DRAFT

pr

NU&-06-0030-001G of October 21, 1996

NU64 PROGRAMMING MANUAL DRAFT NINTENDO

D.C.N. NU§-08-0030-00t1 REV G

proprietary informatidh of Ninf& _
is also protected under the copyright laws

ign countries.

permission ftig fronT Nintendo.

© 1995, 1996 Nintendo

Contents

List of Figures xvii

List of Tables xxi

PARTI Getting Started

1. Hardware and Software Installati otes 27

Hardware

Debugging CFU Faults 37

NU6-06-0030-001G of October 21, 1996

Contents.

PARTII Ultra 64 System Overview

3. Hardware Architecture 41

Execution Overview 42
RCP: Reality CoProcessor
RSP: Reality Signal Processor;
RDP: Reality Display Processor
R4300CPU 46

Memory [ssues 47
Clock Speeds and Bu A
Development Hardware 48

L

4, Runtime Software Architecture 51
Resource Agé Management 52

Scheduled Threads 54

VI Manager 57

Memory Management 58

No Default Dynamic Memory Allocation 58
: egion Library 58

emory Buffer Placement 58
Memory Alignment 58
RCP Access and Management 60
Graphics Interface 61
Graphics Binary Interface 61
GBI Geometry and Attribute Hierarchy 61
GBI Feature Set 62
RSP Geometry Micracode 63

Contents

NU6-06-0030-001G of October 21, 1996

Audio Interface 64
RCP Task Management 65
The “Simple” Example 65

GameShop Debugger 67
WorkShop Debugger Heri:
" Debugger Components

Compile Time Overview 69

Database Modeling 7
NinGen 70
Alias 71
Other Modeling Tools 71

ling Tools 71

ace Database Conversion 72

ROM Image Packer
Headers and Libraries
ost Side Functionality 79

78

fii

Contents

PART I Ultra 64 Operating System

6. Operating System Overview 83
Overview 83
Threads 84
Messages 84
Events 85
Memory Management 85
Input and Output &
Timers 87
Controller Pack File $ystemn 8
Debugging Support 87
Boot Proced 3 87

Event and Interrupt Functions 96
Non-Maskable Interrupts and PRENMI 96
Internal OS Functions 98

Contents

8. Input/Output Functionality 101
Overview 101
Design Approach 103
Synchronous [/O vs. As
Mutual Exclusion 105
- I/O Components 105
System Exception Handler

Device Manager 406

Device-Dependen

9. Basic Memory Management
Introduction 113

Usmg Multxple Waves 124
Using the Region Allocation Routines 125
Managing the Translation Lookaside Buffer 126

NU6-06-0030-001G of October 21, 1996 v

Contents

PARTIV Ultra 64 Graphics

11. Graphics Microcode 131
Microcode Functionality 132
gspFast3D 132
gspF3DNolN 132
gspLine3D 132
gspTurbo3D 132
gspSprite2D 133
gspSuper3D 133

12.

142

Insert a Matrix 145
Pop a Matrix 145
erspective Normalization 145

ote on Coordinate Systems and Big Numbers 146
A Few Words About Matrix Precision 147

Nértex State 149

Texture State 150

Clipping and Culling 152

vi

Contents

Vertex Lighting State 156
RSP Microcode 156
Normali Vector Normalizati
Ambient and Directional
Specular Highlights 16
Reflection Mapping 165
Vertex Fog State 169
Primitives 171
Controlling the RDP

13. RDPF Programming 175
RDP Pipeline Blocks 176
One-Cytleper-Pixel Mode 177

ixel Mode 178

Copy .

Cycle Type 181
ynchronization 181

Sci
TX: Texture Engine 186
Texture Tiles 186
Multiple Tile Textures 187
Texture Image Types and Format 188
Texture Loading 188
Color-Indexed Textures 190
Texture-Sampling Modes 191
Synchronization 192
TF: Texture Filter 193

Filter Types 193

Color Space Conversion 194

NU6-06-0030-001G of October 21, 1996

vii

Contents

CC: Color Combiner 195
Color and Alpha Combiner Inputs Sources
CC Internal Color Registers 197
Ore-Cycle Mode 198
Two-Cycle Mode 200
Custom Modes 200
Chroma Key 201

BL: Blender 203
Surface Types 203
Antialiasing Modes 204

BL Internal Color Regfsters 205
Alpha Compare 205

14.

Tile Related Commands 216
Load Commands 216

.Sync Commands 216

ode Commands 216

ample Display List 218

ture Image Space 219

viii

Contents

Tile Attributes 221
Format 221
Size 221
Line 222
Tmem Address 222
Palette 222
Mirror Enable 5,T 222
Mask 5, T 223
Shift‘S;T 223
SLTL 224
SH,TH 224

Texel Formatting 247
Texture Loading 248
xamples 255
strictions 259
Texture Types and Modes 259
~Alignment 259
Tiles 260
Coordinate Range 260
Applications 261
Multiple Tile Effects 261
Appendix A: LoadBlock Line Limits 264

NU6-06-0030-001G of October 21, 1996 ix

Contents

15.

16.

Texture Rectangles (Hardware Sprites) 269
Sampling Overview 271
Simple Texture Effects 279
Texture Types 288

Multi-Tile Effects 292

Tiling Large Images 2597
Color Index Frame Buffer 298
Z-Buffering Texture Rectangles 299

Antialiasing and Blendin;
Antialiasing 302
Coverage Unit 306

320

ZImage Format 322
Z Accuracy 325

eo Filter 326

Contents

Blender Modes and Assumptions 327
Opagque Surface Antialiased Z-Buffer Algonthm SURF 327
Transparent Surfaces, XLU
Transparent Lines, XLU_

Decal Surfaces, OPA_DECAE;
Decal Lines, DEC_ LINE 334

lnterpenetratlon,
Particle System M
Blender Modes T .
Creating New Blender Modes™

Visualiz; overage 346

17. Sprites .
 Program Intgrface (API) 351

354
ap Structure 354
Structure 354

Tricks and Techniques 358
Sparse Sprifes 358
Early-Ending Sprites 358
Variable Size Bitmaps 358
Explosions 358
Bitmap Re-use 358
Sprite Re-use 359
Examples 360
Backgrounds 360
Text (Fonts) 360
Simple Game 360

NU6-06-0030-001G of October 21, 1996 xi

Contents

18. Sprite Microcode 361
Sprite Microcode Functionality 362
Sprite Microcode API 363

PART YV Ultra 64 Audio

19. The Audio Library 369
Generating Audio Output 372
73

Sampled Sound Playback

Representing Sound
Playing Sounds 373%
Sequenced Sound Playback 376
Representing.the Sequence 376

382

ing and Executing Command Lists 383
Synthesis Driver Sound Data Callbacks 383

' 384
Allocating’and Controlling Voices 384
Effects and Effect Busses 385

Creating Your Own Effects 386

arameter Description 388

ummary of Driver Functions 393

titing Your Own Player 394
Initializing the Player 394
Implementing a Voice Handler 395

Implementing Vibrato and Tremolo 397

Xii

Contents

20. Audio Tools 401

The Instrument Comptler: ic 402
Invokingic 402

Writing ic Source Files 4

tabledesign 412
vadpcm_enc 413

vadpem_dec 414
The MIDI File Tools:

midicvt 416

midiprint 416

b, midiprint & midicomp 416

e Indy 42
The sbc Tool 423
2 she 423 *

File Formats 425
iles 426

ankFile 426

< 427
Allnstrument 428
ALSound 429
ALEnvelope 430
ALKeyMap 431

© ALWavetabie 432
"ADPCM AIFC Format 435
Sequence Banks 438
Compressed Midi File Format 439

NU6-06-0030-001G of October 21, 1996 xiii

Contents

22, Nintendo 64 Audio Memory Usage 441
Overview of audio RDRAM usage. 442
Audio Buffers 442
Sample Rate, Frame Rate, and /
Optimizing Buffer Sizes. 444
Audio DMA Buffers 444
Command List Size 446
Output Buffer Size 446
Audio Thread Stacksi

Synthesizer Update Biiffers Sequencer Event Buffers 446

The Audio Heap 447
The Sequence Buffer 447

23.

Typical Developme:
ammon Values 452

Limits of ROM 454
Creating Samples 455

Xiv

Contents

Playback Parameters and .inst Files 457
Setting Sample Farameters in the .inst Fil 7

Differences Between Sound Player and Sequence
Files 457

Envelopes 458

Keymaps and Velocity Zor
* Tuning for Samples Recorded at re Playback Rate 459
Recorded at i ates 459

er Use of .inst

Tuning for Samp}
Sounds 461
Instruments 461
Banks 462

es. 463
ther Into Makefiles 466
endo 64 467

24, 469

sommand List Generation 470
Command List Processing 470

Adding Clients to the Scheduler: 0sScAddClient{) 472

Creating Scheduler Tasks: The O5ScTask Structure 473
474

Sending Tasks to the Scheduler: 0s5cGetTaskQ() 476

NU6-06-0030-001G of October 21, 1996 XV

Contents

PART VI

25,

PART VII

26.

PART VIII

xvi

Ultra 64 Development Tools

GameShop Debugger 479
Hardware Environment 479

Software Environment 479
Rmon Theory of Operation
Programming Model 482
Using the Debugger 484

Ultra 64 Performance

Performance Tuning Guide 49

496

Geometry Tifing (Turbo Microcode) 498

Raster Tuning (Fillrate) 499

Disable Atomic Primitives 499
artial Sorting for Z-Buffer 499
o Z-Buffer 499

No Antialiasing 501

Reduced Aliasing 501

CPU Tuning 502

Parallel Execution of the CPU and the RCP 502
Sorting 502

Index

List of Figures

Figure 1-1
Figure 2-1
Figure 2-2
Figure 3-1
Figure 3-2 Block Diagram of g RCP 44
Development Systerh 49

Figure 3-3

Figure 4-1;
Figure 4~
Figure 4~
Figure 4-4

Debtigpger Components 67
Nintendo 64 System Kernel 83

Logical View of RCP Internal Major Devices and Interface
Modules 103

Interactions Between I/O Components Servicing Simple
I/O Request 106

Interaction Between I/O Components and a Shared Device
108

Nintendo 64 Graphics Pipeline 135
Perspective Normalization Calculation 146
I One-Cycle Mode RDP Pipeline Configuration 177
“Figure 13-2 Two Cycle Mode RDP Pipeline configuration 178
Figure 13-3 RS State and Input/QOutput 184
Figure 13-4 Scissor/Clipping/Screen Rectangles 185
Figure 13-5 TX State and Input/Qutput 186
Figure 13-6 Tile Descriptors and TMEM 187
Figure 13-7 CI TMEM Partition 190
Figure 13-8 Texture Filter State and Input/Qutput 193

NU6-06-0030-001G of October 21, 1996 xvii

xviii

Figure 13-3
Figure 13-10
Figure 13-11
Figure 13-12
Figure 13-13
Figure 13-14
Figure 13-15
Figure 13-16
Figure 13-17
Figure 14-1
Figure 14-2
Figure 14-3
Figure 14-4
Figure 14-5
Figure 14-6
Figure 14-7

Figure 14-1
Figure 14-14

Figure 14-15

Figure 14-19
Figure 14-20
Figure 14-21
Figure 14-22
Figure 14-23

RGB Color Combiner Input Se
Alpha Combiner Input Selection 197

Sharp polation 238
Physiéal Tmem Diagram 239

Tmem Loading = 240 -

Four-Bit Texel Layout in Tmem 241

Eight-Bit Texel Layout in Tmem 241

Sixteen-Bit Texel Layout in Tmem 242

YUV Texel Layout in Tmem 243

Thirty-Two Bit RGBA Texel Layout in Tmem 243

Tmem Organization for Eight-Bit Color Index Textures
245

Tmem Organization for Four-Bit CI textures 246
Texel Formats in DRAM 249

Example of LoadTile Command Parameters 250
Wrapping a Large Texture Using Two Tiles 251
Wrapping a Large Texture Using One Tile 252
Example of LoadBlock Command Parameters 253
Wrapping, Mirroring, and Clamping 256

NU6-06-0030-001G of October 21, 1996

Figure 14-24
Figure 14-25
Figure 15-1
Figure 15-2
Figure 15-3
Figure 15-4
Figure 15-5
Figure 15-6
Figure 15-7
Figure 15-8
Figure 15-9

Figure 15-10

Figure 15
Figure 1
Figure 15-13
Figure 15-14

faure 15-15

ure 16-6
ure 16-7
igure 16-8
Figure 16-9
Figure 16-10
Figure 16-11
Figure 16-12
Figure 16-13
Figure 16-14

Wrapping Within a Textu
Example of Texture Decals 258
Texture Rectangl

Texture:Billboard 287
Shrinking a Sprite 294
Texture Decals 296
Modulation 296
Edge With and Without Anfialiasing 302
Unweighted Area Sampling 303
Antialiasing Data Flow 304
Coverage Calculation 306
Complementary Edges 307
Z-Buffer Planes 308
Subpixel Correction of 2 309)
Alpha Compare in Copy Mode for 8-bit Framebuffer 316
Alpha Compare in One/Two-Cycle Mode 317
Hidden Bits 319
Color Image Formats 320
Z Encoding 322
Z Memory Format 324
Z Worst-Case Error 325

Xix

XX

Figure 19-1
Figure 19-2
Figure 19-3
Figure 19-4
Figure 26-1
Figure 26-2
Figure 26-3
Figure 26-4

Audio Software Architecture
Effects Primitives 387
A simple echo effect 390

Quadtrees 493 %
Portals Connectivity Visib

NU6-06-0030-001G of October 21, 1996

List of Tables

Table 4-1 GBI Feature Set 62
Table 7-1 94

Table 7-2Events Defin
Table 9-1 32 Bit Keme

the Nintendo 64 System 95

Table 12-2 gsSPBranchList(Gfx *dl) 142
DisplayList(void) 142

gsSPLine3D(int v0, int v1, int flag) 171

int Irx, unsigned int lIry} 172

int t, short int dsdx, short int dtdy) 172

int t, short int dtdx, shortint dsdy) 173
Table 13-1Cycle Types 175
Table 13-2Basic Operations of RDP Subblocks 176

Table 13-3RDP Pipeline Block Functionality in One-Cycle Mode 177
Table 13-4RDP Pipeline Block Functionality for Two-Cycle Mode 178

Table 12-14 gsSPTextureRectangle(unsigned int ulx, unsigned int uly,
unsigned int lrx, unsigned int Iry, int tile, short int s, short

Table 12-13 gsDPFillRectangle(unsigned int ulx, unsigned int uly, unsigned

“Table 12-15 gsSPTextureRectangleFlip(unsigned int ulx, unsigned int uly,
unsigned int Irx, unsigned int Iry, int tile, short int s, short

xXi

Xxii

Table 13-5gsDISetCycleType(type) 181
Table 13-6gsDPPipeSync{) 181
Table 13-7gsDPFullSync() 182
Table 13-8gsDPPipelineMode(mod,
Table 13-9gsDPSetScissor{ulx, ul
Table 13-10Texture Format and SiZ

Table 13-11gsDPLoadTextureTile(tiﬁig, dth, height, uls, ult, Irs,
Irt, pal, cms, cmt, masks, : shlfts shiftt} 189

Table 13-12gsDPLoadTex ile_4b(pkt, tnng, fmt, width, height, uls, ult,
Irs, Irt, p s gmt, masks, maskt, shifts, shiftt) 189

Table 13-13gsLoad TLUTY{ c;u.nt tm taddr, dramaddr) 191
Table 13- 14gsDPSetTexturePersp(mode 191
Table 13-15g tureDetail(mode) 192
Table 13-16g; tL LOD(mode) 192

. mode2) 198

Table 13-23T %’—Cycle Mode Using gsDPSetCombineMode(model, mode2)
200

ble 13-240ne-Cycle Mode gsDFSetRenderMode(model, mode2) 204
3-25Two-Cycle Mode gsDPSetRenderMode(model, mode2) 205
3-26gsDISetFogColor(r, g, b, a) gsDPSetBlendColor(r, g, b, a} 205
ble 13-27gsDISetAlphaCompare{mode) 206

Table 13-28gsSetFillColor(data32bits) NEED READABLE TITLE FOR THIS!
211

Table 14-1 Tile Format Encodings 221

Table 14-2 221

Table 14-3 Shift Encoding 223

Table 14-4 Tile Descriptor Index Generation with LOD Disabled 228

Table 14-5 Example of Tile Address and LO T
Table 14-6 Generation of Tile Descriptor Index W1tfl L
Magnifying 231
Table 14-7 Generation of Tile De Index With LOD Enabled and Not
Magnifying
Table 14-8 Maximum tile sizes

Table 16-1 T and M M
Table 16-2 A Mux Inp
Table 16-3 B Mux Inputs 311
Table 16-4 Fog Mux Controls 31

379

Command Line Options 403

Table 20-2tabledesign Command Line Options 413
Tabie 20-3vadpcm_enc Command Line Options 414
ble 20-4vadpcm_dec Command Line Options 415
ible 20-5midicvt Command Line Options 416
Table 20-6midiprint Command Line Options 417
Table 20-7midicomp Command Line Options 417
Table 21-1ALBankFile Structure 427

Table 21-2ALBank Structure 427

Table 21-3ALInstrument Structure 4283

Table 21-4ALSound STructure 429

Tabie 21-5ALEnvelope Structure 430

NU6-06-0030-001G of October 21, 1996 xxiii

xxiv

Table 21-6ALKeyMap Structure 431
Table 21-7ALWavetable Structure 433
Table 21-8ALADPCMWavelnfo structure 433
Table 21-9ALRawWavelnfo structu

Table 21-10ALADPCMLoop stru

Table 21-12ALRawLoop structure 4
Table 22-1 DMA Buffer Length. 445
Table 23-1 Tuning t . 460
Table 24-1055cTask stru

NINTENDO DRAFT GETTING STARTED

PART

Getting Started

NU6-06-0030-001G of October 21, 1996

DRAFT

NINTENDO 64 PROGRAMMING MANUAL

NINTENDC

DRAFT HARDWARE AND SOFTWARE INSTALLATION NOTES

NU6-06-0030-001G of October 21, 1996

Chapter 1

Hardware and Software Instéllati Notes

This chapter describes how to ins e Nintendo 64 development board

into a Silicon Graphics Indy workstation. It also describes how to install the
Nintendo & lopment software and where the software components are.
located

te installation guide. You must be familiar with
¢ installation procedures and GIO board
kstation. -

27

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Hardware Installation

28

The Nintendo 64 Development Board is installed in the Isi orkstation as
described in the Indy Workstation Oumeris.Guide (see the chapter “Installing
the GIO Option Board”). The follo# tructions supplement that

chapter and serve as an errata. F
Nintendo 64 Development board i

Homn.

standoffs on the base boatg. When you install e(boa:d, be careful not to
damage any jumper wire ay be present on the board.

The Ninterndo 64 Development bo ot supported by the hinv
command. Once the board and software have been successfully installed,
the boot monit ill echo “Ué4 Device found” during the power-up
procedure.
information,
number, cloi

Figure 1-1 Nintendo 64 GIO,

game controller

ports AV out

connectors

NINTENDC

DRAFT HARDWARE AND SOFTWARE INSTALLATION NOTES

NU6-06-0030-001G of October 21, 1996

The AV out port connector type is the same
Nintendo Entertainment System. The cable that¢
external television can be obtained from most stores §
device. You can buy different cab
other formats that are standar

Note that the AV out can optid:
and audio inputs, allowing you
Indy workstation. The workstation act
provided on separate SNES cables.

the gameboard on the local
osite or S-video input as

for six f)orts, though only connectorsi through 4 are active. The connectors
are named 1 through 6, and are numbered from left to right (when you view
, the back of the workstation). Plugging a controller into

29

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Software Installation

‘$oftware
kstation must also contain the

The Nintendo 64 development software image is not theii
required for development. Your Ind
following 5.3 products:

s dev

o ¢ _dev

* compiler_dev
¢ gl dev

* (aseVision, version 2.

s WorkShop, version 2.4

READMES and Release Notes

After installation of Nintendo 64 development software, You will find a

collection of sample demonstration applications in /usr/src/PR. A

README_DEMOS file which describes each applications key features. You

wilkilso find the release notes in /usr/sre/PR /relnotes. The release notes

pnerizes the differences from the last release and various bugs,
karounds and caveats of the system.

Other Sources

In /usr/sre/PR/assets, you will find the source files for building the general
MIDI bank. We created an initial complete general MIDI bank for testing
purposes. For a game, we assume that you will gut the bank down to

30

NINTENDO

DRAFT HARDWARE AND SOFTWARE INSTALLATION NOTES

NU6-06-0030-001G of October 21, 1996

including enly those instrument and sound
directory gives you a starting point to do that.

In /ust/src/PR/libultra, you w
system kbrary code (libultra.a);

currently.

Executables

The first piece of software you will néed to use is gload. This program
i@ ROM image onto the Nintendo 64 development board and
n after, you will need to use dbgif and gvd to debug your

are also conversion tools that help in converting data into Nintendo 64
.For example, fli2¢ convertss a MultiGen database into a C data
structuteithat can be compiled into binary form. Most of these tools reside in
/usr/sbin But some are suppiled in source form in /usr/src/PR/conv.
Keep in mind that these are templates for your own custom database
conversion tools. We can not possibly address the need of all developers.

31

NINTENDO 64 PROGRAMMING MANUAL

DRAFT

32

NINTENDO DRAFT TROUBLESHOOTING SOFTWARE BRINGUP

Chapter 2

Troubleshooting Software Bringup

This chapter describes common problems that you might encounter when
up your Nintendo 64 software. The potential problem

Game locks up immediately,

A common error is to start the rmon thread at the same priority as the
pawm.ng thread. Rmon then immediately goes to sleep and locks up the
stem. The recommended way for starting the systemn is to create an idle
ihiread in the boot procedure at a high priority. From the idle thread start all
‘the other application threads, then lower the priority to zero and loop
forever to become the idle thread. Note that the rmon thread is not needed
for printfs. See the osSyncPrintf (3P} man page.

Game encounters a CPU exception.

During the development of your game, you may (intentionally or
unintentionally) encounter various CPU exceptions (or faults) such as TLB

NU6-06-0030-001G of October 21, 1996 323

NINTENDO 64 PROGRAMMING MANUAL DRAFT

34

miss, address error, or divide-by-zero. Current!
saves the context of the faulted thread, stops the fai
execution, sends a message to any thread registered for th
OS_EVENT_FAULT event, and disp e nextrunnable thread from the

the exception handler,
d the faulted thread
‘would receive the
een. If gvd is running

context to the host. If gload is nmmng
faulted thread context and print its contet
on the host, it would receivi
fault occurred. If rmonis e

a strange behavior (i.e. hart game since the faulted thread can no
longer run.)

1 OS functions to find the faulted thread and handle
re _ 0sGetCurrFaultedThread (3P) and
)2 Please refer to their man pages for more

pipeline. This problem is easy to overlook, as there are no warnings. Make
sure you thoroughly understand how a MIPS family processor performs
ddressing and how KSEGO works (most games run in KSEGO). It allows

addresses use the most significant bits of the address to indicate the
sing modes.

CPU KSEG0-3 Addresses

NINTENDO TROUBLESHOQTING SOFTWARE BRINGUP

Figure 2-2 RSP Addresses

31 24

RSP
segment

For example, if you have the follt code, the RSP/RDF pipeline will

receive garbage:

gSPVertex
gSPDisplayList

ep. in mind that CPU addresses and RSP/RDP addresses uses different
dressing schemes and are not interchangeable.

One useful way to debug possible display list problems is to link with the
GBI dumping routines in libgu, and print out the display list. This will
immediately show bad pointers and garbage matrices. See the man page for
guParseGbiDL (3P) and guParseRdpDL (3P).

NU6-06-0030-001G of October 21, 1996 35

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Ending a Display List

Make sure that your recent gbi display edit has gSPEnd List in each
display list. Without this, the RSP will probably hang. Th T requires a
gDPFullSync at the end of the entigk ilay list sequence to make the DP
interrupt the CPU for notification '

Flaky Video

The beginning of the framgbuffer and z-buffer@ddresses must be 64 byte
aligned.

Audio

data structures between the 4300 and the
t problems, any buffer used by both the 4300
d using the alHeapAlloc() routine. This will

the number 6 buffers needed is largely dependent on the music and sound
effects used, it is not possible to provide guidelines. As music and sound
ffect complexity increases, the number of buffers needed will increase.

Audio Pops and Clicks

_Tofgvoid audio pops and clicks, all samples should start with at least one
i/ ¥alue of zero. Upon receiving a pre-nmi message it is important that the
audlo fade to zero output, or on subsequent bootup, there is a potential for
a pop. If audio does not run at a high enough priority, the audio may not be
generated before the previous buffer has completed. If this occurs there will
be a period where no samples are played. This will usually generate a clear

pop-

36

NINTENDO

DRAFT TROUBLESHOOTING SOFTWARE BRINGUP

NU6-06-0030-001G of QOctober 21, 1996

Integration

DMA Alignment

All DMA transactions in the N
RDRAM. DMA transactions f¢
addresses.

Debugging CPUF

The “gdis” disassemble

werful debugging aide that can help you
turn a cryptic crash dump (i.e the is pri

that is printed in your gload window

[144) 0xB0200050: 27 bd ££f &0 addiu sp,sp.-112
I 1441 0x80200054: af bf 00 1lc sW ra,28(sp}
int i, *pr;

char *ap;

ulz2 *argp:

ul2 argbuf[lél];

/* notice that you can’'t call rmonPrintf(}
until you set

151: * uyp the rmon thread.

152: =/

153:

154: osInitialize{);
[154] 0xB80200058: 0Oc 08 04 c4 jal
osInitialize
[154] 0x8020005¢c: 00 00 00 0O nop

155:

156 argp = (u32 *)RAMROM_APP_WRITE_ADDR;
[15¢] 0x80200060: 3¢ Qe 00 f££f lui t6,0x£Et
[1561 0xB0200064: 35 ce b0 00 ori

t6,£6,0xb000

37

NINTENDG 64 PROGRAMMING MANUAL

DRAFT

[156] 0x80200068: af ae 00 60 :

157: for (i=0; i<sizeof(argbuf
{ 157) 0xB8020006c: af a0 00 6c =
zero, 108 (sp)

6,96 {sp)

argp++) |

158: osPiRawReadIo{{u3] gargbuf{il); /* Assume
no DMA */

158] 0x80200070: £7,108 {(sp)
[1581 0x80200074: a0, 96 (sp)
[158] 0x80200078: 1ddiu £%,sp, 32
[1581 OxB020007c: &) 11 t8.c7,2
[158] 0x80200080 | jal
osPiRawReadlo
[158] 0x80200084 addu al,c8,t8
[1571 0x80200088: 1w £0,108 (sp!}
[157] 0x8020008¢c: 1w t2,96 (sp;
{ 157] Ox80200090: addiu tl,t0.1
[157] ; sltiu at,tl.16
[1571 . addiu £3,t2,4
{ 157] sw £3,96(sp}
[15710 bne
at,zerof
[1571 0=B8020 29 00 6c swW £l,108 (sp)

4159 }

Notice thatithe C source is interleaved with the disassembled code, and that
the PC is givieriin the second column.

When your program crashes, you can look up the error PC listed in the crash
p (itis identified as “epc”) to determine where the program crashed and
dithe corresponding line in the source/disassembly listing.

38

NINTENDO DRAFT ULTRA 64 SYSTEM OVERVIEW

PART

Ultra 64 System Overview

NU6-06-0030-001G of October 21, 1996

NINTENDO 64 PROGRAMMING MANUAL DRAFT

NINTENDO DRAFT HARDWARE ARCHITECTURE

Chapter 3

Hardware Architecture

This chapter describes the hardware drchitecture of the Nintendo 64 game
machine, i in order to help you write software for the machine. Later sections
s5cribe the details you need to know to program each

The Ninterido 64 ists of a number of hardware components that
e graphics and audio for the game. The heart of
system is the Reg .y CoProcessor (RCP). Attached to the RCP are
mory chips, the MIPS R4300 CPU, and some miscellaneous I/O chips.

The RCP is the center of the game; all data must pass through it. It acts as the
controller for the CPU. The RCP runs the graphics and audio

The display portion of the RCP renders into the graphics
framebuffelocated in main memory. The video and audio portions of the
RCP, DMA framebuffer, and audio data from main memory to drive the
video and audio DACs. Figure 3-1, “Nintendo 64 Hardware Block
Diagram,” on page 42 is a block diagram of the Nintendo 64 system.

NU6-06-0030-001G of October 21, 1996 ' 41

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Figure 3-1 Nintendo 64 Hardware Block Diagram

Game Cartridge

Cartridge Vided
Intexf: g — ™ Dac
Reality CoProcessor
(RCDP)
' Audic
DAC
ABUS

Game Controlléés

ecution Overview

The CPU and RCP are both processors that can execute at the same time.
Threads execute on the CPU and fasks execute on the RCP. Accesses o main
memory from threads and tasks also occur in parallel.

The game program runs on the R4300 CPU as a collection of threads, each of
which has its own stack. The operating system is a collection of routines that

42

NINTENDO

DRAFT HARDWARE ARCHITECTURE

NU6-06-0030-001G of October 21, 1996

can be called in a thread. The operating systes
running on the CPU. A thread can access all of phy

sk list, calls an OS5 routine
the RCP running to

executes
the grap

interfaces provide access

main memory for the CPU, RSP, RDP, video
interface, audio inte peripherial devices, and serial game controllers. It

ery important ember that these interfaces may be active at the
time and that the RSP and RDP are running in parallel.

43

NINTENDOQ 64 PROGRAMMING MANUAL DRAFT

Figure 3-2 Block Diagram of the RCP

Audioc ¥ Game Contollers

v
Yideo Cartridge

conaists of a Scalar Unit (SU), a Vector Unit (VU), instruction memory

M)}, and data memory (DMEM). The microcode is fetched from IMEM
and has direct access to DMEM. The RSP can also access main memory using
DMA. All memory references in the RSP are physical. However, the
microcode uses a segment address table to translate segmented addresses
provided in the task lists into physical addresses. The IMEM and DMEM are
both 4 KB. The SU implements a subset of the R4000 instruction set. The VU
has eight 16-bit elements.

NINTENDO

DRAFT DWARE ARCHITECTURE

NU6-06-0030-001G of October 21, 1996

The RDP is the graphics display pipeline that gxecutes an RDP display list
generated by the RSP and CPU. The sists of a Rasterizer (RS), a
Texture Unit (TX), 4 K] texture memory (TMEM), a Texture Filter Unit
{TF}, a Color Combin Blender (BL), and a Memory Interface {MI).

The RS rasterizes triangles and gles. The TX samples textures loaded

in TMEM, The TF filters the texture samples. The CC combines and
mterpolates een two colors. The BL blends the resulti.ng pixels With

The global state registers are used by all stages of the pipeline. There are a
number of sync commands to provide synchronization. For example, a pipe

' The command list for the RDP usually comes directly from the RSP,

However, it is possible to feed the RDP pipeline from a command list that
has been stored in main memory.

See Chapter 13, “RDP Programming,” for more information on the RDP.

45

NINTENDO 64 PROGRAMMING MANUAL DRAFT

46

Video Interface

The video interface reads the data out of the framebuffe ain memory
and generates the composite, S-vide RGB signals. The video interface
also performs the second pass of the algorithm. The video interface
works in either NTSC or PAL mode; and 15- or 24-bit color
pixels, with or without filtering, at'both high'and lew resolutions. The video
interface can also scale up a smaller image to fill the screen. For more
information on how to set one of the 28 videc ¢ and control the special
features, see the man pageifor osViSetMode hapter 8, “Input/Output
Functionality” also containginformation on the video interface.

Audio Interface

The audio interface reads audio data out of main memory and generates the

Serial Interfa

The serial interface connects the RCP with the game controllers through the
PIE chip. To get the current state of the controllers, the application must send
and to query all the game controllers. The data will be available
See Chapter 8, “Input/Output Functionality” for a list of all th

roller functions. -

R4300 CPU

The R4300 CPU is part of the MIPS R4000 family of processors. The R4300
consists of an execution unit with a 64-bit register file for integer and
floating-point operations, a 16 KB instruction cache, an 8 KB writeback data
cache, and a 32-entry TLB for virtual-to-physical address calculation. The

NINTENDO DRAFT HARDWARE ARCHITECTURE

Nintendo 64 game runs in kernel mode with
operations are available in this mode. However,
convention is used to maximize performace.

For more information on the &

“Operating System Overview

Memory Issues

used in parallel by the R4300 CPU, the
hics pipeline, and the other 1/0

The main memory in Ef\ syste,
RSP microcode engine, the RDP

interfaces of the RCP. The software is responsible for defining the memory
map. See Chapter 9, “Basic Memory Management” for more details.

dynamic RSP task lists easily. The RDP hardware uses physical addresses.

The RSP microcode translates the segmented addresses stored in the task list
_into physical addresses. The segment table in the RSP is initialized to all
reros, Every segment initially references memory starting at zero.

Jata Cache

The R4300 CPU has an 8 KB writeback data cache. This means that when the
CPU writes a variable, it may not be written to main memory until later.
Since the RSP reads the task list directly from main memory, the dynarnic
portion of the task list must be flushed from the data cache before the RSP
starts.

NUE-06-0030-001G of October 21, 1996 47

NINTENDO 64 PROGRAMMING MANUAL DRAFT

48

invalidated in the cache before a read into memory occur:
invalidate does not occur, a writebac
has just been transfered into main mny

line tearing. Tearing occurs when a b
cache line. The potential writeback of*
into the I/Q buffer.

Alignment

¢« RDRAM - 250 Mhz (9 bit bytes at 500 M/ sec)
RCP - 62.6 Mhz
- variable, 3000-368000hz on NTSC, 3050-376000 on PAL

WI

SI - really slow Mi{\

- 50 Meg/sec peak 5 Meg/ sec from typical slow ROMs

\\‘

Development Hardware

The development system consists of an Nintendo 64 game card on a GIO
card for the Indy workstation. The ROM cartridge is replaced by 16

NINTENDO

DRAFT RDWARE ARCHITECTURE

NU6-06-0030-001G of October 21, 1988

megabytes of RAM, called the ramrom, tha fale
workstation over the GIO bus and the RCP over the PBU. e workstation
downloads the game software onto the GIO card andhen the Nintendo 64
executes the game. The ramrom; used to pass information by the
debugger. The 4 Megabytes ¢, uses the 9 bit RDRAMSs. The
in memory.

R4300 CPU

Game Carmidgs tMBUS

PRUS VB
Cartridgel ided
Interfage -
Reality CoProcessor
(RCP)
PIF et DAL
SBUS ABUS
Game Controllers
RBUS

Interrupts
and
Control

Connectors for controllers, audio, and video

48

DRAFT

NINTENDO 64 PROGRAMMING MANUAL

50

NINTENDO DRAFT RUNTIME SOFTWARE ARCHITECTURE

Chapter 4

Runtime Software Architecture

This chapter describes the runtime Nintendo 64 software architecture. It is
ief tour of the overall architecture and discusses the basic

s, interrupts, cache coherency, tlbs
O: device library, device manager |

emory: static allocation, region library

: tasks, command lists, yielding

s: graphics interface

Audio: sequencer, audio player, driver, wavetable synthesis
Application: typical application framework
Debugger: debugger support for CPU and RSP

NU6-06-0030-001G of October 21, 1996 51

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Resource Access and Management

52

The Nintendo 64 game machine is made up of a variety of résources. These
resources include the CPU, memo bus bandwidth, IO devices,
the RSP, the RDP, and peripheral frware is designed to
provide raw access to all of the re
translates logical functions and argu
settings.

is left up to the game itself. Resources such
e are too precious to waste by using
at is not tailored to a particular

nt layers provided are the audio

Management of most reso
as processor access and m .
some general management-algoritt
game’s requirement. The only manag
playback and [/O device access.

The audio plavback m ism is fairly consistent from game to game. Only
different. Therefore, a general tool to stream

O devices can be managed to provide

“ontexts for different threads. For example,

audio playbe‘aé s useful. Th
simultaneous multiple acce

NINTENDO

DRAFT RUNTIME SQFTWARE ARCHITECTURE

streaming audio data and paging in graphics
access to the ROM.

Figure 4-1 Application Resources

NU6-06-0030-001G of October 21, 1996

53

NINTENDO 64 PROGRAMMING MANUAL DRAFT

CPU Access

Message Passing Priority Sch ed Threads
To provide access to CPU compu
stmple CPU scheduler to help the garhe
These are the attributes of this schedulin

aphics provides a
age muitiple threads of control.

The currenﬁy’funnmg thread will continue
hes to yield. Preemption does occur if
there is a need to service another, higher-priority thread awakened by
an interrupt event. The interruptsgryice thread must not consume
extensive CPU cycles. In other words, preemption is only caused by
interrupts. B ption can also occur explicitly with a yield, or
implicitlywhiléWaiting to receive a message.

¢ Non-preemptive exect
to run on: the CPU unt

fnple numerical priority determines which

iteads communicate with each other through
sages. One thread writes a message into a queue for another thread

pt messages: An application can associate a message to a
thread with an interrupt.

that when the CPU reads data, the cache may satisfy the read request
inating the exira cycles needed to access main memory. When the CPU
ftes data, the data is written to the cache first and then flushed to main
memory at some point in the future. Therefore, when CPU modifies data for
the RCP’s or IO DMA engine’s consumption via memory, the software must
perform explicit cache flushing. The application can choose to flush the
entire cache or just a particular memory segment. If the cache is not flushed,
the RCF or DMA may get stale data from main memory.

54

NINTENDO

DRAFT RUNTIME SOFTWARE ARCHITECTURE

NU6-06-0030-001G of October 21, 1996

Before the RCP or IO DMA engines produce
internal CPU caches must be explicitly invalidat ;want the CPU
to be examining old stale data that is in the cache. Th idation must
occur before the RCP or DMA engi ace the data in main memory.
Otherwise, there is a chance th sack of data in the cache will clobber
the new data in main memor

o process, the

Since the software is responsible fot ncy, keeping data regions
on cache line boundaries is a good ide cacheline containing
multiple data producegby multiple processors can be difficult to keep
coherent.

No Defauit Memory Management

e Nintendo 64 operating system provides
iBs-passing execution control. The operating system
default memory management model. It does provide a
iide Buffer (TLB) access. The application can use
riety of operations such as virtual contiguous
ection. For example, an application can use TLBs to
ect against stack overflows.

Simple timer facilities are provided, useful for performance profiling,
real-time scheduling, or game timing. See the man page for osGetTime (3P)
for more information. '

The R4300 also has variable translation lookaside buffer (TLB) page size
capability. This can provide additional, useful functionality such as the
“poorman’s two-way set-associative cache,” because the data cache is 8 KB
of direct-mapped memory and TLB pages size can be set to 4 KB. The
application can roll a 4 KB cache window through a contiguous chunk of
memory without wiping out the other 4 KB in cache.

55

NINTENDO 64 PROGRAMMING MANUAL DRAFT

MIPS Coprocesser 0 Access

A set of application programming interfaces (APIs) are als
coprocessor 0 register access, including:CPU cycle accurate timer, cause of
exception, and status. :

I/0O Access and Management

The I/ O subsystem provides functional ke individual [/0
ions pr for logical translation fo

Figure 4-2 1/0 Access and: nt Software Components

video DAC controllers peripherals (ROM)

ndo 64 also provides a peripheral interface (PI) device manager for
multiple threads to access the peripheral device. For example, the audio
thread may want to page in the next set of audio samples, while the graphics
thread needs to page in a future database. The Pl manager is a thread that
waits for commands to be placed in a message queue. At the completion of
the command, a message is sent to the thread that requested the DMA.

56

NINTENDO

DRAFT FTWARE ARCHITECTURE

NU6-06-0030-001G of Octoher 21, 1996

VI Manager

A simple video interface (VI) device manager keeps when vertical
retrace and graphics rendering is: te. It also updates the proper video
modes for the new video field ager can send a message to the
game application on a vertical g can use this to synchronize
rendering the next frame.

57

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Memory Management

No Defauit Dynamic Memory.

The Nintendo 64 software does nofimpos
Nintendo 64 system leaves the memis
application. It assumes that the applicati¢
scheme most suitable for the particular ga:
library does have a heap i that is availab

ever, the Nintendo 64

Region Library

The Nintendo

m does provide a region allocation library that can

the application the capability of using a
eme. However, the game application must
memoery in the region has run out.

and z-buffers into seperate megabytes, prevents the
memory system from constantly having to change the page register. This
technique minimizes page misses.

The DMA engines responsible for shuffling data around in the hardware all
require the 64-bit aligned source address, the destination address, and
lengths. Addresses in ROM do not have this 64 bit alignment restriction.
ROM addresses only need to be 16-bit aligned. The loader from the compiler
suite (see the man page for Id (1)} makes sure that all C-language long
long types are 64-bit aligned.

58

NINTENDO DRAFT RUNTIME SOFTWARE ARCHITECTURE

Using C language, the stack for a thread miistalso.be 64-
Therefore, all stacks should be defined as 1ong*idhgand
calling osCreateThread. See the man page for more detd

ligned.
pe-casted when

NUE-06-0030-001G of October 21, 1996 59

NINTENDO 64 PROGRAMMING MANUAL DRAFT

RCP Access and Management

The CPU has control over access to the RCP. The RSP azid
the RCP can be used individually, o
that specifies what microcode to
task is then run on the RSP. The

portions of
oup. The CPU creates a task list
at command list to execute. The
s to start the task and to
graphics rendering

50 possible to drive the

60

NINTENDO DRAFT RUNTIME SOFTWARE ARCHITECTURE

Graphics Interface

Nintendo 64 uses a display list hierarchy to describe shat'to render. 3D
geometry transformation and ras ion are accelerated by RSP and RDP
dering. The R4300 CPU

P fetches the displaylist

generates the display list In
and renders the graphics.

P g a display list interface called graphics
binary interface (GBI). The CPU assembles the GBI structure in RDRAM for
the RSP/RDP to render. The RSP muist first be downloaded with graphics
i srform geometry transformation. The RDP performs polygon
d RDP state machines are described in more detail in

R4300 RSP RDP
.game processing " 3D geometry 7 polygon

¢ transformation + rasterization +
lighting texturing

Bi Geometry and Attribute Hierarchy

&

The GBI structure describes a hierarchy of geometry and its attributes. This
tree is traversed depth first and the graphics pipeline attributes are
sequentially modified during traversal. Both geometry (RSP) and raster
(RDP) attributes are contained in a GBI structure.

NU6-08-0030-001G of October 21, 1996 61

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Figure 4-4 Graphics Binary Interface (GBI) of an Airplane

xform | fuselage

vertexes | triangles generic

wing

geometry raster vertexes | triangles
attributeq attributeg

Bl Feature Set

Programmer’s Guide. Table 4-1, “GBI Feature Set,” on page 62 lists the basic
features of the GBI pipeline.

Functicnality

GBI assembly

62

NINTENDO DRAFT RUNTIME.SOFTWARE ARCHITECTURE

Table 4-1 GBI Feature Set

Processor Functionality

RSP

RDP. Th ther version outputs RDP commands to DRAM. Writing the RDP
commands to DRAM could be used to overlap graphics and audio. For
example, you could use the RSP for audio processing while the RDP is
srocessing comimands stored in DRAM. Storing the RDP commands in
RAM may also be useful for debugging,

NU6-06-0030-001G of October 21, 1996 63

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Audio Interface

64

Access to the audio subsystem is provided through the fi
Audio Library. The Audio Library supperts both sampled sound playback
for sound effects and wavetable s
music. For more information on tk
Chapter 19, “The Audio Library”.

NINTENDO

DRAFT RUNTIME SOFTWARE ARCHITECTURE

RCP Task Management

NU6-06-0030-001G of October 21, 1996

Both the audio and graphics libraries provide suppor enerating
command lists to be executed on, P, but they do not handle the
command list execution. It is ry for the application to
manage the scheduling and e sks (command lists and
microcode) on the RCP. To fac opment package includes
an example RCP scheduler.

3,

The “Simple” Exam

The structure of the scheduler inch
described briefly below. Please refer’
directory for; details.

d with the “Simple” application is
the example code in the “Simple”

The scheduler thread is

from other threads: gning them to RCP tasks for scheduling and

time constraints are met. This thread has the highest

interleave dudio tasks, if necessary.

ther Application Threads

He next highest priority application thread is the Audio Manager thread. It
responsible for creating audio display lists, sending them to the scheduler

“for execution, and fransferring the finished audio to the codecs. It has a

higher priority than the game thread, to prevent audio clicks caused when
the audio thread can’t meet its real-time constraints.

Note: The Audio Manager thread is essentially a low-level wrapper around

the alAudioFrame call (see “The Synthesis Driver” on page 382 for details).
Higher-level Audio Library calls are made from the game thread.

65

NINTENDO 64 PROGRAMMING MANUAL DRAFT

The game thread is responsible for generating gra .
sending them to the scheduler for execution. In addition,
handles the controller input, makes calls to the Audio Libta
other tasks traditionally found in the.game’s “main loop.”

66

NINTENDO DRAFT RUNTIME SOFTWARE ARCHITECTURE

GameShop Debugger

Graphics WorkShop applicationel
windowing debugger environment
and RSP software.

if, which interfaces to the rmon debug thread
device driver in IRIX.

Nintendo64 development board

Us
device
driver

mon

remote Application
monitor

debugger
interface

NUE-06-0030-001G of October 21, 1996 67

NINTENDO 64 PROGRAMMING MANUAL DRAFT

application and uses many operating system reso
debugger and rmonPrintf cannot be used to debug syste

Debugger.”

68

NINTENDO

DRAFT COMPILE TIME OVERVIEW

NU6-06-0030-001G of October 21, 1996

Chapter 5

Compile Time Overview

This chapter describes the flow of tools required to go from 3D model design
and music composition to cutting the actual ROM cartridge. In addition to

piler suite, the Nintendo 64 software release supplies a

ticular to the Nintendo 64 software development

de to some of these tools is provided as an

our own customized tools that give your game
arketplace. This chapter includes the following

building ROM images
host side functionality

69

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Database Modeling

70

To do real-time 3D graphics, you need modeling tools to ate geomeuy'.
Because many off-the-shelf modelin are available, there is no

Graphics. Nintendo has contractec
provide the database modeling solu

For texture-map images
desire image conversion,

All of the example applications and s6irce code, including sample image
conversion programs, use the popular SGI RGB image format. Additional
related, but ed software, may be obtained from SGI via the 4Dgifts
product, anor tp via sgi.com, or from the user community on the

mternet (se 3 or the comp . sys . sgi hierarchy). One of the
more populat. le packages containing image conversion and
mampulanon software is PBMPLUS, widely available on the internet.

a 3D modeling package from MultiGen. It is a derivative of their
3D modeling software, together with an Nintendo 64 database
or. The traditional key strength of MultiGen is their ability to
provide 3D modeling tools for the real-time commercial and military
flight/vehicle simulation market.

is market, many database techniques developed for a real-time flight
ator are available in NinGen. Some basic features include:
Geometric level of detail.

Binary separating planes for depth-ordered rendering. This is required
if you don’t use the z-buffer.

Many polygon count reduction tools. The goal is the best model with
the lowest polygon count.

NINTENDO

DPRAFT COMPILE TIME OVERVIEW

NUG6-06-0030-001G of October 21, 1996

Alias

Historically, Alias has provided 3D animation and mdi g tools for the

computer-generated film and animy arket segment. Beautiful models,
sophisticated motion paths, an lopment time are all vital to
success in this marketplace. He of
of the Alias software package:

* NURBs based modeler provides s
* Motions paths an
Special effects suchy

there are other modeling packages on the
en Graphics are also traditional film and
ers. On the PC, the Autodesk 3DStudio is

maps. Flipping this texture book on some morphing geometry to
approximate the group motion of a system of particles. This may give you
fire, water, and other interesting objects.

stom Modeling Tools

For special game application requirements, you may need to create your
own custom moedeling packages. Obviously, it is time-consuming to build
such a software package in house. The advantage, however, is that you can
customize the databases to the requirements of your game. For example, you
might be able to gain rendering display performance if you are able to give
hints to your modeler about how to order geometry.

71

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Model to Render Space Database Conversion

This section outlines issues you may face when converting ffiém a modeling

database to a rendering database.
Existing Convertors

tabase convertors to
inary Interface).

Both NinGen and Alias software packag'
convert to the Nintendo é3:format (Graphi

Custom Convertors

Some of you
want to m
your game.

tto write your own database convertors because you
esource or attribute in a different way, tailored to
provides a sample convertor, flt2c(1P), from the

rformat, rgh2c(1P). These sample convertors are
signed to be totally efficient; they are just meant

Conversion Considerations

There are many efficiency considerations to keep in mind when you are
riting a database convertor. Here are a few:

edundant hierarchical transformations should be eliminated.
ansformations should be used for articulated parts or instancing, not
for preserving modeling hierarchy.

* Since the geometry transformation subsystem has a vertex cache, block
loading 16 vertexes to render as many triangles as possible has better
performance.

* On-chip texture memory is not large (4 KB). If you are stamping trees in
your scene, you should render in texture order. Keep in mind that
texture order may require a z-buffer, which requires additional dram

72

NINTENDO

DRAFT OMPILE TIME OVERVIEW

NU&-06-0030-001G of October 21, 1996

bandwidth. You may need to experimer
your game.

nd local to an object. Learn how to
ind of game you are creating.

73

NINTENDC 64 PROGRAMMING MANUAL DRAFT

Gamma Correction

74

The SNES and Super Famicom do not have gamma cozrre |
thave mdlcated that the colors on the

machine that does not have gamma t production path is
likely to be setup to compensate for the las a correction hardware.
In other words, you are ptebably picking pregamma corrected colors. If you
use this same production pa d turn Nintendo 64 gamma correction on,
you will get the wash ou
twice, '

To undo the first:;gamma correction, square and shift down by 8§ each color
component 8 bit color) or rework your path to exclude the
gamma corgection st wing gamma correction to the hardware.

ammg correction on the Nintendo 64 s recommended; the antialiasing and
dware work best when it is enabled.

NINTENDO DRAFT COMPILE TIME OVERVIEW

Music Composition

Music composition involves the creation of midi sequences and then
importing them into the game. Mi uences can be created using any of a

compact Midi sequence player, the se;
midicmp. If you are using the regular ¢
through midicvt. Afte:
into sequernce banks w

NUB-06-0030-001G of October 21, 1996 75

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Wavetable Construction

76

The audio library can use either compressed or uncompregssed wavetables
e wavetables are first created using

tabledesign. After the compression tab 1
compressed using vadpem_enc. This will genes, '
unique to the Nintendo. {Note that AIFC f'ﬁés Created with other software
tools are not compatibie
Nintendo.)

After the wavetables have been convertéd to AIFC files, (or left as AIFF files
if no data comy ion is desired) they need to be assembled into banks so

by can reference them correctly. To accomplish this, the
ereate a .inst file, which is a text file that specifies
the param o layback and the wavetable files. The .inst file is
then used by'ic to create the bank files. The bank files can then be included
1'in segments in the applications spec file. (The
e use of ic is covered in detail in Chapter 20,

NINTENDO DRAFT . COMPILE TIME OVERVIEW

Building ROM Images

A final set of tools, headers and libr ries are available #6 pack your database
and code into a final ROM imagg e Nintendo 64, The Nintendo 64
development environment hea ; the C compiler and

C inary objects. A ROM
packing tool, makerom(1P) packs fhiesé objects info a single monolithic ROM
image# according to a specification ofiy hese objects go.

Currently, the Nintendo 64 dev
verified with the IRIX 5.3 MIPS C-compiler suite. The interfaces provided do
sprietary features of this compiler; however backend tools

-nen_shared and -G 0

code or a global d

age packer (makerom) takes as input relocatable objects created
by the compiler and performs the final relocations of code symbols. To
perform these relocations, it invokes a next generation link editor that altows
jects to be linked at arbitrary addresses specified by the developer. After
se relocations, makerom extracts the code and initialized data portions of
resulting binary and packs them onto a ROM image. The makerom tool
an also copy raw data files to the ROM as desired.

Note: When building a ROM image for the console (as opposed to the
development system), be sure to

s link with libultra.a and not libultra_d.a

+ remove all calls to printf and its variations from your application.

NUG6-06-0030-001G of October 21, 1996 77

NINTENDO 64 PROGRAMMING MANUAL DRAFT

s remove any functions specific to the deve

Headers and Libraries

Although the Nintendo 64 APl in
areas, the interfaces are made avail

/usr/include/ultra64 h, and by linking wi rary, /usrﬂzb/hbultra a

ken into their finest level
of granularity, so app11cat1 y as they go only including routines they
actually use.

78

NINTENDO

DRAFT COMFILE TIME OVERVIEW

Host Side Functionality

During development, it may be desirable to copy datd #6idid from the Indy
host to the game. For example, a equence could be repeatedly edited

accomplished by recreating an
design cycle could be reduced

game side ATTis provided.
:as always defined by including

ith /usr/lib/libultral_d].a. The host side
ltrahost.h and defined in

For these applications,
The game side interfac

fusrfinclude/ultrabd.h and linkis,
interfaces are declared in fusr/in
Sfusr/libfultrahost.a.

NUG-06-0030-001G of October 21, 1996

79

NINTENDO 64 PROGRAMMING MANUAL DRAFT

80

NINTENDO DRAFT ULTRA 64 QPERATING SYSTEM

'ART

NU6-06-0030-001G of October 21, 1996

NINTENDO 64 PROGRAMMING MANUAL DRAFT

NINTENDO

DRAFT OPERATING SYSTEM OVERVIEW

NU6-06-0030-001G of October 21, 1996

Chapter 6

Operating System Overview

Overview

‘ tem runs under a small, real-time, preemptive kernel. Tt
issuppliedasas run-time library functions, so that only those portions
that are at cluded in the game’s run-time image. In the
remainde it is referred to as the operating system,
although it is so minimalithat it has not been given an official name.

kernel can be considered as being layered into core functionality and
-level system services, as illustrated in Figure 6-1.

VI/Timer Mgr

Threads

Messages
Euvents
Raw I/O

Controller
Interface

Figure 6-1 Nintendo 64 System Kernel

83

NINTENDO 64 PROGRAMMING MANUAL DRAFT

In this introductory section, a brie
provided.

Threads

All code that runs under t;
space.That is, the game rri
a game application as one monolit! :
subdivide it into smaller, more manageable subprograms called threads.
With its own stack, each thread usually performs one function, often

perating system runs in the same address

ouz¢e or event to cont'mue at which point they yleid the CPU to another
ach thread has an assigned priority level, used to determine which

preserves tha state of the thread properly for restarting at a later time. Thus,
the system can properly be described as preemptive, Threads may even be
preempted during system calls when it is safe to do so.

vever, there is no concept of a swap clock or “round-robin” scheduling

ound in UNIX and other time-sharing systems. Thus, twoe or more

toads that run at the same priority level do not alternate in use of the CPU.

“THe thread that “has” the CPU runs until it yields or is preempted by a
higher priority thread in response to an exception.

Messages

Since the operating system is message-based, messages are among the most
important of the resources available to the user. Unlike many popuiar

84

NINTENDO DRAFT OPERATING SYSTEM OVERVIEW

synchronization
ct, there are advantages to using

only this mechanism. The ope m code itself is smaller and less
intrusive on game space than §

facilities for thread synchroniz

Of course, messages are
one thread to another. In't

mine which everit has acma]ly occurred when the CPU is interrupted.

2xception handler built into the operating system performs the
g of inferrupts and other exceptions and maps them to system

applicatior is notified. In this way, the game designer can provide an
interrupt handler to deal with the exception as required by the game
requirements.

lemory Management

In this operating system, the responsibility of memory management is left
up to the game. That is, the operating system provides no heap or dynamic
memory allocation mechanism for the game. Since the game can access the
entire memory map, it has total control on how memory is partitioned and
used. The operating system simply runs in the kernel mode (kseg0} with
cache and direct mapping enabled. In this mode, the virtual address
0x80000000 is mapped directly to physical address 0x{. Translation
Lookaside Buffer (TLB) is not used by the operating system to provide

NUG-06-0030-001G of October 21, 1996 a5

NINTENDO 64 PROGRAMMING MANUAL DRAFT

developers to program the TLBs directly. Furtherm
provided to simplify the task of allocating and de-allocatin,
memory buffers. :

Game developers should also be
and flushing caches before transf

The Nintendo 64 system spends a go
operations. The operating system provides an optimized I/ O interface layer
icates with the hardware. Some of these interfaces

Plizthe peripheral interface. The P1 also has an associated I/O manager
thr the PI manager. It manages access to the ROM cartridge so that
ads do not attempt to DMA from ROM to RAM at the same

Al—the audio interface. This interface programs the audio hardware to
output the desired sample rate and manages access to the audio data
buffer.

P—This is the RDP interface. It is mostly of interest because it has an
ssociated system event when a DP operation is complete.

Cont—the controller interface. This interface resets, detects, obtains
status, queries and reads data from the game controllers.

86

NINTENDO

DRAFT OPERATING SYSTEM OVERVIEW

NU6-06-0030-001G of October 21, 1996

Timers

The operating system provides convenient functions # and stop both
countdown and interval timers. THgge timers are expressed in CPU count

register cycles, which depend :
PAL system occurs more freq
Developers can also set and get

Controller Pack Filé

ating system implements a simple file
system on this pack where developers can find, create, delete, read and write

files.

ippatt for the high-level GameShop debugger gud(1P),

perating system also provides additional useful facilities for

bugging. Developers can use convenient routines to log messages to
Ilocated buffer for delay transfer to the host Indy. Since this logging

has low performance impact, it may be well suited for debugging

roblems or running performance analysis. Developers can also

f-like utility 0sSyncPrintf(3P) to display text formatted messages

en using the Nintendo 64 development system, the developer needs to
run the game loader gload(1P) program to download his prepared ROM
image into the cartridge memory on the development board. After the
memory image is loaded, gload can optionally read back the memory and
verifies the contents. Then, it generates a reset signal to the development
board, causing the R4300 to jump to the reset vector where it starts executing
the boot code from the PIF rom.

