 / HZ;

tickadj = 240000 / (60 * HZ);
rtc_offset = RTC_OFFSET;
maxproc = NPROC;
desiredvnodes = NVNODE;
maxfiles = MAXFILES;

arch/sparc64/compile/MY KERNEL /param.c

/* can adjust 240ms in 60s */

ncallout = 16 + NPROC; /* size of callwheel (rounded to ~2) */

sb_max =

B_MAX; /* maximum socket buffer size */

S
fscale = FSCALE; /* kernel uses ‘FSCALE’, user uses ‘fscale’ */

where the NVNODE macro is defined in sys/param.h as,

128
129
130
131
132
133
134
135
136
137

arch/sparc64/compile/MY KERNEL /param.c

#ifndef
#define
#endif

#ifndef
#define
#endif

#ifndef
#define
#define
#endif

NPROC
NPROC (20 + 16 * MAXUSERS)

NTEXT
NTEXT (80 + NPROC / 8)

NVNODE
NVNODE (NPROC + NTEXT + 100)
NVNODE_IMPLICIT

- kern/sys/param.h

/* actually the object cache */

84 CHAPTER 3. VIRTUAL FILE SYSTEM

- kern/sys/param.h

where the line 134 means NVNODE parameter can be tuned in kernel configuration
file using option command. Since default MAXUSERS is 64 unless tuned by kernel
configuration file,

NPROC = 20 + 16 * MAXUSERS
=20 + 16 * 64

= 1044

NTEXT = 80 + NPROC / 8
=80 + 1044 / 8
= 210

NVNODE = NPROC + NTEXT + 100
1044 + 210 + 100

1354

So, if you want to change the default value of desiredvnodes other than 1354, you
can change by tuning MAXUSERS parameter in kernel configuration file using option
command.

Up to now, we showed how virtual file system layer is initialized. In the next
chapter, we will describe a file system is mounted, with exploring the mount process
of root file system !

3.4 Virtual Filesystem Operations

In a similar fashion to the vnode interface, all operations that are done on a file
system are conducted through a single interface that allows the system to carry out
operations on a file system without knowing its construction or type.

As we had described earlier, all supported file systems in the kernel have an entry
in the vfs_1ist_initial table. This table is generated by config program and is
a NULL-terminated list of vEfsops structures. The vfsops structure describes the
operations that can be done to a specific file system type. The vfsops structure is
shown below.

sys/mount.h

344 struct visops {

345 const char *vfs_name;

346 int (*xvfs_mount) __P((struct mount *mp, const char *path,
347 void *data, struct nameidata *ndp,

348 struct proc *p));

349 int (xvfs_start) __P((struct mount #*mp, int flags,

350 struct proc *p));

351 int (xvfs_unmount) __P((struct mount *mp, int mntflags,

352 struct proc *p));

353 int (xvfs_root) __P((struct mount *mp, struct vnode **vpp));
354 int (xvfs_quotactl) __P((struct mount *mp, int cmds, uid_t uid,
355 caddr_t arg, struct proc *p));

356 int (xvfs_statfs) __P((struct mount *mp, struct statfs *sbp,
357 struct proc *p));

358 int (xvfs_sync) __P((struct mount *mp, int waitfor,

359 struct ucred *cred, struct proc *p));
360 int (xvfs_vget) __P((struct mount *mp, ino_t ino,

3.4. VIRTUAL FILESYSTEM OPERATIONS

361

362 int (xvfs_
363

364 int (xvfs_
365 void (xvfs_
366 void (xvfs_
367 void (xvfs_
368 int (xvfs_
369

370 int (xvfs_
371 int (xvfs_
372

373

374 int

375

376 };

85

struct vnode **vpp));

fhtovp) __P((struct mount *mp, struct fid *fhp,
struct vnode **vpp));

vptofh) __P((struct vnode *vp, struct fid *fhp));

init) __P((void));

reinit) __P((void));

done) __P((void));

sysctl) __P((int *, u_int, void *, size_t *, void *,
size_t, struct proc *));

mountroot) __P((void));

checkexp) __P((struct mount *mp, struct mbuf *nam,
int *extflagsp, struct ucred **credanonp));

const struct vnodeopv_desc * const *vfs_opv_descs;
vis_refcount;
LIST_ENTRY(vfsops) vfs_list;

sys/mount.h

The following table list the elements of the vfsops vector, the corre- sponding
invocation macro, and a description of the element.

Vector element Macro Description

int (xvfs_mount) () VFS_MOUNT Mount a file system

int (xvfs_start) () VFS_START Make operational

int (xvfs_unmount)() VFS_UMOUNT Unmount a file system

int (xvfs_root) () VFS_ROOT Get the file system root vnode
int (xvfs_quotactl) () VFS_QUOTACTL Query/modify space quotas

int (xvfs_statfs) () VFS_STATFS Get file system statistics

int (xvfs_sync) O VFS_SYNC Flush file system buffers

int (xvfs_vget) O VFS_VGET Get vnode from file ID

int (xvfs_fhtovp) () VFS_FHTOVP NFS file handle to vnode lookup
int (xvfs_vptofh) () VFS_VPTOFH Vnode to NFS file handle lookup

void (*vfs_init) ()
void (*vfs_reinit) ()
void (*vfs_done) ()

int (xvfs_sysctl) ()
int (*vfs_mountroot) ()
int (xvfs_checkexp) ()

Initialise file system
Reinitialise file system
Cleanup unmounted file system
Query/modify kernel state
Mount the root file system
VFS_CHECKEXP Check if fs is exported

Some additional non-function members of the vfsops structure are the file system

name vfs_name and a reference count vfs_refcount. It is not mandatory for a
filesystem type to support a particular operation, but it must assign each member
function pointer to a suitable function to do the minimum required of it. In most
cases, such functions either do nothing or return an error value to the effect that it
is not supported.

At system boot, each filesystem with an entry in vfs_list_initial is estab-
lished and initialised. Each initialised file system is recorded by the kernel in the list
vfs_list and the file system specific initialisation function vfs_init in its vfsops
vector is invoked. When the filesystem is not longer needed vfs_done is invoked to
run file system specific cleanups and the file system is removed from the kernel list.

At system boot, the root filesystem is mounted by invoking the file system type
specific vfs_mountroot function in the vfsops vector. All filesystems that can
be mounted as a root file system must define this function. It is responsible for
initialising to list of mount structures for all future mounted file systems.

86 CHAPTER 3. VIRTUAL FILE SYSTEM

Kernel state which affects a specific filesystem type can be queried and modified
using the sysctl interface. The vfs_sysctl member of the vfsops structure is
invoked by filesystem independent code.

3.5 References to Source Code

3.5.1 kern/vfs_init.c - 334 lines, 7 functions
Gloval Variables

const struct vnodeopv_desc * const vfs_special_vnodeopv_descs[] = {
&dead_vnodeop_opv_desc,
&fifo_vnodeop_opv_desc,
&spec_vnodeop_opv_desc,
&sync_vnodeop_opv_desc,
NULL,
};

struct vattr va_null;

Functions

vn_default_error ()
vis_opv_init_explicit()
vis_opv_init_default()
vEs_opv_init ()
vEs_opv_free()
vEfs_op_check()
vEisinit ()

Chapter 4

Buffer Cache

Buffer cache manages the memory that buffers data being transferred to and from
the network or disk, and act as a cache of recently used blocks.

Since we are planning to replace buffer cache, it is essential for us to know the
details of buffer cache, and the interaction between vnode operations and buffer
cache.

The architecture of buffer cache is best described by [1]. But the details about
how the buffer cache is implemented is best described by [2].

The buffer cache is composed of two parts. The first part is the buffer header
and the second part is the actual buffer contents.

4.1 Buffer Cache Header

The Buffer header of NetBSD release 1.6 is defined in sys/buf .h as,

sys/buf.h
151 /*
1562 * The buffer header describes an I/0 operation in the kernel.
153 */
154 struct buf {
155 LIST_ENTRY (buf) b_hash; /* Hash chain. */
156 LIST_ENTRY(buf) b_vnbufs; /* Buffer’s associated vnode. */
157 TAILQ_ENTRY (buf) b_freelist; /* Free list position if not active. */
158 TAILQ_ENTRY(buf) b_actq; /* Device driver queue when active. */
159 struct proc *b_proc; /* Associated proc if B_PHYS set. x/
160 volatile long b_flags; /* B_x flags. */
161 int b_error; /* Errno value. */
162 long b_bufsize; /* Allocated buffer size. */
163 long b_bcount; /* Valid bytes in buffer. */
164 long b_resid; /* Remaining I/0. */
165 dev_t b_dev; /* Device associated with buffer. x/
166 struct {
167 caddr_t b_addr; /* Memory, superblocks, indirect etc. */
168 } b_un;
169 void *b_saveaddr; /* Original b_addr for physio. */
170 daddr_t b_1blkno; /* Logical block number. */
171 daddr_t b_blkno; /* Underlying physical block number
172 (partition relative) */
173 daddr_t b_rawblkno; /* Raw underlying physical block

87

88

174
175
176
177
178
179
180
181 };

void
struct
void
off_t
struct

CHAPTER 4. BUFFER CACHE

number (not partition relative) */
/* Function to call upon completion. */

(¥b_iodone) __P((struct buf *));

vnode *b_vp;

*b_private;
b_dcookie;

workhead b_dep;

/* File vnode. */

/* Private data for owner */

/* Offset cookie if dir block */

/* List of filesystem dependencies. */

where

The possible values of b_flags variable are,

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

sys/buf.h

b_vnbufs is a pointer to the vnode whose data the buffer holds.

b_flags tracks status information about the buffer, such as whether
the buffer contains useful data, whether the buffer is in use, and
whether the data must be written back to the file before the buffer
can be reused.

b_bufsize indicates the size of allocated buffer contents, without regard

to the validity of the data contained.

b_bcount contains the number of valid bytes contained in the buffer.

/*

* These flags are kept in b_flags.

*/
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

B_AGE 0x00000001
B_NEEDCOMMIT 0x00000002
B_ASYNC 0x00000004
B_BAD 0x00000008
B_BUSY 0x00000010
B_SCANNED 0x00000020
B_CALL 0x00000040
B_DELWRI 0x00000080
B_DIRTY 0x00000100
B_DONE 0x00000200
B_EINTR 0x00000400
B_ERROR 0x00000800
B_GATHERED 0x00001000
B_INVAL 0x00002000
B_LOCKED 0x00004000
B_NOCACHE 0x00008000
B_CACHE 0x00020000
B_PHYS 0x00040000
B_RAW 0x00080000
B_READ 0x00100000
B_TAPE 0x00200000
B_WANTED 0x00800000
B_WRITE 0x00000000
B_XXX 0x02000000
B_VFLUSH 0x04000000

/*
/%
/%
/%
/%
/*
/*
/*
/%
/*
/%
/*
/%
/%
/*
/*
/%
/%
/%
/%
/%
/*
/*
/%
/%

sys/buf.h

Move to age queue when I/0 done. */
Needs committing to stable storage */
Start I/0, do not wait. */

Bad block revectoring in progress. */
I/0 in progress. */

Block already pushed during sync */
Call b_iodone from biodone. */

Delay I/0 until buffer reused. */
Dirty page to be pushed out async. */
I/0 completed. */

I/0 was interrupted */

I/0 error occurred. */

LFS: already in a segment. */

Does not contain valid info. */
Locked in core (not reusable). */

Do not cache block after use. */
Bread found us in the cache. */

I/0 to user memory. */

Set by physio for raw transfers. */
Read buffer. */

Magnetic tape I/0. */

Process wants this buffer. */

Write buffer (pseudo flag). */
Debugging flag. */

Buffer is being synced. */

4.2. BUFFER CACHE CONTENTS 89

sys/buf.h

To set and test these flags, convevient macros are provided as,

kern/vfs_bio.c

70 /* Macros to clear/set/test flags. */

71 #define SET(t, f) () I= ()
72 #define CLR(t, f) (t) &= ~(f)
73 #define ISSET(t, f) () & (£))

kern/vfs_bio.c

As we analyze buffer cache, we will gradually know every meaning of these flags.

4.2 Buffer Cache Contents

Buffer contents are maintaained separately from the header to allow easy manipu-
lation of buffer sizes via the page-mapping hardware.

4.2.1 Allocation Virtual Memory to Buffer Cache

Kernel allocates to each buffer MAXBSIZE bytes of virtual memory, but the address

space is not fully populated with physical memory. Initially, each buffer is assigned

4096 bytes of physical memory. As smaller buffers are allocated, they give up their

unused physical memory to buffers that need to hold more than 4096 bytes.
MAXSIZE is machine-dependent since it is defined by

sys/param.h

211 /%
212 x File system parameters and macros.
213 *
214 x The file system is made out of blocks of at most MAXBSIZE units, with
215 * smaller units (fragments) only in the last direct block. MAXBSIZE
216 * primarily determines the size of buffers in the buffer pool. It may be
217 * made larger without any effect on existing file systems; however making
218 x it smaller may make some file systems unmountable.
219 */
220 #ifndef MAXBSIZE /* XXX =/
221 #define MAXBSIZE MAXPHYS
222 #endif
223 #define MAXFRAG 8
sys/param.h
and

arch/sparc64/include/param.h
128 #define DEV_BSIZE 512
129 #define DEV_BSHIFT 9 /* log2(DEV_BSIZE) */
130 #define BLKDEV_IOSIZE 2048
131 #define MAXPHYS (64 * 1024)

arch/sparc64/include/param.h

90 CHAPTER 4. BUFFER CACHE

4.2.2 Identifying Buffer

How can we identify buffer 7 Is there unique ID 7

4.4BSD identify buffers by their logical block number within filesystem by b_1blkno
member in buffer header.

Since it is difficult to detect aliases for a block belonging to a local file and
the same block accessed through the block device disk, kernel prevents this case
from occuring: The kernel does not allow the block device from a partition to be
opened while that partition is mounted. Nor does the kernel allow a partition to be
mounted if the block device from the partition is already open.

4.3 Buffer Hash

A buffer with valid contents is contained on exactly one bufhash hash chain. The
kernel uses the hash chains to determine quickly whether a block is in the buffer
pool, and if it is, to locate it.

A buffer is removed from the buffer hash only when its contents become invalid
or it is reused for different data. Thus, even if the buffer is in use by one process,
it can still be found by another process, although B_BUSY flag will be set so that it
will not be used until the buffer is released.

The buffer hash is defined in kern/vfs_ bio.c as,

kern/vfs_bio.c

75 /*

76 * Definitions for the buffer hash lists.

77 %/

78 #define BUFHASH(dvp, 1lbn) \

79 (&bufhashtbl[(((long) (dvp) >> 8) + (int) (1bn)) & bufhash])
80 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;

81 u_long bufhash;

kern/vfs_bio.c

If you as unfamilar with the LIST_HEAD macro, review a section describing kernel
list data structures in chapter 1. If you know how to use linked list macros, then
you would know the above definition of line 80 is equal to

struct bufhashhdr {
struct buf *1lh_first; /* first element */
} *bufhashtbl, invalhash;

bufhashtbl points to a hash table composed of an array of linked-lists. However,
invalhash is simply a linked-list, not an array.

4.4 Buffer Cache Free Lists

In addition to appearing on the hash list, each unlocked byffer appears on exactly
one free list. There are four kinds of free list. They are defined in vfs_bio.c as,

kern/vfs_bio.c

4.4. BUFFER CACHE FREE LISTS

92
93
94
95
96
97
98
99
100
101
102
103

/%

91

* Definitions for the buffer free lists.

*/
#define

#define
#define
#define
#define

BQUEUES

BQ_LOCKED
BQ_LRU
BQ_AGE
BQ_EMPTY

4

0
1
2
3

/* number of free buffer queues */

/* super-blocks &c */

/* lru, useful buffers */

/* rubbish */

/* buffer headers with no memory */

TAILQ_HEAD (bqueues, buf) bufqueues[BQUEUES];
int needbuffer;

kern/vfs bio.c

If you as unfamilar with the TAILQ_HEAD macro, review a section describing
kernel list data structures in chapter 1.

If you had read the section, you would know line 102 means that four tail
queues are defined, and these tail queues contain elements whose type is struct
buf. Also, you would know these definition is exactly equivalent to

struct bqueues {

struct buf
struct buf

*tgh_first;

**xtgh_first;

} bufqueues [BQUEUES];

/* first element */
/* addr of last next element */

4.4.1 LOCKED List

Buffers on this list cannot be flushed from the cache.

4.4.2 LRU List

After a buffer is used, the buffer is then returned to the end of the LRU list. When
new buffers are needed, they are taken from the front of the LRU list. As its name
suggests, this list implements a least recently used (LRU) algorithm.

4.4.3 AGE List
AGE list holds two kinds of buffers. They are the buffers which are,

Blocks of unlinked file: These buffers are not likely to be reused. The
buffers are placed at the front of the AGE list where they will be
reclaimed quickly.

Read-ahead block: These buffers are not proben their usefulness. The
buffers are placed at the end of the AGE list where they will might

remain long enough to be used again.

AGE list is used for two purposes. First, if a block is requested and it is found
on a buffer cache that lives in the AGE list, the buffer is returned to the end of the
LRU list, not the AGE list, because it has proved its usefulness. Second, when a
new buffer is needed, the front of the AGE list is searched first; only when the AGE
list is empty, the LRU list is used.

92 CHAPTER 4. BUFFER CACHE

4.4.4 EMPTY List

The EMPTY list contains buffers that have no physical memory. They are held on
this list waiting for another buffer to be reused for a smaller block and thus give up
its extra physical memory.

4.5 Buffer Cache Initialization

Buffer cache is initialized in the beginning stage of the system bootstrap. Initial-
ization process consists of two stages.

At first, cpu_startup function does machine dependent memory allocation. At
Second, bufinit function called by cpu_startup function initializes buffer cache
hash and free lists using the memory allocated by previous machine dependent
initialization stage.

4.5.1 Physical Memory Allocation

main function of kern/init main.c is machine independent bootstrap routine, and
it calls machine dependent startup routine cpu_startup function of arch/sparc64/sparc64/machdep.c
defined as

arch/sparc64/sparc64/machdep.c

166 /*

167 * Machine-dependent startup code

168 */

169 void

170 cpu_startup()

171 {

172 caddr_t v;

173 long sz;

174 u_int i, base, residual;

175 #ifdef DEBUG

176 extern int pmapdebug;

177 int opmapdebug = pmapdebug;

178 #endif

179 vaddr_t minaddr, maxaddr;

180 vsize_t size;

181 extern struct user *procOpaddr;
182 char pbuf [9];

183

184 #ifdef DEBUG

185 pmapdebug = 0;

186 #endif

187

188 procO.p_addr = procOpaddr;

189

190 /*

191 * Good {morning,afternoon,evening,night}.
192 */

193 printf (version);

194 /*identifycpu() ;*/

195 format_bytes(pbuf, sizeof (pbuf), ctob((u_int64_t)physmem));

196 printf ("total memory = %s\n", pbuf);

4.5. BUFFER CACHE INITIALIZATION 93

197

198 /*

199 * Find out how much space we need, allocate it,

200 * and then give everything true virtual addresses.

201 */

202 sz = (long)allocsys(NULL, NULL);

203 if ((v = (caddr_t)uvm_km_alloc(kernel_map, round_page(sz))) == 0)
204 panic("startup: no room for %lx bytes of tables", sz);
205 if (allocsys(v, NULL) - v != sz)

206 panic("startup: table size inconsistency");

207

208 /*

209 * allocate virtual and physical memory for the buffers.

210 */

211 size = MAXBSIZE * nbuf; /* # bytes for buffers */

212

213 /* allocate VM for buffers... area is not managed by VM system */
214 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
215 NULL, UVM_UNKNOWN_OFFSET, O,

216 UVM_MAPFLAG (UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
217 UVM_ADV_NORMAL, 0)) != 0)

218 panic("cpu_startup: cannot allocate VM for buffers");

219

220 minaddr = (vaddr_t) buffers;

221 if ((bufpages / nbuf) >= btoc(MAXBSIZE)) {

222 bufpages = btoc(MAXBSIZE) * nbuf; /* do not overallocate RAM */
223 }

224 base = bufpages / nbuf;

225 residual = bufpages J nbuf;

226

227 /* now allocate RAM for buffers */

228 for (41 = 0 ; i < nbuf ; i++) {

229 vaddr_t curbuf;

230 vsize_t curbufsize;

231 struct vm_page *pg;

232

233 /*

234 * each buffer has MAXBSIZE bytes of VM space allocated. of
235 * that MAXBSIZE space we allocate and map (base+l) pages
236 * for the first "residual" buffers, and then we allocate
237 * '"base" pages for the rest.

238 */

239 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);

240 curbufsize = NBPG * ((i < residual) ? (base+l) : base);
241

242 while (curbufsize) {

243 pg = uvm_pagealloc(NULL, 0, NULL, 0);

244 if (pg == NULL)

245 panic("cpu_startup: "

246 "not enough RAM for buffer cache");
247 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),

248 VM_PROT_READ | VM_PROT_WRITE);

249 curbuf += PAGE_SIZE;

250 curbufsize -= PAGE_SIZE;

94 CHAPTER 4. BUFFER CACHE
251 }
252 b
253 pmap_update (kernel_map->pmap) ;
254
255 /*
256 * Allocate a submap for exec arguments. This map effectively
257 * limits the number of processes exec’ing at any time.
258 */
259 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
260 16*NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
261
262 /*
263 * Finally, allocate mbuf cluster submap.
264 */
265 mb_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
266 nmbclusters * mclbytes, VM_MAP_INTRSAFE, FALSE, NULL);
267
268 #ifdef DEBUG
269 pmapdebug = opmapdebug;
270 #endif
271 format_bytes(pbuf, sizeof (pbuf), ptoa(uvmexp.free));
272 printf ("avail memory = %s\n", pbuf);
273 format_bytes(pbuf, sizeof (pbuf), bufpages * NBPG);
274 printf ("using %u buffers containing %s of memory\n", nbuf, pbuf);
275
276 /*
277 * Set up buffers, so they can be used to read disk labels.
278 */
279 bufinit();
280
281 #if O
282 pmap_redzone() ;
283 #endif
284 }
arch/sparc64/sparc64/machdep.c
From the above function, buffers global variable is defined, in automatically

compile-time generated code by config program, arch/sparc64/compile/MY KERNEL/param.c,

as

194 /
195
196
197
198

arch/sparc64/compile/MY KERNEL /param.c

*
* These have to be allocated somewhere; allocating
* them here forces loader errors if this file is omitted
x (if they’ve been externed everywhere else; hah!).

*/

199 struct buf *buf;
200 char *buffers;

arch/sparc64/compile/MY KERNEL /param.c

and NBPG macro is defined, in machine dependent source code, arch/sparc64/include/param.h,

as

4.5. BUFFER CACHE INITIALIZATION

95

298
299
300

#define PGSHIFT
#define NBPG
#define PGOFSET

13

- arch/sparc64/include/param.h

/* 1og2(NBPG) */

(1<<PGSHIFT) /* bytes/page */

(NBPG-1)

/* byte offset into page */

- arch/sparc64/include/param.h

Global variables used in cpu_startup function, such as nbuf, bufpages, bufcache
is defined in kern/kern_allocsys.c as

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

/%

- arch/sparc64/include/param.h

* Declare these as initialized data so we can patch them.

*/
#ifndef NBUF

define NBUF O
#endif

#ifndef BUFPAGES
define BUFPAGES O
#endif

#ifdef BUFCACHE
if (BUFCACHE < 5)

endif
#else

| | (BUFCACHE > 95)
error BUFCACHE is not between 5 and 95

/* Default to 10% of first 2MB and 5% of remaining. */

define BUFCACHE O
#endif

u_int nbuf = NBUF;

u_int nswbuf = 0;
u_int bufpages =
u_int bufcache

BUFPAGES;
BUFCACHE;

/* optional hardwired count */
/* % of RAM to use for buffer cache */

- arch/sparc64/include/param.h

If you specifies NBUF, or BUFPAGES macro in your kernel configuration file, then
the kernel come to have fixed amount of buffer cache. However, by default, current
NetBSD releases automatically calculates the amount of memory allocated for buffer
cache by setting the value of NBUF, and BUFPAGES to zero ! Automatically calculated
amount of memory allocated for buffer cache is 0.2 MB of the first system memory

plus 5 percent of the remaining system memory.

You can change the 5 percent by setting BUFCACHE macro in your kernel config-
uration file using option command.

This calculation is done by allocsys function called from line 202-206 of
cpu_startup function. The source code of allocsys function is in the kern/kern_allocsys.c

as

119
120

/%

kern/kern_allocsys.c

* Allocate space for system data structures. We are given

96

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

CHAPTER 4. BUFFER CACHE

a starting virtual address and we return a final virtual
address; along the way we set each data structure pointer.

We call allocsys() with O to find out how much space we want,
allocate that much and fill it with zeroes, and then call
allocsys() again with the correct base virtual address.

* X X X X X %

*/

caddr_t
allocsys(caddr_t v, caddr_t (*mdcallback) (caddr_t))
{

/* Calculate the number of callwheels if necessary. */
if (callwheelsize == 0)
callout_setsize();

ALLOCSYS(v, callwheel, struct callout_queue, callwheelsize);
#ifdef CALLWHEEL_STATS
ALLOCSYS(v, callwheel_sizes, int, callwheelsize);
#endif
#ifdef SYSVSHM
ALLOCSYS(v, shmsegs, struct shmid_ds, shminfo.shmmni);
#endif
#ifdef SYSVSEM
ALLOCSYS(v, sema, struct semid_ds, seminfo.semmni);
ALLOCSYS(v, sem, struct __sem, seminfo.semmns);
/* This is pretty disgusting! */
ALLOCSYS(v, semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
#endif
#ifdef SYSVMSG
ALLOCSYS (v, msgpool, char, msginfo.msgmax);
ALLOCSYS(v, msgmaps, struct msgmap, msginfo.msgseg);
ALLOCSYS(v, msghdrs, struct __msg, msginfo.msgtql);
ALLOCSYS(v, msqids, struct msqid_ds, msginfo.msgmni);
#endif

Determine how many buffers to allocate.

- If bufcache is specified, use that % of memory
for the buffer cache.

- Otherwise, we default to the traditiomnal BSD
formula of 10% of the first 2MB and 5% of
the remaining.

if (bufpages == 0) {
if (bufcache != 0) {
if (bufcache < 5 || bufcache > 95)
panic("bufcache is out of range (%d)",
bufcache) ;
bufpages = physmem / 100 * bufcache;
} else {

4.5. BUFFER CACHE INITIALIZATION 97

175 if (physmem < btoc(2 * 1024 * 1024))

176 bufpages = physmem / 10;

177 else

178 bufpages = (btoc(2 * 1024 * 1024) + physmem) /
179 20;

180 }

181 b

182

183 #ifdef DIAGNOSTIC

184 if (bufpages == 0)

185 panic("bufpages = 0");

186 #endif

187

188 /*

189 * Call the mdcallback now; it may need to adjust bufpages.
190 */

191 if (mdcallback != NULL)

192 v = mdcallback(v);

193

194 /*

195 * Ensure a minimum of 16 buffers.

196 */

197 if (nbuf == 0) {

198 nbuf = bufpages;

199 if (nbuf < 16)

200 nbuf = 16;

201 }

202

203 #ifdef VM_MAX_KERNEL_BUF

204 /*

205 * XXX stopgap measure to prevent wasting too much KVM on
206 * the sparsely filled buffer cache.

207 */

208 if (nbuf > VM_MAX_KERNEL_BUF / MAXBSIZE)

209 nbuf = VM_MAX_KERNEL_BUF / MAXBSIZE;

210 #endif

211

212 /*

213 * We allocate 1/2 as many swap buffer headers as file I/0 buffers.
214 */

215 if (nswbuf == 0) {

216 nswbuf = (nbuf / 2) & 1; /* force even */
217 if (nswbuf > 256)

218 nswbuf = 256; /* sanity */

219 b

220 ALLOCSYS(v, buf, struct buf, nbuf);

221

222 return (v);

223 }

kern/kern_allocsys.c

where the ALLOCSYS macro is defined in sys/systm.h as

sys/systm.h

98

CHAPTER 4. BUFFER CACHE

325 #define ALLOCSYS(base, name, type, num) \
(name) = (type *)(base); (base) = (caddr_t)ALIGN((name)+(num))

326

sys/systm.h

where the ALIGN macro is defined in machine dependent source, arch/sparc64/include/param.h

as
- arch/sparc64/include/param.h
95 /*
96 * Round p (pointer or byte index) up to a correctly-aligned value for
97 * the machine’s strictest data type. The result is u_int and must be
98 * cast to any desired pointer type.
99 %
100 * ALIGNED_POINTER is a boolean macro that checks whether an address
101 * is valid to fetch data elements of type t from on this architecture.
102 * This does not reflect the optimal alignment, just the possibility
103 * (within reasonable limits).
104
105 */
106 #define ALIGNBYTES32 0x7
107 #define ALIGNBYTES64 Oxf
108 #ifdef __arch64__
109 #define ALIGNBYTES ALIGNBYTES64
110 #else
111 #define ALIGNBYTES ALIGNBYTES32
112 #endif
113 #define ALIGN(p) (((u_long) (p) + ALIGNBYTES) & ~ALIGNBYTES)
114 #define ALIGN32(p) (((u_long) (p) + ALIGNBYTES32) & ~ALIGNBYTES32)
115 #define ALIGNED_POINTER(p,t) ((((u_long) (p)) & (sizeof(t)-1)) == 0)

- arch/sparc64/include/param.h

Exactly saying, you may not fully understand cpu_start function, until we describe
UVM memory management system. Thing worthy of being remembered is that now
you know

How the physical memory for buffer cache is allocated ?

How can I change the amount of buffer cache ?

After machine dependent, physical memory allocation for buffer
cache, nbuf, bufpages variables are set to relevant values on the
basis of BUFCACHE that is representing how much portion of the
available physical system memory should be allocated for buffer

cache.

buffer global variable is a pointer to virtual memory chunk allo-
cated by UVM for the whole buffer cache.

4.5.2 Initialization of Hash and Free List

bufinit function is called from line 279 of cpu_startup machine dependent func-
tion. The bufinit function initalizes buffer cache hash and its four free lists.

kern/vfs_bio.c

4.5. BUFFER CACHE INITIALIZATION 99

146 /*

147 * Initialize buffers and hash links for buffers.

148 */

149 void

150 bufinit()

151 {

152 struct buf *bp;

153 struct bqueues *dp;

154 u_int i, base, residual;

155

156 /*

157 * Initialize the buffer pool. This pool is used for buffers
158 * which are strictly I/0 control blocks, not buffer cache
159 * buffers.

160 */

161 pool_init (&bufpool, sizeof (struct buf), 0, 0, 0, "bufpl", NULL);
162

163 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)

164 TAILQ_INIT(dp);

165 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
166 base = bufpages / nbuf;

167 residual = bufpages I nbuf;

168 for (i = 0; i < nbuf; i++) {

169 bp = &buf[i];

170 memset ((char *)bp, 0, sizeof (*xbp));

171 bp->b_dev = NODEV;

172 bp->b_vnbufs.le_next = NOLIST;

173 LIST_INIT(&bp->b_dep);

174 bp->b_data = buffers + i * MAXBSIZE;

175 if (i < residual)

176 bp->b_bufsize = (base + 1) * PAGE_SIZE;

177 else

178 bp->b_bufsize = base * PAGE_SIZE;

179 bp->b_flags = B_INVAL;

180 dp = bp->b_bufsize ? &bufqueues[BQ_AGE] : &bufqueues[BQ_EMPTY];
181 binsheadfree(bp, dp);

182 binshash(bp, &invalhash);

183 }

184 }

kern/vfs _bio.c

line 161 initialize the buffer pool. Notice that this buffer pool is completely differ-
ent thing from buffer cache. Buffer cache holds data block specified by logical
file block. Buffer pool, however, is used to transfer data between raw device
and user buffers, and bypass the buffer cache.

Buffer pool is used by physical I/O by device driver layers such as SCSI
controller. When we describe ccd device driver in other chapter, we will
explain how the buffer pool is used.

line 164 Did you review chapter 1 about using linked-list and tail queues ? Then
your will know the line is equivalent to

dp->tqh_first = NULL;
dp->tgh_last = &dp->tgh_first;

100 CHAPTER 4. BUFFER CACHE

This code initializes four buffer cache free lists: LOCKED, LRU, AGE, EMPTY
lists.

line 165 initializes buffer cache hash and receives mask value in bufhash variable.
If are not certain what this line do, review a subsection about description of
kernel hash implementatin, in chapter 1.

line 166-167 nbuf is the number of all buffer cache. bufpages is the number of
all physical memory pages that is available for buffer cache. nbuf is equal to
bufpages unless NBUF kernel configuration variable is explicitly set. Therefore,
by default, these two line is equivalent to

base = 1;
residual = 0;

line 168 Remember that nbuf is the total number of buffer cache in kernel. This
number is displayed in kernel bootstrap message such as

console is keyboard/display
Copyright (c) 1996, 1997, 1998, 1999, 2000, 2001, 2002
The NetBSD Foundation, Inc. All rights reserved.
Copyright (c) 1982, 1986, 1989, 1991, 1993
The Regents of the University of California. All rights reserved.

NetBSD 1.6K (KERNEL) #0: Sat Nov 9 22:09:36 KST 2002
cimon@ultral:/usr/src/syssrc/sys/arch/sparc64/compile/KERNEL

total memory = 128 MB

avail memory = 108 MB

using 832 buffers containing 6656 KB of memory

otpath: /sbus@1f,0/SUNW,fas@e,8800000/sd@0,0

mainbusO (root): SUNW,Ultra-1

cpu0 at mainbusO: SUNW,UltraSPARC @ 170 MHz, version O FPU

cpu0: 32K instruction (32 b/l), 16K data (32 b/1l), 512K external (64 b/1l)

The nbuf variable is set to 832, for a system having the above bootstrap
message.

line 169 Do you remember where buf variable appeared ? We described, in this
section, that buf appears in arch/sparc64/compile/MY KERNEL/param.c as

line 170 clears i-th buffer cache header in the system.

arch/sparc64/compile/MY KERNEL /param.c

199 struct Dbuf *buf;
200 char xbuffers;

arch/sparc64/compile/MY KERNEL /param.c

buf global variables the whole memory chunk that can hold all the buffer
cache header.

This is initialized in line 220 of kern/kern_allocsys.c. The line is equiva-
lent to

4.5. BUFFER CACHE INITIALIZATION 101

ALLOCSYS(v, buf, struct buf, nbuf);

====> buf
A%

(struct buf *) v;
(caddr_t) ALIGN (buf + nbuf);

Therefore, buf points to a memory chunk that can hold all available buffer
cache header in system. Ok 7 If you are not certain, review this section. And
then you are still not certain, please ask me.

buffers global variables the whole memory chunk that can hold all the
buffer cache contents. We already explained, in the previous subsection, how
buffers is initialized.

line 171 Since the buffer pointed by bp is just initialized and empty, this buffer
is not associated with any other physical storage device. Therefore set b_dev
member of the buffer cache header to NODEV.

We showed the whole source code of buffer cache header in a previous section.
And the definition of NODEV macro is in sys/param.h as

sys/param.h

203 #define NODEV (dev_t) (-1) /* non-existent device */

- sys/param.h

line 172 This is some kinds of ad-hoc approach or hacking to make common linked-
list header. b_vnbufs member is a link to a linked-list that holds the vnode
for the buffer cache. However, the head for the linked-list is not defined.
Therefore, instead of using LIST_INIT macro requiring head node, this line
initializes the virtual link-list !

line 173 You may disregard it, since it is only used by Soft Dependency facilities.

line 174 set the b_data member of buffser cache to point the virtual memory chunk
whose size is MAXBSIZE.

line 175-178 by default, only line 178 is effective.

line 179 set the status of buffer cache. Because buffer cache is not associated with
any vnode or valid data, the status is set to B_INVAL.

line 180-181 by default, these two lines are equivalent to
binheadfree(bp, &bufqueues[BQ_AGE]);

meaning that a buffer cache pointed by bp variable is inserted in the head of
AGE list, since the binheadfree is a macro defined as,

kern/vfs _bio.c

110 /*
111 * Insqg/Remq for the buffer free lists.
112 =/

113 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist)
114 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist)

102 CHAPTER 4. BUFFER CACHE

kern/vfs bio.c

line 182 places a buffer cache pointed by bp into invalid hash list. It is natural
that the buffer cache does not go to hash list since it does not contain any

contents.
kern/vfs_bio.c
86 /*
87 * Insq/Remq for the buffer hash lists.
88 x/
89 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
90 #define bremhash (bp) LIST_REMOVE(bp, b_hash)

kern/vfs_bio.c

4.6 Buffer Cache Operation

In this section, we shows list of buffer cache operations that are used by filesystem.
Buffer cache operations are defined in kern/vfs_bio.c and declared in sys/buf.h
as,

sys/buf.h
260 void allocbuf __P((struct buf *, int));
261 void bawrite __P((struct buf *));
262 void bdirty __P((struct buf *));
263 void bdwrite __P((struct buf *));
264 void biodone __P((struct buf *));
265 int biowait __P((struct buf *));
266 int bread __P((struct vnode *, daddr_t, int,
267 struct ucred *, struct buf **));
268 int breada __P((struct vnode *, daddr_t, int, daddr_t, int,
269 struct ucred *, struct buf *x*));
270 int breadn __P((struct vnode *, daddr_t, int, daddr_t *, int *, int,
271 struct ucred *, struct buf **));
272 void brelse __P((struct buf *));
273 void bremfree __P((struct buf *));
274 void bufinit __P((void));
275 int bwrite __P((struct buf *));
276 void cluster_callback __P((struct buf *));
277 int cluster_read __P((struct vnode *, u_quad_t, daddr_t, long,
278 struct ucred *, struct buf *x));
279 void cluster_write __P((struct buf *, u_quad_t));

280 struct buf *getblk __P((struct vnode *, daddr_t, int, int, int));
281 struct buf *geteblk __P((int));

282 struct buf *getnewbuf __P((int slpflag, int slptimeo));

283 struct buf *incore __P((struct vnode *, daddr_t));

284
285 void minphys __P((struct buf *bp));
286 int physio __P((void (*strategy) (struct buf *), struct buf *bp, dev_t dev,

287 int flags, void (*minphys) (struct buf *), struct uio *uio));
288

4.7. MANAGING BUFFER CACHE FREE LISTS 103

289 void Dbrelvp __P((struct buf *));
290 void reassignbuf __P((struct buf *, struct vnode *));
291 void Dbgetvp __P((struct vnode *, struct buf *));

sys/buf.h

4.6.1 Finding a Buffer Cache from Hash: incore function

The following incore function is used to find a buffer cache related with a vnode
that has specific logical file block number. (note that line 596-597)

kern/vfs bio.c

580 /*

581 * Determine if a block is in the cache.

582 * Just look on what would be its hash chain. If it’s there, return
583 * a pointer to it, unless it’s marked invalid. If it’s marked invalid,
584 * we normally don’t return the buffer, unless the caller explicitly
585 * wants us to.

586 */

587 struct buf *
588 incore(vp, blkno)

589 struct vnode *vp;

590 daddr_t blkno;

591 {

592 struct buf *bp;

593

594 /* Search hash chain */

595 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
596 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
597 ITSSET (bp->b_flags, B_INVAL))

598 return (bp);

599 }

600

601 return (NULL);

602 }

kern/vfs_bio.c

line 595 since buffer cache hash is actually an array of linked-lists, this access is
logical. BUFHASH chooses an linked-list from the array. If you are not certain
this operation, review a section describing usage of data structure in kernel,
in chapter 1.

line 596 shows that buffer cache is identified with its associated vnode and logical
file block number.

From the following sections, we will explain what the functions in the above list do.

4.7 Managing Buffer Cache Free Lists

4.7.1 Reusing Old Buffer: bremfree function

The bremfree function is used to remove a buffer cache from a free list.

kern/vfs bio.c

104 CHAPTER 4. BUFFER CACHE

120 void
121 bremfree (bp)

122 struct buf *bp;

123 {

124 int s = splbio();

125

126 struct bqueues *dp = NULL;
127

128 /*
129

130

132
133
134 */

* We only calculate the head of the freelist when removing

* the last element of the list as that is the only time that
131 * it is needed (e.g. to reset the tail pointer).

*

*

NB: This makes an assumption about how tailq’s are implemented.

135 if (TAILQ_NEXT(bp, b_freelist) == NULL) {

136 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
137 if (dp->tqh_last == &bp->b_freelist.tqe_next)
138 break;
139 if (dp == &bufqueues[BQUEUES])

140 panic("bremfree: lost tail");

141 }

142 TAILQ_REMOVE(dp, bp, b_freelist);

143 splx(s);
144 }

kern/vfs_bio.c

124 splbio function blocks hardware interrupts from disks and other storage de-
vices so that the buffer cache coherency is not disturbed.

135 Remind that the definition of TAILQNEXT and b_freelist member in struct

buf as,

#define TAILQ_ENTRY (type)
struct {

struct type *tqe_next; /* next element */
struct type **tqe_prev; /* address of previous next element */

#define TAILQ_NEXT(elm, field)

and

struct buf {
LIST_ENTRY (buf) b_hash;
LIST_ENTRY(buf) b_vnbufs;
TAILQ_ENTRY (buf) b_freelist;
TAILQ_ENTRY (buf) b_actq;

\
\
\
\

((elm)->field.tqge_next)

/*
/%
/%
/%

Hash chain. */

Buffer’s associated vnode. */

Free list position if not active. */
Device driver queue when active. */

4.7. MANAGING BUFFER CACHE FREE LISTS 105

line 135 checks whether the buffer cache pointed by bp pointer is the last
elemenent in any one of four free lists.

line 136-140 find which free list contains the buffer cache. If the buffer cache to
be removed from a free list is not the last element from the free list, there is
no need to know the pointer to header.

But, if the buffer cache to be removed from a free list is the last element, there
need to know the pointer to header

You may wonder why. As the line 133 says, we need to know the implemen-
tation of tail queues to answer this reason.

line 142 remove the buffer cache from a free list.

From the below definition of TAILQ_REMOVE, we can find the why the pointer
to the header of a free list in which the buffer cache pointed by bp lives, when
the buffer cache is the last element of the free list.

#tdefine TAILQ_REMOVE(head, elm, field) do {
QUEUEDEBUG_TAILQ_PREREMOVE((head), (elm), field)
QUEUEDEBUG_TAILQ_OP((elm), field)
if (((elm)->field.tqge_next) != NULL)

(elm)->field.tqe_next->field.tqe_prev =
(elm)->field.tqge_prev;
else
(head)->tqh_last = (elm)->field.tqe_prev;
*x(elm)->field.tqe_prev = (elm)->field.tqe_next;
QUEUEDEBUG_TAILQ_POSTREMOVE((elm), field);
} while (/*CONSTCOND*/0)

P A A

Ok ?

line 143 Restore the interrupt process condition changed by line 124. For your
reference, we show the definition of splbio and splx function of arch/sparc64/include/psl.h
as,

arch/sparc64/include/psl.h

79 /* Interesting spl()s */
80 #define PIL_SCSI 3

81 #define PIL_FDSOFT 4

82 #define PIL_AUSOFT 4

83 #define PIL_BIO 5

355 #define SPLHOLD(name, newpil) \

356 static __inline int name __P((void)); \
357 static __inline int name() \

358 { \

359 int oldpil; \

360 __asm __volatile("rdpr %%pil,%0" : "=r" (oldpil)); \

361 if (newpil <= oldpil) \

362 return oldpil; \

363 __asm __volatile("wrpr %%g0,%0,%kpil" : : "n" (newpil)); \
364 return (oldpil); \

365 }

366 #endif

106 CHAPTER 4. BUFFER CACHE

382 /* Block devices */
383 SPLHOLD(splbio, PIL_BIO)

448 static __inline void splx(newpil)
449 int newpil;

450 #endif

451 {

452 #ifdef SPLDEBUG

457 #endif
458
459 }

arch/sparc64/include/psl.h

4.7.2 Allocating a New Buffer: getnewbuf function

If a process wants to read data from a file, the kernel determines which file system
contains the file and which block in the filesystem contains the data. When about
to read data from a particular disk block, the kernel checks the block is in the buffer
cache and, if it is not there, assigns a new free buffer using getnewbuf function.
Up to now, we presented elaborated description, and from now on we gives brief
explanation to reduce the size of this report :) The algorithm of this function is

start:
if (there is a buffer on AGE free list)
{
remove the buffer from AGE free list;
} else if (there is a buffer on LRU free list)
remove the buffer from LRU free list;
} else {
// There is no buffer in any free lists. Oops !
//
sleep (event any buffers on free list);
return NULL;
}

if (the buffer is being flushed to storage) {
// Note that the buffer under flush is
// just removed from LRU list
//

_asm __volatile("wrpr %%g0,%0,%%pil" : : "rn" (newpil));

set the buffer go to AGE list when the flush is done;

// check whether there is another free buffer */

//
goto start;

set the buffer cache as bust;

if (buffer is marked for delayed write) {

// Kernel must write the ‘delayed write buffer‘‘

4.7. MANAGING BUFFER CACHE FREE LISTS 107

// to storage and allocate another buffer !

//

set the buffer go to AGE list when the flush is done;
start asynchronous write of the buffer to disk;
return NULL;

// The buffer cache do not have filesystem

// logical block number associated with its data.
// Since logical block number is the hash key,

// the buffer cache no longer exist on hash.

//

disassociate the buffer cache from related vnode;
remove the buffer from old hash entry;

return buffer;

When the getnewbuf function returns NULL pointer, the caller of getnewbuf func-
tion generally try again calling the getnewbuf function.

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799

kern/vfs_bio.c

/*
* Find a buffer which is available for use.
* Select something from a free list.
* Preference is to AGE list, then LRU list.
*/
struct buf *
getnewbuf (slpflag, slptimeo)
int slpflag, slptimeo;

{
struct buf *bp;
int s;

start:
s = splbio();

if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE])) !'= NULL ||
(bp = TAILQ_FIRST(&bufqueues[BQ_LRU])) != NULL) {
bremfree (bp) ;
} else {
/* wait for a free buffer of any kind */
needbuffer = 1;
tsleep(&needbuffer, slpflag| (PRIBIO+1), "getnewbuf", slptimeo);
splx(s);
return (NULL);
}

if (ISSET(bp->b_flags, B_VFLUSH)) {
/*
* This is a delayed write buffer being flushed to disk. Make
* sure it gets aged out of the queue when it’s finished, and
* leave it off the LRU queue.
*/
CLR (bp->b_flags, B_VFLUSH);

108 CHAPTER 4. BUFFER CACHE

800 SET (bp->b_flags, B_AGE);

801 splx(s);

802 goto start;

803 }

804

805 /* Buffer is no longer on free lists. */

806 SET (bp->b_flags, B_BUSY);

807

808 /*

809 * If buffer was a delayed write, start it and return NULL
810 * (since we might sleep while starting the write).
811 */

812 if (ISSET(bp->b_flags, B_DELWRI)) {

813 splx(s);

814 /*

815 * This buffer has gone through the LRU, so make sure it gets
816 * reused ASAP.

817 */

818 SET (bp->b_flags, B_AGE);

819 bawrite (bp) ;

820 return (NULL);

821 }

822

823 /* disassociate us from our vnode, if we had one... */
824 if (bp->b_vp)

825 brelvp(bp);

826 splx(s);

827

828 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
829 (*bioops.io_deallocate) (bp);

830

831 /* clear out various other fields */

832 bp->b_flags = B_BUSY;

833 bp->b_dev = NODEV;

834 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
835 bp->b_iodone = 0;

836 bp->b_error = 0;

837 bp->b_resid = 0;

838 bp->b_bcount = 0;

839

840 bremhash (bp) ;

841 return (bp);

842 }

kern/vfs bio.c

Souce code is exact implementation of the algorithm that we just described. The
only exception is line 828-829 that can be ignored since these two lines is only
effective when Soft Dependency facility is enabled.

4.7.3 Adjusting Buffer Size: allocbuf function

The task of allocbuf is to ensure that the buffer has enough physical memory
allocated to it. The data are for each buffer is allocated MAXBSIZE bytes of virtual
address space by bufinit function.

4.7. MANAGING BUFFER CACHE FREE LISTS 109

allocbuf compares the size of the intended data block with the amount of
physical memory already allocated to the buffer.

e If there is excess physical memory,

— and there is a buffer available on the EMPTY list, the excess memory is
put into the empty buffer, and that buffer is then inserted onto the front
of the AGF list.

— If there are no buffers on the EFMPTY lists, the excess physical memory
is retained in the original buffer.

e If the buffer has insufficient memory, it takes memory from other buffers.
allocbuf function does this allocation by calling getnewbuf function that we
described in the previous subsection, to get a second buffer and transfer the
physical memory in the second buffer to the new buffer under construction.

— If there is memory remaining in the second buffer, the second buffer is
released to the front of AGE list, otherwise the second buffer is released
to the EMPTY list.

— If the new buffer still does not have enough physical memory, the process
is repeated.

kern/vfs_bio.c

677 /%

678 * Expand or contract the actual memory allocated to a buffer.

679 *

680 x If the buffer shrinks, data is lost, so it’s up to the

681 * caller to have written it out *first*; this routine will not

682 *x start a write. If the buffer grows, it’s the callers

683 * responsibility to fill out the buffer’s additional contents.

684 x/

685 void

686 allocbuf (bp, size)

687 struct buf *bp;

688 int size;

689 {

690 struct buf *nbp;

691 vsize_t desired_size;

692 int s;

693

694 desired_size = round_page((vsize_t)size);

695 if (desired_size > MAXBSIZE)

696 panic("allocbuf: buffer larger than MAXBSIZE requested");
697

698 if (bp->b_bufsize == desired_size)

699 goto out;

700

701 /*

702 * If the buffer is smaller than the desired size, we need to snarf
703 * it from other buffers. Get buffers (via getnewbuf()), and
704 * steal their pages.

705 */

706 while (bp->b_bufsize < desired_size) {

707 int amt;

110 CHAPTER 4. BUFFER CACHE

708

709 /* find a buffer */

710 while ((nbp = getnewbuf (0, 0)) == NULL)

711 ;

712

713 SET (nbp->b_flags, B_INVAL);

714 binshash(nbp, &invalhash);

715

716 /* and steal its pages, up to the amount we need */
717 amt = min(nbp->b_bufsize, (desired_size - bp->b_bufsize));
718 pagemove ((nbp->b_data + nbp->b_bufsize - amt),

719 bp->b_data + bp->b_bufsize, amt);

720 bp—->b_bufsize += amt;

721 nbp->b_bufsize -= amt;

722

723 /* reduce transfer count if we stole some data */
724 if (nbp->b_bcount > nbp->b_bufsize)

725 nbp->b_bcount = nbp->b_bufsize;

726

727 #ifdef DIAGNOSTIC

728 if (nbp->b_bufsize < 0)

729 panic("allocbuf: negative bufsize");

730 #endif

731

732 brelse(nbp) ;

733 }

734

735 /*

736 * If we want a buffer smaller than the current size,

737 * shrink this buffer. Grab a buf head from the EMPTY queue,
738 * move a page onto it, and put it on front of the AGE queue.
739 * If there are no free buffer headers, leave the buffer alone.
740 */

741 if (bp->b_bufsize > desired_size) {

742 s = splbio();

743 if ((nbp = TAILQ_FIRST(&bufqueues[BQ_EMPTY])) == NULL) {
744 /* No free buffer head */

745 splx(s);

746 goto out;

747 }

748 bremfree (nbp) ;

749 SET (nbp->b_flags, B_BUSY);

750 splx(s);

751

752 /* move the page to it and note this change */

753 pagemove (bp->b_data + desired_size,

754 nbp->b_data, bp->b_bufsize - desired_size);

755 nbp->b_bufsize = bp->b_bufsize - desired_size;

756 bp->b_bufsize = desired_size;

757 nbp->b_bcount = 0;

758 SET (nbp->b_flags, B_INVAL);

759

760 /* release the newly-filled buffer and leave */

761 brelse(nbp) ;

4.7. MANAGING BUFFER CACHE FREE LISTS 111

762 }

763

764 out:

765 bp->b_bcount = size;
766

kern/vfs_bio.c

The only additional information to understand every details of the above code, we
think, is

e b_bcount member in struct buf used in line 724-724 represents the size of
physical memory allocated to that buffer cache

e The reason that brelse function is called at line 761, instead of directly
putting into the AGE list, is to awake any possible process for the availability
of a new buffer.

e round_page macro is defined in uvm/uvm_param.h as

uvm/uvm_param.h

1561 /*

152 * Round off or truncate to the nearest page. These will work
163 * for either addresses or counts (i.e., 1 byte rounds to 1 page).
154 x/

155 #define round_page (x) (((x) + PAGE_MASK) & ~PAGE_MASK)

166 #define trunc_page(x) ((x) & "PAGE_MASK)

uvim/uvm_param.h

where the PAGE_MASK is defined as

uvm/uvm_param.h

96 /*

97 * A1l references to the size of a page should be done with PAGE_SIZE
98 x* or PAGE_SHIFT. The fact they are variables is hidden here so that

99 we can easily make them constant if we so desire.

100 =/

101 #define PAGE_SIZE uvmexp.pagesize /* size of page */

102 #define PAGE_MASK uvmexp . pagemask /* size of page - 1 */

103 #define PAGE_SHIFT uvmexp.pageshift /* bits to shift for pages */

uvm/uvm_param.h

where the uvmexp.pagesize is set up in arch/sparc64/sparc64/pamp.c as,

- arch/sparc64/sparc64/pmap.c

467 void
468 pmap_bootstrap(kernelstart, kernelend, maxctx)
469 u_long kernelstart, kernelend;

470 u_int maxctx;

112 CHAPTER 4. BUFFER CACHE

471 {

491 /*

492 * set machine page size

493 */

494 uvmexp.pagesize = NBPG;

495 uvmexp.ncolors = pmap_calculate_colors();
496 uvm_setpagesize();

- arch/sparc64/sparc64/pmap.c

where the NBPG is defined to 8192 as

arch/sparc64/include/param.h

298 #define PGSHIFT 13 /* log2(NBPG) */
299 #define NBPG (1<<PGSHIFT) /* bytes/page */
300 #define PGOFSET (NBPG-1) /* byte offset into page */

arch/sparc64/include/param.h

Consistency of Physical Memory Mapping

allocbuf function ensures that each physical-memory page is mapped into exactly
one buffer at all times. So, the kernel maintains the consistency by purging old
buffers when files are shortened or removed as follows.

o Whenever a file is removed,

1. the kernel traverses its list of dirty buffers.

2. For each buffer, the kernel cancels its write requests and

3. marks the buffer invalid, so that the buffer cannot be found in the buffer
pool again.

4. Each invalid buffer is put at the front of the AGE list, so that it will be
used before any buffers with potentially useful data.

e For a file being partially truncated, only the buffers following the truncation
point are invalidated.

4.7.4 Getting a Buffer: getblk function

This function is the essential part in reading a logical file block into a buffer cache.
The algorithm of getblk function is

input: logical file block number, and vnode
output: locked buffer that can now be used for reading block,
but not having read the filesystem yet !

start:
if (block is in hash)
{
if (the buffercache is busy 7)
{

4.7. MANAGING BUFFER CACHE FREE LISTS 113

if (UVM is using the block ?7)
{
return NULL;

}

sleep (until a buffer becomes free);

mark the buffer cache busy;
remove the buffer from free list;

}
else
{
if (try to get a new buffer cache failed 7)
{
goto start;
}
place the buffer cache into hash;
associate the buffer cache with vnode;
}

ensure the buffer cache has desired amount of physical memory;
return the buffer cache;

}

The source code for getblk function of kern/kern bio.c is

kern/vfs_bio.c

604 /*

605 x* Get a block of requested size that is associated with
606 * a given vnode and block offset. If it is found in the
607 * block cache, mark it as having been found, make it busy
608 * and return it. Otherwise, return an empty block of the
609 * correct size. It is up to the caller to insure that the
610 * cached blocks be of the correct size.

611 */

612 struct buf *
613 getblk(vp, blkno, size, slpflag, slptimeo)

614 struct vnode *vp;

615 daddr_t blkno;

616 int size, slpflag, slptimeo;

617 {

618 struct buf *bp;

619 int s, err;

620

621 start:

622 bp = incore(vp, blkno);

623 if (bp !'= NULL) {

624 s = splbioQ);

625 if (ISSET(bp->b_flags, B_BUSY)) {
626 if (curproc == uvm.pagedaemon_proc) {
627 splx(s);

628 return NULL;

114

629
630
631
632
633
634
635
636
637

CHAPTER 4. BUFFER CACHE

}
SET (bp->b_flags, B_WANTED);
err = tsleep(bp, slpflag | (PRIBIO + 1), "getblk",

slptimeo);
splx(s);
if (err)
return (NULL);
goto start;

}

638 #ifdef DIAGNOSTIC

639
640
641
642 #endif
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658 }

if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
bp->b_bcount < size && vp->v_type != VBLK)
panic("getblk: block size invariant failed");

SET (bp->b_flags, B_BUSY);
bremfree (bp) ;
splx(s);
} else {
if ((bp = getnewbuf (slpflag, slptimeo)) == NULL)
goto start;

binshash(bp, BUFHASH(vp, blkno));
bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
s = splbio();
bgetvp(vp, bp);
splx(s);
}
allocbuf (bp, size);
return (bp);

kern/vfs_bio.c

For your reference, we show the code of bgetvp function that associate the buffer

cache with vnode.

kern/vfs_subr.c

135 /*

136 * Insq/Remq for the vnode usage lists.

137 */

138 #define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs)

139 #define bufremvn(bp) { \
140 LIST_REMOVE(bp, b_vnbufs); \
141 (bp)->b_vnbufs.le_next = NOLIST; \
142 }

857 /*

858 x Associate a buffer with a vnode.

859 x/

860 void

861 bgetvp(vp, bp)

862 struct vnode *vp;

863 struct buf *bp;

864 {

4.7. MANAGING BUFFER CACHE FREE LISTS 115

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881

int s;

if (bp->b_vp)
panic("bgetvp: not free, bp %p", bp);

VHOLD (vp) ;
s = splbio(Q);
bp->b_vp = vp;
if (vp->v_type == VBLK || vp->v_type == VCHR)
bp->b_dev = vp->v_rdev;
else
bp->b_dev = NODEV;
/*
* Insert onto list for new vnode.
*/
bufinsvn(bp, &vp->v_cleanblkhd);
splx(s);

}

kern/vfs_subr.c

In line 871-873, note that b_vp and b_dev member of the buffer cache is set up to
assiciate the vnode with the buffer. The buffer is inserted into the vnode clean list by
line 879. The VHOLD vnode operation used in line 869 is defined in sys/vnode.h

as

260
261
262

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

sys/vnode.h

#define HOLDRELE (vp) holdrele(vp)

#define VHOLD(vp) vhold(vp)
#define VREF (vp) vref (vp)
/*

* increase buf or page ref

*/

static __inline void

vhold(struct vnode *vp)

{
simple_lock(&vp->v_interlock);
if ((vp->v_freelist.tqe_prev != (struct vnode **)Oxdeadb) &&
vp—->v_holdcnt == 0 && vp->v_usecount == 0) {
simple_lock(&vnode_free_list_slock);
TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
simple_unlock(&vnode_free_list_slock);
}
vp->v_holdcnt++;
simple_unlock(&vp->v_interlock) ;
}

sys/vnode.h

VHOLD vnode operation marks the vnode as active by incrementing vp->v_holdcnt
and moving the vnode from the freelist to the holdlist. Once on the holdlist, the
vnode will not be recycled until it is released with holdrele function.

116

CHAPTER 4. BUFFER CACHE

4.8 Allocating and Reading Filesystem with Buffer

Cache

From this section, the description is presented briefly as possible as we can, so that
we improve on analysis speed.

186 static

kern/vfs_bio.c

_inline struct buf x*

187 bio_doread(vp, blkno, size, cred, async)

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

}

struct vnode *vp;
daddr_t blkno;

int size;

struct ucred *cred;
int async;

struct buf *bp;
struct proc *p = (curproc != NULL ? curproc : &procO); /* XXX */

bp = getblk(vp, blkno, size, 0, 0);

/*

*

If buffer does not have data valid, start a read.

* Note that if buffer is B_INVAL, getblk() won’t return it.

* Therefore, it’s valid if it’s I/0 has completed or been delayed.
*/

if ('ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {

/* Start I/0 for the buffer. x/

SET(bp->b_flags, B_READ | async);

VOP_STRATEGY (bp) ;

/* Pay for the read. */
p->p_stats->p_ru.ru_inblock++;
} else if (async) {
brelse(bp);
}

return (bp);

kern/vfs _bio.c

line 197 get buffer containing the block or new block from buffer cache hash. This
buffer is locked and on hash list, but not on free list.

line 204 check the block is already containing the desired block.

line 207 calls filesystem strategy routine. If the target filesystem is Fast Filesys-
tem, then ufs_strategy is called. Ths VOP_STRATEGY is defined as,

sys/vnode_f.h

1606 static __inline int VOP_STRATEGY (bp)

1607
1608 {

struct buf *bp;

4.8. ALLOCATING AND READING FILESYSTEM WITH BUFFER CACHE117

1609 struct vop_strategy_args a;

1610 a.a_desc = VDESC(vop_strategy);

1611 a.a_bp = bp;

1612 return (VCALL(bp->b_vp, VOFFSET(vop_strategy), &a));
1613 }

sys/vnode_f.h

line 211-212 Why should this buffer be returned to free list 7 Since asyncronoous
read is requested for a block already on buffer cache hash, these lines try to
return the buffer to free list.

ufs/ufs/ufs_vnops.c

1655 /*
1656 * Calculate the logical to physical mapping if not done already,
1657 * then call the device strategy routine.

1658 */

1659 int

1660 ufs_strategy(void *v)

1661 {

1662 struct vop_strategy_args /* {

1663 struct buf *a_bp;

1664 } %/ *ap = v;

1665 struct buf *bp;

1666 struct vnode *Vp;

1667 struct inode *1ip;

1668 int error;

1669

1670 bp = ap->a_bp;

1671 vp = bp->b_vp;

1672 ip = VTOI(vp);

1673 if (vp->v_type == VBLK || vp->v_type == VCHR)
1674 panic("ufs_strategy: spec");

1675 KASSERT (bp->b_bcount != 0);

1676 if (bp->b_blkno == bp->b_lblkno) {

1677 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1678 NULL) ;

1679 if (error) {

1680 bp->b_error = error;

1681 bp->b_flags |= B_ERROR;

1682 biodone (bp) ;

1683 return (error);

1684 }

1685 if ((long)bp->b_blkno == -1) /* no valid data */
1686 clrbuf (bp) ;

1687 }

1688 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1689 biodone (bp) ;

1690 return (0);

1691 b

1692 vp = ip->i_devvp;

1693 bp->b_dev = vp->v_rdev;

1694 VOCALL (vp->v_op, VOFFSET(vop_strategy), ap);

118 CHAPTER 4. BUFFER CACHE

1695 return (0);
1696 }

ufs/ufs/ufs_vnops.c

line 1672 obtains a pointer to inode. The definition of VTOT is

ufs/ufs/inode.h

191 /* Convert between inode pointers and vnode pointers. */
192 #define VTOI(vp) ((struct inode *) (vp)->v_data)
193 #define ITOV(ip) ((ip)->i_vnode)

ufs/ufs/inode.h

line 1677 changes the logical block number of a file relative to the beginning of a
file, to the physical block number of a filesystem relative to the beginning of a
partition. b_1blkno member contains the logical block number of a file asso-
ciated with the vnode. b_blkno member contains the physical block number
of a filesystem.

line 1686 clears the buffer’s data area. The macro definition is sys/buf.h

line 1692-1694 obtains the vnode for device driver of the filesystem such as CCD
pseudo device driver, or SCSI general layer. And then, the strategy function
of the driver or layer is called via specfs virtual filesystem layer ! If the
strategy function of the SCSI general layer is called, the function then calls
the start function of SCSI device driver such as Adaptec Fast-Wide, or LSI
logic controller, using physio function of kern/kern_physio.c.

biodone function is called by a device driver to mark I/O complete on the buffer
that is just read or written.

kern/vfs_bio.c

869 /x*

870 * Mark I/0 complete on a buffer.

871 *

872 x If a callback has been requested, e.g. the pageout

873 * daemon, do so. Otherwise, awaken waiting processes.

874 *

8756 x [Leffler, et al., says on p.247:

876 x "This routine wakes up the blocked process, frees the buffer
877 x for an asynchronous write, or, for a request by the pagedaemon
878 x process, invokes a procedure specified in the buffer structure"]
879 *

880 * In real life, the pagedaemon (or other system processes) wants

881 * to do async stuff to, and doesn’t want the buffer brelse()’d.

882 * (for swap pager, that puts swap buffers on the free lists (!!!),
883 * for the vn device, that puts malloc’d buffers on the free lists!)
884 */

885 void

886 biodone (bp)

887 struct buf *bp;

888 {

4.8. ALLOCATING AND READING FILESYSTEM WITH BUFFER CACHE119

889 int s = splbio();

890

891 if (ISSET(bp->b_flags, B_DONE))

892 panic("biodone already");

893 SET (bp->b_flags, B_DONE) ; /* note that it’s done */
894

895 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)

896 (*bioops.io_complete) (bp);

897

898 if ('ISSET(bp->b_flags, B_READ)) /* wake up reader */

899 vwakeup (bp) ;

900

901 if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */
902 CLR(bp->b_flags, B_CALL); /* but note callout done */
903 (*¥bp->b_iodone) (bp) ;

904 } else {

905 if (ISSET(bp->b_flags, B_ASYNC)) /* if async, release */
906 brelse(bp);

907 else { /* or just wakeup the buffer */
9208 CLR(bp->b_flags, B_WANTED);

909 wakeup (bp) ;

910 }

911 }

912

913 splx(s);

914 }

kern/vfs bio.c

line 898-899 Recall that the B.READ flag is set by bio_doread function. If this
flag is not set, then biodone is called after write, therefore, decrease number
of pending write in vnode structure. The definition of vwakeup function is

- kern/vfs_subr.c

630 /*

631 * Update outstanding I/0 count and do wakeup if requested.

632 */

633 void

634 vwakeup (bp)

635 struct buf *bp;

636 {

637 struct vnode *vp;

638

639 if ((vp = bp->b_vp) != NULL) {

640 if (--vp->v_numoutput < 0)

641 panic("vwakeup: neg numoutput, vp %p", vp);
642 if ((vp->v_flag & VBWAIT) && vp->v_numoutput <= 0) {
643 vp->v_flag &= “VBWAIT;

644 wakeup ((caddr_t)&vp->v_numoutput) ;

645 }

646 }

647 }

- kern/vfs subr.c

120 CHAPTER 4. BUFFER CACHE

line 905-906 returns a buffer that just finished asynchronous read to free list, since
it is not immediately used. Remember that brelse function clears B_BUSY flag
which is set by getblk function.

line 907-910 just wakeup the process waiting from biowait function for the com-
pletion of I/0.
4.8.1 Just Read: bread function

The filesystem allocates and fills buffers by calling the bread function. Bread func-
tion

e Takes a vnode, a logical block number, and a size, and

e Returns a pointer to a locked buffer.

It is important to remember that any other process that tries to obtain the
buffer will be put to sleep until the buffer is released.

kern/vfs_bio.c

218 /*
219 * Read a disk block.
220 * This algorithm described in Bach (p.54).

221 x/

222 int

223 bread(vp, blkno, size, cred, bpp)

224 struct vnode *vp;

225 daddr_t blkno;

226 int size;

227 struct ucred *cred;

228 struct buf **bpp;

229 {

230 struct buf *bp;

231

232 /* Get buffer for block. */

233 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
234

235 /* Wait for the read to complete, and return result. */
236 return (biowait(bp));

237 }

kern/vfs bio.c

line 236 Remember that this is synchronous read, not asynchronous. The differ-
ence between them is that synchronous read wait for the completion of read
operation from filesystem, but asynchronous read does not wait. To differen-
tiate this trait, see the breadn function.

kern/vfs_bio.c

844 /*

845 * Wait for operations on the buffer to complete.

846 * When they do, extract and return the I/0’s error value.
847 x/

848 int

849 biowait (bp)

4.8. ALLOCATING AND READING FILESYSTEM WITH BUFFER CACHE121

850 struct buf *bp;

851 {

852 int s;

853

854 s = splbio();

855 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
856 tsleep(bp, PRIBIO + 1, "biowait", 0);

857 splx(s);

858

859 /* check for interruption of I/0 (e.g. via NFS), then errors. */
860 if (ISSET(bp->b_flags, B_EINTR)) {

861 CLR(bp->b_flags, B_EINTR);

862 return (EINTR);

863 } else if (ISSET(bp->b_flags, B_ERROR))

864 return (bp->b_error 7 bp->b_error : EIO);
865 else

866 return (0);

867 }

kern/vfs bio.c
The places where the biowait function is called are,
bread function to wait for the completion of synchronous read.

breadn function to wait for the completion of synchronous read of the only first
block: the rest block from the second to the end are asynchoronously read, so
that the biowait function is not used for the I/O completion of those blocks.

bwrite function to wait for the completion of synchronous write.

line 855-856 sleep until biodone function called by the relevant device driver
strategy function, awakens this line.

4.8.2 Read Ahead Multiple Buffers: breadn function

kern/vfs_bio.c

239 /x*
240 x Read-ahead multiple disk blocks. The first is sync, the rest async.
241 * Trivial modification to the breada algorithm presented in Bach (p.55).

242 x/

243 int

244 breadn(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp)
245 struct vnode *vp;

246 daddr_t blkno; int size;

247 daddr_t rablks[]; int rasizesl[];

248 int nrablks;

249 struct ucred *cred;

250 struct buf **bpp;

251 {

252 struct buf *bp;

253 int i;

254

255 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);

256

122 CHAPTER 4. BUFFER CACHE

257 /*

258 * For each of the read-ahead blocks, start a read, if necessary.
259 */

260 for (i = 0; i < nrablks; i++) {

261 /* If it’s in the cache, just go on to next one. */

262 if (incore(vp, rablks[i]))

263 continue;

264

265 /* Get a buffer for the read-ahead block */

266 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
267 }

268

269 /* Otherwise, we had to start a read for it; wait until it’s valid. */
270 return (biowait(bp));

271 }

kern/vfs_bio.c

line 270 only waits for the first block. It does not wait for the other blocks to finish
I/0, since those blocks are read-ahead blocks and processed with asynchronous
read.

4.8.3 Read Ahead a Single Buffer: breada function

kern/vfs_bio.c

273 /*

274 * Read with single-block read-ahead. Defined in Bach (p.55), but
275 * implemented as a call to breadn().

276 x XXX for compatibility with old file systems.

277 */

278 int

279 breada(vp, blkno, size, rablkno, rabsize, cred, bpp)
280 struct vnode *vp;

281 daddr_t blkno; int size;

282 daddr_t rablkno; int rabsize;

283 struct ucred *cred;

284 struct buf **bpp;

285 {

286

287 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
288 }

kern/vfs_bio.c

4.9 Releasing Buffer Cache

A buffer can be relased by four ways: by brelse, bdwrite, bawrite, or bwrite
function. The first one releases clean buffer and the latter three releases dirty
buffer. dirty buffer means that a buffer which is modified and not yet written to
storage.

4.9. RELEASING BUFFER CACHE 123

4.9.1 Just Release: brelse function

brelse function releases a buffer when the buffer has NOT BEEN MODIFIED.
This function

1. returns the buffer to free list and

2. awakens any process that are awaiting for it.

The essential algorithm of this function[2] is

1. wakeup all processes that is waiting for ANY buffer to become free
:from getnewbuf () function

2. wakeup all processes that is waiting for THIS buffer to become free
:from getblk() function

3. if (buffer contents is invalid or having no physical memory 7)

{
if (buffer is invalid ?)
enqueue buffer at beginning of AGE free list
else
enqueue buffer at beginning of EMPTY free list
b
else
{
if
enqueue buffer at end of free list
b

4. unlock buffer

kern/vfs_bio.c

468 /*
469 *x Release a buffer on to the free lists.
470 * Described in Bach (p. 46).

471 */

472 void

473 brelse(bp)

474 struct buf *bp;

475 {

476 struct bqueues *bufq;

477 int s;

478

479 KASSERT (ISSET (bp->b_flags, B_BUSY));
480

481 /* Wake up any processes waiting for any buffer to become free.
482 if (needbuffer) {

483 needbuffer = 0;

484 wakeup (&needbuffer) ;

485 }

486

487 /* Block disk interrupts. */

488 s = splbio();

489

*/

124 CHAPTER 4. BUFFER CACHE

490 /* Wake up any proceeses waiting for _this_ buffer to become free. */
491 if (ISSET(bp->b_flags, B_WANTED)) {

492 CLR(bp->b_flags, B_WANTED|B_AGE);

493 wakeup (bp) ;

494 }

495

496 /*

497 * Determine which queue the buffer should be on, then put it there.
498 */

499

500 /* If it’s locked, don’t report an error; try again later. */

501 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
502 CLR(bp->b_flags, B_ERROR);

503

504 /* If it’s not cacheable, or an error, mark it invalid. */

505 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))

506 SET (bp->b_flags, B_INVAL);

507

508 if (ISSET(bp->b_flags, B_VFLUSH)) {

509 /*

510 * This is a delayed write buffer that was just flushed to
511 * disk. It is still on the LRU queue. If it’s become
512 * invalid, then we need to move it to a different queue;
513 * otherwise leave it in its current position.

514 */

515 CLR (bp->b_flags, B_VFLUSH);

516 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE))
517 goto already_queued;

518 else

519 bremfree (bp) ;

520 }

521

522 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {

523 /%

524 * If it’s invalid or empty, dissociate it from its vnode
525 * and put on the head of the appropriate queue.

526 */

527 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
528 (*bioops.io_deallocate) (bp);

529 CLR(bp->b_flags, B_DONE|B_DELWRI);

530 if (bp->b_vp) {

531 reassignbuf (bp, bp->b_vp);

532 brelvp(bp);

533 }

534 if (bp->b_bufsize <= 0)

535 /* no data */

536 bufq = &bufqueues [BQ_EMPTY];

537 else

538 /* invalid data */

539 bufq = &bufqueues [BQ_AGE];

540 binsheadfree(bp, bufq);

541 } else {

542 /*

543 * It has valid data. Put it on the end of the appropriate

4.9. RELEASING BUFFER CACHE

544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

571 already_queued:

/* Unlock the buffer. =/

CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE) ;
SET (bp->b_flags, B_CACHE);

572
573
574
575
576
577
578 }

* ¥ ¥ ¥ %

*/

125

queue, so that it’ll stick around for as long as possible.
If buf is AGE, but has dependencies, must put it on last
bufqueue to be scanned, ie LRU. This protects against the
livelock where BQ_AGE only has buffers with dependencies,
and we thus never get to the dependent buffers in BQ_LRU.

if (ISSET(bp->b_flags, B_LOCKED))

else if

else {

}

/* locked in core */

bufq = &bufqueues[BQ_LOCKED] ;
(1 ISSET(bp->b_flags, B_AGE))
/* valid data */

bufq = &bufqueues[BQ_LRU];

/* stale but valid data */
int has_deps;

if (LIST_FIRST(&bp->b_dep) != NULL &&
bioops.io_countdeps)
has_deps = (*bioops.io_countdeps) (bp, 0);
else
has_deps = 0;
bufq = has_deps 7 &bufqueues[BQ_LRU]
&bufqueues [BQ_AGE] ;

binstailfree(bp, bufq);

/* Allow disk interrupts. */

kern/vfs_bio.c

line 501-502 might be disregarded, if you do not focus on LFS, since only the LF'S
uses the LOCKED free list.

line 505-506 B_NOCACHE flag says that the buffer should not be cached after use.
Therefore, it is set up with B_INVAL flag. The buffer with this flag can be on
a free list, but the buffer cannot be searched by incore function.

line 508-520 B_VFLUSH flag says that the buffer is being flushed to disk. Buffers
are set with this flag by

e vinvalbuf function of kern/vfs_subr.c that flush out and invalidate

all buffers associated with a vnode.

e ffs full fsync function of ufs/ffs/ffs vnops.c to flush out all dirty

data associated with a vnode.

e ffs fsync function of ufs/ffs/ffs_vnops.c to flush out ranged dirty

data associated with a vnode.

126 CHAPTER 4. BUFFER CACHE

If otherwise specified, ths buffer with B_-VFLUSH flag stays in free list longer
than other buffers: see line 793-803 of getnewbuf function scheduling a
buffer of this kind to move from LRU free list to AGE free list, instead of
immediate reuse.

line 557-566 If Soft Dependency facility is not enabled, has_deps variable is set
to 1.

The reassign function used in line 531 is used to update the status of vnode
associated the buffer cache before calling brelvp function in line 532. According
to the

kern/vfs_subr.c

915 /%

916 * Reassign a buffer from one vnode to another.

917 x Used to assign file specific control information
918 * (indirect blocks) to the vnode to which they belong.
919 *

920 * This function must be called at splbio().

921 */

922 void

923 reassignbuf (bp, newvp)

924 struct buf *bp;

925 struct vnode *newvp;

926 {

927 struct buflists *listheadp;

928 int delay;

929

930 /*

931 * Delete from old vnode list, if on omne.

932 */

933 if (LIST_NEXT(bp, b_vnbufs) != NOLIST)

934 bufremvn (bp) ;

935 /*

936 * If dirty, put on list of dirty buffers;

937 * otherwise insert onto list of clean buffers.
938 */

939 if ((bp->b_flags & B_DELWRI) == 0) {

940 listheadp = &newvp->v_cleanblkhd;

941 if (TAILQ_EMPTY (&newvp->v_uobj.memq) &&
942 (newvp->v_flag & VONWORKLST) &&
943 LIST_FIRST(&newvp->v_dirtyblkhd) == NULL) {
944 newvp->v_flag &= “VONWORKLST;
945 LIST_REMOVE(newvp, v_synclist);
946 }

947 } else {

948 listheadp = &newvp->v_dirtyblkhd;

949 if ((newvp->v_flag & VONWORKLST) == 0) {
950 switch (newvp->v_type) {

951 case VDIR:

952 delay = dirdelay;

953 break;

954 case VBLK:

955 if (newvp->v_specmountpoint != NULL)

4.9. RELEASING BUFFER CACHE 127

956 delay = metadelay;

957 break;

958 }

959 /* fall through */

960 default:

961 delay = filedelay;

962 break;

963 }

964 if (!'newvp->v_mount |

965 (newvp->v_mount->mnt_flag & MNT_ASYNC) == 0)
966 vn_syncer_add_to_worklist(newvp, delay);
967 }

968 }

969 bufinsvn(bp, listheadp);

970 }

kern/vfs_subr.c

where the definition of brelvp function is

kern/vfs_subr.c

883 /*

884 * Disassociate a buffer from a vnode.

885 */

886 void

887 brelvp(bp)

888 struct buf *bp;

889 {

890 struct vnode *vp;

891 int s;

892

893 if (bp->b_vp == NULL)

894 panic("brelvp: vp NULL, bp %p", bp);
895

896 s = splbio();

897 vp = bp->b_vp;

898 /%

899 * Delete from old vnode list, if on one.
900 x/

901 if (LIST_NEXT(bp, b_vnbufs) != NOLIST)
902 bufremvn (bp) ;

903

904 if (TAILQ_EMPTY (&vp->v_uobj.memq) && (vp->v_flag & VONWORKLST) &&
905 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
906 vp—->v_flag &= “VONWORKLST;

907 LIST_REMOVE(vp, v_synclist);

908 }

909

910 bp—>b_vp = NULL;

911 HOLDRELE (vp) ;

912 splx(s);

913 %}

kern/vfs_subr.c

128 CHAPTER 4. BUFFER CACHE

4.9.2 Delayed Write: bdwrite function

bdwrite function releases a buffer when the buffer has been MODIFIED and EX-
PECTED to be modified soon again. This function

1. marks the buffer as dirty with B.DIRTY flags, but is not immediately written.
Instead,

2. returns the buffer to the free list and

3. awakens any processes waiting for it.

kern/vfs bio.c

380 /x*

381 * Delayed write.

382 *

383 * The buffer is marked dirty, but is not queued for I/0.

384 x This routine should be used when the buffer is expected
385 * to be modified again soon, typically a small write that
386 * partially fills a buffer.

387 *

388 x NB: magnetic tapes cannot be delayed; they must be

389 x written in the order that the writes are requested.

390 *

391 x Described in Leffler, et al. (pp. 208-213).

392 x/

393 void

394 bdwrite (bp)

395 struct buf *bp;

396 {

397 struct proc *p = (curproc != NULL ? curproc : &procO); /* XXX %/
398 const struct bdevsw *bdev;

399 int s;

400

401 /* If this is a tape block, write the block now. */
402 /* XXX NOTE: the memory filesystem usurpes major device */
403 /* XXX number 4095, which is a bad idea. */
404 if (bp->b_dev != NODEV && major (bp->b_dev) != 4095) {
405 bdev = bdevsw_lookup(bp->b_dev);

406 if (bdev != NULL && bdev->d_type == D_TAPE) {
407 bawrite(bp) ;

408 return;

409 }

410 }

411

412 /*

413 * If the block hasn’t been seen before:

414 * (1) Mark it as having been seen,

415 * (2) Charge for the write,

416 * (3) Make sure it’s on its vnode’s correct block list.
417 */

418 s = splbio();

419

420 if (!ISSET(bp->b_flags, B_DELWRI)) {

421 SET (bp->b_flags, B_DELWRI);

4.9. RELEASING BUFFER CACHE 129

422
423
424
425
426
427
428
429
430
431

p—->p_stats->p_ru.ru_oublock++;
reassignbuf (bp, bp->b_vp);
b

/* Otherwise, the "write" is done, so mark and release the buffer.

CLR(bp->b_flags, B_NEEDCOMMIT|B_DONE) ;
splx(s);

brelse(bp);
}

kern/vfs bio.c

4.9.3 Asynchronous Write: bawrite function

bawrite function releases a buffer when the buffer has been MODIFIED and NOT
EXPECTED to modified soon again. This function

1. schedules an I/O on the buffer, but

2. allows the caller to continue running while the scheduled I/O completes.

Implementation of bawrite is the same as bwrite function that does syn-
chronous write except the bawrite set B_LASYNC flag. Now we will describe the
reason with source code.

433
434
435
436
437
438
439
440
441
442
443

kern/vfs _bio.c

/*
* Asynchronous block write; just an asynchronous bwrite().

*/

void

bawrite (bp)
struct buf *bp;

{
SET (bp->b_flags, B_ASYNC);
VOP_BWRITE (bp) ;

}

kern/vfs_bio.c

where the definition of VOP_BWRITE is, unless we are compiling assuming we are not
using loadable kernel module (LKM),

1630
1631
1632
1633

1634

1635
1636
1637

sys/vnode_f.h

static __inline int VOP_BWRITE(bp)

struct buf *bp;
{

struct vop_bwrite_args a;

a.a_desc = VDESC(vop_bwrite);

a.a_bp = bp;

return (VCALL(bp->b_vp, VOFFSET(vop_bwrite), &a));
}

sys/vnode_f.h

*/

130 CHAPTER 4. BUFFER CACHE

where the line 1636 would call, if we are using FFS, vn_bwrite function, since the
vnode operation vector description table of FFS is defined in ufs/ffs/vfs_vnops.c
as, (notice the line 121)

71 /* Global vfs data structures for ufs. */
72 int (**ffs_vnodeop_p) __P((void *));
73 const struct vnodeopv_entry_desc ffs_vnodeop_entries[] = {

74 { &vop_default_desc, vn_default_error 1},

75 { &vop_lookup_desc, ufs_lookup }, /* lookup */
76 { &vop_create_desc, ufs_create }, /* create *x/
77 { &vop_whiteout_desc, ufs_whiteout 1}, /* whiteout */
78 { &vop_mknod_desc, ufs_mknod 1}, /* mknod */
79 { &vop_open_desc, ufs_open }, /* open */

80 { &vop_close_desc, ufs_close 1}, /* close */
81 { &vop_access_desc, ufs_access }, /* access *x/
82 { &vop_getattr_desc, ufs_getattr 1}, /* getattr */
83 { &vop_setattr_desc, ufs_setattr 1, /* setattr *x/
84 { &vop_read_desc, ffs_read }, /* read */
121 { &vop_bwrite_desc, vn_bwrite I}, /* burite */
124 { NULL, NULL }

The code of vn_bwrite called by FFS VOP_BWRITE operation is,

kern/vfs bio.c

371 int

372 vn_bwrite(v)

373 void *v;

374 {

375 struct vop_bwrite_args *ap = v;
376

377 return (bwrite(ap->a_bp));

378 }

kern/vfs_bio.c

Therefore, for FFS, bawrite function calls bwrite function after setting B_ASYNC
flag on the buffer.