Some of the important tasks performed by the boot code include:

a7

NINTENDO 64 PROGRAMMING MANUAL

DRAFT

88

Ll

o w

~3

Initialize the R4300 CPO registers
Initialize the RCP (such as halt RSP, reset FI, blank vide
Initialize RDRAM and CTPU cache

p audio)

0x00000400
Clear RCP status

Jump to game code

NINTENDG DRAFT OPERATING SYSTEM FUNCTIONALITY

Chapter 7

Operating System Fu

Qverview

em. Simply put, this means that the R4300 CPU
ependent components called threads. Each

sseveral advantages. You can effectively isclate each part of the
cation to avoid interference. You can divide your application into small,

Messages 4re a mechanism by which threads communicate with one
another. While this could be done using shared global variables, such an
approach is often unsafe. One thread must know when it is safe to read data
at is being written by another. Message passing makes communication
tween threads an atomic operation; a message is either available or not
ailable, and the associated data arrives at the receiving thread at one time.

A second, perhaps more important function of messages is to provide
synchronization between threads. Often a thread reaches a point in its
execution where it cannot continue until another thread has completed some
task. In this case, the running thread has no useful work to do, so it should
yield the processor until the task is completed. You use messages to provide
the mechanism for the thread to wait until that time.

NU6-06-0030-001G of October 21, 1996 89

NINTENDO 64 PROGRAMMING MANUAL DRAFT

90

Often a thread needs to wait for an exception AS .
Exceptions are trapped by the operating system ana® ftmed intg events.
Threads may register to receive notification of system events! requesting

that the operating system send the age whenever a system event

OCccurs.

System Threads, Application Thr %ds, and the Idle Thread

‘application. Thereis a
n system threads, application threads,

There are several types
distinction (using priority
and the idle thread.

The PI manager, described in the IO section, is typical of system threads. It
acts as a resou ager, allowing multiple user threads to share a critical
resource safe is case, the cartridge ROM.

owest priority (a priority of 0) of any thread
all other threads are blocked awaiting some
event. Note that the idle id is required; the system will not run without
it. Thie game applicationitself is composed of user threads. User threads are
as those threads having priorities between 1 and 127.

Each thread & associated with a data structure of type OSThread declared by
the user. The address of this structure is the only identifier used in thread
system calls. Since the thread data structure is essentially part of the
silication itself, you should take care not to overwrite it inadvertently. The
ture contains the thread’s context (mostly, this consists of its register
nts) when the thread is not running. Each thread has a priority used in
-duling, and an identifier used only by the debugger. These are als

“maintained in the thread data structure, :

Thread State

A thread is always in one of four states. The state of the thread is maintained
in its thread data structure for use by the operating system. A good

NINTENDO

DRAFT OPERATING SYSTEM FUNCTIONALITY

understanding of thread state is helpful in de

NUE-06-0030-001G of October 21, 1996

ur application, since

running because some oth
control of the CPU once it
thread.

ead will not eduled for execution. Newly
5 state, Threads are frequently stopped by the
may stop a thread at any time. Stopped

5 has control of the CPU. When a thread gains control of the CPU, it
C S 10 run until it requires sorne resource or event to continue. It then
£s control of the CTU and the next hlghest priority thread gets to

funct10n to receive a message. If no message is present in the message queue,
the running thread will block until a message arrives. Note that the thread is
o longer runnable when it is blocked on a message queue, so it no longer
ts the criterion of being the highest-priority runnable thread.

vlore frequently, the running thread loses control of the CPU through
‘preemption. In response to an exception {for example, an interrupt), a higher
priority thread becomes runnable. Since that thread should now be the
running thread, the state of the interrupted thread will be saved in its thread
data structure, the state of the newly-runnable thread will be loaded to the
CPU, and the new thread will resume execution at the point where it last ran.
The preempted thread is still runnable; it just doesn’t have the highest
priority. When it once again becomes the highest priority thread, it will run
again from the point where the interrupt occurred.

n

NINTENDO 64 PROGRAMMING MANUAL DRAFT

92

Note that the running thread does not need to be
example, a system call) to lose control of the CPU.
description of a preemptive system.

ed to synchronize their

Multiple threads within an applica
: til thread B has

execution. For example, thread A ¢
performed some operation. The m
needed synchronization mechanism,;
messages.

ntly ne

Thread Functions

There are eight functions associated w1 threads. Please refer to the
reference (man) pages for specifics about the arguments, return values, and
behavior of th 100, ;

per thread to notify the system that a thread
thread initializes its thread data structure
vith the starting program counter, initial stack pointer, and other
‘b‘rmation. Once the thread data structure has been initialized, the

« osYieldThread
This function notifies the operating system that the running thread

shes to yield the CPU to any other thread with higher or equal
iority. If all other runnable threads have lower priority, the running
hread will continue. (In practice, it is not possible for a runnable thread
' to have higher priority than the running thread.)

s osStartThread

This function call makes a thread runnable. If the specified thread is of
higher priority than the running thread, the running thread will yield
the CPU. If not, the running thread will continue and the started thread
will wait until it becomes the highest priority thread in the system.

NINTENDO DRAFT OPERATING SYSTEM FUNCTIONALITY

s osStopThread

This function call changes the state of a thre
the thread will not be able to run until restarted. Tt thread was
waiting on a message queue be removed from that queue.

« 05GetThreadld

This function returns the
created. It is used only by the de

* osSetThreadPri

This function chany
no longer the highest-pri
of this change, it will yield

ed when the thread was

riority of a thread. If the running thread is
runnable thread in the system as a result
U to the new highest-priority thread.

The operating system has exception handlers for Coprocessor Unusable,
eakpoint, and Interrupt exceptions. All other exceptions are considered to
faults and are passed to the fault handler. The fault handler stops the
Ited thread, sends a message to any thread (i.e., rmon) registered for the
OS_EVENT_FAULT event, and dispatches the next runnable thread from the

system run gueue. If the debugger is present, a message is sent from the

target to the host and the debugger can show you exactly where the fault

occurred. Breakpoint exceptions are also handled in this way. The debugger
will stop all user threads in the event of a breakpoint or a fault.

NU6-06-0030-001G of October 21, 1996 93

NINTENDOQO 64 PROGRAMMING MANUAL DRAFT

When an interrupt occurs, the CAUSE register
interrupt caused the exception. The R4300 supp
described below.

Table 7-1

Name Cause

Boftware 1 JCAUSE_SW1

Software 2 [CAUSE_SW2

RCP CAUSE_IP3

Cartridge [CAUSE_IP4

Pre-nmi CAUSE_IP5 [User has pushed reset button on console

RDB Read [ndy has read the value in the RDB port.

RDB Write

interrupts is being asserted. Thus, processing RCP interrupts is a
re process - first the cause of the CPU interrupt is determined, then
‘of the RCP interrupt is isolated.

is possible to Change the interrupt masks of the R4300 and RCP via a system
call Clearly, this must be used with great caution, as dlsablmg a critical

Once the cause of the interrupt (or other exception) has been determined, it
is mapped to one of 14 events defined for the Nintendo 64 system. Table 7-1

94

NINTENDO

DRAFT

QPERATING SYSTEM FUNCTIONALITY

NU6-06-0030-001G of Qctober 21, 1996

shows the events, why they occur, and who
message when each event occurs.

registers to receive a

Event Name

Owner

Swi

SW2

CART

COUNTER

SP

SI

CPU_BREAK

SP_BREAK

FAULT
THREAD_STATUS

Internal counter reached terminal
count

RCP SP interrupt; Task Done/Task

CP SI interrupt; controller input
available

RCP Al interrupt; audio buffer
swap

RCP VI interrupt; vertical retrace

RCP Pl interrupt; ROM to RAM
DMA done

RCP DP interrupt; RDP processing
dene

An NMI has been requesied and
will occur in 0.5 seconds

R4300 has hit a breakpoint

RCP SP interrupt; RCP has hita
breakpoint

R4300 has faulted

Thread created or destroyed

0Ss
VI1/Timer
manager
Game
Game
Game
VI/Timer
manager

PI manager
Game

Game

Rmon
Rmon

Rmon

Rmon

g5

NINTENDO 64 PROGRAMMING MANUAL DRAFT

96

Event and Interrupt Functions

* osSetEventMesg

This function call specifies a mes ueue and message to be sent in

response to a system event.

o osGetIntMask

* osSetIntMask

This function specifi
and RCP masks).

ch is pushed, the hardware generates a HW2
he interrupt is serviced by the OS event

interrupt to thé R4300 CPU.
handler which sends

After the NMI occurs, the hardware is reinitialized, and:

The first Meg of the game in ROM is copied into the first megabyte
of RAM after the boot address

The BSS for the boot segment is cleared

The beot procedure is called.

Note: There are some minor differences between power on reset and
NMI reset. After power on reset, the caches are invalidated. After NMI
reset, the caches are flushed and then invalidated. Also, the power on
reset configures the RAM, while NMI reset leaves the RAMs alone.

NINTENDO DRAFT OPERATING SYSTEM FUNCTIONALITY

and Graphics”), it should se
event by associating a message

;

: the OS_EVENT_PRENMI message to
t is received.

should do the fo

Stop issuing graphics tasks to prevent the RDP from being stopped
in a non-restartable state.

Stop issuing audio tasks to prevent audioc “pops”
‘Stop issuing ROM (PI) DMAs
To test this, you can generate an NMI on development board by running the

following program on the Indy. This is equivalent to pushing the RESET
i switch on the Nintendo 64 machine.

* Program to simulate pressing and releasing the RESET
switch on the Ultra 64.

Copy this code to resetubd.c and type “make resetutd”

*/

#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
#include <sys/mman.h>
#include <gys/u6dgio.h>

NU6-06-0030-001G of October 21, 1996 97

NINTENDO 64 PROGRAMMING MANUAL DRAFT

$include <PR/R4300.h>

tdefine GIQBUS_BASE 0x1£40000C0
$#define GIOBUS_SIZE 0x200000

main (}

{

int mmemFd;
unsigned c¢har *mapbase;
struct ub4_board *pBoard;

2 /dev/mmem”, 2)) < 0) {
/mmem failed”);

if {((mmemFd = ©
perror (“ope
returni{l};

= {unsigned char *)mmap (0, GIOBUS_SIZE,
PROT_READ | PROT_WRITE, (MAP_PRIVATE),
emiFd, PHYS_TO_K1(GIOBUS_BASE})} ==
igned char *)-1) {

perror (“mmap
return(l);

}

pBeoard = (struct ué4_board *) (mapbase);
©Board-»>reset_control = _U64_RESET_CONTROL_NMI;
minap (10) ;

rd->reset_contrel = 0;

ternal OS Functions

| of the internal OS functions are briefly described below. Broken into
three groups, these functions are mentioned here with the purpose to reduce

téntial duplicate effort from developers. Most of these functions are
simple routines to access various R4300 registers, Translation-Lookaside
Buffer (TLB) information, and internal active thread queue. Please refer to
the reference (man) pages for specifics about the arguments, return values,
and behavior of these functions.

The first group provide functions to access various common R4300 re gisters:

e _ osGetCause, __osSetCause

98

NINTENDO

DRAFT OPERATING.SYSTEM FUNCTIONALITY

NU6-06-0030-001G of October 21, 1996

These functions returns and specifies th
register, respectively.

These functions returns
register, respectively.

__osGetSR, ._OSSé

These functions returns an
register, respectively.

retums and specifies the content of the R4300
Control/Status register, respectively.

__0s5GetTLBASID
This function returns the TLB Application Space ID in the R4300

For a‘specified TLB entry, this function returns the content of the R4300
PageMask register.

__0sGetTLBHI

For a specified TLB entry, this function retums the content of the R4300
EntryHi register.

__05GetTLBLoO

For a specified TLB entry, this function returns the content of the R4300
EntryLo0 register.

__0sGetTLBLol

For a specified TLB entry, this function returns the content of the R4300
EntryLol register.

99

NINTENDO 64 PROGRAMMING MANUAL DRAFT

find faulted thread(s):
¢ os5GetCurrFaultedThread

This function returns the next fa
thread queue.

100

NINTENDO DRAFT INPUT /OUTPUT FUNCTIONALITY

Chapter 8

Input/Output Functionality

QOverview

etails in device drivers through which the
ers data and control

them are shared resources

provide a consistent, uniform, and flexible interface to all devices,
ywing programs to reference devices by name and perform
high-level operations without knowing the device configuration.

Usually, the I/O software is structured in layers:
9. device-independent system interface
). device drivers

interrupt handlers

" The interrupt handler is mainly responsibie for waking up a device driver
after an I/Q operation completes. The device driver performs
device-specific operations, such as setting up registers for DMA and
checking device status. The device-independent system interface provides a
uniform interface to user-level software and common I/0 functions (that is,
protection, blocking, buffering) that can be performed across different
devices.

NUG-06-0030-001G of October 21, 1996 101

NINTENDO 64 PROGRAMMING MANUAL DRAFT

102

For the RCP, there are two modes of I/O operati

» DMA provides a minimum of 64-bit transfer between
any of the devices

* IO provides a 32-bit transfer by

Figure 8-1):

* Reality Display Processor (K
DMA from either RDRAM or

from RDRAM to a specific audio buffer
set the audio frequency.

. ripheral Interface (PI). This read-write interface connects to the ROM
' idge and other mass storage devices, It supports DMA as well as

NINTENDO DRAFT INPUT/OUTPUT FUNCTIONALITY

Figure 8-1 Logical View of RCP Internal Major Devices and Intgrface Modules

SP
DP
' Audio
™ DAC
Peripnera
Interface ¢ ROM
(Ph 71 Cartridge
%egia% Game
TIaCe ¢ d o
(SI)e ¢ FIF #| Controller

Since Nintendo 64 operates in a real-time environment, its I/O subsystem is
ne of the most time-critical areas. Furthermore, the customized Nintendo
environment contains a well-known set of device interfaces that remains
ichanged for some time to come. Therefore, its I/O subsystem is mainly
signed for optimal throughput and response, and not for portability and
enerality. This design approach coincides with the main Nintendo 64

design philosophy, which has always been (and still is) to follow the
minimal approach.

The Nintendo 64 I/O subsystem contains these components:
* adevice-dependent system interface

* adevice manager for shared devices

NUE-06-0030-001G of October 21, 1996 103

NINTENDO 64 PROGRAMMING MANUAL DRAFT

¢ asystem exception handler

specific needs. The result is a very hg
allows you to access (in most cases) the

Each of these components cribed further in the sections below.
However, first it is import; eiiss some properties (such as synchrony
o 64 1/0 subsystem should exhibit.

equest, thus allowing I/0 to overlap with the
. In asynchronous systems, the process is

to continue execution after initiating an 1/0 operation. Most
implement the synchronous I/ O method since it is easier to use and

game environment. For example, a game might want to start paging in the
next scene data in the background while working on the graphics task list.

d basis. Furthermore, synchronous I/O can be easily implemented on
the asynchronous facility by having the calling process blocks on a
age queue immediately after initiating the I/O operation.

Therefore, all interrupt-based DMA operations are asynchronous operations
and all asynchronous notification is handled via the message queue facility.

104

NINTENDO

DRAFT UTPUT FUNCTIONALITY

NU6-06-0030-001G of October 21, 1996

Mutual Exclusion

resources. The I/0 subsystem
device at any one time, thus e
forcing them to wait.

In the Nintendo 64 envirorunent, eac
transaction at any given time. For ex
progress between ROM
different ROM locationv

al exclusion is not implemented as a general scheme for
er as a specific scheme for each identified shared device.

Nintendo 64 I/ O software subsystem consists of the following major
mponents: system exception handler, dev1ce manager for shared devu:es

105

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Figure 8-2 Interactions Between I/ O Components Sefvmﬁg 1/0 Request

Application
Thread

4} Exception Handler
notifies App by send-

ing the registered mes-
sage {0 message queue

Device
{PL)

3} Device interrupts CPU upon 1/0
completion

Exception Handler

event notifier. Fhat is, upon receiving an event (either a supported exception

or interrupt), the handler searches the event table for an associated message
_queue and message, sends the message to the queue, and simply returns.
handler does not perform any device-specific operations. The
tEventMesg system call is provided to register a message queue and
age with a specified event.

" Device Manager

Depending on the user application, a device in the Nintende 64 environment
may be shared between two or more threads. Furthermore, if you want to
utilize both DMA and IO operations or1 a device, you must ensure that these
two operations cannot overlap. For each device that requires protection, you
can use the concept of a device manager to implement mutual exclusion.

106

NINTENDO

DRAFT INPUT /QUTPUT FUNCTIONALITY

NU6-06-0030-001G of October 21, 1996

main purpose of this manager is to process all DMA - requ
device (that is, ROM devices), thus guaranteeing safe‘and orderly usage of
jageérregisters an event, its event message
anager is then blocked

listening on its input comman
simply reads from the front of th

gz

blocks on hsterung on the input event queue,

operation, the manageg
om the exception handler, signaling I/ O

waiting for the event s
completion. Once awakene
{I1/0 requestor) by simply sending the request message to a pre-registered

message queue. The manager, then, returns to listen on the input command

queue for

(commart " and ¢ ver “ s) is that there can be only one outstanding I/O
transaction at any given {ime. Figure 8-3 summarizes the interaction
between various 1/Q coffiponents to service an 1/O request on a shared

107

NINTENDO 64 PROGRAMMING MANUAL DRAFT

2) App sends 1/Q request to
Device Manager (via APT)

Application
Thread

6} DM sends ev back

ta App, notifying I/C
completon 3) DM calls
low-level APT to

initiate the I/ G

5) Exception Handler
netifies DM by sending
the registered message
to 1 ge queus

System
Exception

Handler 4} Device interrupts CPU upon I/ O

completion

vice-Dependent System Interface

evice-dependent system interface is actually composed of two layers
ction calls: a high-level abstraction layer and a low-level, raw I/ O

yer. In addition to providing mutual exclusion on devices that support
both DMA and IO operations, the high-level layer also uses the lower layer
to initiate raw I/O operation. The reason for exposing the raw I/0O layer is
to allow you to construct your own custom I/QO software interface.
Furthermore, if the user application requires no protection for accessing
devices, using the low-level layer directly is the optimal way to request I/ O
operation.

108

NINTENDO

DRAFT INPUT /OUTPUT FUNCTIONALITY

NU6-06-0030-001G of October 21, 1996

In the foliowing sections, the functions are
each device/interface separately. For high-le
name starts with os<DeviceName> for easy identificg
operation, the function name sta rith os<DeviceName>Raw. Please refer
to the appropriate reference (
return values, and behavior of

Signal Processor (SP) Functions
¢ osSpTaskStart

This function loa
* 0sSpTaskYield

register. Refer to the include file rcp.h for bit patterns and their usage.
0sDpSetNextBuffer

This function sets up the proper registers to initiate a DMA transfer
from RDRAM address to the DP command buffer.

ideo Interface (VI) Functions
s osCreateViManager

This function creates and starts the VI manager (VIM) system thread.
* osViGetStatus

109

NINTENDO 64 PROGRAMMING MANUAL DRAFT

This function returns the value of the video'it
include file rep h contains bit patterns that can be'fised to i
device status.

atus register. The
erpret the

¢ osViGetCurrentLine
This funiction returns the cur

s osViGetCurrentMode

This function returns ﬂie c
s 0sViGetNextFramebuffer

manager.
s 0sViSetMode

is function sets the VI mode to one of the possible 28 modes. The

0sViSet[X/Y]Scale

These two functions allow you to change the horizontal scale-up factor
x-scale) and vertical scale-up factor (y-scale), respectively.

sViSetSpecialFeatures

This function enables/disables various special mode bits in the control
register.

¢ osViSwapBuffer

This function registers the frame buffer with the VI manager to be
displayed at the next vertical retrace interrupt.

110

NINTENDOC DRAFT INPUT /OUTPUT FUNCTIONALITY

Audio Interface (Al) Functions

+ psAiGetStatus

ue of the audio hterface status
s bit patterns that can be used to

This function simply returnsg
register. The include file rcp
interpret the device statu

* osAiGetLength

This function simply returns the .
interface DMA length register.

osAiSetFrequency

frequency (in Hz}. It calculates necessary values to program internal
divisors and returns the closest frequency that the divisors can

This f the next DMA transfer based on the input

er address.

This function simply returns the value of the hardware status register.
The include file rcp.h contains bit patterns that can be used to interpret
the perlpheral status (that is, DMA busy and 1O busy)

osP1RawStartDma

This low-level function sets up the proper registers to initiate a DMA
transfer betiween ROM and RDRAM.

osPiRaw]Read / Write]Io

These two low-level functions perform an IO (32- b1t) read /write
from/to ROM address space, respectively.

osPifRead /Write]lo

NUE-06-0030-001G of October 21, 1986 1

NINTENDO 64 PROGRAMMING MANUAL DRAFT

address space, respectively. Since they providé'mt
accessing the PI device, these routines are both blockg

s osPiStartDma

This function generates an as #request to the Pl manager
to initiate a DMA transfer betv ROM address space.
Upon I/0 completion, PI managern pﬁes the requestor by returning
the I/O request message to the messa
requestor.

Controlier Functions

o osContlnit

* osContStartReadData

This function issues a read data command to all game controllers to
tain their input settings.

sConiGetReadData

This function returns the game controllers’ joystick data and button
settings.

112

NINTENDOQ DRAFT BASIC MEMORY MANAGEMENT

Chapter 9

Basic Memory Management

intreduction

software interface of the Nintendo 64 platform allows you to take
tage of the hardware capabilities of the machine, which include high

4300 CPU and the Reality CoFProcessor (RCF). The CFPU executes
‘application code directly from the DRAM, transparently caching instruction
and data references in on-chip caches. The code itself makes references to
CPU virtual addresses, which are translated by on-chip hardware to
physical memory addresses.

NU6-06-0030-001G of October 21, 1996 113

NINTENDO 64 PROGRAMMING MANUAL DRAFT

114

The RCF is primarily composed of two elemen ssor (SP)
and the Display Processor (DF). The SF is a micro .
processes task lists for audio and graphics. The DP is, for'the/most part,
driven by the SP. The RCP can be treatédtiis a single processor for the

purposes of memory management

Finally, a number of DMA enginesa A
well as the Audio Interface (Al), Seri face (513 and Parallel Interface

(PI).

addresses. These physical gddre e derived in very different ways,
however.

akes place in either of two ways: either via

direct mappingpor through anslation lookaside buffer (TLB). When

running in kerel mode

Ending Name Behavior
Ox7fEEfEE KUSEG TLB mapped
0x80000000 OxOffffffs KSEGO Direct mapped, cached

0xa0000000 OxbEfEfeef KSEG1 Direct mapped, uncached
0xc0000000 Ox dfffefet KSSEG TLB mapped
& (xe0000000 Ox FHHFH KSEG3 TLB mapped

The KSEGOQ address space is expected to be the most popular, if not only,
address space used. In this address space, the physical memory locations
corresponding to be KSEG0 address can be determined by stripping off the
upper three bits of the virtual address. For example, virtual address
0x80000000 corresponds to physical address 0x0000000, and so on.

NINTENDO

DRAFT BASIC MEMORY MANAGEMENT

NU6-06-0030-001G of October 21, 1996

SP Addressing

The SP microcede makes address references also, but#figse references are

oniy to the local memory (IMEM : EM) on the chip. With the current
software architecture, the appli s not program the SP directly, and
need not concern itself with A

DRAM references, however, concerii'th
structures stored in DRAM are passe
vertex lists, textures

registers. An “SP virtual” address is'presented to the SP microcode in the
form of a <segment number, segment offset> pair encoded into a 32-bit
word. To cofniptite a physical DRAM address, the microcode adds the
contents : tesppnding segment base register to the given offset.

addresses passed to the interface routines are CPU virtual addresses
tines perform the mapping from virtual to physical addresses and
esulting physical DRAM address to be appropriate hardware

Makerom and Memory Management

. addition to its more obvious role of creating the application ROM image,
kerom (1P) is a powerful tool for both memory and symbol table
agement. Segments to makerom mean more than SP addressable
memory regions. To makerom, a segment is any contiguous, coherent region
of bytes in memory or on the ROM.

The ROM specification file given to makerom provides virtual or segment
addresses to segments. A segment consisting of MIPS 43({ code or data to
run on the CPU can be given a virtual address with an address statement.
A segment consisting of static display list data is given a segment address by
specifying the segment number with a number statement.

115

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Briefly, makerom does the following:
e scans the input specification file for syntax erroi‘s;

* sizes the segments, creating absolp ymbols for segment addresses
and ROM locations;

» performs final relocations of r
using a link editor that can link
different addresses;

e extracts the text and ir{ tialized data p
resultmg fully linked T
onto the ROM image.

‘for each segment from the
and packs these portions of the segment

Mixing CPU and SP Addresses

It is permissible to h.rg, hents given a CPU virtual address with those

SCREEN _WD*2, SCREEN_HT*Z, G_MAXZ/2, 0,/* scale */
SCREEN_WD*2, SCREEN_HT*2, G_MAXZ/2, 0,/* translate */

spinit_dl[] = {

sSPViewport (&vp),

sS8PClearGeometryMode (OxEL£LEEEEE}
gsSPSecGeometryMode (G_SHADE | G_SHADING_SMOCTH),
gsSPEndoisplayList (),

};

The beginning of the display list rspinit_dl isembedded somewhere in the
segment. Rather than computing its offset into the segment, the display list
is simply provided symbolically:

116

NINTENDO DRAFT BASIC MEMORY MANAGEMENT

gSPhisplayListi{glistp++, rspinit_dlﬁ ;

The compiler and linker do the v
rspinic_dl within the segmen Thus
list rspinit_dl changes, the c valid (and more
readable). Note that the CPU 4 y of the data in this
display list; the CPU just passes a ref isplay list data to the SP.

omputing the address of
g ,relatlve location of the display

g the mixed symbol table to work
the CPU and read by the SP. In this case, a
single SP segment refersto tw erent underlying DRAM regions. This
technique can be useful when stati¢ display lists need to refer to dynamic
data that is double buffered. The actual DRAM location currently being
pointed to isswapped by setting the appropriate SP segment register.

A more complicated exa;
with memory regions cr

projection;
Mtx modeling;

Gfx glist{20481;

amic_t;

_t dynamicBuffer[2];
t *dynamicPointer = &dynamicBuffer[0];

:The segment contents can then be modified by the CPU directly:

guOrtho (&dynamicp->projection,
-SCREEN_WD/2.0, SCREEN_WD/2.0,
SCREEN_HT/2.0, SCREEN_HT/2.0, 1, 10, 1.0);
guRotate (&dynamicp-»>modeling, theta, 0.0, 0.0, 1.0);

The SP view of the dynamic segment is created by creating a relocatable with
the following parallel definition and assigned to, for example, segment
register 4 in the ROM specification file:

NUG6-06-0030-001G of October 21, 1996 117

NINTENDO 64 PROGRAMMING MANUAL DRAFT

118

'The SP segment register 4 is then ma

Dynamic_t rspdynamic:

Since the relocatable contains only uninitialized data (bs tual bits on
the ROM are used. But more import, the symbol rspdynamic is made
available to other objects. Its value s the'segment address of the dynamic

segment.

dynamic segment with the following co

display lists, to build display lists th
section:

imodeling,

gsSPMatrix {&dyr
2 | G_MTX_LOAD|G_MTX_NOPUSH} ;

G_MTX_MOD

AIPS R4300 CPU transparently caches data accesses on a onboard data
. Ordinarily this cache is of no concern to the application, but when an
al agent such as the SP or DMA engine is invoelved, the application
tist be aware of the caching implications.

The data cache implements a “write back” replacement policy which means
that data stores are held in the cache until the entire cache line is written
back, usually due to a cache miss thatrequires the same cache line. The cache
is not coherent with respect to physical memory and thus cache lines must
be explicitly written back to memory prior to their use by another processor
such as the SP.

NINTENDO

DRAFT EMORY MANAGEMENT

NU6-06-0030-001G of October 21, 1996

corresponding cache liriés. The
available to the application tha e used to construct the arguments to
the osInvalDCache(3P) routines. Therni the actual DMA from ROM to DRAM
as well as the clearing of the uninitialized data (bss)

nt. It is important that the clearing be performed before
d. Again, makerom(1P) generated symbols may be
¢ is some sample code that illustrates the process:

T tRomStart{], _newSegmentRomEndl[];
egmentStart[];

char _newSegmentDataStart{], _newSegmentDataEnd[];
char _newSegmentBssStart[], _newSegmentBssEnd[];

valDCache {_newSegmentDataStart,
newSegmentDataBEnd-_plainSegmentDatasStart);

artDma (&dmaIOMessageBuf, OS_MESG_PRI _NCORMAL,OS_READ,
2 J_newSegmentRomStart, _newSegmentStart,
(u32)_newSegmentRomEnd - (uld2)_newSegmentRomStart,
&dmaMessageQ) ; i

bzero ({_newSegmentBssStart,
_newSegmentBssEnd-_newSegmentBssStart) ;

void) osRecvMesg(&dmaMessageQ, NULL, OS_MESG_BLOCK) ;

Physical Memory Ailocation
The Nintendo 64 hardware contains four megabytes of “nine bit” DRAMS.

The normally hidden ninth bit is used for antialiasing and z-buffering
hardware. It is recommended that the framebuffer and z-buffer reside on

119

NINTENDO 64 PROGRAMMING MANUAL DRAFT

different megabyte banks to take advantage of ¢
circuitry

By default, the boot location reside

beginseg
name “code”
flags BOOT OBJECT
entry boot
ad 3

include usr/lib/PR/gspFasc3D.o”
include usr/lib/PR/gspFastiD.dram.o”
include “S$({ROOT) /usr/lib/PR/aspMain.o”

beginning with the boot segment specified in the specification file to the boot
location. .

120

NINTENDO DRAFT ADVANCED MEMORY MANAGEMENT

Chapter 10

Advanced Memory Management

Intreduction

ontains useful information and tricks that may
but it is not expected that all applications will

lay list and includes it in a segment given a CFU addressable
KSEGO address. The physical address of this display list can be easily
determined with the OS_KO_TO_PHYSICAL(3P) macro or the
VirtualToPhysical(3P) routine. The resulting physical address corresponds

ollows
31 28 24 0]
XXX seg ID segment offset '

NU6-06-0030-001G of October 21, 1996 121

NINTENDO 64 PROGRAMMING MANUAL DRAFT

If the application creates a mapping usmg segnt eginning physical
address of 0x0, the SP can correctly access objects ittBPRAM when given a
physical address.

the SP microcode takes it a step
ess are not used, they are
EGO address to a
done by the

This simplifies the situation some
further: Since the upper four bits
ignored. Thus an implicit mappi
physical address, and no explicit co
application.

To summarize, as long as
segment number 0 to off
correctly by the SF.

gment table mapping is done from
KSEGO addresses can be interpreted

Using Overiay

122

NINTENDO DRAFT ADVANCED MEMORY MANAGEMENT

beginseg
name “kernel”
flags BOQT QBJECT
entry boot
stack bootStack +
include “kernel.cd
include “${ROOT)/u

endseg

beginseg
name “‘plain?
flags OBJECT
after “kernel”
inglude “plain.o”

“overlay”

e “kernel”
inelu “plain®
include “texture”

endwave

Note the use of the after keyword to place both of the overlay segments at the
same address.

Prior to loading a segment into memory, the application must invalidate the
corresponding instruction and data cache lines. The makerom(1P) makes
appropriate symbols available to the application that can be used to
construct the arguments to the osInvallCache(3P) and osInvalDCache(3P)
routines, Then the actual DMA from ROM to DRAM may be performed, as
well as the clearing of the uninitialized data (bss) section of the segment.
Again, makerom(1P) generated symbols may be used for the bzero() call. After

NU6-06-0030-001G of October 21, 1996 123

NINTENDO 64 PROGRAMMING MANUAL DRAFT

entire process:

extern char _plainSegmentRo
extern char _plainSegments
extern char _plainSegmentTe nSegmentTextEnd[];
extern char _plainSegmentDat nSegmentDataEndl[];
extern char _plainSegmentBssStar inSegmentBssEnd{];

osInvalICache(_p egmentTextStart,
_plainSegment _plainSegmentTextsStart) ;

osPiStartDma {&dmalOMessageButy OS _MESG_PRI_NORMAL, OS_READ,
(u32)%pla1nSegmentRomStart _plainSegment&tart,
SegmentRomEnd -~ {(u32)_plainSegmentRomStart,

gssageQ, NULL, OS_MESG_BLOCK);

example linked both 0verlay5 into a single, fully relocated
vinary is used for two purposes. First, the text and data sections
are extracted'from this binary and packed on the ROM. Second, this binary
can be given to the Nintendo 64 debugger, gvd(1P). Although the
spemﬁcatlon file above will create an operationally correct ROM image, the
ary will confuse the debugger. This is because multiple symbols will map
e same address, and gvd may err when it tries to find the correct source
or a given program counter value, for example.

This problem can be circumvented by creating multiple binaries, or waves,
each with a distinet symbol table. The following specification file excerpt
illustrates this:

beginwave
name “plain_wave”
include “kernel”
include “plain”

124

NINTENDO

DRAFT ADVANCED MEMORY MANAGEMENT

endwave

beginwave
name “texture_wave”
include “kernel”
include “texture”
endwave

Using this technique, procedure and varig ames from the plain segment
are kept distinct from th f the texture segment. The “Switch Executable”
menu entry from the gu in” menu can be used to select the symbol to

“use while debugging.

icant caveat when using multiple waves. The contents of
e 1dent1cal in each of the waves the segment is included

There is one

at the segment procedure entry point in both of
e at the same location. This requirement can be

Using the. Region Allocation Routines

Previous examples were primarily concerned with static memory allocation;
y applications may find it necessary to do some form of dynamic
cation. For situations where the allocation is always done in fixed size
nks, a family of region allocation routines are provided. These routines
11l carve up a larger buffer into fixed some memory regions that are
managed by the library. The routines of interest are:

¢ osCreateRegion

This function initializes an allocation arena given a memory address,
size, and alignment.

s osMalloc

NU6-06-0030-001G of October 21, 1996 125

NINTENDO 64 PROGRAMMING MANUAL DRAFT

This function allocates and returns the ad :
and properly aligned buffer from a given regiofi."This funetion will fail
and return NULL is there is no available free buffer: i

+ osFree

This routine returns a previo
pool.

¢ 0sGetRegionBufCount

This function returns?
+ o0sGetRegionBufSize

This function returns ﬁ1e actual
padded to the given alignment.

size, after having been possibly

tes a region, allocates a buffer, and then frees

void *region:
char regiof
u64 *buffer

v [REGION_SIZE] ;

region = ogCreateRegion(regionMemory,
sizeof (regionMemory),
BUFFER_SIZE, OS_RG_ALIGN_16B);

fer osMalloc{region);

/* do some work that uses ‘buffer’ */

osFree{region, buffer);

Managing the Translation Lookaside Buffer
Although most applications will find the direct mapped KSEGO address

space of the CPU sufficient, it is possibie to use the mapped address space
by setting appropriate Translation Lookaside Buffer (TLB) entries.

126

NINTENDO DRAFT ADVANCED MEMORY MANAGEMENT

Nevertheless, it may be helpful for memory protecho {
addresses. In addition, TLBs can beay as yet another method to reconcile
(since SP addresses fall within

0 has 32 entries, each of
associative, which means
&itidex number implies nothing
y can hold any mapping. A number of page
64 KB, 256 KB, 1MB, and 16MB. Each TLB
JThe following routines are used to

each entry is essentiall
about the mapping and
sizes are supported: 4 K Y
entry may map a different page s
manage the TLB:

ntents of a single TLB entry to the given virtual
physical address, page size, and address space
identifrer.

* osUnmapTLB

0s55etTLBASID
This function sets the current address space identifier register.

Two TLB entries cannot map the same virtual address space. If this
occurs, accesses to the address will cause a TLB refill exception. Any
overlapping mapping creates this condition, even when a mapping
with a smaller page size is a subset of another mapping with a larger
page size:

osMapTLB (0, 0OS_PM_16K, (void *)}0x0,0xaC0200,-~-1,~1);
osMapTLB(1l, 0S_PM 4K, (veoid *)0x2000, 0xb000, -1, -1});

NU6-06-0030-001G of October 21, 1996 127

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Another case involves different TLB entries;
different pages of an odd/even pair. The follo
individually map an even and an odd physical page, i
overlap condition:

0SMapTLB (0, OS_PM_4K, (vo. 0650%2000,-1, -1};
osMapTLB({l, OS_PM_A4K, (v O0xb00C, -1}

v with both mappings:

osMapTLE (1, OS_PM_} id *)0x2000, OxaQ0d, OxbO0QC, -1);

* The mapped addresses must be aligried to the page size. This applies to
both the virtual and physical pages mapped.

address (for data accesses).

_ihally, no support is provided for handling and recovering from TLB

128

NINTENDO DRAFT ULTRA 64 GRAPHICS

PART

Ultra 64 Graphics

NU6-06-0030-001G of October 21, 1996

NINTENDO 64 PROGRAMMING MANUAL DRAFT

NINTENDO

DRAFT GRAPHICS MICROCODE

Chapter 11

Graphics Microcode

Graphics are rendered in Nmtend064 games by creating a graphics display
display list to the RSP. In order for the RSP to process
hcatton using system ca]ls loads graphlcs

ion has up to three subtypes. The basic versions are know as, gspFast3D,
gspE2DNoN, gspLine3D, gspTurbo3D, gspSuper3D, gspSprite2D. Each
basic yersion has a different set of graphics rendering features. Each subtype
has the:same set of graphics features, but varies according to how the RSP
ymmands to the RDP. The three subtypes are regular, .dram and

<basicTypes.dram.o, and <basicType>.fifo.o.

NU6-06-0030-001G of October 21, 1996 131

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Microcode Functionality

gspFast3D

gspFast3D microcode is the most
also the microcode used in the maj

and far clipping,
5, fog, and matrix stack

gspLine3d miiérocode features many of the features of gspFast3D, except
instead of drawing triangles, it draws 3D lines. This is useful for producing
wireframe effects. If a gSP1Triangle command is encountered it will draw
“ihe three edges of the triangle, but not the center portion of the triangle.

urbo3D

gspTurboe3D microcede is a reduced-feature, reduced-precision, microcode
that delivers significantly faster performance. The features not supported by
gspTurho3D are: Clipping, lighting, perspective-corrected textures, and
matrix stack operations. The quality of the anti-aliasing also suffers, due to
the lack of precision used by gspTurbo3D. This loss of precision can also
manifest itself as various visual artifacts, depending on the content.
gspTurbo3D uses a different format for the display list.

132

NINTENDO

DRAFT . GRAPHICS MICROCODE

NU6-06-0030-001G of October 21, 1996

gspSprite2D

gspSprite2D microcode is optimized for drawing 2D @1images. Sprites
are implemented as textured screemirectangles. gspSprite2D does not
support 3D lines 3D triangles, operations, matrix operations,
lighting, or fog. All of the DP ¢comman s blender modes, and color
combiner modes are supporte used to arrange the order
of the sprites from front to back

gspSuper3D
gspSuper3D is a reduced precisionmicrocode that supports the same
display lisi format as gspFast3D. Thisreduced precision will increase

can cause visual artifacts. Although gspSuper3D uses the
s gspFast3D, gspSuper3D does not support perspective

133

NINTENDO 64 PROGRAMMING MANUAL DRAFT

RSP to RDP command passing

All types of RSP microcode generate commands for the RD) e method
used to pass the com.mands from th R -to the RDP determines the suffix

are written to a buffer in dmem,
If the buffer fills, the next time th

by processing large triangles. Micr
“ fifo.o” suffix appended to its name.

When usin o version of a microcode, the application must pass a
pointer to as the fifo buffer, in the task output_buff field
The size of : in the output_buff_size field. In order for fifo
to have a positive effect on performance the size of the buffer should be
greater than 1K.

eparately with a call to osDpSetNextBuffer (). (This form of
assing is very useful for debugging in conjunction with the tool

designed to uge this method has the “.dram.o” suffix appended to its name.
Tasks using the .dram microcode need a pointer to a buffer in the

put_buff field of the task structure, and a size in the output_buff_size.
se RSP commands usually expand when converted into RDP

ands, this buffer needs to be larger than the size of the RSP display list.

134

RSP GRAPHICS PROGRAMMING

NINTENDO DRAFT

Chapter 12
RSP Graphics Progra

This document describes the graphics state machine of the RCP, with a
particular focus.on the RSP (see “RSP: Reality Signal Processor” on page 44).

e, CPU with an 8-element vector unit, featuring a
oty IMEM (4K bytes or 1K instructions) and small

re several important features which require the application
er to be consciously aware of the distinctions between the RSP
(and program each of them separately), but for the most part,
the RSP serves as the single interface between the application program and
the graphics pipeline:

igure 12-1 Nintendo 64 Graphics Pipeline

R4300 RSP RDP

game processing 3D geometry #| polygon
animation transformation + rasterization +
GBI assembly Lighting texturing

NUG-06-0030-001G of October 21, 1996 135

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Topics covered in this document include:

s RSP overview

s display list processing
¢ matrix state
s vertex state

* vertex lighting state

+ texture state

* clipping and cu
* primitives

* controlling the RDP state

136

NINTENDO RSP GRAPHICS PROGRAMMING

RSP QOverview

P task is accomplished with
- called the task list (or task
header) which is type OSTask (def . The task list contains all
the information necessary to begin tas n, including pointers to the
microcode to run. Thissteucture is filled iri by the application program.

A detailed descriptionof invo
of this section (see “RCP Task M
procedure is straightforward:

ssumed to be halted (or the R4300 halts it).

of a task on the RSP is beyond the scope
gement” on page 65), but the essential

the R4300 clears the RSP halt status (allowing it to run).

Fromythis point, the boot microcode takes over, loading the task microcode
(and data) specified in the task list, and jumping to the beginning of the task.

One itemiin:the task header is a pointer to the initial data to process (in the
case of a graphics task, this is a display list pointer).

Display List Format

The display list which the gspFast3D, gspF3DNoN, or gspLine3D microcode
running on the RCP interprets is defined as a stream of 64-bit commands.

Applications written in C will usually use the interface from the file gbi.h.,
which will be included via inclusion of ultraé4.h. Although the construction
of display lists looks like a familiar series of function calls, they are actually
just bit-packing macros. These macros are described in detail in their
individual man pages.

NU6-06-0030-001G of October 21, 1996 137

NINTENDO 64 PROGRAMMING MANUAL DRAFT

138

Each macro has two forms, i.e. gSPTexture{) an
between ‘¢’ and “gs’, is that the ‘g’ form is an in-1
additional argument {pointer of the display list being cofis
display list pointer must be of the forpniiiptr++", in order for the macros to
work properly.

The “gs” form is for static declara
structure initialization sequence.

Throughout this docum
form also applies, and cou

describe the functional unit of the RCP Which will operate on this command.
This is certainly.gconfusing, especially to application programmers familiar
hics API’s such as OpenGL. In order to achieve
necessary to expose the two major units of the
er. The primary reason for this is resource
enough RSP IMEM to build a display list
processor that is rich to hide these details from the application
programmer. In add ven the dedicated application of the RCP (video
 any CPU cycles spent “gift-wrapping” the graphics APl are a waste
timeg; The binary encoding of most of the display list commands is the
lowest'possible level: they are the bits that control the hardware.

constraints; there is simply 1

Exposing te two functional units of the RCP also limits the amount of state
shared betwegn them. The major drawback of this design decision is that
you must often tell the same thing to the RSP and the RDP. For example, in
order to “turn on texture mapping” you must turn it on in the RSP and tum

‘on in the RDP. This may seem clumsy at first, and indeed this is a common
e of display list bugs, but the parallel execution of the RSP and RDF,
plusthe lean display list processing machine make this trade off

Segmented Memory and the RSP Memory Map

All DRAM addresses in the display list are segmented addresses. The
mapping of segments and their base addresses is provided using the
gsSPSegment () macro. It is the responsibility of the application to maintain
this mapping and inform the RSP via the display list.

NINTENDO

DRAFT \PHICS PROGRAMMING

NUE-06-0030-001G of Qctober 21, 1996

The RSP maintains an associative table of up#g 6%
base addresses. Any DRAM address in the disp
using this table.

Note: By convention, segment table e
addressing, and shOuld‘be set to 0x0.

The RSP software can only aégess DMEM. All data must first be transferred
into DMEM using DM# ope s, which must be 64-bit aligned.
Invocation of the DMA engine idled by the RSP software, but the

application programmer needs to be aware of the boundary requirements.
g e that is to be passed to the RSP must be aligned to a 64-bit

f the CPU creating a display list in DRAM for eventual
n by the RSP. The display list data is read from DRAM via a
DMA mechanism. Unfortunately, DRAM locations may be “stale” with
respect to newer data bei.ng held in the R4300's data cache. The R4300 cache
rechanism jmplements a “write-back” caching policy which means
tvidual stores to memory are not immediately written to memory. To
pdate the memory contents with more recent cached data, the CPU must
st write back cached data to the DRAM. Then, and only then, will the RSP
be able to DMA the correct data for display List processmg

Conversely, the contents of memory may be more recent than cached datain
some situations when the RSP modifies memory (an obvious example is
updating the color frame buffer). In this case, the CPU’s cache may contain
stale data and the CPU should invalidate the cached data to force an access
directly to DRAM and get the most recent data.

139

NINTENDO 64 PROGRAMMING MANUAL DRAFT

As a practical note, this second scenario only ar
applications.

140

NINTENDO DRAFT

PHICS PROGRAMMING

Display List Processing

g is necessary to

The display list (or command}
structure, up to 10 levels deep

contain a pointer to
another display list, and S0 on. The

s the display list using a

in the same locahon unti} the RSP is finished. This sounds cbvious, but is a
yery common bug; ly the result of incorrect usage of double-buffering
hniques. In addition, if the RSP task is interrupted (see “Signal Processor
;i *(SB) Functions” on page 109), all of the data must remain in the same

on when/if the task is restarted

Connecting Display Lists

Hierarchical display list connection can be made with the gsSPDisplayList()
macro. The current display list location is pushed on the display list stack
d processing begins with the new display list.

4 Table 12-1 gsSPDisplayList(Gfx *dl)

" Parameter Values

dl pointer to the display list to attach.

NU6-06-0630-001G of October 21, 1996 141

NINTENDQO 64 PROGRAMMING MANUAL DRAFT

Branching Display Lists

A display list branch without a push allows you to “chai gether
fragments of display lists for more efficient memory utilization.

Table 12-2 gsSPBranchList(Gfx *dl)

Parameter Vaiues

pointer to,

none

&

Few Words about Optimal Display Lists

ist processor running on the RSP caches display list commands
in groups of gbout 32. This means the optimal dispiay list size is a multiple
of 32. A display list of 33 commands (or 65, etc.) would require the display
list cache to be refilled during processing, possibly causing a wait state
epending on the DMA engine activity). Obviously not all display lists can
the list processor running 100% optimally, but it is something to keep
d when tuning your application.

1other form of display lists which cause less than optimal processing are
1splay lists that look like this:

—

—-

142

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

NU6-06-0030-001G of October 21, 1996

Since the display list engine is stack-based, a'di
unnecessary indirect pointers will cause lots of urinece
pops, which do have a cost.

Constructs like this are unavoi

geometries among objects, bu
display list pointers together.

143

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Matrix State

144

The “geometry engine” in the RSP implements a fixed-point'matrix engine
with the following matrix state:

; n be loaded onto the
stack, multiplied with the top of ti ’ of the stack, etc. This

sometimes scales).

A 1-deep projection and vt gfiatrix “stack”. New matrices can be
loaded onto the stack, multiplied wi top of the stack, but cannot be
pushed or popped. This matrix “stack” 1s primarily used for the projection
matrix and theyiewing matrix. The projection matrix (often created with the
QOrtho functions) is loaded onto the stack, and then
ted with the gul.ookAt function) is multiplied

A “perspective normal " factor. This is used to improve precision of
the fixed-point perspective computation.

oup of vertices is loaded, they are first transformed by the matrix
rent top of the modeling stack multiplied by the projection
ertex transformations are done only when they are loaded;
matrix down later will not change any points already in the

matrix).
sending a riey
points buffer.

The modeling matrix stack resides in DRAM. It is the application’s
nisibility to allocate enough memeory for this stack and provide a
r to this stack area in the task list.

format of a matrix is a bit unusual. It is optimized for the RSP’s vector
unit {used during the multiplies and transformations.) This format groups
all of the integer parts of the elements, followed by all of the fractional parts
of the elements. This unusual format is not exposed to the user, unless
he/she chooses not to use the matrix utilities in the libraries.

PHICS PROGRAMMING

NINTENDO DRAFT

Insert a Matrix
Inserts a new matrix into the display list.

Table 12-4 gsSPMatrix(Mtx *m, w

Parameter Values
m
P
G_MT; r G .MTX_NOPUSH
Pop a Ma
This co

Parameter

unused

Perspective Normalization

This scale value is used to scale the transformed w coordinate down, prior to
dividing out w to compute the screen coordinates (which are similarly
;scaled). The effect of this is to maximize the precision of this divide.

NUE-06-0030-001G of October 21, 1996 145

NINTENDO 64 PROGRAMMING MANUAL DRAFT

The library function guPerspective() returns one
value, which is a good estimate for most cases:

Figure 12-2 Perspective Normalization Calculation
near plane

(represented as an unsigned 16-bit fraction)

izes w=1.0 halfway between the near

{unsigned short int s)

Values

16-bit unsigned fractional perspective normalization scale.

Note on Coordinate Systems and Big Numbers

RSP is a fixed point machine, so keeping coordinate systems within a
range is important. If numbers in the final coordinate system (or
ediate coordinate systems) are too big, then the geometry of objects
distorted, textures can shift erratically, and clipping can fail to work
rectly. In order to avoid these problems keep the following notes in mind:

B 1) No coordinate componant (X, y, z, or w) should ever be greater than
32767.0 or less than -32767.0

2) The difference between any 2 vertices of a triangle should not have
any componants greater than 32767.0

146

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING

abs(xl—-xZ)
abs{yl-y2) + abs
abs(zl-z2)

A reccommended way of avoiding trouble is to never allow any componant
to get larger than 16383.0 or smaller than -16383.0. To ensure this find:

= the largest translation (ie number in the 4th row of the matrix) in the
trix made up of the concatenation of the largest modeling matrix, the
t LookAt matrix, and the largest Perspective matrix you will use.

Now M* 5+ T < 16383.0 should be true, If you experience textures
wobbling or shifting over a surface, clipping not working correctly, or
geometry behaving erratically, this is a good place to check.

Few Words About Matrix Precision

" The RSP uses fixed-point 32-bit multiplies during matrix operations. Since
the product of two 32-bit numbers is a 64-bit number, only the middle 32 bits
of the answer is retained. Overflow of intermediate terms is possible,
especiallv in large coordinate systermns or unusual projection matrices.

In order to avoid fixed-point precision problems, in some cases it may be
desirable to compute the matrix in floating peint on the R4300 and just load
it.

NU&-06-0030-001G of October 21, 1996 147

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Matrix multiplies are very fast on the RSP, but
reduce matrix operations by pre-multiplying the m
or compile time.

148

NINTENDO DRAFT HICS PROGRAMMING

Vertex State

olding up to 16 Vertices. This buffer
utive vertices, beginning at any

The RSP state includes a vertex bufl
can be loaded with any number
location.

Tabie 12-7 gsSPVertex(Vix *v, unst

Parameter Values

v pointer o dlist of vertices.
n numbere
v0 vertex buffer loc load vertices info.

ed again, if the matrix state changes, the old
rtices are not affected. This feature can be
loited to constriiétidata that is knit together between two groups of

< with different transformations (such as an elbow joint of a character).

Since the vertex processing is heavily vectorized and pipelined, it is
i t that each load loads as many vertices as possible.

Since the viirtex loading is a relatively slow operation, it is also important
that any triangles that share vertices be rendered using the same vertex state,
rather than re-loading these same vertices later.

the “Note on Coordinate Systems and Big Numbers” on page 146 for
o on keeping your coordinates from becoming too big.

NU6-06-0030-001G of October 21, 1996 149

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Texture State

150

The following command sets the RSP texture state:

Table 12-8 gsSPTexture(int 5, int t, in

Parameter Values

s
t -
levels
tile

on

a texture may be wrapped is limited by the
ordinate.

¢ tile parameter tells the pipeline which of the 8 possible tiles in the RCP
tire memory to use when texturing the following primitives

Thé pn parameter tums texturing on or off in the RSP. If texturing is turmed
in the RSP, textured primitives will not be generated, regardless of the
RDP state.

Likewise, setting the RSP state is necessary, but not sufficient to generate
textured primitives. The RDP state must also be set in the appropriate
manner, see “TX: Texture Engine” on page 186.

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING

Texturing is sensitive to large numbers and*g
Note on Coordinate Systems and Big Number:
section for notes on how to avoid texturing problems: as textures
shifting across surfaces, textures , and edges between polygons
becoming visible in the textur

NU6-06-0030-001G of October 21, 1996 151

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Clipping and Culling

are a good idea. Crude visibility determing
level-of-detail, and careful® 101 ¢ar help improve clipping
performance dramatically.

the Note on Coordinate Systems and Big'Numbers in the Matrix State
section for notes on how to avoid clipping problems.

mapped by the gbPViewport command and usually
to the entire frame buffer. Objects outside this area are scissored

set the area which is clipped between 1 and 6 times the size of the viewing
frustrum Polygons which are completely on the screen are drawn without
pping. Polygons which are partially onscreen but completely within the
ed frustrum are drawn without clipping (the extra portions are

ted away). Polygons which are entirely offscreen are trivially rejected
er they are inside or outsid the frustrum). The only polygons which
slipped are the large polygons which stretch all the way from onscreen
utside the enlarged clipping boundary. There is some overhead for
drawing sections of polygons which are then scissored away, but it is much
smaller than the time to draw actual onscreen pixels and is usually faster
than clipping. Different values of ClipRatio can be tried to obtain the best
performance. High values of ClipRatio are suspected to be associated with
“texture shuffle” bugs, so if you see the texture shuffling you could try lower
values of ClipRatio.

152

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

NU6-06-0030-001G of October 21, 1996

To set the ClipRatio so that the clipping frus
gsSPClipRatio(FRUSTRATIO_3},

You can use values of FRUSTRA!
Near Clipping and gspF3

3D clipping causes geometry which isiotitsidl
“clipping Frustrum” tobeclipped away (ieniot rendered). The left, right, top
and bottom of this clip strum box correspond to the left, right, top,
and bottom of the screen. Ho the side facing towards the viewer and
the side facing away from the vi do not correspond to physical parts of
the screen. The “far plane” is the sidé of the box farthest from the viewer.
farther away than this plane are not rendered. Likewise
ide of the box closest to the viewer. Objects which
than this plane are not rendered. The near and far
] isual problems. Objects which get too far away
will suddenly dissappe the cross the far clipping plane. Also, objects
which get too close.fo. ewer will suddenly dissappear as the cross the

is a solution to these problems. The near plane problem can be
partially solved by using the gspF3DNoN microcode (which is an acronym
for Fabt:3D No Near clipping). The gspF3DNoN microcode will not clip
een the viewer and the near clipping plane (objects which

‘e been clipped away by the gspFast3D microcode). However, Z
buffering will not work correctly in this area. Objects between the viewer
and the near plane will hide objects which are behind the near plane, but
jects between the viewer and the near plane will not correcly hide other
jects between the viewer and the near plane. For this reason it is
portant for the application to ensure that only one object at a time comes
“Joser to the viewer than the near plane.

There is a solution to the far plane problem too. Objects which get farther
away from the viewer than the far plane visually “pop” out of view, and
objects approaching the viewer “pop” into view. The Fog effect can be used
to make objects gradually fade into a distant fog, or slowly appear through
a distant fog, instead of popping into and out of view. See the Vertex Fog
State section for details.

153

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Back-Face Polygon Culling

The geometry engine of the RSP implements a flexible polygort culling
algorithm; either the front-facing, the#fdk-facing, neither, or both types of

This offers the programmer the most da
ordered in any direction or re-used with
achieve effects such as interior surfaces,

G_CULL_FRONT
G_CULL_BACK
G_CULL_BOTH

Volume cul ng

e RCP can perform volume culling. The volume of an object is described
RCP and the RCP only draws the object if the described volume is
y or partially onscreen. If the volume is entirely offscreen then the

y list is quickly skipped.

e volume of an object is described with a number of vertices surrounding
the object. The vertices may be part of the object ornot. They can be 4
vertices describing a pyramidal volume, 8 points describing a cube, or any
other convex shape. These vertices should be sent to the RCP using a
gSPVertex command just like regular vertices (note: you may want to turn
lighting and fog off when these vertices are sent for better performance).
Then the gsSPCullDisplayList command is sent. If the volume is entirely off
the screen then the command acts like gsSPEndDisplayList and the rest of

154

NINTENDO DRAFT PHICS PROGRAMMING

the display list is skipped. Otherwise the coq‘ as a NOOP and the

display list processing continues.

NU6-06-0030-001G of October 21, 1996 155

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Vertex Lighting State

The RCP graphics pipeline provides a number of sophistigited real-time
lighting effects, including ambient (upiform) lighting, diffuse (directional)
coordinate generation (fog
ése effects and perform the

2) Replace colors w Sogmal components in the vertices of objects to
be rendered. ;

3) Define light structures with th
i ights and send them to the RCE.

of the shape of the specular highlights to be
to the RCP.

Steps 1), 2), 33:4), and 7) are required for diffuse and ambient lighting. All
steps are required for specular lighting. These steps are described in further
detail below.

Microcode

ghting requires the gspFast3D or gspF3DNoN microcode. This microcode
must be referenced in the “spec” file when the rom image is created. The part
of the microcode that performs the lighting calculations is not normally
resident, but is brought in through an overlay when lighting calls are made.
This has performance implications for rendering scenes with some objects
lighted and others colored statically. Moreover, the lighting overlay
overwrites the clipping microcode, so to achieve highest perfermance, it is
best to minimize or avoid completely clipped objects in lighted scenes.