4.9.4 Synchronous Write: bwrite function

bwrite function releases a buffer when the buffer has been MODIFIED. This func-
tion ENSURES that the writing the buffer to storage is complete before proceeding.

kern/vfs_bio.c

290 /*
291 * Block write. Described in Bach (p.56)
292 */

293 int

4.9. RELEASING BUFFER CACHE 131

294 bwrite(bp)

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

{

struct buf *bp;

int rv, sync, wasdelayed, s;

struct proc *p = (curproc != NULL ? curproc : &procO); /* XXX */

struct vnode *vp;
struct mount *mp;

vp = bp->b_vp;
if (vp '= NULL) {
if (vp->v_type == VBLK)
mp = vp->v_specmountpoint;

else
mp = vp->v_mount;
} else {
mp = NULL;
}
/*

Remember buffer type, to switch on it later. If the write was
synchronous, but the file system was mounted with MNT_ASYNC,

XXX note that this relies on delayed tape writes being converted

*
*

* convert it to a delayed write.

*

* to async, not sync writes (which is safe, but ugly).

sync = !ISSET(bp->b_flags, B_ASYNC);

if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
bdwrite (bp) ;
return (0);

3

/%

* Collect statistics on synchronous and asynchronous writes.

* Writes to block devices are charged to their associated
* filesystem (if any).

*/
if (mp '= NULL) {
if (sync)
mp->mnt_stat.f_syncwrites++;
else
mp->mnt_stat.f_asyncwrites++;
b

wasdelayed = ISSET(bp->b_flags, B_DELWRI);
s = splbio();
CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));

/*

* Pay for the I/0 operation and make sure the buf is on the
* vnode queue.

*/

if (wasdelayed)

correct

132 CHAPTER 4. BUFFER CACHE

348 reassignbuf (bp, bp->b_vp);

349 else

350 p—->p_stats->p_ru.ru_oublock++;
351

352 /* Initiate disk write. Make sure the appropriate party is charged.
353 bp->b_vp->v_numoutput++;

354 splx(s);

355

356 VOP_STRATEGY (bp) ;

357

358 if (sync) {

359 /* If I/0 was synchronous, wait for it to complete. */
360 rv = biowait (bp);

361

362 /* Release the buffer. */

363 brelse(bp);

364

365 return (rv);

366 } else {

367 return (0);

368 }

369 }

kern/vfs bio.c

Buffers that are written using bawrite or bwrite function are placed on the
appropriate output queue. When the output completes, the brelse function is
called to return those buffers to the free list and to awaken any processes that are
waiting for them.

For asynchronous write, the buffer is returned to free list by line 906 of biodone
function called by the relevant device driver strategy function.

For synchronous write, the buffer is returned to free list by line 363 of burite
function after waiting for the completion of write.

4.10 References to Source Code

4.10.1 kern/vfs_bio.c - 334 lines, 21 functions
Global Variables
LIST_HEAD (bufhashhdr, buf) *bufhashtbl, invalhash; // buffer cache hash

u_long bufhash; // buffer cache hash mask

TAILQ_HEAD (bqueues, buf) bufqueues [BQUEUES] ; // buffer cache free lists

int needbuffer; // buffer cache locking

struct pool bufpool; // buffers for physio()
Functions

bremfree()
bufinit ()
bio_doread()
bread ()
breadn()
breada()
bwrite()

*/

4.10. REFERENCES TO SOURCE CODE 133

vn_bwrite()
bdwrite ()
bawrite()
bdirty ()
brelse()
incore()
getblk ()
geteblk ()
allocbuf ()
getnewbuf ()
biowait ()
biodone ()
count_lock_queue()
vis_bufstats()

134 CHAPTER 4. BUFFER CACHE

Chapter 5

Vnode

5.1

5.2

Introduction

The vnode is the focus of all file activity in NetBSD. There is a unique vnode
allocated for each active file, directory, mounted-on file, fifo, domain socket, symbolic
link and device. The kernel has no concept of afile’s structure and so it relies on
the information stored in the vnode to describe the file. Thus, the vnode associated
with a file holds all the adminstration information pertaining to it.

When a process requests an operation on a file, the vfs interface passes control to a
file system type dependent function to carry out the opera-tion. If the file system
type dependent function finds that a vnode rep-resenting the file is not in main
memory, it dynamically allocates a new vnode from the system main memory pool.
Once allocated, the vnode is at-tached to the data structure pointer associated with the
cause of the vn-ode allocation and it remains resident in the main memory until the
sys-tem decides that it is no longer needed and can be recycled.

Vnode Management Function
The vnode has the following structure:

struct vnode {

struct uvm_object v_uobj; /* uvm object */

#define v_usecount v_uobj.uo_refs

#define v_interlock v_uobj.vmobjlock
voff_t v_size; /* size of file */
int v_flag; /* flags */
int v_numoutput; /* num pending writes */
long v_writecount; /* ref count of writers */
long v_holdcnt; /* page & buffer refs */
daddr_t v_lastr; /* last read */
u_long v_id; /* capability id */
struct mount *v_mount; /* ptr to vfs we are in */
int (x*v_op) (void *); /* vnode ops vector */
TAILQ_ENTRY (vnode) v_freelist; /* vnode freelist */
LIST_ENTRY(vnode) v_mntvnodes; /* vnodes for mount pt */
struct buflists v_cleanblkhd; /* clean blocklist head */

135

136 CHAPTER 5. VNODE

struct buflists v_dirtyblkhd; /* dirty blocklist head */
LIST_ENTRY(vnode) v_synclist; /* dirty vnodes */
union {
struct mount xvu_mountedhere;/* ptr to mounted vfs */
struct socket *vu_socket; /* unix ipc (VSOCK) */

struct specinfo *vu_specinfo; /* device (VCHR, VBLK) */
struct fifoinfo *vu_fifoinfo; /*x fifo (VFIFO) */

} v_un;

#define v_mountedhere v_un.vu_mountedhere

#define v_socket v_un.vu_socket

#define v_specinfo v_un.vu_specinfo

#define v_fifoinfo v_un.vu_fifoinfo
struct nqlease *v_lease; /* Soft ref to lease */
enum vtype v_type; /* vnode type */
enum vtagtype v_tag; /* underlying data type */
struct lock v_lock; /* lock for this vnode */
struct lock *v_vnlock; /* ptr to vnode lock */
void *v_data; /* private data for fs */

};

Most functions discussed in this page that operate on vnodes cannot be called from
interrupt context. The members v_numoutput, v_holdcnt, v_dirtyblkhd,
v_cleanblkhd, v_freelist, and v_synclist are modified in interrupt context and
must be protected by splbio(9) unless it is certainthat there is no chance an
interrupt handler will modify them. The vnode lock must not be acquired within
interrupt context.

5.2.1 Vnode Flag
Vnode flags are recorded by v_flag. Valid flags are:

VROOT This vnode is the root of its file system.

VTEXT This vnode is a pure text prototype

VEXECMAP This vnode has executable mappings

VSYSTEM This vnode being used by kernel; only used to skip the
vflush() operation quota files.

VISTTY This vnode represents a tty; used when reading dead vn-
odes.

VXLOCK This vnode is currently locked to change underlying
type.

VXWANT A process is waiting for this vnode.

VBWAIT Waiting for output associated with this vnode to com-
plete.

VALIASED This vnode has an alias.

VDIROP This vnode is involved in a directory operation. This
flag is used exclusively by LFS.

VLAYER This vnode is on a layer filesystem.

VONWORKLST This vnode is on syncer work-list.

VDIRTY This vnode possibly has dirty pages.

The VXLOCK flag is used to prevent multiple processes from entering the vnode
reclamation code. It is also used as a flag to indicate that reclamation is in progress.
The VXWANT flag is set by threads that wish to be awaken when reclamation is
finished. Before v_flag can be modified,

5.2. VNODE MANAGEMENT FUNCTION 137

the v_interlock simplelock must be acquired. See lock(9) for details on the
kernel locking API.

vflush(mp, skipvp, flags)
Remove any vnodes in the vnode table belonging to mount point
mp. If skipvp is not NULL it is exempt from being flushed. The
argument flags is a set of flags modifying the operation of
vflush(). If MNT_NOFORCE is specified, there should not be any
active vnodes and an error is returned if any are found (this is
a user error, not a system error). If MNT_FORCE is specified,
active vnodes that are found are detached.

5.2.2 Reference Counts

Each vnode has three reference counts: v_usecount, v_writecount and v_holdcnt.
The first is the number of active references within the kernel to the vnode. This
count is maintained by vref (), vrele(), andvput(). The second is the number of
active references within the kernel to the vnode performing write access to the file. It
is maintained by the open(2) and close(2) system calls. The third is the number of
refer-ences within the kernel requiring the vnode to remain active and not be recycled.
This count is maintained by vhold() and holdrele(). When both the v_usecount
and v_holdcnt reach zero, the vnode is recycled to the freelist and may be reused
for another file. The transition to and fromthe freelist is handled by
getnewvnode (), ungetnewvnode() and vrecycle(). Access to v_usecount,
v_writecount and v_holdcnt is also protected by the v_interlock simplelock.

The number of pending synchronous and asynchronous writes on the vnode are recorded
in v_numoutput. It is used by fsync(2) to wait for all writes to complete before
returning to the user. Its value must only be modified at splbio. See spl(9). It
does not track the number of dirty buffers attached to the vnode.

vref (vp)

Increment v_usecount of the vnode vp. Any kernel thread system
which uses a vnode (e.g. during the operation of some algorithm
or to store in a data structure) should call vref().

VREF (vp)
This function is an alias for vref().

vrele (vp)
Decrement v_usecount of unlocked vnode vp. Any code in the sys-
tem which is using a vnode should call vrele() when it is fin-
ished with the vnode. If v_usecount of the vnode reaches zero
and v_holdcnt is greater than zero, the vnode is placed on the
holdlist. If both v_usecount and v_holdcnt are zero, the vnode
is placed on the freelist.

vput (vp)
Unlock vnode vp and decrement its v_usecount. Depending of the
reference counts, move the vnode to the holdlist or the freel-
ist. This operation is functionally equivalent to calling

138

CHAPTER 5. VNODE

VOP_UNLOCK(9) followed by vrele().

vhold(vp)
Mark the vnode vp as active by incrementing vp->v_holdcnt and
moving the vnode from the freelist to the holdlist. Once on the
holdlist, the vnode will not be recycled until it is released
with holdrele().

VHOLD (vp)
This function is an alias for vhold().

holdrele(vp)
Mark the vnode vp as inactive by decrementing vp->v_holdcnt and
moving the vnode from the holdlist to the freelist.

HOLDRELE (vp)
This function is an alias for holdrele().

getnewvnode (tag, mp, vops, vpp)
Retrieve the next vnode from the freelist. getnewvnode() must
choose whether to allocate a new vnode or recycle an existing
one. The criterion for allocating a new one is that the total
number of vnodes is less than the number desired or there are no
vnodes on either free list. Generally only vnodes that have no
buffers associated with them are recycled and the next vnode
from the freelist is retrieved. If the freelist is empty, vn-
odes on the holdlist are considered. The new vnode is returned
in the address specified by vpp.

The argument mp is the mount point for the file system requested
the new vnode. Before retrieving the new vnode, the file system
is checked if it is busy (such as currently unmounting). An er-
ror is returned if the file system is unmounted.

The argument tag is the vnode tag assigned to *vpp->v_tag. The
argument vops is the vnode operations vector of the file system
requesting the new vnode. If a vnode is successfully retrieved
zero is returned, otherwise and appropriate error code is re-
turned.

ungetnewvnode (vp)
Undo the operation of getnewvnode(). The argument vp is the vn-—
ode to return to the freelist. This function is needed for
VFS_VGET(9) which may need to push back a vnode in case of a
locking race condition.

vrecycle(vp, inter_lkp, p)
Recycle the unused vnode vp to the front of the freelist.
vrecycle() is a null operation if the reference count is greater
than zero.

vcount (vp)
Calculate the total number of reference counts to a special de-
vice with vnode vp.

5.2. VNODE MANAGEMENT FUNCTION 139

5.2.3 Vnode Identifier

Every time a vnode is reassigned to a new file, the vnode capability identifier v_id is
changed. It is used to maintain the name lookup cache consistency by providing a
unique <vnode *,v_id> tuple without requiring the cache to hold a reference. The
name lookup cache can later compare the vnode’s capability identifier to its copy and
see if the vnode still points to the same file. See namecache(9) for details on the
name lookup cache.

5.2.4 Links to Virtual File System Information

The link to the file system which owns the vnode is recorded by v_mount. See
visops(9) for further information of file system mount status.

The v_op pointer points to its vnode operations vector. This vector describes what
operations can be done to the file associated with the vn-ode. The system maintains
one vnode operations vector for each file system type configured into the kernel. The
vnode operations vector con-tains a pointer to a function for each operation supported
by the file system. See vnodeops(9) for a description of vnode operations.

5.2.5 Vnode Cache

When not in use, vnodes are kept on the freelist through v_freelist. The vnodes
still reference valid files but may be reused to refer to a new file at any time. Often,
these vnodes are also held in caches in the system, such as the name lookup cache.
When a valid vnode which is onthe freelist is used again, the user must call vget ()
to increment the reference count and retrieve it from the freelist. When a user wants
anew vnode for another file getnewvnode() is invoked to remove a vnode from the
freelist and initialise it for the new file.

vget (vp, lockflags)

Reclaim vnode vp from the freelist, increment its reference
count and lock it. The argument lockflags specifies the
lockmgr(9) flags used to lock the vnode. If the VXLOCK is set
in vp’s v_flag, vnode vp is being recycled in vgone() and the
calling thread sleeps until the transition is complete. When it
is awakened, an error is returned to indicate that the vnode is
no longer usable (possibly having been recycled to a new file
system type).

vgone (vp)
Eliminate all activity associated with the vnode vp in prepara-
tion for recycling.

5.2.6 Type of Object

The type of object the vnode represents is recorded by v_type. It isused by generic
code to perform checks to ensure operations are performed on valid file system objects.
Valid types are:

VNON The vnode has no type.

140 CHAPTER 5. VNODE

VREG The vnode represents a regular file.
VDIR The vnode represents a directory.
VBLK The vnode represents a block special device.
VCHR The vnode represents a character special device.
VLNK The vnode represents a symbolic link.
VSOCK The vnode represents a socket.
VFIFO The vnode represents a
a

VBAD The vnode represents

pipe.
bad file (not currently used).

Vnode tag types are used by external programs only (eg pstat(8)), and should never be
inspected by the kernel. Its use is deprecated since new v_tag values cannot be
defined for loadable file systems. The v_tag member is read-only. Valid tag types are:

VT_NON non file system

VT_UFS universal file system
VT_NFS network file system

VT_MFS memory file system
VT_MSDOSFS FAT file system

VT_LFS log-structured file system
VT_LOFS loopback file system
VT_FDESC file descriptor file system
VT_PORTAL portal daemon

VT_NULL null file system layer
VT_UMAP sample file system layer

VT_KERNFS kernel interface file system
VT_PROCFS process interface file system

VT_AFS AFS file system
VT_ISOFS IS0 file system(s)
VT_UNION union file system

VT_ADOSFS Amiga file system
VT_EXT2FS Linux’s EXT2 file system

VT_CODA Coda file system
VT_FILECORE filecore file system
VT_NTFS Microsoft NT’s file system
VT_VFS virtual file system

VT_OVERLAY overlay file system

5.2.7 Vnode Lock

All vnode locking operations use v_vnlock. This lock is acquired by calling
vn_lock(9) and released by calling vn_unlock(9). The vnode locking operation is
complicated because it is used for many purposes. Sometimes it is used to bundle a
series of vnode operations (see vnodeops(9)) into an atomic group. Many file
systems rely on it to prevent race conditions in updating file system type specific data
structures rather than using their own private locks. The vnode lock operates as a
multiple-reader (shared-access lock) or single-writer lock (exclusive access lock). The
lock may be held while sleeping. While the v_vnlock is acquired, the holder is
guaranteed that the vnode will not be reclaimed or invalidated. Most file system
functions require that you hold the vnode lock on entry. See lock(9) for details on
the kernel locking APIL

For leaf file systems (such as ffs, Ifs, msdosfs, etc), v_vnlock will

5.2.

VNODE MANAGEMENT FUNCTION 141

point to v_lock. For stacked filesystems, v_vnlock will generally point to
v_vlock of the lowest file system. Additionally, the implementation of the vnode lock
is the responsibility of the individual file systems and v_vnlock may also be NULL
indicating that a leaf node does not exporta lock for vnode locking. In this case,
stacked file systems (such asnullfs) must call the underlying file system directly for
locking.

vwakeup (bp)
Update outstanding I/0 count vp->v_numoutput for the vnode
bp->b_vp and do wakeup if requested and vp->vflag has VBWAIT
set.

5.2.8 Private Area

Files and file systems are inextricably linked with the virtual memory system and
v_uobj contains the data maintained by the virtual memory system. For compatibility
with code written before the integration of uvm(9) into NetBSD C-preprocessor
directives are used to alias the members of v_uobj.

Each file system underlying a vnode allocates its own private area and hangs it from
v_data. If non-null, this area is freed by getnewvnode().

5.2.9 Other Vnode-Manipulating Functions

vaccess(type, file_mode, uid, gid, acc_mode, cred)
Do access checking. The arguments file_mode, uid, and gid are
from the vnode to check. The arguments acc_mode and cred are
passed directly to VOP_ACCESS(9).

checkalias(vp, nvp_rdev, mp)
Check to see if the new vnode vp represents a special device for
which another vnode represents the same device. If such an
aliases exists the existing contents and the aliased vnode are
deallocated. The caller is responsible for filling the new vn-
ode with its new contents.

bdevvp(dev, vpp)
Create a vnode for a block device. bdevvp() is used for root
file systems, swap areas and for memory file system special de-
vices.

cdevvp(dev, vpp)
Create a vnode for a character device. cdevvp() is used for the
console and kernfs special devices.

vfinddev(dev, vtype, vpp)
Lookup a vnode by device number. The vnode is returned in the
address specified by vpp.

vdevgone (int maj, int min, int minh, enum vtype type)
Reclaim all vnodes that correspond to the specified minor number
range minl to minh (endpoints inclusive) of the specified major

142 CHAPTER 5. VNODE
maj.

vflushbuf (vp, sync)
Flush all dirty buffers to disk for the file with the locked vn-
ode vp. The argument sync specifies whether the I/0 should be
synchronous and vflushbuf() will sleep until vp->v_numoutput is
zero and vp->v_dirtyblkhd is empty.

vinvalbuf (vp, flags, cred, p, slpflag, slptimeo)
Flush out and invalidate all buffers associated with locked vn-
ode vp. The argument p and cred specified the calling process
and its credentials. The arguments flags, slpflag and slptimeo
are ignored in the present implementation. If the operation is
successful zero is returned, otherwise and appropriate error
code is returned.

vtruncbuf (vp, lbn, slpflag, slptimeo)
Destroy any in-core buffers past the file truncation length for
the locked vnode vp. The truncation length is specified by lbn.
vtruncbuf () will sleep while the I/0 is performed, The sleep(9)
flag and timeout are specified by the arguments slpflag and
slptimeo respectively. If the operation is successful zero is
returned, otherwise and appropriate error code is returned.

vprint (label, vp)
This function is used by the kernel to dump vnode information
during a panic. It is only used if kernel option DIAGNOSTIC is

compiled into the kernel. The argument label is a string to
prefix the information dump of vnode vp.

5.3 Vnode Attributes

Vnode attributes describe attributes of a file or directory including file permissions,
owner, group, size, access time and modication time.

A vnode attribute has the following structure:

struct vattr {

enum vtype va_type; /* vnode type (for create) */
mode_t va_mode; /* files access mode and type */
nlink_t va_nlink; /* number of references to file */
uid_t va_uid; /* owner user id */

gid_t va_gid; /* owner group id */

long va_fsid; /* file system id (dev for now) */
long va_fileid; /*x file id */

u_quad_t va_size; /* file size in bytes */

long va_blocksize; /* blocksize preferred for i/o */
struct timespec va_atime; /* time of last access */

struct timespec va_mtime; /* time of last modification */
struct timespec va_ctime; /* time file changed */

u_long va_gen; /* generation number of file */
u_long va_flags; /* flags defined for file */

dev_t va_rdev; /* device the special file represents */

5.4. VNODE OPERATION ABOUT FILESYSTEM HIERARCHY 143

u_quad_t va_bytes; /* bytes of disk space held by file */
u_quad_t va_filerev; /* file modification number */

u_int va_vaflags; /* operations flags, see below */
long va_spare; /* remain quad aligned */

};

A field value of VNOVAL represents a field whose value is unavailable or which is not
to be changed. Valid flag values for va_flags are:

VA_UTIMES_NULL utimes argument was NULL
VA_EXCLUSIVE exclusive create request

Vnode attributes for a file are set by the vnode operation VOP_SETATTR(9). Vnode
attributes for a file are retrieved by the vnode operation VOP_GETATTR(9). For more
information on vnode operations see vnodeops(9) .

5.4 Vnode Operation about Filesystem Hierarchy

The vnode operations vector describes what operations can be done to the file
associated with the vnode. The system maintains one vnode operations vector
for each file system type configured into the kernel. The vnode operations vector
contains a pointer to a function for each operation supported by the file system.
Many of the functions described in the vnode operations vector are closely related
to their corresponding system calls. In most cases, they are called as a result of the
system call associated with the operation being invoked.

If the file system type does not support a specific operation, it must nevertheless
assign an appropriate function in the vnode operations vector to do the minimum
required of it. In most cases, such functions either do nothing or return an error
value to the effect that it is not supported.

5.4.1 Overview
Opening a File

When an applicatin opens a file that does not currently have an in-memory vnode,
the client filesystem calls the getnewvnode routine to allocate a new vnode.

The getnewvnode routine removes the least recently used vnode from the front
of the free list and calls the reclaim operation to notify the filesystem currently
using the vnode that that vnode is about to be reused.

Closing a File

When the final file-entry reference to a file is closed, the usage count on the vnode
drops to zero and the vnode interface calls the inactive vnode operation. The
inactive call

e notifies the underlying system that the file is no longer being used.

e The filesystem will often use this call to write dirty data back to the file, but
will not typically reclaim the buffers.

Disassociation with Underlying Objects

The reclaim operation

144 CHAPTER 5. VNODE

e writes back any dirty data associated with the underlying object such as inode,

e removes the underlying object from any lists that it is on (such as hash lists
used to find it), and

e frees up any auxiliary storage that was being used by the object.

This ability, combined with the ability to associate new objects with the vnode,
provides functionality with usefulness that goes far beyond simply allowing vnodes
to be moved from one filesystem to another. By replacing an existing object with
an object from the dead filesystem — a filesystem in which all operations except
close fail — the kernel revokes the objects. Internally, this revocation of an object
is provided by the vgone routine.

The recovation service is used to support forcible unmounting of filesystems. It
is also possible to downgrade a mounted filesystem from read-write to read-only.
Instead of access being revoked on every active file within the filesystem, only those
files with a nonzero number of references for writing have their access revoked. The
ability to revoke objects is exported to processes through the revoke system call.

Vnode Locking

The lock and unlock operators allow the callers of the vnode interface to provide
hints to the code that implement operations on the underlying objects. Stateless
filesystem suc has NF'S ignore these hints. Stateful filesystems such as FF'S, however,
can use gints to avoid doing extra work.

For example, an open system call requesting that a new file be created requires
two major phases: lookup and create. The details are

1. First, a lookup call is done to see if the file already exists.

2. For stateful filesystem, before the lookup is started, a lock request is made on
the directory being searched.

3. While scanning through the directory checking for the name, the lookup code
also identifies a location within the directory that contains enough space to
hold the new name.

4. If the name does not already exists, the open code verifies that the user has
permission to create the file. If the user is not eligible to create the new file,
then the abortop operator is called to release any resources held in reserve.

5. Otherwise, create operation is called.

6. If the filesystem is stateful, then it can simply create the name in the previ-
ously identified space.
However, If the filesystem is stateless, then it cannot lock the directory, so the
create operator must rescan the directory to find space and to verift that the
name has not been created since the lookup.

5.4.2 componentname structure

Many of the functions in the vnode operations vector take a componentname struc-
ture. Is is used to encapsulate many parameters into a singla function argument.
It has the following structure:

struct componentname {
/*

* Arguments to lookup.

5.4. VNODE OPERATION ABOUT FILESYSTEM HIERARCHY 145

*/
u_long cn_nameiop; /* namei operation */
u_long cn_flags; /* flags to namei */

struct proc *cn_proc; /* process requesting lookup */
struct ucred *cn_cred; /* credentials */

/*

* Shared between lookup and commit routines.

*/

char *cn_pnbuf; /* pathname buffer */

const char *cn_nameptr; /* pointer to looked up name */
long cn_namelen; /* length of looked up component */
u_long cn_hash; /* hash value of looked up name */
long cn_consume; /* chars to consume in lookup() */

};

The top half of the structure is used exclusively for the pathname lookups using
VOP_LOOKUP () and is initialized by the caller. The semantics of the lookup are affected by
the operation specified in cn_nameiop and the flags specified in cn_flags. Valid
operations are:

LOOKUP perform name lookup only
CREATE setup for file creation
DELETE setup for file deletion
RENAME setup for file renaming
OPMASK mask for operation

Valid values for cn->cn_flags are:
LOCKLEAF lock inode on return

LOCKPARENT want parent vnode returned locked
WANTPARENT want parent vnode returned unlocked

NOCACHE name must not be left in name cache (see namecache(9))
FOLLOW follow symbolic links

NOFOLLOW do not follow symbolic links (pseudo)

MODMASK mask of operational modifiers

No vnode operations may be called from interrupt context. Most opera-tions also
require the vnode to be locked on entry. To prevent dead-locks, when acquiring locks
on multiple vnodes, the lock of parent direc-tory must be acquired before the lock on
the child directory.

5.4.3 Pathname Searching

int (*vop_lookup) () VOP_LOOKUP Lookup file name in name cache

5.4.4 Name Creation

int (*vop_create) () VOP_CREATE Create a new file

int (*vop_mknod) () VOP_MKNOD Make a new device

int (*vop_link) () VOP_LINK Link a file

int (*vop_symlink) () VOP_SYMLINK Create a symbolic link

int (*vop_mkdir) () VOP_MKDIR Make a new directory

146

5.4.5 Name Change/Deletion

int
int
int

(*vop_rename) ()
(*vop_remove) ()
(*vop_rmdir))

VOP_RENAME
VOP_REMOVE
VOP_RMDIR

5.4.6 Attribute Manipulation

int
int
int

(*vop_access) ()
(*vop_getattr) ()
(*vop_setattr))

VOP_ACCESS
VOP_GETATTR
VOP_SETATTR

5.4.7 Object Interpretation

int
int
int
int
int

int
int
int
int

(*vop_open) ()
(*xvop_readdir) ()
(*vop_readlink) ()
(*vop_mmap) ()
(*vop_close) ()

(*xvop_seek) ()
(*vop_bmap) ()
(*vop_pathconf) ()
(*vop_print))

5.4.8 Process Control

VOP_OPEN
VOP_READDIR
VOP_READLINK
VOP_MMAP
VOP_CLOSE

VOP_SEEK
VOP_BMAP
VOP_PATHCONF
VOP_PRINT

CHAPTER 5. VNODE

Rename a file
Remove a file
Remove a directory

Determine file accessibility
Get file attributes
Set file attributes

Open a file

Read directory entry

Read contents of a symlink

Map file into user address space
Close a file

Test if file is seekable
Logical block number conversion
Implement POSIX pathconf support
Print debugging information

None of these operatos modifies the object in the filestore. They are simply using
the object for naming or directing the desired operation.

int
int
int
int

5.4.9 Object Management

int
int
int
int
int

int
int
int
int
int
int

VOP_

(*vop_advlock) ()
(*vop_ioctl) ()

(*#vop_fentl) ()
(*vop_poll) ()

(*vop_lock) O)
(*vop_unlock) ()
(*xvop_inactive) ()
(*xvop_reclaim) ()
(*vop_abortop) ()

(*xvop_revoke) ()
(*xvop_islocked))
(*vop_lease) ()
(xvop_bwrite) ()
(*vop_whiteout) ()
(*vop_strategy))

INACTIVE(vp, p)

VOP_ADVLOCK
VOP_IOCTL

VOP_FCNTL
VOP_POLL

VOP_LOCK
VOP_UNLOCK
VOP_INACTIVE
VOP_RECLAIM
VOP_ABORTOP

VOP_REVOKE
VOP_ISLOCKED
VOP_LEASE
VOP_BWRITE
VOP_WHITEOUT
VOP_STRATEGY

Release the inactive vnode.

kernel is no longer using the vnode.

Advisory record locking
Perform device-specific I/0

Perform file control
Test if poll event has occurred

Sleep until vnode lock is free
Wake up process sleeping on lock
Release the inactive vnode
Reclaim vnode for another file
Abort pending operation

Eliminate vode activity

Test if vnode is locked
Validate vnode credentials
Write a file system buffer
Whiteout vnode

Read/write a file system buffer

VOP_INACTIVE() is called when the
This may be because the

reference count reaches zero or it may be that the file system

5.5. VNODE OPERATION ABOUT STORAGE 147

is being forcibly unmounted while there are open files. It can
be used to reclaim space for open but deleted files. The argu-
ment vp is the locked vnode to be released. The argument p is
the calling process. If the operation is successful zero is re-
turned, otherwise an appropriate error code is returned. The
vnode vp must be locked on entry, and will be unlocked on re-
turn.

5.5 Vnode Operation about Storage

5.5.1 Object Creation and Deletion

int (*vop_valloc) () VOP_VALLOC Allocate fs-specific data
int (*vop_vfree) () VOP_VFREE Release file resources
int (*vop_balloc) () VOP_BALLOC Allocate physical blocks

int (*vop_reallocblks)() VOP_REALLOCBLKS rearrange blocks as contiguous

5.5.2 Attribute Update

int (*vop_update) () VOP_UPDATE Update time on a file

5.5.3 Object Read and Write

int
int
int
int

int
int

(*xvop_blkatoff) () VOP_BLKATOFF Retrieve buffer from offset
(*xvop_read)) VOP_READ Read from a file
(xvop_write)) VOP_WRITE Write to a file
(*xvop_£fsync) O VOP_FSYNC Flush pending data to disk
(xvop_getpages)) VOP_GETPAGES Read VM pages from file
(*xvop_putpages)) VOP_PUTPAGES Write VM pages to file

5.5.4 Change in Space Allocation

int (*vop_truncate) () VOP_TRUNCATE Truncate file and free blocks

5.6 High-Level Vnode Convenient Function

Vnode operations for a file system type generally should not be called
directly from the kernel, but accessed indirectly through the high-level
convenience functions discussed in vnsubr(9).

vn_default_error(v)

A generic "default" routine that just returns error. It is used
by a file system to specify unsupported operations in the vnode
operations vector.

5.6.1 Filesystem Hierarchy

vn_stat(fdata, sb, p)

Common code for a vnode stat operation. The vnode is specified
by the argument fdata and sb is the buffer to return the stat
information. The argument p is the calling process. vn_stat()

148

5.6.2

CHAPTER 5. VNODE

basically calls the vnode operation VOP_GETATTR(9) and transfer
the contents of a vattr structure into a struct stat. If the
operation is successful zero is returned, otherwise an appropri-
ate error code is returned.

vn_readdir(fp, buf, segflg, count, done, p, cookies, ncookies) Common code

for reading the contents of a directory. The argument fp is the
file structure, buf is the buffer for placing the struct dirent
structures. The arguments cookies and ncookies specify the ad-
dresses for the list and number of directory seek cookies gener-
ated for NFS. Both cookies and ncookies should be NULL is they
aren’t required to be returned by vn_readdir(). If the opera-
tion is successful zero is returned, otherwise an appropriate
error code is returned.

vn_isunder(dvp, rvp, p)

Common code to check if one directory specified by the vnode rvp
can be found inside the directory specified by the vnode dvp.
The argument p is the calling process. vn_isunder() is intended
to be used in chroot(2), chdir(2), fchdir(2), etc., to ensure
that chroot(2) actually means something. If the operation is
successful zero is returned, otherwise 1 is returned.

General File I/0

vn_open(ndp, fmode, cmode)

Common code for vnode open operations. The pathname is de-
scribed in the nameidata pointer (see namei(9)). The arguments
fmode and cmode specify the open(2) file mode and the access
permissions for creation. vn_open() checks permissions and in-
vokes the VOP_OPEN(9) or VOP_CREATE(9) vnode operations. If the
operation is successful zero is returned, otherwise an appropri-
ate error code is returned.

vn_close(vp, flags, cred, p)

Common code for a vnode close. The argument vp is the locked
vnode of the vnode to close. vn_close() simply locks the vnode,
invokes the vnode operation VOP_CLOSE(9) and calls vput() to re-
turn the vnode to the freelist or holdlist. Note that
vn_close() expects an unlocked, referenced vnode and will deref-
erence the vnode prior to returning. If the operation is suc-
cessful zero is returned, otherwise an appropriate error is re-
turned.

vn_closefile(fp, p)

Common code for a file table vnode close operation. The file is
described by fp and p is the calling process. vn_closefile()
simply calls vn_close() with the appropriate arguments.

vn_read(fp, offset, uio, cred, flags)

Common code for a file table vnode read. The argument fp is the
file structure, The argument offset is the offset into the
file. The argument uio is the uio structure describing the mem-
ory to read into. The caller’s credentials are specified in

5.6. HIGH-LEVEL VNODE CONVENIENT FUNCTION 149

cred. The flags argument can define FOF_UPDATE_OFFSET to update
the read position in the file. If the operation is successful
zero is returned, otherwise an appropriate error is returned.

vn_write(fp, offset, uio, cred, flags)

Common code for a file table vnode write. The argument fp is
the file structure, The argument offset is the offset into the
file. The argument uio is the uio structure describing the mem-
ory to read from. The caller’s credentials are specified in
cred. The flags argument can define FOF_UPDATE_OFFSET to update
the read position in the file. If the operation is successful
zero is returned, otherwise an appropriate error is returned.

vn_rdwr(rw, vp, base, len, offset, segflg, ioflg, cred, aresid, p) Com-
mon code to package up an I/0 request on a vnode into a uio and
then perform the I/0. The argument rw specifies whether the I/0
is a read (UIO_READ) or write (UIO_WRITE) operation. The un-
locked vnode is specified by vp. The arguments p and cred are
the calling process and its credentials. The remaining argu-
ments specify the uio parameters. For further information on
these parameters see uiomove(9).

vn_bwrite (ap)
Common code for block write operations.

vn_writechk (vp)
Common code to check for write permission on the vnode vp. A
vnode is read-only if it is in use as a process’s text image.
If the vnode is read-only ETEXTBSY is returned, otherwise zero
is returned to indicate that the vnode can be written to.

vn_fcntl(fp, com, data, p)
Common code for a file table vnode fcntl(2) operation. The file
is specified by fp. The argument p is the calling process.
vn_fcntl() simply locks the vnode and invokes the vnode opera-
tion VOP_FCNTL(9) with the command com and buffer data. The vn-
ode is unlocked on return. If the operation is successful zero
is returned, otherwise an appropriate error is returned.

vn_ioctl(fp, com, data, p)
Common code for a file table vnode ioctl operation. The file is
specified by fp. The argument p is the calling process.
vn_ioctl() simply locks the vnode and invokes the vnode opera-
tion VOP_IOCTL(9) with the command com and buffer data. The vn-
ode is unlocked on return. If the operation is successful zero
is returned, otherwise an appropriate error is returned.

5.6.3 Advanced I/0O

vn_lock(vp, flags)
Common code to acquire the lock for vnode vp. The argument
flags specifies the lockmgr(9) flags used to lock the vnode. If
the operation is successful zero is returned, otherwise an ap-
propriate error code is returned. The vnode interlock

150

CHAPTER 5. VNODE

v_interlock is releases on return.

vn_lock() must not be called when the vnode’s reference count is
zero. Instead, vget(9) should be used.

vn_poll(fp, events, p)
Common code for a file table vnode poll operation. vn_poll()
simply calls VOP_POLL(9) with the events events and the calling
process p. If the operation is success zero is returned, other-
wise an appropriate error code is returned.

vn_markexec (vp)
Common code to mark the vnode vp as containing executable code
of a running process.

vn_setrecurse (vp)
Common code to enable LK_CANRECURSE on the vnode lock for vnode
vp. vn_setrecurse() returns the new lockmgr(9) flags after the
update.

vn_restorerecurse(vp, flags)
Common code to restore the vnode lock flags for the vnode vp.
It is called when done with vn_setrecurse().

5.7 References to Source Code

5.7.1 vfs_subr.c - 2846 lines, 57 functions
Gloval Variables

iftov_tab
vttoif_tab
doforce Switch to permit forcible unmounting
prtactive

[Global System List]

vnode_free_list Vnode free list
vnode_hold_list Vnode hold list
vnode_pool Memory pool for vnodes
mountlist Mounted filesystem list
vis_list VFS list

nfs_pub Publicly exported FS

[Root Filesystem and Device Information]
rootfs
rootvnode

root_device

[Locks to Manage Global System Lists]

5.7. REFERENCES TO SOURCE CODE 151

mountlist_slock
mntid_slock
mntvnode_slock
vnode_free_list_slock
spechash_slock

Functions

[VFS Management]

vis_busy Mark a mount point as busy, to synchronize access and
to delay unmount

vis_unbusy

vis_getvfs Lookup a mount point by filesystem identifier
vis_getnewfsid Get a new unique fsid
makefstype Make a ’unique’ number from a mount type name

vis_mountedon
vis_getopsbyname

Check to see if a filesystem is mounted on a block device
Given a file system name, look up the vfsops

[vnode Management]

vntblinit
vattr_null

Initialize the vnode management data structures
Set vnode attributes to VNOVAL

getnewvnode Return the next vnode from the free list
ungetnewvnode used by VFS_VGET functions who may need to push back a vnode
insmntque Move a vnode from one mount queue to another
vwakeup Update outstanding I/0 count and do wakeup if requested
vinvalbuf Flush out and invalidate all buffers associated with a vnode
vtruncbuf Destroy any in core blocks past the truncation length
vilushbuf
bgetvp Associate a buffer with a vnode
brelvp Disassociate a buffer with a vnode
reassignbuf Reassign a buffer from one vnode to another
bdevvp Create a vnode for a block device
cdevvp Create a vnode for a character device
getdevvp Common routine used by bdevvp(), cdevvp()
checkalias Check to see if the new vnode represents a special device
for which we already have a vnode
vget Grab a particular vnode from the free list
vput just unlock and vrele()
vrele
vhold
holdrele
vref
vflush Remove any vnodes in the vnode table belonging to
mount point mp
vclean Disassociate the underlying file system from a vnode
vrecycle Recycle an unused vnode to the front of the free list
vgone Eliminate all activity associated with a vnode
vgonel vgone (), with the vp interlock held
vfinddev Lookup a vnode by device number
vdevgone Revoke all the vnodes corresponding to the specified

minor number range

152

CHAPTER 5. VNODE

vcount
[Routines About sysctl support]

vis_sysctl
sysctl_vnode

[Exportable File System]

vis_hand_addrlist Build hash lists of net addresses and hang them off
the mount point

vis_free_netcred

vis_free_addrlist Free the net address hash lists that are hanging
off the mount points

vis_export

vis_setpublicfs Set the publicly exported filesystem (WebNFS)

vis_export_lookup

vaccess Do the usual access checking

[System Bootstrap and Shutdown]

vis_attach

vis_detach

vis_reinit

vis_unmountall Unmount all file systems

vis_shutdown Sync and unmount file systems before shutting down
vis_mountroot Mount the root file system

vis_rootmountalloc Lookup a filesystem type, and allocate and
initialize a mount structure

[Diagnostics]

vprint
vis_buf_print
vis_vnode_print
printlockedvnodes

5.7.2 vfs_vnops.c - 808 lines, 19 functions

Gloval Variables

struct fileops vnops = {
vn_read, vn_write, vn_ioctl, vn_fcntl, vn_poll,
vn_statfile, vn_closefile, vn_kqfilter

};

Functions

[Exported File Operation]

vn_read used by vn_rdwr ()
vn_write
vn_ioctl
vn_fcntl

5.7. REFERENCES TO SOURCE CODE 153

vn_poll

vn_statfile

vn_closefile File table vnode close routine (just cover function)
vn_kqgfilter [?] File table vnode kqfilter routine

[High-Level Vnode Convenient Function]

vn_open used by sys_open()

vn_writechk Check for write permissions on the specified vnode.
vn_markexec Mark a vnode as having executable mappings

vn_marktext Mark a vnode as being the text of a process

vn_close

vn_rdwr Package up an I/0 request on a vnode into a uio and do it
vn_readdir

vn_stat

vn_lock

[? Lock Management]

vn_setrecurse [?] Enable LK_CANRECURSE on lock. Return prior status
vn_restorerecurse [?] Called when done with locksetrecurse

5.7.3 vfs_syscalls.c - 3116 lines, 65 functions
Gloval Variables

dovfsusermount When set to 1, any user can mount filesystem
mountcompatnames
nmountcompatnames

Functions

[System Calls Related with Vnode !]

sys_mount
sys_unmount
sys_sync
sys_statfs
sys_fstatfs
sys_getfsstat

sys_fchdir

sys_fchroot Change this process’s notion of the root directory
sys_chdir

sys_chroot Change notion of root (‘¢/’’) directory
sys_open

sys_getfh Get file handle system call

sys_fhopen Open a file given a file handle

sys_fhstat

sys_fhstatfs Returns information about a mounted file system
sys_mknod

sys_mkfifo Create a named pipe

sys_link

sys_symlink
sys_undelete Delete a whiteout from the filesystem [WOW ! undelete !]

154

sys_unlink
sys_lseek
sys_pread
sys_preadv
sys_pwrite
sys_pwritev
sys_access
sys statl3

sys___lstat13
sys_pathconf
sys_readlink
sys_chflags
sys_fchflags
sys_lchflags
sys_chmod
sys_fchmod
sys_lchmod
sys_chown
sys_fchown
sys_lchown
sys_utime
sys_futime
sys_lutime
sys_truncate
sys_fruncate
sys_£fsync
sys_fdatasync
sys_rename
sys_mkdir
sys_rmdir
sys_getdents
sys_umask
sys_revoke

CHAPTER 5. VNODE

Positional read system call

Get configurable pathname variables

Change mode of a file given a file descriptor
this version does not follow links

Sync an open file
Sync the data of an open file

Read a block of directory in filesystem independent format

[POSIX Compatable System Calls]

sys___posix_chown

sys___posix_fchown
sys___posix_lchown
Sys___posix_rename

[Support Routine]

checkdirs
dounmount
getvnode

[Common Routine]

change_dir
change_flags
change_mode
change_owner

Support routine for sys_mount ()
Actual worker for sys_unmount()
Convert a user file descriptor to a kernel file entry

Common routine for chroot and chdir
Common routine to change flags of a file
Common routine to change mode of a file

5.7. REFERENCES TO SOURCE CODE 155

change_utimes
rename_files

156 CHAPTER 5. VNODE

Chapter 6

UVM

6.1 Introduction

UVM is a virtual memory system of the NetBSD/sparc64 release 1.6. UVM has
better performance especially in managing memory-mapped files and copy-on-write
memory, than the 4.4BSD VM, which is derived from Mach VM. In UVM, the
virtual memory object, fault handling, and pager code is replaced from the 4.4BSD
VM. And, a new virtual memory based data movement mechanisms is introduced.