156

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING

o

Normal Vector Normalization

To light an object, the vertices which make up the objegtai
instead of colors specified. The onsists of 3 51gned 8-bit numbers

the z into the blue. Alpha
remains unchanged. The normal vec ormalized. This means
that square_root{x*x + y*y + z¥z)== alize the normal (x,y,z)
determine d=127/squdt %*7), Then form XIN=x*d;
YN=y*d; ZN=z*d. The 1 a,l1zed normal vector is {XN,YN,ZN). {Note the

libuiltra/gu square_ro

ttation. The RSP microcode supports up to 7
bient light in a scene. Each directional light has a
ent lights have color only. Regardless of the

Important note on Matrix Manipulation

It is important, when lighting, that the projection matrix and the viewing
martrix (ie matrices which describe the view into the world coordinate
ystern) be placed on the projection matrix stack(G_MTX_PROJECTION),
hile matrices used to describe the position and orientation of objects within
world coordinate system are placed on the modeling matrix stack
(G_MTX_MODELVIEW).

Light Structure Definition

Lighting information is passed to the RSP in light structures. Since the
number of diffuse lights can vary from 0 to 7, there are 8 macros used to
define lights: gdSPDefLights0, gdSPDefLights1, gdSPDefLights2, ...,
gdSPDefLights7. The number which is the last character in the macro

NU6-06-0030-001G of October 21, 1996 157

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Lights3 light_structurel :
ambient_red, ambient_. mhient_blue,
lightlred,; lightlgreen, tlblue,

sightlx, lightly, lightlz,

{ green, lightZblue,

light2y, lightZz,

light3red, light3gresgi:, light3blue,
1ight3x, light3y, light3z):

lightired,

=

will define
directional L&
color of the'li

.called light_structurel with an ambient light and 3
les with red, green, blue suffixes represent the

4 = gdseDefLightsl{
/* ambient color red */
255, 0, 0,

/* green light from the upper left */
0, 255, 0, -80, 80, 0});

void any ambient light, make the ambient light black (0,0,0). To include
y ambient light, and no diffuse directional light, use gdSPDefLights0:

Lights0 my_ambient_only_light = gdSPDefLights0(
/* blue ambient light */
0, 0, 255);

158

NINTENDO

DRAFT RSBGRAPHICS PROGRAMMING

Note on Light Direction

Thelight direction does not need to be normalized. However, there are some
problems that can arise from usi directions w1th magmtudes that are

normalization of the lights will overtlow and you will get lights that are too
oo small then the nortmalization will underflow and you
too dim. Note the number 23040 comes from the
(32768) because the result of the matrix multiply of

NU6-06-0030-001G of October 21, 1996

gsSPSetLights3 (light_ structureJ.) , or
gs8PSetLightsl (my_light}, or
gsSPSetLights0 (my_ambient_only_light},

in a static display list. (To activate the lights in a display list dynamically the

" corresponding gSPSetLights# macros would be used.) Once lights are

activated, they will remain on until the next set of lights is activated. This
implies that setting up a new structure of lights overwrites the old structure
of lights in the RSP,

To turn on the lighting computation so that the lights can take effect, the

lighting mode bit needs to be turmed on. This is accomplished using the
macro:

159

NINTENDO 64 PROGRAMMING MANUAL DRAFT

160

gsSPSecrGecmetryMode (G_LIGHTING)

Object Rendering
Primitives section). The objects
vertex coiors Th1s means any color ¢

in non-lighted rendering
processing time. Therefor

NOTE ON M. PROPERTIES

g tforeach light source and use the result as the lights
ince colors range from 0 to 255, the result will have to be normalized
ding by 255 in order to obtain a resulting light color in the 0 to 255
ther words, if your material color is (mr, mg, mb) and your light
):then the light color you would use would be (mr*1r/255,
*Ib/255). For example to light a purple object
(color=255,0;255} with yellow ambient light (color=255,255,0) and cyan
directional light (color=0,255,255) you could use:

ightsl mareriall_ light = gdSPDefLightsl{
/* ambient cocler red = purple * yellow */

255, 0, 0O,
/* blue directional light = purple * cyan */
0, 0. 255, -80, -80, 0):

If you then want to change the material color (eg to light an object of
different color) you can define a 2nd Light structure with different light
colors but the same directions and send it to the RCT after the first object’s
vertices and before the second objects vertices. For example to light a second
object which is yellow (color=255,255,0) with the same yellow and cyan hght
as above you could use:

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

NU6-06-0030-001G of QOctober 21, 1996

Lightsl material2_light = gdsphefl

/* ambient color yellow = vellow

255, 255, O,

/* green directj Light = yellow * cyan */
0, 255, 0,

PERFORMANCE NOTE: the gss
overhead when they are called in ord
light. If the colors of the lights are bein but the directions will
remain the same you canuse the gSPLight macro to send the new light
structure after the 1st p; Yes vertex command and before the second
primitive’s. Note that nal lights are always referred to as lights
1-N (where N is the number of dr onal lights in the scene) and the
ambient light is always referred to as light N+1. For the example above, the
entire sequegigé would look like:

(G_,LIGHTIHG) .
iall_light),
e vertices for ebject 1 */)

gsSPLight (&t 12 1ight.1[0], LIGHT_1}.
s8PLight (&materiall_ 1 ight.a, LIGHT_ 2).

: ‘sSPVercex(/* define verticeé for cbject 2 */)
¢x render cobject 2 here */

r:Highlights

A specular highlight is the bright spot that shiny objects exhibit when the
iewing direction lines up properly with a highly directional light source.It
caused by the light from the light source being directly reflected into the
e of the observer. A specular highlight appears ona shiny object wherever

“fhe normal of the object bisects the angle between the direction of the light
“and the direction of the eye. The gspFast3D microcode can support zero, one,

or two specular highlights on an object. If there are more than 2 lightsina
scene, a quite impressive specular highlight effect can still be achieved by
choosing the two most important lights and rendering the highlights from
them. Specular highlights use texture mapping so specular highlights
cannot usually be used with texture mapped surfaces. Specular highlighting
when comnbined with diffuse lighting (described above) can produce very
realistic looking surfaces. While specular highlighting is not required to be

161

NINTENDO 64 PROGRAMMING MANUAL DRAFT

A specular highlight is basically a
the RCP requires a texture map of
highlight from most lights can be"
exponential or gaussian function Iep €
the scene contains highlights from othe dped lights such as
fluorescent tubes or glowisig. swords, the ty in rendering is no greater
provided a texture map of : :%hhght can be obtained. The center of the
1o tenter of the texture map and the texture
map must be a power of 2 in width height. In general shinier objects
reflect smaller, sharper highlights. A dull object might have a large white
dot for a spec ighlight whether it is lit by a glowing sphere or a flaming
sword. A shify 'c ob]ect would reflect the sword as a picture of the
sword and ‘ ed for highlighting different types of objects
te that many objects, such as human skin and
ighlights to some extent, often can benefit

Fthilight. The specular
ged by a ound dot w1th an

to the dﬁfusehght case. The utility procedure guLookAtHilite ﬁlls in the
elements of 2 structures, Hilite and LookAt, for use in highlighting. To
comphsh this, the two structures must be part of the dynamic segment,
ééiared as

lite hilite;
ockAt lookat;

and guLookAtHilite must be called for each object in the following manner:

guLocokAtHilitce(&throw_away_matrix, &lookat, &hilite,

Eyex, Eyey, Eyez,
Cbjectx, Objecty, Objectsz,
upx, Upy ., Upz,

lightlx, lightly, lightlz,

162

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

NU6-06-0030-001G of October 21, 1996

light2x, ligh
tex_width, tex_he

Objectx, Objecty, and Objectz “world coordinates of the center of the
object. lightlx, lightly, and lig
reflected in the 1st highlight (should be the sameas the direction specified in
the gdSPDefLights# macro). light2%, light2y, and/light2z are the direction of
the light which causes the second hlg j if ¥ou are only using one
highlight these may be.zero). tex_wi _height are the size of the
texture to be used for i _hhght and must be powers of 2.

ture is sent to the RSP with the LookAt
macro:

ts must be loaded with gsDPLoadTextureBlock
and. For example, the following call loads a
width by tex helght 4-bit intensity texture:

sDPLoadTextureRlock_4b{hilicght_texture, G_IM FMT_TI,
tex_width, tex_height, 0,
G_TX_WRAP | G_TX_NOMIRROR,
G_TX_WRAP | G_TX_NOMIRROR,
tex_width_powerZ,
tex_height_power:Z,

G_TX NOLOD, G_TX_NOLOD},

there tex_width_power2, tex_height_power2 are the logarithms to the base
f the texture width and height. Note that wrapping must be turned on,
d the texture sizes must be a power of 2 for proper operation. The texture

"loadblock macro sets a texture tile with the parameters necessary for

rendering one texture, and thereby one of the specular highlights. Setting a
second texture tile with the parameters for rendering a second specular
highlight can be done by loading another texture, but generally the same
texture can be used for both highlights. Instead, setting up a second tile if the
specular highlights are sharing one texture map can be accomplished with a
set tile call. The example following assumes the same 4 bit intensity texture
as used for the first highlight:

163

NINTENDOC 64 PROGRAMMING MANUAL DRAFT

gsDPSetTile (G_IM_FMT_I, G_IM_SIZ_4b, ™
((cex_width/2)+7)>>3,

a,

| G_TxX NOMIRROR
r2, G_TX_NOLOD,
X_NOMIRROR,

, G_TX_NOLOD),

referencing the texture. The normals’s
above. The normal projections are scaled to obtain the actual s and t values

2 calmg is applied in the RSP, It maps the negative most
1 ,or -1, into zero It maps the positive most

(tex_t_max)<<t, 0,
G_TX_RENDERTILE, G_OCN},

{ argument by 6 bits is done to account for the 510.5 16-bit
ntation of the texture coordinates (see Texture State below)
and a multiplication by one-half in the microcode.

ight Position Description

Afterthe texture is loaded, the highlight position information must be sent
t@;%he RSP. This information is contained in the Hilite structure, and is sent

t0 the RSP with the following macros:

gsDPSetHilitelTile(G_TX,RENDERTILE,&hilite,
tex_width, tex_height),

gsDPSetHilitel2Tile(G_TX RENDERTILE+1l,&hilite,
tex_width, tex_height),

where both highlights share the same texture.

164

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING

Lighting State Set Up

commands (see Primit
mode can be used, wi cy ‘deyoted to each highlight. In addition, since
each highlight can have a differeriteglor, two registers are needed to hold the
colors for combining. The Primitive Color register holds the first highlight's
color and th ironment register holds the second highlight’s color. As an

255,
255,

255), /* cyan */
255, 0, 2553, /* yellow */

gsDPSetEnvColoxr (
gsDPSecPrimColor

(although metallic objects like gold and brass usually have material-colored
highlights).

.+ Reflection mapping maps a texture onto an object using the normals of the
object to specify where on the object the texture will be mapped. If this
texture is an image of the surroundings of the object, then this rendering will
make the object appear to reflect its surroundings. This effect simulates the
rendering of objects made of chrome or having a highly reflecting,
mirror-like surface.

NU6-06-0030-001G of October 21, 1996 165

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Structure Definition

gulLockAtReflect{&thro _matrix, &lockat,

Eyex, : ; Eyez,
Chiectx, Cbjecty, Objectz,
Upx, Upy, Upz)i

where the argument on with guLookAt have the same meaning.

re the world coordinates of the center of the

T,00KAL {

&lookat)}

exture Coordinate Transformations

Reflection mapping utilizes the projection of the vertex normals in the x and
y directions in screen space to derive the s and t indices respectively for
referencing the texture. The normals must be normalized as described
above. The normal projections are scaled to obtain the actual s and t values
for the reference. The scaling is applied in the RSF. It maps the negative most

166

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING

projection of a unit normal, or -1, into zero. It
projection, or +1, into a scale value passed in
command. Suppose the maximum texture s, t coordinates a
tex_t_max. The following commandisets the scale, so that a normal project
of +1 in the x direction in scree ;
coordinate tex_s_max:

bits is done to account for the 510.5 16-bit
ture coordinates (see Texture State below)

directly behif y 2) The circle inscribed in the texture map
ries is what is u-ectly in front of you. 3) The circle with a radius of

es the radius of the circle in 2) is the objects directly to your left,
own, etc. 4) other points map respectively. ?mk\ A

The second mode (linear) derives the texture coordinates from the inverse
cosine of the x and y projection values, multiplied by the scale. In this mode
e S coordinate is the angle of the direction of the reflected vector in the XZ

tane. The T coordinate is the angle of the direction in the YZ plane. This
mode is useful because you car use a panoramic picture of the horizon for
Your texture map. The center e texture map should be the horizon
directly behind you. The extreries of the texture map to the left and right
should be the horizon in the direction which is directly in front of you. The
top of the panoramic texture map should be a constant sky color, and the
bottom a constant ground color. When the yaw of the viewing angle changes
it is a simple matter to adjust the S position of the texture map so that the
new “directly behind” position is the new center of the texture map.

NUB-06-0030-001G of October 21, 1996 167

NINTENDO 64 PROGRAMMING MANUAL DRAFT

gsSPSetGeometryMode {G_LI
G_TEXTURE GEN_LINEAR),

Reflection mapping uses texture mdg
which are otherwise texture mapped. Hgwever, reflection mapping can be
ion with one specular highlight. This is analogous to

lar highlights, and utilizes the 2 cycle mode. The

set for a second tile and accessed in the second
aighlights can be combined with reflection
pecular highlights (as bright dots) into the
‘er the lights are located. This technique

of specular highlights.

pping provides a simple means for carrying out environment
mapping. The texture map needs to be an image of the environment as seen
from the “viewipoint” of the reflecting object. The main difficulty with this
procedure is, of course, generating a suitably realistic texture map.

“'Reflectic

e simple, yet effective, way to generate an environment map is to first
the scene as viewed by the object. Render all the objects in the scene
a viewing matrix obtained from a guLookAt call where the Eyex,
7Eyez is at the center of the object and Atx, Aty, Atz is at the eyepoint.
iRender this scene into a 16 bit, 32 pixel x 32 pixel framebuffer which is not
part of the main framebuffer. Then re-render the entire scene into the main
framebuffer using the previously rendered 32x32 pixel texture'map as an
environment map for the reflective object. Larger texture maps can be used
by playing with tiling. This is not a mathematically perfect way to generate
an environment map. but it is relatively chéep, and very effective. Try using
different aperature angles in the perspective call while rendering the texture
map and turning G_TEXTURE_GEN_LINEAR on or off to tweak the effect.

168

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

Vertex Fog State

Fog alters the color of objects based on thelr distance the eye position.
Fog can be used to make objects, ‘into the background color as they get
farther away. One problem whis fixed by fog is that when an object
ped away it suddenly

e to look more and more
aches the far clipping

/¥ blend fog in AA ZB mode */
gsDPSetRenderMode (G_RM_FOG_SHADE_A,G_RM_AA_ ZB_OPA_SURF2),
/* set fog position and enable feog */

gsSPFogPosition (FOG_MIN, FOG_MAX)

gsSPSetGeometryMode (G_FOG) ,

/* set the fog color */

gsDPSetFogColor (RED, GREEN, BLUE, ALPHA),

FOG_MIN specifies the position where fog begins and FOG_MAX
represents where fog is thickest. Both values are integers and are mapped
linearly such that O={at the near clipping plane}, and 1000={at the far
clipping plane}. FOG_MAX is generally set to 1000 so that objects are
completely “fogged out” when they hit the far plane, but not before then.
FOG_MIN is set to the position where fog starts. A value of 0 will make the
object slowly change to fog color as it retreats from the viewer, while a larger

NU6-06-0030-001G of October 21, 1996 169

NINTENDC 64 PROGRAMMING MANUAL DRAFT

170

consistan

value (eg 800) will make the object clearly visib
to the far plane where it will finally begin to “fog:
perspective makes distant objects look *much® farther a
objects. Because of this some objects which don't appear
may be more affected by fog than expec ven though the FOG

value is fairly high. To remedy thjs _l?f increase the FOG_MIN
value until you get the desired eff you set FOG_MIN to
500, but objects which are about mi : e far and near planes
look foggier than they should, just incr

look better. .

a constant color {the same as the fog
color). When the horizo licated (eg clouds, gradient colors,
etc), you can make objects become trangfiarent when they are distant. To do
this don’t set the G_RM_FOG_SHADE_A render mode or the Fog color. Just
enable fog, u dpsparent render mode, and swap FOG_MAX and
should be set to 1000 to make the object completely
& far clipping plane. FOG_MAX should be a large
ect until the object is farther away than any
beyond mountains and other terrain, etc.).
the z-buffer will not keep things behind the
ent-fogged object from being hidden, so it should only be enabled
cts which are already fairly far from the viewer. This special
nt-fog mode should be used with caution (as compared with the
effect described in the preceding paragraphs which should work

Fog works well when the L

Fog is indep dant of lighting and texture mapping so it may be used in
conjunction with any, all, or none of these other effects.

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING

Primitives

Availability of different geometry primiti

ves depends’on the version of the
RSP microcode which has been Jgade i

r execuhion.

Triangles

Parameter

v0

vl ¢

v2 vertex buffer index of the third coordinate. (0-15)

flag d for flat shading; ordinal id of the vertex parameter to use for

ding:0,1,0r 2

vertex buffer index of the first coordinate. (0-15)
vertex buffer index of the second coordinate. {0-15)
unused (should be 0)

" Lines are only available when running the line microcode. All the normal
rtex attributes (color, texture, z} are also available for lines. Lines however
{ pequire separate rdp rendermodes to be set than for polygons. Consult the
man pages for more details. Z-buffered lines will enly do reads of the
z-buffer, and not writes. Thus z-buffered lines should be drawn after
z-buffered polygons.

Rectangles

All rectangles are 2D primitives, specified in screen-coordinates. They are
not clipped, but they are scissored in a limited fashion. In 1CYCLE and

NU6-06-0030-001G of October 21, 1996 171

NINTENDO 64 PROGRAMMING MANUAL DRAFT

2CYCLE mode, rectangles are scissored in the s4
COPY and FILL modes, rectangles are scissored to'fo
meaning that additional scissoring may be necessary in

program.

F, as “pass-through”
ed here for

Filled rectangles are implemented gntirel
commands with respect to the RS
completeness:

Parameter

ulx

uly

Irx, unsigned int lry, int tile, short int s, short int t, short int dsdx, short
int dtdy)

T

Parameter Values

screen coordinate of upper-left x (10.2 format)
screen coordinate of upper-left y (10.2 format)

screen coordinate of lower-right x (10.2 format)
screen coordinate of lower-right y (10.2 format)
which tile in TMEM to use

s coordinate of upper-left corner (510.5 format)

t coordinate of upper-left corner {$10.5 format)
change in s per change in x coordinate ($5.10 format)
dedv change in t per change in y coordinate (55.10 format;}

There is a related macro, gsSPTextureRectangleFlip(), that is identical to
gsSPTextureRectangle(), except that the texture is flipped so that the s

172

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

NU6-06-0030-001G of October 21, 1936

coordinate changes in the y direction, and t
direction:

Table 12-15 gsSPTextureRectangleFli
int lrx, unsigned int
short int dsdy)

Parameter Values

ulx 10,2 format)
uly y (10.2 format)
Irx screen te of lower-right x (10.2 format)

173

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Controlling the RDP State

The RSP performs two functions to support programmirig the RDP:
segmented address fix-up and handlin,

state, the RSP caches the SETOTHER.i\rI DE command, and presents a
simpler * set/c],e ; ,Jnterface through the display list. See Chapter 13, “RDP

174

NINTENDO DRAFT RDP PROGRAMMING

Chapter 13

RDP Programming

The Reality Display Processor (RDPjasterizes triangles and rectangles, and
produces high-quality, Silicon Graphics style pixels that are textured,

ivgenfigurations where all the individual blocks work
together o generate pixels! These main configurations are called “cycle
types,” because they indicate how many pixels are generated per cycle. The
llowing table indigates their peak performance. Keep in mind that these
ak numbers are typically realized on large rectangle primitives. Triangles
e variable short and long spans and these numbers degrade rapidly. The

j+1Cycle Types

Type Performance
FILL 4 16 bit pixels/cycle
2 32 bit pixels/cycle
PY 4 pixels/cycle
CYCLE 1 pixel/cycle
2CYCLE 1 pixel/2 cycles

Note: These are theoritical peak performances. In reality, due the memory
latency and buffering overhead, actual performance numbers are lower.

NU6-06-0030-001G of October 21, 1996 175

NINTENDO 64 PROGRAMMING MANUAL DRAFT

176

RDP Pipeline Blocks

the RPP pipeline
several pipeline subblocks. There
1%, TF, CC, BL, and MI. The

The RSP performs 3D geometric transfo
rasterizes the polygon. The RDP congi

The Color Combiner performs general blending of color sources
by linearly interpolating between two colors with a coefficient.
For example, it may take the filtered texel samples and the
shading color (RGBA) and combine thein together.

The BLender blends the pipeline-processed pixels with the pixels
in the framebuffer. The blender can do ¢ransparencies and also
sophisticated antialiasing operations.

The Memory Interface performs the actual read /modify / write
cycles to and from the framebuffer.

: The six RDP blocks (RS, TX, TF, CC, BL, and MI) are purely logical
ocks. For example, the hardware implementation of RS consist of several
blocks. However, for programming, each can be treated as a single logical
block.

NINTENDO DRAFT ~ RDP PROGRAMMING

One-Cycle-per-Pixel Mode

The pipeline configuration ﬂlustrated in Figure 13-1 how the RDP

blocks are connected in one-cyc
Figure 13-1 One-Cycie Mode R

Rasterizer

framebuffer
in DRAM

texture map:
indram

¢k Functionality in One-Cycle Mode

ixel and its attribute covered by the interior of the

Generates 4 texels nearest to this pixel in a texture map.

Bilinear filters 4 texels into 1 texel,
OR performs step 1 of YUV-to-RGB conversion.

Combines various colors into a single color,
OR performs step 2 of YUV-to-RGB conversion.

Blends the pixel with framebuffer memory pixel,
OR fogs the pixel for writing to framebuffer.

Fetches and writes pixels from and to the framebuffer memory.

One-cycle mode fills a fairly high-quality pixel. You can generate pixels that
are perspectively corrected, bilinear filtered, modulate /decal textured,
transparent, and z-buffered, at one-cycle-per-pixel peak bandwidth.

NU6-06-0030-001G of October 21, 1996 ' 177

NINTENDO 64 PROGRAMMING MANUAL DRAFT

178

Note: Reaching peak bandwidth is difficult. Thg frame
organized in row order, In small triangles, it is rare
runs of pixels on a single scanline. In these cases, the pipell
pending memory access for read or write cycles.

ten stalled,

Two-Cycles-per-Pixel Mode

texture maps
in dram

Functionality

Generates a pixel and its attribute covered by the interior of the
primitive,

Generates 4 texels nearest to this pixel in a texture map. This can
be ievel X of a mipmap.

Generates 4 texels nearest to this pixel in a texture map. This can
be level X+1 of a mipmap. ' :

Bilinear; filters 4 texels into 1 texel.

NINTENDO DRAFT RDP PROGRAMMING

Table 13-4RDP Pipeline Block Functionality for:

Block Functionality
TF1 Bilinear; filters 4
OR step 1 of

CCo

CC1

BLO
BL1
MIO
Ml

-cycles-per-pixel
e. In addition to all of the features of one-cycle mode, two-cycle mode -

and MI1 represent two cycles of the MI that access color and z
ér.cycles, respectively. This is only a logical representation. The MI
does notneed to run two cycles to do color and z-buffer access. One cycle per
pixel mode can also perform color and z-buffer accesses. The reason for this
., Tepresentation is to show that two MI access cycles are balanced in the
wo-cycle mode. In one-cycle mode, the pipeline is often stalled at MI,
iting for the framebuffer when accessing both color and z.

These RDP blocks are very flexible and can be configured to do many things.
Table 13-4 outlines the typical usage of these blocks for a powerful
rasterization pipeline. Study the following sections to understand what
attribute state is programmable within each RDP block to master the raster
subsystem.

NUG-06-0030-001G of October 21, 1996 179

NINTENDO 64 PROGRAMMING MANUAL DRAFT

180

Fill Mode

For high-performance framebuffer clearing, the RDF has ode, which
can fill 64 bits per clock. A programmabteRDP color at-tnbute is wrltten mto
the framebuffer during each 64- b1t
is largely unused, because the compu
fill rate. The fill mode is most commia y
z-buffers. -

Note: In fill mode, use thelfender mode
g*DPSetRenderMode(G_RM ‘ P, G_RM_NOQOPF2) to put the blender
into a safe state. Attempting when in fill mode can cause the RDP

pipeline to hang,

Copy Mode:

an load bitmaps this buffer as well as writing back out to the
suffer. The is a common bit blit operation that many 2D graphics
‘ e systems support. Once again, the RDP arithmetic pipeline is
sed in copy mode.

ortant operation that does work in copy mode is alpha
compare. Thisgllows RDP to blit an image into the framebuffer and
conditionally remove image pixels with alpha = 0. Usually, images with
ha = 0 represent transparency, see “Alpha Compare Calculation” on
#e 315 for more details.

In copy mode, use the render mode
'SetRenderMode(G_RM_NOOP, G_RM_NOOP2) to put the blender
At0 a safe state.

NINTENDO DRAFT RDP PROGRAMMING

RDP Global State

Several state are global to the RDF, usually to specify
and synchronization. i

e configuration

Cycle Type

Table 13-5gsDPSetCycleType(ty

Parameter Values

CYC_1CYCLE

type

ht ask “How does the primitive rendering pipeline synchronize
of the different attribute states that the programmer can set?”
Imagine’that the last few pixels are being processed in the RDP pipeline
when it Teteives a new attribute command, and this command affects the
pixel currently being processed. You would not want the last few pixels of a
primitive to have the attributes of a following primitive. You really want to
\ave the attribute state only to modify the pixels of the primitive following
e attribute state change. This synchronization is not implicit within the
peline; the application must explicitly insert proper synchronization
between attribute state changes and primitives.

Table 13-6gsDPPipeSync()

Parameter Vaiues

none none

NU6-06-0030-001G of Qctober 21, 1996 181

NINTENDO 64 PROGRAMMING MANUAL DRAFT

182

This command synchronizes the attribute upc
rendering. It ensures that the last pixels of a pritfii;
the attribute taking effect. Insert this inbetween an RD
by an RDP attribute:

-hve followed

gDPSetCycleType (glistp++,
gDPFillRectangle (glistp++,
gDPPipeSync (glistp++);

gDESetCycleType (glistp++,

Note: After a primitive (!
gDPTextureRectangle) ang
to insert a gDPPipeSyne.

After processi
interrupted,

Tabie 13-7

FullSyrc

Parameter

th amebuffer content of this span into an RDP ondup span buffer. The
TP then waits for the pipeline to process the parameters for the outgoing
ixels. When the outgoing pixels are computed, they are “combined” with
the preloaded framebuffer pixels before writing back to the framebuffer.

An example of this operation is z-buffer and transparency blending. (This is
not shown in the logical pipeline description earlier, to simplify the
understanding of the pipeline.)

NINTENDC

DRAFT RDP PROGRAMMING

NU6-06-0030-001G of October 21, 1996

The RDP has enough onchip RAM to hold
what would happen if two spans in sequence’
screen area? The RDP would prefetch the first span irg pan buffer while
the pipeline starts processing this span. Then it would prefetch the next span
into another span buffer. '

This is where the problems o
computed. The RDF does have spa
performance. If errors are objectional *animation, use
gsDPPipelineMode(GPM_1PRIMI ause all primitives to add
between 30 to 40 null cyclés after the last span of a primitive is rendered.

Table 13-8gsDPPipelineMode(m

Parameter Vaiue
mode M_1PRIMITIVE
IPRIMITIVE
These dead cycles, éxpensive in terms of fill rate so it is recommended

TIVE mode be used unless absolutely necessary.

ot to use the 1PR

183

NINTENDO 64 PROGRAMMING MANUAL DRAFT

RS: Rasterizer

184

The Rasterizer s main job is implied in its name: to genera s thatcover
the interior of the primitive. The primitives are either triangles or rectangles.
For each pixel, the RS generates th

s screen X, y location i
¢z depth for z-buffer purposes
» RGBA color information

e s/w, t/w,1/w lod fo
mipmapping.

These are commonly referred to ot w, L

coverage valk

pelined blocks downstream for other
sampling, color blending, and so on.

These values are sent to the;
computations, such asitex

3-3 RS State and Input/Output

Tridghgle or > [scissor rectangle S Stepped Pixels
Rectangle (xyzrgbastwl, cvg)

Scissoring

Scissoring is commonly used to eliminate running performance-intensive
clipping code in the geometry processing stage of a graphics pipeline. You
do this by projecting the clipping rectangle at the near plane larger than the

NINTENDO

DRAFT RDP PROGRAMMING

NU6-06-0030-001G of October 21, 1996

scissor rectangle. The rasterizer can then effi ate:the portion

outside of the screen rectangle.

ed in fixed-point arithmetic. The
ct rectangle, because of precision
i.the scissoring rectangle.

The RSP geometry processing is pezf
clipped rectangle boundary is ny
errors. This artifact can also be gliminat

Figure 13-4 Scissor/Clipping/Screg

clpping rect

screen rect

DPSetScissor{ulx, uly, Irx, Iry)

Vaiue

upper left x
upper left y
lower right x

lower right y

Note: Rectangles are scissored with some restrictions. In 1ICYCLE and
2CYCLE mode, rectangles are scissored the same as triangles. In FILL and
COPY mode, rectangles are scissored to the nearest four pixel boundary; this
might require rectangles to be scissored in screen space by the game
software.

185

NINTENDO 64 PROGRAMMING MANUAL DRAFT

TX: Texture Engine

186

The Texture Engine takes s/w, t/w, 1/w, and lod values’ pixel and
fetches the onboard texture memory, four nearest texels to the screen
pixel. The game application can ates such as texture image
types and formats, how and whe images, and texture
sampling attributes.

Stepped Pixel{stwl) Texel 0,1,2,3

_—

4KB texture map
memory (TMEM}

DRAM

TX treats the ¥’)KB on-chip texture memory (TMEM) as general-purpose
texture memory. The texture memory is divided into four simultaneous
ccessible banks, giving output of four texels per clock.

Thg game application can Joad varying-sized textures with different formats
anywhere in the 4 KB texture map. There are eight texture tile descriptors
describe the location of texture images within the TMEM, the format of
is texture, and the sampling parameters. Therefore, you can load many

NINTENDO DRAFT RDP PROGRAMMING

texture maps in the TMEM at one time, bu

t tiles that are
accessible at any time.

Figure 13-6 Tile Descriptors and TMEM
tile 0
TMEM location
size

wrap/clamp /mirror state
format

tile 7
TMEM location
size

wrap /clamp/mirror state
fos

rictions, depending on iexe] size and 64-bit
fure memory.See “Alignment” on page 259.

-eight texture tiles, you can use two- cycle pipeline mode to cycle
id access eight texels (four from each of two tiles). This
functionality, coupled with the use of up to eight texture tiles, allows the TX
to perform mipmapping and detailed textures.

rthermore, there are no explicit restrictions requiring power of two
-sized decrements for mipmaps. Multi-tile texture map sizes are all
ependently programmable. Therefore, using these tiles and the color
combiner block (see Chapter 13, “CC: Color Combiner”), arithmetic logic
can result in many special effects. For example, sliding two different

frequency band tiles across a polygon surface while combining them with a
blue polygon can give a nice ocean wave effect.

NU6-06-0030-001G of October 21, 1996

187

NINTENDO 64 PROGRAMMING MANUAL DRAFT

188

Texture Image Types and Format

Table 13-10 shows the legal combinations of data types ang ixel/texel sizes
for the Color and Texture images. For RGBA types, the 16-bit format is
5/5/5/1, and the 32-bit format is 878787 "“

The Intensity Alpha type (IA) replic
places the A value on the A channel.
format is 4/4, and the 4-bit formatis 3/

Table 13-10Texture Format a

Type 16b 32b
RGBA X X
YUV X

Color Index

IA X

Several stéps are necessary to load a texture map into the TMEM. You must
block-load theitexture map itself and set up the attributes for this tile. There
are GBI macros that simplify all these steps into a single macro.

There are two ways of loading textures: block or tile mode. Block mode
asaiimes that the texture map is a contiguous block of texels that represents
the whole texture map. Tile mode can lift a subrectangle out of a larger

NINTENDO

DRAFT " RDP PROGRAMMING

NUB-06-0030-001G of October 21, 1996

image. The following tables list block and tik
commands respectively.

Parameter Value

timg

fmt

Texture tile width and height in texel space.
TLUT palette.

clamping / mirroring for s/t axis
"~ G_TX_NOMIRROR
G_TX_MIRROR

G_TX_WRAP

G_TX_CLAMP

ems, cmbi,

ks, maskt Bit mask for wrapping.

G_TX_NOMASK or a number: A wrapping bit mask is represented
by {(l<<number) - 1.

189

NINTENDOC 64 PROGRAMMING MANUAL DRAFT

Table 13-11gsDPLoad TextureTile(timg, fmt, siz, wi
cms, cmt, masks, maskt, shifts, shiftt)

Table 13-12gsDPLoad TextureTile_4b(pkt, hmg, fmt, width, heig]
pai, cms, cmt, masks, mask , shiftt)

:Irs, Irt, pal,

L ult, Irs, Irt,

Parameter Value

shifts, shiftt ~ Shifts applied tos/tc
“sample” the lower leve

G_TX_INOLOD or a number:’
sampie otherifaipmap levels,

1. This is how you

>> number) = s/t to

uls upper left s i tile within the texture image
ult upper left t
Irs lower right s

Irt 1 ight t

Color-Indexed Textures

second half bank
g 1 2 3

3 v
Cofcojco |co
clic1|ct|C1

Cn|Cn {Cn |Cn

palette U

=

0 t1 2 t3

Four texels from the texture images are sent from first half banks to the
second half banks. The second half banks contain color index palettes, Each

180

NINTENDO DRAFT RDP PROGRAMMING

color map entry is replicated 4 times for four si ous |
Therefore, 8-bit CI textures all require 2 KB (256)?“6"4 Blts P

cannot reside on the second half) EM. I texture can actually
T palette/entries.

Table 13-13gsLoad TLUT(

t, tmemaddr, dramiaddr)

Parameter Value

count Number of eniries i
would have 16 entries.

TLUT. For exampie, 4-bit texel TLUT

tmemaddr fere the TLUT goes in TMEM.

dramaddr

pmap) or bilinear textures
RGBA or IA TLUT type.

ible 13-14gsDPSetTexturePersp(mode)

fameter Value

‘mode G_TP_NONE
G_TP_PERSP

NU6-06-0030-001G of October 21, 1996 191

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Table 13-15gsDPSetTexture Detail{mode)

Parameter Value

mode G_TD_CLAMP
G_TD_SHARPEN
G_TD_DETAIL

Parameter

mode

Table 13-17gs

Parameter

type

P

synchronizatién to render primitives with the proper attribute state. Texture
loads after primitive rendering must be preceded by a gsDPLoadSync(), and
«file descriptor attribute changes should be preceded by a gsDPTileSync().

te: If you use the high-level programming macros gsDPLoad Texture* or
ioadTexture*jb, then you don't need to worry about load and tile
s. They are embedded in the macro.

192

NINTENDO DRAFT RDP PROGRAMMING

TF: Texture Filter

Texture filter takes the four texels generated by TX an
bilinear-filtered texel. The TF can
(see Chapter 13, “CC: Color Co
COnversion.

produces a simple
rk together with the color combiner
rform YUV-to-RGB color space

Figure 13-8 Texture Filter State an

TF

filter medes

Texel 0,1,2,3 Fiitered Texel

“yuvIigh coel

four texels, the box filter can be used. In a typical 3D, arbitrarily rotated
polygon, the bilinear filter is the best choice available.

te: For hardware cost reduction, the RDP does not implement a true
ear filter. Instead, the three nearest texels are linearly interpolated to
oduce the result pixels. This has a natural triangulation bias. This artifact
not noticeable in normal texture images. However, in regular pattern

NU6-06-0030-001G of October 21, 1996 193

NINTENDO 64 PROGRAMMING MANUAL DRAFT

images, it can be noticed. For example, notches't
on a image of grids. This can be eliminated by prefil
wider filter.

Table 13-18gsSetTextureFilter(type)

Parameter Vaijue

type G_TF_POINT
G_TF_AVERAGE
G_TE_BILERE

Color Space Conversion

could be a
video, or fo

G_TF_CONV
G_TF_FILTCONV
G_TF_FILT

Table 13-20gsS thonvert(k@,kl,k2,k3,k4,k5)

ameters Value

L X2 G_CV KO, G_CV K1, G _CV_K2
k5 G_CV_K3, G CV_K4,G_CV_K5

Note: The default state of the RDP is G_TF_CONV (perform YUV2RGB),
which is probably not what you want (if you are using RGB textures). A
comumon bug is to forget to set this (usually it should be G_TF_FILT).

194

NINTENDO DRAFT RDP PROGRAMMING

CC: Color Combiner

CcC

combmer rnodes }

pnrmtwe color

Combined Pixel
-

. envm:mment colo

Texels

Vuv2rgb coeff

R(:B chroma ke | =

Most of CC'programming involves setting the desired sources for (A,B,C,D)
of the equation above. There are also programmable color registers within
CC that can be used to source (A,B,C,D) input of the interpolator.

lor and Alpha Combiner Inputs Sources

The following picture describes all possible input selection of a general
purpose linear interpolator for RGB and Alpha color combination.The input

NU8B-06-0030-001G of October 21, 1996 195

NINTENDO 64 PROGRAMMING MANUAL DRAFT

in the shaded boxes are CC internal state that ¥; 't Mogtare
programmable color registers. ‘

Figure 13-10RGB Color Combiner Input Selection

Combined Color
Texel O Color
Texel 1 Color
Primitive Clr

Shade Cir

Environment Clr
:Key: Center
- Key: Scale
Coembined Alph
Texture 0 Alpha

LOD fraction
Brimitive LOD
Noise
Convert: K4
“Convert K3

0.0

™

Combine Col?r

NOTE: There are twe
Color Combine modes,
one for each of the two
possible cycies.

Common Modes:
Modulate: 1,84,7; T*S
Decal: X,X,16,1; T
Blend: 3,5.8,5; (P - E}*Talpha + E .

Trilinear: 2,1,13,1; {T1 - TO*LOD + Combined Color
TO '

Interference: 1,8,2,7; TO* T1

Keying:1,6,6,7; (TO - Center)} * Scale +

0

196

NINTENDO

DRAFT RDP PROGRAMMING

Figure 13-11 Alpha Combiner Input Selection

Eombined Alph 0 0
Texture 0 Alpha
Texture 1 Alpha
Primitive Alpha
Shaded Alpha
Environment Alpt
LOD fraction |
Rrimitive EOD fraf
1.0

! 0.0 I

Combine Alpha—2tec:

Common Modes:
Select: X, X, 715108
Multiply: 1,7,2,7; T0O*T1
Lerp: 1,2,0,2; (TC - T1)*LODf +T1

Combined Alpha

CC internal Color Registers

ere are two internal color registers in the CC: primitive and environment
lor. The primitive color can be used to set a constant polygon face color.
1e environment color can be used to represent the ambient color of the
vironment. Both can be used as source for linear interpolation. The names

197

NU&-06-0030-001G of October 21, 1996

NINTENDO 64 PROGRAMMING MANUAL DRAFT

“primitive” and “environment” are purely ar can'use them for

any purpose you wish.

i

Table 13-21gsSetPrimCoior(minlevel, frazin:g, b, a), gsDPSetEnvColor(r, g, b, a)

Parameter Vaiue

minlevel minimum LOD level

frac LOD fraction for blending tw# fites
rgba color |

One-Cycle Mode

Many of the £y GB and alpha input selections are predefined in
Table 13-24 | ¢ bothe model and mode2 should be the same.
See the man ..-ombineMode for a description of each mode
sething.

ing gsDPSetCombineMode(model, mode2)

Value

G_CC_PRIMITIVE
G_CC_SHADE
G_CC_ADDRGB
G_CC_ADDRGBDECALA
G_CC_SHADEDECALA

Decal textures in RGB, RGBA formats
G_CC_DECALRGB
G_CC_DECALRGBA

198

NINTENDO DRAFT RDP PROGRAMMING

Parameter Vaiue

model/2

G_CC_BLENDIA
G_CC_BLENDIDECALA
G_CC_BLENDRGBA
G_CC_BLENDRGBDECALA

Reflection and specular hilite in RGB, RGBA formats.
G_CC_REFLECTRGB
G_CC_REFLECTRGBDECALA

G_CC_HILITERGB

G_CC_HILITERGBA

G_CC_HILITERGBDECALA

Note: In one-cycle mode, model and mode2 should be the same value.

NU6-06-0030-001G of October 21, 1996 199

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Two-Cycle Mode

Color Combiner (CC) can perform two linear interpolatior
computations in two-cycle pipeline z1

another linear mterpolanon calcul
between the two bilinear filtered texels f

Table 13-23Two-Cycle Mo

Parameter Value

rithmetic
ypmally, the second cycle is used
on (in other words, all those

model G_CC_TRILERP

mode2

G_CC_INTERFERENCE

, Modulate, Blend and Reflection /Hilite texture
m one cycle mode. However, since they are

design your.
format:

200

define G_CC_MYNEWMOLDE ab,c.d, AB,C,D

combined output from cycle 1 mode

texture map output from tile+l

chroma key center wvalue
chroma key scale value

COMRINED

TEXELO texture map output
TEXEL1

PRIMITIVE PrimColor

SHADE Shade color
ENVIRONMENT Environment color
CENTER

SCALE

NINTENDO DRAFT RDF PROGRAMMING

COMBINED_ALPHA combined alpha output
TEXELO_ALPHA texture map alpha
TEXEL1_ ALPHA texture map alpha from tile+]

SHADE_ ALPHA Shade alph
ENV_ALEPHA Environme
LOD_FRACTION LOD fractiyg
PRIM LCOD_FRAC Prim LOD fra
NOISE neise (random)
K4
K5

texture. This is a similar effect to “blue screen photography”, or as seen on
the television news weather maps.

The theory is quite simple; a key color is provided, and all pixels of this color
are replaced by the texel color requested. The key color is actually specified
/as a center and width, allowing soft-edge chroma keying (for blended

ors):

;Figure 13-12Chroma Key Equations

KeyR = clamp{0, (-abs{(R - RCen} * RScl}) + RWd), 255)
KeyG = clamp({0, (-abs{(G - GCen) * Gg8cl} + GWd), 255}
KeyB = clamp(0, (-abs((B - BCen) * BScl) + BWd), 255)

KeyA = min(KeyR, ReyG, KeyB}

The center, scale, and width parameters have the following meanings:

NUB-06-0030-001G of October 21, 1996 201

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Center Defines the color intensity’ active,
0-255.

Scale (255/ (size of soft edge)). For hard edge’keying, set scale
to 255.

Width (Size of half cluding the soft
edge)*scale. I keying is disabled for
that channel.

In two-cycle moede, the k :
cycle (key alphais not av as a combine operand). The combine mode
G_CC_CHROMA _KEY2; for this purpose.

The commands

DPSetReyR(cR
DPSecKeyGB (cG, sG, wG, cB, sB, wB):

ow you to set the parameters for each channel.

202

NINTENDO DRAFT RDP PROGRAMMING

BL: Blender

The BL takes the combined pixels and blends them ag he framebuffer
pixels. Transparency is accomplished by blending against the framebuffer

color pixels. Polygon edge antialta performed, in part, by the BL using
conditional color blending bas The BL can also perform

_Blended Pixel

Stepped Pixel (rugb
Combined Pixel

fog cold
blend color
primitive depth

buffer Pixel
ggg\ie NH er Pixel

Surface Types

The BL gan perform different conditional color-blending and z-buffer
updatingTherefore, it can handle semantically different surface and line
types. Fi 13-14 illustrates these types.

Figure 13-14 Surface Types

decal opaque

surfac

interpenetrating
surface

transparent
surface

NU6-06-0030-001G of October 21, 1996 203

NINTENDO 64 PROGRAMMING MANUAL DRAFT

204

Antialiasing Modes

The most important feature of the BL is its participation i tHaliasing.
ites pixels into the framebuffer
logic applies a spatial filter to

based on depth range. Then the v.
account for surrounding backgro:
silhouette edges.

The antialiasing scheme properly antialias pixels; only a small set of
comner cases have errors atidigre negligible. This algorithm requires ordered
ce bt line types. Here is the rendering order and
surface/line types for z-biitfer antialiasing mode:

* All opaque surfaces are rend

¢ Al opagfiedecal surfaces are rendered.

1 rate is improved because the z-buffer test is a read only (no write)
iscured pixels.

Besides the asitialiased z-buffer rendering mode, the other three
combinations also exist: antialiased /not z-buffered, z-buffered /not
antialiased, not z-buffer /not antialiased.

eter Value

G_RM_FOG_SHADE_A
G_RM_FOG_PRIM_A

G_RM_PASS

or one of the primitive rendering modes.
e.g. G_LRM_AA_ZB_OPA_SURF

eg. G_RM_AA_ZB_OPA_SURF2

NINTENDO

DRAFT RDP PROGRAMMING

NU6-06-0030-001G of October 21, 1996

Table 13-25Two-Cycle Mode gsDPSetR

derMode(model, mod e2)

Parameter Value

model G_RM_FOG_SH
G_RM_FOG_FRIM_A
G_RM_ S

mode2 same as o e mode mode2 values

Note: When setting the cycle type

G_CYC_FILL or G_CYC_COPY, make

sure to use the command g*DPSetReﬁderMode(G_RM_NOOPF,

- BL can compare the incoming pixel alpha with a programmable alpha source
to conditionally update the framebuffer. This has traditionally allowed nice
tree-outlined biflboards and other complex, outlined, billboard objects.

205

NINTENDO 64 PROGRAMMING MANUAL DRAFT

206

gt

Besides thresholding against a value, the BL c
dithered value to give randomized particle effe

iparé dgainst a

Table 13-27gsDPSetAlphaCompare{mod

Parameter Value

mode G_AC_NONE :
G_AC_THRESHOLD
G_AC_DITHER

Note: When using mode RESHOLD, alpha is thresholded against

blend color alpha.

Note: Another way to do billboard cutouts which often provides better
antialiasing i 1pha Compare off (G_AC_NONE) and instead use
one of the der modes, such as G_RM_AA_ZB TEX_EDGE.

Using Fog

nder performs the fog operation. Fog is described fully in “Vertex Fog

part of this operation is enabled with the gSPSetGeometryMode:
gsSPSetGeometryMode (G_FOG) ,

and ¢an be adjusted with gsSPFogPosition:
“gsSPFogPosition(FOG_MIN, FOG_MAX),

The RDF part of fogging is enabled by telling the blender how to use Alpha.
Fog can be used in one cycle mode for non-antialiased opaque surfaces only:
/* leycle mede */
gsDPSetCycleType(G_CYC_1CYCLE},
/* blend fog in ZB mode (non-AA OPA_SURF modes only) */
gsDPSetRenderMode (G_RM_FOG_SHADE 4,G_RM_ZB_COPA_SURFZ},

NINTENDO DRAFT RDP PROGRAMMING

/* set the fog color */ .
gsDPSetFogColor (RED, GREEN, BLUE, AL
/* setup the RSP */
gsSPFogPosition {FOG_MIN, EOG MAX)
gsSPSetGeometryMode (G

It can be used for other surfa
/* 2 cycle mode */

/* blend fog.
gsDPSetRenderMo _FOG_SHADE_A,G_RM_AA 2B _OPA_SURFZ},
/* set the fog
gsDPSetFogColor (RED, GRE
/* setup the RSP */

gsSPFogPpsition (FOG_MIN, FOG_MAX)

i FOG_SHADE_A (for the first cycle of
gsDPSetRefiderMode) youi can use G_RM_FOG_PRIM_A which will use the
alpha value in PrimColot fo set the fog value. If you use this mode, then the
RSP’s part of fog is eccessary and the gsSPFogPosition and
PSetGeometryMode macros are not neccessary. Instead set the fog value
rimitive with the gsDPSetPrimColor macro:

PSetPrimColor(0,0,0,0,0, FOG_VALUE),

where the EOG_VALUE is 0 for no fog and Oxff for full-fog.

Note that objects with FOG can still be transparent. The alpha value used to
“modulate fog comes from the triangle renderer. The alpha value that comes
om the color combiner is independant of that renderer fog alpha. For
ample the color combiner can be set to use the alpha value from a texture
rap, and fog will still work with the alpha value from the renderer. You
“cannot, however, use vertex alpha with fog. The per alpha supplied in the
vertices will be ignored and if the color combiner selects a SHADE alpha, it
will get the fog alpha value instead (not what was intended).

NU6-06-0030-001G of October 21, 1996 207

NINTENDO 64 PROGRAMMING MANUAL DRAFT

208

Depth Source

The depth value used in the depth buffer compare is gerterally taken from
the Z value of the pixel, determined rpolating the z values at the 3
vertices of the triangle containing ver it is sometimes
desireabie to set the Z value whid] an entire primitive. This
is actually neccessary when rende ctangles (gDPFiliRect
and gSPTextureRect) since these pr ve a Z value associated
with them. To use a single Z value for aniént itive the Z value is
placed in the PrimDepth mégister and the Z'Sotirce Select is set to get Z from
the PrimDepth register: :

gsDPSetDepthSource (G _Z5_PRI
gsDPSetPrimbepthi{z, dz),

the screen Z position of the object you are rendering.
x0000 to Ox7fff, where 0x0000 usually
ng plane and 0x7fif usually corresponds to the

12* ((z/w) *Viewport.vscale[2] + Viewport.vtrans[2]}

Note: Viewpért.vscale and Viewport.virans[2] are usually both G_MAXZ/2
= 0x11f, which makes the formula: screenZ=(z/w)*0x3fe0 + 0x3fe(. Since
(z/w) ranges from -1.0 to +1.0 the result will range from 0x0 to 0x7fc0.

e: For microcode progrmmers: The 32% part of this equation is done in
the &etup microcode. The other parts of this equation are done in the vertex
ssing microcode.

So if you want to position a rectangle at a specific modeling coordinate
position, run the modeling ccordinate of the position through the
modelview and projection matrix, and then comput its screenZ value based
upon the formula above. This is the value to use for z in the
gsDPSetPrimDepth command.

NINTENDO

DRAFT RDP PROGRAMMING

NU6-06-0030-001G of October 21, 1996

The dz value should be set to 0. This valueis u it antialigsing and objects
drawn in decal render mode and must always be a pow 2(0,1,2,4,8, ...
0x4000). If you are using decal mode and part of the decalled object is not

being rendered correctly, try se to powers of 2. Otherwise use 0.

209

NINTENDO 64 PROGRAMMING MANUAL DRAFT

MI: Memory Interface

Pixels to framebuffer

—

Blended Pixel

ditRer enable
fli color

coior image ptr
mask image pir

framebuffer Pixel

“The framepuffer is row-ordered, starting at the upper left. The color and
z-buffer image pointers must be 64-byte aligned. The DRAM has dual banks,
one on each . By keeping the color and z-buffers on different banks, you
can improve the DRAM access latency when the RDP is seeking DRAM
bandwidth for rendering.

The Nintendo 64 system actually uses 9-bit DRAMSs rather than 8-bit
s, to gain two extra bits per color or z pixel. The color and z format
ustrated in Figure 13-16.

Figure 13-16 Color and Z Image Pixel Format

5 5 5 3 14 4
R G B (27°4 z dz

210

NINTENDO DRAFT RDP PROGRAMMING

Fill Color

The MI has a 32-bit fill color reglster that is used in FILE type. Fill color
is typically programmed to ac ibyvalue to fill background color and
z-buffers. Since two framebuff 18x2=36 bits, while fill color

éd. See Figure 13-17 for an

2bits) NEED READABLE TITLE FOR THIS!

2 different macros, one each for color and z. each generate 16 bits.
sodox<<16 | x to get 32 bits

GPACK_RGBASS551(r, g, b, a), a=1 is full coverage. {Typical)
GPACK_ZDZ(z, dz}, z=G_MAXFBZ, dz=0. (Typical)

Dithering

e RDP pipeline keeps full, 8-bit per RGB component precision

oughout. Dithering can be enabled or disabled to write to the 5-bit per
.GB component dram framebuffer format. Dithering is recommended since
it can significantly reduce Mach banding effect.

NU6-06-0030-001G of October 21, 1996 211

NINTENDO 64 PROGRAMMING MANUAL DRAFT

212

NINTENDO DRAFT TEXTURE MAPPING

Chapter 14

Texture Mapping

Texture mapping, or texturing, is the process of applying an image to a
polygonal surface. There are many graplncs books that dlSCLlSS this topic;

NU6-06-0030-001G of October 21, 1996 213

NINTENDO 64 PROGRAMMING MANUAL DRAFT

214

Figure 14-1 Texture Unit Block Diagram

Tmem adrs
line -
size
mirror
mask
shift
texel type

palette ::‘
Clamp 5.T
SL,TL, SH,TH

Tile Descriptors

«—— min_level
&—— copy_en

Load Tlut
Load Tile, Load Block

Xiure @— tut_en

5,T,L fraction Texel Color/Alpha
«—— convert_one
Texture Filter mid_texel
&—1— bi_lerp_0. bi_lerp_I
Conversion | Color Conversicn,
| CoeffiCients Part 1
v
Texel Color

The RDF contains an on-chip texture memory called Tmem, which buffers
all source image data used for texturing. Tmem contains up to eight tiles (a
tile is a rectangular region of an image). A tile is loaded into Tmem using the
LoadTile, LoadBlock, or LoadTlut commands, and described using the SetTile
and SetTileSize commands. If the image is too large to fit entirely in Tmem,

NINTENDO DRAFT TEXTURE MAPPING
primitives must be subdivided in object spac xture
coordinate values so that each primitive references a til ts in Tmem
Texture coordinates (S,T) for each e Input to the texture coordinate
unit and can be perspective corzected. tive correction is typically
enabled for 3D geometry and disabled tites (tex_rect commands)

NU6-06-0030-001G of October 21, 1996

tile-relative coordmates and wrapped, i d, and clamped. These tile
coordinates are then useg: into Tmem. The texture unit
can address 2x2 regions: s in one or two cycle mode, or 4x1 regions in

can also be seIected Typlcally, filter will result in a smoother ima ge with less
unit also generates S,T and L-fraction values that are
i-linearly interpolate the texels.

16-bit red, green, blue, alpha (RGBA) (5/5/5/1)

16-bit IA (8/8) |

16-bit YUV (Luminance, Blue-Y, Red-Y)

32-bit RGBA (8/8/8/8)

Significant memory savings can result from the smaller color-index textures
or intensity textures over the more expensive 16-bit RGBA. It is a good idea
to experiment with the different texel sizes. One can actually do 2-color
textures using the intensity types. Also, the intensity-only textures place the

texel value on the alpha channel as well where it can be used for blending or
ignored.

215

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Graphics Binary Interface for Texture

The graphics binary interface (GBI) is a set of macros thaf

commands that are read and parse
commands cause actions or state ¢l
passed through the RSP to the RE)
control texture. See the correspon

Primitive Commands

« g*SPTexture
* g*SPTextureRectangle®

s g*DPSetTileSize

d Commands
g*DPLoadTile*

g*DPLoad TextureBlock*
¢ g*DPLoadTLUT*
gDPSetTexturelmage

Syne Commands
g*DPLoadSync
. g*DPTileSync

Mode Commands

» g*DPSetTextureLUT
= g*DPSetTexturePersp

216

RSP microcode. Some of these
the RSP. Others are simply

of GBI commands that

h) page for more details.

NINTENDO

DRAFT

TEXTURE MAPPING

NU6-06-0030-001G of October 21, 1996

g*DPSetTextureDetail
g*DPSetTextureLOD
g*DPSetTextureFilter
g*DPSetTextureConvert

217

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Example Display List

218

The following display list fragment uses GBI display list.commands to
render an object using a 16-bit RGB4, e map. The texture is loaded into
Tmem using the LoadBlock commagi¢l. Thetexture coordinates are
perspective corrected. Note that ed to wrap on 32-texel
boundaries in the s and t directions. et bilinearly interpolates
the 2x2 texels output by the texture ally, the resulting texture color
is multiplied with the object’s shade colorjnithe/Color Combiner for each
pixel of the object.

/* Enable textured poly geners in RSP */
gSPTexture{glistp++, 0x8000, Ox G_TX_RENDERTILE, G_ON);
gDPSetTexture er{glistp++, G_TF_BILERPE):;

7

/* Load Texthre

gDPLoadTextureBlock(++, RGBAlédana, G_IM_FMT_RGEA,

5, 5,

NINTENDO DRAFT TEXTURE MAPPING

Texture Image Space

Space. This space has a range of -
regions of a texture that fit intp the o

-1024, -1024

Texture Image Coordinate Space
= —

v

1023.99, 1023,99

Tiles are defined in Texture Image Space using SL, TL and SH, TH
coordinates, as shown in Figure 14-2. Tile coordinates must lie in the positive
S,T quadrant of Texture Image Space. However texture coordinates of the
primitive can lie in any of the four quadrants of image space. In other words,

NU&-06-0030-001G of October 21, 1996 219

NINTENDO 64 PROGRAMMING MANUAL DRAFT

220

primitives can have negative texture coordina
wrapping a texture on a very large primitive. Til
wide and up to 256 rows tall. Tiles do not have to be sized to a’power of 2

(wrapping and mirroring, however, happen on power-o oundaries).
The texture coordinates of the p re Image Space) are
converted into Tile Space by sub from the (possibly

¢el. This indirection

the primitive. This

: ad once in the database; and
d (or slid) with respect to the primitive by
alues using the SetTileSize RDP command.

perspective-corrected} texture co:
allows arbitrary placement of the tile wi:
implies that the texture cogrdinates canb
that the texture can be trang
simply manipulating the

NINTENDO

DRAFT TEXTURE MAPPING

Tile Attributes

NU6-06-0030-001G of October 21, 1996

The RDP has a small on-chip memory for buffering up ght tile
ontains all the information for a

Format

Format of texels in text

Table 14-1 Tile Format Encodings

Format Value Format

RGBA
YUV
Cl

IA

I

Size of texel in bits

4
8
16
32

221

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Line

Number of 64-bit words in one row of the tile. Dependentértile row width
as well as texel type/size. When tile loaded using the LoadTile
command, the rows are padded t ies. When LoadBlock is
used to load a texture, it is assume

Tmem Address

Tile offset (0-511) in Tmem (64-bit) W

Palette
Palette numbeg; olor Index (CI} textures. An 8-bit index into
the high half of Tmem is formigd by pIacmg the palette number i in the 4M5SBs

and _the 4-bit texel valuga

e of 16 palettes with each palette having up to 16 entries. Palettes
aded into Tmem using the Load TLUT command or, optionally, the

Mirror Enable S,T

nables mirroring of texture coordinates. When the bit indicated by the

k Value + 1) is 0 the cocrdinates are unchanged. When this bitis 1,
sver, the coordinates are inverted. Useful for symmetric patterns like
g8 faces, etc, For example, a mask of 2 with mirror enabled would yield
following texture coordinates:

3,4,5,6,7,... Input coordinate
,1,2,3,3,2,1, 0,... Mirrored Coordinate

222

NINTENDO

DRAFT TEXTURE MAPPING

NUG-06-0030-001G of October 21, 1996

Mask S, T
Number of bits of tile coordinate to let through. For example, a mask of 1
indicates one bit of the texture copzdinate should come through the mask,

giving a pattern of 0,1,0,1... As le, a mask value of 5 indicates

that the texture should wrap e

ive. The mask value + 1

indicates the bit position that is looked: oring. See discussion in

Mirror Enable, above.

Shift 8.T

223

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Table 14-3 Shift Encoding

Shift Value Shift

12
13

14

When rendering, the starting texel column, row of tile in texture image
space, 10.2 fixed pomt. Can be used to slide texture w.r.t. the primitive.

olumn;ifow within the DRAM texture image.

Clamp §,T

able clamp during wrap or mirror. When not masking, Clamp 5,T is

clamp =1
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, . Input Cocrdinate
4,1,2,3,3,2,1,0,0,1, 2, 3, 3, 3, 3, 3,... Mirrored/Clamped

Coordinates

224

NINTENDOC DRAFT TEXTURE MAPPING

Tile Descriptor Loading

Tile descriptors must be loaded using the RDP commarikiSetTile. This
command loads the format, size, lingxEmem address, palette, clamp, mirror, mask,
and shift parameters for the h'l, ified. The SL, TL, SH, and TH
parameters are set by the RD mim TileSize, Load Tile, LoadBlock,
and LoadTLUT.

descriptors are used both
xtures. In particular, when
coordinate unit uses the Tmem address, line,
the tile specified in the

efore, this information must be loaded

OCne unportant point to keep in mindisth,

into the tile descriptor prior to execuhﬁg the LoadTile/Block/TLUT command.
Also, the Loqu‘zle/Block/T LLIT commancl automat1ca]ly writes the

* g*DPLoadTile*
g"DFLoad TextureBlock*
g*DPLoad TLUT*

pte: The load commands above use a double buffered tile systern for
oading /rendering. When loading, the tile G_TX_LOADTILE is used, and
when rendering the tile G_TX_RENDERTILE is used. This simple scheme
avoids having to insert TileSyncs between loading and rendering. However,
if you need to use more than one tile for some reason, make sure that you use
the g*DPSetTile and g*DPSetTileSize to set the tile descriptors properly.

NU6-06-0030-001G of October 21, 1996 225

NINTENDO 64 PROGRAMMING MANUAL

DRAFT

Texture Pipeline

Figure 14-3 Texture Pipeline

226

I oad Path (F andTile ToadBlock 1

SetTile. SetTileSize)

Persp. Corr.
A/B

%clmversion to “__Sfrac (to Tex Filter)

ile

Prqcision Coordinates Ttile (int)
Shift . Tirac (1o Tex Filter}
shift t IL

Tile Coordinate Adjust

Stile]

l—Sadi ___

Tiile Clamp, Wrap, Mirror Tadi.

—Caopy |
—Clamp ST

—DMask ST
SLIL.SHTH

Mirtor S.T

NINTENDO DRAFT TEXTURE MAPPING

Figure 14-4 Texture Pipeline, contd.

Convert to 2x2 ol

Tadj Tmem Addresses =

Texture Memorv

Address B Texture L] A
Address C Memory exel B
” D Uniz eel
64-hit Load Path eelD

To Texture Filter

—TL e

Tl e]

R 1 O -1, S
Tex size

P 1 T ——

NU6-06-0030-001G of October 21, 1996 227

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Tile Selection

228

Functionality

Tile descriptors are used both whi
texture. This section discusses the
of tiles descriptors when loading texture
Textures section.

dex into tile memory: explicitly via a
using a combination of the
detail (LOD) of the pixel.

There are basically two wg
user-defined tile number,
user-defined tile number and the levi

is possible to access different tile descriptors in each
ile indices for each cycle depends on several
the following sections.

In two-cycle

.OD disabled, the user specifies the texture tile for a primitive directly
ie ¢SPTexture command. This tile number is inserted by microcode

umber. 2-cycle non-LOD mode can be useful for combining two
tures (morphing, etc.) The calculation of the tile descriptor
index is straight forward when LOD is disabled:

ble 14-4 Tile Descriptor Index Generation with LOD Disabled

Tile Index

primitive tile

primitive tile + 1

NINTENDO

DRAFT TEXTURE MAPPING

NU6-06-0030-001G of October 21, 1986

LOD Enabled

The lod_en mode bit in SetOtherModes determines if t7 1ces are
determined using Level of Detai] or from the primitive command
directly.

With LOD enabled, the tile in the Level of Detail (LOD)

of the primitive. LOD is compute f the difference between
perspective corrected texture coordin ent pixels to indicate the
magnification/minification of the texture'iny'screen space (texel/pixel ratio).

The LOD module also calailates an LOD fraction for third axis interpolation

allows the implementation of MIP maps. Notice that MIP mapping is a
specialized use of the general texture hardware. Other types of mappings are

¢ mi el (0.5): minimum LOD fraction clamp for sharpen or detail
modes, from the SetPrimColor RDP command

max_level (0-7): number of MIP maps minus one, from the primitive
via the gSPTexture command.

detail_en: enable for detailed texture, from SetOtherModes RDP
command)

sharp_en: enable sharpen mode, from SefOtherModes RDP command

prim_tile (0-7): primitive tile number, from the primitive via the
£SPTexture command.

lod_en: enable for LOD calculation, from SetOtherModes RDP
command

The LOD calculation produces the following outputs:

229

NINTENDO 64 PROGRAMMING MANUAL DRAFT

230

 1_frac (s.0.8): LOD fraction for 3rd axis int I

¢ 1_tile (0-7): tile descriptor index into tile memory

The LOD per pixel is clamped to m The LOD tile index is then

calculated using the equation: 4
I_tile = log2((int)lod_clamp)

d to an I_tile of 2. This
index is clamped to max_léfiel and then added to the prim_tile. For example,
the tile arrangement for p with a prim_tile = 2 and max_level = 3
would be arranged as sh

'D Index Relationship

LOD Index

The! frac is derived by dividing the clamped LOD by 2 [tile por example,
anLOD of 7.5 would yield an_frac of 0.875. The I_frac is modified
epending on the mode bits detail_en and sharp_en. Note that the detail and

*sharpen modes discussed below are exclusive. If enabled simultaneously,

special effects may result. If neither defail_en or sharp_en is true, then the
l_frac is passed to the color combiner unmolested.

Sharpen and detail mode change the behavior of the tile index calculation
when magnifying. The texture is magnified when you get so close to the

NINTENDO DRAFT TEXTURE MAPPING

primitive that one texel is being applied to1
highest resclution texture in the MIP map.

1Detail &
!Sharpen

Cycle Detail

Table 14-7 Generation c;f Tile Des&t ndex With LOD Enabled and Not

Cycle Sharpen !Detail &
{Sharpen
0 _tile prim_tile +1_tile prim_tile +1_tile

+ I_tile prim_tile+1_tile prim_tile +1_tile
+1 +1

NUG6-06-0030-001G of October 21, 1996 231

NINTENDQO 64 PROGRAMMING MANUAL DRAFT

MIP Mapping

An example of the tile arrangement for a MIP map is she Figure 14-5.

Figure 14-5 MIP Map Tile Descripto

MIP Map pyramid, no detail map
Prim_Tile=2
Max_level =4
Lod en=1

" Sharp_en=0or1l
Detail en=0

‘ napping, the RDP must be in two-cycle mode.
A tile is referériced in each e cycles and linearly interpolated using the
I_frac in the color combiner,

c{0.8) is provided that can be used as an input to the color combiner.
- is set by the SetPrimColor command.

on the filter ysed for generating the levels, the different levels can end up
unaligned if riot careful. For example, if using a simple box filter for
gererating the coarser levels, an offset of 0.5 should be added to the SL and
1, of each level to insure that they align when laid on top of one another.
ther these or other offsets are necessary depends on the filter used.

‘ Another word of caution. In computer graphics, extremely high frequency
textures are a bad thing. Geing from black to white in one texel being the
highest frequency. High frequency maps are more likely to alias (flicker)
when edge on or far away. So when generating map data use common sense
and possibly lower frequency texture data to avoid these problems.

232

NINTENDO

DRAFT o TEXTURE MAPPING

NUE-06-0030-001G of October 21, 1996

Magnification
Figure 14-6 Magnification Interval Relative to LOD

Texel Color

A

ome active

SR S N Nt ,
5 6 7 bt L., texels/pixe:
2.5 3 L_Tile .L_Frac

magnification (that is, when 0.0 < LOD <= 1.0). One way of avoiding this is
to use very large textures that contain high-frequency detail. But this would

xture is combined with a (usually small} detail texture in such a way as to
repeat the detail-texture over the base texture several times. A base-texel
would, upon magnification, appear to contain four or more detail texels
blended with the base-texel color, thus providing high-frequency
information without having to sacrifice large amounts of Tmem. This can be
used very effectively; for example, to provide motion cues when close to the
terrain.

233

NINTENDO 64 PROGRAMMING MANUAL DRAFT

234

it the texture.

information and overall hue are relatively consiste \
{for the base

To convert a high-resolution image mto a low-resolutiony
texture) and a detail texture, follow

13. Any nxn sub-tile of the high-resimt
This sub-tile should preferably be
borders so that when repeated on e Base-texture, the seams are

not visible. Detail te an have a dlfferent texel type t_ha.n the
base—text"ure (sub]ec

similar. In such cases it might be appropriate to
to allow the detail texture to completely

set the min_[ewel pa-fameter :
h magnifications.

replace the base texture at.J

e detail texture is combined with the base texture, a color shift may
is can be avoided by choosing the detail texture color scheme to

e base texture colors so that this effect is minimized. The min_level
can also be used to keep the detail texture from completely
replacingthie base texture by setting it to a value greater than 0. This will
cause a cert i minimum amount of the base texture to always be blended
in with the detail texture thus minimizing the color shift.

e shift field of the tile pointing to the detail texture is used to shift the
bming s and t coordinates before indexing into the map. This shift then
determines the base-texel to detail-texel ratio.

i Bor example, if the detail tile's shift was set to shift left by 1 (the shift of the
finest level of the base texture being 0, of course), each base-texel, upon
magnification would display 4 detail-texels blended with the base-texel
color. A shift left of 2 would result in 16 detail-texels per base- texel and so
on. Larger shifts result in more aliasing in the detail-texture since the
interpolation occurs between widely different magnifications.

NINTENDOQ DRAFT TEXTURE MAPPING

Pam_Tile=1

Max_level=4
Lod en=1
Sharp_en=10
Detail_en=1

ail_en is true and the LOD is less than 1.0, indicating that the LOD is
the finest MIP map level, the fraction is a table lookup of the [_frac.
tly, the table lookup is simply identity, so the fraction is not modified
ode. In order to always to have a portion of the base-texture

¢ is clamped to be greater than min_level. Min_level should be
determined’by experimentation. This fraction can then be used to
interpolate between the detail-texture {pointed to by prim_tile} and the
base-texture (pointed to by prim_tile+1). Filtering within the detail-texture
“gan be controlled as usual by using the sefOtherModes b1ts to be POINT or

‘Sharpen Mode

Sharpen mode is used in a situation similar to that of detail texture. The
advantage of sharpen over detail is that sharpen is essentially free. It doesn’t
require an additional detail map. Instead it extrapolates using the two finest
MIF map levels. An image with high contrast edges has been magnified to
the point where the edge details are becoming blurry. Sharpen mode
increases the apparent sharpness of the texture edge by inverting the [_frac

NU6-06-0030-001G of October 21, 1996 235

NINTENDO 64 PROGRAMMING MANUAL DRAFT

(extrapolating) as shown in Figure 14-8, “Sharp
page 238.

Bilinear Filtering and Point Sampilj

ample mode texels can
at the top left hand

DP is in point sample mode or bilerp 11
be thought of as 1 x 1 squares with
commer of the texel {(wher
top to bottom respective
point texture coordinate
coordinates (s,t) for say a 32)(3
ranges from 0 - 31), the mapping

ap a modeler’s floating
) into the DP fixed point texture
texture (s ranges from 0 - 31 and t

n't work either since it maps a (u,v) range of 0.0- 1.0 to an (s,t) range of
- 31.0 which would cover a region from the middle of texel 0 to the middle
of texel 31 which cause both texel 3 and texel 31 to be half displayed.

The mapping that would make the textured primitive match exactly to the
artist’s rendition of the texture in Bilerp mode would be:

5
£

u*m -« 0.5;
v*n - 0.5;

It u

236

NINTENDO

DRAFT

NU&-06-0030-001G of October 21, 1996

TEXTURE MAPPING

Lo 2
o
o
o
1
G
=
n
Nt

since this would map a (u,v) range of [0.0-1.C}4¢
which would cover the region starting on the le -
edge of texei 31. However the bilerp filter requires tw éxels to bilerp
between and in the s,t ranges {-0 and [31.0 - 31.5] there is only one
texel available. This can be solyed by Hining on clamping in the DP and
setting SL,TL to 0,0 and SH,TH t0 31,3 A1l cause the bilerp filter to
select texel 0 for both texels to by
texel 31 for range [31.0 - 31.5]. This p _.
textures by clamping only at the borde tes of the primitive. For
example a primitive w v in the range 10.0~4.0] in wrap mode would
repeat the texture 4 tim e border texels to be displayed in full the st
range would have to be{-0.5 5] (according to the above mapping) and
the clamp parameters SL,TL an H would be set to 0,0 and 127,127
respectively. (Note that SL and TL is Subtracted from the incoming texture
coordinatesatidhis also used as the lower clamp value in clamp mode).

texture to filter to.

gte: Since point ed and bilerp modes cause a shift of 0.5 texels in the

sl yed primitive, to switch between point sampled and bilerp modes

wn‘.?i ut shifting the texture one of the following methods may be used: 1)
different primitive with a 0.5 shift in the texture coordinates; 2) Set the
hift in SL and TL in the texture tile (SL and TL are subtracted from

Note: If the mxn texture is too large to fit in tmem, the polygon and the
texture can be broken up along u,v and s,t in appropriately sized tiles. For
+the bilerp to work along the tile boundaries, an extra row (or column) of
xels around each tile border needs to be loaded i.e the resulting polygons
be disjoint but each tile (that is not a border tiles) will have an overlap

‘of 2 texels with any adjacent tile.

237

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Figure 14-8 Sharpen Extrapolation -

A Magnify interval
AN

|
/

i

Texel Color

-
L, texeis/pixel
L_Tile.l._Frac

at the extrapolation makes the dark texel
even darker...

and light texels become lighter after the extrapola-
tion, thus enhancing the apparent sharpness of the
edge.

Texel Color

[y S

(=]
o
S
RS

238

NINTENDO DRAFT TEXTURE MAPPING

Texture Memory

Memory Organization

ble, using the current tile before loading the next
RAM bandwidth.

256 Words

NU6-06-0030-001G of October 21, 1996 239

NINTENDO 64 PROGRAMMING MANUAL DRAFT

For loading, Tmem is arranged logicaily, as sho

Figure 14-10Tmem Loading
Load Data

I Alignment Logic

64 bits

Load Address |

The following table shows the maximum tile sizes that can be stored in the
4KB Texture Me Images larger than this will be tiled.

Texel Type Maximum Texel Count

4-bit (I, 1A) 8K

4K (plus 16 palettes)

4K
2K {pius 256-entry LUT)
2K
16-bit 1A 2K
itYUV 2K Y's, 1K UV pairs
GBA 1K

240

NINTENDO DRAFT TEXTURE MAPPING

Four-bit textures are stored in Tmem as shown;as,shown in Figure 14-11.

Figure 14-11 Four-Bit Texel Layout in Tmem

3

T=0 dfe | f | Word0
XXX

T=1 51817
XXX
Py TLowHan
H
® J'Hithaii

LA T T] worase

pi

16515 5 16D o o t6bIs o
1 2 3
2 | 3 i | s g | 7 |"oe
X 1 X 0 x| x [x] x
6 7 0 1 2 3
X X] 9 X X
T Low Haif
. ° .
H H e ¢ High Half
I | N | M I P

NUB-06-0030-001G of October 21, 1996 241

NINTENDCQ 64 PROGRAMMING MANUAL DRAFT

242

Sixteen-bit textures (except YUV) are stored in
Figure 14-13.

Figure 14-135ixteen-Bit Texel Layout in Tmem

16-bit Texture, 6 texels per row, texel

< 16 bits > € 16 bits > £ bits 5
0 i 2 3
#——_——
T=0 0 o 3 Word 0
4 X X
T=1 2 0 i
X F 5
Low Half
® | J [J T—-—-———-—
: . ‘L High Haf
| ’ ' Word 511

-bit YUV textures‘are stored in Tmem, as shown in Figure 14-14. Note
texels must be loaded in pairs. In other words two Y’s at a time.
o note that if filtering is enabled, an additional UYVY pair must be

NINTENDO DRAFT . TEXTURE MAPPING

loaded per row and SH set accordingly to
UV texel per row.

Figure 14-14YUV Texel Layout in T

Low Hajf
(B DS, (16 hits, (16 bitsy (16 bits,
0 1
T=0|uOvfjuav Word 0
uBvyjjuAv
T=tiudvjuby ;
XX x| X [yaiyofyalyB
: ¢
N ¢
X .
. H |] Word 255

Low Halif High Half

516 bil';; E16 Dit% E16 b'n% E16 blt% : E16 bit% E16 bit% 616 bii% E‘lB bit%
0 i 2 3 + 0 i 2 3

roglf riglfr2gff r3g | |boafbtalfb2afb3af Wodl
rdgidr5g X X udvfubvff X X
r2glr3ggrOgfrig b2ajfb3afiblafbla
X X Hragfr5g X X Hbsalflbsa

[

NU6-06-0030-001G of October 21, 1996 243

NINTENDO 64 PROGRAMMING MANUAL

DRAFT

For color index (CI) textures, the texture is storé
and the Texture/Color Look-Up Table (TLUT) is

Tmem. For 4-bit CI textures, the texels (or indices) addre;

other texture t

244

boundaries. Note that the
the TLUT: 16-bit RGBA, ¢r 16~
gDPSetTexture LUT() command.
shown in Figure 14-16. Because of this,
es in two-cycle mode.

. Since four texels are addressed
oritical) TLUTS stored in the

ble is aligned on 16-word
two choices for the texel type that resides in
TA. The type is selected using the

mmand also configures the Tmem as
textures cannot be combined with

NINTENDO DRAFT TEXTURE MAPPING

Word 255

Selact Texels | Low Haif

High Haif

Addr |, Addr

Word 256

Word 511

A\ 4

ool

Texels To Texture Filtar.

Eight-bit CI textures do not use the palette number of the tile, since they
address the whole 256 TLUT directly. It is possible to use the 8-bit mode for
storing index textures that have between 16 and 256 entries.

For example, you could define a texture that had 40 entries, numbered 0-39,
and load the TLUT into the upper half of Tmem (word 256). Further suppose
that you had another texture with indices 40-69. You could load this texture’s
30 entry TLUT into Tmem, starting at word 296.

NU6-06-0030-001G of October 21, 1996 245

NINTENDO 64 PROGRAMMING MANUAL

DRAFT

246

Assuming that both textures together fit into th
these textures could be co-resident in Tmem. It is
textures co-resident with other non-Cl textures.

together in Tmem, you cannot access-the
two-cycle mode, because the configura
controlled with a mode b

wem {2 KB),

Word 255

J

J

Salect Texels

| Low Haif

Palefte

Palstie

Addr

Palette

Aqdr

8

Pzlette

Addr

8

)

)

Texels To Texture Filter

High Haif

Word 256

NINTENDO DRAFT TEXTURE MAPPING

Texel Formatting

In the RDF graphics pipeline, most operations are d g
8-bit-per-component RGBA pixels:Affer looking up the texels, the texture
unit converts them into the 32 ; format. Table 14-9 describes how
each type is converted. The & éd descriptions is [MSB:LSB]
where MSB is the most signifi the least significant bit. Bit
fields are grouped together in br ost significant field on the
left and the least significant field on He.ri

Tabile 14-8 Texel Output

Type Size Inprt
Format

Biue Alpha

{301, ({{3:01

[3:0]} [3:0]}
[7:0] [7:0]
{[3:1], 2554(0]
(3:1),

[3:2]}

7:4], ([74], ([74], 74, (30
ABO] [74) 74l 74D [30))

158], [158] [158] [158] [74]
Al70]

16 R[15:11], {[15:11], {[10:6], {[5:1], 255*0]
G[10:6], [15:13]} [10:8]) [5:3]}
B[5:1],
Al0]

32 R(31:24], [31:24] [23:36] [158] [7:0]

G[23:16]
, B[15:8),
A[7:01}

NU6-06-0030-001G of October 21, 1996 247

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Texture Loading

Loading a texture actually consists of several steps. Internally; the RDF treats
loading a texture as if it were rend textured rectangle into Tmem. To
load a texture, you must describe o be loaded, render (load)
it into Tmem, and describe the tile fo be re An important

8 ture in one way and

performs all the tile and
atexture tile. The sequence of commands
out parameters):

gsDPSetTexturelmage
gsDPSecTile /* G_TX_LOADTILE */

gsDPLoadT 3 ADTILE */
gsDPSetTi] IDERTILE */
RENDERTILE */

d renders using G_TX_RENDERTILE (tile 0}.
e tile descriptor used to load the tile is different from the one used to

. Then the gsDPSetTile is used to indicate where in Tmem you want to

¢ the image, how wide each line is, and the format and size of the

Jexture. A gsDPLoadSync command makes sure that any previous load is

=completely finished before this texture is loaded. Then the actual
gsDPLoadTile command is issued, which loads the texture into Tmem. The
final gsDPSetTile and gsDPSetTileSize are used to set the tile descriptors
correctly for the tile used when rendering.

248

NINTENDO DRAFT

The textures are stored big-endian in memors |
following format for a 64-bit word in memaory.

Figure 14-18 Texel Formats in DRAM

TEXTURE MAPPING

0
B|(C|D|E|F
5 6 7
3
Gl B1 Al
Y2 V2 Y3

NU6-06-0030-001G of October 21, 1596

249

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Load Tile

The LoadTile command allows a programmer to load an grbiteary
rectangular region of a larger textur RAM into Tmem. The following
examples assume a 16-bit texel type;

Figure 14-19Example of LoadTile C
Texel Offsets in DRAM

/

Tile to be loaded using LoadTile command

Line: 20 texelséli.ne * 2 bytes/texel
ytes/ wor

ine of the tile, for exampie, texels 140-159, §L=20 TL=2 SH=239, TH =7
at least one DRAM transfer. The advan- ’ § !

When texturesare loaded as a tile, it means that (at least) each line of the
texture is a separate DRAM transfer. Each line’s transfer may be broken into
Itiple smaller transfers, depending on how big it is and whether it crosses
page boundaries. Since the DRAMs are block transfer type devices,
a fixed amount of overhead for each transfer, so long transfers are
desizable. For this reason, you should try to load your texture using the
lofigest dimension of the tile. Also, each line of a tile is padded
utomatically to Tmem word (64-bit) boundaries. If your tile line size is not
a multiple of 64-bits, some Tmem space is being wasted. Also when tiling a
larger texture image into multiple tiles, an extra row and column are usually
loaded to allow proper filtering of the texels along the border of the tile (to
avoid seams).

250

NINTENDC

DRAFT TEXTURE MAPPING

NU6-06-0030-001G of October 21, 1996

Note: The RDP commands LoadTile, LoadBlg 1 LoadTLUT set the tile
parameters SL,TL,SH,TH when they are executed: fter thé foad command,
it may be necessary to use the SetTileSize command t s
parameters if you want paramet er than were used in the Load

It is possible to effecti
entirely in Tmem) by ¢
(at least two) methods}]
Texture Using Two Tiles,” on pag A
want to load a tile as if the texture had been wrapped in the S direction, and
lés.the wrap region.

239 Tile 1
99

Wrapped Large Texture (Virtual)
m . n

o

Tile we would like to load

251

NINTENDO 64 PROGRAMMING MANUAL DRAFT

252

One way to effectively load the wrapped tile is o
interleaved tiles. To interleave two tiles in Tmem, load tile.1 butiset the tile’s
Line parameter to n+m Tmem words, where n is the numiber of words in a
line of Tile 1 and m is the number of 34 , tile 2. SL,SH,TL,TH should be
‘ Tmem Address to n. Also

will simply be undefined.

Angother, possibly more str-alghtfcﬁ A
end of each line of the large texture,
next line.

Figure 14-21Wj pp..'

d method, relies on the fact that at the
ddresses will naturally rell into the

Large Texture Using One Tile

arge Texture

m K\ bogus texels
AV

at start of tile

line

bogus texels 5F
at end of tile

shown in Figure 14-21, “Wrapping a Large Texture Using One Tile,”
ge 252, you can load a single tile starting at address 60 minus m words.
e tile’s Line parameter should equal m+n. Set the Tmem Address parameter
to 0 during the load. Make sure to load T+1 lines. After the load, set Tmem
Address to m, and set the SL,SH,TL,TH to the actual tile size. This method
wastes m words at the beginning of Tmem and n words at the end of Tmem
but has the advantage of using only cne load.

NINTENDO DRAFT TEXTURE MAPPING

Load Block

A more memory-bandwidth efficient way to load textirésis the LoadBlock
command. This command essent] ats each texture as a single long line
of data. This allows the M to tr: maximum amount of data for each

transfer.

Figure 14-22 Example of LoadBlock

Texel Offsets in DRAM
L_—-> 1]
44
58 =
132 1175
17617, 4219
2201, i 263
=307
o ."“ 395
~ . la3g

Pad each line by 2 texels to
get integral 64-bit words per line

dxt =1line dtexels =1
44 texels 1word 11

lock command uses the parameter dxf to indicate when it should
lext line. Dxt is basically the reciprocal of the number of words
{64-bits) line. The texture coordinate unit increments a counter by dxt
for each word transferred to Tmem. When this counter rolls over into the
next integer value, the line count is incremented. The line count is important
because the data in odd lines is swapped to allow interleaved access when
dering. This works great when dxt is a power of two. However, if dxt is
a power of two, the line counter can be corrupted due to accurnulated
or. Appendix A contains a table that indicates how many lines for a
certain size can be in a load block for a tile before the line count is corrupted.

It is possible to load a set of texture tiles using a single LoadBlock command
(MIP maps, for example). However, if the tiles have different widths, the

single dxt parameter is not enough to do proper interleaving. In these cases,
the data must be pre-interleaved and the dxt parameter should be set to zero.

NU6-06-0030-001G of October 21, 1996 253

NINTENDO 64 PROGRAMMING MANUAL DRAFT

254

The Load Tlut command is an efficient way of lo
into the high half of TMEM. System memory is ¢
command as each 16-bit color value is “quadricated” astisread in and
written to the TMEM. In other word n't necessary to store four times
d it out into a 64-bit word
as memory bandwidth.
16-bit IA. TLUT depth
it CI). LoadTile or
xowever the data will have

Two types of TLUTs are supported;
can range from 16 words (4-bit CI}
LoadBlock can still be used for loading the
to be quadricated in systémy

Loading Notes

4-bit types should be loaded as 16-bit
This does not restrict 4-bit types in any way and still allows for rows with an

‘e than 2048 texels can be loaded at once. So for
4K 8-bit texels load them as 2K 16- bit texels

example,: using tile 7 while rendering using tile 0.

NINTENDO '

DRAFT TEXTURE MAPPING

Examples

NUE-06-0030-001G of October 21, 1996

After texture coordinates are converted to Tile Space, '
clamped, or mirrored. Figure 14-
clamping affect the tile-relativ:
independent controls for wra

ay be wrapped,
shows how wrapping, mirroring, and

255

NINTENDQ 64 PROGRAMMING MANUAL DRAFT

Figure 14-23 Wrapping, Mirroring, and Clamping

Base Map

Mirror S, T

Clamp S
Wrap T

Wrap S
Clathp T

256

NINTENDOC DRAFT . TEXTURE MAPPING

Figure 14-24 Wrapping Within a Texture Tile

NU6-06-0030-001G ot October 21, 1996 ‘ 257

NINTENDO 64 PROGRAMMING MANUAL DRATFT

Figure 14-25Example of Texture Decals

Airplane Wing Insignia,
Cycle 0

Alpha 0 at edges of
insignia

————

Mirror st
Clamp s.t

Airplane Wing Camo
Cycle 1

Wrap s,t
Mirror st

Combiner using the insignia
alpha to lerp between the
amo and insignia color.

258

NINTENDO

DRAFT TEXTURE MAPPING

Restrictions

NUE-06-0030-001G of October 21, 1996

Texture Types and Modes

The following is a list of res the use of certain textures

types in certain modes:

Point Sample

Clamp &/ | (wrap | ks for all texel types.

Filter

1l texel types. Wrap t | mirrort | (clamp t & wrap t) |
arks for all texel types.

ou must put the RDP in two-cycle mode to use texture LOD.

Alignment
The texture image pointer, as defined using the ¢DPSetTexturelmage

command, must be 8-byte aligned. Additionally, each tile must be aligned
according to its size. For example, 8-bit texture tiles must be aligned to 8-bit

259

NINTENDO 64 PROGRAMMING MANUAL DRAFT

You should avoid shifting
unless necessary. See the

thoice of coordinates close to zero or coordinates
3 1024, slightly higher quality may result from the lower coordinates.

280

NINTENDO DRAFT TEXTURE MAPPING

Applications

Multiple Tile Effects

Interference Textures

Tex 0 coordinates —pm-0, 0
Tex 1 coordinates—pm 0, 0

should be defined using Tex 0's coordinates. The shiff parameter of the tile
descriptor for Tex 1 couid be used to right shift the input coordinates to the
required values. It would be a bad idea to use Tex 1’s coordinates as the

NU6-06-0030-001G of October 21, 1996 261

NINTENDO 64 PROGRAMMING MANUAL DRAFT

262

input coordinates and then left shift to obtain Tea
because when you shift left, you shift zeros into the'isb s of the coordinate,
thus losing precision.

Extended Alpha Using Multiple Te:

The 16 bit RGBA texture type is oft
because this is the only type that allows &
Unfortunately, this type only has one bit of alpt hich means you cannot
prefilter texture edges), ari; lead to pixelated texture edges.

One way to get more bits o] 'ipﬁa der to create smoother cutlines) is to
use two tiles. The first tile describe GB color of the texture, while the
second tile describes the alpha channel of the texture. Render the texture in
two-cycle modesilinthe color combiner, select TO as the source and in the
alpha combiner sele the source.

to set the combirie modes and load the

TEXEL1

0, TEXELO, 0O,

9,

0,

©ad alpha texture at Tmem = 256, notice I use a
* different load macro that allows specifying Tmem
* address.
*

_gsDPLoadTextureBlock_4b{Idmolecule, 256, G_IM_FMT_I,
32, 32, 0,
G_TX_WRAP, G_TX_WRAP,
5, 5, G_TX NOLOD, G_TX_ NOLOD),

/*
* Lopad color texture starting at Tmem=0
*/
gsDPLoadTextureBlock (RGBAlémolecule, G_IM_FMT_RGEA,
G_IM_SIZ_16b, 32, 32, 0, G_TX _WRAP, G_TX_WRAP,
5, 5, G_TX_NOLOD, G_TX NOLOD),

NINTENDO

DRAFT TEXTURE MATFPING

NU6-06-0030-001G of October 21, 1996

/*

* Since normal load macros us render, I

* need to set tile 1 manually to p t alpha
texture.

w/

gsDPSetTile (G_IM_]
0,

o, ¢, 0,
Q, ¢, 03,

263

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Appendix A: LoadBlock Line Limits

The table below lists the maximum nv
transferred for a given texture wid

Note: The absolute max lines col

) olute max lines. If max
lines is empty it indicates that zero lines coy ferred correctly using

these parameters,

adBlock Command

Width
(16b texels)

4

8

264

NINTENDO DRAFT TEXTURE MAPPING

Width Max Lines Absciute

(16b texels) Max Line

64 32
68 13
72 28
76 26
80 8
84 9

88
2

:

NUG6-06-0030-001G of October 21, 1996 265

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Table 14-10 Limits on Number of Lines for LoadBl

Width Max Lines Absoiute

{16b texels) Max Lines
160 1

164 12

168 4

172-184 2

188-1§2 p

196 4

200
204

208

266

NINTENDO

DRAFT TEXTURE MAPPING

NU6-06-0030-001G of October 21, 1996

Table 14-10 Limits on Number of Lines for LoadBj;

Width Max Lines Absolute
(16b texels) Max Lines

272
276
280
284
288-292
296
300
304
308-312

6
3
5
5
5
5
3
5
5
412 1 4
416-428 — 4

267

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Table 14-10 Limits on Number of Lines for LoadBle:

Width Max Lines Absaolute
(16b texels) Max Lines

432 4
436-452 e
456 4
460-480 —
484 1
488-508 —
512
516-544
548
552-584

824-908 — 2
912 2
916-1020 - 2

268

NINTENDO DRAFT TEXTURE RECTA

ES {HARDWARE SPRITES)

Chapter 15

Warnin Code fragments in this‘thapter have not been fully verified.
g: g P y
ing these examples will be included in a future software

le 15-1 Texture Rectangle Command
reRectangle(xl, v1, xh, vh, tile, s, t, dsdx, dtdy}

Texture coordinates are defined by specifying the start point Sand T
coordinates at the top left corner of the rectangle and the step in S per pixel
in X and the step in T per pixel in Y. Example 15-2 shows a rectangle 100

ture steps 1 texel per pixel in both the S and T directions. This example
assumes that a texture has been previously loaded (see “Texture Loading”
on page 248).

Example 15-2 Texture Rectangle Example

gsDPSetTexturePersp {(G_TP_NONE) ,

gsDPTextureRectangle (100<<2, 100<«<2, 200<<2, 200<«<2,
G_TX_ EENDERTILE,
o, 0,
1<<1Q, 1<x<10},

NU6-06-0030-001G of October 21, 1996 269

NINTENDO 64 PROGRAMMING MANUAL DRAFT

though they are simple and lirnited to
useful both in 2-D sprite games as well a
chapter will explain soméyif the details ass
primitive and provide so j
programmers. Some of th
found in other chapters but is rep

s, texture rectangles are
ects in 3-D games. This
d with the texture rectangle
le examples for new Nintendo-64

tion found in this chapter may also be
Lhere for completeness.

Figure 15-1 Texture Rectangle Definition

~ x1, y1(10.2 fixed point) dsdx (515 10
s,t{s,10. 5)

I
E dtdy (s3.10) J) \\\\

Texture
= xh, yh (10.2 fixed point)

270

NINTENDO

DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)

Sampling Overview

NU6-06-0030-001G of October 21, 1996

A texture is an array of values, where each value is a sét'of numbers
(components) describing the attripyii a texture element, or fexel. For the
Nintendo 64, the numbers représenting e fixed-point. The number
per component is variable.

texels.

to the display image space. In the case of
tric operations are limited to scaling and
sample and filter the source texture
> display. Figure 15-2 is one example of
t can effect image quality. In this example, 10 bIack bars

equency component in the texture to avoid aliasing artifacts.

Aliasing in a Sampied Image

scanline

N N Y S

samples

Point Sampling

Point sampling in the Nintendo 64 means that we assume that each texel
maps to one pixel on the display, and we ignore any fractional overlap

271

NINTENDO &4 PROGRAMMING MANUAL DRAFT

sampling.

Example 15-3 Enable Point Samplin

rtexture to a
play. Problems occur if
Figure 15-3. In the first

scanline

sampling points

samples

scanline

sampling points

samples

Example 15-4 demonstrates 3 texture rectangles with the texture scaled by 1,
2, and 4 respectively:

Example 15-4 Scaled, Point Sampled Textures

272

NINTENDO

DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)

gsDPSetTexturerilter (G_TF_POINT),
gsDPTextureRectangle (50<<2, 50<<2,
G_TX_RENDERTILE,

15

0, 0,

1l<<10, l<<10),)
gsDPTextureRectangle (60< i s-r:2, 160<<2,

G_TX_RENDERTILE, :

0, 0,

1<<9, 1l<<8),

70 e, 170<<2,

gsDPTextureRectangle (70<<2,
G_T¥_RENDERTIL
0, 0.
l<<8, 1l<<B),

Point sampling also implies that ted sprites will have to move in
one-pixel i ents. Even though the rectangle can be positioned with 2
bits of sub cision, and the texture can be offset to 5 bits of fractional

s these points using fractional position information to determine
el tolor. Example 15-5 shows how to enable texture filtering.

Example 15-5 Enable Bilinear Filtering

gsDPSetTextureFilter {G_TF_BILERP)

NU&-06-0030-001G of October 21, 1996 273

NINTENDO 64 PROGRAMMING MANUAL DRAFT

An example of bilinear filtering is shown in Fi
Figure 15-4 Bilinear Filtering

Sample Point

top =TL + s_frac(TR-TL)
bot =BL + s_frac{BR-BL}

texel =top + t_frac(bot-top)

drastic intens changes from one texel to another in the texture as shown
in Figure 15-5. In this example, if the sampling point moves slightty from
side of the diagonal to the other, the resulting color changes abruptly. In

274

NINTENDO DRAFT TEXTURE RECTA

(HARDWARE SPRITES)

general, it is best to prefilter an image so that® arp texture edges at

least a slight intensity ramp.

Figure 15-5 Triangular Filtering

Output
Texel

"rilnterp(TL,BL,BR)

Sample point

Trilnterp(TL,TR,BR)

near filtering, it is possible to scale a texture without the problems
of point samipling. Example 15-6 shows a texture rectangle with the texture
scaled by 1.5inSand T:

xample 15-6 Scaled, Bilerped Textures

DPSetTextureFilter {G_TF_BILERP),
DPTextureRectangle (50<<2, 50<<Z, 150<<2, 150<<2,
G_TX_RENDERTILE,

0, 0O,

3<<9, 3<<%),

Smooth scrolling of texture rectangles is discussed in “Smooth Scrolling” on
page 286.

NU6-06-0030-001G of October 21, 1996 275

NINTENDO 64 PROGRAMMING MANUAL DRAFT

276

Average mode for 1:1 Ratio Sampling

There is a special case in which the texture filter can perform an exact
average using all four texels. This ¢ urs when the sample point lies
exactly in the center, i.e. s_frac= To enable the average mode use
the command:

Exampie 157 Enable Average Filter

gsDPSetTextureFilter | TF_AVERAGE

to be in the middle of the texel, set the start
er pixel. Example 15-8 demonstrates

In order to force the samp
point to 0.5 and then step by 1 t
this:

Example 15-8

<2, 50<<2, 150<<2, 150<<2,

1<<d, 1<'{.<4;
1<<10, 1<<10),

~ Enable Copy Mode

gsDPSetCycleType (G_CYC_COPY)

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)

In copy mode, four horizontally adjacent tex
shown in Figure 15-6.

pied per clock as

Figure 15-6 Copy Mode

Frame Buffer
5

Texture Rectangle

-
I
I
I

ample 15-10 Copy Mode Texture Rectangle

DPSetCycleType{(G_CYC_COPFY)},

gabPTextureRectangle (50<<2, 50<«<2, 150<<2, 150<<2,
G_TX_RENDERTILE,

0, 0,

4<<10, 1<<10),

Since copy mode bypasses most of the RDP pipeline, the filter settings are
not used. However, it is stili necessary to disable perspective correction as
shown in Example 15-2. Also, copy mode is not valid for all texture types,
see “Copy” on page 259.

NU6-06-0030-001G of October 21, 1996 277

NINTENDO 64 PROGRAMMING MANUAL DRAFT

278

It is possible to scale textures in copy mode in th
that in this case, the rules for point sampled scaling appl
power of two scalings. .

In copy mode, textures are copie:
opportunity for color combiner o :
Copying is a write-only operation’sa frénsparency using the normal

‘dithered’ types of transparency using the glpha ﬁlpare logic, see “Alpha
Compare Calculation” on'piage 315.

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)

Simple Texture Effects

This section describes some ‘sprite’-type effects that are:commonly useful
for texture rectangles. This is in to be a starting point for
programmers, not a complete dl

find the hardware allows man

Flip

Flip means to rotate an’i ge 180 degreesﬂamund the X or Y axis or both as
shown in Figure 15-7.

flip X flipY flip XY

re map to be flipped has a size that is a power of two in the

the flip, then you can use the mirror_enable (“Mirror Enable 5,T”
on page 222) bit in the tile descriptor to perform the flip. For example,
suppose we have loaded a 32x32 16-bit RGBA texture into Tmem. To flip the
texture in X we can use the code in Exampie 15-11.

ample 15-11 Flip a Texture in X

DPSetTile (G_IM_FMT_RGEA, G_IM SIZ_1¢6b, 8, 0,
G_T¥_RENDERTILE, O,
G_TX_MIRROR, 5, G_TX_NOLQD, /* s */
G_T¥X_NOMIRRCR, 5, G_TX _NOLOD), /* £t */
gsDPTextureRectangle (50<<2, 50<<2, 150<<i, 150<<2,
G_TX_ RENDERTILE,
32<<5, 0, /* start s on mirror boundary */
1<<10, 1l<<10),

NU&-06-0030-001G of October 21, 1996 279

NINTENDO 64 PROGRAMMING MANUAL DRAFT

280

Note that the 5 start point is 32. Since the textt ¢ when the
5 coordinate is between 32 and 63 if the mirror Bt in th ile is set, we
get the effect of a flipped texture. If the mirror bit is disab e texture will
remain unflipped.

For textures that are not power
for flipping the textures. Suppo
texture in Tmem and would like
Example 15-12 would accomplish this

48x42 16-bit RGBA
T. The code in

Example 15-12 Flip a Tex
gsDPTextureRectangle
G_TX_RENDERTILE,
0, 41l<<5, /* start t at bhé
1<<10, {(-1)<<10)&0xffff), /

nY (non power-of-two size)
: _50<<2, 98<<2, 92<<2,

of texture */
step from bottom to top of

13 TextureRectangleFlip command
teRectangleFlip (50<<2, 50<<2, 98<<2, 92<<2,
ERTILE,

gsDPText

G_TX
0, 0,
1<<10, 1l<<1Q)

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)

we would get an resulting image as shown int

Figure 15-8 TextureRectangleFlip Command

TextureRectangleFlip

r data compression in cases where the texture has
e, a tree could be created with half of a tree
X as shown in Figure 15-9.

Figure 15-9 Mirror

original texture texture rectangle using mirroring

mentioned before, to use hardware mirroring, the texture must be a
*power of two size in the direction to be mirrored. Suppose the tree texture

above is a 16x40 16-bit RGBA texture. Example 15-14 will render the
mirrored tree as shown in Figure 15-9.

Example 15-14 Mirrored Tree

gsDPLecadTextureTile(tree, G_IM_FMT_RGBA, G_IM SIZ_l6b,
16, 40,
0, 0, 15, 39,

NUG-06-0030-001 G of October 21, 1996 281

NINTENDO 64 PROGRAMMING MANUAL DRAFT

282

0,
G_TX_MIRROR, G_TX CLAMP,
4, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLQOD),
gsDPTextureRectangle (50«<2,
G_TX_RENDERTILE,
0, 0,
1<<10, 1<<10),

2<<2, 90<<2,

texture over and over. In
(see “Mask 5,T” on page 223) in the

. The mask determines which power of two the wrap
shows the results for various wrap boundaries
apping can be used in copy mode except for

wrap at 4

wrap at 8

original texture

wrap at 16

Wrapping can also be used in conjuction with mirroring. Suppose we
wanted to wrap the mirrored tree shown in Figure 15-9. This could be done
using the code in Example 15-15.

Example 15-15 Wrapped and Mirrored Tree

gsDPLoadTextureTile{tree, G_IM_?MT_RGBA, G_IM_SIZ_léb,

NINTENDO

DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)

NU6-06-0030-001G of October 21, 1996

16, 40,

0, 0, 15, 39,
0.
G_TX_MIRROR | G_TX_WRAP
4, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLO

CLAMP,

gsDPTextureRectangle (50<< 90<<2,
G_TX_RENDERTILE,
0, 0,
i<<10, 1<<10),

Note that the G_TX_ abpve is really unnecessary because wrapping is

implicit as we have a no; :
included just for documentation p
like Figure 15-11.

Figure 15-11Wrapped and Mirrored Tree

texture rectangle using wrapping and mirroring

liding Textures

easy to slide a texture relative to the rectangle primitive by the changing
tile descriptor values of SL and TL (see “SL,TL” on page 224). Using the

283

NINTENDO 64 PROGRAMMING MANUAL DRAFT

tile descriptor allows the texture coordinates to/]
effect of changing SL, TL is shown in Figure 15- 12

Figure 15-12Effect of Changing SL, TL

+5

-5

L, TL=(80,1007>

we have a 32x32 4-bit I texture loaded in Tmem. In Example 15-16,
gles are rendered with the texture placed in different positions
nd TL.

Sliding Texture Using SL, TL

g
gsDPSetTileSize(G_TX_RENDERTILE, 50, 5C, 82, 82),
sDPTextureRectangle (50<<2, 50<<2, 82<<Z, 82<<2,
“: G_TX_RENDERTILE,
Q,
<10, 1<<10),
gsi¥SetTileSize (G_TX_RENDERTILE, 80, 100, 112, 132),
PTextureRectangle (100<<2, 100<<2, 132<<2, 132<<2,
G_TX_RENDERTILE,
o, 0,
1<<10, 1l<<10},

Note that SH and TH are only used when clamping. Because SL and TL are
unsigned, the texture rectangle coordinates must be offset to allow sliding

284

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)

above the top edge or to the left of the left ed,
shown in Figure 15-13 and Example 15-17.

Figure 15-13Biasing Texture Coordinates for Positive SEOTL

-5

SL,TL=(-25,50

+5

texture

egative SL not allowed

+5

texture rectangle

texture

Bias S coordinate so that
SL can be positive

+t

Example 15-17 Biased Coordinates for Positive SL

gsDPSetTileSize (G_TX_RENDERTILE, 25, B0, 57, B82),
gsDPTextureRectangle (50<<2, 50<<2, 82<<2, 82<<2,

NU6E-06-0030-001G of October 21, 1996 285

NINTENDO 64 PROGRAMMING MANUAL DRAFT

G_TX_RENDERTILE,
50<<5, 0O,
1<<10, 1<<10},

Smooth Scrolling

Scrolling involves positioning texti gles ot the screen and also
positioning the texture within the rectangle. The ctangle geometry can be
positioned with 2 bits of fractional pre 14 d Y. The texture
coordinates can be specifiéd with 5 bits of fractional precision in S and T. To
get the smoothest scro 1 can use the S and T start point as the
fractional part and the regtang and Y position for the integer part. So
effectively, you are sliding the tex achieve fractional displacements.
Example 15-18 shows how such posmonmg could be achieved. Keep in
mind that a border area around the texture must be present so that the
texture does b when it slides off the rectangle.

Example 1 foning Using Sand T

float xpcs = 10.375,
int xi, xf, yi, vy

= 19.432;

int}) xpos;

int) ypos;

3z * {xpos - xXi);

32 * {ypos - vi};

‘eRectangle (glistp++,

1<<2, (xi+32)<<2, ({yi+32)<<2,

xf, vi,
l<<10, 1<<10};

ipards

oards are textures that define complex outlines by using texiure
ansparency. For example, rather than creating a tree using polygons, you
can use an image of a tree, with the portion of the image outside the tree
having an alpha of 0 (transparent) and the interior of the tree having an
alpha of 1 (opaque). This is shown graphically in Figure 15-14. This

286

NINTENDO DRAFT TEXTURE RECT HARDWARE SPRITES)

technique allows complex scenes to be built b
together.

Figure 15-14 Texture Billboard

Alpha 0
transpare

= Alpha 1, opaque

original texture angle using wrapping and mirroring

ed texture billboard, you must be in one or two cycle mode and you
se the render mode G_RM_AA_TEX_EDGE. See “Texture Edge

Texture billboards can also be rendered in a write-only fashion but this also
implies no antialiasing of the texture edge. This mode is called ‘alpha
ompare’ and basically thresholds the texel alpha with a register alpha value
random alpha source to generate a write enable for the pixel. See

ha Compare Calculation” on page 315 for more details.

oud (CLD) Render Mode

Cloud render mode is intended for rendering texture billboards that are not
opaque, i.e. smoke clouds, explosions, etc. These are special cases because
care must be taken not to disturb the antialiased edges of things behind the
transparent cloud, because these edges will be seen through the cloud.

NU6-06-0030-001G of October 21, 1996 287

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Texture Types

Intensity () Textures

used in cases where a large numbsg
a 4-bit I texture can be as large as 128x rmally, the user would
like the primitive to have some specific ¢ e I texture should

modulate that color. For gxample, to creat &' you could use two I

textures, one for the brow k and one for the green treetop. You canuse
one of the many register ‘
color. In Example 15-19] itive color to define the colors of the

trunk and treetop.

4

5, 51, 51, 255), /* brown */
unk, G_IM_FMT_I, 16, 40,

gsDPLoadTextureTile_dbltreetep, G_IM_FMT_I, 32, 32,
= 0, 0, 15, 39,

_TX_MIRROR, G_TX_CLAMP,

, G_TX_NOMASK,

G_TX_NOLOD, G_TX_NOLOD),
“gsDPTextureRectangle(44<<2, 68<<2, 108<<2, 1l00<<2,
G_T¥_RENDERTILE,

0o, 0,

1<<10, 1<<10),

By interpolating between two different colors using the intensity as the
parameter, it is possible to achieve two-color textures. The combine mode

288

NINTENDO DRAFT TEXTURE RECTA S (HARDWARE SPRITES)

G_CC_BLENDPEDECALA interpolates be 4,
environment color using an [texture. For this combine made, when the

texture is 0 the pixel will be environment color, when thetexel is all ones, the
pixel will be primitive color. Exa.m. -20 assumes an I texture has already
been ioaded into Tmem.

Example 15-20 Two-Color Tex

gsDPSetCombineMode (G_CC_BLENDP :
gsDPSetPrimColer(0, 0, 205, 51,% £ 5), /* brown */
gsDPSetEnvColer (0, 200, 0, 28%5), /* green */
gsDPTextureRectang : 100«<<2, B2<<2, 140<<2,
G_T¥X_RENDERTIL
0, 0,
1<<10, 1«<10),

. CC_BLENDPEDECALA) ,

s

ansparency using an intensity texture. For
it texture of some text to have an mten51ty of Oxf

i xt will have the primitive color and be transparent
here. Note that if the edges of the text are filtered to give smooth edges,
mithe text will have an intensity ramp at the edges. If you use an

iHased render mode, such as G_RM_AA_TEX_EDGE, then the text will
other than if a 1-bit alpha texture like 4-bit IA or 16-bit RGBA were

Intensity Aipha (1A) Textures

his texture type defines an intensity (I) channel and a separate alpha
janmnel (A). This type is convenient where the transparency of the texture
st be defined separately from the intensity. The sizes include 4-bit {3 bits
wof [and 1 bit of A), 8-bit (4 bits of I and 4 bits of A), 16-bit (8 bits of I and 8
‘bits of A). Keep in mind when using 1-bit alphas that the pixel will be either
written or not, depending on the alpha bit. Therefore, the transparency
channelis not antialiased (the texture filter cannot ‘create data’ to smooth the
edge). Scaling a 1-bit alpha texture can result in blocky-looking outlines.

NU6-06-0030-031G of October 21, 1996 289

NINTENDO 64 PROGRAMMING MANUAL DRAFT

290

Color (RGBA) Textures

There are two sizes of RGBA textures:
A), and 32-bit (8 bits R, 8 bits G, 8 bi
textures are popular because they §
have the disadvantage of only a 14
in certain cases, as discussed in “C

and model with, they
This can be overcome

Color index (C]} Textures
Color index textures come: izes, 8-bit and 4-bit. When using color
half is used to store the lookup table (TLYT) that converts the index texel

into either 16-bit RGBA or 16-bit A types. It is also possible to copy 8-bit CI
-bit framebuffer as discussed in “Color Index Frame

4-bit CI texturés must select ¢
entries. The g”DPLoaa‘TLI.I #al16 can be used to load an individual palette.
the tile descriptor (normally you would

e palette in the g DPLoad Texture* command), so different tiles can

pe because the TLUT can hold 16-bit IA values. Therefore,
up 16 levels of alpha with a 4-bit CI sprite as compared to 1

ntioned previously, 16-bit RGBA textures have only a 1-bit alpha

el. If you want to have a smoothly antialiased texture edge using the
[6-bit RGBA type, you must combine two types of texture. Example 15-21
shows how a separate alpha texture with a 4-bit I type is combined with a
16-bit RGBA ftype to get stnoother edges on a sprite.

Example 15-21 Interpolate Between Two Tiles

#define MULTIBIT_ALFHA 0, 0, 0, TEXELO, 0, 0, 0, TEXELL

gsDPSetCyleType {(G_CYC_2CYCLE) ,
gsDPSetTexturelOD (G_TL_TILE) ,

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)

gsDESetCombineMode (MULTIBIT_ALPHA, G
gsDFSetRenderMode (G_RM_AA _TEX EDGE, G_RM“AA TE
/* load color part of texture */ :
gsDPLoadMultiTile {color,
0, /* Tmem address in
G_TX_RENDERTILE, /* t
G_IM_FMT_RGEA, G_IM_BS
32, 3z,
0, 0, 31, 31,
Ol
G_TX_NCOMIRROR,

NOMIRROR,

G_TX_NOLOD, G_T¥ NOL®
/* load alpha part of text
gsDPLeoadMultiTile_4b{alpha,
em address in 64-bit words */
/* tile */

EQ<<2, B82<x<2, 82<<2,
_RENDERTILE,

e idea here is that in two-cycle mode we get two texel values, one from
16-bit RGBA texture and one from the 4-bit I texture. In the color
pmbiner, we program the alpha combiner to use the 4-bit I texture (the 1-bit
of the RGBA texture is not used). In the color combiner, we select the RGB
texture as the color source. Since we are using both cycles for this trick, it is
not possible to use mipmapping or other two-cycle modes simultaneously.
Note that you could have used an 8-bit I texture for the alpha channel if you
needed more alpha resolution.

NU&-06-0030-001H G of October 21, 1996 291

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Multi-Tile Effects

In the g*DPLoadTexture*
loading and rendering.
loading a tile starting at

in the load macro. Notice that since each tile is loaded at Tmem address 0
and the G_TX:RENDERTILE is always used for rendering, we cannot use

indicate the blend amount, between the tiles. A register value in the color
combiner, such as primitive alpha, can be used as the “slider” to blend
between the two textures as shown in Example 15-22. Notice that we define
ur own color combine mode to achieve this effect, since gbih didn’t have
mode we needed.

mple 15-22 Interpolate Between Two Tiles

fine MY_MORPH TEXEL1l, TEXELO, PRIMITIVE_ALPHA, TEXELO, \
TEXEL1, TEXELQ, PRIMITIVE, TEXELC

gsDPSetCyleType {G_CYC_2CYCLE),
gsDPSetTextureLOD(G_TL_TILE),
gsDPSetPrimCeolor(0, 0, 0, 0, 0, 128}, /* 0.5 kblend */
gsDPSetCombineMode (MY_MORFH, G_CC_PASS2},
gsDPLoadMultiTile {facel,

0, /* Tmem address in 64-bit words */

292

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)

G_TX_RENDERTILE, /* tile */
G_IM_FMT_RGBA, G_IM_SIZ_l6b,
32, 32,
g, 0, 31, 31,
0,
G_TX_NOMIRROR, G_TX_NGMIRROR,
G_T¥_NOMASK, G_TX_NOMA!
G_TX_NOLCD, G_TX_NOLOD}:
gsDPLoadMultiTile (facel,
256, /* Tmem address in 64-b
G_T¥X_RENDERTILE
G_IM_FMT_RGBA,
32, 32,

G_TX_RENDERTILE,
o, 0, .
iy 1<<10, 1<<10)

vy mtaking the primitive alpha an animation variable, a simple ‘morph’
effect¢an be achieved.

Smoothihg Flip-Book Animations

Often sprite animations are a sequence of key frames which are selected at
the appropriate time by some animation variable. The linear interpolation
tween two images as described in “Simple Morph” above can be used to
oothly transition between two key frames. Imagine a series of n images
an animation selected using an animation variable frame. The integer part
f frame is called frame_i and the fractional part is called frame_f. An
algorithm for smoothing the sequence is described in Example 15-23.

Example 15-23 Smoothing an Animation Sequence

Load tiles frame_i and frame_i+l into Tmem
Set primitive alpha = 256 * frame_f£f
Render the rectangle using MY _MORPH combiner mode

NU&-06-0030-001G of October 21, 1996 293

NINTENDO 64 FROGRAMMING MANUAL DRAFT

294

The frames do not necessarily have to be related
could interpolate between different flame images that are ran mly
selected to create a fire effect.