6.2 UVM Overview

process 1 (init)

vmspace

map entry [| mapentry [| mapentry [| map entry
text bss stack
page memory object memory object memory object
(in object) 1 11
/sbin/init zero—fill zero—fill
pager pager pager

Figure 6.1: The five main machine-independent abstractions in UVM

Both BSD VM and UVM can be divied into two layers: a small mahcine-
dependent layer, and a larger machine-independent layer.

The machine-dependent layer used by both BSD VM and UVM is called the
pmap layer. The pamp layer handles the low level details of programming a pro-
cessor’s MMU. This task conststs of

157

158 CHAPTER 6. UVM

e managing the mappings of a virtual address.
e managing the mappings of a page of physical memory.

The machine-independent code contains functions that perform the high-level op-
erations of the VM system. Such functions include

e managing a process’ file mappings,

e requesting data from backing store,

e paging out memory when it becomes scarce,

e managing the allocation of physical memory, and
e managing copy-on-write memory.

Figure 6.1 shows the five main abstrations that correspond to data structures
in both BSD VM and UVM that activities of the machine-independent layer are
centered around.

6.2.1 Virtual Memory Space

Virtual memory space describes both the machine dependent and machine indepen-
dent parts of process’s virtual address space. The vmspace structure contains

e pointers to memory map structures, and

e statistics on the process’s memory usage.

uvm,/uvm_extern.h

459 /%

460 * Shareable process virtual address space.

461 * May eventually be merged with vm_map.

462 * Several fields are temporary (text, data stuff).

463 x/

464 struct vmspace {

465 struct vm_map vm_map; /* VM address map */

466 int vm_refcnt; /* number of references */

467 caddr_t vm_shm; /* SYS5 shared memory private data XXX */

468 /* we copy from vm_startcopy to the end of the structure on fork */
469 #define vm_startcopy vm_rssize

470 segsz_t vm_rssize; /* current resident set size in pages */
471 segsz_t vm_swrss; /* resident set size before last swap */
472 segsz_t vm_tsize; /* text size (pages) XXX */

473 segsz_t vm_dsize; /* data size (pages) XXX =*/

474 segsz_t vm_ssize; /* stack size (pages) */

475 caddr_t vm_taddr; /* user virtual address of text XXX */
476 caddr_t vm_daddr; /* user virtual address of data XXX */
aT7 caddr_t vm_maxsaddr; /* user VA at max stack growth */

478 caddr_t vm_minsaddr; /* user VA at top of stack */

479 };

uvm/uvm_extern.h

6.2. UVM OVERVIEW 159

6.2.2 Memory Map

Memory map describes the machine-independent part of the virtual address space
of a process or the kernel. Each map structure on the system contains a sorted
doubly-linked list of map entry structures. Each entry structure contains a record
of a mapping in the map‘s virtual address space. This record includes

e starting and ending virtual address
e a pointer to the memory object mapped into that address range

e the attributes of the mapping

uvm,/uvm_map.h

114 /%

115 * Address map entries consist of start and end addresses,

116 * a VM object (or sharing map) and offset into that object,

117 * and user-exported inheritance and protection information.

118 * Also included is control information for virtual copy operations.

119 */

120 struct vm_map_entry {

121 struct vm_map_entry *prev; /* previous entry */

122 struct vm_map_entry *next; /* next entry */

123 vaddr_t start; /* start address */

124 vaddr_t end; /* end address */

125 union {

126 struct uvm_object *uvm_obj; /* uvm object */

127 struct vm_map *sub_map; /* belongs to another map */
128 } object; /* object I point to */
129 voff_t offset; /* offset into object */
130 int etype; /* entry type */

131 vm_prot_t protection; /* protection code */

132 vm_prot_t max_protection; /* maximum protection */
133 vm_inherit_t inheritance; /* inheritance */

134 int wired_count; /* can be paged if == 0 */
135 struct vm_aref aref; /* anonymous overlay */
136 int advice; /* madvise advice */

137 #define uvm_map_entry_stop_copy flags

138 u_int8_t flags; /x flags */

139

140 #define UVM_MAP_STATIC 0x01 /* static map entry */

141 #define UVM_MAP_KMEM 0x02 /* from kmem entry pool */
142

143 };

199 struct vm_map {

200 struct pmap * pmap; /* Physical map */

201 struct lock lock; /* Lock for map data */

202 struct vm_map_entry header; /* List of entries */

203 int nentries; /* Number of entries */

204 vsize_t size; /* virtual size */

205 int ref_count; /* Reference count */

206 struct simplelock ref_lock; /* Lock for ref_count field */
207 struct vm_map_entry * hint; /* hint for quick lookups */

208 struct simplelock hint_lock; /* lock for hint storage */

160

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

CHAPTER 6. UVM

struct vm_map_entry * first_free; /* First free space hint */
int flags; /* flags */
struct simplelock flags_lock; /* Lock for flags field */
unsigned int timestamp; /* Version number */
#define min_offset header.start
#define max_offset header.end
s
/* vm_map flags */
#define VM_MAP_PAGEABLE 0x01 /* ro: entries are pageable */
#define VM_MAP_INTRSAFE 0x02 /* ro: interrupt safe map */
#define VM_MAP_WIREFUTURE 0x04 /* rw: wire future mappings */
#define VM_MAP_BUSY 0x08 /* rw: map is busy */
#define VM_MAP_WANTLOCK 0x10 /* rw: want to write-lock */
#define VM_MAP_DYING 0x20 /* rw: map is being destroyed */

uvm/uvm_map.h

6.2.3 Memory Object

Memory object describes a file, a zero-fill memory area, or a device that can be
mapped into a virtual address space. In UVM, a memory object consists of either
a vm_amap or uvm_object structure.

uvm/uvm_object.h

44 /%
45 * uvm_object: all that is left of mach objects.
46 */
47
48 struct uvm_object {
49 struct simplelock vmobjlock; /* lock on memq */
50 struct uvm_pagerops *pgops; /* pager ops */
51 struct pglist memq ; /* pages in this object */
52 int uo_npages; /* # of pages in memq */
53 int uo_refs; /* reference count */
54 };
uvm,/uvm_object.h
uvm,/uvm_amap.h
42 /x*
43 * an amap structure contains pointers to a set of anons that are
44 * mapped together in virtual memory (an anon is a single page of
45 * anonymous virtual memory -- see uvm_anon.h). in uvm we hide the
46 * details of the implementation of amaps behind a general amap
47 x interface. this allows us to change the amap implementation
48 x without having to touch the rest of the code. this file is divided
49 x into two parts: the definition of the uvm amap interface and the
50 * amap implementation-specific definitions.
51 */

167
168

struct vm_amap {

struct simplelock am_1; /* simple lock [locks all vm_amap fields] */

6.2. UVM OVERVIEW 161

169 int am_ref; /* reference count */

170 int am_flags; /* flags */

171 int am_maxslot; /* max # of slots allocated */

172 int am_nslot; /* # of slots currently in map (<= maxslot) */
173 int am_nused; /* # of slots currently in use */

174 int *am_slots; /* contig array of active slots */

175 int *am_bckptr; /* back pointer array to am_slots */

176 struct vm_anon **am_anon; /* array of anonymous pages */

177 #ifdef UVM_AMAP_PPREF

178 int *am_ppref; /* per page reference count (if !NULL) */
179 #endif

180 };

uvm/uvm_amap.h

6.2.4 Pager

Pager describes how backing store can be accessed. Each memory object on the
system has a pager that points to a list of functions used by the object to fetch and
store pages between physical memory and backing store.

Pages are read in from backing store

e when a process faults on them, or
e in anticipation of a process faulting on them
. Pages are written out to backing store
e at the request of a user (e.g. msync system call),
e when physica memory is scarce, or

e when the object that owns the pages is freed.

uvm,/uvm_pager.h

90 /*

91 * pager ops

92 */

93

94 struct uvm_pagerops {

95

96 /* init pager */

97 void (*pgo_init) __P((void));

98

99 /* add reference to obj */

100 void (*pgo_reference) (struct uvm_object *);

101

102 /* drop reference to obj */

103 void (*pgo_detach) (struct uvm_object *);

104

105 /* special non-standard fault processing */

106 int (*pgo_fault) (struct uvm_faultinfo *, vaddr_t, struct vm_page **,
107 int, int, vm_fault_t, vm_prot_t, int);
108

109 /* get/read pages */

110 int (*pgo_get) (struct uvm_object *, voff_t, struct vm_page **,

162 CHAPTER 6. UVM

111 int *, int, vm_prot_t, int, int);

112

113 /* put/write pages */

114 int (*pgo_put) (struct uvm_object *, voff_t, voff_t, int);
115 3};

uvm,/uvm_pager.h

6.2.5 Page

Page describes a page of physical memory. When the system is booted a vm_page
structure is allocated for each page of physical memory that can be used by the VM
system.

uvm,/uvm_page.h

120 struct vm_page {

121 TAILQ_ENTRY (vm_page) pageq; /* queue info for FIFO

122 * queue or free list (P) */
123 TAILQ_ENTRY (vm_page) hashq; /* hash table links (0)*/

124 TAILQ_ENTRY (vm_page) listq; /* pages in same object (0)*/
125

126 struct vm_anon *uanon; /* anon (0,P) */

127 struct uvm_object *xuobject; /* object (0,P) */

128 voff_t offset; /* offset into object (0,P) */
129 uint16_t flags; /* object flags [0] */

130 uintl6_t loan_count; /* number of active loans

131 * to read: [0 or P]

132 * to modify: [0 _and_ P] x/
133 uintl16_t wire_count; /* wired down map refs [P] */
134 uint16_t paflags; /* page queue flags [P] */
135 paddr_t phys_addr; /* physical address of page */
136

137 #ifdef __HAVE_VM_PAGE_MD

138 struct vm_page_md mdpage; /* pmap-specific data */

139 #endif

140

141 #if defined (UVM_PAGE_TRKOWN)

142 /* debugging fields to track page ownership */

143 pid_t owner; /* proc that set PG_BUSY x*/
144 char *xowner_tag; /* why it was set busy */

145 #endif

146 };

uvm,/uvm_page.h

Machine-Dependent Page Structure

Machine-dependent page structure for sparc64 platform is

arch/sparc64 /include/vmparam.h

162 /x*

163 * For each struct vm_page, there is a list of all currently valid virtual
154 * mappings of that page. An entry is a pv_entry_t.

155 x/

6.2. UVM OVERVIEW 163

156
157
158
159
160
161
162
163
164
165
166

struct pmap;
typedef struct pv_entry {

struct pv_entry *pv_next; /* next pv_entry */
struct pmap *pv_pmap; /* pmap where mapping lies */
vaddr_t pv_va; /* virtual address for mapping */

} *pv_entry_t;
/* PV flags encoded in the low bits of the VA of the first pv_entry */

struct vm_page_md {
struct pv_entry mdpg_pvh;
+;

arch/sparc64 /include/vmparam.h

where struct pmap is defined as

- arch/sparc64/include/pmap.h

111 struct pmap {

112 struct uvm_object pm_obj;

113 #define pm_lock pm_obj.vmobjlock

114 #define pm_refs pm_obj.uo_refs

115 LIST_ENTRY (pmap) pm_list;

116 int pm_ctx; /* Current context */

117

118 /*

119 * This contains 64-bit pointers to pages that contain

120 * 1024 64-bit pointers to page tables. All addresses

121 * are physical.

122 *

123 * 11! Only touch this through pseg_get() and pseg_set() !!!

124 */

125 paddr_t pm_physaddr; /* physical address of pm_segs */

126 int64_t *pm_segs;

127 3,

- arch/sparc64/include/pmap.h

Page Fault

When a process attempts to access an unmapped area of memory a page fault is
generated. In order to find which page should be mapped, the UVM system must
look in the process’ map structure for the netry that corresponds to the faulting

address.

e If there is not entry mapping the faulting address, an error signal is generated.

e If an object is mapped at the faulting address,

— if the requested data is already resident in a page, that page can be

mapped in.

— if not, then the fault rountine issues a request to the object’s pager to

make the data resident and resolve the fault.

164

6.3 UVM External Interface

CHAPTER 6. UVM

We describe parts of UVM external interface which is essential to understand
FFS filesystem source code. The whole UVM external interfaces can be classi-
fied as

Initialization

Virtual address space management
Page fault handling

Memory mapping files and devices
Virtual memory I/0

Management of kernel memory
Management of physical memory
Processes

Page loan

Miscellaneous functions

From these, we will investigate some functions whose category is memory mapping
files and devices or allocation of physical memory. The first category is mainly
related with open system call. The second is related with buffer cache and filesystem
storage operations.

6.4 Memory Mapping Files and Devices

6.4.1 Attaching a Memory Object to Vnode: uvn_attach

struct uvm_object *

uvn_attach(void *arg, vm_prot_t accessprot);

uvn_attach() attaches a UVM object to vnode arg,
creating the object if necessary.

The object

is returned.

The values that accessprot maxprot can take are:

#define VM_PROT_NONE
#define VM_PROT_READ
#define VM_PROT_WRITE
#define VM_PROT_EXECUTE

or

#define UVM_PROT_MASK
#define UVM_PROT_NONE
#define UVM_PROT_ALL
#define UVM_PROT_READ
#define UVM_PROT_WRITE
#define UVM_PROT_EXEC
#define UVM_PROT_R

((vm_prot_t) 0x00)

((vm_prot_t) 0x01) /*
((vm_prot_t) 0x02) /*
((vm_prot_t) 0x04) /*

0x07
0x00
0x07
0x01
0x02
0x04
0x01

/%
/%
/%
/%
/*
/%
/*

protection
protection
everything
read */
write */
exec */
read */

read permission */
write permission */
execute permission */

mask */
none */

*/

6.4. MEMORY MAPPING FILES AND DEVICES 165

#define UVM_PROT_W 0x02 /* write *x/
#define UVM_PROT_RW 0x03 /* read-write */
#define UVM_PROT_X 0x04 /* exec x/
#define UVM_PROT_RX 0x05 /* read-exec */
#define UVM_PROT_WX 0x06 /* write-exec */

#define UVM_PROT_RWX 0x07 /* read-write-exec */

References to Source Code

This uvn_attach function is used in vn_open, vnode high-level operation function
which is used to implement open system call.

kern/vfs_vnops.c

87 /*
88 * Common code for vnode open operations.
89 x Check permissions, and call the VOP_OPEN or VOP_CREATE routine.

90 */

91 int

92 vn_open(ndp, fmode, cmode)

93 struct nameidata *ndp;

94 int fmode, cmode;

95 {

96 struct vnode *vp;

97 struct proc *p = ndp->ni_cnd.cn_proc;
98 struct ucred *cred = p->p_ucred;

99 struct vattr va;

100 int error;

267 if ((error = VOP_OPEN(vp, fmode, cred, p)) != 0)
268 goto bad;

269 if (vp->v_type == VREG &&

270 uvn_attach(vp, fmode & FWRITE ? VM_PROT_WRITE : 0) == NULL) {
271 error = EIO;

272 goto bad;

273 }

274 if (fmode & FWRITE)

275 vp->vV_writecount++;

276

277 return (0);

278 bad:

279 vput (vp) ;

280 return (error);

281 }

kern/vfs_vnops.c

6.4.2 Setting Vnode Size: uvn_vnp_setsize

void
uvm_vnp_setsize(struct vnode *vp, voff_t newsize);

uvm_vnp_setsize() sets the size of vnode vp to newsize. Caller must hold
a reference to the vnode. If the vnode shrinks, pages no longer used are
discarded.

166 CHAPTER 6. UVM

References to Source Code
This uvn_attach function is used in ffs_write, one of the FFS storage function as,

57 #define WRITE ffs_write

184 /*

185 * Vnode op for writing.

186 */

187 int

188 WRITE(void *v)

189 {

312 while (uio->uio_resid > 0) {

313 boolean_t extending; /* if we’re extending a whole block */

365 /*
update UVM’s notion of the size now that we’ve
copied the data into the vnode’s pages.

we should update the size even when uiomove failed.
otherwise ffs_truncate can’t flush soft update states.

w
(0]
(o0}
* ¥ ¥ ¥ %

371 */

373 newoff = oldoff + bytelen;

374 if (vp->v_size < newoff) {

375 uvm_vnp_setsize(vp, newoff);
376 extended = 1;

6.4.3 Clearing a Vnode: uvn_vnp_zerorange

/*
* uvm_vnp_zerorange: set a range of bytes in a file to zero.

*/

void

uvm_vnp_zerorange(vp, off, len)
struct vnode *vp;
off _t off;
size_t len;

void *win;
/*
* XXXUBC invent kzero() and use it

*/

while (len) {
vsize_t bytelen = len;

6.4. MEMORY MAPPING FILES AND DEVICES 167

win = ubc_alloc(&vp->v_uobj, off, &bytelen, UBC_WRITE);
memset (win, 0, bytelen);
ubc_release(win, 0);

off += bytelen;
len -= bytelen;

References to Source Code
This uvn_zerorange function is used in £fs_truncate vnode operation as,

ffs/ffs/ffs_vnops.c

158 /*
159 * Truncate the inode oip to at most length size, freeing the
160 * disk blocks.

161 */

162 int

163 ffs_truncate(v)

164 void *v;

165 {

253 /*

254 * When truncating a regular file down to a non-block-aligned size,
255 * we must zero the part of last block which is past the new EOF.
256 * We must synchronously flush the zeroed pages to disk

257 * since the new pages will be invalidated as soon as we

258 * inform the VM system of the new, smaller size.

259 * We must do this before acquiring the GLOCK, since fetching
260 * the pages will acquire the GLOCK internally.

261 * So there is a window where another thread could see a whole
262 * zeroed page past EOF, but that’s life.

263 */

264

265 offset = blkoff(fs, length);

266 if (ovp->v_type == VREG && length < osize && offset != 0) {

267 voff_t eoz;

268

269 error = ufs_balloc_range(ovp, length - 1, 1, ap->a_cred,
270 aflag);

271 if (error) {

272 return error;

273 }

274 size = blksize(fs, oip, lblkno(fs, length));

275 eoz = MIN(lblktosize(fs, lblkno(fs, length)) + size, osize);
276 uvm_vnp_zerorange (ovp, length, eoz - length);

277 simple_lock(&ovp->v_interlock) ;

278 error = VOP_PUTPAGES(ovp, trunc_page(length), round_page(eoz),
279 PGO_CLEANIT | PGO_DEACTIVATE | PGO_SYNCIO);

280 if (error) {

281 return error;

282 }

168 CHAPTER 6. UVM

ffs/ffs/ffs_vnops.c

6.5 Management of Physical Memory

6.5.1 Lock Management for Page Queue: uvm_(un)lock_pageq

#define uvm_lock_pageq() simple_lock(&uvm.pageqlock)
#define uvm_unlock_pageq() simple_unlock(&uvm.pageqlock)

6.5.2 Activating Physical Page: uvm_pageactivate
/*

* uvm_pageactivate: activate page
*

* => caller must lock page queues

*/

void
uvm_pageactivate(struct vm_page *pg)

References to Source Code

This function is used in ufs_balloc_range data block allocation function as,

ufs/ufs_inode.c

204 /*

205 * read or create pages covering the range of the allocation and
206 * keep them locked until the new block is allocated, so there
207 * will be no window where the old contents of the new block are
208 * visible to racing threads.

209 */

210

211 pagestart = trunc_page(off) & “(bsize - 1);

212 npages = MIN(ppb, (round_page(neweob) - pagestart) >> PAGE_SHIFT);
213 memset (pgs, 0, npages * sizeof (struct vm_page *));

214 simple_lock(&uobj->vmobjlock) ;

215 error = VOP_GETPAGES(vp, pagestart, pgs, &npages, O,

216 VM_PROT_READ, O, PGO_SYNCIO|PGO_PASTEOQF);

217 if (error) {

218 return error;

219 }

220 simple_lock(&uobj->vmobjlock) ;

221 uvm_lock_pageq();

222 for (i = 0; i < npages; i++) {

223 UVMHIST_LOG(ubchist, "got pgs[%d] %p", i, pgsl[il,0,0);
224 KASSERT ((pgs[i]->flags & PG_RELEASED) == 0);

225 pgs[il->flags &= ~“PG_CLEAN;

226 uvm_pageactivate(pgs[il);

227 b

228 uvm_unlock_pageq() ;

229 simple_unlock(&uobj->vmobjlock) ;

6.5. MANAGEMENT OF PHYSICAL MEMORY 169

ufs/ufs_inode.c

6.5.3 Making Unbusy a Page: uvm_page_unbusy
/*

uvm_page_unbusy: unbusy an array of pages.

=> pages must either all belong to the same object, or all belong to anons.
=> if pages are object-owned, object must be locked.
=> if pages are anon-owned, anons must be locked.

* ¥ X X ¥ ¥

=> caller must lock page queues if pages may be released.

*/

void
uvm_page_unbusy(struct vm_page **pgs, int npgs);
References to Source Code

This function is also used in ufs_balloc_range data block allocation function as,

ufs/ufs_inode.c

247 /*

248 * clear PG_RDONLY on any pages we are holding
249 * (since they now have backing store) and unbusy them.
250 */

251

252 simple_lock(&uobj->vmobjlock) ;

253 for (i = 0; i < npages; i++) {

254 pgsl[il->flags &= ~“PG_RDONLY;

255 if (error) {

256 pgs[i]->flags |= PG_RELEASED;
257 b

258 b

259 if (error) {

260 uvm_lock_pageq();

261 uvm_page_unbusy(pgs, npages);

262 uvm_unlock_pageqQ) ;

263 } else {

264 uvm_page_unbusy(pgs, npages);

265 }

266 simple_unlock(&uobj->vmobjlock) ;

ufs/ufs_inode.c

6.5.4 Looking up a Page: uvm_pagelookup

/*
uvm_pagelookup: look up a page

* ¥

*

=> caller should lock object to keep someone from pulling the page
* out from under it

*/

struct vm_page *
uvm_pagelookup(struct uvm_object *obj, voff_t off);

170

CHAPTER 6. UVM

References to Source Code

Only when the soft dependency facility is used, this function is effective in ffs_putpages

as,

507 int

ffs /ffs_vnops.c

508 ffs_putpages(void *v)

509 {
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
5562
553
554

struct vop_putpages_args /* {
struct vnode *a_vp;
voff_t a_offlo;
voff_t a_offhi;
int a_flags;
} */ *ap = v;
struct vnode *vp = ap->a_vp;
struct uvm_object *uobj = &vp->v_uobj;
struct inode *ip = VTOI(vp);
struct fs *fs = ip->i_fs;
struct vm_page *pg;
off_t off;
ufs_lbn_t 1bn;

if (!DOINGSOFTDEP(vp) || (ap->a_flags & PGO_CLEANIT) == 0) {
return genfs_putpages(v);

}

/*

* for softdep files, force the pages in a block to be written together.
if we’re the pagedaemon and we would have to wait for other pages,

* just fail the request. the pagedaemon will pick a different page.

*/

*

ap—>a_offlo &= "“fs->fs_qgbmask;
lbn = 1lblkno(fs, ap->a_offhi);
ap—>a_offhi = blkroundup(fs, ap->a_offhi);
if (curproc == uvm.pagedaemon_proc) {
for (off = ap->a_offlo; off < ap->a_offhi; off += PAGE_SIZE) {
pg = uvm_pagelookup(uobj, off);

/*

we only have missing pages here because the
calculation of offhi above doesn’t account for
fragments. so once we see one missing page,
the rest should be missing as well, but we’ll
check for the rest just to be paranoid.

* X X ¥ x

*/

if (pg == NULL) {
continue;

}

if (pg->flags & PG_BUSY) {
simple_unlock(&uobj->vmobjlock) ;
return EBUSY;

6.5. MANAGEMENT OF PHYSICAL MEMORY 171

555 }

556 }

557 }

558 return genfs_putpages(v);
559 }

ffs /ffs_vnops.c

172 CHAPTER 6. UVM

Chapter 7

UBC

7.1 Introduction

Operating systems allow filesystem data to be accessed using two mechanisms:
memory mapping calls such as mmap, and I/O system calls such as read or write.
In traditional UNIX, the memory mapping requests are handled by the VM sys-
tem while I/O system calls are handled by the I/O subsystem. Therefore, the VM
subsystem and I/O subsystem each have their own data caching mechanisms that
operate semi-independently of each other. This lack of integration leads to degrade
in performance and flexibility. The function of Unified Buffer Cache(UBC) is to
integrate the two cache mechanisms, to improve system performance.

7.2 Traditional Accesses to File

Figure 7.1 shows the flow of data between the disk and the application with a
traditional buffer cache and VM page.

application

page cache

extra data copy

buffer cache

raw device

Figure 7.1: NetBSD before UBC

173

174 CHAPTER 7. UBC

7.2.1 I/O Subsystem: read() and write()

The read system call reads data from disk into the kernel’s buffer cache, and then
copies data from the buffer cache to the application’s address space.
The use of the buffer cache for large amounts of data is generally bad, since

e the static sizing of the buffer cache means that the buffer cache is often too
small, so that resulting in excessive cache misses for the single large file.

e the excessively high portion of buffer cache about a single large file leaves too
little buffer cache for other files.

e or the buffer cache also has the limitation that cached data must always be
mapped into kernel vitrual space, since modern hardware can easily have more
RAM than kernel virtual memory.

7.2.2 Virtual Memory Subsystem: mmap ()

The mmap system call gives the application direct memory-mapped access to the
kernel’s page cache data. File data is read into the page cache lazily as processes
attempt to access the mappings created with mmap system call and generate page
faults.

To write modified data in page caches back to disk,

1. the new version is copied back to the buffer cache and

2. from the buffer cache, the modified page contents is written to disk.

This double-cacheing of data is a major source of inefficiency, since

e Having two copies of file data means that twice as much memory is used.

e Copying the data back and forth between the buffer cache and the page cache
is extra data copy, so that this wastes CPU cycles

e The extra copy also clobbers CPU cache memory and results in performance
degrade.

e Having two copies of the dat also allows the possibility that the two sopies
will become inconsistent, which can lead to application problems which are
difficult to debug

7.3 File Access with Unified Buffer Cache

Figure 7.2 shows the changed data flow with UBC. UBC is a new subsystem which
solves the problems with the two-cache model.

e File data is read directly into the page cache without going through the buffer
cache by creating two new virtual filesystem operations which calls the device
driver to read the data from disk if necessary.

e Since the pages of page cache are not always mapped into kernel virtual ad-
dress space, a new mechanism for providing temporary mappings of page cache
pages is provided, to be used by read and write system call.

7.4. VFS SUPPORT FOR UVM 175

application

T

| mmap I | read/write I

raw device

Figure 7.2: NetBSD after UBC

7.4 VFS Support for UVM

These new virtual filesystem operations are provided to allow the UVM system to
request ranges of pages to be read into memory from disk or written from memory

back to disk.

7.4.1 VOP_GETPAGES Operation

VOP_GETPAGES allocate pages from the UVM system for data which is not already
cached and then initiate device I/O operations to read all the disk blocks which con-
tain the data for those pages. The functions is defined inmiscfs/genfs/genfs vnops.c

VOP_GETPAGES (vp, offset, m, count, centeridx, access_type, advice, flags)

Read VM pages from file. The argument vp is the locked vnode to
read the VM pages from. The argument offset is offset in the
file to start accessing and m is an array of VM pages. The ar-
gument count specifies the number of pages to read. If the op-
eration is successful zero is returned, otherwise an appropriate
error code is returned.

7.4.2 VOP_PUTPAGES Operation

VOP_PUTPAGES initiate device I/Os to write dirty pages back to disk. The functions
is defined in miscfs/genfs/genfs vnops.c

VOP_PUTPAGES (vp, offset, len, flags)

Write modified (dirty) VM pages to file. The argument vp is the
locked vnode to write the VM pages to and offset and len speci-
fies the range of VM pages to write. There seems to be some
confusion in the code whether offset and len specify the start
and length of the VM pages for the start and end of the VM
pages. The argument flags specifies whether the pages should be
written asynchronously and also whether they should be marked
invalid one the write back operation has completed. If the op-
eration is successful zero is returned, otherwise an appropriate
error code is returned.

176 CHAPTER 7. UBC

7.5 UVM Support for I/0O

There are functions that allocate and free temporary mappings of page cache file
data.

7.5.1 ubc_alloc Function

ubc_alloc is a page equivalent of the buffer cache funstion, get blk. The functions
is defined in uvm/uvm_bio.c

void *
ubc_alloc(struct uvm_object *uobj, voff_t offset, vsize_t *lenp,
int flags);

ubc_alloc() creates a kernel mappings of uobj starting at offset offset.
the desired length of the mapping is pointed to by lenp, but the actual
mapping may be smaller than this. lenp is updated to contain the actual
length mapped. The flags must be one of

#define UBC_READ 0x01 /* mapping will be accessed for read */
#define UBC_WRITE 0x02 /* mapping will be accessed for write */

Currently, uobj must actually be a vnode object. Once the mapping is
created, it must be accessed only by methods that can handle faults, such

as uiomove() or kcopy(). Page faults on the mapping will result in the

vnode’s VOP_GETPAGES() method being called to resolve the fault.

7.5.2 ubc_release Function

ubc_release is a page cache equivalent of the buffer cache funftion, brelse. The
functions is defined in uvm/uvm_bio.c

void
ubc_release(void *va, int flags);

ubc_release() frees the mapping at va for reuse. The mapping may be

cached to speed future accesses to the same region of the object. The
flags are currently unused.

7.6 Example
7.6.1 Reading from Disk to Buffer with UBC

ufs/ufs_readwrite.c

61 /x*

62 * Vnode op for reading.

63 x/

64 /* ARGSUSED */

65 int

66 ffs_read(void *v)

67 {

68 struct vop_read_args /* {
69 struct vnode *a_vp;
70 struct uio *a_uio;

7.6. EXAMPLE

71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91

175 out:
176
177

177

int a_ioflag;
struct ucred *a_cred;
} */ *xap = v;
struct vnode *vp;
struct inode *ip;
struct uio *uio;
FS *fs;
void *win;
vsize_t bytelen;
struct buf *bp;
ufs_daddr_t lbn, nextlbn;
off _t bytesinfile;
long size, xfersize, blkoffset;
int error;
boolean_t usepc = FALSE;

vp = ap->a_vp;
ip = VTOI(vp);
uio = ap->a_uio;
error = 0;

fs = ip->I_FS;

if ((u_int64_t)uio->uio_offset > fs->fs_maxfilesize)
return (EFBIG);

if (uio->uio_resid == 0)
return (0);

if (uio->uio_offset >= ip->i_ffs_size) {
goto out;

usepc = vp—>v_type == VREG;

if (usepc) {
while (uio->uio_resid > 0) {
bytelen = MIN(ip->i_ffs_size - uio->uio_offset,
uio->uio_resid);
if (bytelen == 0)
break;

win = ubc_alloc(&vp->v_uobj, uio->uio_offset,
&bytelen, UBC_READ);
error = uiomove(win, bytelen, uio);
ubc_release(win, 0);
if (error)
break;

}

goto out;

if (! (vp->v_mount->mnt_flag & MNT_NOATIME)) {
ip->i_flag |= IN_ACCESS;

178

178
179
180
181
182 }

CHAPTER 7. UBC

if ((ap->a_ioflag & IO_SYNC) == IO_SYNC)

error

}

return (error);

VOP_UPDATE(vp, NULL, NULL, UPDATE_WAIT);

ufs/ufs_readwrite.c

7.6.2 Writing from Buffer to Disk with UBC

184 /
185
186
187 i
188 £
189 {
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

245

*
* Vnode op for writing.
*/

nt

fs_write(void *v)

ufs/ufs_readwrite.c

struct vop_write_args /* {
struct vnode *a_vp;
struct uio *a_uio;

int a_ioflag;

struct ucred *a_cred;

} %/ *ap = v;

struct vnode *vp;
struct uio *uio;
struct inode *ip;

struct genfs_node *gp;

FS xfs;
struct buf *bp;
struct proc *p;

struct ucred *cred;

ufs_daddr_t lbn;

off_t osize, origoff, oldoff, preallocoff, endallocoff, nsize;
int blkoffset, error, flags, ioflag, resid, size, xfersize;

int bsize, aflag;

int ubc_alloc_flags;

int extended=0;
void *win;

vsize_t bytelen;
boolean_t async;

boolean_t usepc = FALSE;

cred = ap—>a_cred;

ioflag = ap->a_ioflag;

uio = ap—>a_uio;
vp = ap->a_vp;

ip = VTOI(vp);
gp = VTOG(vp);
fs = ip—->I_FS;

7.6. EXAMPLE

270
271
272
273
274
275
276

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

flags =
async =
origoff
resid =
osize =
bsize =
error =

179

ioflag & IO_SYNC 7 B_SYNC : O;
vp->v_mount->mnt_flag & MNT_ASYNC;
= uio—->uio_offset;

uio—->uio_resid;

ip->i_ffs_size;

fs->fs_bsize;

0;

ubc_alloc_flags = UBC_WRITE;
while (uio—>uio_resid > 0) {

boolean_t extending; /* if we’re extending a whole block */
off_t newoff;

oldoff = uio->uio_offset;
blkoffset = blkoff(fs, uio->uio_offset);
bytelen = MIN(fs->fs_bsize - blkoffset, uio->uio_resid);

/*
* if we’re filling in a hole, allocate the blocks now and
* initialize the pages first. if we’re extending the file,
* we can safely allocate blocks without initializing pages
* since the new blocks will be inaccessible until the write
* is complete.
*/
lockmgr (&gp->g_glock, LK_EXCLUSIVE, NULL);
error = GOP_ALLOC(vp, uio->uio_offset, bytelen,
aflag, cred);
lockmgr (&gp->g_glock, LK_RELEASE, NULL);
if (error) {
break;
¥
ubc_alloc_flags |= UBC_FAULTBUSY;
/*
* copy the data.
*/

win = ubc_alloc(&vp->v_uobj, uio->uio_offset, &bytelen,
ubc_alloc_flags);
error = uiomove(win, bytelen, uio);
if (error && extending) {
/%
* if we haven’t initialized the pages yet,
* do it now. 1it’s safe to use memset here
* because we just mapped the pages above.
*/
memset (win, 0, bytelen);
}

ubc_release(win, 0);

/*

180

466 out:

CHAPTER 7. UBC

* flush what we just wrote if necessary.
* XXXUBC simplistic async flushing.
*/

if ('async && oldoff >> 16 != uio->uio_offset >> 16) {
simple_lock(&vp->v_interlock);
error = VOP_PUTPAGES(vp, (oldoff >> 16) << 16,
(uio—>uio_offset >> 16) << 16, PGO_CLEANIT);
if (error) {
break;
}
}

if (error == 0 && ioflag & IO_SYNC) {

simple_lock(&vp->v_interlock) ;

error = VOP_PUTPAGES(vp, trunc_page(origoff & ~(bsize - 1)),
round_page (blkroundup(fs, uio->uio_offset)),
PGO_CLEANIT | PGO_SYNCIO);

goto out;

return (error);

ufs/ufs_readwrite.c

Part 11

Analyzing Fast Filesystem

181

Chapter 8

Naming

Filesystem contain files, most of which contain ordinary data. Certain files are
distinguished as directories and contain pointers to files that may themselves be
directories.

8.1 Directories

8.1.1 Chunk

Directories are allocated in unites called chunks Chunks are broken up into variable-
length directory entries to allow filenames to be of nearly arbitrary length. No
directory entry can span multiple chunks. The chunk is defined as struct direct
in ufs/ufs/dir.h as,

75
76
77

a directory block is free, then its dp->d_ino is set to O.
Entries other than the first in a directory do not normally have
dp->d_ino set to O.

ufs/ufs/dir.h

54 /x*
556 * A directory consists of some number of blocks of DIRBLKSIZ
56 * bytes, where DIRBLKSIZ is chosen such that it can be transferred
57 * to disk in a single atomic operation (e.g. 512 bytes on most machines).
58 *
59 * Each DIRBLKSIZ byte block contains some number of directory entry
60 * structures, which are of variable length. Each directory entry has
61 * a struct direct at the front of it, containing its inode number,
62 * the length of the entry, and the length of the name contained in
63 * the entry. These are followed by the name padded to a 4 byte boundary
64 * with null bytes. All names are guaranteed null terminated.
65 * The maximum length of a name in a directory is MAXNAMLEN.
66 *
67 * The macro DIRSIZ(fmt, dp) gives the amount of space required to represent
68 * a directory entry. Free space in a directory is represented by
69 * entries which have dp->d_reclen > DIRSIZ(fmt, dp). All DIRBLKSIZ bytes
70 * in a directory block are claimed by the directory entries. This
71 * usually results in the last entry in a directory having a large
72 * dp->d_reclen. When entries are deleted from a directory, the
73 * space is returned to the previous entry in the same directory
74 * block by increasing its dp->d_reclen. If the first entry of

*

*

*

183

184 CHAPTER 8. NAMING

78 */

79 #undef DIRBLKSIZ

80 #define DIRBLKSIZ DEV_BSIZE

81 #undef MAXNAMLEN

82 #define MAXNAMLEN 255

83 #define APPLEUFS_DIRBLKSIZ 1024

84

85 struct direct {

86 u_int32_t d_ino; /* inode number of entry */

87 u_int16_t d_reclen; /* length of this record */

88 u_int8_t d_type; /* file type, see below */

89 u_int8_t d_namlen; /* length of string in d_name */

90 char d_name [MAXNAMLEN + 1];/#* name with length <= MAXNAMLEN */
91 };

92

93 /*

94 x File types

95 */

96 #define DT_UNKNOWN
97 #define DT_FIFO

98 #define DT_CHR

99 #define DT_DIR

100 #define DT_BLK

101 #define DT_REG

102 #define DT_LNK 10
103 #define DT_SOCK 12
104 #define DT_WHT 14

Q0 PN+~ O

ufs/ufs/dir.h

The filesystem records free space in a directory by having entries accumulate
the free space in their size fields.

8.1.2 Modification of Directory

When an entry is deleted from a directory, the system coalesces the entry’s space
into the previous entry in the same directory chunk by increasing the size of the
previous entry by the size of the deleted entry.

If the filrst entry of a directory chunk is free, then the pointer to the entry’s
inode is set to zero to show that the entry is unallocated.

8.2 Finding of Names in Directories

8.2.1 Match Algorithm

First, the length of the sought-after name is compared with the length of the name
being checked. If the lengths are identical, a string comparison of the name being
sought and the directory entry is made. If they match, the search is complete; if
they fail, the search continues with the next entry.

8.2.2 Search Performance Improvement

Before starting a directory scan, the kernel looks for the name in the cache. If either
a positive or a negative entry is found, the directory scan can be avoided.

8.3. PATHNAME TRANSLATION 185

8.3 Pathname Translation

The translation of a pathname requires a series of interactions between the vnode in-
terface and the underlying filesystems. The pathname-translation process proceeds
as follows:

1. The pathname to be translated is copied in from the user process.

2. The starting point if the pathname is determined. The vnode for this directory
becomes the lookup directory used in the next step.

3. The vnode layer calls the filesystem-specific lookup opeartion, and passes the
remaining components of the pathname and the current lookup directory.

4. Typically, the underlying filesystem will search the lookup directory for the
next component of the pathname and will return the resulting vnode or an
error if the name does not exist.

5. If an error is returned, the top level returns the error. If the pathname has
been exhausted, the pathname lookup is done, and the returned vnode is the
result of not a directory, then the vnode layer returns "not a directory” error.

6. If there are no errors, the top layer checks to see whether the returned directory
is a mount point for another filesystem. If it is, then the lookup directory
becomes the mounted filesystem; otherwise, the lookup directory becomes the
vnode returned by the lower layer. The lookup then iterates with step 3.

8.4 The Name Cache

Name-cache management is a service that is provided by the vnode management
routines. The interface provides a facility

e to add a name and its corresponding vnode,
e to look up a name to get the corresponding vnode,
e to delete a specific name from the cache, and

e to invalidate all names that reference a specific vnode.

8.4.1 Vnode’s Capability

Each vnode is given a capability — a 32-bit number guaranteed to be unique. A
vnode’s capability is invalidated each time it is reused by getnewvnode or, when
specificially requested by a client.

When a name is found during a cached lookup, the capability assigned to the
name is compared with that of the vnode. If they match, the lookup is successful;
if they do not match, the cache entry is freed and failure is returned.

Directory vnodes can have many names that reference them. Using vnode’s
capability, the kernel need not revoke a names for a vnode by scanning the entire
name table, thousands of names, looking for references to the vnode in question.

8.4.2 Negative Caching

If a name is looked up in a directory and is not found, that name can be entered
in the cache, along with a null pointer for its corresponding vnode. When the
directory is modified, the kernel must invalidate all the negative names for that
directory vnode by assigning the directory a new capability.

186 CHAPTER 8. NAMING

8.4.3 Special Device Handling

The name and attributes of special devices and FIFOs are maintained by the filesys-
tem in which they reside. However, their operations are maintained by the kernel.

A Dilemma

Since a special device is identified solely by its major and minor number, it is possible
for two or more instances of the same device to appear within the filesystem name
space. Each of these different names has its own vnode and underlying object, Yet
all these vnodes must be treated as one from the perspective of identifying blocks
in the buffer cache and in other places where the vnode and logical block number
are used as a key.

A Solution

To ensure that the set of vnodes is treated as a single vnode, the vnode layer
provides a routine checkalias that is called each time that a new special device
vnode comes into existence. This routine looks for other instances of the device,
and if it finds them, links them together so that they can act as one.

8.5 Links
8.5.1 Hard Links

Each file has a single inode, but multiple directory entries in the same filesystem
may reference that inode by creating hard links.

8.5.2 Soft Links

The symbolic link, or soft link is implemented as a file that contains a pathname.
If a symbolic link contains an relative pathname, the contents of the symbolic link
are evaluated relative to the location of the link, not relative to the current working
directory).

8.5.3 The Differences

e A symbolic link can refer to a directory or to a file on a different filsystem; A
hard link cannnot

e Since symbolic links may cause loops in the filesystem, the kernel prevents
looping by allowing at most eight symbolic link travesal in a single pathname
tralslation. If the limit is reached, the kernel produces an ELOOP error.