Shrinking Sprites

In the previous discussion of scaliry tering” on page 273 we
only discussed scaling a sprite to a larg caling it smaller would
result in aliasing effects. It is possible to r shrink an image by

les, one of which'is a half the size of the other
tile. This is shown in Fi Prim_lod_frac is a register in the color
combiner that can be usedito indicgte the fractional distance between the
two ‘levels-of-detail” of the sprite. Notéthat there is no special reason we
used this register as the interpolation parameter, other than it’s name
suggests this “‘*

interpolating between twa

Tile 0 prim_lod_frac Tile 1

One of the tile descriptor parameters is the shift (see “Shift 5,T" on page 223)
that describes how many places to bitwise shift the tile coordinates for the
nitive. This implies that one tile’s size is related to the other’s by some
er shift, but the tiles don't necessarily have to be power of two sizes.
ple 15-24 shows the code to create a sprite thatis 0.75 the size of the
er image. The user must scale the size of the rectangle primitive by the
desired amount as well.

Example 15-24 Shrinking a Sprite

#define MY_LOD TEXELl, TEXELQO, PRIM_LOD_FRAC, TEXELGC, \
TEXEL1, TEXELO, PRIM_LOD_FRAC, TEXELO

gsDPSetCyleType (G_CYC_2CYCLE} ,
gsDPSetTexturelLOD (G_TL_TILE},

NINTENDO DRAFT TEXTURE RECT {(HARDWARE SPRITES)

gsDPSetPrimColor (0, 128, 0, 0, O, rac */
gsDPSerCombineMode (MY _LOD, G_CC_PASS2),
gsDPLoadMultiTile (facel,

0, /* Tmem address in §

G_TX_RENDERTILE, /* ti

32, 32,
o, 0, 31, 31,
0,
G_TX_NOMIRRCR,
G_TX_NCMASK, G
G_TX_NOLOD, G_ ,
gsDPLoadMultiTile (Facel,
256, /* Tmem address in
G_TX_RENDERTILE+1l, /* tile
G_IM FMELRCBA, G_IM_SIZ_l16b,

PTextureRectaﬁéle(glistp++,
O<<2, 50<<2, B82<<2, 82<<Z,
_T¥X_RENDERTILE,

: <5, B<«<b,

10, 1<<l10};

Texture Decals

e can use the alpha of one tile to select between the texel color of two
different tiles to create a texture decal. Figure 15-16 shows an example of a
flag created using textures decals. The insignia of the flag has transparency
around it's edges. After mirroring and wrapping once, the texture is
clamped. In the color combiner, the texture alpha is used to interpolate

NU6-06-0030-001G of October 21, 1996 295

NINTENDO 64 PROGRAMMING MANUAL DRAFT

296

between the flag stripes and the insignia. Wher is zetq, the stripes

will show, where the alpha is one, the insignia wilf AowW.

Figure 15-16 Texture Decals

right spots at the infersection of the points. If the stripes are slid relative
ach gther, the points will move also. Multiplying can also be used to

NINTENDO

DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)

Tiling Large Images

Sometimes it is desirable to render large textures, i.el téxtures to large to fit
entirely into Tmem. This can b plished via ‘tiling’ or breaking the
large image up into smaller re es that do fit into Tmem. These
tiles are rendered onto primitj! th forttt-d mesh coincident with the

display. However, if §
a border region of one f&x around the t11e 50 that the mterpolanon works
correctly at the edges &f i
on page 236 for more informatior

NU6-06-0030-001G of October 21, 1996

297

NINTENDC 64 PROGRAMMING MANUAL DRAFT

Coior Index Frame Buffer

208

You might have noticed that one of the color image types s available is
the 8-bit I type. You can use this m der color index images into the
framebuffer. Before displaying the b1t Jhowever, you must read the

8-bit image into Tmem and derefe 16-bit
the 8-bit frame buffer can share the mory the 16-bit frame buffer
by placing the 8-bit buffer in the high
can give better performance than render toa 16—bit framebuffer
because the memory access: more efﬁcxe . Also, the initial clear of the
framebuffer is faster becau uffer is half the size.

There are, however, resirictions wheriising this technique. Since we are
rendering an 8 bii CI image, you must texture map objects with 8-bit CI
textures (but d lereference yet) and use shade colors that fit into your
palette You r the textures since the texture values in the pipeline
nd with memory colors (unless your palette

transparency. "Antlahasmg
because no coverage ig;sto:

strictions sound severe, but may be practical for some sprite games,
those that use sort priority and can render totally in copy mode.

that indicaté .
the blend alphi to 1 and enabling alpha compare (G_AC_THRESHOLD)
would allow all pixel with any index greater than or equal to 1 to be written

40 the framebuffer but pixels with index 0 would not be written.

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)

Z-Buffering Texture Rectangles

rted list and renidered from back to
ained by the application and the
r technique is to use the

Normally, sprites are rendered in a

application must do the sort eac
z-buffer to determine priority.

Primitive Z

alue associated with it directly, however you
*DPSetPrimDepih()). To force the z-buffer

g*_DPSe_tPrunDepth() comzmand before the rectangle command of each
sprite. Because the primittve Z is explicitly buffered in the pipeline, it is not
fepssary to insert pipe'sync commands before setting the register.

that z-buffering can only be used in 1 and 2-cycle mode. In copy and
fill mode, you should use the RenderMode G_RM_NOCF to effectively
sbuffering and put the pipeline logic in a safe state.

NU6-06-0030-001G of October 21, 1996 299

NINTENDO 64 PROGRAMMING MANUAL DRAFT

300

NINTENDO

DRAFT ASING AND BLENDING

NU6-06-0030-001G of October 21, 1996

Chapter 16

Antialiasing and Blending

Aligsing is a signal-processing term describing sampling errors that ocour
when a continpeus function containing sharp changes in intensity is

rather than setting pixels to maximum or zero
intensity only. There are y references on antialiasing as it applies to

graphics. This chapter

301

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Antialiasing

Antialiasing is an algorithm that attempts to minimize sampling errors that
occur when an edge of a primitive yved ona 1 raster image. Vlsually,
these errors cause the edge to be s

Antialiased Edge

Figure 16-2, “Unweighted Area Sampling,” on page 303, antialiasing is
achieved by weighting the intensity of the pixel in proportion to the area of

302

NINTENDO DRAFT NTIALIASING AND BLENDING

the pixel covered by the edge. In signal-proéé_, is called

unweighted area sampling.

Figure 16-2 Unweighted Area Samplin

Background Color

9/16 * Black + 7/16 White

Edge

Primitive Color

High-end grap :
as super-sampling, in which the pixel is divided into a grid of sub-pixels. A
color is compute \ subpixel and the subpixels that are covered by a
imitive are ave o produce the final pixel color. In the case where
mére than one primitive covers a pixel, each primitive’s color is weighted by
the number of subpixels it covers. Also, depth (Z) can be found for each
el which allows antialiased interpenetrations between primitives.
uper-sampling is straightforward and effective, it is also expensive in
emory and memory bandwidth. For a 4x4 subpixel grid, 16 color
and Z valiges must be stored for each pixel. In additien, to achieve required
fill rates, each of these values must be accessed every clock.

Because the Nintendo 64 machine has very severe cost and memory
quirements, a new and novel technique for antialiasing that avoided (as
uch as possible) the storage requirements of super-sampling but yet
rovided satisfactory antialiasing was needed. This method relies heavily
on the notion that different objects have different antialiasing needs, and that
the hardware can be simplified by requiring that different RenderModes are
configured as appropriate for a particular object. As well, there are
display-order restrictions for rendering certain types of objects. For
example, transparent objects must be rendered after all the opaque objects.
Finally, it was recognized that antialiasing of silhouettes could be done as a
post process during video output. A data flow diagram of the analogizing
algorithm is shown in Figure 16-3, “Antialiasing Data Flow,” on page 304.

NU6-06-0030-001G of October 21, 1996 303

NINTENDO 64 PROGRAMMING MANUAL DRAFT

304

Note that this method requires, in addition to the pie
three bits of coverage and four bits of delfaZ per pixel, qu
compared with super-sampling meth

Figure 16-3 Antialiasing Data Flow

Compute subpixel mas

Dither subpixe
=4)

k and compute coverage value. (Coverage

Color Combiner Alow combining of coverage and alpha for tex-

ture edges.

xel Alpha Pixei Coverage

Zolor, Alpha, Z Pixel Coverage Memory cror, Coverage, Z, DeitaZ

[Blender; antiaitas interior edges, transparency |

New Color New Coverage New Z, DeltaZ

Frame Buffer Z Buffer
L

Pixel Coler and Coverage

) Video Interface
Antialias silhouvette

NINTENDO

DRAFT ANTIALIASING AND BLENDING

NU6-06-0030;001G of October 21, 1996

The antaliasing data flow shows the most general casefof z-buffered and
antialiased primitives. Other techsiigjites are possible. For example, if the

of antialiasing are
ptions” on page 327.

is mask is a 4x4 grid of bits

subpixel is not covered., Theimask is converted to a coverage value by
adding all the bits of]
coverage, the sixteen subplxels ‘
value is optionally combined with the'pixel’s alpha value This is useful for
antialiasing edges created by a texture cut-out. Inthe blender the pixel color

vill now discuss each hardware unit in the antialiasing datapath in
on, before considering how these units work together to render a
complete image.

305

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Coverage Unit

primitive. For example, a value of 8 (1.0) icates the pixel was fully
thpixel was covered. An
example of the coverage calculatio
Calculation,” on page 306

Figure 16-4 Coverage Calcylation

2x2 Pixels
Coverage Dither Mask

Oxa5ab

coverage = sum(0Ox8cce & Oxa5a5) = 4
coverage = sum(Ox{fff & Oxa5a5) =8
coverage = sum(0x037f & Oxa5a5) = 4

coverage = sum(0Oxffff & Oxa5a5) = 8

Note that it is very important that primitives sharing an edge have
complementary subpixel masks, otherwise cracks may appear between

es. In the RCP, if primitives use the same vertices to create the primitive,
ther the pixel mask will be complementary. There are, however, cases where
odelling can lead to cracks, as in Figure 16-5, “Complementary

,” on page 307. These cases can occur when (incorrectly) fractalizing

306

NINTENDO DRAFT ANT I;f&LIASING AND BLENDING

example.

Figure 16-5 Complementary Edges

Edges that do not shere verices are not guaran-
teed to join comectly

NU6-06-0030-001G of October 21, 1996 307

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Z Stepper

308

The Z-stepper calculates an 18-bit fixed point depth valuet(Z) for each pixel
of a primitive. The valueis of Zis ly zero at the near plane and
maximum at the far plane, assumiziga p $PViewport() command. By
manipulating the g*SP Viewport() % sible to split the z-buffer
into separate Z-planes, see Figure T “lanes,” on page 308.

Figure 16-6 Z-Buffer Planes

Near(, Z=0 Far0/Nearl, Z=MAXZ./2 Farl, Z=MAXZ

atic Vp vp0 = {
REEN_WD*2, SCREEN_HT*2, G_MAXZ/4, 0, /* scale ¥/
EEN_WD*2, SCREEN_HT*2, G_MAXZ/4, 0, /* transiate */

):
staric Vp vpi = {

SCREEN_WD*2, SCREEN_HT*2, G_MAXZ/4, 0, /* scale */
SCREEN_WD*Z, SCREEN_HT*2, G_MAXZ/2, 0, /* translate */

b

...gsSPViewport(&vpl), /* render object in second Z-plane */
...gsSPView port(&vp0}, /* render object in first Z-plane */

No attempt will be made to justify why one would do this, only that it is
possible. Also, note that the ¢g*SPPerspNormalize() command can be used to
maximize Z precision. See Figure 12-2, “Perspective Normalization
Calculation,” on page 146 for more details about g*SPPerspNormalize().

NINTENDO DRAFT ANTIALIASING AND BLENDING

There is also a source of constant Z (from a reg] th
g*DPSetPrimDepth() command. To select the constant d
¢*DPSetDepthSeurce() command. This may be useful wi
sprites, for example.

Primitive

— Center of the pixel, Z negative (projects behind VP)

Horizon line, Z = infinity

.

Primitive

= In this case, if you calculate Z at the center of the pixel, the Z value will be
fiegative because Z will be projected behind the viewpoint. A better solution
to calculate the Z value at the subpixel, below the center of the pixel in this
se, which intersects the primitive.

NU6-06-0030-001G of October 21, 1996 309

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Biender

Color Blend Hardware

The blend mux selects input ope
controls for these muxes are in th
are two sets of mux controls, one for ea
cycles.

The blend equation is of

Equation{ Blend Equation

G_CYC ZCYCLE) and an internal cycle counter. The sources for the pand
m muxes are identical and are shown in Table 16-1, “P and M Mux Inputs,”
n page 310.

16-1 P and M Mux Inputs

Mux Select Source
0 first cycle - pixel RGB, second cycle -
blended RGB from first cycle
1 memory RGB
2 blend (register) RGB
3 fog (register) RGB

310

NINTENDO

DRAFT IASING AND BLENDING

NU6-06-0030-001G of October 21, 1996

ded RGB’
on the first

For select 0, the cycle select is built into the hax
refers to the numerator result of the blend equatior
cycle (it’s fed back as an input). Note that this will only4
set to 1.0 - a, since only the numerator
the input mux. Register RGBs rete
g*DPSetFogColor() and g*DPSetBlendCol

these commands are stored in re thi RDP. Care must be taken
to make sure that a g*DPPipeSync() ¢ ued previous to setting
these registers. The g*DPPipeSync() commar rts a delay into the RDP

pipe so that a previous ptimitive is guaranteed to be finished processing
before the register is up is anticipated that the user will set a group
of attributes, process many primjtives, setanew group of attributes, etc. The
syncs are exposed to the user w
number of syncs needed than would be possible in hardware. (Note that
PSetPrimColor(), primitive depth, g*DPSetPrimDepth(),

Source

color combiner output alpha
fog (register) alpha

2 {stepped) shade alpha

3 0.0

sources for the b muxes are shown in Table 16-3, “B Mux Inputs,” on
e 311.

Table 16-3 B Mux Inputs

Mux Select Source
0 1.0 - "a mux’ cutput
1 memory alpha

3

NINTENDO 64 PROGRAMMING MANUAL DRAFT

312

Table 16-3 B Mux Inputs

Mux Select
2 1.0
3 0.0
In general, the RDP pipeline operates on 3GBA piXels with 8 bits per

component. The 1.0 in Table 16-3, “B Mux *on page 311 assumes the
alpha is a number between (:0-1.0. These numbers are actually fixed point
and the output of the a ang hia muxes have less resolution (5 bits) than
the color components (8 bits) to te hardware cost. When this alpha is
changing slowly across a face, Mach ing can occur due to the reduced
number of discrete steps in the alpha channel.

be used to reduce Mach banding effects:
AlphaDither{). These commands basically

ss (1/2 of an LSB) to the color and /or alpha
which makes the Mach bandiitg less noticable. The g*DPSetColorDither()
command also controls thering of RGB from 8 to 5 bits per component
in 5/5/5/1 pixel mode).

re two variations of dithering that can be set using the

DPSett aorDither() command. One is a screen coordinate based dither
IC5Q or G_CD_BAYER) in which the dither matrix changes
cation of the pixel on the screer. In other words, the dither
pattern is regl fered to the screen. The noise dither (G_CD_NOISE), on the
other hand, adds pseudo-random noise with a very long period into the
5Bs of each pixel. In this mode, the dithering is not registered to the screen
angiwill vary from frame to frame. Of course, you can disable color
dithering altogether using the G_CD_DISABLE parameter.

a dithering (g*DPSetAlphaDither()) for screen-based dither patterns
ses the same matrix that is selected by the g*DPSetColorDither() command.
However, the user may invert the pattern, G_AD_NOTPATTERN, or simply
pass the pattern through unchanged, G_AD_PATTERN. The user may also
select the noise pattern using G_AD_NOISE, or disable alpha dithering
altogether using G_AD_DISABLE.

SING AND BLENDING

NINTENDO DRAFT

Note: The dithering of the RGB from 8 bits to 5 adding 3 Isbs of noise
to the original 8 bits (with clamping to prevent wrapping) bled even in
32 bit mode (8/8/8/8), where there is no truncation to'be’done. Since this
one mode bit controls both RGB ditt nd alpha dither (which always is
needed, even in 32 bitmode), o que 1uld have the dither bit off in

in the stepped alpha of the shaded triangle primitive {see
n page 169). We will use the fog register color

& how much of the fog color is used. The first
le 16-4, “Fog Mux Controls,” on page 313 will

Source Selected

select 0, pixel RGB
select 2, stepped shade alpha
select 3, fog register color

select 0, 1.0 - stepped shade alpha

m the blend equation, Equation 1, you can see that these selects perform
4 linear interpolation between the fog color and the color combiner output
color.

NU6-06-0020-001G of October 21, 1996 313

NINTENDGQG 64 PROGRAMMING MANUAL DRAFT

314

Equation 2 Fog Blend Equation

ontrol these muxes as well

as other blender modes. o gonunand
g*DPSetRenderMode(G_ [HADE_A, G_RM_FOG_SHADE_A)
implements the mux controls fog effect in G_CYC_1CYCLE mode.

second cycle performing the blend of the pixel with memory. For example,
dode(G_RM_FOG_SHADE_A,

e that indicates how many subpixels are occluded by a primitive.
«coverage of zero indicates that no subpixels were covered and

only 3 bits of‘¢coverage available in the frame buffer, the coverage stored is
actually:

yation 3 Stored Coverage

memcvg = coverage — 1

When the pixel is read from memory, a one is automatically added to restore
the actual coverage before it is used in calculations.

It is interesting to note that the Video Filter is concerned primarily with
partially covered pixels around the silhouette edges of objects (see “Video

NINTENDO DRAFT

Filter” on page 326). Also, the antialiasing ps
information about coverage wraps, t.e. when the
and pixel coverage are greater than 1.0. Because of this;th

initially cleared such that the co bits are all one, see “Color Image
Format” on page 318.

e 180 and “Co ode” on page 180, you will
wand G_CYC_FILL modes the blender

From “Fill Mode” on i
notice that in G_CYC_

Flgure 16-8, ” Alpha Compare in Copy Mode for 8-bit

ebuffer,” on page 316 shows that write enables are generated when the

Ipha is greater than or equal to blend alpha for 8-bit framebuffers.
ote that for 16-bit RGBA texels there are no compares, the alpha bit

Y acts as a write enable. Threshold alpha compare mode may be set by

the folloiing command: g*DPSetAlphaCompare(G_AC_THRESHOLD).

NU6-06-0030-001G of October 21, 1996 315

NINTENDQ 64 PROGRAMMING MANUAL DRAFT

Note: Alpha compare only works in G_CYC _COE
RGBA color and 8-bit image types. You cannot copy the 32

image type. ‘
Figure 16-8 Alpha Compare in Cop

Blend Alpha
Random Alpha

Texture Memory

0 Al 2 2

Another alph
number as the threshold

es a hardware generated pseudo-random
. To set this mode, use

Figure 16-9, “Alpha Compare in One/Two-Cycle Mode,” on page 317 shows
lock diagram of the coverage/alpha combiner and aipha comparator
These controls are usually set as part of the g*DPSetRenderMode

and. For exampie, the command

etRenderMode(G_RM_TEX_EDGE, G_RM_TEX_EDGE?) will do the

¢ thing with these mode bits. See Table 16-6 for details on which bits are
‘for a particular RenderMode.

For rendering effects such as smoke, clouds, or explosions, set the texture
alpha to the outline of the smoke orexplosion and render the texture onto a
transparent polygon so that one can see through the smoke to the objects
behind.

316

NINTENDO DRAFT ANTIALIASING AND BLENDING

In this situation, the correct g*DPSetRenderM@
G_RM_ZB_CLD_SURF or G_RM_CLD_SURE)

This ‘cloud’ mode preserves the a
primitive, unlike TEX_EDGE an

Figure 16-9 Alpha Compare in

Pixel Coverage, to Blender

ALPHA_CV(G_SEL

#—— Pixel Alpha, to Blender

lender ADD Mode

special blender mode has been implemented that allows the pixel color to
e added to the memery color:

#define RM_ADD(clk) \

IM_RD | CVG_DST_SAVE | FORCE_BL | ZMODE_OPA | y
GBL_c##clk(G_BL_CLR_IN, G_BL_A_FOG, G_BL_CLR_MEM, \
G_BL_1)
#define G_RM_ADD RM_ADD(1)
#define G_RM_ADDZ2 RM_ADD(2)

NU6-06-0030-001G of October 21, 1996 317

NINTENDO 64 PROGRAMMING MANUAL DRAFT

318

Several notes about this mode:

* You must set fog alpha equal to Oxff for this mods rk, e.g.

gsDPSetFogColor(255, 255, 255,,255).

* Since the blender does nn
clamped and normal int
flow) the user must guar
“special effects” may occur.

1 color (all the inputs are
ns won't under/over
s will not overflow or

Color Image Format

The are three color image formats: 32:bit RGBA, 16-bit RGBA, and 8-bit. In
addition, there are hidden bifs that are available to the RDP memory interface
but not readily,visible to the programmer, see Figure 16-10, “Hidden Bits,”

RDRAMSs. pes, the hidden bits are used for storing
coverage 1 ; pes, the 3 coverage bits are stored as the 3
MSBs of the 8-bit alpha ch l and the hidden bits are ignored. Note that
the 32-b1t RGBA mode.d ot provide increased alpha resolution. For

den bits are logically the 2 LSBs of each 18-bit word. For memory
m other than the RDP memory interface (MI), only a 16-bit word
ttert. Other masters can indirectly set or clear the hidden bits by
setting or clgaring the LSB of the 16-bit word, respectively. For example, if
the CPU writes the 16-bit binary value 10101010_10101010 to memory, the
memory interface will actually write the 18-bit binary value
A0101010_10101010_00. On the other hand, if the CPU writes the 16-bit

iary value 01010101_01010101, the memory interface will actually write
-bit binary value 01010101_01010101_11.

NINTENDO DRAFT ANTIALIASING AND BLENDING

Figure 16-10Hidden Bits

Short Ordering
Byte Ordering

0A Bitordering

Hidden Bits (2}
directly by the RDP memory

Interface. They are logically positiotied as the LSBs of every 16-bit
word, independent of Color Image type.

Pixel Ordering
Byte Ordering
Number of Bits
Compornents

Bit Ordering

Hidden Bits (2}

16-bit RGBA Format Showing Hidden Bits

igure 16-11, “Color Image Formats,” on page 320 describes the logical
frame buffer formats.

NU6-06-0030-001G of October 21, 1996 319

NINTENDO 64 PROGRAMMING MANUAL DRAFT

320

Image Alignment Requirements

The color image pointer, g*DPSetColorImage(), and the depthinmage pointer,
g*DPSetDepthlmage(), should be aligriedito 64-bits, i.e. the 3 LSBs of the
pointer should be zero.

Figure 16-11 Color Image Formats

0 Pixel Ordering
U i Z Byte Ordering
o S 5 Number of Bits
K G B Components
31 23 15 0 Bit Ordering

1 Pixel Ordering
2 | 3 Byte Ordering
Number of Bits
G B_IA Components

w
w
—

10 5 10 Bit Ordering

16-bit RGBA Format

Pixel Ordering
Byte Ordering

Number of Bits

Components

o/7 0/7 0/7 0/7 0/7 0/7 0/7 O Bit Ordering
8-bit I Format

— o] g
—j o ~Y S
— g OF 3
m{ od wf]
1 o Y Ul
—] oo oy o
=1 o ~4 ~]

Z Calculation

As mentioned in the “Z Stepper” section, g*DPSetDepthSource() selects the
source of Z for the depth compares used in the z-buffer algorithm. This
selects between primitive Z (a register), g*DPSetPrimDepth(), and stepped Z

NINTENDO DRAFT ANTIALIASING AND BLENDING

(from the triangle or line). G*DPSetDepthSo
primative DeltaZ (a register) and stepped DeltaZ.
register can supply the 15 integer bits of the Z value

memory. When computm ‘whether the pixel is part of the same surface, the
worst case DeltaZ i ’

qiiation 5 Max DeltaZ Calculation
DeltaZmax = MAX(DeltaZpix, DeltaZmem)

The z-buffer compare equations are:

fuation 6 Max Z Test
C MaxZ = (MemZ=MAXZ)

Equation 7 Farther Compare
Farther = (PixZ + DeltaZmax) 2 MemZ

NU6-06-0030-001G of October 21, 1996 321

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Equation 8 Nearer Compare

Nearer = (PixZ - DeltaZmax) £ MemZ

Equation 9 In Front Compare

InFront =

These signals are used al
surface correlation for va

ler uses a fixed point, 0,15.3, 18 bit number for
16 bit quantity that is used as a s15 number.
ped, is converted to a 14 bit floating point
. This encoding is shown in Figure 16-12, “Z

Stepped Z 0,15.3 ¢ Exponent, 3 bits

NI m{mjm

=N I IS0 Y) ISy (S P

0
m
asi
I
m
m
m
m

3181818 [=lolo|o
EEERE R EEEE
v BB |eleleisiclo
N UL WO

0|0
0|0
m| 0
mjm
mymy
ITHIT
mim
m|m

m
m|m
m|m
m|m
0 m
1]0
ii1
11

=0 =0 R =0 ER 8 R B

m|m
mimjm|mjmim
mimim|mimim
mimim|m(m/m
mm{m|m|mfm
m|m|m|m|mfm
0 [m|m{m|mfm|
1 |mim{m|m|m

Mantissa, 11 bits

Three bits are stored for the exponent and 11 bits are stored for the mantissa.
Here is some psuedo code for converting from the format stored in memory
to the Z format used in calculations:

322

NINTENDO DRAFT

ANTIALIASING AND BLENDING

/* :
* Cconvert 11 bit mantissa and 3 bit exponent
* to 0,15.3 number
*/
struct {
int shift;
long add;
} z_format[8] = {
6, 0x00CQ0,
0x20000,
0x38000,
0x3c000.
0x320060,
0x3£000,

S O R L Ul

ZVéa

ice that converting from a 18 bit fixed point number to a 14 bit floating
umber, some precision may be lost. The lose of precision is greatest
11 exponents. The highest precision is saved for large Z values, that
jects that are far away from the eye.

also encoded into 4 bit integer for storage into the Z-buffer
using the following equatiorn:

Equation 10 DeltaZ Encoding

DeltaZmem = log2 (DeltaZpix)

This is just a priority encoding of the DeltaZ value. The bit number of the
most significant bit that has a value of one is stored.

NU6-06-0030-001G of October 21, 1996 323

NINTENDO 64 PROGRAMMING MANUAL DRAFT

324

The memory format for the Z and DeltaZmem
Memory Format,” on page 324.

Figure 16-13 Z Memory Format

16-13,"Z

Pixel Ordering
Byte Crdering

Number of Bits

Note: Hidden b

Components

Hidden Bits (2)

ts are only read/written directly by the RDP Memory
¢ logically positioned as the LSBs of every 16-bit

NINTENDO

DRAFT

ASING AND BLENDING

Z Accuracy

far planes.

Figure 16-14 Z Worst-Case Error

dZe/7e
™. (% errorin Z)

NU6-06-0030-001G of October 21, 1996

128*Znear Zfar

325

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Video Filter

The video filter performs the second pass of the analogi gorithm. The
first pass is done in the blender an es antialiasing of infernal or
non-silhouette edges. After the image is r into the frame buffer, all

Equation 11 Video Filter rpolation

OutputColor = cvg und + (1.0 - cvg) x BackGround

s the color stored in the frame buffer for that
ound by examining fully covered pixelsin a
nit pixel. Note that Z is not used in

or and so it is safe for Z to be single-buffered.

The ForeGroihd col
pixel. The BagkGrotnd color”
5x3 pixel area around the ¢
determining the BackGrozu;

326

NINTENDO DRAFT ANTIALIASING AND BLENDING

Blender Modes and Assumptions

Opaque Surface Antialias
OPA_SURF

The key to achieving this

polygonal surfaces without the need f;
everal pieces, each of which

goal is to split the antialiasing problem

inds of antialiasing. The first is the
antialiasing of textures within poly Hs. This is accomplished outside of the
texture hardware, usmg the industry standard mipmapping
tri-linear interpolation to produce a correctly sampled

nite triangles meet at a center vertex. The pixel
which this vertex lies should be the average of the colors of all the
- les which share this vertex, weighted by the area of the pixel at the
‘vertex covered by each of the triangles.

This bl 1ding is done in the blender hardware by computing Equation 1,
:the color of the pixel of the new poly, m is the color of the pixelin
the frame buffer memory, a is the coverage value of the new poly, and b is
the sum of the coverage values of all the polygons already blended into that
ixel in the frame buffer. Note that no matter what order the polygon
gments come in, they will all average in correctly.

e third kind of antialiasing is the blendmg of the silhouette of a
“foreground object against the background. This is traditionally done at
rendering time in the blend unit. Unfortunately, doing it at this time has bad
consequences for hidden surfacing.

Consider an internal edge of a surface {i.e., an edge shared by two visible
polygons not at the silhouette). A priori, when the first of the two polygons
is rendered, the blender does not yet know whether it is a silhouette edge
(and hence needs to be blended with the background), or an internal edge

NU6-06-0030-001G of October 21, 1996 . 327

NINTENDO 64 PROGRAMMING MANUAL DRAFT

328

edge left when the second polvgon blends with the first.Onee the blending
is done, there is no way to undo it. A 1ote that the background may not
even have been rendered yet, unl i

depth-sorted order, which defea sbuffering

The only way to deal with thisisto p nding of silhouette
edges until after the whole scene is rendereg the final blending of the
silhouette edges is done : i deo interface. While the
details of this are beyond t} e of this document, the main point is that

to do this blend on video & ; Hiere needs to be a coverage value left

foreground (the color of which is in th ;me buffer} and the background
{which is assume in one or more of the neighboring pixels in the frame
buffer). This 4 ion is described in Equation 11.

rk, we must be able to distinguish between
-and silhouette edges between an object and
its backg‘round This ssible in the context of z-buffering. (If
z-buiffering is disabled; the Internal edge blending must also be disabled,

| can no longer distinguish between internal and silhouette edges.)

additional i
within the same surface or not. This added information is the slope of Z
(depth) in screen space. This is computed as shown in Equation 4. The delta

w:for the old polygon is stored in the frame buffer with the Z. The rule is then

e absolute difference in Z between the new polygon and the frame

is less than the max of the new DeltaZ and the frame buffer DeltaZ,
e new polygon is considered to be part of the same surface as the old
paliygon already in the frame buffer. If the new Z is clearly in front, it
verwrites the frame buffer. If it is clearly behind, it is not written at all.

In fact, while this algorithm works as described above, it has some problems,
First off, we are only representing one fragment per pixel. if there are
multiple silhouettes within one pixel, there will be a slight artifact. There is
some specialized hardware to reduce this effect (the divot circuit). However,
some artifacts remain, and are simply tolerated.

NINTENDO

DRAFT

NU6-06-0030-001G of October 21, 1996

“punchthrough”, where part of an object which s
“punches through” the object in front of it. This is caused by
e to large DeltaZ’s from polygons

that are very “edge on” to the view
mechanisms to prevent this artif
The first mechanism is to weight the" hting factors in the internal edge
blend by how “edge on” they are. Polyg, more “flat” are weighted
more heavily than polygéns that are more“edge on”. Thus, the
punching-through poly ttenuated relative the polygon itis punching
through.

The second mechanism to prevent purtichthrough is to use the wrapping of
the coverage value to distinguish between contiguous surfaces and a “new”
polygon niof part of that surface. Basically, if the coverage wraps (i.e.,

r background). In that case, instead of using
r does a strict compare between the new and
.ce we know the new polygon is not part of the

ote that the silhouette antialiasing part of this algorithm depends on
ing shared edges across the silhouette (shared with the backfacing

be incorrectfér the display-time pass of the antialiasing algorithm. This is
generally desirable in any case, since this saves the rendering time for the
back-facing polygons, which should be invisible. Note that thisisonlya
oblem for closed polygonal surfaces (hulls), but not for “open” surfaces,
flags, which have “external” edges. So flag-like objects need to be
esented in the display list twice, once frontfacing and once backfacing.

Transparent Surfaces, XLU_SURF

In addition to opaque surfaces, we would like to be able to do transparent
surfaces with antialiasing and without the need to sort. There are two
problems with this.

329

NINTENDO 64 PROGRAMMING MANUAL DRAFT

330

transparent surfaces, the surfaces need to be depth sorted*fer¢arry around a
lot of extra information, more than wg! memory for), so we just don’t do

surfaces to line up). Second 1 if.it does, most people have had so little
experience with multiple colored tra ency that they don’t know what to
expect. Generally speaking, rendering the transparent surfaces in the same
order, regardlessiafidepth, looks just fine.

parency is internal edges. Here, we cannot do
face case. The pixels at an internal edge of a
‘nded with the (previously rendered, opaque)
xels in the interior of the transparent poly. So if
dring an internal edge, and then render the other
on sharing that same edge, we must be sure not to blend any pixel

‘ there will be a noticable line on the internal edge as a consequence

In fact, this is'a-bit tricker than it seems. We still want the silhouette of a
transparent object to be properly antialiased, so we need to be able to get the
rtial coverage values for the silhouette edges, without double blending

r control of a special mode bit (CLR_ON_CVG), we can inhibit the
iting of color (but not coverage) uniess the coverage wraps (i.e., the sum
of the old coverage in the frame buffer and the new coverage of the currently
rendering polygon is greater than unity). On an internal edge of a
transparent surface over a fully covered background, the first polygon will
write the color, since full coverage plus any non-zero partial coverage must
wrap. The coverage value is always written with the wrapped sum of the old
pixel and new polygon coverage, which will be equal to the partial coverage
of the new (first) poly. On the rendering of the second poly, however, the

NINTENDO DRAFT ANTIALIASING AND BLENDING

So the second polygon will not write over the pixels shared edge of
the first poly. Note that this works even if the under} verage is not

ity (i r a pre-rendered silhouette edge),
since still only one of the two parent polygons sharing an internal edge
will get to write (although it ecorid one instead of the first).

transparency is:

Equation 12

at all, ingluding coverage).

Note also that unlike opaque surfaces, which modify depth, transparent

surfaces do not modify depth (although they do read it, to test for occlusion
+by a previously-rendered opaque object). This is because transparent
rfaces do not want to prevent the writing of other transparent surfaces
ich are behind them (but in front of any opaque surfaces).

Transparent Lines, XLU_LINE

In this system, there is no explicit line generation hardware. So lines are
rendered as degenerate polygons (i.e., a triangle two of whose sides are
parallel, and whose third vertex is at infinity) using the normal triangle
hardware. Rendering is very much like the rendering of surfaces, However,
unlike surfaces, lines have no internal edges {since by definition, a line is an

NU6-06-0030-001G of October 21, 1996 331

NINTENDO 64 PROGRAMMING MANUAL DRAFT

332

edges at render time. So for lines, all the antialiasirg is"
Note, however, that as with transparent Surfaces lines m
after any surfaces they may occlude. Inf;

unity (or close to it}.

tiplying the new polygon (line)
af as the alpha to do the
esult, due to the absence

The render-time antialiasing is don
coverage value with the alpha value, an
transparency blending. Thig produces the
of internal edges.

The coverage value written into t_he buffer in line mode is the clamped
sum of the old pixel coverage and theniew line’s coverage times its alpha.
For nearly opaque pixels, the coverage will be clamped to unity, making any
underlying silk dge not be modified by the video interface at the

i i iasing algorithm. This prevents the overlying
he underlying (and hence hidden) silhouette
times alpha from the line is nearly zero, then
rbed, since it should be visible through the

ead depth, and thus can be occluded by opaque objects. However,
e transparent and decal surfaces, do not modify depth. They are
thus blended in display list order, which for thin lines should not matter.

Note that “linds” need not be degenerate triangles. In particular, for a “ray”
coming from somewhere in the foreground to a vanishing point at infinity, a
normal triangle, with two vertices at the source of the ray, and the third at

i vanishing point, produces the desired effect. Also note that these “rays”
se textured, to produce the effect of a diffuse particle beam (or “neon

), or even “tracer bullets” animated by changing texture coordinate
ing in the texture unit.

Texture Edge Mode, TEX_EDGE

Texture edge mode is the first of the special-purpose modes. It is a variation
of opaque surface mode. It is intended mostly for ‘billboard’ type objects.

NINTENDO

DRAFT ANTIALIASING AND BLENDING

NU6-056-0030-001G of October 21, 1996

A textured ‘billboard’ uses alpha values of Z

outline of the tree. Either two billboards are ¢)

moves to always face the eyepoint, so as to hide the twg fliatiensional nature

of the bﬂlboard Frequently, only engsbit of alpha (all or nothmg) is available
all

M1pmappmg can be used to m;
. tree texture to exceed the
e interpolated over several
pixels, creating a ’blurry’ effect around] ire edges.

coverage. A blurrynesgin ¢
final i image, since the backend

fisually with a tex" i n them, like a flag or logo) over a previously
ered opaque surface. Unlike normal rendering, here we only want to

e to tell if a surface is (roughly) coplanar from the opaque surface
se, we can use that to condition the writes of the decal. Otherwise
ing is just like the opaque surface case. Here we rely on the opaque
surface meéghanism which conditions blends on the coverage value not
wrapping. This insures that a decal polygon written over a fully covered
surface will not blend with that surface, but will instead overwrite it.

ternal edges of a decal will, however, be properly blended (with each

er, but not with the underlying surface). '

‘he coverage values of the decal surface wrap (as do opaque and
ransparent surfaces). Note that this only works well if the edge of the decal
polygons do not coincide with a silhouette edge of the underlying surface.
If this is the case, it would help to use clamping for coverage since this will
result in simple aliasing. Using wrap in this case fails miserably, since the
coverage values are double what they should be, with some of them
wrapping and some of them not. However, even clamping is wrong. So
decals should never be allowed to exactly coincide with a silhouette edge of
the underlying surface.

333

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Decal Lines, DEC_LIN

This mode also goes by n mode”, since its main effect is to
hence more "h1-tech" (atleast in the eyes of some artists). Like decal surfaces,
rendered if they are within the depth range of the
ich must be rendered before the decal line.

between transparent lines and decal lines is the coverage written into frame
buffer memory. For de we do not modify coverage at all. This is so
ot disturb the antialiasing of the silhouette edges. Note that the half
‘ine which is “over the edge” of the silhouette will not be rendered.
nsegpently, while the inside edge of the decal line at the silhouette will be
.rcorrectly antialiased at render time (as with transparent lines), the outside

till be antialiased at display time by the video interface. The
alizes at the silhouette are already correct before the decal lines are
rendered. Intérnal edges are also already correct, since they are fully covered
by the opagque surface rendering.

that the decal line case interacts poorly with one of the features of the

interface (the divot circuit). In particular, if a decal line is on the

hizuette of an object, the divot circuit can disturb the decal lines at the
buette. This can be avoided by not using decal lines anywhere they could

*be in the silhouette, or by turning off the divot circuit (at the loss of some
antialiasing quality). Or it can simply be tolerated as it is. The effectis a
thinning and breaking up of the decal line at the silhouette. In motion, the
line doesn't scintillate much, and so is probably tolerable.

334

NINTENDO

DRAFT ANTIALIASING AND BLENDING

NU6-06-0030-001G of October 21, 1996

Interpenetration, OPA_INTER, XLU_

Interpenetration is another special purpose mode, whi ows antialiased
interpenetration of polygons to snable approximation, at the cost of
some loss of protection against £
protrusions (“spikes”) through'a norm
the placement of objects (like trées):
precise. Note that in the latter case, th
surface, rendered last (after all the ot

urface, and for terrain, so
sgof the terrain need notbe
11d be the interpenetrating
bjects in the foreground).

This ordering both prevénts unnecessary chthrough, as well as
rendering more quickly .the background terrain does not get written if
it is behind an already reground object). Interpenetration mode

should not be used for articulated’jgints, or other purposes where the
interpenetration is used to connect what is supposed to be a contiguous

d in this way, unacceptable punchthrough will result. Itis
ese cases to use normal opaque surface mode if this is
«of intersection will alias, but if the two surfaces are
ay not be too noticable. Interpenetration mode
sly. There is both an opaque and transparent

©only down side of this is that interpenetration mode requires using the
wrapping of coverage to select whether to do the coverage adjustment (if it
wraps;and hence is a potentially interpenetrating surface) or not (if it
doesntwrap, and hence is assumed to be part of the same surface). This can
cceptable punchthrough if any previously rendered objects are
behind and éither very edge-on or very near the foreground interpenetration
mode surface. This almost never happens for terrain (where an object is
almost never both occluded and near the terrain surface), and is not terribly
ticable in the case of small protrusions from a normal opaque surface
ect.

Jote that interpenetrating polygons must be rendered after the surfaces
which they interpenetrate (which need not themselves have been rendered
in interpenetration mode). Other than that, there are no sorting
requirements.

335

NINTENDO 64 PROGRAMMING MANUAL DRAFT s

Particle System Mode, PCL_SURF

The so-called “particle system” mode is really just a clevetuse of the alpha
dither compare function described This is not a true particle system,
where a large number of discret
interesting effect (fire, explosion:
polygonal rendering mode which
obj ect resemble the behavior of some' '

ode is just another
ke the surface of an
systems. Note that this

This mode is an odd hybrid of the normal 3D opaque surface mode and the
2D alpha d1the ompare mode. As described in ”Alpha Compare

parency. The most obvious use of this effectis a
orter”, where the object starts out opaque (alpha = 1.0}, but then
 nothing (alpha = 0.0} in a cloud of sparkles. With some other effects
extures, inverse transparency, etc.), this mode can also be used for
re, and the like. By animating the alphas with texture mapping,

“waves” of alpha can be produced. Due to the human visual
system'’s predilection for finding patterns whether they are there ornot (e.g.,
the “canals” on Mars), even though the “particles” are completely
uncorrelated, the waves of alpha will create the perception of coordinated
‘havior among a large number of interacting particles.

propagatm

mode, the interior of a polygon is strictly under the control of the

a dither compare. The probability of a write is proportional to the alpha
ue. The silhouette edge is handled as for opaque surfaces, at display time
in the video interface. The tricky thing is what to do about the internal edges
of a surface.

Note that in this alpha dither compare case, the density of the neighborhood
is a function of alpha. This means that on a shared internal edge, a blend will
only be likely to occur if the alpha value is quite high. In fact, the probability
of a blend is proportional to the square of the alpha vatue. If the blend

336

\-,
NINTENDO T DRAFT ANTIALIASING AND BLENDING

doesn’t happen, then the internal edge is treat
as long as the neighborhood has enough unco
antialiasing of these partially covered internal edge pixel: will do the right
thing. So the only possible proble; ith internal edges at high alpha

wrong weights. But since the
in weighting doesn’t matter.

The g*DPSetRenderMod;(J macro 11 of the blender state necessary for
different types of surfaces and antialidsing. The following tables map the
RenderMode argaments to individual mode settings. The macro names used

enable writing of Z if color write enabled
IM'RD: enable color/ cvg read /modify/write memory access

CVG_DST[1:0): 0) clamp if blend_en, new if 'blend_en 1) wrap always 2)
; zap (force to full cvg) 3) save (don't overwrite memory cvg})

CLR_ON_CVG: only update color on cvg overflow (transp surf)

CVG_X_ALPHA: use alpha times cvg for pixel alpha and cvg
ALPHA CVG_SEL: use cvg (or alpha*cvg) for pixel alpha

; force blend enable

0) opaque 1) interpenetrating 2) transparent 3) decal

alpha_compare_en: condition color write enable on alpha compare, use the
g*DPSetAlphaCompare() command to set.

dither_alpha_en: compare alpha with pseudo-random noise (dithering),
use the g*DPSetAlphaCompare() command to set.

NU6-06-0030-001G of October 21, 1996 337

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Blender Mux Selects described in Table 16-1, “P.atid M.
page 310, Table 16-2, “A Mux Inpuits;
Table 16-3, “B Mux Inputs,” on page 311

Note:

{2) Always zap coverage in potr

(3) If CLR_ON_CVG, must also FO

{4) If not CVG_X_AL
FORCE_BL.

(6} In Dpaque surface mode, clamp /new CVG_DST mode works better
decaled surface which closely corresponds to the

enumerates the recommended rendering modes for 3D graphics,
above in some detail. They are what the rendering engine was

near-optimalefficiency.

Sub surface mode, SUB_SUREF, is intended to be used as a way to get an
aque object upon which an antialiased transparent surface can be

laid. The coverage values from the transparent surface will fill in the
d coverage values from the initial opaque surface.

terrain modes, *_TERR, are to get around the modification of the
nding weights by DeltaZ, which was intended for punchthrough
reduction. This causes aliasing of internal edges in cases where the object
faces are non-coplanar. These new modes use the normal lerp blender mode,
which is free of DeltaZ dependence, and hence doesn’t alias. Note, however,
that these modes do not handle “pinwheels” correctly, since they assume
that only two polygons meet at any pixel, which is generally not true. But
in the case of terrains, which have very large polygons, this is more nearly
correct.

338

ASING AND BLENDING

NINTENDO DRAFT

] o

g &

S

g <

= §
4 2 ol 5 « =

S o
g — L ™ B v

o o e o o 4 =

3 - 93535 =
Mode = S B] & o J = =
il ot m*.ou_g_é
= o g g g E E
= T =5 9 o 2 o o &
5 Daummm:

< g9 8 g

- g § 5

B o g

o 5

: gt

O i
1(1({o|lOofOf1j0(0Q[0O|0jJ0Ol1|0]1
oltyijlryoejo|1210|0:011]0]0
OPA_DECAL [1} 1{0:1|t|[0|O}1(0|l3|0]0O|0O}j1f0}1
XLU_DECAL | 11O 1l1|1]lo|lOo)1y3to0j0|10]11(0foO
{11210y 0i0) 1101101001101
ifp1ryoy1jp1yp1j0o0fojpsyilofojoil1foso
XLU_LINE 1f1{o)t|jofoftr|1j1(2:0;,0|0|1|0|0O
DEC_LINE ij1]0]1 3 o1 1711 1(310]10]0|1]0]0
TEX EDGE [1|itl1]1]|olol1]1]ololololol1]o]1
TEX_INTER 1|t 1|1|0Ojof1]E]OfL|O]lCQiOl1liO]I1
SUB_SURF P11 t32{030]1¢0]0]l0]0O10}1[0f1
PCL_SURF 1i1{1{1f010j0:0Qflo|JoOj1i1|0}1|o0fo0
OPA_TERR | 11| 1|1|0|0of0O]1|olo|lolojloflti|lofo
TEX TERR |1 1|t|t1]ofofz:l1]ofojlojlolol1lolo

NU6-06-0030-001G of October 21, 1996 339

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Mode

Blender Mux P
Blender Mux M
Blender Mux A
Blender Mux B

= 1 ZMODE (0:onaqu

sorting by depth of a scene is frivial, for example, the terrain for a flight
simylator (as long as t too mountainous). Otherwise, the cost of
sorfing the polygons by depth would be prohibitive. These modes can be
miixed and matched with any of the other rendering modes, z-buffered or

order.} So in‘a mixed rendering mode scene, any non-z-buffered background
polygons should be rendered first. '

that there is no decal surface mode. Since there is no Z to condition the
“&d, decal surface mode is identical to opaque surface mode. There is a
decalline mode, since it is slightly different in the way it handles sithouette
ecgggs. Also since there is no z, there are no interpenetration modes.

The line modes are very similar to the z-buffered line modes, except that
decal line mode zaps coverage to unity. This is because in the non-Z case,
both sides of the line are rendered, and are already correctly antialiased at
render time. For the non-line modes, blending is based on coverage wrap,
since there is no Z to discriminate between new and contiguous surfaces.

Sub surface mode is intended to be used as a way to get an opaque object
upon which an antialiased transparent surface can be overlaid. The coverage

340

NINTENDO

DRAFT ANTIALIASING AND BLENDING

NU6E-06-0030-001G of October 21, 1996

values from the transparent surface will fill it
from the initial opaque surface.

The terrain modes are to get aroundith
weights by DeltaZ, which was ende& or_Punchthrough reduction. This

causes aliasing of internal edg

only two polygons mee
case of terrains, which

5

=

Jd44z 3
EEEEREEEEER
8 0% o o w9 o8 5 =5
e R i R ===
DEQOKU**NEEBB
== < = d 2 E 3 E
F449E8 sEEEE

L=

g993 4799°

; =

a 5

£

= =

&

opa_SURF | 1|olol1]|olofo|1|o]jo|olojoj1i0]1
XLU_SURF [1]ojo|l1|1ti]|ojol1|ojolojel1i|o]o
XLU_LINE |1fofo|l1]|ofoliit|1]ololo]o|1]o]o
DECLINE |1}jofo|l1]{2|oli{1|1lofjolo]o|1]0]o
TEX_EDGE |1}ofo|1|o|lo]1jt]lojofolo|ol1]o]1
SUB_SURF |1fo|o|1l2|lojo[1fofo|o]lo|al1]o]1
PCLSURF |1[o|o|1|alo|oloflo]lo|l1]|i|al1]0]o0
OPA_TERR |1[o0|o0|1|olo]o|1loflolojolol1]olo

341

NINTENDO 64 PROGRAMMING. MANUAL DRAFT

342

Mode

‘ AA EN
Blender Mux P
Blender Mux A
Blender Mux B

dither alpha en. g*DPSetAlphaDithe
Blender Muyux M

ZMODE (Q:opaque, Linter. 2:trans, 3:.dec

—
o
<
[
—_
o
o
o
<
[
=]
=]

-
[
(=]
o)}
—_
o
o)}
<
o
o
—
o
o

ess. They have no significant performance advantage over the
modes. These modes can be mixed and matched with any of the
ring modes, antialiased or not, and so could be used for “special

same reason there are no point-sampled interpenetration or texture
odes.

“the point-sampled modes listed, coverage is usually zapped to unity to

prevent the video interface from trying to antialias them. Note also that in

these modes, because the coverage always wraps (since it is always fully
covered to begin with), surfaces are never blended, and the DeltaZ range is
never used in the z-buffering.

Cloud and overlay surface modes are versions of transparent surface and
transparent decal surface which do not disturb coverage. These are intended

NINTENDO

DRAFT ANTIALIASING AND BLENDING

NU6-06-0030-001G of October 21, 1996

2 |

g o

g £

g g

H =2

4o |£55
EIW,_) g;gn.z<m
23 I - e Z<>m.QDEEEE
Mode o 5 (S g] %] o o o g
434288994 493833
S92 2995855
QU oo oo =

- 93 | 4443

= =

e mOL..

d FE

St g 5

5 & 2
QPA_SURF O 11| Of210]011|0{0[0j0]0Q[1]0]1
XLU_SURFOI-OIZOOOIZOOOIOO
QPA_DEC O] 1(0j0O(2]10f(0(1i0Q|3(0]0]0} 1031
LUDEC (O0(t|Ojt|210y0)011)3)0]|0fj0[1}0|0
CLD.SURF (0}{1:i0|T1+3(0[0]0] 1721035002300
OVL_SURF |0 1}0O(1|3(0|010}i[3;0[0|0]1|0}0
PCL_SURF of111loj2|0(0}0[0QO|T1[1|0:0}3]2

The point-sampled, non-z-buffered rendering modes in Table 16-8 are
provided for completeness. They have no significant performance
advantage over the antialiased modes.

Since there is neither antialiasing nor z-buffering, there is no difference
between lines and surfaces, and no such thing as interpenetration, decals, or

343

NINTENDO 64 PROGRAMMING MANUAL DRAFT

344

texture edges. Only the transparent surface mo
frame buffer at render time. The opaque modes sim
and zap the coverage in the frame buffer.

Cloud surface mode, CLD_SURE .is ins of transparent surface mode
which does not disturb coverage.:This is i ‘as an overlay, where the
silhouette of the polygon will ha ence should not affect

The ADD render mode a pixel color to the memory color. Note that
you must set the fog alph. far this mode to work, e.g.
gsDPSetFogColor(255, 255, 255, 255)."&ince the blender does not clamp it’s
output values (all the inputs are clamped and the normal interpolation
operations won der/overflow) the user must guarantee that the results

of theadd o ill not overflow or weird results (effects?) may occur.

The NOOP ; de that disables reading of color and Z and
zeros the rest of the blender stite. You should set this render mode when the
cycle type is either G_CYCFILL or G_CYC_COPY.

S mode is used when the cycle type is G_CYC_2CYCLE. In this case
5y not want to do anything on the first cycle but blend in the second

NINTENDO

g g

. 2 =
i g 4 2)
14583932 4%
. A EHES S S =S
Mode UG xlxl o Uy s
< m-ﬁ%ﬂ'c
:E 5 5§ 8§ § § &
= EngEE

] o

g 2

g o

o =

-E"J

=

0l11(0:i0]1 0101018312
gil1|0j0|0[0f[1]01C0
TEX_EDGE | 1{0i0{0 Of1]181]0[0O]0O|0O]0O}7312
CLDSURF { 0 0;0;1]3(0|0|0}1{0|0[0(0]1[0} 0O
o|oj0j0t2|10(0]Of1}0f[1]1|0}0]3}2
010|013 0J010(1]0[0Oj0)0}1]1]2
NOOP olalolofOloloOoi0)0(0|0jO0O; 00|00
FASS XK{X | xix| x| x[x[x{x|x]x|xt0]0013]2

--Creating New Blender Modes

There are two types of mode bits in the blender, cycle-dependent and
cycle-independent. The blender mux controls are cycle-dependent since
they may differ between cycle 0 and cycle 1. All the other mode bits in the
blender do not change between cycle® and cycle 1. The
§*"DPSetRenderMode() command is set up to take two arguments. See the

NU6-06-0030-001G of October 21, 1996 345

NINTENDO 64 PROGRAMMING MANUAL DRAFT

346

discussion in “Antialiasing Modes” on page 204'f
calls with g*DPSetRenderMode().

To define a new RenderMode you mustireate a new macro that takes the

cycle number (1 or 2) as an argum

#define RM_AA_ZB_OPA_SURF{clk)
AR_EN | Z_CMP | Z_UPD | IM_RD |
ZMODE_OFLA | ALPHA_CVG_SEL |
GBL_c##clk(G_BL_CLR_IN, G_BL_A IN,

This macro OR’s the modg bits that are not'ey ependent together with
the blender mux controls e cycle-dependent Next define two macros

that instance the macro abg

$define G_RM_AK_ZB OPA_SURF © _AKIYE. OPA_SURF{1)
tdefine G_RM_AR_ZB_OPA_SURF2

s, however, presumes a detailed
since many of these modes are

mode will dmgslay coverage in the frame buffer as gray -scale mtensmes To
use this mode:

Render you entire scene, but don’t send FullSync yet.

nd the following display list:

sDPPipeSync (),

gsDPSetCycleType (G_CYC_1CYCLE) ,
gsDPSetBlendColor{255, 255, 255, 255},
gsDPSetPrimbDepth (Oxf£fff, Oxffff),
gsDPSetDepthSource (G_ZS_PRIM)},

gsDPSetRenderMode (G_RM_VISCVG, G_RM_VISCVG2),
gsDPFillRectangle{0, 0, SCREEN_WD-1, SCREEN_HT~-1)},

Partial coverage will be displayed as darker shades of gray and full coverage
will be displayed as almost white. Try experimenting with different

NINTENDO DRAFT ANTIALIASING AND BLENDING

antialiasing methods while visualizing the céygrage fo increase your
understanding of these algorithms.

NU6-06-0030-001G of October 21, 1996 347

DRAFT

NINTENDO 64 PROGRAMMING MANUAL

348

NINTENDO DRAFT SPRITES

Chapter 17

Sprites

This chapter describes the use of Sprites. Sprites are rectangular images or
textures thatyou draw on the screen. Large images must be drawn in small

things, s

| { ebuffer with a specified image; and how to do
complex things, such as .

w multi-colored text or explosions.

Data Structures and Attributes
Bitmaps

Sprites

Attributes

Tricks and Techniques
Sparse Sprites

Early Ending

Variable Size Bitmaps
Explosions

Bitmap Re-use

Sprite Re-use

NU6-06-0030-001G of October 21, 1996 349

NINTENDO 64 PROGRAMMING MANUAL DRAFT

* Examples
Backgrounds
Text (Fonts)
Simple Game

350

NINTENDO DRAFT SPRITES

Application Program Interface (API)}

Making Sprites

Sprites are usually used to dra ¢ “onto thie screen. For these simple
cases, a few scripts are provided
generate an appropriate sprite data str:
be edited manually or modified at run

o

ie generated sprite may then
reate dynamic behavior.

simage file and generates a sprite. This
sprite consists of a number of individual bitmaps (tiles) that are tileX apart

in the x di d tileY apartin the y direction. If overlap is “0,” then
these bit ‘exactly tileX by tileY in size and should not be scaled (see
spScale(3 then the tiles are (tileX+1) by (tileY+1) in size.

These sprite and the textures will be properly interpolated.
This extra pixel of overl r “border,” provides the required data to create
smooth transitions: n tiles. The generated file may be included in an

cation and the sprite may be manipulated with the name “name.”

d spInit(Gfx **¢listp)
This routine is called at the beginning of sprite drawing. Some GBI display
list commands are added to the specified glistp to get the RCP into the

correct mode for sprite rendering. This sets default texturing modes.

void spFinish(Gfx **glistp)

NU6-06-0030-001G of October 21, 1996 351

NINTENDO 64 PROGRAMMING MANUAL DRAFT

This routine is called at the end of sprite drawing:
commands are added to the specified glistp to get

This routine sets the screen position of t-hand corner of the

sprite.

&

This routine sets the resizing amount;
1.0 to produce a smaller image, or gre
image.

this sprite. Scales may be less than
than 1 to create an expanded

This routine sets the z-buffe
to be obscured by previous!

epth of the sprite. This may cause the sprite
rawn sprites that were drawn with a smaller

drawn, this gould be either the PRIMITIVE_COLOR or the FILL_COLOR.

void spSetAttribute (Sprite *sp, s32 attr)

15 routine sets the indicated attributes. “attr” can be the bit-wise OR of
v attributes.

igd'spClearAttribute (Sprite *sp, s32 attr)

This routine clears the indicated attributes. “attr” can be the bit-wise OR of
many attributes.

void spScissor (s32 xmin, s32 xmax, s32 ymin, s32 ymax)

352

NINTENDO

DRAFT SPRITES

be drawn.
L aomax=319,

This routine specifies the bounding region
By default, this region is initt
ymin=0, and ymax=239.