8.6 References to Source Code
8.6.1 vfs_cache.c - 537 lines, 17 functions
Gloval Variables

[Positive Name Cache]

nchashtbl Name cache hash table
nchash Magic number to generate hash key

8.6. REFERENCES TO SOURCE CODE 187

numcache Number of cache entries allocated
nclruhead LRU chain

nchstats Cache effectiveness statistics
namecache_pool Pool

doingcache Switch to enable cache

[Negative Name Cache]

ncvhashtbl Name cache hash table
ncvhash Magic number to generate hash key
Functions

[Name Cache Management]

cache_lookup Look for a the name in the cache

cache_revlookup Scan cache looking for name of directory entry pointing at vp
cache_enter Add an entry to the cach

cache_purge Cache flush, a particular vnode; called when a vnode is renamed
cache_purgevfs Cache flush, a whole filesystem; when unmounted

[Name Cache Initialization]

nchinit
nchreinit

[Diagnostic]

namecache_print

8.6.2 vfs_lookup.c - 777 lines, 4 functions
Gloval Variables

pnbuf_pool Pathname buffer pool
pnbuf_cache Pathname buffer cache

Functions
namei Convert a pathname into a pointer to a locked inode
namei_hash Determine the namei hash (for cn_hash) for name
lookup Search a pathname

relookup [?] Reacquire a path name component

188 CHAPTER 8. NAMING

Chapter 9

Inode

9.1 The Structures of an Inode

To allow files to be allocated concurently and random access within files, 4.4BSD
uses the concept of an index node, namely inode.

The inode contains information about the contents of the file. Notably missing
in the inode is the filename. Chunks are broken up into variable-length directory
entries to allow filenames to be of arbitrary length. The fixed parts of a directory
entry includes

e An index into a table of on-disk inode structures. This inode structure de-
scribes the file.

e The size of the entry in bytes
e The type of the entry.
e The length of the filename contained in the entry in bytes.

The structure definition of the inode is located in ufs/ufs/inode.h as,

ufs/ufs/inode.h
67 /*
68 * The inode is used to describe each active (or recently active) file in the
69 x UFS filesystem. It is composed of two types of information. The first part
70 * is the information that is needed only while the file is active (such as
71 * the identity of the file and linkage to speed its lookup). The second part
72 * is the permanent meta-data associated with the file which is read in
73 * from the permanent dinode from long term storage when the file becomes
74 * active, and is put back when the file is no longer being used.
75 x/
76 struct inode {
7 struct genfs_node i_gnode;
78 LIST_ENTRY(inode) i_hash;/* Hash chain. */
79 struct vnode *i_vnode; /* Vnode associated with this inode. */
80 struct vnode *i_devvp; /* Vnode for block I/0. */
81 u_int32_t i_flag; /* flags, see below */
82 dev_t i_dev; /* Device associated with the inode. */
83 ino_t i_number; /* The identity of the inode. */
84
85 union { /* Associated filesystem. */

189

190

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
130
131
132
133
134
135
136
137
138
139
140

#define
#define
#define

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

CHAPTER 9. INODE

struct fs *fs; /* FFS x/
struct 1fs *1fs; /* LFS x/
struct m_ext2fs *e2fs; /*x EXT2FS */
} inode_u;
i_fs inode_u.fs
i_1fs inode_u.1lfs
i_e2fs 1inode_u.e2fs
struct buflists i_pcbufhd; /* softdep pagecache buffer head */
struct dquot *i_dquot[MAXQUOTAS]; /* Dquot structures. */
u_quad_t i_modrev; /* Revision level for NFS lease. */
struct lockf *i_lockf;/* Head of byte-level lock list. */
/*
* Side effects; used during directory lookup.
*/
int32_t i_count; /* Size of free slot in directory. */
doff_t i_endoff; /* End of useful stuff in directory. */
doff_t i_diroff; /* 0ffset in dir, where we found last entry.
doff_t i_offset; /* Offset of free space in directory. */
u_int32_t i_reclen; /* Size of found directory entry. */
int i_ffs_effnlink; /* i_nlink when I/0 completes */
/*
* Inode extensions
*/
union {
/* Other extensions could go here... */

struct ext2fs_inode_ext e2fs;
struct 1fs_inode_ext 1fs;
} inode_ext;

i_e2fs_last_1blk inode_ext.e2fs.ext2fs_last_lblk
i_e2fs_last_blk inode_ext.e2fs.ext2fs_last_blk
i_lfs_effnblks inode_ext.lfs.lfs_effnblocks
i_lfs_fragsize inode_ext.1lfs.1lfs_fragsize
i_lfs_osize inode_ext.lfs.1lfs_osize

/*

* The on-disk dinode itself.

*/
union {

*/

struct dinode ffs_din; /* 128 bytes of the on-disk dinode. */

struct ext2fs_dinode e2fs_din; /* 128 bytes of the on-disk

dinode. */
} i_din;
i_ffs_atime i_din.ffs_din.di_atime
i_ffs_atimensec i_din.ffs_din.di_atimensec
i_ffs_blocks i_din.ffs_din.di_blocks
i_ffs_ctime i_din.ffs_din.di_ctime
i_ffs_ctimensec i_din.ffs_din.di_ctimensec
i_ffs_db i_din.ffs_din.di_db
i_ffs_flags i_din.ffs_din.di_flags
i_ffs_gen i_din.ffs_din.di_gen
i_ffs_gid i_din.ffs_din.di_gid
i_ffs_ib i_din.ffs_din.di_ib

9.1.

141
142
143
144
145
146
147
148

where struct dinode of line 125 is defined as

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

THE STRUCTURES OF AN INODE

#define i_ffs_mode
#define i_ffs_mtime
#define i_ffs_mtimensec
#define i_ffs_nlink
#define i_ffs_rdev
#define i_ffs_shortlink
#define i_ffs_size
#define i_ffs_uid

i_din.
i_din.
i_din.
i_din.
i_din.
i_din.
i_din.
i_din.

ffs_din.
ffs_din.
ffs_din.
ffs_din.
ffs_din.
ffs_din.
ffs_din.
ffs_din.

191

di_mode
di_mtime
di_mtimensec
di_nlink
di_rdev
di_shortlink
di_size
di_uid

ufs/ufs/inode.h

/%

ufs/ufs/dinode.h

* A dinode contains all the meta-data associated with a UFS file.

* This structure defines the on-disk format of a dinode.

Since

* this structure describes an on-disk structure, all its fields
* are defined by types with precise widths.

*/

typedef int32_t ufs_daddr_t;
typedef long ufs_lbn_t;

#define NDADDR 12
#define NIADDR 3

struct dinode {

u_intl6_t di_mode;
intl6_t di_nlink;
union {

u_int16_t oldids[2];

u_int32_t inumber;
} di_u;
u_int64_t di_size;
int32_t di_atime;
int32_t di_atimensec;
int32_t di_mtime;
int32_t di_mtimensec;
int32_t di_ctime;
int32_t di_ctimensec;
ufs_daddr_t di_db[NDADDR] ;
ufs_daddr_t di_ib[NIADDR];
u_int32_t di_flags;
u_int32_t di_blocks;
int32_t di_gen;
u_int32_t di_uid;
u_int32_t di_gid;
int32_t di_spare[2];

}s;
/%

/*
/%

/*
/*

/%
/*

/*
/*
/%
/*
/*
/*
/*
/*
/*
/%
/*
/*
/*
/%
/%

Dir
Ind

16:
20:
24 :
28:
32:
36:
40:
88:
100:
104:
108:
112:
116:
120:

* The di_db fields may be overlaid with other
* file types that do not have associated disk

ect addresses in inode. */
irect addresses in inode. */

IFMT, permissions; see below.
: File link count. */

Ffs:
Lfs: inode number. */
: File
Last
Last
Last
Last

byte count. */
access time. */
access time. */
modified time. */
modified time. */
Last inode change time.
Last inode change time.
Direct disk blocks. */
Indirect disk blocks. */
Status flags (chflags). */
Blocks actually held. */
Generation number. */

File owner. */

File group. */

Reserved; currently unused */

*/
*/

information for
storage. Block

*/

0ld user and group ids. */

192 CHAPTER 9. INODE

102 * and character devices overlay the first data block with their
103 * dev_t value. Short symbolic links place their path in the
104 * di_db area.

105 =/

106 #define di_inumber di_u.inumber
107 #define di_ogid di_u.oldids[1]
108 #define di_ouid di_u.oldids[0]
109 #define di_rdev di_db[0]

110 #define di_shortlink di_db

111 #define MAXSYMLINKLEN ((NDADDR + NIADDR) * sizeof (ufs_daddr_t))
112

113 /* NeXT used to keep short symlinks in the inode even when using
114 * FS_42INODEFMT. In that case fs->fs_maxsymlinklen is probably -1,
115 * but short symlinks were stored in inodes shorter than this:

116 */

117 #define APPLEUFS_MAXSYMLINKLEN 60

118

119 /* File permissions. */

120 #define IEXEC 0000100 /* Executable. */

121 #define IWRITE 0000200 /* Writeable. */

122 #define IREAD 0000400 /* Readable. */

123 #define ISVTX 0001000 /* Sticky bit. */

124 #define ISGID 0002000 /* Set-gid. */

125 #define ISUID 0004000 /* Set-uid. */

126

127 /* File types. */

128 #define IFMT 0170000 /* Mask of file type. */
129 #define IFIFO 0010000 /* Named pipe (fifo). */
130 #define IFCHR 0020000 /* Character device. */
131 #define IFDIR 0040000 /* Directory file. */
132 #define IFBLK 0060000 /* Block device. */

133 #define IFREG 0100000 /* Regular file. */

134 #define IFLNK 0120000 /* Symbolic link. */

135 #define IFSOCK 0140000 /* UNIX domain socket. */
136 #define IFWHT 0160000 /* Whiteout. */

137

138 /* Size of the on-disk inode. */

139 #define DINODE_SIZE (sizeof (struct dinode)) /* 128 x/

ufs/ufs/dinode.h

9.1.1 File Flags

4.4BSD added two new system calls, chflags and fchflags, that set a 32-bit
flags — di_flags member of dinode structure.

The owner of the file or the superuser can set the low 16 bits. Only the superuser
can set the high 16 bits. Once set, the append-only and immutable flags in the top
16 bits cannot be cleared when the system is in secure mode.

The flags are defined in sys/stat.h as,

sys/stat.h

232 /%
233 * Definitions of flags stored in file flags word.
234 *

9.1. THE STRUCTURES OF AN INODE

235
236
237
238
239
240
241
242
243
244
245
246
247
248

* Super-user and owner changeable flags.

*/
#define
#define
#define
#define
#define
/%

UF_SETTABLE
UF_NODUMP

UF_IMMUTABLE
UF _APPEND
UF_0OPAQUE

0x0000ffff
0x00000001
0x00000002
0x00000004
0x00000008

* Super-user changeable flags.

*/
#define
#define
#define
#define

SF_SETTABLE
SF_ARCHIVED

SF_IMMUTABLE

SF_APPEND

Oxf£££0000
0x00010000
0x00020000
0x00040000

/*
/*
/*
/*
/*

/*
/*
/*
/*

193

mask of owner changeable flags */
do not dump file */

file may not be changed */

writes to file may only append */
directory is opaque wrt. union */

mask of superuser changeable flags */
file is archived */

file may not be changed */

writes to file may only append */

sys/stat.h

Files marked immutable by the superuiser cannot be changed, except by someone
with physical access to either the machine or the system console. It is useful in
safeguarding the login or su program from the danger of hacking. The append-
only flag is typically used for critical system logs. Although simple in concept, these
two features improve the security of a system dramatically.

9.1.2 Inode Flags

Unlike file flags, inode flags is only used to internal purpose by filesystem hierarchy
manipulation functions such as rename. They are defined in ufs/ufs/inode.h as,

170
171
172
173
174
175
176
177
178
179
180
181

/* These flags are kept in i_flag. */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

IN_ACCESS
IN_CHANGE
IN_UPDATE
IN_MODIFIED
IN_ACCESSED
IN_RENAME
IN_SHLOCK
IN_EXLOCK
IN_CLEANING
IN_ADIROP

0x0001
0x0002
0x0004
0x0008
0x0010
0x0020
0x0040
0x0080
0x0100
0x0200

IN_SPACECOUNTED 0x0400

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

ufs/ufs/inode.h

Access time update request. */

Inode change time update request. */
Modification time update request. */
Inode has been modified. */

Inode has been accessed. */

Inode is being renamed. */

File has shared lock. */

File has exclusive lock. */

LFS: file is being cleaned */

LFS: dirop in progress */

Blocks to be freed in free count. */

9.1.3 Inode for Root Directory

ufs/ufs/inode.h

Filesystems contain files, most of which contain ordinary data. Certain files are
distinguished as directories and contain pointers to files that may themselves be
directories. Therefore, an inode can point to a directory as well as to a file.

By convention,

e inode 2 is always reserved for the root directory of a filesystem.

194

CHAPTER 9. INODE

9.2 Inode Management

9.2.1 Opening a File

Steps in opening a file is

1.

2.

3.

Find the file’s associated vnode.

(a) The lookup request is given to the filesystem associated with the directory
currently being searched.

(b) When the local filesystem finds the name in the directory, it gets the
inode number of the associated file. If the inode is not in the table, such
as the first time a file is opened, the filesystem must request a new vnode.
When a new vnode is allocated to the local filesyste, a new structure to
hold inode is allocated

(c) The filesystem searches its collection of inodes to see whether the re-
quested inode is already in memory. To avoid doing a linear scan of all
its entries, the system keeps a set of hash chains keyed on inode number
and filesystem identifier.

Locate the disk block containing the inode

(a) When the disk I/O completes, the inode is copied from the disk buffer
into the newly allocated inode entry.

(b) The inode table itself maintains supplement information while the inode
is in memory including
e hash chains managing the inode table
o flags showing the inode’s status
e reference counts on the inode’s use
e information to manage locks

e pointers to the superblock.

Read the block containg the inode into a buffer in system memory.

9.2.2 Closing a File

When the last reference to a file is closed,

1.

2.

The local filesystem is notified that the file has become inactive.
The inode times will be updated, and the inode may be written to disk.

However, it remains on the hash list so that it can be found if it is reopened.

. After being inactive for a period determined by the vnode layer based on

demand for vnodes in all the filesyste, the vnode will be reclaimed.

When a vnode for a local file is reclaimed, the inode is removed from the
previous filesystem’s hash chain and, if the inode is dirty, its contents are
written back to disk.

Then, the space for the inode is deallocated, so that the vnode will be ready
for use by a new filesystem client.

9.3. QUOTAS 195

9.3 Quotas

The quota mechanism sets limits on both the number of files and the number of
disk blocks that a user or members of group may allocate. Quotas connect into the
system primarilt as an adjunct to the allocation routines.

9.3.1 Soft and Hard Quota

When a process exceeds its soft limit, a warning is printed on the user’s terminal;
the offending process is not prevented from allocating space unless it exceeds its
hard limit. If a user fails to correct the problem for longer than a grace period, the
soft limit starts to be enforced as the hard limit.

9.3.2 Quota Imposing Mechanism

Quota is checked by chkdq function. When a new block is requested from the
allocation routines, the request is first validated by the quota system with the
following steps:

1. If there is a user quota associated with the file, the quota system consults
the quota associated with the owner of the file. If the owner has reached or
exceeded their limit, the request is denied.

2. The same check is done for the group quota.

3. If the quota tests pass, the request is permitted and is added to the usage
statistics for the file.

Quotas are asigned to a filesystem after it has been mounted. For each quota to
be imposed, the system opens the appropriate quota file and holds a reference to it
in the mount-table nety associated with the mounted filesystem.

9.3.3 Quota Records

Quota files are maintained as an array of quota records indexed by user or group
identifiers. The Quota record is defined in ufs/ufs/quota.h as,

ufs/ufs/quota.h
94 /x
95 * The following structure defines the format of the disk quota file
96 * (as it appears on disk) - the file is an array of these structures
97 * indexed by user or group number. The setquota system call establishes
98 * the vnode for each quota file (a pointer is retained in the ufsmount
99 * structure).
100 =/
101 struct dgblk {
102 u_int32_t dgb_bhardlimit; /* absolute limit on disk blks alloc */
103 u_int32_t dgb_bsoftlimit; /* preferred limit on disk blks */
104 u_int32_t dqb_curblocks; /* current block count */
105 u_int32_t dqb_ihardlimit; /* maximum # allocated inodes + 1 */
106 u_int32_t dgb_isoftlimit; /* preferred inode limit */
107 u_int32_t dgb_curinodes; /* current # allocated inodes */
108 int32_t dgb_btime; /* time limit for excessive disk use */
109 int32_t dgb_itime; /* time limit for excessive files x/
110 };

ufs/ufs/quota.h

196 CHAPTER 9. INODE

9.3.4 Active Quota Entry: dquot

Active quotas are held in system memory in a dquot structure defined in ufs/ufs/quota.h
as,

ufs/ufs/quota.h
115 /%
116 * The following structure records disk usage for a user or group on a
117 * filesystem. There is one allocated for each quota that exists on any
118 * filesystem for the current user or group. A cache is kept of recently
119 * used entries.
120 */
121 struct dquot {
122 LIST_ENTRY(dquot) dq_hash; /* hash list */
123 TAILQ_ENTRY(dquot) dq_freelist; /* free list */
124 u_intl6_t dq_flags; /* flags, see below */
125 u_int16_t dq_cnt; /* count of active references */
126 u_int16_t dq_spare; /* unused spare padding */
127 u_int16_t dq_type; /* quota type of this dquot */
128 u_int32_t dq_id; /* identifier this applies to */
129 struct ufsmount *dq_ump; /* filesystem that this is taken from */
130 struct dqgblk dq_dgb; /* actual usage & quotas */
131 };
132 /x*
133 * Flag values.
134 =/
135 #define DQ_LOCK 0x01 /* this quota locked (no MODS) */
136 #define DQ_WANT 0x02 /* wakeup on unlock */
137 #define DQ_MOD 0x04 /* this quota modified since read */
138 #define DQ_FAKE 0x08 /* no limits here, just usage */
139 #define DQ_BLKS 0x10 /* has been warned about blk limit */
140 #define DQ_INODS 0x20 /* has been warned about inode limit */

ufs/ufs/quota.h

The task of finding the dquot structure associated with a file is done when the
file is first opened for writing. If one or more quotas exist, the inode is set up to
hold a reference to the appropriate dquot, by setting dquot member of the inode
structure. If a user or a group has multiple files open on the same filesystem, all
inodes describing those files point to the same dquot entry.

Improvement in Searching a dquot Entry

To avoid doing a linear scan of all the dquot entries, the system keeps a set of hash
chains keyed on the filesystem and on the user or group identifier.
If the dquot entry is not resident, such as the first time a file is opened for
writing, the system must reallocate a dquot entry and read in the quota from disk.
When the reference count on a dquot structure drops to zero, the system puts
that entry onto the end the LRU chain. The dquot structure is not removed from
its hash chain, so if the structure is needed again soon, it can still be located.

Dummy dquot Entries

To prevent cost of going to disk and reading the quota file to discover that a user
has no quota, the system maintains dummy dquot entries. For a dummy entry,
chkdq routine updates the usage fields, but will not impose any limits.

9.4. REFERENCES TO SOURCE CODE 197

9.3.5 Consistency Maintenance

If the system crashes, leaving the quotas in an inconsistent state, the system ad-
ministrator must run the quotacheck program to rebuild the usage information in
the quota files.

9.4 References to Source Code

9.4.1 ufs_bmap.c - 325 lines, 3 functions
Gloval Variables

none

Functions
ufs_bmap converts a the logical block number to its physical block
ufs_bmaparray does the real conversion for ufs_bmap
ufs_getlbns (used by ufs_bmaparray)

9.4.2 ufs_ihash.c - 194 lines, 7 functions
Gloval Variables

ihashtbl Inode hash table
ihash Magic number to generate hash key
ufs_hashlock Lock structure for hash table (used by ffs_vget)
ufs_ihash_slock Simple lock structure for hash table
Functions
ufs_ihashinit used by ufs_init()
ufs_ihashreinit used by ufs_reinit()
ufs_ihashdone Free inode hash table

ufs_ihashlookup used only by soft dependency and LFS
ufs_ihashget
ufs_ihashins
ufs_ihashrem

9.4.3 ufs_inode.c - 268 lines, 3 functions

Gloval Variables

none
Functions
ufs_inactive Last reference to an inode. If necessary, write or delete it
ufs_reclaim Reclaim an inode so that it can be used for other purposes

ufs_balloc_range Allocate a range of blocks in a file

9.4.4 ufs_lookup.c - 1216 lines, 9 functions
Gloval Variables

none

198

Functions
ufs_lookup
ufs_dirbad

ufs_dirbadentry
ufs_makedirentry
ufs_direnter
ufs_dirremove
ufs_dirrewrite
ufs_dirempty
ufs_checkpath

CHAPTER 9. INODE

Convert a pathname into a pointer to a locked inode

Do consistency checking on a directory entry

Construct a new directory entry after a call to namei

Write a directory entry after a call to namei

Remove a directory entry after a call to namei

Rewrite an existing directory entry to point at the inode supplied
Check if a directory is empty or not

Check if source directory is in the path of the target directory

9.4.5 ufs_quota.c - 960 lines, 20 functions

Gloval Variables

none

Functions

getinoquota
chkdq
chkdqchg
chkiq
chkiqgchg
chkdquot

Set up the quotas for an inode

Update disk usage, and take corrective action
Check for a valid change to a users allocation
Check the inode limit, applying corrective action
Check for a valid change to a users allocation
Diagnostic

[Code to process quotactl system calls]

quotaon
quotaoff
getquota
setquota
setuse

gsync

Q_QUOTAON - set up a quota file for a particular file system
Q_QUOTAOFF - turn off disk quotas for a filesystem
Q_GETQUOTA - return current values in a dgblk structure
Q_SETQUOTA - assign an entire dgblk structure

Q_SETUSE - set current inode and block usage

Q_SYNC - sync quota files to disk

[Code managing hash table for dquot structures]

dginit
dgreinit
dqgdone
dqget
dqref
dqrele
dgsync
dqgflush

9.4.6 ufs_readwrite.

Gloval Variables

none

Functions

ffs_read

Initialize the quota system

Free resources held by quota system

Obtain a dquot structure for the specified identifier and quota fi
Obtain a reference to a dquot

Release a reference to a dquot

Update the disk quota in the quota file

Flush all entries from the cache for a particular vnode

c - 481 lines, 4 functions

9.4. REFERENCES TO SOURCE CODE 199

ffs_write
1fs_read
1fs_write

9.4.7 ufs_vfsops.c - 262 lines, 8 functions

Gloval Variables

ufs_initcount

Functions

ufs_start

ufs_root Return the vnode for root of a filesystem
ufs_quotactl Do operations associated with quotas
ufs_check_export Verify a remote client has export rights
ufs_fhtovp generic part of fhtovp

ufs_init

ufs_reinit

ufs_done

9.4.8 ufs_vnops.c - 2074 lines, 30 functions
Gloval Variables

none
Functions
ufs_vinit Initialize the vnode associated with a new inode
ufs_makeinode Allocate a new inode

[Virtual Filesystem Operations for FFS]

ufs_access
ufs_advlock
ufs_close
ufs_create
ufs_getattr
ufs_inactive
ufs_link
ufs_lookup
ufs_mkdir
ufs_mknod
ufs_open
ufs_pathconf
ufs_print
ufs_readdir
ufs_readlink
ufs_remove
ufs_rename
ufs_rmdir
ufs_setattr
ufs_strategy
ufs_symlink

200 CHAPTER 9. INODE

ufs_whiteout ?

[Virtual Filesystem Operations for Special File]
ufsspec_close

ufsspec_read

ufsspec_write

[Virtual Filesystem Operations for FIFO]
ufsfifo_read

ufsfifo_write

ufsfifo_close

[Generalized Virtual Filesystem Operations]

#define ufs_lock genfs_lock
#define ufs_mmap genfs_mmap
#define ufs_revoke genfs_revoke
#define ufs_seek genfs_seek
#define ufs_poll genfs_poll
#define ufs_unlock genfs_unlock
#define ufs_abortop genfs_abortop
#define ufs_fcntl genfs_fcntl
#define ufs_ioctl genfs_enoioctl
#define ufs_islocked genfs_islocked

#define ufs_lease_check genfs_lease_check

Chapter 10

Berkeley Fast File System

The FF'S fielsore was designed on the assumption that buffer caches would
be small and thus that files would need to be read often. It tries to place
files likely to be accessed together in the same general location on the disk.

The LFS filestore was designed for fast machines with large buffer
caches. It assumes that writing data to disk is the bottleneck, and it tries to
avoid seeking by writing all data together in the order in which they were created.
It assumes that active files will remain in the buffer cache, so is little concerned
with the time that it takes to retrieve files from the filestore.

10.1 Filestore Services

The filestore implementation converts from the user abstraction of a file as an
array of bytes to the structure imposed by the underlying physical medium. This
operation is called by Block 1/0.

The Block 1/0 is done by

1. First, the system breaks the user’s request into a set of operations to be done
on logical blocks of the file.

2. The data in each logica lblock are accessed via physical block on the disk.
3. A physical disk block is constructed from one or more contiguous sectors.

Vnode operations about storage is implemented by underlying filestore based on
block 1/0.

10.1.1 Allocating and Freeing Objects

There are four operators for allocating and freeing objects.

VOP_VALLOC(pvp, mode, cred, vpp)

Allocate file system type specific data a new file in the file
system. The argument pvp specifies the vnode of the directory
to create the new file. The argument mode specifies file system
type specific flags and cred are the credentials of the calling
process. The vnode of the new file is returned in the address

specified by vpp.

(implemented as ffs_valloc in ufs/ffs/ffs_alloc.c)
(used by ufs_mkdir, ufs_makeinode)

201

202 CHAPTER 10. BERKELEY FAST FILE SYSTEM

VOP_BALLOC(vp, startoffset, size, cred, flags, bpp)
Allocate the physical blocks on a device given the vnode vp and
the offset logical block number startoffset in a file. The ar-
gument size specifies the size to be allocated. The credentials
of the calling processing are specified by cred. If the argu-
ment bpp is not NULL, the buffer is written to the allocated
blocks. The argument flags is a set of flags controlling the
low-level allocation when the buffer is written. Valid values
defined in <sys/buf.h> are:

B_CLRBUF request allocated buffer be cleared

B_SYNC do all allocations synchronously
If the operation is successful zero is returned, otherwise an
appropriate error is returned.

(implemented as ffs_balloc in ufs/ffs/ffs_balloc.c)
(used by ufs_direnter, ffs_write, ufs_mkdir)

VOP_REALLOCBLKS (vp, buflist)
Rearrange block in a file to be contiguous. The argument vp is
the vnode of the file to manipulate. The argument buflist is a
list of buffers to rearrange. If the operation is successful
zero is returned, otherwise an appropriate error is returned.

(implemented as ffs_valloc in ufs/ffs/ffs_alloc.c)
(used by NONE !)

VOP_VFREE (pvp, ino, mode)
Release file resources. This function is used by the file sys-

tem to release cached file system specific data associated with
the file when the vnode is recycled.

(implemented as ffs_vfree in ufs/ffs/ffs_alloc.c)
(used by ufs_mkdir, ufs_makeinode)

10.1.2 Updating Inode Attribute

VOP_UPDATE(vp, access, modify, flags)
Update times on file with vnode vp. The access and modification
times are specified by the arguments access and modify respec-
tively. The change time is always taken from the current time.
The argument flags is a set of file system type dependent flags
indicating which times should be updated.

(implemented as ffs_vfree in ufs/ffs/ffs_inode.c)
(used by ufs_inactive, ufs_direnter, ufs_setattr, ufs_link,
ufs_rename, ufs_mkdir, ufs_makeinode,

ffs_reallocblks, ffs_balloc, ffs_truncate,
ffs_fsync, ffs_full_fsync, ffs_read, ffs_write)

10.1. FILESTORE SERVICES 203

10.1.3 Manipulating Existing Objects

The blkatoff operator is similar to the read operator, except that the blkatoff
operator simply returns a pointer to a kernel memory buffer with the requested
data, instead of copying the data.

VOP_READ(vp, uio, ioflag, cred)
Read the contents of a file. The argument vp is the vnode of
the file to read from, uio is the location to read the data in-
to, ioflag is a set of flags and cred are the credentials of the
calling process.

The ioflag argument is used to give directives and hints to the
file system. When attempting a read, the high 16 bits are used
to provide a read-ahead hint (in unit of file system blocks)
that the file system should attempt. The low 16 bits are a bit
mask which can contain the following flags:

I0O_UNIT do I/0 as atomic unit
TO_APPEND append write to end

I0_SYNC do I/0 synchronously
IO_NODELOCKED wunderlying node already locked
IO_NDELAY FNDELAY flag set in file table
I0_VMIO data already in VMIO space

Zero is returned on success, otherwise an error is returned.
The vnode should be locked on entry and remains locked on exit.

VOP_WRITE(vp, uio, ioflag, cred)
Write to a file. The argument vp is the vnode of the file to
write to, uio is the location of the data to write, ioflag is a
set of flags and cred are the credentials of the calling pro-
cess.

The jioflag argument is used to give directives and hints to the
file system. The low 16 bits are a bit mask which can contain
the same flags as VOP_READ(Q).

Zero is returned on success, otherwise an error is returned.
The vnode should be locked on entry and remains locked on exit.

VOP_FSYNC(vp, cred, flags, offlo, offhi, p)
Flush pending data buffers for a file to disk. The argument vp
is the locked vnode of the file for flush. The argument cred is
the caller’s credentials and p the calling process. The argu-
ment flags is a set of flags. If FSYNC_WAIT is specified in
flags, the function should wait for I/0 to complete before re-
turning. The argument offlo and offhi specify the range of file
to flush. If the operation is successful zero is returned, oth-
erwise an appropriate error code is returned.

This function implements the sync(2) and fsync(2) system calls.

VOP_BLKATOFF (vp, offset, res, bpp)
Return buffer bpp with the contents of block offset from the be-

204 CHAPTER 10. BERKELEY FAST FILE SYSTEM

ginning of directory specified by vnode vp. If res is non-zero,
fill it in with a pointer to the remaining space in the directo-
ry.

(implemented as ffs_blkatoff in ufs/ffs/ffs_subr.c)
(used by ufs_lookup, ufs_direnter, ufs_dirremove, ufs_dirrewrite)

10.1.4 Changing in Space Allocation

Historically, it could be used only to decrease the size of an object. In 4.4BSD, it
can be used both to increase and to decrease the size of an object.

VOP_TRUNCATE(vp, length, flags, cred, p)
Truncate the file specified by the vnode vp to at most length
size and free the unused disk blocks. The arguments p and cred
is the calling process and its credentials respectively. The
argument flags is a set of I/0 flags. Valid values are:

I0_UNIT do I/0 as atomic unit

IO_APPEND append write to end

TI0_SYNC sync I/0 file integrity completion
I0_NODELOCKED underlying node already locked
IO_NDELAY FNDELAY flag set in file table
I0_DSYNC sync I/0 data integrity completion

IO_ALTSEMANTICS use alternate i/o semantics

If the operation is successful zero is returned, otherwise an
appropriate error is returned.

(implemented as ffs_truncate in ufs/ffs/ffs_inode.c)
(used by ufs_inactive, ufs_direnter, ffs_write, ufs_setattr,
ufs_rename, ufs_rmdir)

10.1.5 Virtual Memory System Support

VOP_GETPAGES (vp, offset, m, count, centeridx, access_type, advice, flags)
Read VM pages from file. The argument vp is the locked vnode to
read the VM pages from. The argument offset is offset in the
file to start accessing and m is an array of VM pages. The ar-
gument count specifies the number of pages to read. If the op-
eration is successful zero is returned, otherwise an appropriate
error code is returned.

This function is primarily used by the page-fault handing mecha-
nism.

(implemented as genfs_getpages in miscfs/genfs/genfs_vnops.c)
(used by ubc_fault, ubc_alloc, uvn_get)

VOP_PUTPAGES (vp, offset, len, flags)
Write modified (dirty) VM pages to file. The argument vp is the
locked vnode to write the VM pages to and offset and len speci-
fies the range of VM pages to write. There seems to be some
confusion in the code whether offset and len specify the start

10.2. ORGANIZATION OF THE FFS

and length of the VM pages
pages. The argument flags
written asynchronously and
invalid one the write back
eration is successful zero

error code is returned.

205

for the start and end of the VM
specifies whether the pages should be
also whether they should be marked
operation has completed. If the op-
is returned, otherwise an appropriate

The function is primarily used by the pageout handling mecha-

nism.

(implemented as genfs_putpages in miscfs/genfs/genfs_vnops.c)
(used by uvn_put)

10.2 Organization of the FFS

To describe the design motivation of the FFS, we describes the problems of tradi-
tional UNIX filesystem before BSD UNIX appeared.

Long Seek Problem Traditional UNIX filesystem consists of two area:

inodes area followed by data area. Separation of inode information
from the data resulted a long seek from the file’s inode to its data.

Too Frequent Accesses Problem The traditional UNIX filesystem

uses a 512-byte physical block size. So seeks between small 512-
byte data transfers are required with long seek frequently.

As a result, the old filesystem was using only about 4 percent of the maximum disk
throughput. The main single reason was that the order of blocks on the free list
quickly became scrambled, occurring too frequeny access to small blocks with long

seek.

10.2.1

Superblock

A 4.4BSD filesystem is described by its superblock, located at the beginning of
the filesystem’s disk partition. The superblock data do not change after filesystem

creation.

The structure of superblock is defined in fs structure of ffs/ffs/fs.h as,

ffs/ffs/fs.h

* Super block for an FFS file system in memory.

int32_t fs_firstfield;

fs_unused_1;

ufs_daddr_t fs_sblkno;
ufs_daddr_t fs_cblkno;
ufs_daddr_t fs_iblkno;

ufs_daddr_t fs_dblkno;

171 /*

172

173 */

174 struct fs {

175

176 int32_t
177

178

179

180

181 int32_t
182 int32_t
183 int32_t
184 int32_t
185 int32_t

fs_cgoffset;
fs_cgmask;
fs_time;
fs_size;
fs_dsize;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/%
/%

historic file system linked list, */
used for incore super blocks */

addr of super-block in filesys */

offset of cyl-block in filesys */

offset of inode-blocks in filesys */

offset of first data after cg */

cylinder group offset in cylinder */

used to calc mod fs_ntrak */

last time written */

number of blocks in fs */

number of data blocks in fs */

206

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

/*

/*

/*

/%

/%

/*

/*

/*

/%

/*

/*

/%

/*

CHAPTER 10. BERKELEY FAST FILE SYSTEM

int32_t fs_ncg; /* number of cylinder groups */
int32_t fs_bsize; /* size of basic blocks in fs */
int32_t fs_fsize; /* size of frag blocks in fs */
int32_t fs_frag; /* number of frags in a block in fs */
these are configuration parameters */
int32_t fs_minfree; /* minimum percentage of free blocks */
int32_t fs_rotdelay; /* num of ms for optimal next block */
int32_t fs_rps; /* disk revolutions per second */
these fields can be computed from the others */
int32_t fs_bmask; /* ¢‘‘blkoff’’ calc of blk offsets */
int32_t fs_fmask; /* ‘‘fragoff’’ calc of frag offsets */
int32_t fs_bshift; /* ¢“1blkno’’ calc of logical blkno */
int32_t fs_fshift; /* ‘‘numfrags’’ calc number of frags */
these are configuration parameters */
int32_t fs_maxcontig; /* max number of contiguous blks */
int32_t fs_maxbpg; /* max number of blks per cyl group */

these fields can be computed from the others */

int32_t fs_fragshift; /* block to frag shift */

int32_t fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */
int32_t fs_sbsize; /* actual size of super block */

int32_t fs_csmask; /* csum block offset (now unused) */
int32_t fs_csshift; /* csum block number (now unused) */
int32_t fs_nindir; /* value of NINDIR */

int32_t fs_inopb; /* value of INOPB */

int32_t fs_nspf; /* value of NSPF */

yet another configuration parameter */
int32_t fs_optim; /* optimization preference, see below */
these fields are derived from the hardware */
int32_t fs_npsect; /* # sectors/track including spares */
int32_t fs_interleave; /* hardware sector interleave */
int32_t fs_trackskew; /* sector O skew, per track */
fs_id takes the space of the unused fs_headswitch and fs_trkseek fields */
int32_t fs_id[2]; /* unique file system id */
sizes determined by number of cylinder groups and their sizes */
ufs_daddr_t fs_csaddr; /* blk addr of cyl grp summary area */
int32_t fs_cssize; /* size of cyl grp summary area */
int32_t fs_cgsize; /* cylinder group size */
these fields are derived from the hardware */
int32_t fs_ntrak; /* tracks per cylinder */
int32_t fs_nsect; /* sectors per track */
int32_t fs_spc; /* sectors per cylinder */
this comes from the disk driver partitioning */
int32_t fs_ncyl; /* cylinders in file system */
these fields can be computed from the others */
int32_t fs_cpg; /* cylinders per group */
int32_t fs_ipg; /* inodes per group */
int32_t fs_fpg; /* blocks per group * fs_frag */
this data must be re-computed after crashes */
struct csum fs_cstotal; /* cylinder summary information */
these fields are cleared at mount time */

int8_t fs_fmod; /* super block modified flag */
int8_t fs_clean; /* file system is clean flag */
int8_t fs_ronly; /* mounted read-only flag */
int8_t fs_flags; /* see FS_ flags below */

10.2. ORGANIZATION OF THE FFS

fs_fsmnt [MAXMNTLEN] ;

/*

207

name mounted on */

241 /* these fields retain the current block allocation info */

fs_cgrotor;

*fs_ocsp [NOCSPTRS] ;

u_intl6_t *fs_contigdirs;

struct csum *fs_csp;
int32_t *fs_maxcluster;

fs_cpc;
fs_opostbl[16] [8];
fs_snapinum[20];
fs_avgfilesize;
fs_avgfpdir;
fs_sparecon[26];
fs_pendingblocks;
fs_pendinginodes;
fs_inodefmt;

u_int64_t fs_maxfilesize;

fs_gbmask;
fs_qfmask;
fs_state;
fs_postblformat;
fs_nrpos;
fs_postbloff;
fs_rotbloff;
fs_magic;

u_int8_t fs_space[1l];

/*
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*
/*
/%
/*
/*
/*
/*
/*
/%
/*
/*
/*
/%

last cg searched (UNUSED) */

padding; was list of fs_cs buffers */
of contiguously allocated dirs */
cg summary info buffer for fs_cs */
max cluster in each cyl group */

cyl per cycle in postbl */

old rotation block list head */
RESERVED for snapshot inode nums */
expected average file size */
expected # of files per directory */
RESERVED for future constants */
blocks in process of being freed */
inodes in process of being freed */
format of on-disk inodes */

maximum representable file size */
“fs_bmask for use with 64-bit size */
“fs_fmask for use with 64-bit size */
validate fs_clean field (UNUSED) */
format of positional layout tables */
number of rotational positions */
(u_int16) rotation block list head */
(u_int8) blocks for each rotation */
magic number */

list of blocks for each rotation */

240 u_char
242 int32_t
243 void
244
245
246
247 int32_t
248 intl6_t
249 int32_t
250 int32_t
251 int32_t
252 int32_t
253 int32_t
254 int32_t
257 int32_t
258
259 int64_t
260 int64_t
261 int32_t
262 int32_t
263 int32_t
264 int32_t
265 int32_t
266 int32_t
267
268 /* actually longer */
269 };

Block Size

ffs/ffs/fs.h

So that files as large as 232 bytes can be created with only two levels of indirection,
the minimum size of a filesystem block is 4096 bytes. The block size is recorded in
the filesystem’s supoerblock, as fs_bsize member.

Filesystem Parameterization

The goal of parameterizing the processor capabilities and mass-storage characteris-
tics, is to allocate blocks in an optimum configuration-dependent way.
Important parameter maintained by filesystem is contained in superblock and

they includes,

fs_rotdelay The expected time in milliseconds to service disk interrupt and to
schedule a new disk transfer, depending the speed of the main CPU. It is used
to decide how much rotational spacing to place between successive blocks in

a file.

For modern high speed workstation, such as SUN Ultra 1, this parameter
should be set to zero, since the the expected time is less than one milliseconds.

fs_maxcontig This specifies the maximum number of contiguous blocks that will
be laid out before forcing a rotational delay. The default value is one, since
most device drivers require an interrupt per disk transfer. Device drivers that

208 CHAPTER 10. BERKELEY FAST FILE SYSTEM

can chain sev- eral buffers together in a single transfer should set this to the
maximum chain length.

fs_maxbpg This indicates the maximum number of blocks any single file can al-
locate out of a cylinder group before it is forced to begin allocating blocks
from another cylinder group. Typically this value is set to about one quarter
of the total blocks in a cylinder group. The intent is to prevent any single
file from using up all the blocks in a single cylinder group, thus degrading
access times for all files subsequently allocated in that cylinder group. The
effect of this limit is to cause big files to do long seeks more frequently than if
they were allowed to allocate all the blocks in a cylinder group before seeking
elsewhere. For file systems with exclusively large files, this parameter should
be set higher.

fs_rps Number of disk platter revolution per second
fs_ntrak Number of tracks per cylinder

fs_nsect Number of sectors per track

fs_npsect Number of sectors including spares per track

fs_minfree This value specifies the percentage of space held back from normal
users; the minimum free space threshold. The default value used is 10factor
of three in throughput will be lost over the performance obtained at a 10above
the current usage level, users will be unable to allocate files until enough files
have been deleted to get under the higher threshold.

fs_interleave Hardware sector interleave. Used to describe perturbations in the
media format to compensate for a slow controller. In- terleave is physical
sector interleave on each track, speci- fied as the denominator of the ratio:
sectors read/sectors passed over Thus an interleave of 1/1 implies contiguous
layout, while 1/2 implies logical sector 0 is separated by one sector from logical
sector 1.

fs_trackskew This specifies the skew in sectors from one track to the next in a
cylinder. The default value is zero, indicating that each track in a cylinder
begins at the same rotational position.

fs_optim The file system can either try to minimize the time spent allocating
blocks, or it can attempt to minimize the space fragmentation on the disk. If
the value of minfree (see above) is less than 10running out of full sized blocks.
For values of minfree greater than or equal to 10problematical, and the file
system can be optimized for time. fs_optim can be specified as either space
or time.

From fs_nsect and fs_rps, the allocation routines calculates the number of mil-
liseconds required to skip over a block. With it and processor performance pera-
mater fs_rotdelay, the allocation routines calculate the number of blocks to skip
over such that the next block in the file will come into position under the disk head
in the expected amount of time that it takes to start a new disk-transfer operation.

In fact, for modern SCSI storage device, these parameterization is
actually useless, since storage device is internally designed so that it
provides optimal performace, without disk interleave regarding disk ro-
tational speed.

10.2. ORGANIZATION OF THE FFS 209

10.2.2 Cylinder Group

The FFS filesystem organization divides a disk partition into one or more area, each
of which is called a vylinder group.