Drawing Sprites

Gfx *spDraw (Sprite *sp)

isplay list starting at sp->next_dl that draws the
the indicated way. This display list is

/List() entry, and the sp->next_dl entry is
The pointer to the start of this display

This routine construc
sprite into the framebu

terminated with an gEndDisp
updated to point to one entry pas
list is returned.

NU6-06-0030-001G of October 21, 1996

353

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Data Structures and Attributes

Bitmap Structure

Here is the actual structure of a
typedef struct bitmap {

sléwidth;/* Size
/* Done if width

sl6s;/* Horizontal offse bitmap */
/* if (s > width_img), then lbad only! */

zal offset intce base */

cle,y;/* Target position */

sléwidth, /* Target size (before scaling */
height;

f32scalex,/* Texel to Pixel scale factor */
scaley;

sléexpx, expyv;/* Explosion spacing */

uléattr;/* Actribute Flags */
slézdepth;/* Z Depth */

354

NINTENDO DRAFT SPRITES

ufred, /* Primitive Color */
green,
blue,

alpha;

ul6startTLUT; /* Looku
8l6nTLUT;/* Total n
s16*LUT; /* Pointer to Look

sléistart;/* Starting bitm

sl6istep;/* Bit
/* if 0, then ugzs width bitmaps */

p Texel height (Real) */

ormat */

rite attributes permit sprites to be used in a variety of different ways. The
following detailed description of each attribute indicates how setting or
clearing that attribute affects the appearance of the drawn sprite. Note also
that these attributes are as independent as possible, thus greatly expanding
the available variety and uses for sprites.

NU6-06-0030-001G of October 21, 1996 355

NINTENDO 64 PROGRAMMING MANUAL DRAFT

SP_TRANSPARENT

This attribute permits the Alpha blending of the sprite tg with the
background. i

SP_CUTOUT

Use alpha compare hardware to not
blend color alpha (automatically set to 1

SP_HIDDEN

This attribute makes spDraw() on
display list.

SP_Z

ute specifies that the sprite should be scaled in both X and Y by the
icated in scalex and scaley.

SP_FASTCOP

This attribute indicates that the sprite should be drawn in COPY mode. This
duces the fastest possible drawing speed for background clears.

SP;TEXSHIFT

is attribute indicates that textures are to be shifted exactly 1/2 texel in
both s and t before drawing it. This creates a better antialiased edge along
transparent texture boundaries when in cutout mode..

356

NINTENDO

DRAFT SPRITES

NU6-06-0030-001G of October 21, 1996

SP_FRACPOS

This attribute indicates that the frac_s and frac_£ fields ¢f the sprite structure
are to be used to fine-position thetexture into the drawn pixels..

SP_TEXSHUF

This attribute indicates that the tile
to work around a Loa@_}"extureBlock(SIg
chapter for more detail$ion this problem..

‘their odd lines pre-shuffled
. See the Texture Mapping

SP_EXTERN

This attribute indicates that existing drawing modes are to be used rather
than the tines explicitly setting them.

357

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Tricks and Techniques

Sparse Sprites

The buf in a bitmap entry may be that nothing should be

drawn. This area will be 100% tr
Early-Ending Sprite

Setting the width of a bitmhap e
drawing the sprite’s bitmaps.

.zero (0) signals an early exit to

Each sprite specify the spacing between tiles in pixels by setting the
explx and exply fields. The default value is zero (0). This spacing is not
affected by the scaling of the sprite.

ap Re-use

he buf of the current bitinap matches the buf of the previous bitmap {not
counting NULL bufs) in this sprite, then TMEM will not be re-loaded. This
very simple form of texture caching is used in the font example.

358

NINTENDO

DRAFT SPRITES

NU6-06-0030-001G of October 21, 1996

Sprite Re-use

each with a different setting
/textured, and so on).

This allows a sprite to get drawn mu
of some parameters {position, scale,

as59

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Examples

A sample sprite library demonstration program is provided il under
/usr/src/PR/spgame. The demo shaiwg Bow to use sprite library to do
backgrounds, texts and a simple ay

Backgrounds

LUTs to animate it.

Setting up copv mode. Us

Scrolling Background example (up/down, left/right)

Anyone for aguick game of pong? Explosions, animated textures. Too much
fun!

360

NINTENDO DRAFT ' SPRITE MICROCODE

Chapter 18

Sprite Microcode

‘This chapter describes the use and operation of the Sprite Microcode, an
alternative Sprite C Library described in the previous section.

reation of the Sprite Microcode were to provide an
far to traditional 2D content developers, as well

rite Microcode can co-exist with the Sprite Library in an application.
iding on the situation, either the Sprite C Library or the Sprite

¢ will be more appropriate at particular points in the game. One
re the Sprite C library would be more appropriate is for
drawing text on the screen. An example where the Sprite Microcode would
be more appropriate is the display of large textured background images
which would require a large amount of CPU time by the Sprite Library to
‘setup. The two APIs are also fairly different in their styles and the features
y support. Developers are encouraged to try both methods to see which
their needs more closely

NUE-06-0030-001G of October 21, 1996 361

NINTENDO &4 PROGRAMMING MANUAL DRAFT

Sprite Microcode Functionality

The functionality provided by the Sprite Microcode is thedbility to display
a subimage of arbitrary location ary t of a larger DRAM resident

image of arbitrary texture type an gpHtonal scaling or mirroring
in the X /Y axes.

Larger than 4K subimage

DRAM texture image

X/Y Scaled/mirrored screen image

362

NINTENDO DRAFT SPRITE MICROCODE

Sprite Microcode API

The API provided for access to the

new instructions illustrated by the f6llowing code fragment:

#include “gu.h”
#include “gbi.h”

uSprite MySprit

ImagePointer, TlutPointer,
ImageWidt! ectanglewWidth,
RectangleH ht,

ImageType, ImageSize,
TextureScaleX, TextureScaleY,
ipTextureX, FlipTextureY,
ureStartsS, TextureStartT,

guSprite2DInit (&GMySpr

*SourceImagePointer, void *TlutPointer,
sh : Stride,
short SubImagewidth, short SubImageHeight,
char SourcelmageType, char SourceImageBitSize,
short ScaleX, short ScaleY,
char FlipTextureX, char FlipTextureY,
short SourceImageQffsetS, short SourcelmageCffsetT,
short PScreenX, short PScreenY,
char dummy{2]:
} uSprite_t;

typedef unicn {
uSprite_t s;
long long int force_structure_allignment[4];
} uSprite;

NU6-06-0030-001G of October 21, 1996 363

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Where the parameters are defined as:

SourceImagePointer The address of the texture image
which a subrectangle is to be displ

mory out of

TlutPointer The address of aieption

ex table for use with CI
images. Use NULL for non-CI ima; ;

Stride The width in texels of the origitfiakbasé image in memory

SubImageWidth The wie exels of the subimage which is to be
displayed :
SubImageHeight The height in texels'of the subimage which is to be
displayed

SourcelmageType
supported Hagdware tex

at of the texture image in memory. All
& formats are allowed.

umber of bits per texels of the input image.
ture sizes are allowed.

SourceImageBitsi

ScaleY Thes5.10 fixed point axis scaling ratios which are to be
the input image. A value of 1024 specifies 1 to 1 scaling. A value

lues should be <= 1024 in order to prevent sampling artifacts
Scale values must be positive. Use the FlipTextureX or
FlipTextureY parameters to create negatively scaled images.

TextureX, FlipTextureY Specifies whether the image should be
red in the X or Y direction before display

celmageOffsets, SourceImageCffsetT The offsetin texel rows
lumns from the origin of the input base image where the texture
subrectangle which is to be displayed starts

PScreenX, PScreenY Specifies the starting X or Y location in screen
coordinates of the output image. The origin is in the upper left corner of the
screen.

364

NINTENDO

DRAFT ... SPRITE MICROCODE

NU6-06-0030-001G of October 21, 1996

The guSprite2DInit () call merely copies: w
in uSprite structure. The call can be eliminated :
structure directly.

Texture Rectangles to display the st
scaling. The Sprite Microcode keeps tr
generated texture subRégtangles.

Texture rectangles which have their ending Y valueless
' value > 1023.75 are thrown away entirely.

More inforrration about the Sprite Microcode can be found in the man pages
for gapSprite2d (3P) and guSprite2DInit (3P}

365

NINTENDO 64 PROGRAMMING MANUAL

366

NINTENDO DRAFT ULTRA 64 AUDIO

PART

Ultra 64 Audio

NU6-06-0030-001G of October 21, 1996

DRAFT

NINTENDO 64 PROGRAMMING MANUAL

NINTENDO DRAFT THE AUDIO LIBRARY

Chapter 19
The Audio Library

The Nintendo 64 Audio Library is a'hghtweight library of functions. It
provides game developers with the ability to interactively synthesize and
yudiio on the Nintendo 64. It provides support for both sampled
sound plg¥back ary able synthesis. This is accomplished with four
,Player, the Sequence Player, the Synthesis

format f compressed MIDI unique to the Nintendo64. In both cases,
the sequience player handles sequence, instrument bank, and
synthesizer resource allocation, sequence interpretation, and MIDI
message scheduling.

e: Both the Sequence Player and the Sound Player are clients of the
ynthesis Driver. The Driver can support an arbitrary number of clients,
including multiple Sound and Sequence Players.

* The Synthesis Driver is responsible for creating audio Command Lists,
which are packaged into tasks by the Application program and passed
on to the Audio Synthesis Microcode. It allows Driver clients to assign
wave tables to synthesizer voices, and control the playback parameters.

NU6-06-0030-001G of October 21, 1996 369

NINTENDO 64 PROGRAMMING MANUAL DRAFT

370

s The Audlo Synthesis Mu:rocode processes

This chapter contains descriptions
Synthesis Driver APIs . Many app
with the interfaces provided by the
Synthesis Driver API is intended for programmer: o want to create their
own players (see the section titled “Writinig:Your£wn Player” for more
information); however, allprogrammers shoualdinderstand certain
functions essential for the of audio Command Lists.

ers will be satisﬁed
ce Players. Most of the

Figure 19-1 Audio Software Architecture
Compressed Sound

Sound
Player .. Other players
) CPU
Synthesis
Driver
Audio synthesis
RCP
Microcode

NINTENDO

DRAFT THE AUDIO LIBRARY

NU6-06-0030-001G of October 21, 1996

The following sections cutline the data strug 1" APIcalls that are
necessary to make use of the audio library. Futtherdetails
data structures can be found in Chapter 15. The data st
and function prototypes for the described are in the include file
libaudio.h, which is part of the sgf lease. Also included as a part of the
software release are reference { :gach of the function calls.

an

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Generating Audio Output

372

The basic process for generating, and playing audio can b&summed up by
the following steps.

1. Create and initialize the necc
heap, a synthesizer, and a pl

The creation and initialization of the neccessary resources is somewhat
plications needs, but typically you will need to take

NINTENDO DRAFT THE AUDIO LIBRARY

Sampled Sound Playback

Representing Sound

compressed and ADPCM

The Audio Library supports playback
represented with the

compressed, 16-bit audio. An 4t :
Sound object via the ALSound struct Sound structure contains
entries for the Envelope, Pan, and Vol bng with a pointer to the

AlWaveTable struchrgifwhich contains the audio).

There are certain steps you must take for your game to play a sound. Ata
., minimum, you must:

Create and initialize the basic resources described in the section
Generating Audio Qutput.

Instantiate the Sound Player with alSndpNew(). The Sound Player
created also signs in as a client to the Synthesis Driver.

Copy the sound bank'’s .ctl file into RAM, and initialize it with a call to
alBnkfNew.

Allocate a sound with a call to alSndpAllocate().

Set the Sound Player’s target sound to reference your sound with
alSndpSetSound(].

NU6-06-0030-001G of October 21, 1996 373

NINTENDO 64 PROGRAMMING MANUAL DRAFT

374

6. Play the sound with alSndpFlay().
7. Stop the sound when you are finished with

When the sound is no longer needet
be freed with a call to alSndpDealloca
longer required, it can be removed from
alSndpDelete(}.

The Sound Player can play
playing a sound, the Sound Player stépgthrough the Envelope states Attack,
Decay, and Release. Envelope parameters are defined in the ALSound

structure. The duration of the sound is determined by the sum of the Attack

is always determined by the Envelope

e Envelope Decay time is set to -1, the sound
, it will never enter the Release phase) until it is
by the application with a call to alSndpStop(}. Envelope times are
v the playback pitch so that regardless of pitch, finite-length sounds
pletion. For example, by default, a sound played an octave lower
ice as long as it does at unity pitch. Loop points for sounds are
embedded'iiithe ALWaveTable structure. (Loop points will be
automatically:gxtracted from the .aiff file when using the file conversion
tools provided.}

us parameters that affect the playback of a sound can be set before and
g playback. When a sound is allocated to a Sound Flayer, an ID is

ed that uniquely identifies that sound. Parameters for a particular

d are set by first setting the target sound with a call to

dpSetSound(), and then making a subsequent call to set a parameter for

the target sound. Available calls are detailed in Table 13-1.

Note: Each sound allocated to a Sound Player has a unique ID and private
parameter values and play state. To play the same sound simultaneously,
possibly with different parameter settings, it must be allocated multiple
times to the Sound Player.

NINTENDO DRAFT THE AUDIO LIBRARY

A summary of Sound Player functions is gi can be found

in the reference (man} pages.

Table 19-1Sound Player Functions

Function

alSndpNew Scound Player.

alSndpDelete und Player from the
Driver’s client List.

alSndpAllocate Allocate a sound to a sound player.

alSndpDeallocate Deallocate a sound from the sound

layer.

alSndpSetSoun Sets the Sound Player’s current sound.

Returns the Sound Player’s current
sound,

alSndpGetbound

alSndpPlay Plays the Sound Player’s current sound.

Plays a sound at some specified time in
the future.

Stops the current sound from playing.

Gets the current state (stopped or
playing} of the current sound.

a]SndpSetf’r n Sets the pitch for the current sound.

alSndpSetVol Sets the playback volume of the current
sound.
ndpSetPan Sets the pan position of the current
sourd,
afSndpSetPriority Sets the sounds priority value.
alSndpSetFXMMix Sets the wet/dry mix of the current
sound,

-

NUg&-06-0030-001G of October 21, 1996 375

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Sequenced Sound Playback

376

You will be concerned with three issue
Nintendo 64:

* representing the sequence da
* representing the instruments o e up the sequence

* - controlling the sequence playback

Representing the Sec

The Audio Library supports two different sequence players. The first

sequence piayer uses Type 0 MIDI sequences. Sequences are represented at
“AtiSeq structure. This structure encapsulates sequence

the Standard MIDI Files 1.0 specification for Type 0

message that sp
MIDI Files 1.0” specific
ation.

tnique to.the Nintendo64. This format is detailed in Audio Formats chapter.
re represented at runtime with the ALCSeq structure. Besides
the format of the data, the compressed MIDI sequence player

To use a Type 0 MIDI sequence in your game, you must first initialize an
eq structure with alSeqNew (). To use the compressed MIDI sequence
P , you first initialize an ALCSeq structure with alCSeqNew(). After
initializing the ALSeq structure, you can perform sequence operations.

alSeqNextEvent() call returns the MIDI event at a specified location in
the sequence. The alSeqNewMarker() call creates a sequence position
marker that can be used in conjunction with the Type 0 Sequence Player to
set playback time and loop points. The convenience functions
alSeqTicksToSec() and alSeqSecToTicks{) convert between seconds and MIDI
clock ticks.

NINTENDO DRAFT ' THE AUDIO LIBRARY

Note: Normally, you won't call alSequxtE{Jg-;
called by the Sequence Player during sequenc

descriptions are given in Table

Table 19-25equence Functions

Type 0 MIDI Comp Description

Sequence Player

Function

al>eqNew itializes the sequence control

structure.

Retumns the next MIDI event from the
sequence,

alSeqNextE

Initializes a marker for a given event
time.

Sets a marker to the sequence’s current
location.’

alCSeqSetloc Sets the sequence to the location
specified by the marker.

alCSeqTicksToSec Converts a time value from MIDI clack
ticks to microseconds.

alSeqSecToTicks alCSeqSecToTicks Converts a time value from
microseconds to MIDI clock ticks.

presenting Instruments

Instruments are represented at runtime by the ALBankFile structure. This
structure describes the instruments that sound in response to an event in the
sequence. Bank Files are composed of Banks; which are composed of
Instruments; which themselves are composed of groups of Sounds,
KeyMaps, Envelopes, and gain and pan information. The Bank File format
is described in detail in the Audio Formats chapter. '

NU6-06-0030-001G of October 21, 1996 377

NINTENDO 64 PROGRAMMING MANUAL DRAFT

To use a Bank File in your game, you must firs
represent it. This is accomplished with the alBn
13-3). Both sequence players use the same function call fo

Table 19-3Bank Functions

Type 0 MIDI Compressed MIDI
Sequence Player Sequence Player
Function Function
alBnkfNew alBnkfNew

Playing Sequences

certain steps you must take for your game to play a music
‘The minimum steps needed to use the Type 0 MIDI sequence
ted below. Using the compressed MIDI sequerce player is

1dent1ca1 you use the calls specific to the compressed MIDI sequence

player.

1. Create and initialize the basic resources described in the section
Generating Audio Output.

itialize the sequence by using alSeqNew().

. ;Copy the bank file’s .ctl file into RAM, and initialize the bank by using
4lBnkfNew().

Initialize the sequence player by using alSeqpNew ().

Set the sequence player’s bank by using alSeqpSetBank().

Set the sequence player’s target sequence by using alSeqpSetSeq().
Play the sequence by using alSeqpFlay().

S

Stop the sequence when you are finished with it, by using alSeqpStop(}.

378

NINTENDO DRAFT THE AUDIO LIBRARY

ed from the

Type 0 MIDI Sequence
Player Function

alSeqpNew Initializes a Sequence Player.
alSeqpDelete Removes a Sequence Player from
the Synthesis Driver’s client list.
alSeqpGetState alCSPGetState Returns the current state of the
' Sequence Player.
alSeqpSetBank PSetBank Assigns a bank of mstruments to
B the sequence.
alSegpGetSequence alG5PGetSequence Gets a reference to the sequence
. that is currently bound to the
Sequence Player.

"alSegpSetSequence alCSPSetSequence Makes the specified sequence the
‘ target sequence.

alCSPPlay Starts the target sequence playing.

alCSPStop Stops the target sequence if it is
playing.

alC5PGetTempo Returns the current playback

tempo for the target sequence.

alCSPSetTernpo Sets the current playback tempo of
the target sequence.

alSegqpGetVol alCSPGetVol Returns the overall volume for the
sequence.

alSeqpSetVol alCSPSetVol Sets the overall volume for the
sequence.

alSeqpGetChlPan alCSPGetChlPan Gets the pan on the specified MIDI
channel.

NU6-06-0030-001G of October 21, 1996 379

NINTENDO 64 PROGRAMMING MANUAL DRAFT

380

Table 19-4Sequence Player Functions

Type 0 MIDI Sequence Compressed MIDi
Player Function Sequence Player
Function

alSeqpSetChlPan alCSPSetCh

alSeqpGetChiVol alCSPGetChiVo

alSeqpSetChiVol

alSeqpGetChlProgram

alSeqploop (Not Supported)

SendMidi alCSPSendMidi

Description

alCSPGetChlPriority

alCSPSetChiPriority

pan for the specified MIDI

the volume for the specified

‘MIDI channel.

Retumns the program assigned to
the specified MIDI channel.

Assigns the given program to the
specified MIDI channel.

Gets the wet/dry FX mix on the
specified MIDI channel.

Sets the wet/dry FX mix on the
specified MIDI channel,

Gets the priority value for the
specified MIDI channel.

Sets the priority value for the
specified MIDI channel.

Sets the loop points for the target
sequernce.

Sends the specified MIDI message
to the sequence piayer.

oops in Sequence Players

The way in which loops are handled in the sequence players is different.
When using the Type 0 MIDI sequence player, the programmer must create
a marker at the loop start point, and a marker at the loop end point. Then the
sequence can be looped between these two markers using alSeqpLoop().
Using the compressed MIDI sequence player, loops are constructed by the

NINTENDO

DRAFT ‘ THE AUDIO LIBRARY

NU§-06-0030-001G of October 21, 1996

musician, in the tracks of the sequence by
discussed in the chapter “Using the Audio Too
different loops for different tracks, and allows for ne

Controllers in Sequenc

The realtime controllers that the Seq
numbers in parenthesis): pan (10}, vo riority (16), sustain (64), and
reverb amount (91). Note.that because ne effects bus is supported,

reverb amount is used ol effect amount no matter what the effect is.

The compact sequence "player alse controllers 102, 103, 104, and 105 for
creating loops. Details of this are dis¢ussed in the chapter “Using the Audio
Tools.”

381

NINTENDO 64 PROGRAMMING MANUAL DRAFT

The Synthesis Driver

382

The Synthesis Driver is the Audio lerary object used bythe Sound Player,
the Sequence Player, and applicatio ific players to create Allle

Command Lists, which are passe
defines various API calls which ¢

of the driver the allAudwFrame() function
ts, and the mechanism by which the

familiar with the initializak
that creates audio Comm
Synthesis Driver satisfies the

e initialized in order to be used. This is
ew() with a configuration structure that
oices, physical voices, and effects busses to
; structure also provides information regarding
“k'foutines, the Audio Heap, FXType and the audio
rate to use. (Audio DMA callbacks are discussed later in this

Note: Théalinit() call will call alSynNew(}.

The configuration also specifies a callback procedure pointer of type
ALDMANew, which is used by the synthesis driver initialization procedure to
et up callbacks for sound data requests. The procedure specified in the
conifiguration structure is called once during initialization for every physical
ive that is instantiated. The Synthesis Driver expects the procedure to
another procedure pointer that defines a callback of type

DMaproc, and apointer to some state information that can be used in
various ways to manage sound data requests.

Note: Only one driver may be instantiated at any given time.

NINTENDO DRAFT THE AUDIO LIBRARY

are built in frames. A frame is
close to the number of samples

samples) is built by ma’
define the number of sa

cute an audio Command List, it is first put in 0STask structure and
assed to the microcode with a call to 0sSpTaskStart(). The 0STask

Synthesis Driver Sound Data Callbacks

e application is responsible for making sure that the required sound data
ocated in RAM before the command list is executed by the audio
ticrocode. The application programmer has the freedom to load complete
ompressed sounds from the ROM before playback, or, as is more likely, to
initiate DMAs from ROM to RAM in response to callbacks from the
Synthesis Driver, Initiating DMA's in response to callbacks allows the
application to only load the portion of the sound needed, and thus greatly
reduce the RAM needed for audio.

The Audio DMA callback routines are initialized when allnit is called. The
synthesizer configuration structure must contain a pointer to a routine for

NU8-06-0030-001G of October 21, 1996 383

NINTENDO 64 PROGRAMMING MANUAL DRAFT

384

initializing the Audio DMA'’s. This routine w.
physical voice. Typically this routine will initializ
then must return a pointer to the ALDMAproc.

The ALDMAproc procedure is ca]l physical voice during the

] sound data is required.

ver interface, you must first make your player
complished with the alSynAddPlayer() call.
your own player, see the section “Writing

oth the Sequence Player and the Sound Player add themselves to the
en they are initialized by calling alSynAddPlayer(). If you are not
our own players you should not need to call alSynAddPlayer.

Allocating'and Controlling Voices

e Synthesis driver manages two types of voices: virtual voices and
ical voices.

voices are described by the ALVoice structure, and represent the

¢ from the player’s perspective. In order to play a wavetable, players

; t allocate a virtual voice on which to play it. This is accomplished with
the alSynAllocVoice() call. The voice configuration structure allows you to .
specify the voice priority and bus assignment. The number of virtual voices
available is established when the driver is initialized, and you may specify
more virtual voices than you have resources to play. There is no benefit to
specifying more physical voices than virtual voices since the player will
have no way to use themn.

NINTENDO

DRAFT THE AUDIO LIBRARY

NU6-06-0030-001G of October 21, 1996

i

Physical voices represent the actual sound p: :
the driver. They consist of an ADPCM decompressor, b

gain unit. The ADPCM decompressor converts mono: CM compressed
(approximately 4:1) wavetables o 16-bit raw format. The pitch shifter
resamples the resulting data (ve, down any number of octaves)
to the des1red pitch. The gain volume envelope, a pan
ter bus and an effect bus at

The driver may “steal” a physical¥pice from a virtual voice if a higher

priority virtual voice is allocated.

voice from being stolen, you can set the voice priority to
the highest priori SynSetPriority().

oice, you can use it to play a wavetable with the
can stop the playback with the alSynStopVoice()

Affer you

Effects and Effect Busses

ach voice can be assigned to one effects bus. Each effects bus can contain
y number of effects units (up to the limit imposed by the processing
ources). The number of busses and effects units are specified in the driver
onfiguration structure and are established at initialization time.

Note: The Audio Library currently only supports one effects bus. Future
version may support multiple busses.

385

NINTENDO 64 PROGRAMMING MANUAL DRAFT

386

Creating Your Own Effects

The Nintendo64 uses a general purpose effects implemer
manipulates data in a single delay linesA, ma]l number of default
configurations have been suppliedi{see
developers can also specify there
style effects.

specified in blocks where e
effect is constructed by att;
toa single delav line. There,

effects send busses. The contribution of*d’voice to this bus can be specified

by a call to alSynSetFXMix. This delay line is then operated on by the effect
- e field of the synthesizer configuration structure.

located from the audio heap by a call to

The particular combination of values in each of the parameters for a
rimitive specifies the function of that primitive as a whole within the effect.

imitive will be an all pass; if ffcoef and fbcoef are different, or one or
eris zero, the primitive will be a filter of some kind. If both ffcoef and

NINTENDO DRAFT THE AUDIO LIBRARY

fhcoef are zero, the primitive will be pure
and low pass filtered.

Figure 19-2 Effects Primitives

gain

LP

or alternatively,

output

4 7

L~

gain
LP

this store does not
occur if a tap position
modulabion (chorus)
is part of the effect

' (see chorus rate and
chorus depth
parameters)

e function of the effects primitives can be thought of in two ways, the first
which is as an individual signal processing block. The effect as a whole
ould then be thought of as a set of concatenated and / or nested primitives
arranged to produce the overall desired effect. The second way of
conceptualizing the primitive is the way it is actually implemented, which is
to say, as an operator on a single longer delay line shared with all the other
primitives. Both conceptualizations are illustrated in figure 13-2. By careful
selection of the effects parameters, a large class of cascaded/nested all-pass
and comb filter based effects can be created. (For a more detailed description
of this class of effects, see Bill Gardner’s MIT masters thesis, “The Virtual
Acoustic Room”, secton 4.6, available from

NUE-06-0030-001G of October 21, 1996 387

NINTENDO 64 PROGRAMMING MANUAL DRAFT

388

http:/ /sound.media.mit.edu/papers.html, an
program and documentation in same location).

specify that effect in the fx°
structure. If, on the other ish to build their own effect, they
would specify an fxType of AL_FX:CUSTOM, and then allocate and fill in
the fields for the primitives. See the PRZapps/ playseq source for one

example of how to use this capability to build a complex effect.

input and ou iit addresses,
chorus rate and depth, and i

igth: this parameter specifies the total length of delay memory used by the
effect and must be a multiple of 8 bytes. Since data is processed in blocks,
this parameter should be greater than or equal to the largest output offset
parameter PLUS the length of a processing buffer. This length is defined to
be 160 samples, or 320 bytes. If the last section of the effect has a non-zero
chorus rate parameter which corresponds to a slow modulation rate, and a
deep modulation depth (> 1 semitone), the total delay length may need to be
larger depending on the rate and depth of the chorus.

NINTENDO DRAFT THE AUDIO LIBRARY

The rest of these parameters constitute on.
must be one set of these parameters for each set
parameter.

The following two address par
bytes {or 4 sample} boundari
way to specify addresses in the
properly aligned.

fes the coefficient of the feedback portion of the
zero, no action takes place.

flange tyg; effects.

airn: this parameter specifies how much of this primitives output to
ntribute to the total effect output, and can be thought of as a ‘tap’ value. If
o, no multiply is performed. Note that at least one section of the effect
st have a non-zero gain value for the effect to be heard. If no section of an
ffect has a non-zero gain value, then no effect output will be heard.

chorus rate: this parameter specifies the modulation frequency of the output
tap position of the delay line, i.e., how quickly the tap position will be
modulated. The value of this parameter is (frequency/sample rate)*2/25.
For example, a modulation frequency of .5Hz at a synthesizer sample rate of
44.1kHz would be (.5/44100)*33,554,432 = 380

NU6-06-0030-001G of October 21, 1996 389

NINTENDO 64 PROGRAMMING MANUAL DRAFT

chorus depth: this parameter specifies the modu
of the effect. The parameter is specified approximately in hundredths of a
cent. So a modulation depth of +/-25 cents, or a quarter of; itone, would
be 2500. The approximation to cents is:geod over the range useful for
musical chorusing and flanging, i.¢}
1 semitone (100 cents) is about 3 ¢
If you wish to know the “exact” v
use the following equation:

__chorusdepth)I
120, 000/1In (2)

The derivati function of frequency and sample rate can
be found in numierous signal processing texts, and is left as an exercise to the
reader {doncha hate that). rate a table once and forget about it. Only

positive values will ac

390

NINTENDO DRAFT THE AUDIO LIBRARY

The effect in figure 13-3, which is a simple e
using AL_FX_ECHO, would be implemented
parameters:

be selected

#define ms *({(s32) ((£32}
param[0] = 1; /*the numbe
param[l] = 200 ms; /* toc
param{2] = 0; /* input is B
param[3] = 179 ms; /* output 1
param[4] = 12000;
param[5] = 0: /* n
paramig]l = Ox7E£ff;
param[7} = 0; /* n&ichory

param(8}] = 0; /* no chorus

lay line */
delay line */

param{%] = 0; /¥ no low-pas
This s, in fact, th ¢ echo effect implemented when AL_FX_ECHO is specified
in the fx ne synthesizer configuration structure.

sechon 1
input = 0ms .
mftput = 54ms section 2 -
fbeoef = 9830 input =19 ms
Heoef = -9630 output =38 ms
am =0 fbeoef = 3276
ffcoef = +3276
ain = Ox3fff (.5}
orus rate = 0

orus rate = 0

chorus depth =0
lopass coef = 0 v

section 3

input=0

output = 60ms

fbeoef = 5000

Heoef =0

gain =0

chorus rate = 0

cherus depth =0

topass coef = (5000 {.625)

In Fig 13-4, we have used the more compact Gardner-style notation. Note
that section 2 is “nested” inside section 1.This effect which is the

NU6-06-0030-001G of October 21, 1996 391

NINTENDO 64 PROGRAMMING MANUAL

DRAFT

parameters:
param[0] =
param(1l]
/* SECTION
param[2]
parami3l]
parami4}
param{5}]
param{6]
param([7]
param([8]
param[9]
/* SECTION
paramil0]
param{l1l]
param{12]
param{13]
param[14]
param(15]
param[16]
param[17]

K

paraml[22]
param[23]
param[24]
aram[25]

392

3;
100 ms;
1%/

0; /* imput */
S54ms; /* cutput *
9830; /* fbcoef */
-9830; /* ffcoef */
0; /* no
0; /* no
0; /* no
0
2

/* total

; /* no
/

9 ms; /* input */
/* output */

1

depth */
gs filter */

0; /* input */
60ms; /* output */
5000; /* fhcoef */
0; /* ffcoef */
3 A /* gain >/
0; /* chorus rate */
0; /* chorus depth */
0x5000; /* low-pass filter */

NINTENDO

DRAFT

THE AUDIO LIBRARY

NU6-06-0030-001G of October 21, 1996

Summary of Driver Functions

Table 19-55ynthesizer Functions

Function

alSynNew

alSynDelete
alSynAddFPlayer
alSynRemovellayer
alSynAllocVoice

alSynAliocFx

alSynFreeFx

ent player to the synthesizer.
Removes a player from the synthesizer.

Allocates and returns a synthesizer
Oice.

Deallocates a synthesizer voice.
Starts a virtual voice playing.

Starts a virtual voice with the specified
parameters.

Stops a virtual voice from playing.
Sets the volume for the specified voice.
Sets the pitch for the specified voice.

Sets the pan values for the specified
voice.

Sets the wet/dry /effects /mix for the
specified voice.

Sets the priority of the specified virtual
voice.

Returns the priority of the specified
virtual voice.

Allocates a new effect of the specified

type to the specified bus.
NOT IMPLEMENTED

393

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Writing Your Own Piayer

394

Table 18-55ynthesizer Functions

Function Description
alSynGetFXRef firrns a pointer to the FX structure.
alSynSetFXParam

A Player is an Audio Library softwaretbject that works through the
Synthesis Driver to construct audio command lists. Both the Sequence
Player and thy d Player are examples of Players.

callback withii¢
Driver” on page 382. The i

described in the section “The Synthesis

is accomplished with the alSynAddPlayer(} call, which takes two
arguments a reference to the synthesis driver, and a reference to the

Exampie 19-1 Player Initialization

typedef struct MyPlayer_s {
ALPlayer node;

/*
* include other player specific state here

to the driver and then responding to driver

alization procedure and the callback routine

LPlayer structure that represents the player to be added A reference to the

NINTENDO

DRAFT " THE AUDIO LIBRARY

*/

} MyPlaver:

void playerNew{MyPlayer *p)

/*
* Initialize any pla
*/

/i ;
* 3ign into th
* alAudioFrame
* __voiceHandler
*/

p-»>node.next . = NULL;

= _ volceHandler;

&p-»node) ;

* remove this player from the synthesis driver
*/
SynRemovePlayer (&alGleocbals->drvr, &p->node);

In the previpus example, you’ll notice that the player structure contains a
reference to __voiceHandler. This field points to a callback procedure, of
type ALVoiceHandler, which the driver calls in the process of building the
;gudio command list.

mplementing a Voice Handler

When your application calls alAudioFrame(}, the driver iterates through its
list of players, calling the player s voice handler functions at the appropriate
offset (which translates to time) in the command list.

Typically, the player maintains a time-based list of events which the voice
handler parses and translates into driver calls. The voice handler contributes
to the construction of the command list by making driver voice calls.

NU6-06-0030-001G of October 21, 1996 395

NINTENDO 64 PROGRAMMING MANUAL DRAFT

function,

The voice handler returns the time, in

Exampie 19-2 The Voice Handle

{
MyPlayer *D o=
/*
* You can now ma,
* driver voice fiinctid:
*
*

alsynAllocVoice {7
1SynFreevVoice()

alSynSetPriority()
alSynGetPriority{)
alsynSetFXParam()

; /* call back in 1 millisecond */

396

NINTENDO DRAFT THE AUDIO LIBRARY

Implementing Vibrato and Tremolio

Note: A full example of vibrato and t-remolo implementation is given in the
latest version of the playseq demgi€ idiBank.inst has examples of how
vibrato and tremolo would be s

Vibrato and tremolo, are impl ;
initOsc, updateOsc, and stopOsc. 'Th act as the low frequency
oscillator (LFO) that is modulated aga g1 pitch or volume. When the
sequence player deterimiines that a note uses either vibrato or tremolo, it will
call mitOsc which will rent value, and return a delta time specifying
how long before it needs the value of the oscillator. After the delta
time has passed, upda teOsc w ed, which will set a current value and
return a delta time until the next update. This will continue, until the note
stops sounding;and at that time, stopOsc will be called, so that your

y necessary cleanup.

g three callback routines;

ects is a delta time until the next callback, and a
alue. In addition the sequence player provides a

All the seqttence player
value to use as the curn

ent in the .inst file. A value of zero (the defatllt) in these fields
erpreted by the sequence player as either vibrato off or tremolo off.

following fields can be used to specify parameters for the oscillator: vibRate,
vibDepth, vibDelay, tremRate, tremDepth, iremDelay. These values are eight
it values and can be used in whatever way the oscillator callbacks deem

Nhen creating a sequence player, you must pass pointers to your callbacks
through the ALSeqpConfig struct. The following code fragment
demonstrates how to do this,

ALSeqpConfig seqc;

segc.maxVoices = MAX VOICES;
segc .maxEvents = EVT_COUNT;
segc.maxChannels = 16;

NU&E-06-0030-001G of October 21, 1996 397

NINTENDO 64 PROGRAMMING MANUAL DRAFT

398

segc.heap = &hp;
segc.initoOsc = &initOsc;
segc.updatelsc = &updateOsc;
segc.stopOsc = &s5topOsc;

alSegpNew(segp, &segc);

The initOsc routine

ALMicroTime J.n:.tOsc(vo:.d LY=o »£32 *initval, u8
oscType,u8 osc u8 oscbepth, uf oscbhelay);

? to occur when a note is started, and
either the vibType or tremType is non=zere. Vibrato and tremolo are handled
separately by the sequence player, so if an instrument has both vibrato and
be made, one for each oscﬂlator When called nutOsc

ment is a pointer to an f32 that must be set
e remaining arguments are the oscType,

inter to this memory in the oscState handle. This is optional

nd if your oscillator doesn’t have any state information it may not
is. After performing any computation that it needs, the initOsc
: delta time, in microseconds, until the first call to
updateOsc. If'a delta time of zero is returned, the sequence plaver interprets
this as a failure, and will not making any calls to either updateOsc or
topOsc. If the initVal is changed, the new value will be used. If the initVal

fe oscillator is a vibrato oscillator, the return value is multiplied against
e unmodulated pitch to determine the modulated pitch. A value of 1.0 will
have no effect, a value of 2.0 will raise the pitch one octave, and a value of .5
will lower the pitch one octave. If the oscillator is a tremolo oscillator, the
returned 32 should be an integer value between 0 and 127. This value will
be multiplied against the unmodulated volume to determine a modulated
volume. A value of 127 will be full volume, and a value of 0 will be silent.

NINTENDO DRAFT THE AUDIO LIBRARY

The updateOsc routine

call has expired. When called,
t)sc in the oscState handle.

oscillator value in updateVal, anid's
updateOsc needs to be called. Valid o
case of initOsc.

The stopOsc routine

void stopOsc(void *oscSt

NU6-06-0030-001G of October 21, 1996 399

NINTENDO 64 PROGRAMMING MANUAL DRAFT

400

NINTENDO DRAFT AUDIO TOOLS

Chapter 20
Audio Tools

NU6-06-0030-001G of October 21, 1996 401

NINTENDO 64 PROGRAMMING MANUAL DRAFT

The Instrument Compiler: ic

402

The Nintendo 64 Audio Library synthesizes audio from MIDévents using
information contained in the .ctland Yata files, These files, along with the
.sym file, are known collectively as d are created by the “ic”

tool.

numbers, and velocity values. For
tl file, see the section “Bank Files”

position, pitch, mapping t -
more information about the format o
in Chapter 15

bank file’s symbol information, and is used mainly

The .sym file cg
‘ iing. It is used only by the audio bank tools, not

-o <output file prefix> <source file>

NINTENDO DRAFT AUDIO TOOLS

Table 20-1ic Command Line Options

Command Line Option

-V

-0 <output file prefix>

SY 55 created by the compiler.

The name of the file containing the
source code for the banks of instruments.

<source file>

instrumerit-In the example below, the bank defined as “GenMidiBank”
contains one instrument, called “GrandFiano,” at instrument location (. It is
_intended to operate at 44.1 kHz.

nk GenMidiBank

sampleRate = 44100;
“program [0] = GrandPiano;

1

Note: The General MIDI 1.0 Specification specifies that MIDI channel 10 is
the default drum or percussion channel. As a result, many General MIDI
sequences do not contain program change messages for channel 10. You can
specify the default instrument (program) for channel 10 as follows:

NU6-06-0030-001G of October 21, 1996 403

NINTENDO 64 PROGRAMMING MANUAL DRAFT

bank GenMidiBank

{

sampleRate = 441300;
percussionDefault = Standard Xit;
program [0] = GrandPiano;

}

The Sequence Player sets the defaul annel 10 messages fo

be “Standard_Kit.”

The Instrument Object

bank object, contains the overall
as the list of sounds that make up

The instrument object, refefénce
volume and pan for the instrument a
the instrument.

{

GrandPiancl0;
GrandPiancdl;
GrandPianocl2;
GrandPianoll;
GrandPiano04;
GrandPiano05;
GrandPiano6;
GrandPiano07;

404

NINTENDO DRAFT AUDIO TOOLS

The Sound Object

The sound object specifies the volume and pan, Keybo: lapping, and
envelope for the sound. It also specifies the AIFF-C sound file containing the
ADPCM compressed Wavetable ' descnptlon of the AIFF-C format

./s 7GMPiano_C2.18k.aifc”);
= 64;

127;

planollkey;

= GrandPianoEnv;

Keymaps and envelopes are described in the following sections.

Note: When using banks to collect sound effects, the keymap entry is not
ecessary.

e Keymap Object

The keymap object, referenced by the sound object, specifies the range of
MIDI velocities and key numbers that the sound is intended to cover. It is
used by the Sequence Player to determine which sound to map to a given
MIDI note number, and at what pitch ratio to play the sound.

NU6-06-0030-001G of October 21, 1996 405

NINTENDO 64 PROGRAMMING MANUAL DRAFT

406

In the example below, pianc00key specifies a ;
a velocity between 0 and 127 and a note number

In this example, the keyBase is 41, so a MIDI Note on meséage for key 41

triggers the sound that references this at unity pitch. A MIDI Note
On message for key 42 triggers the shifted up a half step in
pitch.

Note: You can set the keyBase value outsi
This is useful if you want tgcritically res
ROM space. You could, for
22.05 kHz and adjust the k
however, that quality degr

e, or volume contour, for a sound. Volumes are specified in the range
27, and the times are specified in microseconds.

the example below, the sound’s envelopes would ramp from 0 to 127 in
O microseconds, decay to 0 in 400 milliseconds, wait for a MIDI Note Off, and
then release to 0 in 200 milliseconds. The decay portion of the envelope
decays to zero. For many acoustic instruments, especially percussion
instruments, this gives the most realistic envelope.

NINTENDO

DRAFT AUDIO TOOLS

NU6-06-0030-001G of October 21, 1996

Note: The Sound Player uses envelopes in
Chapter 19 for details.

A Complete Example

MIDI bank that is shipped
th one instrument, the

The following example, taken
with the development softwarg, define
Grand Piano.

envelope GrandPian

{

attackTime= 0
attackVolume= 127;

sound GrandPiano(00
: use (*../sounds/GMPiano_C2.18k.aifc”);
pan = 64;

volume = 127;

keymap = pianc00key;

envelope = GrandPiancEnv;

keymap pianoQOlkey
{

0;
127;

velocityMin
velocityMax

407

NINTENDO 64 PROGRAMMING MANUAL DRAFT

keyMin = 42;
keyMax = 49;
keyBase = 63;
detune = 0;

sound GrandPiano0l

{
use (“../sounds/GMPiano_Bb
pan =
volume =
keymap =
envelope
}

{

/sounds /GMPianc_F3.19%k.aifc”);
pan . 64d;

volume =:27;

keymap = pianc02key;

envelope = GrandPianoEnv;

“velocleyMin = 0;
velocityMax = 127;

keyMin = 58;
keyMax = £3;
keyBase = 72;
detune = 0;

sound GrandPianc03

408

NINTENDO DRAFT AUDIO TOOLS

use (“../scounds/GMPiano_C4.22k.a
pan = 64;

volume 127;

keymap = piancl3key;
envelope = GrandPianoEf

keymap piancO4key
{

velocityMin
velocityMax
keyMin =
keyMax =
keyBase =
dectune =

il

velocityMax = 127;

keyMin = 70;
keyMax = 75;
keyBase = B4;
detune = 0;

sound GrandPianc(05
{
use {*../sounds/GMPiano_C5.22k.aifc*);
pan = 64;
volume = 127;
keymap = pianoQ%key;
envelope = GrandPianoEnv;

NU6-06-0030-001G of October 21, 1996 409

NINTENDO 64 PROGRAMMING MANUAL DRAFT

keymap piancOéke

{ ‘
velocityMin = 0;
velocityMax = 127;
keyMin = 76;
keyMax = 81;
keyBase = 91;
detune = 0;
}
sound GrandPiano06
(
use (™../sounds/GMEL, 22k.aifec”);
pan = 64; :
volume = 127;
keymap = pi O6key;
envelops idPiancEnv;
)

keymap piané

{

locityMin

111;

(“../sounds/GMPiano_C6.18k.aifc”);
an = 64;

olume = 127;

eymap = pilanol7key;

envelope = GrandPiancEnv;

instrument GrandPiano

{
volume = 127;
pan = &4;
sound [0] = GrandPianc00;

410

NINTENDO DRAFT AUDIO TOOLS

sound [1] = GrandPiano01l;:
sound [2] = GrandPiano02;
sound [3] = GrandPiano03;
sound [4) = GrandPiano04;
sound [5] = '
sound [6] =

sound [7] =

bank GenMidiBank

{
sampleRate = 44100/
program [0] = Grand@iar
}

NU6-06-0030-001G of October 21, 1996 411

NINTENDO 64 PROGRAMMING MANUAL DRAFT

The ADPCM Tools: tabiedesign, vadpcm_enc, vadpcm_dec

The ic tool requires wavetables to be compressed in ADP rmat before
they are included in a sound bank. ADPEM compression is accomplished

using the tabledesign, vadpcm_enc, i v cm_dec tools. These tools are
described below.

ange format between
t is not used to store

Note: The format described is used
the compression tools and the instrument
compressed sound data onithe ROM.

\l:cg;il-. :

tabledesign

tabledesign reads.an AIFC or AIFF sound file and produces a codebook
(written to st T tput), which is used by the ADPCM encoder. The
codebook is g fab ' on coefficients which the coder selects from to

ign [-s book_size] [-f frame_size]
_iter] aifcfile

412

NINTENDO DRAFT AUDIO TOOLS

Command-line options are described in Tab

Table 20-2tabledesign Command Line Options

Command Line Option

-5 <value>

e adequate for most sounds.

Value is the size of the frames (in
samples) used to estimate predictors.
ce the ADPCM encoder operates on
ames of 16 samples, this number
should be a multiple of 16. The default
value is 16, The main benefit of
increasing the frame size is that design
time is reduced.

-f <value>

Value is the number of iterations used in
the refinement step of the clustering
algorithm. The default vatue is 2.
Increasing this parameter increases
design time, with some possible
improvement in quality. The default is
adequate for most sounds.

-i <value>

vadpcm_enc

adpcm_enc encodes AIFC or AIFF sound files and produces a compressed
file, which is used by ic to prepare banks of sounds. The encoding
rithm is based on a switched ADPCM algorithm which uses a codebook
(0 define a table of prediction coefficients. Coefficients from the table are
selected adaptively during encoding to give the best sound quality. The
Nintendo 64 compressed sound format currently supports a single loop
point, which should be defined in the input file’s Instrument Chunk. The
codebook and loop-point definitions are embedded in the final output file.

. NUG-06-0030-001G of October 21, 1996 413

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Invoking vadpcm_enc

The vadpcm_enc tool is invoked as follows:

[

vadpcm_enc -¢ codebook [-t]
alfcFile codedFile

Table 20-3vadpcm_enc Comriand Line Options’

Command Line Option Function

ine a file that contains the prediction
coefficient codebook constructed by
tabledesign(1}.

-¢ <filename>

Truncate the encoded file after the loop
end point. The portion of the sound after
the loop end-point is never used in audio
playback.

Set the minimum loop length in the
encoded file (see Note below).

-1 <v:al‘ g>

Note: The efficiency of wavetable synthesis is dependent on the length of
loops. Longer loop lengths can be synthesized more efficiently. A minimum
loop length ¢azrbe set in the ADPCM encoder. The currently defined default
minimum loop length is 800 samples. This default length can be changed
(see above), with the absolute minimum being 16 samples. Loops shorter
than the minimum loop length are repeated until the total loop length is
than the minimum length. If possible loops should be longer than a
udio frame which is equal to the (SampleRate)/(FrameRate).

pem_dec

vadpem_dec decodes a sound file that has been encoded in the Nintendo 64
ADPCM format using vadpem_enc, and writes it to standard output as raw
mono 16-bit samples.

414

NINTENDO DRAFT AUDIO TOOLS

Invoking vadpcm_dec

The vadpcm_dec tool is invoked as follows:

vadpem dec [-1] codedfile

Table 20-4vadpem_dec Command Line ¢

Command Line Option

If the sound has a loop, play the loop
repeatedly until a key is pressed on the
standard input.

-1

NU6-06-0030-001G of October 21, 13956 415

NINTENDO 64 PROGRAMMING MANUAL DRAFT

The MIDI File Tools: midicvt, midiprint & midicomp

midicvt

The Audio Library plays only Typ
midicvt to convert from Typel (wht
sequencers) to Typel.

invoking midicvt

midicvt is invoked as folloWws:

] files. You can use

Command Line Option

Function

turns on verbose mode

strips out any messages that are not used
by the Audio Library. These include text
messages and system exclusives.

the narme of a Type 0 or Type 1 Standard
MIDI file.

the name for the Type 0 output file.

Type 0 or Type 1 Standard MIDI file.

Invoking midiprint

416

The midiprint tool prints a text listing of the time-based MIDI events in a

midiprint [-v] -o <cutput file> <input file>

NINTENDO DRAFT AUDIO TOOLS

Tabie 20-6midiprint Command Line Options

Command Line Option Function

-V

-0 <oufput file>

<input file>

o compress midi files of either Type 0 or Type 1
e compact sequence player.

Function

the name of the Type 0 or Type 1
Standard MIDI file to compress.

<output file> the name to use for the output file.

Making files that will compact better.

Different midi files will be compressed by different percentages, based on
the content of the files. All files (except very small files) should be

NU6-06-0030-001G of October 21, 1996 ‘ 417

DRAFT

NINTENDO 64 PROGRAMMING MANUAL

recognizing pattemns and then compressing these, :
compression occur when the files are repetitive. Patterns an

compressed.

418

NINTENDC DRAFT

AUDIO TOOLS

Midi Receiving with Midi Daemon: midiDmon

i

Midi Daemon is no longer supported. All functionalit
now incorporated into Instrument Editor.

NUE-06-0030-001G of October 21, 1996

Midi Daemon is

419

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Instrument Editor

420

* Nintendo 64 Development Hardwar
'measures audio resources that are be

The tool Instrument Editor provides three primary uses. Fir it editor, it
allows realtime editing and auditionin ofinstrument banks and effects.
ices to playback MID] on the

Second, as a player, it allows external MID
E giler, it profiles and

. layback. With its
support for MIDI playback, the ie tool nded to replace the
functionality of the Midi Daemon tool.

Instrument Editor is invoke
ie [-b <.inst file>] [-

Table 20-8ie Command Line Options

Function

specifies the name of the instrument
bank file to open in the editor. If this
option is not used, the editor opens with
a new .inst file,

-b <.inst file>

specifies the name of the configuration
file used to configure the N64 Audio
Library used by ie.

turns on verbose mode. (for debugging.)

tor portion of the ie tool is a simple application for editing .inst files

as effects. A Nintendo 64 development board does not have to be

T to open and edit .inst files. However, youwillnot be able to audition
tir changes without the Nintendo 64.

Bank Editing

The ie tool can read, write, and edit .inst files. .inst files contain a description
of a Nintendo 64 bank which can be compiled into actual Nintendo 64 bank
files with ic, the instrument compiler tool. The .inst bank description is

NINTENDO DRAFT AUDIO TOOLS

reference each other in a sort of
assets reference instruments agké

7 So if an envelope asset is
orphan and can be deleted

column to activate the default editing for the parameter. Names are always
text edited. Numbers can be scrolled up or down to increase or decrease
their value. References to other child assets are edited with popup menus.
wever, all assets can be text edited by clicking on them with the “Alt” key
zld down. This pops up a text edit field which can be moved around from
field to field using the arrow keys and the “Alt” key. (Without the Alt key,
e arrow keys move the cursor within the text field.) Values won't be
accepted if the value is out of range or is illegal. Use the “ESC” key to cancel
any text editing. Note that some fields cannot be edited (eg. a wavetable’s
sample rate) and only display information. Icon fields are used for a variety
of purposes such as asset selection, asset audition, and others. Integer fields
can be double-clicked to quickly set the value to a preset default value.

NU6-06-0030-001G of October 21, 1996 421

NINTENDO 64 PROGRAMMING MANUAL DRAFT

422

Viewing and Editing Children

Some of the assets contain a “#” column. This col
of children that the asset has. If the asset has one or more chifl

double-clicking on the “#” column wi ¢n up the parent and display its
children. Since the children have diff

on the icon of a child, will a
editing of their parameters.:
sound will open up the sound folder’

In order to audition
and must be “online” on the endo 64. For a description of what it means
for a bank to be valid aridofiline, see the Nintendo 64 Flayback section.
ank is online, bank assets can be auditioned by clicking on their
téssing the button down sends a MIDI note on event. Releasing the
tton sends a MIDI note off event. This makes it easy to audition the
stain portion of a sound. Currently, auditioning instrument assets will
always play 2 C4 note. Auditioning sounds, keymaps, envelopes, and
wavetables lay the asset’s parent instrument at the sound’s key base.
Note that if the'Keymaps for an instrument’s sounds are not specified and
ordered properly, an auditioned asset may not get mapped to the correct

d. Thisis a potential source of confusion when auditioning assets so
ure that the auditioned sound’s keymap is correct and complete

The file menu contains commands for opening, closing, and saving .inst
files. The “Open” command brings up a dialog for selecting a .inst file to
edit. Only one .inst file can be open at a time so choosing “Open” while
another .inst file is currently open will first close the file before opening a

NINTENDO

DRAFT AUDIOTOOLS

NU6-06-0030-001G of October 21, 1996

new one. The “Close” comnmand removes §
file to be edited. The “Save” and “Save As”

The Edit Menu

The Asset Menu

The Asset menu contaiis, commands fo ing and deleting assets.
Selecting the insert co ‘will create anew asset and place it at the end
of the list. The asset wil imatically have default parameter values. To
insert an asset in the middle of thillist, select the asset where you want the
asset to appear and select the insert'édmmand. The selected asset will
newly created one. To delete assets, simply select one or
ect the delete command A short cut for creating an asset

command allows importing of other .inst files as
as .aiff-c files. This is currently the only way to create wavetable assets.

The sele menu contains useful commands for selecting certain types of
assets. TheSelect Parents” command will select all the parents of the
currently selected asset. This command works only if exactly one asset is
selected. For example, if a keymap is selected, the “Select Parents”
ommand will select all the sound assets that use the given keymap and will
omatically display the sound folder. The “Select Orphans” commands
select all the folder’s assets that do not have any parents. This is useful
1 determining which assets aren’t being used anywhere and which can be

" deleted.

Effects
The ie tool supports creating, editing, and auditioning effects on the

Nintendo 64. Since effects are tightly coupled to the N64 Audio Library, they
will only appear for editing if N64 development hardware is present.

423

NINTENDC 64 PROGRAMMING MANUAL DRAFT

Otherwise, only bank components can be edited: }f
hardware is present, ie will automatically create five by
auditioning and editing. These effects are small room,
flange, and echo. In addition to the built-in effects, custorm’
created from scratch.

Effects Viewing

while more complicated ef: may contam EIght or more sections. Sumlar
to banks, effects are parents t

160 samples {depending on the chorus rate). (See the section on audio effects
for a more detailed explanation of the 160 sample restriction). The ie tool

Secondly, when an effect is “online” (ie. it is loaded into the N64), the effect’s
length parameter cannot be edited. In addition, you cannot insert or delete
sections to an online effect. In order to make these changes to an on].me
effect, you must offline the effect first.

424

NINTENDO

DRAFT AUDIO TOOLS

e
K

NU6-06-0030-001G of October 21, 1996

Thirdly, effect sections can only have one p
parent effect, it will not be available for other

Finally, to use chorus or the low pass filter, you must m
respective parameters are non-ze 3 belote loading the effect. The Audio
Library will not allocate the req rory:to implement chorus or the
low pass filter if the parameter this saves unneeded
MEmory).

Effects Auditioning

Initially, no effects are I¢
make it “ontine”, double-click tht ired effect’s icon. To offline the effect,
double-click it again or double-clic Abther effect. When an effect is placed
online, the N ust be fully reconfigured since the Audio Library must be
initialized ; aeffect. This may take a few seconds since it must reload
Once the effect is online, its icon should appear
ine. From now on, auditioning bank assets will
be played through the effect. Note that the wet/dry amount can be

controlled for each MIDI¢hannel by sending an FX1 control message to the

effect assets can not be saved to disk. This is because there is no

» file like thereis an “.inst” file for bank assets. However, effects
can be restéred from disk with a configuration {.cnfg) file. (See the section on
the N64 Configuration for a description of the configuration file.) Since the
Audio Library treats effects as part the the configuration data you can edit
e configuration file to include a custom effect. An effect is defined with the
word “REVERB_PARAMS” and is followed by a bracketed {...} set of
irameters describing the effect and its sections. Below is an example of an
ffect with 8 sections and a total delay line length of 325 msecs. Note that
comments are bracketed by /*...*/.