The rationale for using cylinder groups is to create clusters of inodes that are
close to the blocks that they reference, instead of them all being located at the
beginning of the disk. Then the filesystem attempts to allocate file blocks close to
the inodes that describes them to avoid long seeks between getting the inode and
getting its associated data.

For each cylinder group, a static number of inodes is allocated at filesystem-
creation time. The default policy is to allocate one inode for each 2048 bytes of
space in the cylinder group, with the expectation that this amount will be far more
than will ever be needed.

Cylinder group contains information including

e a redundant copy of the superblock
e space for inodes
e bitmap describing available blocks in the cylinder group

e summary information describing the usage of data blocks within the cylinder
group

To be safe from capastrophic loss, all the bookeeping information about cylinder
group is not placed at the beginning of each cylinder group. The offset from each
cylinder group is calculated to be about one track father from the beginning than is
the preceding cylinder group. In this way, the redundant information spirals down
into the pack, so that single track, cylinder, or platter can be lost without all copies
of the superblock also being lost.

The structure of cylinder group is defined as struct cg of ffs/ffs/fs.h as

ffs/ffs/fs.h
343 /*
344 x Cylinder group block for a file system.
345 */
346 #define CG_MAGIC 0x090255
347 struct cg {
348 int32_t cg_firstfield; /* historic cyl groups linked list */
349 int32_t cg_magic; /* magic number */
350 int32_t cg_time; /* time last written */
351 int32_t cg_cgx; /* we are the cgx’th cylinder group */
352 int16_t cg_ncyl; /* number of cyl’s this cg */
353 int16_t cg_niblk; /* number of inode blocks this cg */
354 int32_t cg_ndblk; /* number of data blocks this cg */
355 struct csum cg_cs; /* cylinder summary information */
356 int32_t cg_rotor; /* position of last used block */
357 int32_t cg_frotor; /* position of last used frag */
358 int32_t cg_irotor; /* position of last used inode */
359 int32_t cg_frsum[MAXFRAG]; /* counts of available frags */
360 int32_t cg_btotoff; /* (int32) block totals per cylinder */
361 int32_t cg_boff; /* (u_int16) free block positions */
362 int32_t cg_iusedoff; /* (u_int8) used inode map */
363 int32_t cg_freeoff; /* (u_int8) free block map */
364 int32_t cg_nextfreeoff; /* (u_int8) next available space */

365 int32_t cg_clustersumoff; /* (u_int32) counts of avail clusters */

210 CHAPTER 10. BERKELEY FAST FILE SYSTEM

366 int32_t cg_clusteroff; /* (u_int8) free cluster map */
367 int32_t cg_nclusterblks; /* number of clusters this cg */
368 int32_t cg_sparecon[13]; /* reserved for future use */

369 u_int8_t cg_spacel[l]; /* space for cylinder group maps */

370 /* actually longer */

ffs/ffs/fs.h

where the struct csum is defined as

ffs/ffs/fs.h

158 /*

159 * Per cylinder group information; summarized in blocks allocated
160 * from first cylinder group data blocks. These blocks have to be
161 * read in from fs_csaddr (size fs_cssize) in addition to the

162 * super block.

163 */

164 struct csum {

165 int32_t cs_ndir; /* number of directories */
166 int32_t cs_nbfree; /* number of free blocks */
167 int32_t cs_nifree; /* number of free inodes */
168 int32_t cs_nffree; /* number of free frags */
169 };

ffs/ffs/fs.h

10.2.3 Fragment

As the block size increases, the amount of space reserved for inodes decreases, but
the amount of unused data space at the end of blocks rises quickly to an intolerable
level with a minimum allocation of 8192-byte filesystem blocks. To increase space
efficiency, the filesystem allow the division of a single filesystem block into one or
more fragments.

Block Map
The block map associated with each cylinder group records the space available in a

cylinder group in fragments.

Fragmentation Policy

If an 11,000 byte file is to be stored on 4096,/1024 filesystem (block/fragment size),

1. this file would use two full-sized blocks and three fragments portion of another
block.

2. If no block with three aligned fragments were available at the time, a full-
sized block would be split, yielding the necessary three fragments and a single

unused fragment.

3. The remaining fragment could be allocated to another file as needed.

10.3.

READING A FILE 211

10.3 Reading a File

Since NetBSD uses Unified Buffer Cache (UBC), the mechanism of reading and
writing to a file is different from 4.4BSD. Since UBC integrates filesystem buffer
cache and virtual memory caches of file data, cluster interface used in 4.4BSD is no
longer used.

Key architecture of NetBSD filesystem file read and write is

e The buffer cache functions such as bread or bwrite, read and write with a

device driver strategy routine via ufs_strategy function.

e The vnode operation such as VOP_READ or VOP_WRITE, read and write with

UBC interface via ffs_read or ffs_write function.

10.3.1 Regular File Reading Algorithm: using UBC

For 4.4BSD, reading a general file in FFS is processed as, using UBC,

1.

2.

3.

read — system call from user application program
sys_read — kernel system call

vn_read — vnode high-level file operation
VOP_READ — VF'S vnode operation

ffs_read — FFS vnode operation

UBC interaction

10.3.2 Non-regular File Reading Algorithm: without UBC

Reading a non-regular file such as directory in FFS is processed as, without using

UBC,
1.
9.

3.

10.
11.

12.

read — system call from user application program
sys_read — kernel system call

vn_read — vnode high-level file operation

. VOP_READ — VF'S vnode operation

ffs_read — FFS vnode operation

breadn — Buffer Cache

VOP_STRATEGY — VF'S vnode operation

ufs_strategy — FFS vnode operation

VOP_BMAP — convert logical file block number to physical disk block number
VOP_STRATEGY — device driver’s vnode operation

spec_strategy — special filesystem vnode operation

*bdev->d_strategy — device driver strategy function

212

CHAPTER 10. BERKELEY FAST FILE SYSTEM

10.3.3 Implementation

61
62
63

/*

ufs/ufs/ufs_readwrite.c

* Vnode op for reading.

*/

64 /* ARGSUSED x*/

65

int

66 READ(void *v)

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

{

struct vop_read_args /* {
struct vnode *a_vp;
struct uio *a_uio;
int a_ioflag;
struct ucred *a_cred;

} %/ *ap = v;

struct vnode *vp;

struct inode *ip;

struct uio *uio;

FS *fs;

void *win;

vsize_t bytelen;

struct buf *bp;

ufs_daddr_t 1bn, nextlbn;

off_t bytesinfile;

long size, xfersize, blkoffset;

int error;

boolean_t usepc = FALSE;

Vp = ap—>a_vp;
ip = VTOI(vp);
uio = ap—->a_uio;
error = 0;

#ifdef DIAGNOSTIC

#endif

if (uio->uio_rw != UIO_READ)
panic("%s: mode", READ_S);

if (vp->v_type == VLNK) {

if ((int)ip->i_ffs_size < vp->v_mount->mnt_maxsymlinklen ||

(vp->v_mount->mnt_maxsymlinklen == 0 &&
ip->i_ffs_blocks == 0))
panic("%s: short symlink", READ_S);
} else if (vp->v_type != VREG && vp->v_type != VDIR)
panic("%s: type %d", READ_S, vp->v_type);

fs = ip—>I_FS;

if ((u_int64_t)uio->uio_offset > fs->fs_maxfilesize)
return (EFBIG);

if (uio->uio_resid == 0)
return (0);

if (uio->uio_offset >= ip->i_ffs_size) {
goto out;

10.3. READING A FILE 213

112

113 #ifndef LFS_READWRITE

114 usepc = vp—>v_type == VREG;

115 #endif

116 if (usepc) {

117 while (uio->uio_resid > 0) {

118 bytelen = MIN(ip->i_ffs_size - uio->uio_offset,
119 uio—>uio_resid);

120 if (bytelen == 0)

121 break;

122

123 win = ubc_alloc(&vp->v_uobj, uio->uio_offset,
124 &bytelen, UBC_READ);

125 error = uiomove(win, bytelen, uio);

126 ubc_release(win, 0);

127 if (error)

128 break;

129 }

130 goto out;

131 }

132

133 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
134 bytesinfile = ip->i_ffs_size - uio->uio_offset;

135 if (bytesinfile <= 0)

136 break;

137 1bn = 1blkno(fs, uio->uio_offset);

138 nextlbn = 1lbn + 1;

139 size = BLKSIZE(fs, ip, 1lbn);

140 blkoffset = blkoff(fs, uio—->uio_offset);

141 xfersize = MIN(MIN(fs->fs_bsize - blkoffset, uio->uio_resid),
142 bytesinfile);

143

144 if (1blktosize(fs, nextlbn) >= ip->i_ffs_size)

145 error = bread(vp, lbn, size, NOCRED, &bp);
146 else {

147 int nextsize = BLKSIZE(fs, ip, nextlbn);

148 error = breadn(vp, lbn,

149 size, &nextlbn, &nextsize, 1, NOCRED, &bp);
150 }

151 if (error)

152 break;

153

154 /*

155 * We should only get non-zero b_resid when an I/0 error
156 * has occurred, which should cause us to break above.
157 * However, if the short read did not cause an error,
158 * then we want to ensure that we do not uiomove bad
159 * or uninitialized data.

160 */

161 size -= bp->b_resid;

162 if (size < xfersize) {

163 if (size == 0)

164 break;

165 xfersize = size;

214

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

CHAPTER 10. BERKELEY FAST FILE SYSTEM

}
error = uiomove((char *)bp->b_data + blkoffset, xfersize, uio);
if (error)
break;
brelse(bp);
}
if (bp != NULL)
brelse(bp);
out:
if (! (vp->v_mount->mnt_flag & MNT_NOATIME)) {
ip->i_flag |= IN_ACCESS;
if ((ap->a_ioflag & I0_SYNC) == I0_SYNC)
error = VOP_UPDATE(vp, NULL, NULL, UPDATE_WAIT);
}
return (error);
}

10.4 Writing a File

10.4.1 Regular File Writing Algorithm
Writing a regular file in FFS is processed as, using UBC,

ufs/ufs/ufs_readwrite.c

1. write — system call from user application program

2.

3

4.
o.
6.

sys_write — kernel system call

. vn_write — vnode high-level file operation

VOP_WRITE — VFS vnode operation

ffswrite — FFS vnode operation

UBC interation

Writing a non-regular file in FFS such as directory is processed, without using
UBC, as shown in the previous subsection.

10.4.2 Non-regular File Writing Algorithm

If the file needs to be extended, the request is rounded up to the next fragment size,
and only that much space is allocated by VOP_BALLOC.

10.4.3 Implementation

184
185
186
187
188
189

/*

* Vnode op for writing.
*/

int

WRITE(void *v)

{

ufs/ufs/ufs_readwrite.c

10.4. WRITING A FILE 215

190 struct vop_write_args /* {

191 struct vnode *a_vp;

192 struct uio *a_uio;

193 int a_ioflag;

194 struct ucred *a_cred;

195 } */ *ap = v;

196 struct vnode *vp;

197 struct uio *uio;

198 struct inode *ip;

199 struct genfs_node *gp;

200 FS x*fs;

201 struct buf *bp;

202 struct proc *p;

203 struct ucred *cred;

204 ufs_daddr_t lbn;

205 off _t osize, origoff, oldoff, preallocoff, endallocoff, nsize;
206 int blkoffset, error, flags, ioflag, resid, size, xfersize;
207 int bsize, aflag;

208 int ubc_alloc_flags;

209 int extended=0;

210 void *win;

211 vsize_t bytelen;

212 boolean_t async;

213 boolean_t usepc = FALSE;

214

215 cred = ap->a_cred;

216 ioflag = ap—>a_ioflag;

217 uio = ap->a_uio;

218 vp = ap->a_vp;

219 ip = VTOI(vp);

220 gp = VTOG(vp);

221

222 KASSERT (vp->v_size == ip->i_ffs_size);
223 #ifdef DIAGNOSTIC

224 if (uio->uio_rw !'= UIO_WRITE)

225 panic("%s: mode", WRITE_S);

226 #endif

227

228 switch (vp->v_type) {

229 case VREG:

230 if (ioflag & IO_APPEND)

231 uio->uio_offset = ip->i_ffs_size;
232 if ((ip->i_ffs_flags & APPEND) && uio->uio_offset != ip->i_ffs_size)
233 return (EPERM);

234 /* FALLTHROUGH */

235 case VLNK:

236 break;

237 case VDIR:

238 if ((ioflag & IO_SYNC) == 0)

239 panic("%s: nonsync dir write", WRITE_S);
240 break;

241 default:

242 panic("%s: type", WRITE_S);

243 }

216

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

CHAPTER 10. BERKELEY FAST FILE SYSTEM

fs = ip->I_FS;
if (uio->uio_offset < 0 ||
(u_int64_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize)
return (EFBIG);
#ifdef LFS_READWRITE
/* Disallow writes to the Ifile, even if noschg flag is removed */
/* XXX can this go away when the Ifile is no longer in the namespace? */
if (vp == fs->1fs_ivnode)
return (EPERM);
#endif

/*
* Maybe this should be above the vnode op call, but so long as
* file servers have no limits, I don’t think it matters.
*/
p = uio->uio_procp;
if (vp->v_type == VREG && p &&
uio->uio_offset + uio->uio_resid >
p~>p_rlimit [RLIMIT_FSIZE] .rlim_cur) {
psignal(p, SIGXFSZ);
return (EFBIG);
}
if (uio->uio_resid == 0)
return (0);

flags = ioflag & IO_SYNC ? B_SYNC : O;
async = vp—>v_mount->mnt_flag & MNT_ASYNC;
origoff = uio->uio_offset;

resid = uio—->uio_resid;

osize = ip—>i_ffs_size;

bsize = fs->fs_bsize;

0;

error

#ifndef LFS_READWRITE
usepc = vp—>v_type == VREG;
#endif
if (lusepc) {
goto bcache;

3

preallocoff = round_page(blkroundup(fs, MAX(osize, uio->uio_offset)));
aflag = ioflag & IO_SYNC ? B_SYNC : O;

nsize = MAX(osize, uio->uio_offset + uio->uio_resid);

endallocoff = nsize - blkoff(fs, nsize);

/*
* if we’re increasing the file size, deal with expanding
* the fragment if there is one.

*/

if (nsize > osize && 1lblkno(fs, osize) < NDADDR &&
1blkno(fs, osize) !'= 1lblkno(fs, nsize) &&
blkroundup(fs, osize) != osize) {

10.4. WRITING A FILE 217

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

error = ufs_balloc_range(vp, osize, blkroundup(fs, osize) -
osize, cred, aflag);

if (error) {
goto out;

}

if (flags & B_SYNC) {
vp->v_size = blkroundup(fs, osize);
simple_lock(&vp->v_interlock) ;
VOP_PUTPAGES (vp, trunc_page(osize & ~(bsize - 1)),

round_page (vp->v_size), PGO_CLEANIT | PGO_SYNCIO);

ubc_alloc_flags = UBC_WRITE;
while (uio—>uio_resid > 0) {

boolean_t extending; /* if we’re extending a whole block */
off_t newoff;

oldoff = uio->uio_offset;
blkoffset = blkoff(fs, uio—>uio_offset);
bytelen = MIN(fs->fs_bsize - blkoffset, uio->uio_resid);

* if we’re filling in a hole, allocate the blocks now and

* initialize the pages first. if we’re extending the file,
* we can safely allocate blocks without initializing pages
* since the new blocks will be inaccessible until the write
* is complete.

extending = uio->uio_offset >= preallocoff &&
uio->uio_offset < endallocoff;

if ('extending) {
error = ufs_balloc_range(vp, uio->uio_offset, bytelen,
cred, aflag);
if (error) {
break;
}
ubc_alloc_flags &= “UBC_FAULTBUSY;
} else {
lockmgr (&gp->g_glock, LK_EXCLUSIVE, NULL);
error = GOP_ALLOC(vp, uio->uio_offset, bytelen,
aflag, cred);
lockmgr (&gp->g_glock, LK_RELEASE, NULL);
if (error) {
break;
}
ubc_alloc_flags |= UBC_FAULTBUSY;
}

/*
* copy the data.
*/

218 CHAPTER 10. BERKELEY FAST FILE SYSTEM

352 win = ubc_alloc(&vp->v_uobj, uio->uio_offset, &bytelen,
353 ubc_alloc_flags);

354 error = uiomove(win, bytelen, uio);

355 if (error && extending) {

356 /*

357 * if we haven’t initialized the pages yet,

358 * do it now. it’s safe to use memset here

359 * because we just mapped the pages above.

360 */

361 memset (win, O, bytelen);

362 }

363 ubc_release(win, 0);

364

365 /*

366 * update UVM’s notion of the size now that we’ve
367 * copied the data into the vnode’s pages.

368 *

369 * we should update the size even when uiomove failed.
370 * otherwise ffs_truncate can’t flush soft update states.
371 */

372

373 newoff = oldoff + bytelen;

374 if (vp->v_size < newoff) {

375 uvm_vnp_setsize(vp, newoff);

376 extended = 1;

377 }

378

379 if (error) {

380 break;

381 }

382

383 /*

384 * flush what we just wrote if necessary.

385 * XXXUBC simplistic async flushing.

386 */

387

388 if ('async && oldoff >> 16 != uio->uio_offset >> 16) {
389 simple_lock(&vp->v_interlock) ;

390 error = VOP_PUTPAGES(vp, (oldoff >> 16) << 16,
391 (uio->uio_offset >> 16) << 16, PGO_CLEANIT);
392 if (error) {

393 break;

394 }

395 }

396 }

397 if (error == 0 && ioflag & IO_SYNC) {

398 simple_lock(&vp->v_interlock);

399 error = VOP_PUTPAGES(vp, trunc_page(origoff & ~(bsize - 1)),
400 round_page (blkroundup(fs, uio->uio_offset)),

401 PGO_CLEANIT | PGO_SYNCIO);

402 b

403 goto out;

404

405 bcache:

10.4. WRITING A FILE 219

406 simple_lock(&vp->v_interlock);

407 VOP_PUTPAGES (vp, trunc_page(origoff), round_page(origoff + resid),
408 PGO_CLEANIT | PGO_FREE | PGO_SYNCIO);

409 while (uio->uio_resid > 0) {

410 1bn = 1blkno(fs, uio->uio_offset);

411 blkoffset = blkoff(fs, uio->uio_offset);

412 xfersize = MIN(fs->fs_bsize - blkoffset, uio->uio_resid);
413 if (fs->fs_bsize > xfersize)

414 flags |= B_CLRBUF;

415 else

416 flags &= "B_CLRBUF;

417

418 error = VOP_BALLOC(vp, uio->uio_offset, xfersize,

419 ap->a_cred, flags, &bp);

420

421 if (error)

422 break;

423 if (uio->uio_offset + xfersize > ip->i_ffs_size) {

424 ip—>i_ffs_size = uio—>uio_offset + xfersize;

425 uvm_vnp_setsize(vp, ip->i_ffs_size);

426 extended = 1;

427 }

428 size = BLKSIZE(fs, ip, lbn) - bp->b_resid;

429 if (xfersize > size)

430 xfersize = size;

431

432 error = uiomove((char *)bp->b_data + blkoffset, xfersize, uio);
433

434 /*

435 * if we didn’t clear the block and the uiomove failed,
436 * the buf will now contain part of some other file,
437 * so we need to invalidate it.

438 */

439 if (error && (flags & B_CLRBUF) == 0) {

440 bp->b_flags |= B_INVAL;

441 brelse(bp);

442 break;

443 }

444 #ifdef LFS_READWRITE

445 if (lerror)

446 error = 1fs_reserve(fs, vp, btofsb(fs, (NIADDR + 1) << fs->1fs_bshift));
447 (void) VOP_BWRITE(bp) ;

448 if (lerror)

449 1fs_reserve(fs, vp, -btofsb(fs, (NIADDR + 1) << fs->1fs_bshift));
450 #else

451 if (ioflag & IO_SYNC)

452 (void)bwrite (bp);

453 else if (xfersize + blkoffset == fs->fs_bsize)

454 bawrite (bp) ;

455 else

456 bdwrite (bp) ;

457 #endif

458 if (error || xfersize == 0)

459 break;

220 CHAPTER 10. BERKELEY FAST FILE SYSTEM

460 }

461 /*

462 * If we successfully wrote any data, and we are not the superuser
463 * we clear the setuid and setgid bits as a precaution against

464 * tampering.

465 */

466 out:

467 ip->i_flag |= IN_CHANGE | IN_UPDATE;

468 if (resid > uio->uio_resid && ap->a_cred && ap->a_cred->cr_uid != 0)
469 ip->i_ffs_mode &= ~(ISUID | ISGID);

470 if (resid > uio->uio_resid)

471 VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));

472 if (error) {

473 (void) VOP_TRUNCATE(vp, osize, ioflag & IO_SYNC, ap->a_cred,
474 uio->uio_procp);

475 uio->uio_offset —-= resid - uio->uio_resid;

476 uio->uio_resid = resid;

477 } else if (resid > uio->uio_resid &% (ioflag & IO_SYNC) == IO_SYNC)
478 error = VOP_UPDATE(vp, NULL, NULL, UPDATE_WAIT);

479 KASSERT (vp->v_size == ip->i_ffs_size);

480 return (error);

481 }

ufs/ufs/ufs_readwrite.c

10.5 Layout Policies

Two methods for improving filesystem performance are toincrease locality, and to
make larger transfers possible.
Local allocation routine uses a locally optimal scheme to lay out data blocks.
The global layout policies try to improve performance by spreading unrelated
data among different cylinder groups. The global policies, using summary informa-
tion, try to balance the two conflicting goals of localizing data that are concurrently
accessed while spreading out unrelated data.

10.5.1 Inode Layout Policy
e Try to place all the inodes of files in a directory in the same cylinder group.

e Try to place new directories in cylinder group with a greater-than-average
number of free inodes and with the smallest number of directories.

10.5.2 Data Block Layout Policy
e Try to place data blocks for a file in the same cylinder group.

e Make the spillover points to force block allocation to be redirected when any
file has used about 25 percent of the data blocks in a cylinder group. The
newly chosen cylinder group for block allocation is the next cylinder group
that has a greater-than-average number of free blocks.

10.6 Data Block Allocation Mechanisms

The task of managing block and fragment allocation is done by £fs_balloc function.

10.6. DATA BLOCK ALLOCATION MECHANISMS 221

10.6.1 Work Flow

1. The global-policy routines call local-allocation routines with requests for spe-
cific blocks, using heuristics based on the partial information that is available.

2. The local-allocation routines will always allocate the requested block if it is
free; otherwise, if a requested block is not available, the local allocator uses a
four-level allocation strategy:

(a) Use the next available block rotationally closet to the requested block on
the same cylinder.

(b) If no blocks are available on the same cylinder, choose a block within the
same cylinder group.

(c) If the cylinder group is full, quadratically hash the cylinder group number
to choose another cylinder group in which to look for a free block.

(d) Even so, if the free block is not found, apply an exhaustive search to all
cylinder group.

Two conditions when the new block is allocated is

e The file contains no fragmented block, and the final block in the file contains
insufficient space to hold the new data.

1. If the remainder of the new data consists of more than a full block, a full
block is allocated. This process is repeated until less than a full block of
new data remains.

2. A block with the necessary number of fragments is located.
e The file contains one or more fragments, but the fragments contain insufficient
space to hold the new data.
1. A new block is allocated
2. The contents of the gragments are copied to the beginning of the block
3. The remainder of the block is filled with new data.
4

. The process then continues as in the first condition.

10.6.2 Main Function that Does Allocation: ffs_balloc

We describe the algorithm of data block allocation with pseudo code shown below.
Be sure that the following is simplified algorithm skeleton, and the real source code,
ffs/ffs/ffs_alloc.c and ffs/ffs/ffsballoc.c, is more complex.

/* [A] Balloc defines the structure of file system storage

* by allocating the physical blocks on a device given
* the inode and the logical block number in a file.
*/

ffs_balloc()

{

// Select the most desirable block based on the global-policy
ffs_blkpref();

// Condition 2: When a fragment has already been allocated.

222

CHAPTER 10. BERKELEY FAST FILE SYSTEM

if (fragment is already allocated 7)

{
// Try to extend a fragment
ffs_realloccg();

}

else

// Condition 1: When the file contains no fragmented block

{
// Allocate a new block or gragment
ffs_alloc();
}
}
/* [H]

Select the desired position for the next block in a file. The file is
logically divided into sections. The first section is composed of the
direct blocks. Each additional section contains fs_maxbpg blocks.

If no blocks have been allocated in the first section, the policy is to
request a block in the same cylinder group as the inode that describes
the file. If no blocks have been allocated in any other section, the
policy is to place the section in a cylinder group with a greater than
average number of free blocks. An appropriate cylinder group is found
by using a rotor that sweeps the cylinder groups. When a new group of
blocks is needed, the sweep begins in the cylinder group following the
cylinder group from which the previous allocation was made. The sweep
continues until a cylinder group with greater than the average number
of free blocks is found. If the allocation is for the first block in an

here a best guess is made based upon the logical block number being
allocated.

If a section is already partially allocated, the policy is to
contiguously allocate fs_maxcontig blocks. The end of one of these
contiguous blocks and the beginning of the next is physically separated
so that the disk head will be in transit between them for at least
fs_rotdelay milliseconds. This is to allow time for the processor to
schedule another I/0 transfer.

EEE R R I R R R B R R R . S R R R R R R R R

*/
ufs_daddr_t
ffs_blkpref ()

return (appropriate next block number); // if not found return zero;

indirect block, the information on the previous allocation is unavailable;

10.6. DATA BLOCK ALLOCATION MECHANISMS 223

10.6.3

Cylinder Overflow Algorithm: ffs hashalloc

/* [C] Implement the cylinder overflow algorithm.

*
*
*
*

*/

The policy implemented by this algorithm is:
1) allocate the block in its requested cylinder group.
2) quadradically rehash on the cylinder group number.
3) brute force search for a free block.

ffs_hashalloc(*func_ptr_to_allocator)

{

10.6.4

// Try to find a fragment from preferred cylinder group

if (#func_ptr_to_allocator() succeeded 7)
return 0K;

// Quadratic rehash

for (i = 1; 1 < fs->fs_ncg; i *= 2)

{
intended cylinder group numer += ij;
adjust cylinder group number overflow;
if (*func_ptr_to_allocator() succeeded 7)
return 0K;
b

// Brute force search

for (i = 2; 1 < fs->fs_ncg; i++)

{
intended cylinder group number = i;
if (*func_ptr_to_allocator() succeeded 7)
return OK;
}

return FAIL;

Global Policy 1 - Extending an Fragment: ffs_realloccg

/* [B] Reallocate a fragment to a bigger size

* K X ¥ ¥

*/

ffs_

{

The number and size of the old block is given, and a preference

and new size is also specified. The allocator attempts to extend
the original block. Failing that, the regular block allocator is
invoked to get an appropriate block.

realloccg()
// Check for extension in the existing location

if (ffs_fragextend() succeeded 7)
return 0OK;

224 CHAPTER 10. BERKELEY FAST FILE SYSTEM

// Calculate a new disk location from which to allocate a new fragment

switch ((int)fs->fs_optim) {
case FS_OPTSPACE:

// Allocate an exact sized fragment. Although this makes
// best use of space, we will waste time relocating it if
// the file continues to grow. If the fragmentation is

// less than half of the minimum free reserve, we choose
// to begin optimizing for time.

break;
case FS_OPTTIME:
// At this point we have discovered a file that is trying to
// grow a small fragment to a larger fragment. To save time,
// we allocate a full sized block, then free the unused portion.
// If the file continues to grow, the ‘ffs_fragextend’ call
// above will be able to grow it in place without further
// copying. If aberrant programs cause disk fragmentation to

// grow within 2% of the free reserve, we choose to begin
// optimizing for space.

// Try to allocate a new fragment honoring the calculated location

if (ffs_hashalloc(ffs_alloccg) succeeded ?7)
return 0OK;

return FAIL;

/* [E] Determine whether a fragment can be extended.

*
* Check to see if the necessary fragments are available, and
* if they are, allocate them.

*/

ffs_fragextend()

{

}

10.6.5 Global Policy 2 - Get a New Block: ffs_alloc

/* [F] Allocate a block in the file system.
*

10.6. DATA BLOCK ALLOCATION MECHANISMS 225

EE R R B R R R R R I R R

*/

ffs_

{

10.6.6

The size of the requested block is given, which must be some
multiple of fs_fsize and <= fs_bsize.

A preference may be optionally specified. If a preference is given

the following hierarchy is used to allocate a block:
1) allocate the requested block.
2) allocate a rotationally optimal block in the same cylinder.
3) allocate a block in the same cylinder group.
4) quadradically rehash into other cylinder groups, until an
available block is located.
If no block preference is given the following hierarchy is used
to allocate a block:
1) allocate a block in the cylinder group that contains the
inode for the file.
2) quadradically rehash into other cylinder groups, until an
available block is located.

alloc()

// Set cylinder group number according to the above rules

// Try to allocate a block

if (ffs_hashalloc(ffs_alloccg) succeeded ?7)
return 0OK;

return FAIL;

Local Policy - Allocate a Block or Fragment: ffs_alloccg

/* [D] Determine whether a block can be allocated.

*
*
*
*

*/

ffs_

{

From the specified cylinder group and block,
check to see if a block of the appropriate size is available,
and if it is, allocate it.

alloccg()
//
// [1] When the called requested a block
//
if (requested size == block 7)
{

// Allocate a new block and return the block number
return ffs_alloccgblk();
//

// [2] When the caller requested fragments
//

226 CHAPTER 10. BERKELEY FAST FILE SYSTEM

// Allocate a new block from which to allocate requested fragments

// Check the cylinder group has free fragments having the requested size
// (allocsiz is the number of fragments which will be allocated)

frags = numfrags(fs, size); // calculate number of requested fragments
for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) {
if (cgp->cg_frsum[allocsiz] != 0) // if there available frag ?
break;

}

// When there is no fragments having the requested size

if (allocsiz == fs->fs_frag)
{
if (if the given cylinder group has the not any free fragment 7)
{
// Say that there is no fragment in the given cylinder group
return O;
}

// Try to allocate a new block
bno = ffs_alloccgblk();

// Allocate the requested fragments

// Mark the filesystem that fragments are allocated

return bno;

}

// Now there are certainly fragments having the requested size,
// in the requested cylinder group

// Find the block number !
bno = ffs_mapresearch(allocsiz);

// Allocate necessary fragments;

return (block number);

}

/* [G] Allocate a block in a cylinder group.
*

* This algorithm implements the following policy:

10.6.

DATA BLOCK ALLOCATION MECHANISMS 227

* ¥ X X ¥ ¥

*/

ffs_

{

1) allocate the requested block.
2) allocate a rotationally optimal block in the same cylinder.
3) allocate the next available block on the block rotor for the
specified cylinder group.
Note that this routine only allocates fs_bsize blocks; these
blocks may be fragmented by the routine that allocates them.

alloccgblk

//
// [1] if the requested block is available, use it
//

if (ffs_isblock(...) says that there is available block 7)
goto STEP_YES;

if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0)

{
// Block layout information is not available.
// Leaving bpref unchanged means we take the
// next available free block following the one
// we just allocated. Hopefully this will at
// least hit a track cache on drives of unknown
// geometry (e.g. SCSI).

goto STEP_3;
}

// check for a block available on the same cylinder

if (cg_blktot(...) says that there is no available block 7)

goto STEP_3;
//
// [2] check the summary information to see if a block is
// available in the requested cylinder starting at the
// requested rotational position and proceeding around.
//

// Get the rotational-layout table from superblock
cylbp = cg_blks(fs, cgp, cylno, needswap);

// Calculate the intended rotational position

pos = cbtorpos(fs, bpref);

// Search for a block to allocate through the summary information for
// a rotational position with a nonzero block count

for (i = pos; i < fs->fs_nrpos; i++)
if (cylbpl[i]l > 0)
break;

228 CHAPTER 10. BERKELEY FAST FILE SYSTEM

// Search after wrapping

if (i == fs->fs_nrpos)
{
for (i = 0; i < pos; i++)
if (cylbpl[i] > 0)
break;

}

// When found a rotational position

if (cylbp[i] > 0)

{
// Find the actual block. A panic if none is actually there.
}
STEP_3:
//
// [3] no blocks in the requested cylinder, so take next
// available one in this cylinder group.
//
bno = ffs_mapsearch(...);
if (bno < 0)
return FAIL;
STEP_YES:

mark to the filesystem that the block is allocated;
return block number;

10.6.7 Searching Fragment Descriptor Table: ffs mapsearch

If an appropriate-sized fragment is listed in the fragment summary, then the allo-
cation routine expects to find it in the allocation map. To speed up the process
of scanning the potentially large allocation map, the filesystem uses a table-driven
algorithm. Each byte in the map is treated as an index into a fragment descriptor
table. Each entry in the fragment descriptor table describes the fragment that are
free for that corresponding map entry.

The fragment descriptor table is defined in ffs_tables.c as,

ffs/fis /ffs_tables.c

60 /x

61 * Given a block map bit pattern, the frag tables tell whether a
62 * particular size fragment is available.

63 *

64 * used as:

65 * if ((1 << (size - 1)) & fragtbl[fs->fs_frag] [map] {

66 x at least one fragment of the indicated size is available

10.6. DATA BLOCK ALLOCATION MECHANISMS 229

67 * }

68 *

69 * These tables are used by the scanc instruction on the VAX to

70 * quickly find an appropriate fragment.

71 x/

72 const u_char fragtbl124[256] = {

73 0x00, 0x16, 0x16, Ox2a, 0x16, 0x16, 0x26, Ox4e,
104 0x9e, 0x9e, 0x9e, Oxbe, Oxaa, Oxbe, Oxce, 0x8a,
105 };

106

107 const u_char fragtbl8[256] = {

108 0x00, 0x01, 0x01, 0x02, 0x01, 0x01, 0x02, 0x04,
139 0x10, Ox11, Ox11, Ox12, 0x20, 0x21, 0x40, 0x80,
140 };

141

142 /*

143 * The actual fragtbl array.

144 */

145 const u_char * const fragtbl [MAXFRAG + 1] = {

146 0, fragtbll124, fragtbli24, O, fragtblil24, 0, 0, 0, fragtbl$8,
147 };

ffs/ffs/ffs_tables.c

The ffs mapsearch function that implements this algorithm is

ffs/ffs/ffs_alloc.c

1708 /x*

1709 * Find a block of the specified size in the specified cylinder group.
1710

1711 * It is a panic if a request is made to find a block if none are
1712 * available.

1713 */

1714 static ufs_daddr_t

1715 ffs_mapsearch(fs, cgp, bpref, allocsiz)

1716 struct fs *fs;

1717 struct cg *cgp;

1718 ufs_daddr_t bpref;

1719 int allocsiz;

1720 {

1721 ufs_daddr_t bno;

1722 int start, len, loc, ij;

1723 int blk, field, subfield, pos;

1724 int ostart, olen;

1725 #ifdef FFS_EI

1726 const int needswap = UFS_FSNEEDSWAP(fs);
1727 #endif

1728

1729 /*

1730 * find the fragment by searching through the free block
1731 * map for an appropriate bit pattern

1732 */

230

1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782 }

CHAPTER 10. BERKELEY FAST FILE SYSTEM

if (bpref)
start = dtogd(fs, bpref) / NBBY;
else
start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
len = howmany(fs->fs_fpg, NBBY) - start;
ostart = start;
olen = len;
loc = scanc((u_int)len,
(const u_char *)&cg_blksfree(cgp, needswap) [start],
(const u_char *)fragtbl[fs->fs_frag],
(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
if (loc == 0) {
len = start + 1;
start = 0;
loc = scanc((u_int)len,
(const u_char *)&cg_blksfree(cgp, needswap) [0],
(const u_char *)fragtbl[fs->fs_frag],
(1 << (allocsiz - 1 + (fs—>fs_frag & (NBBY - 1)))));
if (loc == 0) {
printf("start = %d, len = %d, fs = %s\n",
ostart, olen, fs->fs_fsmnt);
printf ("offset=Yd %1ld\n",
ufs_rw32(cgp->cg_freeoff, needswap),
(long)cg_blksfree(cgp, needswap) - (long)cgp);
panic("ffs_alloccg: map corrupted");
/* NOTREACHED */
}
}
bno = (start + len - loc) * NBBY;
cgp—>cg_frotor = ufs_rw32(bno, needswap);
/*
* found the byte in the map
* sift through the bits to find the selected frag
*/
for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
blk <<= 1;
field = around[allocsiz];
subfield = inside[allocsiz];
for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
if ((blk & field) == subfield)
return (bno + pos);
field <<= 1;
subfield <<= 1;
}
}
printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
panic("ffs_alloccg: block not in map");
return (-1);

ffs/ffs/ffs_alloc.c

where the scanc function is defined in 1ib/libkern/scanc.c as,

10.7. INODE ALLOCATION MECHANISM 231

- lib/libkern/scanc.c
41 int
42 scanc(u_int size, const u_char *cp, const u_char table[], int mask)
43 {
44 const u_char *end = &cpl[size];
45
46 while (cp < end && (table[*cp] & mask) == 0)
47 cpt+t;
48 return (end - cp);
49 }
- lib/libkern/scanc.c

Notice line 1740-1760 of £fs_mapsearch function. The first part scans from start
to len. The second part scans from O to start.

10.6.8 Rotational Layout Table
10.7 Inode Allocation Mechanism

10.7.1 Global Policy: ffs valloc

/*

* Allocate an inode in the file system.

*

* If allocating a directory, use ffs_dirpref to select the inode.
* If allocating in a directory, the following hierarchy is followed:
* 1) allocate the preferred inode.

* 2) allocate an inode in the same cylinder group.

* 3) quadradically rehash into other cylinder groups, until an
* available inode is located.

* If no inode preference is given the following hierarchy is used
* to allocate an inode:

* 1) allocate an inode in cylinder group O.

* 2) quadradically rehash into other cylinder groups, until an
* available inode is located.

*/

ffs_valloc(v)

{

// If allocating a directory, use ffs_dirpref to select the inode.

if ((mode & IFMT) == IFDIR)
ipref = ffs_dirpref (pip);

// Set preferred inode and cylinder group according to the above rules.

// Try to allocate

ffs_hashalloc(ffs_nodealloccg);

232 CHAPTER 10. BERKELEY FAST FILE SYSTEM

10.7.2 Local Policy 1: ffs_dirpref

~
*

Find a cylinder group in which to place a directory.

The policy implemented by this algorithm is to allocate a
directory inode in the same cylinder group as its parent
directory, but also to reserve space for its files inodes
and data. Restrict the number of directories which may be
allocated one after another in the same cylinder group
without intervening allocation of files.

If we allocate a first level directory then force allocation
in another cylinder group.

E R T B R R R 3

*/
static ino_t
ffs_dirpref (pip)

10.7.3 Local Policy 2: ffs nodealloccg

* Determine whether an inode can be allocated.

*

* Check to see if an inode is available, and if it is,

* allocate it using the following policy:

* 1) allocate the requested inode.

* 2) allocate the next available inode after the requested
*

inode in the specified cylinder group.

static ufs_daddr_t
ffs_nodealloccg(ip, cg, ipref, mode)

10.8 Synchronous Operations

To ensure that the on-disk state of the filesystem can always be returned to a
consistent state, the system must do three operations synchronously.

e Write a newly allocated inode to disk before its name is entered into a directory
containing the file indicated by the inode.

e Remove a directory name before the inode is deallocated.

e Write a deallocated inode to disk before its blocks are placed into the cylinder
group free list.

10.9. FILESYSTEM SEMANTICS 233

10.9 Filesystem Semantics

10.9.1 Large File Sizes

4.4BSD FFS support 64-bit file size. However, the interface to the filesystem is still
limited to 31-bit sizes !

This is not quite enough for modern enormous storage systems. Therefore if we
want to extend it to 128-bit file size, we shold redefine off_t type and make many
changes to FFS functions that implement system calls including, but not limited
to

3

o Iseek

stat, fstat, Istat

truncate

e mmap

getrlimit, setrlimit

10.10 References to Source Code

10.10.1 fs.h - 574 lines
Type Definitions

struct fs Superblock

struct csum Cylinder group summary information
struct cg Cylinder hroup

struct ocg 0ld cylinder hroup

struct appleufslabel Apple UFS superblock

Macro Functions

fs_postbl(fs, cylno) Get the base address of positional layout table
fs_rotbl(fs) Get blocks for each rotation

CGSIZE(fs) Get the size of a cylinder group

fs_cs(fs, indx) Get the base address of cylinder group summary info

[Macros for access to cylinder group without regard to superblock version]

cg_blktot(cgp, ns) Get the block totals per cylinder
cg_blks(fs, cgp, cylno, ns) Get the base address of free block positions
cg_inosused(cgp, ns) Get the base address of used inode map
cg_blksfree(cgp, ns) Get the base address of free block map
cg_chkmagic(cgp, ns) Get the filesystem version magic number
cg_clustersfree(cgp, ns) Get base address of free cluster map
cg_clustersum(cgp, ns) Get the counts of available clusters

[Converter between from filesystem block number and disk block address]

fsbtodb(fs, b) From the filesystem block to disk block
dbtofsb(fs, b) Reverse

234 CHAPTER 10. BERKELEY FAST FILE SYSTEM

[Macros to locate things in cylinder groups]

cgbase(fs, c) Locate the cylinder group base

cgdmin(fs, c) Locate the data block

cgimin(fs, c) Locate the inode block

cgsblock(fs, c) Locate the superblock

cgtod(fs, c) Locate the cylinder group block itself
cgstart(fs, c) Locate the cylinder start some after base

[Convert inode number to some other things]

ino_to_cg(fs, x) Convert to cylinder group number
ino_to_fsba(fs, x) Convert to 77777777
ino_to_fsbo(fs, x) Convert to 77777777

[Convert filesystem block number to some other things]

dtog(fs, d) Convert to cylinder group number
dtogd(fs, d) Convert to cylinder group block number
[71

blkmap(fs, map, loc) ?

cbtocylno(fs, bno)
cbtorpos(fs, bno)

N N

[Determine the number of available frags given a percent to hold in reserve]
freespace(fs, percentreserv) ?
[Determining the size of a file block in the file system]

blksize(fs, ip, 1lbn) ?
dblksize(fs, dip, 1lbn)

N

[Convert something into the number of sectors]

NSPB(fs) Convert a block size
NSPF (fs) Convert a sector size

[Convert something into the number of inodes]

INOPB(fs) Convert a block size

INOPF(fs) Convert a fragment size

[Misc.]

blkoff (fs, loc) /* calculates (loc % fs->fs_bsize) */ \
fragoff(fs, loc) /* calculates (loc % fs->fs_fsize) */ \
1blktosize(fs, blk) /* calculates ((off_t)blk * fs->fs_bsize) */ \
1blkno(fs, loc) /* calculates (loc / fs->fs_bsize) */ \
numfrags(fs, loc) /* calculates (loc / fs->fs_fsize) */ \

blkroundup(fs, size) /* calculates roundup(size, fs->fs_bsize) */ \

10.10. REFERENCES TO SOURCE CODE 235

fragroundup(fs, size) /* calculates roundup(size, fs->fs_fsize) */ \
fragstoblks(fs, frags) /* calculates (frags / fs->fs_frag) */ \
blkstofrags(fs, blks) /* calculates (blks * fs->fs_frag) */ \
fragnum(fs, fsb) /* calculates (fsb % fs->fs_frag) */ \
blknum(fs, fsb) /* calculates rounddown(fsb, fs->fs_frag) */ \
NINDIR(fs) [?] Number of indirects in a file system block

10.10.2 ffs_vfsops.c - 1518 lines, 18 functions
Gloval Variables

ffs_vnodeopv_descs
ffs_vfsops
ffs_genfsops
ffs_inode_pool

Functions

ffs_mountroot
ffs_mount
ffs_reload
ffs_mountfs
ffs_oldfscompat
ffs_unmount
ffs_flushfiles
ffs_statfs
ffs_sync
ffs_vget Read a FFS dinode using inode cache
ffs_fhtovp
ffs_vptofh
ffs_init
ffs_reinit
ffs_done
ffs_sysctl
ffs_sbupdate
ffs_cgupdate

10.10.3 ffs_vnops.c - 580 lines, 6 functions
Gloval Variables

ffs_vnodeop_opv_desc
ffs_specop_opv_desc
ffs_fifoop_opv_desc

Functions

ffs_fsync

ffs_full_fsync

ffs_reclaim

ffs_getpages

ffs_putpages

ffs_gop_size Return the last logical file offset that should be written

236 CHAPTER 10. BERKELEY FAST FILE SYSTEM

10.10.4 ffs_alloc.c - 1895 lines, 18 functions
Gloval Variables

none

Functions

[Block Allocation]

ffs_alloc Provide a global policy for getting a new block
ffs_realloccg Provide a global policy for extending an fragment
ffs_alloccg Allocate a block or fragment with a local policy
ffs_fragextend Extend an fragment

ffs_alloccgblk Allocate a block in the specified cylinder group
ffs_blkpref Guess a proper location of a new block
ffs_hashalloc Implement cylinder overflow algorithm

ffs_reallocblks Gather blocks together [Disabled Now]
ffs_clusteralloc Determine whether a cluster can be allocated [Disabled Now]

[Inode Allocation]

ffs_valloc Provide a global policy for allocating a new inode
ffs_dirpref Guess a proper cylinder group for a new directory
ffs_nodealloccg Allocate a new inode

[Block & Inode De-allocation]

ffs_blkfree Free a block or fragment

ffs_vfree Cover function for freeing an inode

ffs_freefile Do the actual free operation for an inode

[Misc.]

ffs_mapsearch Find a block or fragments of the specified size from a cyl.
ffs_clusteracct Update the cluster map because of an allocation of free

[Debug 1

ffs_fserr Prints the name of a filesystem with an error diagnostic

10.10.5 ffs balloc.c - 552 lines, 2 functions
Gloval Variables

none

Functions

ffs_balloc Non-UBC: Allocate a requested block or fragments
ffs_gop_alloc UBC: Allocate blocks

10.10. REFERENCES TO SOURCE CODE 237

10.10.6 ffs_inode.c - 582 lines, 3 functions
Gloval Variables

none
Functions
ffs_update Update the access, modified, and inode change time
ffs_truncate Force the length of the inode to a specified value
ffs_indirtrunc Called by ffs_truncate to deal indirect pointer

10.10.7 ffs_subr.c - 295 lines, 7 functions
Gloval Variables

none

Functions
ffs_blkatoff Return buffer with the contents of block
ffs_fragacct Update Fragment Summary
ffs_isblock Check if a block is available
ffs_isfreeblock Check if a block is free
ffs_clrblock Take a block out of the map
ffs_setblock Put a block into the map
ffs_checkoverlap Diagnostic

10.10.8 ffs tables.c - 147 lines, 0 functions
Gloval Variables

fragtbl Fragment table for fast free fragment searching

Functions

none

10.10.9 ffs_swap.c - 158 lines, 3 functions
Gloval Variables

none
Functions
ffs_sb_swap Adjust superblock for machine indenpendent meta-data
ffs_dinode_swap Adjust inode for machine indenpendent meta-data

ffs_csum_swap Adjust cyl group summary information for the same reason

238 CHAPTER 10. BERKELEY FAST FILE SYSTEM

Chapter 11

Mounting Root File System

In this chapter, the procedure involved in mounting root filesystem is described.

11.1 System Bootstrapping

After bootstrap, the system initialization is started in main function of kern/init main.c
as follows.

main function initialize the world, create process 0, mount root filesystem, and
fork to create init and pagedaemon. Most of the hard work is done in the lower-level
initialization routines including start function of arch/sparc64/sparc64/locore.s,
which does memory initialization and autoconfiguration.

kern/init _main.c

171 void

172 main(void)

173 {

188 /*

189 * Initialize the current process pointer (curproc) before
190 * any possible traps/probes to simplify trap processing.
191 */

219 /* Initialize kqueues. */

235 /* Initialize the sysctl subsystem. */

236 sysctl_init();

237

248 /*

249 * Create process O (the swapper).

250 */

344 /* Configure virtual memory system, set vm rlimits. */
345 uvm_init_limits(p);

346

347 /* Initialize the file systems. */

361 vEisinit();

239

240 CHAPTER 11. MOUNTING ROOT FILE SYSTEM

kern/init _main.c

At line 361, virtual filesystem layer initialization is started by calling vfsinit
function.

Note that before virtual filesystem layer is initialized, various system initializ-
ing procedure including creation of swapper and initialization of UVM][3] virtual
memory system.

As we described at previous section, Virtual filesystem initialization is initi-
ated in main function of kern/init main.c which is practically the first function
executed after machine bootstrap.

That function calls vfsinit function of kern/vfs_init.c which we studied in
the previous chapter.

11.2 Before Mounting

Up to now, we followed execution of main function in kern/init main.c just after
kernel bootstrap. Now let keep going on analyzing kern/init main.c just after we
have traced.

We will show the whole source code that will be described in this section and
then describe each part of it. To minimize the list, all optional parts (ifdef block)
are removed.

kern/init_main.c

363 /* Configure the system hardware. This will enable interrupts. */
364 configure();

365

366 ubc_init () ; /* must be after autoconfig */

367

368 /* Lock the kernel on behalf of procO. */

369 KERNEL_PROC_LOCK(p) ;

386 /* Attach pseudo-devices. */

387 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)

388 (*pdev->pdev_attach) (pdev->pdev_count) ;

389

390 /*

391 * Initialize protocols. Block reception of incoming packets
392 * until everything is ready.

393 */

394 s = splnet();

395 ifinit O ;

396 domaininit();

397 if_attachdomain();

398 splx(s);

405 /* Initialize system accouting. */

406 acct_init();

411 /*

412 * Initialize signal-related data structures, and signal state
413 * for procO.

414 */

415 signal_init();

11.2. BEFORE MOUNTING 241

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

p—>p_sigacts = &sigactsO;
siginit(p);

/* Kick off timeout driven events by calling first time. */
schedcpu(NULL) ;

/*

Create process 1 (init(8)). We do this now, as Unix has
historically had init be process 1, and changing this would
probably upset a lot of people.

Note that process 1 won’t immediately exec init(8), but will
wait for us to inform it that the root file system has been
mounted.

* K X X ¥ X X

x/
if (forki(p, O, SIGCHLD, NULL, O, start_init, NULL, NULL, &initproc))
panic("fork init");

/*

* Create any kernel threads who’s creation was deferred because
* initproc had not yet been created.

*/

kthread_run_deferred_queue();

/*
* Now that device driver threads have been created, wait for
* them to finish any deferred autoconfiguration. Note we don’t
* need to lock this semaphore, since we haven’t booted any
* secondary processors, yet.
*/
while (config_pending)
(void) tsleep((void *)&config_pending, PWAIT, "cfpend", 0);

/*

* Finalize configuration now that all real devices have been
* found. This needs to be done before the root device is
selected, since finalization may create the root device.

*

*/

config_finalize();

/*

* Now that autoconfiguration has completed, we can determine
* the root and dump devices.

*/

cpu_rootconf () ;

cpu_dumpconf () ;

/* Mount the root file system. */
do {
domountroothook() ;
if ((error = vfs_mountroot())) {
printf ("cannot mount root, error = %d\n", error);
boothowto |= RB_ASKNAME;
setroot (root_device,

242

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

}w

CHAPTER 11. MOUNTING ROOT FILE SYSTEM

(rootdev '= NODEV) ? DISKPART(rootdev) : 0);
}

hile (error !'= 0);

mountroothook_destroy() ;

CIRCLEQ_FIRST(&mountlist)->mnt_flag |= MNT_ROOTFS;
CIRCLEQ_FIRST (&mountlist)->mnt_op->vfs_refcount++;

/*
*
*
*/

if

Get the vnode for ’/’. Set filedescO.fd_fd.fd_cdir to
reference it.

(VFS_ROOT(CIRCLEQ_FIRST(&mountlist), &rootvnode))
panic("cannot find root vnode");

cwdiO.cwdi_cdir = rootvnode;

VRE
VOP

F(cwdiO.cwdi_cdir);
_UNLOCK (rootvnode, 0);

cwdiO.cwdi_rdir = NULL;

/*
*
*
*
*/

ini

VRE

ini

/%
*
*

*

*/
pro
s =
for

3
spl
pro

/*

Now that root is mounted, we can fixup initproc’s CWD
info. All other processes are kthreads, which merely
share procO’s CWD info.

tproc->p_cwdi->cwdi_cdir = rootvnode;
F(initproc->p_cwdi->cwdi_cdir);
tproc->p_cwdi->cwdi_rdir = NULL;

Now can look at time, having had a chance to verify the time
from the file system. Reset p->p_rtime as it may have been
munched in mi_switch() after the time got set.

clist_lock_read();
splsched () ;

(p = LIST_FIRST(&allproc); p != NULL;
p = LIST_NEXT(p, p_list)) {
p->p_stats->p_start = mono_time = boottime = time;
if (p->p_cpu != NULL)
p->p_cpu->ci_schedstate.spc_runtime = time;
p~>p_rtime.tv_sec = p->p_rtime.tv_usec = 0;
x(s);

clist_unlock_read();

Create the pageout daemon kernel thread. */

uvm_swap_init () ;

if

/*
if

(kthread_createl (uvm_pageout, NULL, NULL, "pagedaemon"))
panic("fork pagedaemon");

Create the process reaper kernel thread. */
(kthread_createl(reaper, NULL, NULL, "reaper"))
panic("fork reaper");

11.2. BEFORE MOUNTING 243

524 /* Create the filesystem syncer kernel thread. */

525 if (kthread_createl(sched_sync, NULL, NULL, "ioflush"))
526 panic("fork syncer");

527

528 /* Create the aiodone daemon kernel thread. */

529 if (kthread_createl(uvm_aiodone_daemon, NULL, NULL, "aiodoned"))
530 panic("fork aiodoned");

531

536

537 /* Initialize exec structures */

538 exec_init(1);

539

544

545 /*

546 * Okay, now we can let init(8) exec! It’s off to userland!
547 */

548 start_init_exec = 1;

549 wakeup ((void *)&start_init_exec);

550

551 /* The scheduler is an infinite loop. */

552 uvm_scheduler () ;

553 /* NOTREACHED */

554 }

kern/init _main.c

11.2.1 Creating stopped init process

line 366-421 is out of our concern, since it is not directly related with filesystem
code. Where the init process is created is line 422-432

kernel level fork1 function creates a new process out of start_init function of
init_main.c, which is assumed to be the current process.

kern/init_main.c

586 static void
587 start_init(void *arg)

588 {

604 /*

605 * Now in process 1.

606 */

607 strncpy (p->p_comm, "init", MAXCOMLEN);

608

609 /*

610 * Wait for main() to tell us that it’s safe to exec.
611 */

612 while (start_init_exec == 0)

613 (void) tsleep((void *)&start_init_exec, PWAIT, "initexec", 0);

kern/init_main.c

After main function of kern/init main.c mounts root filesystem, the tempo-
rally stopped execution of start_init function at line 612-613 is continued.

244 CHAPTER 11. MOUNTING ROOT FILE SYSTEM

11.2.2 Finding Where is the Root File System

line 460-461 in main function of kern/initmain. c finds where the root filesystem
are. It also finds where the dump device is.
cpu_rootconf function does the work and this function is machine dependent.

- arch/sparc64/sparc64/autoconf.c

491 void

492 cpu_rootconf ()

493 {

494 struct bootpath *bp;

495 struct device *bootdv;

496 int bootpartition;

497

498 bp = nbootpath == 0 ? NULL : &bootpath[nbootpath-1];
499 bootdv = bp == NULL ? NULL : bp->dev;

500 bootpartition = bootdv == NULL ? O : bp->vall[2];
501

502 setroot (bootdv, bootpartition);

503 }

- arch/sparc64/sparc64/autoconf.c

setroot function of kern/kern _subr. c set global variable struct device *root_device
to proper value.

You may wonder how the root device specified in bootpath entry of Sparc PROM
is delivered to nbootpath variable in line 498 of arch/sparc64/sparc64/autoconf.c
The answer is at configure function at the line 364 of kern/init main.c. This
configure function is,

kern/subr_autoconf.c

226 /x*

227 x Configure the system’s hardware.

228 */

229 void

230 configure(void)

231 {

232

233 /* Initialize data structures. */

234 config_init();

235

236 #ifdef USERCONF

237 if (boothowto & RB_USERCONF)

238 user_config();

239 #endif

240

241 /*

242 * Do the machine-dependent portion of autoconfiguration. This
243 * sets the configuration machinery here in motion by "finding"
244 * the root bus. When this function returns, we expect interrupts
245 * to be enabled.

246 */

247 cpu_configure();

248

11.2. BEFORE MOUNTING 245

249 /*

250 * Now that we’ve found all the hardware, start the real time
251 * and statistics clocks.

252 */

253 initclocks();

254

255 cold = 0; /* clocks are running, we’re warm now! */

256

257 /*

258 * Now callback to finish configuration for devices which want
259 * to do this once interrupts are enabled.

260 */

261 config_process_deferred(&interrupt_config_queue, NULL);

262 }

kern/subr_autoconf.c

This configure function calls machine dependent cpu_configure function of
arch/sparc64/sparc64/autocont.c,

- arch/sparc64/sparc64/autoconf.c

458 /x*

459 * Determine mass storage and memory configuration for a machine.

460 * We get the PROM’s root device and make sure we understand it, then
461 * attach it as ‘mainbusO’. We also set up to handle the PROM ‘sync’
462 * command.

463 x/

464 void

465 cpu_configure()

466 {

467

468 /* build the bootpath */

469 bootpath_build();

470

471 #if notyet

472 /* FIXME FIXME FIXME This is probably *WRONG!!!x*x/
473 OF_set_callback(sync_crash);

474 #endif

475

476 /* block clock interrupts and anything below */
477 splclock();

478 /* Enable device interrupts */

479 setpstate(getpstate() |PSTATE_IE);

480

481 if (config_rootfound("mainbus", NULL) == NULL)
482 panic("mainbus not configured");

483

484 /* Enable device interrupts */

485 setpstate(getpstate() |PSTATE_IE);

486

487 (void)spl0Q);

488 }

- arch/sparc64/sparc64/autoconf.c

246

CHAPTER 11. MOUNTING ROOT FILE SYSTEM

This cpu_configure function calls again bootpath_build function and this function
reads bootpath entry of SPARC PROM !

- arch/sparc64/sparc64/autoconf.c

274 static void
275 bootpath_build()

276 {
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

register char *cp, *pp;
register struct bootpath *bp;
register long chosen;

char buf[128];

bzero((void*)bootpath, sizeof (bootpath));
bp = bootpath;

/*

* Grab boot path from PROM

*/

chosen = OF_finddevice("/chosen");
OF_getprop(chosen, "bootpath", buf, sizeof(buf));
cp = buf;

while (cp != NULL && *cp == ’/’) {
/* Step over ’/’ */
++cp;

/* Extract name */
PP = bp->name;
while (*cp != ’Q@° && *cp != °/’ && *cp '= ’\0’)
*ppt+ = *cptt;
*pp = \O’;
if (xcp == ’@’) {
cp = str2hex(++cp, &bp->vall0]);
if (xcp == ’,?)
cp = str2hex(++cp, &bp->vallll);
if (%cp == 7:7)
/* XXX - we handle just one char */
bp->val[2] = *++cp - ’a’, ++cp;
} else {
bp->val[0] = -1; /* no #’s: assume unit O, no
sbus offset/adddress */
}
++bp;
++nbootpath;
}
bp->name [0] = 0;

bootpath_print (bootpath) ;

/* Setup pointer to boot flags */
OF_getprop(chosen, "bootargs", buf, sizeof(buf));
cp = buf;

/* Find start of boot flags */
while (*cp) {
while(*cp == ’ 7 || *cp == ’\t’) cp++;

11.2. BEFORE MOUNTING 247

324 if (kcp == ’=’ || *cp == ’\0’)

325 break;

326 while(xcp != > > && *cp != ’\t’ && *cp != ’\0’) cp++;
327

328 }

329 if (kcp = =)

330 return;

331

332 for (;*++cp;) {

333 int £f1;

334

335 f1 = 0;

336 BOOT_FLAG (*cp, f1);

337 if (1£1) {

338 printf ("unknown option ‘%c’\n", *cp);
339 continue;

340 }

341 boothowto |= f1;

342

343 /* specialties */

344 if (xcp == ’d’) {

345 #if defined(KGDB)

346 kgdb_debug_panic = 1;

347 kgdb_connect (1) ;

348 #elif defined(DDB)

349 Debugger () ;

350 #else

351 printf ("kernel has no debugger\n");
352 #endif

353 } else if (*cp == ’t’) {

354 /* turn on traptrace w/o breaking into kdb */
355 extern int trap_trace_dis;

356

357 trap_trace_dis = 0;

358 }

359 }

- arch/sparc64/sparc64/autoconf.c

This function reads bootpath, from SPARC PROM, such as
bootpath: /sbus@1f,0/SUNW,fas@e,8800000/sd@0,0

and stores this machine dependent struct bootpath structure.

For the time being, it is sufficient for us only to know that after execution of
cpu_rootconf function at line 460 of kern/init main.c, we obtains the location of
the root device in global variable struct device *root_device. There is no need
for us to analyze the very detail of this function, since we are only interested in
filesystem related code ! Instead, we summarize how kernel founds root filesystem.

main() ... e (kern/init_main.c)

+=> configure() (kern/subr_autoconf.c)
|

| +-> cpu_configure() (arch/sparc64/sparc64/autoconf.c)

248 CHAPTER 11. MOUNTING ROOT FILE SYSTEM

|
+-> bootpath_build() (arch/sparc64/sparc64/autoconf.c)

|

[

|

| o set ’bootpath’ variable from SPARC PROM ’bootpath’ entry
| o set ’boothowto’ variable from SPARC PROM ’bootargs’ entry
|

+

=> cpu_rootconf () (arch/sparc64/sparc64/autoconf.c)

[
| o set ’bootdv’ variable from ’bootpath’ variable
| o set ’bootpartition’ variable from ’bootpath’ variable

+-> setroot() (kern/kern_subr.c)

o set ’rootdev’, ’root_device’, ’mountroot’ variable

Pay attention the three variables that is set by setroot function.

1. mountroot pointer to function indicates the function to mount root
filesystem. For example, if root filesystem is FFS, this function
pointer is set to £fs_mountroot function of ufs/ffs/ffs visops.c.

mountroot variable is defined in automatically generated swapnetbsd.c
by config program as,

arch/sparc64/compile/MY KERNEL /swapnetbsd.c

#include <sys/param.h>
#include <sys/conf.h>

const char *rootspec = NULL;
dev_t rootdev = NODEV; /* wildcarded */

const char *dumpspec = NULL;
dev_t dumpdev = NODEV; /* unspecified */

© 00 N O d WN -

—
o

int (*mountroot) (void) = NULL;

arch/sparc64/compile/MY KERNEL /swapnetbsd.c

where rootspec, dumpdev variable is set to other value, if you
specified root device or dump device in kernel configuration file. If
kernel configuration file set this variable to other values, it overrides
the value of SPARC PROM’s bootpath entry !

2. rootdev is major number of device driver controlling a storage de-
vice containing root file system. dev_t type is simply defined as
u_int32_t in /usr/include/sys/types.h

3. root_device is defined as structure device. It contains device in-
formation corresponding to rootdev variable. structure device
is defined in sys/device.h as,

- sys/device.h

107 struct device {
108 enum devclass dv_class; /* this device’s classification *

11.2. BEFORE MOUNTING

109
110
111
112
113
114
115
116
117
118
119

TAILQ_ENTRY (device) dv_list;

struct cfdata *dv_cfdata;
struct cfdriver *dv_cfdriver;
struct cfattach *dv_cfattach;
int dv_unit;

char dv_xname[16] ;

struct device *dv_parent;

int dv_flags;
s

11.2.3 Executing Root Mount Hook

249

/* entry on list of all devices */
/* config data that found us

(NULL if pseudo-device) */
/* our cfdriver */
/* our cfattach */
/* device unit number */
/* external name (name + unit) */
/* pointer to parent device

(NULL if pesudo- or root node) *,
/* misc. flags; see below */

- sys/device.h

After somewhat long preparation after system bootstrap, the system is now ready

to mount the root filesystem. line 463-476 of kern/init main.c does the work.
Root mount hook is a list of functions that should be called before root filesystem

mount as a preparation process.

mountroothook_establish registers a function that should be executed
before root filesystem, we can register with mountrootbook _establish.

domountroothook executes all registered root mount hook.

For reference, we listed the source code below.

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

/*

kern/kern_subr.c

* "Mountroot hook" types, functions, and variables.

*/

hook_list_t mountroothook_list;

void

*

mountroothook_establish(fn, dev)

void

void (*fn) __P((struct device *));
struct device *dev;

return hook_establish(&mountroothook_list, (void (*)__P((void *)))fn,

dev) ;

mountroothook_disestablish(vhook)

{

}

void

void *vhook;

hook_disestablish(&mountroothook_list,

mountroothook_destroy()

{

hook_destroy(&mountroothook_list) ;

vhook) ;

250 CHAPTER 11. MOUNTING ROOT FILE SYSTEM

530 }

531

532 void

533 domountroothook()

534 {

535 struct hook_desc *hd;

536

537 LIST_FOREACH(hd, &mountroothook_list, hk_list) {
538 if (hd->hk_arg == (void *)root_device) {
539 (*hd->hk_£fn) (hd->hk_arg) ;

540 return;

541 }

542 }

543 }

kern/kern_subr.c

where hook_establish, hook disestablish, and hook_destroy functions are sim-
ply implemented in kern/kern_subr.c as,

kern/kern_subr.c

383 static void *
384 hook_establish(list, fn, arg)

385 hook_list_t *list;

386 void (xfn) __P((void *));

387 void *arg;

388 {

389 struct hook_desc *hd;

390

391 hd = malloc(sizeof (x*hd), M_DEVBUF, M_NOWAIT);
392 if (hd == NULL)

393 return (NULL);

394

395 hd->hk_fn = fn;

396 hd->hk_arg = arg;

397 LIST_INSERT_HEAD(list, hd, hk_list);
398

399 return (hd);

400 }

401

402 static void
403 hook_disestablish(list, vhook)

404 hook_list_t *list;

405 void *vhook;

406 {

407 #ifdef DIAGNOSTIC

408 struct hook_desc *hd;
409

410 LIST_FOREACH(hd, list, hk_list) {
411 if (hd == vhook)
412 break;
413 }

414

415 if (hd == NULL)

11.3. LET’S MOUNT THE ROOT FILE SYSTEM ! 251
416 panic("hook_disestablish: hook J%p not established", vhook);
417 #endif
418 LIST_REMOVE((struct hook_desc *)vhook, hk_list);
419 free(vhook, M_DEVBUF) ;
420 }
421

422 static void
423 hook_destroy(list)

424 hook_list_t *list;

425 {

426 struct hook_desc *hd;

427

428 while ((hd = LIST_FIRST(list)) != NULL) {
429 LIST_REMOVE(hd, hk_list);

430 free(hd, M_DEVBUF);

431 }

432 }

kern/kern_subr.c

Those functions can be used by software RAID, since before mounting root
filesystem, kernel should get information to mount root file system from the un-
configured RAID. That information from unconfigured RAID, can be obtained by

mount root hook.

For more important, if you want to newly design any RAID-like filesystem, and
want to mount it as a root filesystem, you may need to use root mount hook.

11.3 Let’s Mount the Root File System !

11.3.1 Telling the VFS to Mount the Root Filesystem

In this section, we will show how VFS calls a FFS function for mounting root
filesystem. For you reference, we again shows the code mounting root file system:

the line 464-476 of kern/init main.c.

kern/init_main.c

463 /* Mount the root file system. */

464 do {

465 domountroothook() ;

466 if ((error = vfs_mountroot())) {

467 printf ("cannot mount root, error = %d\n", error);
468 boothowto |= RB_ASKNAME;

469 setroot (root_device,

470 (rootdev != NODEV) ? DISKPART(rootdev) : 0);
471 }

472 } while (error != 0);

473 mountroothook_destroy();

kern/init_main.c

vfs_mountroot function of kern/vfs_subr.c does the work and its source code is

kern/vfs_subr.c

252 CHAPTER 11. MOUNTING ROOT FILE SYSTEM

2549 /*

2550 Mount the root file system. If the operator didn’t specify a
2551 *x file system to use, try all possible file systems until one
2552 * succeeds.

2553 */

2554 int

2555 vfs_mountroot ()

2556 {

2557 struct visops *v;

2558

2559 if (root_device == NULL)

2560 panic("vfs_mountroot: root device unknown");

2561

2562 switch (root_device->dv_class) {

2563 case DV_IFNET:

2564 if (rootdev != NODEV)

2565 panic("vfs_mountroot: rootdev set for DV_IFNET "
2566 "(0x%08x -> %d,%d)", rootdev,

2567 major(rootdev), minor(rootdev));

2568 break;

2569

2570 case DV_DISK:

2571 if (rootdev == NODEV)

2572 panic("vfs_mountroot: rootdev not set for DV_DISK");
2573 break;

2574

2575 default:

2576 printf ("%s: inappropriate for root file system\n",
2577 root_device->dv_xname) ;

2578 return (ENODEV) ;

2579 }

2580

2581 /*

2582 * If user specified a file system, use it.

2583 */

2584 if (mountroot != NULL)

2585 return ((kmountroot) ());

2586

2587 /*

2588 * Try each file system currently configured into the kernel.
2589 */

2590 for (v = LIST_FIRST(&vfs_list); v != NULL; v = LIST_NEXT(v, vfs_list)) {
2591 if (v->vfs_mountroot == NULL)

2592 continue;

2593 #ifdef DEBUG

2594 printf ("mountroot: trying %s...\n", v->vfs_name);
2595 #endif

2596 if ((*v->vfs_mountroot) () == 0) {

2597 printf ("root file system type: %s\n", v->vfs_name);
2598 break;

2599 }

2600 }

2601

2602 if (v == NULL) {

*

11.3. LET’S MOUNT THE ROOT FILE SYSTEM ! 253

2603 printf("no file system for %s", root_device->dv_xname);
2604 if (root_device->dv_class == DV_DISK)

2605 printf (" (dev 0x%x)", rootdev);

2606 printf("\n");

2607 return (EFTYPE);

2608 }

2609 return (0);

2610 }

kern/vfs_subr.c

Suppose that the SPARC PROM bootpath entry is set to indicate a partition
containing FFS filesystem. Then mountroot variable in line 2585 of kern/vfs_subr.c
is already set to ffs_mountroot function by setroot function. We described how
mountroot variable is set, in the previous subsection.

Now we turn to £fs_mountroot function of ufs/ffs/ffs visops.c.

ufs/ffs/ffs _vfsops.c

130 int

131 ffs_mountroot()

132 {

133 struct fs *fs;

134 struct mount *mp;

135 struct proc *p = curproc; /* XXX */

136 struct ufsmount *ump;

137 int error;

138

139 if (root_device->dv_class != DV_DISK)

140 return (ENODEV);

141

142 /%

143 * Get vnodes for rootdev.

144 */

145 if (bdevvp(rootdev, &rootvp))

146 panic("ffs_mountroot: can’t setup bdevvp’s");
147

148 if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
149 vrele(rootvp) ;

150 return (error);

151 }

152 if ((error = ffs_mountfs(rootvp, mp, p)) != 0) {
153 mp->mnt_op->vis_refcount--;

154 vEs_unbusy (mp) ;

155 free(mp, M_MOUNT);

156 vrele(rootvp) ;

157 return (error);

1568 }

159 simple_lock(&mountlist_slock);

160 CIRCLEQ_INSERT_TAIL (&mountlist, mp, mnt_list);
161 simple_unlock(&mountlist_slock) ;

162 ump = VFSTOUFS (mp) ;

163 fs = ump->um_f£s;

164 memset (fs->fs_fsmnt, 0, sizeof (fs->fs_fsmnt));

165 (void) copystr (mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);

254

166
167
168
169
170

11.3.2
11.3.3

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

11.3.4

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

190 /* these are configuration parameters

CHAPTER 11.

(void) ffs_statfs(mp, &mp->mnt_stat, p);
vfs_unbusy (mp) ;
inittodr(fs->fs_time);

return

(0);

Getting Vnode for Root Device

Allocating Mount Structure

struct mount {

CIRCLEQ_ENTRY (mount) mnt_list;

struct
struct
struct
struct
struct
int
int
int
int
struct
void
int
struct

};

Reading Superblock

/%

visops
vnode
vnode
vnodelst
lock

statfs

proc

*mnt_op;
*mnt_vnodecovered;
*mnt_syncer;
mnt_vnodelist;
mnt_lock;
mnt_flag;
mnt_maxsymlinklen;
mnt_fs_bshift;
mnt_dev_bshift;
mnt_stat;
*mnt_data;
mnt_wcnt;
*mnt_unmounter;

/*
/%
/*
/%
/*
/%
/*
/%
/*
/*
/%
/*
/*
/*

* Super block for an FFS file system in memory.

x/
struct fs {

int32_t fs_firstfield; /*
int32_t fs_unused_1; /*
ufs_daddr_t fs_sblkno; /*
ufs_daddr_t fs_cblkno; /*
ufs_daddr_t fs_iblkno; /*
ufs_daddr_t fs_dblkno; /*
int32_t fs_cgoffset; /*
int32_t fs_cgmask; /*
int32_t fs_time; /*
int32_t fs_size; /*
int32_t fs_dsize; /*
int32_t fs_ncg; /*
int32_t fs_bsize; /*
int32_t fs_fsize; /*
int32_t fs_frag; /*

*/

MOUNTING ROOT FILE SYSTEM

ufs/ffs/ffs _vfsops.c

mount list */

operations on fs */

vnode we mounted on */
syncer vnode */

list of vnodes this mount */
mount structure lock */
flags */

max size of short symlink */
offset shift for lblkno */
shift for device sectors */
cache of filesystem stats */
private data */

count of vfs_busy waiters */
who is unmounting */

historic file system linked list, */
used for incore super blocks */

addr of

super-block in filesys */

offset of cyl-block in filesys */
offset of inode-blocks in filesys */
offset of first data after cg */
cylinder group offset in cylinder */

used to

calc mod fs_ntrak */

last time written */

number of blocks in fs */
number of data blocks in fs */
number of cylinder groups */

size of
size of

basic blocks in fs */
frag blocks in fs */

number of frags in a block in fs */

11.3. LET’S MOUNT THE ROOT FILE SYSTEM ! 255

191 int32_t fs_minfree; /* minimum percentage of free blocks */
192 int32_t fs_rotdelay; /* num of ms for optimal next block */
193 int32_t fs_rps; /* disk revolutions per second */

194 /* these fields can be computed from the others */

195 int32_t fs_bmask; /* ‘‘blkoff’’ calc of blk offsets */
196 int32_t fs_fmask; /* ¢ ‘fragoff’’ calc of frag offsets */
197 int32_t fs_bshift; /* “‘1lblkno’’ calc of logical blkno */
198 int32_t fs_fshift; /* ‘‘numfrags’’ calc number of frags */
199 /* these are configuration parameters */

200 int32_t fs_maxcontig; /* max number of contiguous blks */
201 int32_t fs_maxbpg; /* max number of blks per cyl group */
202 /* these fields can be computed from the others */

203 int32_t fs_fragshift; /* block to frag shift */

204 int32_t fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */
205 int32_t fs_sbsize; /* actual size of super block */

206 int32_t fs_csmask; /* csum block offset (now unused) */
207 int32_t fs_csshift; /* csum block number (now unused) */
208 int32_t fs_nindir; /* value of NINDIR */

209 int32_t fs_inopb; /* value of INOPB */

210 int32_t fs_nspf; /* value of NSPF */

211 /* yet another configuration parameter */

212 int32_t fs_optim; /* optimization preference, see below */
213 /* these fields are derived from the hardware */

214 int32_t fs_npsect; /* # sectors/track including spares */
215 int32_t fs_interleave; /* hardware sector interleave */

216 int32_t fs_trackskew; /* sector O skew, per track */

217 /* fs_id takes the space of the unused fs_headswitch and fs_trkseek fields */
218 int32_t fs_id[2]; /* unique file system id */

219 /* sizes determined by number of cylinder groups and their sizes */

220 ufs_daddr_t fs_csaddr; /* blk addr of cyl grp summary area */
221 int32_t fs_cssize; /* size of cyl grp summary area */

222 int32_t fs_cgsize; /* cylinder group size */

223 /* these fields are derived from the hardware */

224 int32_t fs_ntrak; /* tracks per cylinder */

225 int32_t fs_nsect; /* sectors per track */

226 int32_t fs_spc; /* sectors per cylinder */

227 /* this comes from the disk driver partitioning */

228 int32_t fs_ncyl; /* cylinders in file system */

229 /* these fields can be computed from the others */

230 int32_t fs_cpg; /* cylinders per group */

231 int32_t fs_ipg; /* inodes per group */

232 int32_t fs_fpg; /* blocks per group * fs_frag */

233 /* this data must be re-computed after crashes */

234 struct csum fs_cstotal; /* cylinder summary information */

235 /* these fields are cleared at mount time */

236 int8_t fs_fmod; /* super block modified flag */

237 int8_t fs_clean; /* file system is clean flag */

238 int8_t fs_ronly; /* mounted read-only flag */

239 int8_t fs_flags; /* see FS_ flags below */

240 u_char fs_fsmnt [MAXMNTLEN] ; /* name mounted on */

241 /* these fields retain the current block allocation info */

242 int32_t fs_cgrotor; /* last cg searched (UNUSED) */

243 void *xfs_ocsp [NOCSPTRS] ; /* padding; was list of fs_cs buffers */
244 u_intl6_t *fs_contigdirs; /* # of contiguously allocated dirs */

256 CHAPTER 11. MOUNTING ROOT FILE SYSTEM

245 struct csum *fs_csp; /* cg summary info buffer for fs_cs */
246 int32_t *fs_maxcluster; /* max cluster in each cyl group */

247 int32_t fs_cpc; /* cyl per cycle in postbl */

248 int16_t fs_opostbl[16][8]; /* old rotation block list head */

249 int32_t fs_snapinum[20]; /* RESERVED for snapshot inode nums */
250 int32_t fs_avgfilesize; /* expected average file size */

251 int32_t fs_avgfpdir; /* expected # of files per directory */
252 int32_t fs_sparecon[26]; /* RESERVED for future constants */

253 int32_t fs_pendingblocks; /* blocks in process of being freed */
254 int32_t fs_pendinginodes; /* inodes in process of being freed */
255 int32_t fs_contigsumsize; /* size of cluster summary array */

256 int32_t fs_maxsymlinklen; /* max length of an internal symlink */
257 int32_t fs_inodefmt; /* format of on-disk inodes */

258 u_int64_t fs_maxfilesize; /* maximum representable file size */
259 int64_t fs_gbmask; /* “fs_bmask for use with 64-bit size */
260 int64_t fs_qgfmask; /* “fs_fmask for use with 64-bit size */
261 int32_t fs_state; /* validate fs_clean field (UNUSED) */
262 int32_t fs_postblformat; /* format of positional layout tables */
263 int32_t fs_nrpos; /* number of rotational positions */

264 int32_t fs_postbloff; /* (u_int16) rotation block list head */
265 int32_t fs_rotbloff; /* (u_int8) blocks for each rotation */
266 int32_t fs_magic; /* magic number */

267 u_int8_t fs_spacel[l]; /* list of blocks for each rotation */

268 /* actually longer */
--- ufs/ffs/fs.h

71 /* This structure describes the UFS specific mount structure data. */
72 struct ufsmount {

73 struct mount *um_mountp; /* filesystem vfs structure */

74 dev_t um_dev; /* device mounted */

75 struct vnode *um_devvp; /* block device mounted vnode */
76 u_int32_t um_flags; /* UFS-specific flags - see below
7 union { /* pointer to superblock */

78 struct fs *fs; /* FFS */

79 struct 1fs *1fs; /* LFS */

80 struct m_ext2fs *e2fs; /*x EXT2FS */

81 } ufsmount_u;

82 #define um_f£fs ufsmount_u.fs

83 #define um_lfs ufsmount_u.lfs

84 #define um_e2fs ufsmount_u.e2fs

85 #define um_e2fsb ufsmount_u.e2fs->s_es

86

87 struct vnode *um_quotas[MAXQUOTAS] ; /* pointer to quota files */

88 struct wucred *um_cred[MAXQUOTAS]; /* quota file access cred */

89 u_long um_nindir; /* indirect ptrs per block */
90 u_long um_lognindir; /* log2 of um_nindir */

91 u_long um_bptrtodb; /* indir ptr to disk block */
92 u_long um_seqinc; /* inc between seq blocks */

93 time_t um_btime [MAXQUOTAS]; /* block quota time limit */

94 time_t wum_itime[MAXQUOTAS]; /* inode quota time limit */

95 char um_qflags [MAXQUOTAS] ; /* quota specific flags */

96 struct netexport um_export; /* export information */

97 u_int64_t um_savedmaxfilesize; /* XXX - limit maxfilesize */

11.4. WHAT MUST BE DONE AFTER MOUNT ? 257

98 };
--— ufs/ufsmount.h

11.3.5

Mount !

11.4 What Must Be Done after Mount ?

11.4.1
11.4.2
11.4.3
11.4.4
11.4.5

Find vnode for ’/’ — root directory

Set current working directory of init process
Check File System Time

Create Kernel Threads about File System

Start Up init processor

258 CHAPTER 11. MOUNTING ROOT FILE SYSTEM

Part 111

Storage Systems

259

Chapter 12

Storage Device

In this chapter, we describes how we can manages to storage devices such as SCSI

hard disk drives.

12.1 Generic Disk Framework

The NetBSD generic disk framework is designed to provide flexible, scalable, and

consistent handling of disk state and metrics information.

12.1.1 disk Structure

The fundamental component of this framework is the disk structure, which is de-

fined in as follows:

100 struct disk {
TAILQ_ENTRY(disk) dk_link;

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

char
int
int
int
int
int
int

/*

*dk_name;
dk_bopenmask;
dk_copenmask;
dk_openmask;
dk_state;
dk_blkshift;
dk_byteshift;

/*
/%
/*
/*
/*
/%
/%
/*

sys/disk.h

link in global disklist */

disk name */

block devices open */

character devices open */

composite (bopen|copen) */

label state ### */

shift to convert DEV_BSIZE to blks */
shift to convert bytes to blks */

* Metrics data; note that some metrics may have no meaning
* on certain types of disks.

*/

int
u_int64_t
u_int64_t
u_int64_t
u_int64_t
u_int64_t
struct timeval
struct timeval
struct timeval

dk_busy;
dk_rxfer;
dk_wxfer;
dk_seek;
dk_rbytes;
dk_wbytes;
dk_attachtime;
dk_timestamp;
dk_time;

261

/*
/*
/%
/%
/%
/*
/*
/*
/*

busy counter */

total number of read transfers */
total number of write transfers */
total independent seek operations */
total bytes read */

total bytes written */

time disk was attached */

timestamp of last unbusy */

total time spent busy */

262 CHAPTER 12. STORAGE DEVICE

124 struct dkdriver *dk_driver; /* pointer to driver */
125
126 /*
127 * Disk label information. Storage for the in-core disk label
128 * must be dynamically allocated, otherwise the size of this
129 * structure becomes machine-dependent.
130 */
131 daddr_t dk_labelsector; /* sector containing label */
132 struct disklabel *dk_label; /* label */
133 struct cpu_disklabel *dk_cpulabel;
134 };
sys/disk.h

The system maintains a global linked-list of all disks attached to the system.
This list, called disklist, may grow or shrink over time as disks are dynamically
added and removed from the system. Drivers which currently make use of the
detachment capability of the framework are the ccd and vnd pseudo-device drivers.

12.1.2 Disk Interfaces

disk_init () Initialize the disklist and other data structures used
by the framework. Called by main() before autoconfigu-
ration.

disk_attach() Attach a disk; allocate storage for the disklabel, set

the ‘‘attached time’’ timestamp, insert the disk into
the disklist, and increment the system disk count.

disk_detach() Detach a disk; free storage for the disklabel, remove
the disk from the disklist, and decrement the system
disk count. If the count drops below zero, panic.

disk_busy() Increment the disk’s ‘‘busy counter’’. If this counter
goes from O to 1, set the timestamp corresponding to
this transfer.

disk_unbusy () Decrement a disk’s busy counter. If the count drops
below zero, panic. Get the current time, subtract it
from the disk’s timestamp, and add the difference to
the disk’s running total. Set the disk’s timestamp to
the current time. If the provided byte count is
greater than 0, add it to the disk’s running total and
increment the number of transfers performed by the
disk.

disk_resetstat() Reset the running byte, transfer, and time totals.

disk_find () Return a pointer to the disk structure corresponding to
the name provided, or NULL if the disk does not exist.

disk_attach function

kern/disk_subr.c

12.1. GENERIC DISK FRAMEWORK 263

206 /x*

207 * Attach a disk.

208

209 void

210 disk_attach(struct disk *diskp)

211 {

212 int s;

213

214 /*

215 * Allocate and initialize the disklabel structures. Note that
216 * it’s not safe to sleep here, since we’re probably going to be
217 * called during autoconfiguration.