REVERB_PARAMS = {
/* sections
8,

length*/

325,
chorus chorus fltr>/
rate depth cecef*/

/‘k

/* input output fbcoef ffcoef gain

425

NINTENDO 64 PROGRAMMING MANUAL DRAFT

426

0, 8. o, -%830, 3600,

8., 1z, 9830, =-9830, Ox2bs4,
41, 128, 16384, -16384, 0Oxlleb,
45, 103, 8132,

0x6C0Q,
0, 0,
a, g,
2000, 0x7000}

162, 282, 16384,
166, 238, 8192,
238, 268, 8132,

0, 299, 18000,

code. If it can tfmd the N64 board or if it4ils to boot it up, it will report an

error and ie will able to audition any instruments or edit effects. In

i up the gload tool which acts as a print server for
ges. This is useful for detectmg when an audlo

: This default configuration can be edited either by using the
ialog or by specifying a configuration file on the command
line when thetpol is run. For information on how to use the configuration
dialog see the seiction on the Nintendo 64 Menu. To configure the tool using
a configuration file, simply specify the file on the command line. The
zcanﬁgurahon file should contain reserved words that specify the values of
 configuration parameters, such as output rate or the number of
virtual voices. For an example of a.cnfg file and its reserved words,
the file /$ROOT /usr/src/FPR/assets/banks/ie.cnfg.

intendo 64 MIDI Playback

Ornce it is up and running, the Nintendo 64 waits for incoming MIDI
messages. MIDI messages can be sent from an external MIDI device or from
the ie tool itself. In order for the Nintendo 64 code to respond to the MIDI
messages, it needs to have a valid bank downloaded to it by ie. When ie is
launched with a new file, there is no bank in the editor and the Nintendo 64

NINTENDO DRAFT AUDIO TOOLS

will be “offline” which means it does not ki
profiling screen on the Nintendo 64 monito
at the top of the screen. As soon as ie has a valid'b
download the bank data and the Nintendo 64 will the
will be able to respond to MIDI ¢ As the bank is edited, it continually

Audio Library requires comple
properly. A bank is determined
met:

ollowing conditions are

1) a bank asset exists
2) the bank contains atieast ©

The readings will measure how much of each resource is used in order to
playback the sequence. The profiler keeps frack of the following resources:

NU6-06-0030-001G of October 21, 1996 427

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Tabie 20-9ie Profiled Resources

Profiled Description
Resource
cmds the number of audi

syn upds

seq evis

DMAs

the number of DMA buffers needed during an audic frame.
The number of availabe DMA buffers is specified during the
audio systemn configuration. Profiles both current and
maximum values.

Ves

this graph profiles virtual voice usage during playback. Each
Ypixel represents one used virtual voice. The number of

available virtual voices is specified during the Audio Library
configuration. The maximum number of virtual voices used is
displayed in the corner of the voice graph.

this graph profiles the percentage of a frame period being used
to execute the audio synthesis microcode on the RSP,

428

NINTENDO DRAFT ' AUDIO TOOLS

Tabie 20-9ie Profiled Resources

Profiled Description
Resource
CPU this graph profﬂ

output meters this profiles the

Signal levels abo B are indicated by a yellow
Slgnal presence is indicated by the bottom LED

rather it detects when“‘a“sampie magnitude value of Ox7{ff
ppears. This could be a legitamite value from a normalized

frame bas1s This is because it must share the processing resources with the
ther parts of the gy This means that the profile values will vary each
e a given sequence is played. Therefore, the readings should be used as
pproximation, not as an accurate measurement of resource usage. Also
te that the CPU measurements can be affected by any debugging
messages produced by the audio library. Also the N64 code was not
optimized by gcord and so is not displaying best case performance.

The Nintenao 64 Menu

the N64 development board is available, an N64 menu will appear in the
itor. This menu provides control over some of the N64 functionality. The
Llear Profile Values” item resets the MIDI player and causes all the
‘maximum values to be reset to zero. The “Configure Hardware” menu
rings up a dialog which can be used to set some of the Audio Library
configuration parameters. See Table 20-10 on page 428 for a description of
the various configuration parameters. After setting the configuration
parameters, press the okay or apply button to make the changes take affect.
Reconfiguration may take a few seconds since any open bank file must be
fully reloaded to the N64. Configurations can be saved and reloaded at a
later time using the “Save Configuration...” and “Load Configuration...”
commands. These commands ask you to name the configuration file you

NU6-06-0030-001G of October 21, 1996 429

NINTENDQ 64 PROGRAMMING MANUAL DRAFT

430

recover
the N64 if it crashes for any reason.

"Here is a description of each of the ¢ ameters:

3
Table 20-10ie Configuration Parameter

Configuration
Parameter

Description

output rate

s_amples per
frame

frame. For maximum effi¢iépcy use a value that is a multiple
of 160 samples {eg. 640). A larger number means a slower

running at 60 Hz or 30 Hz. For example, at an
utput rate of 44300 Hz, setting this value to be 735 will
‘produce an fragig rate of 60 Hz.

ands the ma¥ithiiinumber of ABI commands that can be executed
per audio frame. This directly corresponds to the size of the
audio command list buffer that stores the ABI commands.

the number of available buffers for performing DMA requests.

g the size of each DMA buffer. Smaller buffer sizes normally
equire more DMA requests while larger buffer sizes normally
equire fewer DMA requests.

the maximum number of DMA requests thatcan be made. This
value directly affects the size of the DMA message queue set
up by the Né4 code.

the number of frames that must elapse before the N64 code
will free a DMA buffer for reuse. While the buffer is being
“held”, its samples remain available for other requests that
may ask for the same samples. In some cases, the same
samples may be used over and over again so holding them in
memory is faster than performing a DMA from ROM.

max virtual the maxirmurn number of virtual voices available to both the
voices synthesis driver and the MIDI player.

NINTENDO

DRAFT AUDIO TOOLS

NU6-06-0030-001G of October 21, 1986

Table 20-10ie Configuration Parameters

Configuration Description
Parameter
max physical the maximum nuny hysical voices available. If this is
voices less than virtua ice stealing is enabled.
max controi the maximumn
updates is able to store. Cortirol
changes, pitch changes,

max channels the ma; In ber of channels available for MIDI
messag Nor DI systems support 16 channels. This
affects how much
information.

tore. Event updates store sequence data such as start
MIDI commands, etc. This value directly affects

ple DMA is implemented by the game application,
MA configuration parameters may not be applicable to your game.

#Keép this in mind when setting these parameters.

For a list of known bugs and problems, consult the man page for the ie tool.

431

NINTENDO 84 PROGRAMMING MANUAL DRAFT

Midi and the Indy

432

Before using Midi Daemon, you will have to correctly con
for rmd1 Because there have been chang

versmn number is not important. If
.lder version motherboard, contact

The Indy usesa iard Macintosh Computer Midi Interface. Because there
are differencesbet '
voltage levels
Insufficient te
o not supply their own power, but instead
g dv serial port will drop midi messages sent
pack. For that reason we do recommend that you purchase a midi
at has its own power supply.

To conﬁgure yo }'Indy for midi, you can use either of two methods. The first

method is to run startmidi. This utility is started from the command line,

arguments specifying which midi ports to tumn on. This is the only way
on the intermal midi port.

ely, you can tum on midi by using the Serial Port manager, in the
Manager tools. This provides a more user friendly interface, and
configured, a serial port will remain configured even after a reboot. If
you find that selecting the System Manager or the Serial Port manager
generates error messages pertaining to the object server, try the following
sequence of commands:

/etc/init.d/cadmin stop

/etc/init.d/cadmin clean

NINTENDO

DRAFT AUDIO TOOLS

NUB-06-0030-001G of October 21, 1995

/etc/init.d/cadmin start

window for every n‘ud1 messag

éceiving midj, it is important
port. To do this, you must
s with:

If you wish to use serial port aumber éﬁi'
to turn off automatic spawningi
edit the file /etc/inittab. Find the ling'that st

t1:23:respawn: /sb’

Change this to:
t1:23:0ff: /sbin/getty ttyd1

Save the fi] eboot the Indy.

433

NINTENDQ 64 PROGRAMMING MANUAL DRAFT

The sbc Tool

434

sbc

bank (a .sbk file). A sequence bank £
other (8-byte aligned), with a header at:
the bank to retrieve individual sequences.

file2 file3d}

NINTENDO DRAFT AUDIO FILE FORMATS

Chapter 21

Audio File Formats

This chapter describes the file for
development.

s used for Nintendo 64 audio

NUG6-06-0030-001G of October 21, 1996 425

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Bank Files

to instrument assignment, key mappin
It is loaded into the Nmtendo 64 DRAM

layer and the Sound Player. They are not intended
and contain no textual information or other

Bank files must begin with an ALBankFile structure. This structure allows
the software to locate data for a specific bank.

426

NINTENDO DRAFT AUDIO FILE FORMATS

The ALBankFiie fields are summarized in

Table 21-1ALBankFiie Structure

Field

Tevision

bankCount

bankArray

in the bank file.

s32percussion;
s32instArray[l];
} ALBank;

able 21-2ALBank Structure

eld Description
instCount Number of programs (instruments; in
the bank.
flags =0 if instArray contains offset, and =1 if

instArray contains pointers.

pad Currently unused byte.

NU6-06-0030-001G of October 21, 1996 427

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Table 21-2A Bank Structure

Field

Description

~sampleRate

percussion

instArray

AlInstrument

u8veolume;
uBpan;
upriority;

uSvibType
uSvibRate;
uB8vibDepth:
ulSvibDelay;

} AlPhetrument:;

able 21-3ALInstrument Structure

ple rate at which this bank is
o be played.

this bank.

Field

Description

volume

pan

Overail instrument playback volume.
0x0 = off, 0x7f = full scale

Pan position. 0 = left, 64 = center, 127 =
right.

428

NINTENDO DRAFT

AUDIO FILE FORMATS

Table 21-3ALInstrument Structure

Field

priority

flags

bandRange

soundCount

soundArray

or this
trument. { = lowest priority, 10 =
t priority.

d range in cents.

Number of sounds in the sound Array
array.

Offsets of {or pointers to) the ALSound
objects in the instrument.

nvelope;

} ALScund;

def struct Sound_s

able 21-4ALSound STructure

Description

envelope

keyMap

wavetable

Offset of (or pointer to } the ALEnvelope
object assigned to the sound.

Offset of (or pointer to) the ALKeyMap
object assigned to this sound.

Offset of (or pointer to) ALWavetable
objects assigned to the sound.

NU6-06-0030-001G of October 21, 1996

429

NINTENDO 64 PROGRAMMING MANUAL DRAFT

430

Table 21-4A]Sound STructure

Field Description

samplePan

sampleVolume

flags

ALEnvelope

The ALEnvelor

Note: Release

typedef struct {
s32 a ckTime;

Description

‘Time, in microseconds, to ramp from
zero gain to attackVolume.

Target volume for the attack segment of
the envelope.

decayTime Time, in microseconds, to ramp from the
attackVolume to the decayVolume.

NINTENDO DRAFT AUDIO FILE FORMATS

Table 21-5ALEnvelope Structure

Field

decayVolume

releaseTime

AlLKeyMap

allows the sequencer to determine at what pitch to play a sound, given its
MIDI key number and note on velocity.

wmlocityMin;
slocityMax;
SMing

} ALKeyMap;

ble 21-6 ALKeyMap Structure

Description

locityMin Minimum note on velocity for this map.
0 = off, 0x7f = full scale.

velocityMax maxumum note on velocity for this map.
0 = off, &7f = full scale.

keyMin Lowest note in this key map. Notes are
defines as in the MIDI specification.

NU6-06-0030-001G of October 21, 1396 431

NINTENDO 64 PROGRAMMING MANUAL DRAFT

432

Table 21-6ALKeyMap Structure

Field Description
keyMax Highest note in this key"thap. Notes are
: as in the MIDI specification.
keyBase quivalent to the sound
itch.
detune a; to fine-tune this

AlLWavetablie

/* Must be B8-byte aligned */

typedef st¥

u32 start;
u3iz end;
u3ii count;

U ADPCM_STATE state;

} ALRawLoop;

typedef struct {
ALADPCMloop *loop;
ALADPCMBook *book;

NINTENDO DRAFT AUDIG FILE FORMATS

} ALADPCMWaveInfo;

typedef struct {
ALRawLoop *loop;
} ALRAWWaveInfo;

typedef struct {
s32base;
s32len;*/
ultype;

u8flags:;

union ¢
ALADPCMWaveInio adp
ALRAWWaveInfo raw
} wavelnfo;

} ALWaveTable;

Table 21-7 A ble Structure

Deseription

Offset of (or pointer to) the start of the
raw or ADPCM compressed wavetable
in the table {.tbl} file.

Length, in bytes, of the wavetable.

the type {AL_ADPCM_WAVE or
AL_RAW16_WAVE) of the wavetable
structure.

If the base field contains an offset, flags
=0. {f it contains a pointer, flags = 1.

Wavetable type specific information.

e 21-8ALADPCMWavelnfo structure

Description

Offset or pointer to the ADPCM-specific
loop structure.

Offset or pointer to the ADPCM-specific
code book.

NU6-06-0030-001G of October 21, 1996 433

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Table 21-9ALRawWavelnfo structure

Field Description

loop or pointer to the raw sound loop

Table 21-10ALADPCMLoop structure

Field

start Sampie offset of the loop start point.

end Sample offset of the loop end point

count er of times the wavetable is to
loop. A value of -1 means loop forever.

state ADPCM decoder state information.

Table 21-11ALA rusture

Description

Order of the ADPCM predictor.
Number of ADPCM predictors.
Array of code book data.

Description

Sample offset of loop start point.
Sample offset of loop end point.

Number of times the wavetable is to
loop. A value of -1 means loop forever.

434

NINTENDO DRAFT AUDIO FILE FORMATS

ADPCM AIFC Format

The compressed ADPCM file format is based around
non-standard compression type . i
contain the codebook and loop 3 pormation. This file is generated by
the ADPCM encoding tool from standaze and AIFF sample files, and

typedef struct {
ID ckiID; /* *FORM’
s32 ckDataSize;
s32 formType; /* ‘AIFC’ */
Chunk chunks[]

ORM and formType is AIFC. The standard AIFC
are the Common chunk, which contains
length; and the Sound data chunk.

ckID; /* ‘COMM’" */
kDataSize;
umChannels;

pstring compressionName; /* ‘VADPCM ~4:1' */
}

he current format accepts only a single channel. The numsampleFrames
field should be set to the number of samples represented by the compressed
data, not the the number of bytes used. The sampleRate is an 80 bit floating
point number (see AIFC spec).

The Sound data chunk contains the compressed data:

typedef struct

u32 ckID; /* ‘SSND" */
532 ckDataSize;

ui2 offset;

NUG-06-0030-001G of October 21, 1996 435

NINTENDO 64 PROGRAMMING MANUAL DRAFT

436

u32 blockSize
u8 soundDatal]:;
}

The encoded file will include two appiliza chunks. The common

typedef struct {
ul2 ckID; /* ‘APPL’ */4
s32 ckDataSize;
u32 applicaticnSignature; /* ‘sto
ul datal]l;

slication-specific data.

The Codebook application-specific data defines a set of predictors that are
i impressed ADPCM data.

ruct {
n; /* Should be 01 */

ADPCM predictor order, must be 2. nEntries can be anything from 1 to 8.
ength of the tableData field is order*nEntries*16 bytes.

The Loop application-specific data contains information necessary to allow
the ADPCM decompressor to loop a sound. It has the following structure:

typedef struct {
ulé version; /* Should be 01 */
sl6 nLoops;

NINTENDO

DRAFT AUDIO FILE FORMATS

NU6-06-0030-001G of October 21, 1996

adpcmLoop loopbatal];
}

nLocps defines the number of loop points and hence th&ftumber of
adpemLoop structures in the chur, the current library, only one loop
point can be specified. looplhatilias ollowing structure:

typedef struct {
ulé statel[l6];
s32 start;
g32 end;
s32 count;
} adpcmLoop

437

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Sequence Banks

4238

To provide a convenient way of collecting multiple] eque
accessing them from the ROM, Silicon Graphics has definedia:
Sequence Bank format. Files of this fo e produced by the Sequence

Bank Compiler (sbc), which takes mu, I files and collects them with
a simple header.

typedef struct {
ulé versicn; /* Should
516 seqgCount;
AlSeqData seqghArray(];

}

where seqCount is the of sequences in the file, and the seqArray

and lengths for the individual sequences.

sent the position of the start of the sequence from the
file. Note that the start of all sequences are 8-byte aligned
Bank Compiler is used.

NINTENDO DRAFT AUDIO FILE FORMATS

Compressed Midi File Format

The compressed midi file format is composed of a header& d up to sixieen
individual tracks. Each midi chanz ill have its own track. If there are no
midi events for a particular char “ rack will not be created, and the

offset to that track will be set t

The compressed midi file header* 16 offsets and a division

value.

typedef struct {
u3z trackO
ulz2 divisién;
} ALCMidiHdr;

re specified using variable length numbers, and
elta value, even if that value is zero. Midi events are

here are no note offs, instead note ons are followed by a variable

length number that specifies the number of ticks duration. As an
examiple, a note on of middle C with a velocity of 80 and a duration of
240 ticks would be expressed by the following sequence of hex bytes:
0x90 0x3C 0x50 0x81 0x70. Note that when calculating the deltas
between events, the duration is not taken into account.

Only two types of meta events are supported, tempo events and end of
track events, and they are both slightly altered. Tempo events are
composed of a meta status byte, (0xFF) a subtype byte (0x51) and three
bytes that contain the new tempo. (Note that the len byte has been
removed.) The end of track event is composed of only two bytes, a meta
status byte, (0xFF) and a subtype byte (0x2F). Care should be taken to
see that the end of track event occurs after all the notes in the track have
played out their full duration.

)

NUB-06-0030-001G of October 21, 1996 439

NINTENDO 64 PROGRAMMING MANUAL DRAFT

3. Loops are allowed using a combination of 1
events. A rack can have up to 128 leops whi
within a track has a unique loop number. The loop
composed of four bytes; a meta status byte (OxFF), a1
byte (0x2E}, a loop number (0-127 .an end byte (OxFF). A loop end

{should be the same as the loop®
the number of bytes difference bet

calculated before the p
value will have to be a
data that takes place bef

to one less tha.n the number of times the section should repeat. (i.e. to
t times, you would set the loop count to seven.)

ed for all events except across meta events

, in bytes, between the begining of the marker, and the
pattern. The last byte is the length of the pattern. In order to

any data byte of OxFE will be followed by another byte of OxFE.

: The maximum pattern length is 0xFF and the maximum distance
n the marker and the pattern is OxFDFF.

of patterns is not supported. If a marker is encountered within a
ted pattern, the marker data will be returned to the sequence player, as
tual midi data.

Note: Patterns replaced with markers may not contain bytes of value OxFF
or the current loop count byte of a loop end event.

440

NINTENDO DRAFT NINTENDO 64 AUDIO MEMORY USAGE

Chapter 22

The following sections discuss the mefnory used by the audio system in a
typical application. Memory requirements, and optimization are discussed
in detail. a

NUG-06-0030-001G of October 21, 1996 441

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Overview of audio RDRAM usage. |

io. Applications with
and frame rate chosen

Audio Buffers

The majority of memory used by

dio, that can be optimized, comes
from the following buffers: g

In addition to 6§mnizmg the buffers listed above, it is important that several
other buffers are no larger than they need to be. While you can’t optimize
term per se, you should check to make sure that their size is no bigger than

e Audio Heap,
E e Sequence Buffer
¢ The Bank Control File Buffer
¢ The Reverb Delay Line Buffer

Because the heap size is dependent on the size of the buffers allocated from
the heap, it is important to optimize the other buffers first.

442

NINTENDO

DRAFT NINTENDOQ 64 AUDIO MEMORY USAGE

NU6-06-0030-001G of

Qctober 21, 1996

tput buffers, more DMA space,
er frame rates require larger

frame rate, the specific sounds, and how
umber of DMA buffers, as can the

In addition to the samplé rate’
they are set up can effect the size
individual sequences used.

443

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Optimizing Buffer Sizes.

444

Audio DMA Buffers

during creation of the output buffers. In se scenario you will
need four buffers for every voice you have al] d. However, in practice
you need only a portion ofhat. The actual mismer of buffers you will need
is very dependent on the s es and sound effects played. To optimize
this vatue, you will need toalloc ficient buffers to keep from crashing,
-t the end of each frame you should
be calling a routine that frees DMA buffers that have become stale. (Called
example programs.) In this routine, before
step through the list of used DMA buffers and count
keep track of the maximum value, you can report
g your choice of debugging method. The
- how to perform this count.

ampDMAcounfw
dmaPtr = dmaState, firstUsed;
while (dmaPtr}

ampDMAcount++;
aPtr = (AMDMABuffer*)dmaPtr-»node.next;

if (ampDMAcount > ampMaxDMABufs)
ampMaxDMABufs = ampDMAcount;
., #endif

e the number of buffers used can vary slightly, even when playing the
music and sound effects, it is always a good idea to have a few more
ers than you ever found yourself needing.

In addition to the number of DMA buffers needed, it is helpful to know what
is the maximum number of DMA's performed in any frame. This number
will allow you to optimize the number of DMA message buffers you will
need. Because the size of a message buffer is substantially less than the size
of a DMA buffer, the resuit of this optimization is not much. However, it is
easily performed since there is a variable that reports the number of DMA’s

NINTENDO

DRAFT NINTENDO 64 AUDIO MEMORY USAGE

NU6-06-0030-001G of October 21, 1996

done each frame. All you need to do is recor
it once a frame, and then report that value at
number of DMA buffers used.

‘ i 2\‘ :
: memory more efficiently.

ed. will usé.
e more DMA’s and for
time. It is up to the

probably ones that will handle enough
io. Below, is a table that compares the
uffer sizes. (All other factors were the

Zes are
samples to process one frame 0¥ 4

same.}

MaxDMABuffers BufLen*MaxBufs

26 39936
30 38400
34 34816
38 29184
43 27520
50 25600

As can easily be seen, the amount of buffer space needed goes up as the size
the buffers go up, even though fewer buffers are needed. However, at the
e time, the number of DMA’s goes down. In this case, probably the value
F 0x500 is optimal, since it causes the least number of DMA'’s per frame in

“the worse case situation, but allows the memory allocated to buffers to be

smaller than it would be with buffers of (x600 size.
Another constant that can be changed is FRAME_LAG. This value defines

how long a DMA buffer will be kept after it has been used. If you continually
use the same sample, that sample will be kept in memory, and will not need

445

NINTENDO 64 PROGRAMMING MANUAL DRAFT

to be DMA’ed again. Higher lag values will lowe;
will increase the number of DMA buffers needed.

Command List Size

determmed by the audio playback rate, and the

i to the vertical retrace you will need to have
pu synch the audio to the audio completion
only need tg have two output buffers. Example code is

tions demonstrating calculating the size of

three audio o
interrupt, you wii
included in the example app
the output buffers.

io Thread Stacksize

The audio tht stacksize can be determined using the stacktocl, and
optimized acco; dmgly

io heap when the synthesizer and sequencer are created. There is, at
sent, no way to efficiently optimize these values. However, because the
size of each buffer is small, it is better to allocate a few too many, than not
enough.

NINTENDO

DRAFT NINTENDO 64 AUDIO MEMORY USAGE

NU8-06-0030-001G of October 21, 1996

The Audio Heap

Once all calls to alHeapAlloc have been completed, v, determine the
amount of the heap that has been used by subtracting eap’s current
value from the heap’s base value, alues are part of the heap structure.

The Sequence Buffer

o hold the largest sequence

buffer needs to be large enough tohold the bank control
1 file.

447

NINTENDO 64 PROGRAMMING

MANUAL

DRAFT

448

NINTENDO

DRAFT USING THE AUDIO TOOLS

Chapter 23
Using The Audio Tools

This chapter instructs the musiciat
audio development tools currently available for the Nintendo 64. It is

divided into:thefollowing sections:

tﬁ{g samples.
layback parameters and the .inst file.
w to create bank files.

MIP) files and MIDI implementation.

* Music development tools.

NU6-06-0030-001G of October 21, 1996

d sound designer in how to use the

445

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Overview of Audio System

450

for the Nintendo64, a short explanatio
though not necessary. To that end, a bs
included here. (The audio system is:discuss
programmers documentation.} In adition
system, several important items the v
below.

ription of the audio system is

Brief description of audio

The audio system for the Nintendo 64 is.composed of a Sound Player (for
playing single samples, such as sound effgéts) and a Sequence Player (for
playing music). When the game starts up, it creates and initializes a sound
player and a player. It then assigns a bank of sound effects to the
sound player, a:bank of instruments and a bank of MIDI
sequences to the seq e playier. To play a sound effect, the game sends a
message to the sound player, telling it what sound effect to set as its target,
and then sends another message to the sound player, telling it to play the
sound. To play a’MIDI'sequence, the game must load the sequence
attach the sequence to the sequence player, and then send a
o the sequence player to start playing the music.

al sequences can be stored as either type 0 MIDI files,orina
di format unique to the Nintendo64. It is very important that
and the musician agree on which file format to use.

There are several components to the sound system. First, there are the

:nles that are stored in ROM. Accompanying the samples are a group of
weters used for playback (Key Mappings, Envelopes, Root Pitch, and so
order to process the sounds, a section of the RAM must be allocated
audio systern.

In software, there are two main sections. One part runs on the CPU and the
other part runs on the RSP. The audio system must share the RSP with the
graphics processing. The RSP is where most of the low-level processing
takes place, and this is where the samples are mixed into an output stream.
This output stream is then fed to a pair of DACs for stereo output.

NINTENDO

DRAFT USING THE AUDIO TOOLS

NU6-06-0030-001G of October 21, 1996

tion: .ctl, .tbl,
cts or music,

There are four types of files used by the game,
seq, and .sbk. Before the game can play back

The .seq files are MIDI files that Havé
sbk files are banks of .seq files. Typic '
bnk and .tbl files for music, and a sepe or sound effects. (Although
it would be possible to 11 sounds into one pair, or alternatively, have

numerous pairs.)

The reason that banks are stored in tw files is that then the raw audio data
doesn’t need to be loaded into RAM; only the information pointing to the

dih ues for the playback parameters. When a sound is to be
ortion of the sample is loaded into a RAM buffer. After
layhrack, it can be discarded, and the buffer reused for
le. The result is that a comparatively smalt

ating audio for an Nintendo 64 game, the musician typically
se steps:

Encode the samples into AIFC files.

Create a .inst file.

Compile the .inst file, with the samples into the bank files.
Create the MIDI sequence files.

Compile the MIDI sequence files into .seq files, and then compile the
seq files into a .sbk file.

Deliver the .tbl .bnk and .sbk files to the programmer.

451

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Common Values

Throughout this document and when referring to .inst fil
are kept constant:

s Middle C (MIDI note 60} is ref
software manufactures refer t

ral things

¢ Pan values range from (to 127,

eing fultleft, 64 center pan, and
127 full right. : ,

* Volumes are from 0 to!
127 being full volume.

with 0 meaning there will be no sound, and

452

NINTENDO DRAFT USING THE AUDIO TOOLS

Dealing With Constraints and Allocating Resources

When you use the Nintendo 64 system, there are sev ices that you
must make. Most of these choices center around how e the fewest
system resources, while still main#air a sufficient level of quality.
Unconstrained by limits on avaitable résourges, the Nintendo 64 system is

etermining Hardware Playback Rate

principle decision to make about software is deciding what playback
rate the-hardware should be set to. Typically, rates from 22050 Hz to

44100 Hz gre chosen. Higher rates require the software to produce more
samples, and consequently take more processing time. Although there are
no hard rules to follow, values of 44100 Hz are ideal, but values of 32000 Hz
and 22050 Hz do not produce a substantial loss of audio quality. Values
elow 22050 Hz quickly begin to degrade the quality of the audio.

Iso of considerable importance is the fact that samples sound better if the
utput rate is as close as possible to their sample rate. If all the samples in
' the game are sampled at 22050 Hz, the output quality will be best with a
playback rate of 22050 Hz. If there is uncertainty in the planning process, it
is better to start with a higher rate, and resample down later, than to start
with a lower rate and resample up later.

NU&-06-0030-001G of October 21, 1996 453

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Limits of Voices and Processing Time

more processing time needed, and
more time needed. As a rough gui
is needed for each voice, when pla
of RSP processmg hme, then fiftee

e, then 30 to 40 voices
back rate reduces

There are no f
organized. H st cases it is best to organize the sound effect

samples into

There are two ways that the
be stored as separate seg

454

NINTENDO DRAFT USING THE AUDIO TOOLS

Creating Samples

Creating samples for the Nintendo 64 is similar to cre amples for any
sample player. However, there are several additional facts to keep in mind.

Tobe recognized by the ADPC!
files, or uncompressed AIFC.

of ADPCM, when they
their sampled rate, the

imple all sa.mplés to match the output sample rate, before performing the
("M conversion

s

the Nintendo 64 makes no such requirement. 1f a sound is looped, it will loop
as long as the sound is playing. When a looped sound’s envelope enters the
lease phase, then the sound will still continue to loop.

All looped samples should last until the next multiple of 16, after the loop
1d, (This is because the ADPCM encoding stores the samples in blocks of
/16.) For this reason, it is prudent to leave at least 16 samples after the loop
end, on any sample that loops. As a nice feature, the adpcm tools provided
have an option that truncates any sample to the shortest viable length, so
there is no benefit to the musician calculating and truncating looped
samples.

In other words, when creating looped samples, find your loop points, and
don’t worry about the release portion of the sample. If you want to truncate

NU6-06-0030-001G of Octoher 21, 1996 455

NINTENDO 64 PROGRAMMING MANUAL DRAFT

the sample, to keep samples on your hard disk st

least 16 samples after the loop end. Then when yo e the sam;)les,

make sure you use the -t option, and the samples will be aud
truncated for you.

456

NINTENDO DRAFT USING THE AUDIO TOOLS

Playback Parameters and .inst Files

i

This section contains information about how to create

file.

In order for the Nintendo 64 audio®
must have information for controlling as pitch and volume.
These parameters are sefiby creating and-editing a .inst file. Although some
discussion of parameter ws, itis highly recommended that you review
an example .inst file, be¢z iamy of the parameters will be much clearer

ack samples correctly, it

The obj are related as follows: The basic unit representing a samnple is a
sound. THat.sound has an associated keymap, which specifies the velocity
range, key range, and tuning of the sample. Also, the sound has an
associated envelope that specifies the ADSR used to control the sample’s

;. volume. Sounds can be grouped into an instrument. Instruments are then
erouped into a bank. Currently, there is only one bank in a Ainst file. Because
program control changes are limited fo values from 1 to 128, MIDI sequences
4n only use the first 128 instruments in abank. Game applications can select
- higher values by calls to the audio APL

Differences Between Sound Piayer and Sequence Player
Use of .inst Files _ :

The sound player and sequence player use the bank files created from the
inst files in different ways. While the sequence player uses the bank to

NU6-06-0030-001G of October 21, 1996 457

NINTENDO 64 PROGRAMMING MANUAL DRAFT

458

identify instruments, and then uses the keymapsi
play for what MIDI notes, the sound player does
player does not use the bank structure, the mstrument stry

ery sound must point to a
ds in the .inst file, so

For these reasons, the example .inst sound
bank, with only one instrument, that lists thesgis
There is no concern for overlapping of keymaps in this case, because the
sound player ignores them

altered from its recorded p1tch the appli
Jinst file.

Envelopes

tonds are a much finer control than most synthesizers and samplers
ians will have to adjust their thinking to accommodate much

ers than are usually used by samplers. Remember, an
of 100,000 will produce an attack of one tenth of a second.)

1 the envelope will never enter the release phase. (In other words, it
forever.) To stop the sound, the game will have to call alSndpStop().

eymaps and Velocity Zones

Note: Keymaps are used only by the sequence player. They are ignored by
the sound player.

In addition to an envelope, every sample has a keymap. This keymap
defines what keys and veiocities the sample will respond to. By using

NINTENDO

DRAFT USING THE AUDIO TOOLS

NU6-06-0030-001G of October 21, 1996

different keymap settings, it is possible to ¢reate ins s that play

different samples for different keys and velo:

In the keymap object, you set the minimum and maximum velocity values,
as well as the minimum and ma wKeys to respond. Note that you

Rate

In additi v and key zone information contained in the
keymap les have a keyBase and a detune value. The
keyBase S tchin semltones, and the detune value is used

e MIDI note v:;l ue of the sample’s original pitch. If the sample rate does
atch the hardware playback rate, the keyBase must be altered to
nsate for the difference in rafes.

ple, if a note of F4 is recorded at 44100, and the playback rate is
en the keybase should be set to 65 (since 65 is equivalent to
MIDI note F4) and the detune is set to zero.

ning for Samples Recorded at Varying Rates

One of the more complicated aspects of the .inst files is the tuning of samples
that are not sampled at the same rate as the hardware output rate.
(remember that the hardware output rate is determined by software, and can
be changed). Although the sample rate will be extracted from the AIFF file,
you must adjust the keyBase parameter and the detune parameter if you
want the sample to play back at the correct pitch.

In order to calculate keyBase and detune from a given sample rate, use the
following formula:

459

NINTENDO 64 PROGRAMMING MANUAL DRAFT

460

N = semitones to add to keybase

N= 12log2(HardwareRate/SampleRate)

A much easier way to deal with the tuning issue is to use Tabte'16-1. In this
case, pick an acceptable rate from th a7t that corresponds to your
hardware rate. Record your sample a. Ehat r: ample your sample at
that rate), and then add the numberigf : re leftmost column to -
the MIDI note value of the samples pi- tice that this method insures a
value of zero for the detune.

Asan example, suppose tha
you wished to critically resan

Hardware Playback Hardware Playback = Hardware Playback
Rate of 44100: Rate of 32000 Rate of 22050

44100 32000 22050
41624.857 30203.978 20812.429
39288.633 28508.759 19644.317
3 semitones 37083.532 26908.685 18541.766
4 semitones 3 35002.193 25398417 17501.097
33037.671 23972913 16518.836
31183.409 22627417 15591.705
29433.219 21357.438 14716.609 -
itones 27781.259 20158.737 13890.626
9 semitones 26222.017 19027.314 13111.008
10 semitones 24750.288 17959.393 12375.144

NINTENDO

DRAFT USING TIHE AUDIO TOOLS

NU6-06-0030-001G of Octaber 21, 1996

Table 23-1 (continued) Tuning to hardw !

Hardware Playback Hardware
Rate of 44100 Rate of 32000

Add to MIDt Value

11 semitones 23361.161 11680.581

12 semitones 22050 11025

a different hardware

=N

a value for pan, and a value for volume. Pan values are in the
 to 127, with 0 equal to full left, 64 equal to center pan, and 127

Instruments

e instrument structure is a list of sounds grouped into an instrument. If
fe instrument is a musical instrument to be used by the sequence player, it
limited to 128 sounds, since that is the maximum number of MIDI notes.
However, if the instrument is for use by the sound player, it may have as
many sounds in it as you like. In addition to the list of sounds, the
instrument has an overall volume and pan. (The sound player ignores these
volume and pan values. Instead the sound player uses the pan and volume
values specified in the sound object.)

461

NINTENDO 64 PROGRAMMING MANUAL DERAFT

462

The instrument structure can be used to create Dt se, you
create an instrument that uses multiple sounds and asso¢ maps.
(There is a good example of this in the General MIDI Bankp with the

developer’s package.)

Banks

At the top level of the .inst file is the bank st |
as many banks as needed. The bank must be’s ed by the application,
since there is currently no wa witch banks via MIDL

Creating Bank Files

NINTENDO DRAFT USING THE AUDIO TOOLS

MIDI Files

Sequences can be stored in the game in one of two way er as MIDI file

compressed sequence format,
file, and then use midicomp.

Midi Controllers:
Controller 7: Channel volume

Controller 10: Channel Pan

troller 64: Sustain

" Cclntroller 91: FXMix
Programn Control changes 0-127
Pitch Bend Change

addition to the above MIDI messages, the MIDI file meta tempo event is
supported.
Loops in the sequences.

The way loops are implemented in the two sequence formats are very
different. If a game uses MIDI Type 0 format, the loops must be created by

NU6-06-0030-001G of October 21, 1996 463

NINTENDO 64 PROGRAMMING MANUAL DRAFT

the programmer using audio library calls from - in thegamé gpde. If the
compressed sequence type is used, loops are inse ‘
is done using midi controllers.

The compressed sequence format s oping within tracks. A track
can have as many as 128 loops, whigh'can eguential or nested. Each loop

have a loop count, that specifies th 5 - of timeés the looped section
should play. Loop counts are limited fro
default, will loop forever.

ressed midi file is not detailed here, it
oressed, midi events are rearranged

Although the format used i

track, and all midi events for channel 2 are put in the second track, and
soon. Thisisp Jarly important when considering loops. If a loop is put
in a track, all gidi

To insert loops.into a*éompre:
extra controllers. These controliers serve as markers for the loop. A loop start -
er 102. A loop end is defined as a controller
oop start and loop end pair must have a unique
etween 0 and 127. This number is what the loop start and loop end
/s value should be set to. A loop count between 0 and 127 is created
th a controller 104, using values 0 to 127. A loop count between 128 and
255 is creaf sing controller 105, with values 0 to 127. (When a loop count
controller 1 encourntered, the value is added to 128 to produce loop

counts from 12810 255.)

: simple example, consider the following sequence:

p § start {controller 102 with value 0)
p count of 6 {(contreller 104 with wvalue 6)
Sop 0 end {controller 103 with value 0)

In this case the section between the loop start and the loop end will be played
six times.

It is important to understand that the loop count is not associated with a start
and end pair. When a loop end is encountered, it uses the most recent loop

464

NINTENDOC DRAFT USING THE AUDIO TOOLS

count, even if there has aiready been a loop op. Consider
the following sequence:
loop 0 start {controller 102 with valu

lcop count of 8{control

locop 0 end (contro
loop 1 start (contro

loop 1 end {contro

In this case, the first loo
(loop 1) will also have
continues until change
sequence, the loop courntis set abi

oop 0} will have op count of 8. The second loop
count of 8, since once set, the loop count

has never been a loop count in the

fault of 0, which is interpretted as loop

forever.
'\J'\(Ell‘l'ling‘:S ps must have a loop start and a loop end with at least
one valid in between,

In the compact seq lepge format it is easy to nest loops. Consider the

wpop 0 starc {(controller 102 with_value 0)
1 start (controller 102 with wvalue 1)
count of 8(controller 104 with value 8)
: end {controller 103 with values 1)
wstarg {controller 102 with value 2)
2 end (controller 103 with value 2}
3 start (contreller 102 with wvalue 3)

count of 4(controller 104 with value 4)

3 end (controller 103 with value 3)
forever {controller 104 with wvalue 0)
0 end {controller 103 with value Q)

In this case loop 1 will loop eight times, before the sequence proceeds to loop
2, which will also loop eight times. After that, loop 3 will loop 4 times, and
then the entire sequence will loop infinitely.

NUE-06-0030-001G of October 21, 1996 465

NINTENDO 64 PROGRAMMING MANUAL DRAFT

466

Putting Things Together Into Makefiles'

In the developer’s kit, there is a directory named viper thatshaws how files
would be arranged to build a bank of music samples. The makefile in this

directory shows examples of settin j.for files, and dependencies in
a logical order. When you start a pro ¢ these files as a template.

NINTENDO

DRAFT USING THE AUDIO TOOLS

General MIDI and the Nintendo 64

Although the Nintendo 64 is not specifically a General evice, it can be
configured as one. As part of the developer’s kit, there is'a General MIDI
Bank that demonstrates this. Allfhe'sgiind files used in this bank are also
provided and may be used by jicensed rs in any Nintendo 64
project.

Currently, MIDI channel 10 is configurgd to default to program 128. In the
General Midi Bank, this.is the Standar t. If you send a program
change on channel 10, cified program will be selected, and channel 1G
will no longer be the § Drum Kit.

NUE-06-0030-001G of October 21, 1996

487

NINTENDO 64 PROGRAMMING MANUAL

468

NINTENDO DRAFT SCHEDULING AUDIO AND GRAPHICS

Chapter 24

core rende fﬁg routines, and writes the results to the video frame or audio
buffer.

ce the video frame buffer must be updated at a regular rate (usually 30
es per second) and the audio buffers must be updated before they are
nptied by the audio DAC to prevent clicks and pops, the application must
. ake schedule the command list generation and processing chores so that
they happen in a “timely manner”. This chapter identifies the relevant
scheduling issues and describes the libultra Scheduler that addresses them.

NU6-08-0030-001G of October 21, 1936 469

NINTENDQ 64 PROGRAMMING MANUAL DRAFT

Scheduling Issues

Command List Generation

Comimand lists are usually generate
processed. Though command list g
time to complete, there are infrequent e
When the host CPU misses its completio
have occurred.

The effects of host overruns;

audio and grap:
Specifically, if the audio thread runs at a higher priority than the graphics
d ‘

ule the audio task even though the graphics

overrun by d
any graphics’
buffers and is more dlfﬁcult to implement since overrun is dependent on
_things that are not known until runtime.

ds on the operation of the audio DMA callback which is implemented
application.

Command List Processing

While audio command list processing time is deterministic (based on the
number of active voices), the graphics command list processing time is

470

NINTENDC

DRAFT SCHEDULING AUDIO AND GRAPHICS

NU6-06-0030-001G of October 21, 1996

variable (based on the complexity of the sc
viewer). Unless great care is taken in the cons
command lists, they may require more than a frame tiry
call graphics (RCP) overrun.

471

NINTENDOQO 64 PROGRAMMING MANUAL DRAFT

Using the Scheduler

threads from the task queue and add : f a real-time (audio)
or non-real-time {graphics) task schedule list

If the previous frame’s graphitstask has overrun, the Scheduler causes the
task to yield. It then runs the next gudio task, resuming the yielded task

the Scheduler sends a message to the client
it requested is complete.

e osCreateScheduler() function spawns a thread to schedule
s task execution. One of the parameters to this call is the thread
should be higher than that of the threads which generate the

‘providing a message queue when they sign in. This is accomplished by
calling the osScAddClient() function.

Note: One of the parameters to this call is the message queue on which you
wish to receive retrace messages. Make sure that the queue is big enough if
you don’t want to lose messages, as the Scheduler does not block when the
queue is full '

472

NINTENDC

DRAFT

SCHEDULING AUDIO AND GRAPHICS

NU6-06-0030-001G of October 21, 1996

fields is listed below.

typedef struct 05ScTask_
struct Q0SScTask_s
332
ul2flags;
veid*framebuffe

O8Task list;

QSMesgQueue*msgy)
OS5Mesg msg;
} 0S8S8cTask;
Tabie 24-1
Field Description
next Not used by client (used by the

framebuiffer

scheduler for list management).

Not used by client (used by the
scheduler for state management).

Address of the frame buffer for this task
(if it is a graphics task).

Structure containing task code and
command list data (desceribed below).

The message queue on which the clientis
to receive the task done message.

The message that the client is to receive
when the task in done.

473

NINTENDO 64 PROGRAMMING MANUAL DRATT

Table 24-20STask structure fields

Field

type

flags

ucode_boot

ucode_boot_siz

ucode_size

ata

ucode_data_size

be initialized to

initialized to O for audio tasks, or
QS_TASK_DP_WAIT for most graphics

t0 boot microcode; should be
initialized to rspbootTextStart.

Pointer to boot microcode size in bytes;
should be initialized to
((u32)rspbootTextEnd -
{u32)rspbootTextStart).

Pointer to task microcode. Should be set
to one of gspFast3DTextStart,
gspFast3D_dramTextStart,
gspLine3DTextStart, or
gspLine3D_dramTextStart for graphics
tasks; otherwise aspMainTextStart for
audio tasks.

Size of microcode; should be initialized
to SP_UCODE_SIZE.

Pointer o task microcode. Should be set
to one of gspFast3DDataStart,
gspFast3D_dramDataStart,
gspLineSDDataStart, or
gepLine3D_dramDataStart for graphics
tasks; otherwise aspMainDataStart for
audio tasks.

Size of microcode data; should be
initialized to SP_UCODE_DATA_SIZE.

474

NINTENDO

DRAFT SCHEDULING AUDIO AND GRAPHICS

NU6-06-0030-001G of October 21, 1996

Table 24-208Task structure fields

Field

dram_stack

stack size in bytes; should
d to 0 for audio tasks or

dram_stack_size

output_buff _Pointer to output buffer. The “_dram”
wersions of the graphics microcode will
foute the SP output to DRAM rather
than to the DP. When this microcode is
used, this should point to a memoery
region to which the 5P will write the DP

command list,

Pointer to store output buffer Iengﬂl. The
SP will write the size of the DP
command list in bytes to this location.

output_buff_size

SP command list pointer. For graphics
tasks, this is the application constructed
display list. For audio tasks, this
command list is created by
alAudioFrame(3F).

data_size Length of 5P command list in bytes.

475

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Table 24-205Task structure fields

Fieid Description

yield_data_ptr Painter to buffer to store’saved state of
task. If the application is going
emption of graphics tasks,

ATA_SIZE bytes. If task

not supported by the

application, this field be initialized to 0.

Audio tasks should always set this field
0 .

yield_data_size Size of yield buffer in bytes. When task
yielding is to be supported by the .
application, this should be initialized to
OS_YIELD_DATA_SIZE for the graphics
task. This should aiways be 0 for audio
tasks.

“reated and initialized a Scheduler task, you can send it to
the Scheduler thread via the Scheduler’s task queue. You can obtain a
inter to this queue by calling 0sScGetTaskQ().

eduler will read this task queue after the next retrace message from
anager. Normally, you will send one audio and one graphics task to
Biheduler each frame.

Note: After you send the task to the Scheduler, you should not modify it
until you receive the “done” message.

476

NINTENDO DRAFT ULTRA 64 DEVELOPMENT TOQOLS

NUG6-06-0030-001G of October 21, 1996

NINTENDO 64 PROGRAMMING MANUAL DRAFT

NINTENDO DRAFT GAMESHOP DEBUGGER

Chapter 25

GameShop Debugger

The development board plugs into the GIO bus of the workstation. Audio
and video output connections are provided. Communication facilities
ween the workstation (referred to as the host in the rest of this chapter)

the development board (called the target) are via the RAM devices that
fulate the cartridge ROM and several registers provided for handshaking
dnd synchronization.

Software Environment

The software debug environment consists of 2 number of software modules
that must be present to support debugging. Some of these will also be
present in the final game system, but many will not. A good understanding

NU6-06-0030-001G of October 21, 1996 479

NINTENDO 64 PROGRAMMING MANUAL DRAFT

480

of the software architecture will enable the gam
unexpected situations that arise during a debug;

development host, a graphically ori

is provided. In the target system,

rmon acts as the agent for gvd. The pperatg @f’thék bugger sees only gvd,

but requests are actually fulfilied at is, may opena window

on the host for the purpose of lookmg at gontents. The host cannot
1 ' ‘

contents from the target so 't}
threads u.nder the OS, but g

ped. Thus, they do not interfere
taking up some memory) unless

Bultra, the Nintendo 64 run-time library. You
files to include rmon in a build. Referencing

ber of support programs that run in conjunction with the

e gvd is designed to work in other environments as well, it
uses a separate’program called dbgif (for debugger interface) to
communicate with the target environment. Only dbgif knows the actual
ans of communication with the target system; gvd is independent of such

e wish to share the GIO interface between the host and target with
¢t programs (for example, diagnostics), a third module is provided on the
t. This is a device driver built into the UNIX kernel, and functions as the
target manager. When any program (such as dbgif) wishes to communicate
with the target, it issues requests to the u64 device driver. In this way, it is
possible for two pairs of programs running on the host and target to
communicate through a single channel without interference.

NINTENDO DRAFT GAMESHOP DEBUGGER

Rmon Theory of Operation

under the operating system, but these threads run ver
3 nd parser, a command dispatcher,

request to the target. This requ of'a fwmber of 32nbi.!; words that
describe the work to be done;

ead called the rmon IO thread responds to the
e driver writes to one of the GIO registers. Only
M~ is allowed at a time, so the host must wait

to tse the memory. At t_‘ms point, the target system starts a high-priority
syste . thread (the rmon spin thread) that keeps the game from running and
y more accesses to virtual ROM. Since the game is not accessing
oy, the host is now free to load the request packet into a
predetermined location at the high end of memeory. When the packet has
been deposited in memory, the host notifies the target that a request has
arrived. This stops the rmon spin thread. The rmon IO thread notifies the
ain rmon thread and waits for the next interrupt.

a: he rmon main thread wakes up in response to the message from the rmon
O thread. It fetches the incoming packet and dispatches a service routine
based on what service was requested. In our example, rmonReadMen: will
be called. This function examirnes the arguments, reads the memory, and
deposits the contents in another section of virtual ROM as part of a reply
packet. It then sends an interrupt to the host, alerting it to the arrival of the
reply packet in memory. The host responds to this interrupt by copying the
reply packet out of virtual ROM and sending another interrupt to the target.

NU6-06-0030-001G of October 21, 1996 481

NINTENDO 64 PROGRAMMING MANUAL DRAFT

482

This provides feedback to the target that the hos
buffer and the target may use it again. '

Most transactions between the host
are a few exceptions. It is likely th

a breakpomt has been encountere& or ex; host and target “sign
n” when starting, and each has a rep} sto the other when such
a s1gn-on is received. The debugger can

Target-generated interrup o
and routed to processes (for example, dbgif) that have registered that they
would like to recejve a given set of interrupts. (Interrupts are associated with

application process.

Programming Modei

e may use any programming style desired by its author(s), there
are certain restrictions imposed by the debugger. Those developers who
want to use theidebugger must conform to the rules of the programming
model to obtain the benefits of source-level debugging. This section
iscusses the restrictions that apply.

ost obvious requirement is that you must use the OS, since the
debiigger depends on it. It will not work under an OS5 of your own design,
tise it is designed for the Nintendo 64 OS.

Use of the debugger also requires that you restrict thread priorities to a

specific range. User threads (those that are part of the game) are assigned the
range 1 through 127, with 127 being the highest-priority thread. The OS5 does
not prevent you from assigning thread priorities higher than 127, but you
will be unable to debug them. In fact, use of priorities in this range may
prevent the debugger from working at ail. While the OS5 does not impose any
restrictions on the idlethread (other than the requirement that there be one),

NINTENDO DRAFT GAMESHOP DEBUGGER

the debugger requires that the idlethread bg assigned priotity level zero. It

is not sufﬁment that it be the lowest priority thig --the s

tlsewhere, but some parts of
ach application has a boot
checking, of course). The
boot funchon 1.mt1ahzes the operating syster then creates and starts the
icedure may also do other things, such as hardware

threads within the system, including the

re flexibility here, although the ability to debug
tly better if the recommended model is followed.
el is for the main thread to create all other threads in
stem, start only the rmon thread(s), and then lower its own priority
come the idle thread. Again, you don’t have to do this, but debugging
rk much better if you do.

y can't debug any code that comes before starting the debugger
{rmon) thrédd. It is also the case that you can't really debug code that has
already executed by the time the debugger starts up. This is not so much a
function of time as it is of the traditional approach used in debugging
embedded systems like the Nintendo 64. That is, if you want to watch the
tem start from inside the debugger, then you can’t really start running the
lication. Since the debugger is just another thread under the OS, it does
ot keep your application from running off and executing the game
application. Some debuggers may “hold off” the application until the
debugger is ready; this one doesn’t.

Of course, this does not mean that you can’t debug the startup of your
application. It just means you must bring up your system in a stopped state
and start it running from within the debugger. To do this, your code should
start only two threads (although it can create as many as it wants, since

NUE-06-0030-001G of October 21, 1996 483

NINTENDO 64 PROGRAMMING MANUAL DRAFT

thread Comment out or conditionally complle in the osSt
other threads so that they do not run

What happens if you don't follow
threads in your system? Unfortunately;:
harder to start, since it needs a stopped th .
and the debugger threads will be running, bt likely that all your
application threads will be biogked on some event. Since the OS now allows
waiting threads to be stopped, ¥ ay bring up the applicationin a
running state, use the multithrea to stop the thread to which you will
attach, and then use Switch Thread to connect.

I -fihe debugger It just waits for incoming requests
s not inierfere with the game operation unless requests arrive. An
e, rmon.h, is provided as part of the distribution. It should be
the file that creates and starts the rmon thread.

ve built your application, you are ready to debug it.
1. Start dbgit'm a window of its own.

Download your application with gload.

You may now start gvd itself.

the Nintendo 64, it is required that gvd be started with the name of
our executable (the boot executable, if there is more than one) on the
ommand line. For example, if your executable is named sample, you
would enter:

gvd sample &

The debugger starts. It makes no attempt to contact the target system
yet.

484

NINTENDO DRAFT GAMESHOP DEBUGGER

You should have a source window and'g
may be minimized if desired). Now you stablishidlink to the
target.

their thread control
7. you assigned it an ID for

Specify the ID you
attaching.

attached, the host and target will communicate
e system state back and forth. This takes a few

is where you may examine or modify the contents of all R4300
ers {(except for some system control registers). Note that these
reglstefs‘apply to the thread to which you are currently attached.
Switching threads with this view open refreshes it with the register
contents for the new thread. You can only examine and modify the
registers of a thread that is stopped.

memory view

As you would expect, this is where you examine and modify memory
contents. You may specify the window origin by address or symbol.
This window has two modes. In single-word mode, it displays and
modifies exactly one memory word without touching any other
locations. This is the mode you would use for dealing with
memory-mapped registers. In block mode, it displays a block of
memory from the specified starting address. The size of the block is
mostly determined by the size of the window on your screen.

NU6-06-0030-001G of October 21, 1396 485

NINTENDC 64 PROGRAMMING MANUAL DRAFT

Stretching the window gives you more ment
gives you less. You may specify the base in w]
be displayed.

» disassembly view

This view shows you memory as disassembled code based on
the current PC value, or else dis ed'from some address you
specify. The source line corresp o the disassembled memory is

also displayed. There are a number o jon options for this
window that let you cugtomize it to th

useful.

* trap manager

the selected thread, plus two other
e middle portion of the view) displays the
source at the current P ault), and tracks the program counter to keep
i n whenever possible. You may set breakpoints here by clicking in
to the left of the line at which you wish to set the breakpoint.

The bottoti.of the source view is a small command line window where you
may enter commands and see the results. The mouse cursor must be in this
Siiit. This window is usually used to examine data objects like
structures. For example, if you wish to look at a message queue called
audioMQ, you can enter print audioMQ, and the contents of the structure
tincluding all its members) will be printed. Since the compiler and debugger
designed to work together, the debugger has quite good type
tion for displaying complex structures like this.

'ou plan to use this window much, it is probably a good idea to move the
ebugger higher on the screen and stretch the bottom down to enlarge the
command portion of the view. The default size is a bit small. This window
accepts most dbx commands, for those of you familiar with this popular
UNIX debugger.

The command window is also useful for setting breakpoints in functions
that are not on screen because they are in a different source file. While you

486

NINTENDO

DRAFT GAMESHOP DEBUGGER

can always change source files and set a breal mare converuent
(providing you wish to stop at the start of a furieti e the “stop in”
command. If you know that you are trying to isolate a g #m in a function

called senlesplayLlst then it is probably best to type stop in
fi : dow, then click Continue. This
ers the specified function.

Note: Encountering a breakpoin
range (1 through 127). In general, copi
rmon is running, and GRLJ interrupts

A ntains a few other useful items. First, this
is how vou exit the debugger Yi ay also change to a different executable
here, but you should then do ano

multithread view in this menu, which is useful to have opened if you use

NU6-06-0030-001G of October 21, 1996

487

DRAFT

NINTENDO 64 PROGRAMMING MANUAL

488

NINTENDO

DRAFT ULTRA 64 PERFORMANCE TUNING

NU6-06-0030

PART

Ultra 64 Performance Tuning

NINTENDO 64 PROGRAMMING MANUAL DRAFT

NINTENDO DRAFT PERFORMANCE TUNING GUIDE

Chapter 26

Performance Tuning Guide

The following sections will

» Data Reduction

* Geometry Tuning

NU6-06-0030-001G of Ogtober 21, 1996 491

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Data Reduction

Game World Organization

that enable rapid culling of large quan
grid of fixed-sized regions: i

492

NINTENDO

DRAFT PERFORMANCE TUNING GUIDE

You could also build a hierarchy of different-sized ive you a
quadtree: '

Figure 26-2 Quadtrees

You can extend this's
octrees. Kee
rendering bu

detection.

to 3D and get either a fixed size cube organization or
are trying to eliminate work; notjust graphics
xttire loads and animation processing such as collision

d need not be ither, you could also use other boundaries if it
ur data. One example of this is a “portal connectivity” organization
ide 6fa building. In a building with rooms and hallways, the possible list
things that you can see can be represented by a portal connectivity
description;which lists which rooms of the building are possibly visible.

NU6-06-0030-001G o

ber 21, 1996

493

NINTENDO 64 PROGRAMMING MANUAL DRAFT

You can further reject more data by testing a list of
rectangles against visibility to determine whether
particular room or hallway.

Figure 26-3 Portals Connectivity Visibility

494

NINTENDO

DRAFT PERFORMANCE TUNING GUIDE

NU6-06-00

ber 21, 1996

Hierarchical Culling

Throwing away geometry to eliminate processi
the top level. A cornmon organization at the objed
volume test to eliminate objects (see ¢SPCullDisplayList()).

Figure 26-4 Bounding Sphere Test

495

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Geometry Tuning (gspFast3D - Precise Microcode)

The standard gspFast3D microcode contains very
calculations for antialiasing and precise s,t calculatioris:
textures. This precision is required for terrain or backgroun
are large.

This microcode is full featured, inclul | ich @Qéping, textire
coordinate generation (reflection map . .

Vertex Grouping

cade. It swaps them in from the dram using a least recently used
m., Since lighting occurs during vertex load and clipping occurs
lygon drawing, there are natural blocks of work following each

s will cause this microcode loading to “thrash”.

496

NINTENDO DRAFT PERFORMANCE TUNING GUIDE

Note: We have not seen performance degradati is swap in any
games. Game developers did not realize that thj i
told them. Large block DMA transfers (such asiii
efficient.

Kinds of Polygons
The cost of geometric processing
decreasing performance.
* Flat Shade (using gDPSetPrimCo
e Gouraud Shade

» Gouraud Shade +

Textures

When possible, use textures,
designed to draw high-guiality textured primitives. Achieving complexity

additional geometry will always be slower than using textures.