218 */

219 diskp->dk_label = malloc(sizeof (struct disklabel), M_DEVBUF, M_NOWAIT);
220 diskp->dk_cpulabel = malloc(sizeof (struct cpu_disklabel), M_DEVBUF,
221 M_NOWAIT);

222 if ((diskp->dk_label == NULL) || (diskp->dk_cpulabel == NULL))
223 panic("disk_attach: can’t allocate storage for disklabel");
224

225 memset (diskp->dk_label, 0, sizeof(struct disklabel));

226 memset (diskp->dk_cpulabel, 0, sizeof (struct cpu_disklabel));
227

228 /*

229 * Set the attached timestamp.

230 */

231 s = splclockQ);

232 diskp->dk_attachtime = mono_time;

233 splx(s);

234

235 /*

236 * Link into the disklist.

237 */

238 simple_lock(&disklist_slock);

239 TAILQ_INSERT_TAIL(&disklist, diskp, dk_link);

240 simple_unlock(&disklist_slock);

241 ++disk_count;

242 }

kern/disk_subr.c

disk_busy function

267 /x*

268 * Increment a disk’s busy counter. If the counter is going from
269 * 0 to 1, set the timestamp.

270

271 void

272 disk_busy(struct disk *diskp)

273 {

274 int s;

275

276 /%

277 * XXX We’d like to use something as accurate as microtime(),

264 CHAPTER 12. STORAGE DEVICE

278 * but that doesn’t depend on the system TOD clock.
279 */

280 if (diskp->dk_busy++ == 0) {

281 s = splclock();

282 diskp->dk_timestamp = mono_time;

283 splx(s);

284 b

285 }

disk_unbusy function

287 /x*
288 x Decrement a disk’s busy counter, increment the byte count, total busy
289 * time, and reset the timestamp.

290 x/

291 void

292 disk_unbusy(struct disk *diskp, long bcount, int read)
293 {

294 int s;

295 struct timeval dv_time, diff_time;

296

297 if (diskp->dk_busy-- == 0) {

298 printf ("%s: dk_busy < 0\n", diskp->dk_name);
299 panic("disk_unbusy");

300 }

301

302 s = splclockQ);

303 dv_time = mono_time;

304 splx(s);

305

306 timersub(&dv_time, &diskp->dk_timestamp, &diff_time);
307 timeradd(&diskp->dk_time, &diff_time, &diskp->dk_time);
308

309 diskp->dk_timestamp = dv_time;

310 if (bcount > 0) {

311 if (read) {

312 diskp->dk_rbytes += bcount;

313 diskp->dk_rxfer++;

314 } else {

315 diskp->dk_wbytes += bcount;

316 diskp->dk_wxfer++;

317 }

318 }

319 }

disk_unbusy function

12.1. GENERIC DISK FRAMEWORK 265

244 /%

245 x Detach a disk.

246 x/

247 void

248 disk_detach(struct disk *diskp)

249 {

250

251 /*

252 * Remove from the disklist.

253 */

254 if (--disk_count < 0)

255 panic("disk_detach: disk_count < 0");
256 simple_lock(&disklist_slock) ;

257 TAILQ_REMOVE(&disklist, diskp, dk_link);
258 simple_unlock(&disklist_slock);

259

260 /*

261 * Free the space used by the disklabel structures.
262 */

263 free(diskp->dk_label, M_DEVBUF) ;

264 free(diskp->dk_cpulabel, M_DEVBUF);

265 }

12.1.3 Using the Framework

This section includes a description on basic use of the framework and example
usage of its functions. Actual implementation of a device driver which utilizes the
framework may vary.

A special routine, disk_init, is provided to perform basic initialization of data
structures used by the framework. It is called exactly once by the system, in main
function, before device autoconfiguration.

Attaching

Each device in the system uses a “softc” structure which contains autoconfiguration
and state information for that device. In the case of disks, the softc should also
contain one instance of the disk structure, e.g.:

struct foo_softc {

struct device sc_dev; /* generic device information */
struct disk sc_dk; /* generic disk information */
[.. .more . . .]

};

In order for the system to gather metrics data about a disk, the disk must be
registered with the system. The disk_attach routine performs all of the functions
currently required to register a disk with the system including allocation of disklabel
storage space, recording of the time since boot that the disk was attached, and
insertion into the disklist. Note that since this function allocates storage space for
the disklabel, it must be called before the disklabel is read from the media or used
in any other way. Before disk_attach is called, a portions of the disk structure
must be initialized with data specific to that disk. For example, in the “foo” disk
driver, the following would be performed in the autoconfiguration “attach” routine:

266 CHAPTER 12. STORAGE DEVICE

void

fooattach(parent, self, aux)
struct device *parent, *self;
void *aux;

{
struct foo_softc *sc = (struct foo_softc *)self;
L. . .1
/* Initialize and attach the disk structure. */
sc—>sc_dk.dk_driver = &foodkdriver;
sc—>sc_dk.dk_name = sc->sc_dev.dv_xname;
disk_attach(&sc->sc_dk) ;
/* Read geometry and fill in pertinent parts of disklabel.
L. . .1

}

The foodkdriver above is the disk’s “driver” switch. This switch currently includes
a pointer to the disk’s “strategy” routine. This switch needs to have global scope
and should be initialized as follows:

void foostrategy(struct buf *);
struct dkdriver foodkdriver = { foostrategy I};

Gathering Metrics during Disk Operations

Once the disk is attached, metrics may be gathered on that disk. In order to
gather metrics data, the driver must tell the framework when the disk starts and
stops operations. This functionality is provided by the disk_busy and disk_unbusy
routines. The disk_busy routine should be called immediately before a command
to the disk is sent, e.g.:

void

foostart(sc)
struct foo_softc *sc;

{
L. . .1
/* Get buffer from drive’s transfer queue. */
L. . .1
/* Build command to send to drive. */
L. . .1
/* Tell the disk framework we’re going busy. */
disk_busy (&sc->sc_dk);
/* Send command to the drive. */
L. . .1
}

When disk_busy is called, a timestamp is taken if the disk’s busy counter moves
from 0 to 1, indicating the disk has gone from an idle to non-idle state. Note that
disk_busy must be called at splbio(). At the end of a transaction, the disk_unbusy
routine should be called. This routine performs some consistency checks, such as
ensuring that the calls to disk_busy and disk_unbusy are balanced. This routine

*/

12.2. DISK LABEL 267

also performs the actual metrics calculation. A timestamp is taken, and the differ-
ence from the timestamp taken in disk _busy is added to the disk’s total running
time. The disk’s timestamp is then updated in case there is more than one pending
transfer on the disk. A byte count is also added to the disk’s running total, and if
greater than zero, the number of transfers the disk has performed is incremented.

void
foodone (xfer)
struct foo_xfer *xfer;
{
struct foo_softc = (struct foo_softc *)xfer->xf_softc;
struct buf *bp = xfer->xf_buf;
long nbytes;
L. . .]
/*
* Get number of bytes transfered. If there is no buf
* associated with the xfer, we are being called at the
* end of a non-I/0 command.
*/
if (bp == NULL)
nbytes = 0;
else
nbytes = bp->b_bcount - bp->b_resid;
L. . .]
/* Notify the disk framework that we’ve completed the transfer. */
disk_unbusy(&sc->sc_dk, nbytes);
L. . .]
}

Like disk_busy, disk_unbusy must be called at splbio().
At some point a driver may wish to reset the metrics data gathered on a partic-
ular disk. For this function, the disk _resetstat routine is provided.

12.2 Disk Label

12.2.1 What does it have ?

Each disk or disk pack on a system may contain a disk label which provides detailed
information about

e the geometry of the disk and
e the partitions into which the disk is divided.

It should be initialized when the disk is formatted, and may be changed later with
the disklabel(8) pro- gram.
This information is used by

e the system disk driver and

e by the bootstrap program to determine how to program the drive and where
to find the filesystems on the disk partitions.

268

CHAPTER 12. STORAGE DEVICE

e Additional information is used by the filesystem in order to use the disk most

efficiently and to locate important filesystem information.

The description of each partition contains an identifier for the partition type (stan-
dard filesystem, swap area, etc.). The filesystem updates the in-core copy of the

label if it contains incomplete information about the filesystem.

12.2.2 disklabel structure

98 struct disklabel {

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

#define
#define
#define

sys/disklabel.h

the magic number */

drive type */
controller/d_type specific */
type name, e.g. "eagle" */

d_packname contains the pack identifier and is returned when

These are returned when using

of
of
of
of
of
of

getdiskbyname(3) to retrieve the values from /etc/disktab.

/* pack identifier */

/* primary bootstrap name */
/* secondary bootstrap name */

bytes per sector */

data sectors per track */
tracks per cylinder */

data cylinders per unit */
data sectors per cylinder */

u_int32_t d_magic; /*
u_int16_t d_type; /*
u_int16_t d_subtype; /*
char d_typename [16] ; /*
/*
*
* the disklabel is read off the disk or in-core copy.
* d_bootO and d_bootl are the (optional) names of the
* primary (block 0) and secondary (block 1-15) bootstraps
* as found in /usr/mdec.
*
*/
union {
char un_d_packname [16] ;
struct {
char *un_d_bootO;
char *un_d_boot1;
} un_b;
} d_un;
d_packname d_un.un_d_packname
d_boot0 d_un.un_b.un_d_bootO
d_bootl d_un.un_b.un_d_boot1l
/* disk geometry: */
u_int32_t d_secsize; /* #
u_int32_t d_nsectors; /* #
u_int32_t d_ntracks; /*x #
u_int32_t d_ncylinders; /*x #
u_int32_t d_secpercyl; /* #
u_int32_t d_secperunit; /* #

/%

data sectors per unit */

* Spares (bad sector replacements) below are not counted in

* d_nsectors or d_secpercyl.

*

* track and/or cylinder.

*/

u_intl6_t d_sparespertrack;

u_intl6_t d_sparespercyl;
/*

Spare sectors are assumed to
be physical sectors which occupy space at the end of each

/* # of spare sectors per track */
/* # of spare sectors per cylinder */

* Alternative cylinders include maintenance, replacement,

* configuration description areas, etc.

12.2. DISK LABEL 269

142 */

143 u_int32_t d_acylinders; /* # of alt. cylinders per unit */
144

145 /* hardware characteristics: */

146 /*

147 * d_interleave, d_trackskew and d_cylskew describe perturbations
148 * in the media format used to compensate for a slow controller.

149 * Interleave is physical sector interleave, set up by the

150 * formatter or controller when formatting. When interleaving is
151 * in use, logically adjacent sectors are not physically

152 * contiguous, but instead are separated by some number of

153 * sectors. It is specified as the ratio of physical sectors

154 * traversed per logical sector. Thus an interleave of 1:1

155 * implies contiguous layout, while 2:1 implies that logical

156 * sector 0 is separated by one sector from logical sector 1.

157 * d_trackskew is the offset of sector O on track N relative to

158 * sector 0 on track N-1 on the same cylinder. Finally, d_cylskew
159 * is the offset of sector O on cylinder N relative to sector O

160 * on cylinder N-1.

161 */

162 u_int16_t d_rpm; /* rotational speed */

163 u_intl6_t d_interleave; /* hardware sector interleave */

164 u_int16_t d_trackskew; /* sector 0 skew, per track */

165 u_int16_t d_cylskew; /* sector O skew, per cylinder */
166 u_int32_t d_headswitch; /* head switch time, usec */

167 u_int32_t d_trkseek; /* track-to-track seek, usec */

168 u_int32_t d_flags; /* generic flags */

169 #define NDDATA 5

170 u_int32_t d_drivedata[NDDATA]; /* drive-type specific information */
171 #define NSPARE 5

172 u_int32_t d_spare[NSPARE]; /* reserved for future use */

173 u_int32_t d_magic2; /* the magic number (again) */

174 u_int16_t d_checksum; /* xor of data incl. partitions */
175

176 /* filesystem and partition information: */

177 u_intl6_t d_npartitions; /* number of partitions in following */
178 u_int32_t d_bbsize; /* size of boot area at snO, bytes */
179 u_int32_t d_sbsize; /* max size of fs superblock, bytes */
180 struct partition { /* the partition table */

181 u_int32_t p_size; /* number of sectors in partition */
182 u_int32_t p_offset; /* starting sector */

183 union {

184 u_int32_t fsize; /* FFS, ADOS:

185 filesystem basic fragment size */
186 u_int32_t cdsession; /* IS09660: session offset */
187 } __partition_u2;

188 #define p_fsize __partition_u2.fsize

189 #define p_cdsession __partition_u2.cdsession

190 u_int8_t p_fstype; /* filesystem type, see below */

191 u_int8_t p_frag; /* filesystem fragments per block */
192 union {

193 u_intl6_t cpg; /* UFS: FS cylinders per group */
194 u_intl6_t sgs; /* LFS: FS segment shift */

195 } __partition_ul;

CHAPTER 12. STORAGE DEVICE

270
196 #define p_cpg __partition_ul.cpg
197 #define p_sgs __partition_ul.sgs
198 } d_partitions[MAXPARTITIONS]; /* actually may be more */
199 };

and machine dependent definition in sparc64 architecture is,

12.2.3

Where is the Disk Label ?

sys/disklabel.h

The label is located in sector number LABELSECTOR of the drive, usually sector
0 where it may be found without any information about the disk ge- ometry. It is at
an offset LABELOFFSET from the beginning of the sector, to allow room for the
initial bootstrap. The disk sector containing the label is normally made read-only so
that it is not accidentally overwrit- ten by pack-to-pack copies or swap operations;
the DIOCWLABEL ioctl(2), which is done as needed by the disklabel(8) program.

LABELSECTOR and LABELOFFSET macros are machine-dependent parameter and
defined in arch/sparc64/include/disklabel.h as

1
2
3

- arch/sparc64/include/disklabel.h

/* $NetBSD: disklabel.h,v 1.2 2002/07/20 11:52:21 mrg Exp $ x/

#include <sparc/disklabel.h>

where arch/sparc/include/disklabel.h is

36
37
38
39
40
41

#define LABELSECTOR 0
#define LABELOFFSET 128
#define MAXPARTITIONS 8
#define RAW_PART 2
struct cpu_disklabel {

- arch/sparc64/include/disklabel.h

arch/sparc/include/disklabel.h

/* sector containing label */
/* offset of label in sector */
/* number of partitions */

/* raw partition: xx7c */

42 char cd_block[512];
43 };
arch/sparc/include/disklabel.h
12.2.4 General Disk Label Interfaces
/* get and set disklabel; DIOCGPART used internally */
DIOCGDINFO _IOR(’d’, 101, struct disklabel) /* get x*/
DIOCSDINFO _Iow(’d’, 102, struct disklabel) /* set */
DIOCWDINFO _Iow(’d’, 103, struct disklabel) /* set, update disk */
DIOCGPART _IowW(’d’, 104, struct partinfo) /* get partition */
/* do format operation, read or write */
DIOCRFORMAT _IOWR(’d’, 105, struct format_op)

DIOCWFORMAT _IOWR(’d’, 106, struct format_op)

12.2. DISK LABEL

DIOCSSTEP
DIOCSRETRIES
DIOCKLABEL
DIOCWLABEL

DIOCSBAD
DIOCEJECT
ODIOCEJECT
DIOCLOCK

DIOCGDEFLABEL
DIOCCLRLABEL

DIOCGCACHE
DIOCSCACHE

DKCACHE_READ
DKCACHE_WRITE

_Iow(’d’, 107,
_Iow(’d’, 108,
_1ow(’d’, 119,
_Iow(’d’, 109,
_Iow(’d’, 110,
_1ow(’d’, 112,
_I0(’d’, 112)
_Iow(’d’, 113,

/* get default

_IOR(’d’, 114,
_10(°d’, 115)

271

int) /* set step rate */

int) /* set # of retries */

int) /* keep/drop label on close? */
int) /* write en/disable label */

struct dkbad) /* set kernel dkbad */

int) /* eject removable disk */
/* eject removable disk */

int) /* lock/unlock pack */

label, clear label */

struct disklabel)

/* disk cache enable/disable */

_IOR(’d’, 116,
_Iow(’d’, 117,

0x000001
0x000002

DKCACHE_RCHANGE 0x000100
DKCACHE_WCHANGE 0x000200

DKCACHE_SAVE

#define DIOCCACHESYNC

Terms

0x010000

int) /*
int) /*

get cache enables */
set cache enables */

/* read cache enabled */

/* write(back) cache enabled */

/* read enable is changeable */

/* write enable is changeable */
/* cache parameters are savable/save them */

/* sync disk cache */

_Iow(’d’, 118, int)

/* sync cache (force?) */

in-core label: The content of disklabel which is read in memory.

on-disk label: The actual disklabel stored in storage device.

12.2.5 Reading Diak Label: DIOCGDINFO

A copy of the in-core label for a disk can be obtained with the DIOCGDINFO
ioctl(2); this works with a file descriptor for a block or character (“raw”) device for
any partition of the disk.

Reading in-core label means that the contents are not directly from storage
device, but from the kernel structure which is filled when the storage device drive
attaches the disk at the initial configuration stage.

896 /*
897
898
899 x/
900 int
901
902

dev /scsipi/sd.c

* Perform special action on behalf of the user
* Knows about the internals of this device

sdioctl(dev, cmd, addr, flag, p)
dev_t dev;

272 CHAPTER 12. STORAGE DEVICE

903 u_long cmd;

904 caddr_t addr;

905 int flag;

906 struct proc *p;

907 {

908 struct sd_softc *sd = sd_cd.cd_devs[SDUNIT(dev)];
909 struct scsipi_periph *periph = sd->sc_periph;

910 int part = SDPART(dev) ;

911 int error;

946 switch (cmd) {

947 case DIOCGDINFO:

948 *(struct disklabel *)addr = *(sd->sc_dk.dk_label);
949 return (0);

dev /scsipi/sd.c

12.2.6 Writing In-Core Disk Label: DIOCSDINFO

The in-core copy of the label is set by the DIOCSDINFO ioctl(2).

The kernel device drivers will not allow the size of a disk partition to be decreased
or the offset of a partition to be changed while it is open. Some device drivers create
a label containing only a single large parti- tion if a disk is unlabeled; thus, the label
must be written to the “a” partition of the disk while it is open. This sometimes
requires the de- sired label to be set in two steps, the first one creating at least
one other partition, and the second setting the label on the new partition while
shrinking the “a” partition.

12.2.7 Writing On-Disk Disk Label: DIOCWDINFO

Finally, the DIOCWDINFO ioctl(2) operation sets the in-core label and then up-
dates the on-disk label; there must be an existing label on the disk for this operation
to succeed. Thus, the initial label for a disk or disk pack must be installed by writing
to the raw disk. All of these operations are normally done using disklabel(8).

900 int

901 sdioctl(dev, cmd, addr, flag, p)

902 dev_t dev;

903 u_long cmd;

904 caddr_t addr;

905 int flag;

906 struct proc *p;

907 {

908 struct sd_softc *sd = sd_cd.cd_devs[SDUNIT(dev)];
909 struct scsipi_periph *periph = sd->sc_periph;
910 int part = SDPART(dev);

911 int error;

946 switch (cmd) {

966 case DIOCWDINFO:

967 case DIOCSDINFO:

12.2. DISK LABEL

struct disklabel *1p;
1lp = (struct disklabel *)addr;

if ((flag & FWRITE) == 0)
return (EBADF);

if ((error = sdlock(sd)) !'= 0)
return (error);
sd->flags |= SDF_LABELLING;

error = setdisklabel(sd->sc_dk.dk_label,
lp, /*sd->sc_dk.dk_openmask : */0,
sd->sc_dk.dk_cpulabel);

if (error == 0) {
if (cmd == DIOCWDINFO)

error = writedisklabel (SDLABELDEV(dev),
sdstrategy, sd->sc_dk.dk_label,
sd->sc_dk.dk_cpulabel);
}
sd->flags &= "“SDF_LABELLING;
sdunlock(sd) ;
return (error);

273

where sdlock and sdunlock is defined as

322 /
323
324
325
326
327

*
*
*
*
*

*/

328 int
329 sdlock(sd)

330
331 {
332
333
334
335
336
337
338
339
340
341 }

Wait interruptibly for an exclusive lock.

XXX

Several drivers do this; it should be abstracted and made MP-safe.

struct sd_softc *sd;
int error;

while ((sd->flags & SDF_LOCKED) != 0) {
sd->flags |= SDF_WANTED;

if ((error = tsleep(sd, PRIBIO | PCATCH, "sdlck", 0)) != 0)

return (error);

}
sd->flags |= SDF_LOCKED;
return (0);

274 CHAPTER 12. STORAGE DEVICE

342

343 /*

344 * Unlock and wake up any waiters.
345 x/

346 void

347 sdunlock(sd)

348 struct sd_softc *sd;

349 {

350

351 sd->flags &= “SDF_LOCKED;

352 if ((sd->flags & SDF_WANTED) != 0) {
353 sd->flags &= “SDF_WANTED;
354 wakeup (sd) ;

355 }

356 }

12.2.8 Restrictions of Disk Label in sparc64

On the sparc, sparc64, sun2 and sun3 NetBSD systems, the size of each partition
must be a multiple of the number of sectors per cylinder (i.e. each partition must
be an integer number of cylinders), or the boot ROMs will declare the label invalid
and fail to boot the system.

If the disk partition is not specified in the disk name (i.e. “xy0” instead of
“/dev/rxy0c”), disklabel will construct the full pathname of the disk and use the
“a” partition on the tahoe, the “d” partition on i386 or hpcmips or arc, and the
“c” partition on all others including sparc64.

On some machines the bootstrap code may not fit entirely in the area al- located
for it by some filesystems. As a result, it may not be possible to have filesystems on
some partitions of a “bootable” disk. When in- stalling bootstrap code, disklabel
checks for these cases. If the in- stalled boot code would overlap a partition of type
FS_UNUSED it is marked as type FS_BOOT. The newfs(8) utility will disallow creation
of filesystems on FS_BOOT partitions. Conversely, if a partition has a type other than
FS_UNUSED or FS_BOOT, disklabel will not install bootstrap code that overlaps it.

12.3 Concatenated Disk Driver

12.3.1 Strcture

struct ccdbuf {

struct buf cb_buf; /* new I/0 buf */
struct buf *cb_obp; /* ptr. to original I/0 buf */
struct ccd_softc *cb_sc; /* pointer to ccd softc */
int cb_comp; /* target component */
SIMPLEQ_ENTRY (ccdbuf) cb_q; /* fifo of component buffers */
};
/*
* This structure is used to configure a ccd via ioctl(2).
*/
struct ccd_ioctl {
char **ccio_disks; /* pointer to component paths */

u_int ccio_ndisks; /* number of disks to concatenate */

12.3. CONCATENATED DISK DRIVER 275

int ccio_ileave; /* interleave (DEV_BSIZE blocks) */
int ccio_flags; /* see sc_flags below */
int ccio_unit; /* unit number: use varies */
size_t ccio_size; /* (returned) size of ccd */

};

/*

* Component info table.
* Describes a single component of a concatenated disk.

*/
struct ccdcinfo {
struct vnode *ci_vp; /* device’s vnode */
dev_t ci_dev; /* XXX: device’s dev_t */
size_t ci_size; /* size */
char *ci_path; /* path to component */
size_t ci_pathlen; /* length of component path */
};
/*

Interleave description table.

Computed at boot time to speed irregular-interleave lookups.

The idea is that we interleave in "groups". First we interleave
evenly over all component disks up to the size of the smallest
component (the first group), then we interleave evenly over all
remaining disks up to the size of the next-smallest (second group),
and so on.

*
*

*

*

*

*

*

*

* Each table entry describes the interleave characteristics of one
* of these groups. For example if a concatenated disk consisted of
* three components of 5, 3, and 7 DEV_BSIZE blocks interleaved at

* DEV_BSIZE (1), the table would have three entries:
*

*

*

*

*

*

*

*

*

*

*

*

ndisk startblk startoff dev

3 0 0 , 2

, 1
2 9 3 , 2
1 13 5
0

N O O

which says that the first nine blocks (0-8) are interleaved over

3 disks (0, 1, 2) starting at block offset 0O on any component disk,
the next 4 blocks (9-12) are interleaved over 2 disks (0, 2) starting
at component block 3, and the remaining blocks (13-14) are on disk

2 starting at offset 5.

*/

struct ccdiinfo {
int ii_ndisk; /* # of disks range is interleaved over */
daddr_t ii_startblk; /* starting scaled block # for range */
daddr_t ii_startoff; /* starting component offset (block #) */
int *1i_index; /* ordered list of components in range */

+;

/*

* Concatenated disk pseudo-geometry information.

*/

276 CHAPTER 12. STORAGE DEVICE

struct ccdgeom {

u_int32_t ccg_secsize; /* # bytes per sector */
u_int32_t ccg_nsectors; /* # data sectors per track */
u_int32_t ccg_ntracks; /* # tracks per cylinder x*/
u_int32_t ccg_ncylinders; /* # cylinders per unit */

};

struct ccdbuf;

/*
* A concatenated disk is described after initialization by this structure.
*/
struct ccd_softc {
int sc_flags; /* flags */
size_t sc_size; /* size of ccd */
int sc_ileave; /* interleave */
u_int sc_nccdisks; /* number of components */
#define CCD_MAXNDISKS 65536
struct ccdcinfo *sc_cinfo; /* component info */
struct ccdiinfo =*sc_itable; /* interleave table */
struct ccdgeom sc_geom; /* pseudo geometry info */
char sc_xname [8] ; /* XXX external name */
struct disk sc_dkdev; /* generic disk device info */
struct lock sc_lock; /* lock on this structure */
};

12.3.2 Gloval Variables

struct pool ccd_cbufpool;
const struct bdevsw ccd_bdevsw = {
ccdopen, ccdclose, ccdstrategy, ccdioctl, ccddump, ccdsize, D_DISK

};

const struct cdevsw ccd_cdevsw = {
ccdopen, ccdclose, ccdread, ccdwrite, ccdioctl,
nostop, notty, nopoll, nommap, nokqfilter, D_DISK

};
struct ccd_softc *ccd_softc;
int numccd = 0O;

12.3.3 Functions

[Common Device Driver Entry]

int ccdopen (dev_t dev, int flags, int fmt, struct proc *p);

int ccdclose (dev_t dev, int flags, int fmt, struct proc *p);

int ccdioctl (dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p);

[Block Device Driver Entry]

void ccdstrategy (struct buf *bp);
int ccdsize (dev_t dev);

12.3. CONCATENATED DISK DRIVER 277

int ccddump (dev_t dev, daddr_t blkno, caddr_t va, size_t size);
[Character Device Driver Entry]

int ccdread (dev_t dev, struct uio *uio, int flags);
int ccdwrite (dev_t dev, struct uio *uio, int flags);

[Device Driver Autoconfiguration]
void ccdattach (int num);

[Sub-function]

ccdinit used by ccdioctl() - CCDIOCSET

ccdinterleave used by ccdinit ()

ccdstart used by ccdstrategy()

ccdbuffer used by ccdstart()

ccdintr used by ccdiodone()

ccdiodone used by biodone() which is called by ccdintr()
ccdlookup used by ccdioctl() - CCDIOCSET

ccdgetdefaultlabel used by ccdgetdisklabel(), ccdioctl() - DIOCGDEFLABEL
ccdgetdisklabel used by ccdopen(), ccdioctl() - DIOCSET

ccdmakedisklabel used by ccdgetdisklabel ()

278 CHAPTER 12. STORAGE DEVICE

Chapter 13

Logical Volume Manager

RAIDframe is a kind of Logical Volume Manager not included in NetBSD /sparc64.
In this chapter, we describes other logical volume manager, such as VERITAS
Volume Manager 3.1 under HP-UX 11i, and LVM under HP-UX 10.

13.1 RAIDframe

13.1.1 Introduction

The raid driver provides RAID 0, 1, 4, and 5 (and more!) capabilities to NetBSD.
This document assumes that the reader has at least some famil-iarity with RAID and
RAID concepts. The reader is also assumed to know how to configure disks and
pseudo-devices into kernels, how to generate kernels, and how to partition disks.

RAIDframe provides a number of different RAID levels including:

RAID 0 provides simple data striping across the components.
RAID 1 provides mirroring.

RAID 4 provides data striping across the components, with parity stored
on a dedicated drive (in this case, the last component).

RAID 5 provides data striping across the components, with parity dis-
tributed across all the components.

There are a wide variety of other RAID levels supported by RAIDframe, in-cluding
Even-Odd parity, RAID level 5 with rotated sparing, Chained declustering, and
Interleaved declustering. The reader is referred to the RAIDframe documentation
mentioned in the HISTORY section for more detail on these various RAID
configurations.

Depending on the parity level configured, the device driver can support the failure of
component drives. The number of failures allowed depends on the parity level
selected. If the driver is able to handle drive failures, and a drive does fail, then the
system is operating in "degraded mode". In this mode, all missing data must be
reconstructed from the data and parity present on the other components. This results

279

280 CHAPTER 13. LOGICAL VOLUME MANAGER

in much slower data accesses, but does mean that a failure need not bring the
system to a complete halt.

13.1.2 Component Labels

The RAID driver supports and enforces the use of ‘component labels’. A ‘component
label’ contains important information about the component, in-cluding a user-specified
serial number, the row and column of that compo-nent in the RAID set, and whether
the data (and parity) on the componentis ‘clean’. If the driver determines that the
labels are very inconsis-tent with respect to each other (e.g. two or more serial
numbers do not match) or that the component label is not consistent with it’s assigned
place in the set (e.g. the component label claims the component should be the 3rd one
a 6-disk set, but the RAID set has it as the 3rd component ina 5-disk set) then the
device will fail to configure. If the driver de-termines that exactly one component
label seems to be incorrect, and the RAID set is being configured as a set that
supports a single failure, then the RAID set will be allowed to configure, but the
incorrectly la-beled component will be marked as ‘failed’, and the RAID set will begin
operation in degraded mode. If all of the components are consistent among themselves,
the RAID set will configure normally.

Component labels are also used to support the auto-detection and auto-configuration of
RAID sets. A RAID set can be flagged as auto-config-urable, in which case it will
be configured automatically during the ker-nel boot process. RAID filesystems which
are automatically configured are also eligible to be the root filesystem. There is
currently only limited support (alpha and pmax architectures) for booting a kernel di-
rectly from a RAID 1 set, and no support for booting from any other RAID sets. To
use a RAID set as the root filesystem, a kernel is usually ob-tained from a small non-
RAID partition, after which any auto-configuring RAID set can be used for the root
filesystem.

13.1.3 Hot Spares

The driver supports ‘hot spares’, disks which are on-line, but are not actively used in
an existing filesystem. Should a disk fail, the driveris capable of reconstructing the
failed disk onto a hot spare or back on-to a replacement drive. If the components
are hot swapable, the failed disk can then be removed, a new disk put in its place,
and a copyback op-eration performed. The copyback operation, as its name indicates,
will copy the reconstructed data from the hot spare to the previously failed (and now
replaced) disk. Hot spares can also be hot-added.

13.1.4 Hierarchical Organization

If a component cannot be detected when the RAID device is configured, that
component will be simply marked as 'failed'. The user-land utility for doing all raid
configuration and other opera-tions is raidctl command. Most importantly, raidctl
command must be used with the -i option to initialize all RAID sets. In particular,
this initialization

13.1.

RAIDFRAME 281

includes re-building the parity data. This rebuilding of parity data is also required
when either a) a new RAID device is brought up for the first time or b) after an
unclean shutdown of a RAID device. By using the -P option to raidctl command,
and performing this on-demand recomputation of all parity before doing a fsck
command or a newfs command, filesystem integrity and parity integrity can be
ensured. It bears repeating again that parity recomputation is required before any
filesystems are created or used on the RAID device. If the parity is not correct, then
missing data cannot be correctly recovered.

RAID levels may be combined in a hierarchical fashion. For example, a RAID 0
device can be constructed out of a number of RAID 5 devices (which, in turn, may
be constructed out of the physical disks, or of other RAID devices).

13.1.5 Kernel Configuration

It is important that drives be hard-coded at their respective addresses (i.e. not left free-
floating, where a drive with SCSI ID of 4 can end upas /dev/sdOc) for well-
behaved functioning of the RAID device. This istrue for all types of drives, including
IDE, HP-IB, etc. For normal SCSIdrives, for example, the following can be used to
fix the device address-es:

sd0 at scsibusO target O lun 7 \# SCSI disk drives
sdl at scsibusO target 1 lun ? \# SCSI disk drives
sd2 at scsibusO target 2 lun 7 \# SCSI disk drives
sd3 at scsibusO target 3 lun ? \# SCSI disk drives
sd4 at scsibusO target 4 lun 7 \# SCSI disk drives
sdb at scsibusO target 5 lun 7 \# SCSI disk drives
sd6é at scsibusO target 6 lun ? \# SCSI disk drives

The rationale for fixing the device addresses is as follows: Consider a system with
three SCSI drives at SCSIID’s 4, 5, and 6, and which map to components /dev/
sdOe, /dev/sdle, and /dev/sd2e of a RAID 5 set. If the drive with SCSI ID 5
fails, and the system reboots, the old /dev/sd2e will show up as /dev/sdle. The
RAID driver is able to detect that component positions have changed, and will not
allow normal configuration. If the device addresses are hard coded, however, the
RAID driver would detect that the middle component is unavailable, and bring the
RAID 5 set up in degraded mode. Note that the auto-detection and auto-configuration
code does not care about where the components live. The auto-configuration code
will correctly configure a device even after any number of the components have been
rearranged.

The first step to using the raid driver is to ensure that it is suitably configured in the
kernel. This is done by adding a line similar to:

pseudo-device raid 4 \# RAIDframe disk device
to the kernel configuration file. The ‘count’ argument (‘4’, in this case), specifies

the number of RAIDframe drivers to configure. To turn on component auto-detection
and auto-configuration of RAID sets, simply add:

282

CHAPTER 13. LOGICAL VOLUME MANAGER

options RAID_AUTOCONFIG
to the kernel configuration file.

All component partitions must be of the type FS_BSDFFS (e.g. 4.2BSD) or FS_RAID.
The use of the latter is strongly encouraged, and is required if auto-configuration of the
RAID set is desired. Since RAIDframe leaves room for disklabels, RAID components
can be simply raw disks, or partitions which use an entire disk.

It is highly recommended that the steps to reconstruct, copyback, and re-compute parity
are well understood by the system admin-istrators before a component failure. Doing

the wrong thing when acomponent fails may result in data loss.

Additional internal consistency checking can be enabled by specifying:

options RAID_DIAGNQOSTIC

These assertions are disabled by default in order to improve performance.

13.2 VERITAS Volume Manager

This section describes what VERITAS Volume Manager is, how it works, how you
can communicate with it through the user interfaces, and Volume Manager concepts.

13.2.1 Introduction

Volume Manager provides easy-to-use online disk storage management for com-
puting environments. Traditional disk storage management often requires that
machines be taken off-line at a major inconvenience to users. In the distributed
client/server environment, databases and other resources must maintain high avail-
ability, be easy to access, and be Volume Manager provides the tools to improve
performance and ensure data availability and integrity. Volume Manager also dy-
namically configures disk storage while the system is active.

13.2.2 Volume Manager Overview

The Volume Manager uses objects to do storage management. The two types of
objects used by Volume Manager are physical objects and wvirtual objects.

physical objects Volume Manager uses two physical objects: physical disks and
partitions. Partitions are created on the physical disks

virtual objects Volume Manager creates virtual objects, called volumes. Each
volume records and retrieves data from one or more physical disks. Volumes
are accessed by a file system, a database, or other applications in the same
way that physical disks are accessed. Volumes are also composed of other
virtual objects that are used to change the volume configuration. Volumes
and their virtual components are called virtual objects.

13.2. VERITAS VOLUME MANAGER 283

13.2.3 Physical Objects

A physical disk is the basic storage device (media) where the data is ultimately
stored. You can access the data on a physical disk by using a device name (devname)
to locate the disk. The physical disk device name varies with the computer system
you use. Not all parameters are used on all systems. Typical device names can
include: c#t#d#, where:

c\# is the controller
t\# is the target ID
d\# is the disk number

On some computer systems, a physical disk can be divided into one or more
partitions. The partition number, or s#, is added at the end of the device name.
Note that a partition can be an entire physical disk.

13.2.4 Volumes and Virtual Objects

Volume Manager creates virtual objects and makes logical connections between
the objects. The wvirtual objects are then used by Volume Manager to do storage
management tasks.

A wvolume is a virtual disk device that appears to applications, databases, and
file systems as a physical disk. However, a volume does not have the limitations of a
physical disk. When you use Volume Manager, applications access volumes created
on Volume Manager disks (VM Disks) rather than physical disks.

Volume Manager Disks

When you place a physical disk under Volume Manager control, a Volume Manager
disk (or VM Disk) is assigned to the physical disk. A VM Disk is under Volume
Manager control and is usually in a disk group. Each VM disk corresponds to at
least one physical disk. Volume Manager allocates storage from a contiguous area
of Volume Manager disk space.

A VM disk typically includes a public region (allocated storage) and a private
region where Volume Manager internal configuration information is stored.

Each VM Disk has a unique disk media name (a virtual disk name). You can
supply the disk name or allow Volume Manager to assign a default name that
typically takes the form disk##.

Disk Groups

A disk group is a collection of VM disks that share a common configuration. A
disk group configuration is a set of records with detailed information about related
Volume Manager objects, their attributes, and their connections. The default disk
group is rootdg (the root disk group).

You can create additional disk groups as necessary. Disk groups allow the ad-
ministrator to group disks into logical collections. A disk group and its components
can be moved as a unit from one host machine to another.

Volumes are created within a disk group. A given volume must be configured
from disks in the same disk group.

Subdisks

A subdisk is a set of contiguous disk blocks. A block is a unit of space on the disk.
Volume Manager allocates disk space using subdisks. A VM disk can be divided

284 CHAPTER 13. LOGICAL VOLUME MANAGER

into one or more subdisks. Each subdisk represents a specific portion of a VM disk,
which is mapped to a specific region of a physical disk.

The default name for a VM disk is disk## (such as disk01) and the default
name for a subdisk is disk##-##.

A VM disk can contain multiple subdisks, but subdisks cannot overlap or share
the same portions of a VM disk.

Any VM disk space that is not part of a subdisk is free space. You can use free
space to create new subdisks.

Volume Manager release 3.0 or higher supports the concept of layered volumes
in which subdisk objects can contain volumes. For more information, see ” Layered
Volumes”.

Plexes

The Volume Manager uses subdisks to build virtual objects called plexes. A plex
consists of one or more subdisks located on one or more physical disks.
You can organize data on the subdisks to form a plex by using these methods:

e concatenation
e striping (RAID-0)
e striping with parity (RAID-5)

e mirroring (RAID-1)

Volumes

A volume is a virtual disk device that appears to applications, databases, and file
systems like a physical disk device, but does not have the physical limitations of
a physical disk device. A volume consists of one or more plexes, each holding a
copy of the selected data in the volume. Due to its virtual nature, a volume is not
restricted to a particular disk or a specific area of a disk. The configuration of a
volume can be changed by using the Volume Manager user interfaces. Configuration
changes can be done without causing disruption to applications or file systems that
are using the volume. For example, a volume can be mirrored on separate disks or
moved to use different disk storage.

The Volume Manager uses the default naming conventions of vol## for volumes
and vol##-## for plexes in a volume. Administrators must select meaningful
names for their volumes.

A volume can consist of up to 32 plexes, each of which contains one or more
subdisks. A volume must have at least one associated plex that has a complete
set of the data in the volume with at least one associated subdisk. Note that all
subdisks within a volume must belong to the same disk group.

Appendix

A. References to NetBSD Kernel Sources

src/syssrc/sys

ultral: {205}
Cvs
Make.tags.inc
Makefile
cnmagic.c
core_elf32.c
core_elf64.c
core_netbsd.c
exec_aout.c
exec_conf.c
exec_ecoff.c
exec_elf32.c
exec_elf64.c

/kern

/ffs (without softdep)
J1fs .
Jext2fs
/mfs
/msdosfs
/ntfs
/Jarch

1s kern
kern_event.c
kern_exec.c
kern_exit.c
kern_fork.c
kern_kthread.c
kern_ktrace.c
kern_lkm.c
kern_lock.c
kern_malloc.c
kern_malloc_debug.c
kern_ntptime.c
kern_physio.c

exec_elf_common.c kern_proc.c

exec_macho.c
exec_script.c
exec_subr.c

kern_prot.c
kern_ras.c
kern_resource.c

285

..... 5,358
..... 1,284,122
..... 54,785
..... 24,905
..... 56,506
..... 47,558
..... 38,958
..... 938,890
..... 23,235

makesyscalls.sh
subr_autoconf.c
subr_devsw.c
subr_disk.c
subr_extent.c
subr_log.c
subr_pool.c
subr_prf.c
subr_prof.c
subr_prop.c
subr_userconf.c
subr_xxx.c
sys_generic.c
sys_pipe.c
sys_pmc.c
Sys_process.c

lines
lines <<<<<
lines
lines
lines <<<<<
lines
lines <<<<K
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines

tty_conf.c
tty_pty.c
tty_subr.c
tty_tb.c
tty_tty.c
uipc_domain.c
uipc_mbuf.c
uipc_mbuf2.c
uipc_proto.c
uipc_socket.c
uipc_socket2.c
uipc_syscalls.c
uipc_usrreq.c
vis_bio.c
vis_cache.c
vis_getcwd.c

286

genassym.awk
genassym.sh
genlintstub.awk
init_main.c
init_sysent.c
kern_acct.c
kern_allocsys.c
kern_clock.c
kern_descrip.c

CHAPTER 13.

kern_sig.c
kern_subr.c
kern_synch.c
kern_sysctl.c
kern_systrace.c
kern_time.c
kern_verifiedexec.c
kern_xxx.c
kgdb_stub.c

LOGICAL VOLUME MANAGER

sys_socket.c

syscalls.
syscalls.
syscalls.
sysv_ipc.
sysv_msg.
sysv_sem.
sysv_shm.
tty.c

[¢]

conf
master

C

C
C
C

vis_init.c
vis_lockf.c
vis_lookup.c
vis_subr.c
vis_syscalls.c
vis_vnops.c
vnode_if.c
vnode_if.sh
vnode_if.src

Bibliography

[1] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S. Quar-
terman, The design and implementation of the 4.4BSD Operating System, pp.
193-196, Addision Wesley, 1996.

[2] Maurice J. Bach, Design of the Unix Operating System, pp. 46-56, Prentice
Hall, 1986.

[3] Chales D. Cranor, “The Design and Implementation of the UVM Virtual Mem-ory
System”, Ph.D. Dissertation, Department of Computer Science,
Washington University, 1998.

[4] Uresh Vahalia, UNIX internals: the new frontiers, Prentice Hall, 1996.

[5] Chuck Silvers, UBC: An Efficient Unified I/O and Memory Caching Subsystem for
NetBSD, i n Proceedings of USENIX Annual Technical Conference, June 2000, pp.
285-290.

287