Leve! of Detail

When objects gét far away or have rapid animation, you can render it with
less detail without noticeable loss of detail.

b

NU6-06-0030-001G © é’etqber 21, 1996 : 497

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Geometry Tuning (Turbo Microcode)

498

Ef

The gspTurbo3D microcode is a feature-limited, precision-red
optimized version of the 3D polygon microcode. Tt uses iy

different display hist organization that is more efﬁcient,“b

Because of the reduced precision, the tu
drawing backgrounds or objects with Rgaifiise tes
“characters”, objects that generally renjain in
frustum.

The following features are not supported with o microcode:
¢ clipping
* dynamic lighting

» perspective-corrected textures

Current performahte measuremeiits of this microcode are >5K polygons per
0 on, consult the man page for gspTurbo3D

NINTENDO

DRAFT PERFORMANCE TUNING GUIDE

Raster Tuning (Fillrate)

NUG-06-0030-001G

Disabie Atomic Primitives

Atomic primitive mode (gPipelineMode(G_PM_1PRIMITE is intended
to avoid span buffer coherency proble; ich can be caused by sucessive
ad-modify-write” modes

de inserts a delay into
e are no overlaps.

(z-buffered or blended modes). The
the pipeline between each primiti

were locking for it. In the W
add up to about 1-1.5Mpix

To disable the atomic primitive mode,
gPipelineMode(G_PM_NPRIMITIVE}.

roughly front-to-back order, this test will often prevent the write to
e z-buffer value.

major penalty in fillrate. Antialiasing also causes some
erformance loss in fillrate. We have included a simple performance tool
Ylockmonkey) in the release to give you a feel for geometry and fillrate

are many visibility sorting algorithms available and even more

tids of these algorithms. There are also properties of particular games
that impart valuable information about depth order. If a game can use these
techniques and avoid z-buffering, performance will improve.

lober 21, 1996 3 499

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Convex Objects

If a group of objects are all convex, a centroid or bo rt and

back-face rejection will give the proper rendering or

Meshed Objects

Many meshed objects have a small nuy
are correct sorts at arbitrary orientatio] gli'they are concave.
Meshed object are topologically 2D, for ex

field, building corridors, etc. With one batch
polygon descriptor display lis
example, the polygons in a terr
mesh, S+T+, 5-T+, 5+T-, 5-T-.
view point select the order.

esh might have four orders across the
ides of the mesh then closest to the

Ceil Based Scenes

glof mesh, where the cell draw order can be

f data are known never to be behind another (buildings on a
niture in a room). then the layers can be drawn in this order,
t within each layer.

Bucket Sort

Attractive since data need only be accessed once. A linked list of buckets can
veid-Jocal overflow without excessive memory usage. the bucket can be a
t, for example, of calls to clumps.

Clumps of polygons in which NO sort order is correct (three long triangles
arranged in a triangle in which at each corner a different triangle is in front)
have no visibility solution without subdivision.

500

NINTENDO

DRAFT PERFORMANCE TUNING GUIDE

NUG-06-0030-001G

Game-Specific Visibility

Many game situations provide implied visibili
even within objects. Consider a jet fighter flight s
is always moving “forward” (in general) and targe .
number of directions. This could allow you to model the-fargets carefully
and achieve correct surface visibility, ination, even if they are not

strictly convex.

No Antialiasing

help increase fi . To minimize the aliasing
izontal resolution of the framebuffer.
that 512x240 “no AAno ZB" is faster

Turning off antialiasing ca
effects, you can increase th

Aliasing refers to a blender mode (see the G_RM_RA* macros in
gbih) in which the color and the pixel coverage are only written instead of

ternal edges of an object will not be antialiased. This
mode works with and without z-buffering.

yettes can also have artifacts in this mode when displayed on top of a

o been rendered in this mode. This is because the edges in the

ound will be partial, rather than fully covered. In this case, the pixel
have multiple partial fragments, and the antialiasing on the silouette
will look wrong. A possible workaround for this problem is to render the
background in non-antialiased mode, which will write full coverage to the
iramebuffer. Then render the foreground characters using this reduced
antialiasing mode.

Gitober 21, 1996 501

NINTENDOQ 64 PROGRAMMING MANUAL DRAFT

CPU Tuning

utilizing all of it’s resources. One of the
parallelism that can be achieved betwe
There are many ways you can exploit th

* compute game and animation param
frame (n) is rendered with the RCP.

is computing. If your gdme includ
you can pipeline them so the CPU'
the same time.

ggﬁseveral RCP tasks per frame,
the RCP are always busy at

A detaj alysis of sorting algorithms is beyond the scope of this

e reader is referred to texts by Knuth! or Sedgewick?, among
I to review major properties of sorting algorithm analysis
relate to real-time system performance.

and see how

Properties of sort lgorithms which we want to compare include:

* best case sorting time

orst case sorting time

502

NINTENDO

DRAFT PERFORMANCE TUNING GUIDE

NUS6-06-0030-001G o

ber 21, 1996

* additional memory requirements
¢ size of the code to implement

* ability to exploit coherence.

‘ewant to

The time to sort is probably the most unportant obvious

their worst-case time. This makes
necessary for a real-time system.

initial order of the data. B
choose a better sort. For ex !
determine visibility drawi

interchanges are local). By exploiting this frame to frame coherence, we can
choose a sort withilinear performance for the “already nearly sorted” case,

system. They must be minimal. and most of all, predictable. Cons1der the
sorting problem when designing your data structures.

503

NINTENDO 64 PROGRAMMING MANUAL DRAFT

504

NINTENDO DRAFT INDEX

NU6-06-0030-001G of Octaker 21, 1996

DRAFT

NINTENDO 64 PROGRAMMING MANUAL

NINTENDO DRAFT

Symbols AL_FX_SMALLROOM 392
.aiff file 374 alAudioFrame 65, 372, 382, 38
.bnk file 426 ALBank 427

.ctl fite 373, 378, 402, 447, 451
Jnst file 76, 397, 449, 451, 457, 458, 459, 462
sbk file 423, 451, 454

.seq file 451

.sym file 402

.thl file 402, 426, 451

fusr/sbin 31

fusr/src/PR 30

fusc/src/PR/assets 30
fust/src/PR/conv 31
fust/src/PR/libultra 31
fust/stc/PR/relnotes 30
__clearAudioDMA 444
_gsDPLoadTexmreBlock_4b 262

Numerics

0x0 122, 139
0x80000400 120

1/w 184, 186

3D transformations 63
4Dgifts 70

64-bit, R4300 46
9-bit RDRAM 318

A

AA_EN 337

a-buffer 340

accuracy, z 325

active page register 58
ADD render mode 344, 345
address 47

ADPCM 369, 373, 385, 401, 402, 405, 412, 413, 414, 426, 4

455 :
ADPCM decoder 437
ADPCM decompressor 436
ADPCM predictor 436
ADPCM tools 455
ADSR 406, 430, 457, 458
Al 48, 86, 95, 102, 111, 114
AIFC 76, 412, 413, 433, 451, 455
ATFC spec 435
AIFF 76, 374, 405, 4
ATFF file 459
AIFF-C 405
AL_FX CUSTOM 388
AL_FX_ECHO 391

426, 435, 451, 455, 462

NU6-06-0030-001G of Ottober 21, 1996

ALBankFile 373, 377, 426
aiBnkfNew 373, 378, 426
ALCSeg 376
alCSeqGetLoc 377
alCSegNew 376, 37

alCSegTicksToSec 377
alCSPDelete 379
2ICSPGetChIFXMix 380

etChlPan 380
alCSPSetChlPriority 380
alCSPSetChlProgram 380
alCSPSetChlvol 380
alCSPSetSequence 379
alCSPSetTempe 379
alCSP8etVol 379
alCSPStop 379
ALDMANew 382
ALDMAproc 382, 383, 384
ALEnvelope 430
alHeapAllec 447

alHeaplnit 372

Alias 70, 71, 72

aljased 271

aliasing 271, 301

alignment 48

alignment, 16-bit 37, 58
alignment, 16-byte 48
alignment, 64 byte 36
alignment, 64-bit 37, 58, 139, 320

507

NINTENDO 64 PROGRAMMING MANUAL DRAFT

alignment, 64-byte 210 alSndpDeallocate 374, 375
alignment, color index palette 244 alSndpDelete 374, 375
alignment, image 320 alSndpGetSound 375
alignment, memory 58 alSndpGetStates 375
alignment, screen 272 alSndpNew 373, 375
allnit 372, 382, 383, 386 alSndpPlay 374, 375
ALlInstrument 428 alSndpPlayAt 375
ALKeyMap 431 atSndpSetFXMix 375
alpha 287, 332, 336 alSndpSetPan 373
alpha combiner 291 alSndpSetPitch 375 ;
alpha compare 205, 278, 298, 356 alSndpSetPrionty 37
alpha dither 312, 336 aiSndpSetSound 373,

alpha times coverage 337 aiSndpSetVol 375
ALPHA_CVG_SEL 337, 338
ALSeq 376

alSeqGetLoc 377

alSeqNew 376, 377, 378
alSeqNewMarker 376, 377) i
alSeqNextEvent 376, 377 aiSynDelete 393
ALSeqpConfig 397 aiSynFreeFx 393
alSeqpDeiete 379 alsynFreeVoice 393
alSeqpGetChIFXMix 380 2
alSeqpGetChlPan 379
alSeqpGetChlPriority 380
alSeqpGetChlProgram 380
alSeqpGetChlVoi 380
alSeqpGetSequence 379
alSeqpGetState 379
alSeqpGetTempo 379
alSeqpGetVol 379
alSeqploop 380
alSegpNew 378, 379
alSeqpPlay 378, 379
alSeqpSendMidi 380
alSeqpSetBank 378, 379
alSeqpSetChIFXMix 380
alSeqpSetChlPan 380
alSeqpSetChlPmority 380
alSegpSetChlProgram 380
alSeqpSetChlVol 380
alSegpSetSeq 378
alSeqpSetSequence 379
alSeqpSetTempo 379
alSeqpSetVol 379
alSeqpStop 378, 379
alSeqSecToTicks 376, 377,
alSeqSetLoc 377
alSeqTicksToSec 376, 377
alSndpAllocate 373, 375

aiSynSetPriority 385, 393

aiSynSetVol 393

alSynStartVoice 385, 393

aiSynStartVoiceParams 393

alSynStopVoice 385, 393

- ALVoice 384

AlVoiceHandler 395

ALWaveTable 373, 374

ALWavetable 432

ambient 156

animation, sprite 273, 293

antialiasing 46, 63, 74, 119, 175, 203, 204, 207, 301, 302, 327,
340, 342, 343, 356, 496, 498, 501

application thread 33

artifacts, aliasing 271

artifacts, antialiasing 328

artifacts, filtering 274

aspMainDataStart 474

aspMainTextStart 474

attack 374

508

NINTENDO

attack-decay-sustain-release 406, 430
audio 33, 372

audio buffers 442

audio command list 383

audio DAC 41

audio development tools 449

audio DMA callback 383, 470
audio heap 372, 382, 386, 442, 447
audio interface 43, 46, 86, 102
audio library 64, 65, 369

audio playback 52

audio playback rate 382

audio processing 45

audio system 449

audio tools 401

audio waveform 373

Autodesk 3DStudio 71

B
back-face rejection 63, 154, 500
back-facing polygon 329
background image 297

bank 447, 457, 462

bank control file 447

bank file 377, 426, 449, 451, 454
bank object 403

bank, MIDI 30

bilinear filter 193

biilboard 205, 262, 286, 332, 333
binary separating planes (BSP) 70
bitmap 354

BL 45, 176, 203, 204, 205

blend 337

blend color 203, 206

blender 45, 203, 301, 303, 310, 317, 327, 331, 345
blender equation 310

blender mode bits, cycle-depende
blender mode bits, cycle-indepen
blender mode, creation 345
blending 63

blockmonkey 499

blue screen photography 201
Boot 87

boot location 120
bounding volume 495
bounding volume sort
box filter 193
breakpoint 93, 486
bss 123

NU6-06-0030-001G o ber 21, 1996

buffers, audio command list 442
buffers, audio output 442
buffers, audio sampie DMA 442;444
buffers, audio sequence 442
buffers, sequence 447

buoffers, sequencer event 442, 446
buffers, synthesizer update 442, 446
bus bandwidth 48
byte ordering 42
bzero 119, 123

C programming langnag 7, 77, 137, 457

ferency:5
cache flushing 54
cache invalidate 48
ache line 55, {18

CART 95

CaseVision 30

CAUSE register 93

CC 45, 176, 195, 200

cell based scenes 500
centroid sort 500

chroma key 201

CI 190, 215, 221, 290
clamp, coverage 333
CLD_SURF 343, 344, 345
clip ratio 152

clipping 63, 152, 496, 498
clock speed 48

cloud 287, 336

cloud surface 342

cloud surface mode 344
clouds 316
CLR_ON_CVG 330, 337, 338
codebook 436

codecs 65

coherency, span buffer 182

509

NINTENDQ 64 PROGRAMMING MANUAL DRAFT

color combiner 45, 193, 195, 200, 278, 288, 291, 295 cyclic objects 500

color combiner input 196

color combiner registers 197 : D

color combiner sources 195 DAC 370, 372, 450, 469 :
color index 188, 290 : data cache, R4300 46, 47, 54, 118, 139°
color index texture 240 dbgif 31, 67, 480, 481, 482, 484

color space conversion 194 dbx 486

command buffer, RDP 109 debugger 67, 90, 93, 124

command list size, audio 446 debugging 37 .

command list, audio 469 DEC_LINE 339, 3
command list, graphics 469 decal 295, 337, 34

comp.graphics 70 decal line mode 334, 3
comp.sys.sgi 70 decal surface 332, 333, 334
compare, Z 320 decay 374

compiler, C 77 degeneraic i

compiler_dev 30 deita Z 304,
compressed audio 373
compression 281
Computer Midi Interface 421 detune value 459
computer monitor 74 dev 30

concave 500 elopment board 479
controller input 66

controiler interface 86
controllers, sequence player 381
conversion tools 31

convex 501

convex objects 500

coordinate system 146
coprocessor 0, R4300 56
Coprocessor Unusable 93

copy mode 180, 277, 298

copy pipeline mode 276
COUNTER 95

coverage 184, 304, 306, 314, 333, 335, 337, 340, 342
coverage overflow 337
coverage unit 306
coverage value 331, 332

display list, andio 65

display list, optimal 142

display list, RDP 45

dither filter 501

dither, alpha 312

dither, color 210

.dither, noise 312

dither, screen coordinate based 312
dithering, ¢olor 211

coverage, zap 338 divot 334

CPU 41, 45, 48, 52, 54, 84, §9, DM 107

CPU Fault 37 DMA 37, 44, 46, 48, 54, 55, 56, 58, 101, 112, 114, 139, 383,
CPU_BREAK 95 445, 470

cracks 306 DMA, audio 445

culling 492 DMedia 5.5 421

culling, hierarchical 493
culling, polygon 154
culling, volume 154
CVG_DST 337, 338
CVG_DST_SAVE 317
CVG_X_ALPHA 337, 338

dmedia_eoe (version 5.5) 30
DMEM 44, 115, 135

DP 86, 109, 114

DRAM 60, 63, 239, 475
DRAM, 9-bit 119, 210
dynamic memory allocation 58

510

NINTENDO DRAFT

E

effects 386

envelope 373, 377, 402, 406, 457, 458, 461
environment color 197
environment mapping 168
error, Z 325

event 84

exampie application 384
exception 37, 85, 93
exception handler 85
executable 484
explosions 316

=g
=1

~1

=]

_AC_DITHER 206, 316, 336
_AC_NONE 206
_AC_THRESHOLD 206, 298, 315
_AD_DISABLE '412
AD
AD
AD
BL

F

far plane 325

fast clears 45

FAULT 34, 95

fault handler 34, 93

file system 87

fill color 211

fill mode 180
FILL_COLOR 352

filter 271

filter, average 276

filter, bilinear 193, 272, 274
filter, bilinear restrictions 193
fiiter, box 193

filter, point sampling 193

Q éoooooooopooppoomoo

filter, triangular 275 _CC INTERFERENCE 200

filter, video 314 _CC_MODULATEI 199

fixed-point 144, 147, 185, 271 _CC_MODULATEI_PRIM 199, 288
flip, texture 279 _CC_MODULATEI2 200

floating-point, R4300 46 _CC_MODULATEIA 199

ft2¢ 31, 72 _CC_MODULATEIA_PRIM 199

fog 169, 179, 203, 205, 206, 313 _CC_MODULATEIDECALA 199

fog alpha 318 _CC_MODULATEIDECALA_PRIM 199
fog color 205 _CC_MODULATERGB 199

_CC_MODULATERGB_PRIM 169
_CC_MODULATERGBA 199 .
CC_MODULATERGBA_PRIM 169
_CC_MODULATERGBDECALA 199
_CC_MODULATERGBDECALA_PRIM 199
_CC_PASS2 200

_CC_PRIMITIVE 198
_CC_REFLECTRGE 199
_CC_REFLECTRGBDECALA 199
_CC_SHADE 193
_CC_SHADEDECALA 198
_CC_TRILERP 200

FORCE_BL 317, 337, 338
format, image 318

fractal 234

frame rate, audio 443
FRAME_LAG 445
framebuffer 41, 43,
framebuffer alignment®
framebuffer, color 58
framebuffer, depth 5
frequency, texture 271
FRUSTRATIO_1 152

O(’)OO

46, 48, 49, 119, 203;:505, 210, 298

OOOOO

OOO

NU6B-06-0030-001G ; pber 21, 1996 511

NINTENDQO 64 PROGRAMMING MANUAL DRAFT

 MTX_PROJECTION 145, 157 game controller 29, 43, 46, 112

MTX_PUSH 145 game timing 55
OFF 150 GameShop 30, 67
ON 150 gamma correction 74

PM_1PRIMITIVE 183, 499
PM_NPRIMITIVE 183, 499
_RM_AA_TEX_EDGE 287, 289, 291
_RM_AA_ZB_OPA_SURF 204
_RM_AA_7ZB_OPA_SURF2 204
RM_CLD_SURF 317 «3
_FOG_PRIM_A 204

GBI 61, 62, 188, 2186, 218, 248, 351
GBI assembly 62

ghi.h 137, 139, 337, 501
gdis 37

gDPFullSync 36
gDPSetColorfmage 35
gDPSetMasklmage 35
gDPSetPrimColor 497
gDPSetTexturelmage 35, 216
gDPSetTextureLUT 244, 246
gdSPDefLights0 157

G_CD_BAYER 312 G_RM_TEX_EDGE 289, 316
G_CD_DISABLE 312 G_RM_VISCVG 346
G_CD_MAGICSQ 312 G_RM_VISCVG2 346
G_CD_NOISE 312 G_RM_ZB_CLD_SURF 317
G_CK_KEY 202 G_RM_ZB_OPA_SURF 299
G_CULL_BACK 154 G_RM_ZB_OPA_SURTF? 206
G_CULL_BOTH 154 G_TD_CLAMP 192
G_CULL_FRONT 154 G_TD_DETAIL 192
G_CV_KO 194 G_TD_SHARPEN 1
G_CV_K1i 194 G_TEXTURE_GEN
G_CV_K2 194 G_TE

G_CV_K3 194 G_TF_

G_CV_K4 194 G_TF_

G_CV_K5 194 G_TE.

G_CYC_ICYCLE 181, 206, 310, 314 G_TF_

G_CYC_2CYCLE 181, 207, 263, 290, 310, 314, 344 G_TF_

G_CYC_COPY 181, 205 276, 277, 315, 316, 344 G_TF_

G_CYC_FILL i81, 205 3i5, 344 G_TL_ :
G_FOG 169, 207 G_TL_ TILE 192, 290
G_IM_FMT_CI 189 G_TP_NONE 191, 269
G_IM_FMT_I 189, 288 G TP_PERSP 191
G_IM_FMT_IA 189 K

G_IM_FMT_RGBA 189 © G

G_IM_FMT_YUYV 189 G

G_IM_SIZ_16b 189 G

G_IM_SIZ_32b 189 G

G_IM_SIZ 4b 189 G

G_IM_SIZ_8b 189 G_

G_LIGHTING 168 G_

G_MAXFBZ 211 G_TX_NOMIRROR 189, 279
G_MTX_LOAD 145 G_TX_RENDERTILE 225, 248, 273, 275, 276, 292
G_MTX_MODELVIEW 145, 157 G_TX_WRAP 189, 283
G_MTX_MUL 145 G_Z5_PRIM 299
G_MTX_NOPUSH 145 gain 377

G

G_

G_

G_

G_P

G_P

G

G

G

G_

G_RM

G_

:z:f
2
"rj
Q
C)
‘!
sy
>
=f
LTJ
}

NINTENDC

DRAFT

gEndDisplayList 353

General MIDI 467

generation of the MIP maps 232
geometric level of detail 497
geometry 61

ginv 28

GlIO 48, 49, 479, 480, 481
GIO board 27

gl_dev 30

gload 31, 34, 37, 78, 87
Gouraud 496
GPACK_RGBA5531 211
GPACK_ZDZ 211

graphics 33

graphics binary interface 61, 62, 72, 137, 216
graphics overrun 471

graphics pipeline 45, 1335
gsDPFillRectangle 172
gsDPFullSync 182
gsDPLoadMultiBlock 292
gsDPLoadMultiTile 291, 292
gsDPLoadMultiTile_4b 291
gsDPLoadSync 192, 216, 248

gsDPLoadTextureBlock 163, 166, 216, 225, 262

gsDPLoadTextureTile 189, 248, 282
g2sDPLoadTextureTile_4b 189, 288
gsDPLoadTile 216, 225, 248
g2sDPLoadTLUT 216, 225
gsDPPipelineMode 183
gsDPPipeSync 181, 311
gsDPSetAlphaCompare 206, 316, 337
gsDPSetAlphaDither 312
gsDPSetBlendColor 311, 315
gsDPSetColorDither 312
gsDPSetCombineKey 202
gsDPSetCombineMode 262, 288, 291‘
gsDPSetCycleType 169, 181, 206, 263
2sDPSetCyleType 290
gsDPSetDepthSource 299, 309
gsDPSetEnvColor 289
gsDPSetFogColor 169, 205, 207
gsDPSetKeyGB 202
gsDPSetKeyR 202
gsDPSetPrimColor 207 288, 311
gsDPSetPrimDepth 299; 311
gsDPSetRenderMode 16
346 :
gsDPSetScissor 185, 31
gsDPSetTextureConvert 217

NU6-06-0030-001G & ber 21, 1996

, 276, 277, 310

gsDPSetTextureDetail 192, 217
gsDPSetTextureFilter 217, 272
gsDPSetTexturelmage 248
gsDPSetTextureLOD 192, 217,
gsDPSetTextureLUT 216
gsDPSetTexturePersp 191, 216, 269, 270
gsDPSetTile 216, 225, 248, 263
gsDPSetTileSize 216 248, 263
73, 275, 276, 288

b4

gSPCullDisplayList
gSPDisplayList 35
g5SPEndDisplayList 36

gspFastSDDataStart
gspFast3DTextStart 4
sPipelineMode 499

8

gspTurbo3D 63, 498
gSPVertex 35
gSPViewport 35, 152
gsSetAlphaDither 312
gsSetConvert 194
gsSetFillCoior 211
gsSetPrimColor 198
gsSetTextureConvert 194
gsSetTextureFilter 194
gsSetTexwureLUT 192
gsSPiTriangle 171
gsSPBranchList 142
gsSPClearGeometryMode 134
gsSPClipRatio 153
gsSPCullDisplayList 154
gsSPDisplayList 141

3, 206, 291, 314, 337, 344, 345, gsSPEndDisplayList 142, 154

gsSPFogPasition 169, 206, 207
gsSPLine3D 171
gsSPMairix 145

513

NINTENDO 64 PROGRAMMING MANUAL

DRAFT

gsSPPerspNormalize 146, 308
gsSPPopMatrix 145
gs5PSetGeometryMode 154, 168, 169, 206, 207
gsSPSetLightsO 159

gsSPTexture 150, 216, 228
gsSPTextureRectangle 172, 216
gsSPTextureRectangleFlip 172, 173
gsSPVertex 149, 160

gsSPViewport 308

guLookAt 144, 152, 163
guLookAtHilite 162

guLookAtReflect 166

guOrtho 144

guParseGbiDL 35

guParseRdpDL 35

guPerspective 144, 146, 152

gvd 31, 34, 67, 87, 124, 480, 484, 486

H

heap Lbrary 58
hidden bits 318, 324
high resolution 46
hinv 28

host overrun 470
HW?2 interrupt 96

I

1188, 215, 221, 240, 247, 288
/0 56, 86, 101, 103

1/0, asynchronous 104

1/0, synchronous 104

1A 188, 215, 221, 240, 247, 289
ic 76, 402, 403, 413, 462

idle thread 33, 50

ie 420

IM_RD 317, 337

image conversion 70

image conversion software 74
image format 318

IMEM 44, 115, 135, 138
immediate mode rendering 61
Indy video input 29

Indy workstation 27, 28, 29, 30, 48, 49, 421
Indy, and MIDI 421
initOsc 397, 358, 399
instruction cache, R4300 46;
instrument 376, 377, 398, 404, 42
instrument compiler 362, 402, 403, 41
Instrument Edit 0

457, 461

514

integration 33
Intel 425
interference pattern 296
interference texture 261
internal edge 326, 327, 328, 330, 332,3
interpenetration 303, 337, 338, 342, 343
interpenetration mode 335

interpolation, bilinear 193;
interpolation, video filts
interrupt 54, 85, 91, ¢
interrupt messages 54
inverse kinematics 71
IRIX 30, 67, 77

libultra.a 31, 77, 78
libultra_d.a 77, 78

light structure 156

lighting 63, 156, 157, 261, 496, 498
line 331

_ line mode 340

“load block 253

oad block, line lirnits 264
load block, restrictions 254
load tile 250

LOD 186, 200, 228, 229, 235
LOD, restrictions 259

log 87

loop 414, 436, 440, 455, 463
loop point 440, 455

low resolution 46

M

M_AUDTASK 474
M_GFXTASK 474
Mach band 211, 312

NINTENDO DRAFT

Macintosh 421 MIPS R4300 41

makerom 77, 88, 115, 119, 123, 126 mirror, texture 280, 281, 295
matrix stack 144, 475, 498 mksprite 351

matrix stack operations 63 mode, copy 180

memory allocation 38, 125 mode, decal line 334
memory interface 45, 210, 318 mode, fill 180

memory management 85, 113 : mode, interpenctration 335
memory map 58 mode, one cycle 17;

memory, block transfer 250 mode, particle s

memory, exture 239 mode, point sam
meshed objects 500 mode, texture edg
message 54, 56, 84, 85, 89, 91, 93 mode, two cycle T
message passing 54 modeling matrix 144
message queue 93, 104, 372, 472 software 70
MI 45, 176, 210, 318
microcode, audio 44, 369
microcode, boot 137
microcode, graphics 44, 61, 63

microcode, RSP 43, 45, 47, 60, 137, 216, 469 multiple tile effects

microcode, task 137 Music Composition 75

MIDI 30, 64, 79, 369, 376, 378, 401, 402, 403, 407, 416, 423, ; tual exclusion 105
457

Midi 421

MIDI file 449, 463

MIDI file format 425
MIDI implementation 449
MIDI key number 405
MIDI message 463

MIDI note 458, 460, 461
MIDI note number 402, 405
MIDI note off 406

MIDI note on 406

MIDI port, Indy 421
MIDI sequence 450

MIDI sequence bank 423
MIDI sequence file 451

25
phics 71
2

evelopment beard 27, 28, 31

noise 302, 312, 337
non-maskable interrupt 96
non-preemptive execution 54
NOOP render mode 344, 345
NTSC 46

NURBE 71

Nyquist's Law 271

MIDI velocities 405 0]

MIDI, compressed 376, 463 ocean waves 261
MID], compressed file format 4/ octree 493

MIDI, standard 376 one cycle mode 177
MIDIL. type 0 376 OPA_DEC 343

midicmp 75
midicomp 416, 417, 463
midicvt 75, 416, 463 ¢

OPA_DECAL 339
OPA_INTER 339
OPA_SURF 339, 341, 343, 345

midiDmon 419 OPA_TERR 339, 341

midiprint 416 opaque surface 327, 329, 330, 332, 333, 335, 337, 338, 341
MIP 232] : OpenGL 62, 138 :

M}P maps, generation 232 operating system 33, 43, 47, 55, 83, 85, 89, 91, 93
mipmapping:150, 179, 184, 223, 229,232, 291, 333 0S 480, 482, 484

NU6-06-0030-001G o ber 21, 1996 515

NINTENDO 64 PROGRAMMING MANUAL

OS_EVENT_PRENMI 96, 97
0OS_K0_TO_PHYSICAL 121
OS_PRIORITY_RMON 483
OS_TASK_DP_WAIT 474
OS_YIELD_DATA_SIZE 476
0sAiGetLength 111
osAiGetStatus 111
osAiSetFrequency 111, 372
osAiSetNextBuffer 111, 372
oscDelay 398

oscDepth 398

oscillator 397, 398, 399
asContGetQuery 112
0osContGetReadData 112
osContlnit 112

osContReset 112
osContStartQuery 112
osContStartReadData 112
oscRate 398

osCreatePiManager 111
osCreateRegion 125
osCreateScheduler 472
osCreateThread 59, 92
osCreateViManager 109

oscState 398

oscType 398

osDestroyThread 92
osDpGetStatus 109
osDpSetNextBuffer 109
osDpSetStatus 109

osFree 126

__0sGetCause 98
__0sGetCompare 99
__0sGetConfig 99
__.08GetCurrFaultedThread 34, 100
__0s8GetFpcCsr 99

0sGetIntMask 96
__osGetNextFaultedThread 34, 100
0sGetRegionBufCount 126
osGetRegionBufSize 126
__osGetSR 99
0sGetThreadId 93
0sGetThreadPr 93
o0sGetTime 55
__0sGetTLBASID 99
_0sGetTLBHi 99
__0sGetTLBLoO 99
__0sGetTLBLo1 99
__0sGetTLBPageMask 99

516

osknitialize 88
osinvalDCache 119, 123
osinvallCache 123
osMalloc 125
osMapTLB 127
osPiGetStates 111
osPiRawReadlo 111
osPiRawStartDma 111
osPiRawWritelo 111
osPiReadlo 111
osPiStartDma 1i2
osPiWritelo 111
0sScAddClient 472
0sScGetTaskQ 476
OS8cTask 473
__osSetCaus
__osSetCom
~.085etConf
osSetEventMesg 96,
__0sSetFpcCsr 99
osSetIntMask 96

pla:
osSp’fﬁskStart
osSpTaskYield
osSpTaskXielie:
osStartTh 91, 92, 484
osStopThread 93
osSyncPrintf 33, 87
OSTask 137, 383
OSThread 90
osUnmapTLB 127

5. osUnmapTLBALL 127

b5 ViGetCurrentField 110
0sViGetCurrentFramebufier 110
osViGetCurrentLine 110
osViGetCurrentMode 110
osViGetNextFramebuffer 110
os ViGetStatus 109

osVirtual ToPhysical 121
osViSetEvent 110
osViSetMode 46, 110
osViSetSpecialFeatures 110
osViSetXScale 110
osViSetYScate 110
osViSwapBuffer 110
0sYieldThread 92

NINTENDO

DRAFT

output buffer size, audio 446
overlay segments 123
OVL_SURF 343

P

paint software 70, 74

painter’s aigorithm 340

PAL 46

pan 373, 377, 381, 402, 461
pan values 452

parallel interface 46

particle system mode 336
particle systems 71

PASS render mode 344, 345
patch format 426

FBEMPLUS 70

PBUS 45

PC 486

PCL_SURF 339, 341, 343, 345
percussion instrument 406
performance profiling 55
performance tuning 491
performance, CPU 54
peripheral interface 36, 86, 102
peripherial device 43
perspective correction 215, 277, 498
perspective normalization 144

physical address 44, 45, 47, 114, 115, 122, 139

physical voice 384
PI 48, 56, 86, 95, 102, 106, 111, 114
PI manager 46, 56, 86, 90, 95, 111
PIF 46, 102

pinwheel 327, 338, 341

pipeline mode, copy 205, 276
pipeline mode, fill 205, 210
pipeline mode, one cycle 205
pipeline mode, two cycle 187, 20
pitch 402, 405

pixel 46

pixel format, color 210
pixel format, z 210
playback rate 453, 459

point sample mode 33
point sample, restrictio,
point sampling 193, 27
palygon fragment 327

polygon rastedzation 61, 63

e
NU6-06-0030-001G of

3, 228, 232, 244

ober 21, 1996

portal connectivity 493
position 402
PRE_NMI_MSG 97
precision, z 308
preemption 54
preemptive 84, 92
PRENMI 93, 96
PRIM _TILE 235
primitive 269,
primitive color IQ 288
primitive tile nu
PRIMITIVE _ COLO!
priority 381
program crash 38

quadrication 254
quadtree 493

L, 46, 135

rasterizer 45, 184

RCP 41, 48, 49, 55, 60, 61, 65, 94, 102, 113, 135, 301, 351, 383,

388, 426, 469, 497, 502
rep.h 110, 111

RDP 43, 45, 52, 60, 86, 102, 150, 175, 178, 213, 26%

RDP attribute 182
RDP pipeline 178
RDP primitive 182

RDRAM 48, 49, 58, 102, 105, 109, 318, 442

Reality CoProcessor 41, 43, 113

Reality Display Processor 43, 45, 102, 175, 213, 269

Reality Signal Processor 43, 44, 102
real-time scheduling 55

rectangle 45, 184, 269

rectangle, texture 269

reduced aliasing 501

reduction, polygon count 70
reflection mapping 63, 165, 168, 496
region allocation 125

region allocation library 58

region library 86

47, 54, 55, 61, 77, 89, 93, 96, 113, 127, 137, 483

NINTENDO 64 PROGRAMMING MANUAL DRAFT

register, R4300 46
release 374
release notes 30
render mode 303
render mode, visualizing coverage 346

render modes 339, 341, 343, 344, 345

rendering mode 338

rendering order 333, 334, 335, 340, 500

rendering order, for antialiasing 204

RESET 96

retrace message 472

reverb 381

reverb amount 381

RGB, SGI image format 70, 72

rghic 72

RGBA 188, 215, 221, 240, 247, 290

RJ-11 29

RM_ADD 317

tmon 33, 34, 67, 95, 480, 481, 484

rmon.h 484

rmonMain 480

rmonPrintf 67, 68

rmonReadMem 481

ROM 58, 77, 105, 373, 383, 402, 426, 450, 453, 479
ROM cartridge 44, 48

ROM image 77

ROM packing 77

RS 45, 176, 184

RSP 34, 43, 44, 45, 47, 52, 60, 61, 102, 135, 206, 3
RSP data memory 44

RSP instruction memory 44
RSP Scalar Unit 44

RSP Vector Unit 44
rspbootTextEnd 474
rspbootTextStart 474

)

s/w 184, 186

sample converter 455
sample rate 459
sample rate, audic 443

sampled sound playback 369, 373
sampling 271
sampling, point 271
sampling, super 303
sampling. unweighted area
sbe 423, 438, 463
sbk 75

scaling, rectangle 271

518

“sequence

scaling, sprites 294
scheduler 65, 469, 472
scheduler thread 65
scheduler, CPU 54
scheduling, priority 54
scintillate 271

scissor rectangle 185
scissoring 184
scissoring, rectangle |
scissoring, restriction§ 485
scrolling, of rectanglgs 275
scroiling, texture 286
Sedgewick 502 -
segmect address 34, 44, 121}

semaphore. K5
semitone 459, 460

diee
sequénice

nce loop [
sequence loo
sequentepl

sequerice player 75, 369, 370, 372, 376, 378, 394, 398, 401, 404,

405, 425, 426, 450, 458, 461
sequence, audio 447
sequenced sound 376
sequencer 431
serial interface 46, 102
serial port manager, Indy 421

 SETOTHERMODE 174

sgi.com 70

SH 284

sharpened texture 229, 230, 235
SI 48, 95, 102, 114

silhouette 303, 314, 327, 328, 330, 332, 343, 344

silhouette edge 204, 328, 333, 334, 337, 340
simple 384

simple, demo application 65

size, texture 289

SL 284

slide, texture 283

smoke 316

SNES 29, 74, 455

NINTENDO DRAFT

SoftImage 71 sprites, examples 360

sort 330, 500 sprites, in COPY meode 356
sorting 298, 330, 502 sprites, moving 352
sorting algorithms 502 sprites, re-use 359

sound 457 sprites, scaling 352, 356
sound bank 40} sprites, scissoring 353
sound duration 374 sprites, structure 354
sound effect 64, 450 sprites, transparent 3

sound loop point 374 sprites, z-buffered

sound pitch 374 spScale 352

sound playback rate 453 spScissor 352
sound player 369, 370, 372, 373, 394, 401, 407, 426, 450, 458, 461 spSetAttribute 35
sounds, looped 374 spSetZ 352
sounds, unlooped 374 sptask.h 137

source file 487 stack overflow 55

SP 95, 109, 114, 122 stack, ¢

SP_BREAK 95 stacktoo
SP_CUTOUT 356 stereo 48 i
SP_DRAM_STACK_SIZES8 475 stipple transparency:
SP_EXTERN 357 stopQOsc 397, 398, 39
SP_FASTCOPY 356 SU 44

SP_FRACPOS 357
SP_HIDDEN 1356

SP_SCALE 356
SP_TEXSHIFT 356
SP_TEXSHUF 357
SP_TRANSPARENT 336
SP_UCODE_DATA_SIZE 474
SP_UCODE_SIZE 474

SP_Z 356

span buffer coherency 182, 499
sparkles 336
spClearAtiibute 352
spColor 352

spDraw 353, 356, 359
specular 156

specular highlight 161

sync command 45
sync, pipe 45
synchronization, of rendering pipeline 181
synthesis driver 369, 370, 382, 394
synthesizer 372

spFinish 351 T

spgame 360 t/w 184, 186

spInit 351 tabledesign 76, 412, 462
spMove 352 task 63, 89, 109, 137, 469, 502

sprite 45, 70, 262, 269, 273, 279,
sprite library 349

sprites, attribute 352, 3835
sprites, bitmap structur.
sprites, color 352
sprites, creating 351
sprites, cutout 356
sprites, drawing 353

; 349 task header 137
task kst 43, 60, 137
tasks 42, 43.
terrain 335, 340, 496
terrain mode 338, 341
TEX_EDGE 317, 332, 339, 341, 345
TEX _INTER 339
TEX _TERR 339, 342

NUG-OS-OO:;&OM Got ber 21, 1996 519

NINTENDO 64 PROGRAMMING MANUAL DRAFT

texel 271 texture, color index 190, 240
texel format 215, 221, 247, 287 texture, color lookup 190
texel size 215, 221 texture, detail 233

" texture clamping 224, 255 texrare, high frequency 232
texture coordinate 150, 215, 219, 236, 269, 284 texture, how stored in TMEM 249
texture coordinate mask 223 texture, interference 261
texture coordinate shift 223 texture, level of detail 229
texture coordinate transformation 166, 167 texture, load block 253
texture coordinate, accuracy 260 texture, mirrored 215
texture coordinate, automatic generation 156 texture, quadricated 2§
texture coordinate, bilerp 236 texture, restrictions 235
texture coordinate, high 224 texture, sharpen 235
texture coordinate, low 224 texture, wrapped 215
texture coordinate, point sampled 236 texture, YUV 242
texture coordinate, restrictions 260 textured rectdngle 297
texture copy, restrictions 259 textures, large: 25
texture edge 344 texure load
texture edge mode 332, 333 TF 45, 176,193
texture engine 186 TH 284
texture filter 193, 289 thread 54, 84, 89, 480

texture filter unit 45
texture filter, restrictions 259
texture forrat 188

texture line 222

texture line stride 222

texture loading 188, 248

texture loading, 4-bit 254

texture loading, block 188

texture loading, tile 188

texture mapping 213

texture memory 45, 214, 239
texture mirroring 222, 223, 255
texture palette 222

texture sampling 191

texture synchronization 192
texture tile 186, 219

texture tile coordinates 219
texture tile descriptor 225, 228
texture tile line padding 250
texture tile restrictions 220
texture tile, multi tile textures 187
texture tile, multiple 261

texture tile, restrictions 187, 260
texture unit 45 -

thread, prority 90, 92, 93
thread, runnable 91
thread, running 91

thread, scheduler 65
thread, state 20

thread, stopped %1

hread, switch 485

thread, waiting 91
THREAD_STATUS 95
threads 42

tile descriptor 186, 192, 221, 225, 228, 282, 283, 292, 294
tile selection 228

tile, loading 250

tiling, large texture 297
timer 55

timers 87

texture wrapping 189, 224, 25 TL 284
texture wrapping (large tex TLB 34, 47, 55, 85, 114, 126
texture, 4-bit 254 TLB miss 128

TLUT 189, 190, 244, 245, 290, 351, 360
TLUT restrictions 191

texture, alignment 259
texture, clamped 215

520

NINTENDO

DRAFT

TMEM 45, 150, 186, 188, 190, 214, 222, 239, 292, 297, 298, 358 viewing matrix 144

TMEM address 222

Translation Lookaside Buffer 85

translation lookaside buffer 55, 114, 126

transiation, rectangle 271

transparency 182, 203, 205, 278, 289, 298, 301, 331, 336
transparent decal surface 342

transparent line 334

transparent lines 332

transparent surface 329, 330, 331, 333, 334, 337, 340, 341, 342
transparent texture 356

tremolo 397, 398

triangle 45, 184

tri-linear interpolation 327

trilinear MIP mapping 229, 233

Tron mode 334

two cycle mode 178

TX 45, 176, 186, 187

type, texture 288

U

ultra 30

ultraé4.h 78, 137

union, C 139

UNIX 480, 486
updateQOsc 397, 398, 399

v
vadpcm_dec 412, 414, 415
vadpcm_enc 76, 412, 413, 414, 462
vertex 327

vertex buffer 149

vertex cache 496

vertex normal 157

vertex normals 164, 166

vertex transformation 144
vertical retrace 57, 86, 110, 446
VI 48, 57, 86, 95, 102, 109
VI manager 57, 95, 109, 110, 4
VI mode 110
vibrato 397, 398
video filter 314, 326
video interface 43, 46, 86, 102, 110,
video mode 46, 57 ¢
video retrace 472 :
video, composite 29, 4
video, RGB 29, 46 ¢
video, §-video 29, 46
viewing frustum 498

NU6-06-0030-001G & ber 21, 1996

virtual address 47, 113, 114
virmal ROM 479, 481
virtual voice 384

visibiliry 494, 499
visibility, game-specific 501
visual complexity 497

voice 384, 395, 453

voice processing egtim
voice stealing 38
voice, physical 384
voice, virtual 38
volume 373, 38

wavetable file 426
wavetable format 426

vetable synthesis 64, 369, 414
map effect 201

TDEC 343

XLU_DECAL 339

XLU_INTER 339

XLU_LINE 331, 339, 341
XLU_SURF 317, 339, 341, 343, 345

Y

vield 60, 84, 89, 109, 476
yield buffer 476

yielding 65

YUV 188, 215, 221, 240

z

Z compare 320

Z_CMP 337, 338

Z_UPD 337

zap coverage 338, 341

z-buffer 48, 58, 63, 70, 72, 119, 170, 171, 175, 179, 182, 184, 203,
204, 210, 270, 299, 301, 305, 320, 328, 329, 338, 340,
352, 356, 499

z-buffer, alignment 210

521

NINTENDO 64 PROGRAMMING MANUAL

DRAFT

z-buffer, format 322
z-buffer, lines 171
ZMODE 337
ZMODE_OPA 317
Z-stepper 308

522

Z-Sort Microcode

User’s Guide

NUS-06-0164-001A
Released: 1/9/98

Z-Sort Microcede User's Guide

D.C.N. NUS-06-0164-001 REV A

“Confidential”

This decument contains confidential and propriefary information of
Nintendo and is also protected under the copyright laws of the
United States and foreign countries. No part of this document may
be released, distributed, transmitted or repreduced in any form or by
any electronic or mechanical means, including information storage
and retriaval systems, without permission in writing from Nintendo.

® 1998 Nintendo

TM?® and the “N" logo are trademarks of Nintendo

Table of Contehts

Table of Contents

Chapter 1 Introduction and Installation 5
Introduction to Z-Sort Microcode 5
Installation 5

Confirm Package Installation 5
ForIRIX 5.3,6.2,6.3 6
For Partner-N64PC (Windows95/NT) 6

Chapter 2 Z-Sort Microcode Functions 7
Drawing Flow Using Z-Sort 7
Drawing and Arithmetic Operations 8
RSP Processing Installation Methods 8

2-Task Processing 9
2-Pass Parallel Processing 11

Chapter 3 Drawing 13
Drawable Objects (ZObject) 13
ZObject List Processing 13
Z-Sort Processing 14

Preparation of gSPZObject Array 14
Array initialization 15
Array Registration According to Screen Depth of each ZObject 15
ZObject Data Formats ' 16
zShTri Structure 16
zShQuad Structure 17
zTxTri Structure 20
zTxQuad Structure 21
zNull Structure 23
Controlling RDP Commands with RDPcmd Parameters 23
Clear Screen and Other Drawing Processing 26
gSPZRdpCmd (Gfx *gp. Gfx *rdpcmd) 26

Chapter 4 Arithmetic Operations 27

Display Objects and Arithmetic Operations 27
{Operation A) --- gSPZMuitMPMtx 27
{Operation B) --- gSPZLight / gSPZLightMaterial 27
(Operation C) --- gSPZLight/gSPZ [ightMaterial 27

Work Area for Operations in DMEM 27

GBI List 29

jii NUS-06-0164-001A
Released: 1/9/98

Z-Sort Microcode User's Guide

Table of Contents (Continued)
GBI Functions

gSPZSetUmem (Gfx *gp, u32 umem, u32 size, u64 *adrs)

gSPZGetUMem (Gfx *gp, u32 umem, u32 size, ut4 *adrs)

gSPZSetUMtx (Gfx *gp, u32 mid. Mtx *mptr)
gSPZGetUMtx (Gix *gp, u32 mid. Mitx *mptr)

gSPZMitxCat (Gfx *gp, u32 mids, u32 midt, u32 midd)

gSPZMtxTrsp3x3 (Gfx *gp, u32 mid)
gSPZViewPort (Gix *gp, Vp *vp)

gSPZMultMPMix (Gfx *gp, u32 mid, u32 src, u32 num, u32 dest)

gSPZSetAmbient (Gfx *gp, u32 umem, Ambient *ambient);
gSPZ8etDefuse (Gfx *gp, u32 umem, u32 lid, Light *defuse);

gSPZSetLookAt (Gfx *gp, 132 umem, u32 Inum, LockAt *lookat)

gSPZXfmLights (pfx *gp, u32 mid, 132 Inum, u32 umem)
gSPZLight (Gfx *gp, u32 nsrc, u32 num, u32 cdest, u32 tdest)

gSPZLightMaterial (Gfx *gp, 132 msrc, u32 nsrc, u32 num, u32 cdest, u32 tdest)

gSPZMix816 (Gfx *gp, u32 srcl, u32 src2, u32 num, ul6 factor)
gSPZMixS8 (Gfx *gp, u32 srcl, u32 sic2, u32 num. ulé factor)

gSPZMixU8 (Gfx *gp, u32 srcl, u32 sic2, 132 num, ulé factor)

Chapter 5 Other Processing

29
29
29
29
30
30
30
30
31
33
33
34
34
35
35
36
36
36

37

GBI List

GBI Functions

gSPZSetSubDL (Gfx *gp, GEx *subdl)

gSPZLinkSubDL (Gfx *gp)

gSPZSendMessage (Gfx *gp)

gSPZWaitSignal (Gfx *gp, zSignal *sig, u32 param)

Chapter 6 Compatibility With Other Microcodes

37

37
37
37
37
38

39

About GBIs

Common GBIs

gSPZSegment (Gfx *gp, u32 seg, u32 base)

gSPZPerspNormalize (Gx *gp, ul6 persp)

Chapter 7 CPU Support Library

39

-39

39
39

41

Chapter 8 Sample Programs

43

zonetrt/

cubes-1

43
43

introducticn and Installation

Chapter 1 Introduction and Installation

Introduction to Z-Sort Microcode

Z-Sort Microcode was developed to delete obscured screens at the Nintendo 64 (N64) hardware level
using a Z-sort. Z-Sort creates screens using a procedure which sorts all the graphics to be displayed on
the screen in order of their depth on the screen and then draws them in order ‘rom back to front.

The N&4 OS/Library supports obscured screen processing using the Z-Buffer. This processing method
judges whether or not a graphic is visible on a pixel-by-pixel basis. Compared with Z-Sort, this has the
advantage being able to accurately express the relationship before and after the graphic is displayed.
On the other hand, access to RAM increases. With Z-Sort, although the relationship before and after
display cannot be processed to the same extent as with the Z-Buffer, the amount of RAM access per
graphic decreases. Thus, the amount of graphics displayed on the screen within a specific time
increases compared to the Z-Buffer method.

The advantage of Z-Sort is that the improved RAM band makes the RDP processing load lighter. In
many applications, the time required to perform RDP processing causes a bottleneck. Thus, lighter
processing load is ideal when the volume of graphics is high.

One note of caution, hawever. RSP processing load does not change significantly. RDP processing
load changes according to the size of the area to be filled. With a drawing in a small area in particular,
RDP processing ends sooner than RSP processing. Because there are many small drawing areas, RDP
processing waits for RSP processing to end, during which time the processing capacity does not change
with Z-Sort or with Z-Buffer. When the drawing area is somewhat larger, however, the Z-Sort method is
effective. Z-Sort Microcode cannot do everything. Carefully consider the screen to be drawn before
using Z-Sort.

Installation

This description pertains to instaliation of Z-Sort Microcode when it is distributed as a separate package.
If it is already included in the N64 OS/Library, these operations are not necessary. ‘

Confirm Package Installation

This microcode runs on N64 OS/Library version 2.0H or later. When using 2.0H, confirm that the
following packages have been installed. If they are not installed, install them first.

ultra N64 OS/Library Version 2.0H

patchNmisc_082297 - Patch Nmisc_082297:
miscellaneous patches for N64 OS/Library version 2.0H

The Z-Sort package includes the following patch and, therefore, it need not be obtained separately. If
the following patch is already installed, instail the Z-Sort package as instructed above.
patchNgbi_040997 - Patch Nghi_040997: patch for gSP1Quandrangle) in gbi.h for
N&4 OS/Library version 2.0H

5 NUS-06-0164-001A
Released: 1/9/98

Z-Sort Microcode User's Guide

For IRIX 6.3,6.2,6.3

The Z-Sort Microcode package is formatted as follows.
patchNuZST_mmddyy (mmddyy is the release date)

install this patch using the Software Manager or the inst command. This will install the following files.
For details on the microceode, see the README fite.

/usr/src/PR/doc/gfxucede. Z-Sort/README README file

/usr/lib/PR/gspZ-Sort.fifo.o Z-Sort Microcode
/ustr/1ib/PR/gspZ-Sort.pl.fifo.o Z-Sort Microcode {version with
improved

arithmetic operations)
/usr/include/PR/ghi.h Z-Sort include file
/usr/include/PR/gZ-Sort.h Z-Sart include file
/usr/include/PR/rcp.h Z-Sort include file
/usr/src/PR/gZ-Sort/* Z-Sort sample programs

For Partner-N64PC (Windows95/NT)
The Z-Sort Microcode package is formatted as fallows.
Z-SORTxox.EXE (xxx is the release number)

This file is self-extracting. When executed, the user will be asked far the installation destination. Input
the ROOT directory of the N64 OS/Library. The defaultis ¢:\ultra. The file opens under the
specified directory just as with the IREX version.

Z-5ort Microcode Functions

Chapter 2 Z-Sort Microcode Functions
Drawing Flow Using Z-Sort

Z-Sort Microcode supports triangle areas, quadrangle areas, and texture and fill rectangles using RDP
commands. In this manual, all areas to be drawn by the RDP are called z0bjects.

In Z-Sort Microcode, for each ZObject, one screen depth value is found to represent the drawing area.
Each ZObject is then sorted by that screen depth and obscured screen processing is executed by
drawing the ZObjects in order from the back to the front.

The processing flow for ZObject drawing is as follows.
1. Multiply model matrix by perspective transformation matrix, etc.

2. Calculate coordinate transformation/perspective transformation/screen depth for model
vertices.

Determine whether there are vertices in the screen.
Determine clipping/back plane.

Construct ZObject data.

Create ZGbject list.

7. Draw in order of ZObiject list {drawing processing).

in order to draw a Z0bject, the information concerning how the ZObject will be drawn must be prepared
as data. With conventional Fast3D Microcode, the Vertex and Tri commands were combined to draw
triangles, while with Z-Sort Microcode, drawing is performed by creating ZObject structures.

Not all of these processes are available in Z-Sort Microcode. The major difference between Z-Sort and
other graphics microcodes is that Z-Sort Microcode does not function by itself; the CPU must perform
some of the processing related with drawing.

For exampie, the function of sorting ZObjects in order of screen depth is not available as microcode.
Since the CPU does not perform sorting, that function must be handed over to the RSP.

SN e WD

At the very least, the CPU must perform the following processes.

» Clipping/back screen determination

» ZChbject data construction

» ZObject list creation

Z-Sort Microcode currently offers the following main functions. Each process is controlled by the Display
List {(DL) comprised of one or more GBIl commands.

» Multiplication of model matrix by perspective transformation matrix

= Calculation of coordinate transformation/perspectjve transformation/ screen depth for model
vertices

« Creating flags for whether or not vertices are in the screen

¢ Drawing in order of ZObject list (drawing processing)

Naturally, matrix multiplication and coordinate transformation (here, called arithmetic operation
processing) could also be performed by the CPU. Dividing these tasks between the CPU and the RSP
according to available processor capacity is best. For the remainder of the explanation, however, it is

assumed that the RSP will perform arithmetic operation processing. if the CPU is to perform cperation
processing, read about the arithmetic operation processing explained in chapter 4,

7 NUS-06-0164-001 A
Released: 1/9/98

Z-Sort Microcode User's Guide

Drawing and Arithmetic Operations

When the RSP performs the arithmetic operations, Z-Sort Microcode processing uses two passes. Since
the coordinate transformation of the before and after ZObject is not completed, the finat Z-Sort results
cannot be obtained. This means that data cannot flow in a pipeline like it does with other microcodes. [t
is necessary to temporarily hold all of the Zobject information.

Thus, the foilowing functions related to coordinate transformation are called arithmetic operation
processing and are performed on the first pass. These processes are "vertex" coordinate
transformations, so ZObject piane data is not created at this time. Note that the CPU creates actual
ZObject plane data from the resuits of vertex coordinate transformation.

» Multiplication of model matrix by perspective transformation matrix

» Calculation of coordinate transformation/perspective transformation/ screen depth for model
vertices

» Determination of whether there are vertices in the screen

The next process following Z-Sorting by the CPU, is called "drawing processing” and is performed on the
second pass of the RSP.

« Drawing in order of ZObject list

This ZObject list is a chained data string similar to that below, in which ZObject data are linked in the

form of a list in order from the back of the screen. The X of ZObj 3 below signifies the end of the chain.
GBI ZObj 1 ZObj 2 ZObi 3

0 _— Data o — Data 0 — Data X

It is necessary that the CPU create this ZObject list. Since Z-Sort Microcode supports ZObjects in list
format, the cost of substituting in data when sorting can be kept to a minimum. Any sorting algorithm
may be used. Incidentally, in the sample program of this microcode, packet sorting divided into 1024

steps between far and near planes is performed by creating muitiple ZObject lists.

Once the above is complete, the processing flow continues as follows.

[CPU} Create arithmetic operation Display List
\
[RSP] Arithmetic operation
4
[CPU] Create ZObject data
Create ZObject list (= Display List for drawing) (Z-Sort)
1

[RSP/RDP] Drawing Processing

RSP Processing Implementation Methods

It was discussed above that the RSP processing is divided into two passes. The methods for
implementing this wili be expiained here,

o Implementation method A) 2-task processing

o Implementation method B) 2-pass parallel processing

A detailed explanation follows. Since A and B each has advantages and disadvantages, select the
implementation method carefully.

Z-Sort Microcede Functions

2-Task Processing

The 2-task processing method starts by dividing the tasks into arithmetic operation processing and
drawing processing. This should be an easy method to understand since it resembles the starting
methods for other microcodes. The principle must first be understood.

Implementation Method A

This is the simplest 2-task processing method. It is listed below.

1. Create the Display List for arithmetic operations.

2. Start the first task of the RSP (Display List for arithmetic operations).

3. The RSP performs calculations and the CPU waits until the RSP is done.

4

a. Create ZObject data using the calculation resulits.
b. Create ZObject processing links by sorting.
¢. Create the Display List for drawing processing.

Start the second task of the RSP (Display List for drawing processing).
The RSP performs drawing calculations and the CPU waits until the RDP is done.
The RDP performs drawing.

~ oo b

This is the simplest method and, therefore, the easiest to understand. It is effective when shortening the
time between key input and screen response. Also, since a single buffer is sufficient as the buffer for
developing ZObject data, the amount of memory that should be reserved is decreased.

True of ail implementation methods, constructing ZObjects using the CPU in (4) a~c above, requires a
considerable computation cost. Differences in the number of ZObjects that can be drawn per frame
appear in the ways in which this portion is implementated. If possibte, it is recommended that you use
“assembly language” instead of C language for this part of the implementation.

The operating status of the CPU, RSP, and RDP for each process is shown below. The numbers in
parentheses correspond to those above.

Frame Frame
Start End
CPU ==(1)=> z=(2)=> ==(4)=> ==(5)=> |
RSP ::(3)=> ==(6)=>
RDP ======(7 ===

Implementation Method B

One of the problems with implementation method A is that there are no places where the CPU and RSP
can operate in parallel. This leaves openings in both CPU and RSP processing. Pipelining processes
(3) and (4), in method A, would eliminate some of the space. To create data for a certain number of
ZObjects, creation must begin at vertex data points. To support this, Z-Sort Microcede contains a GBI
command to send this message to the CPU. When this message is inserted midway through the
arithmetic operation processing GBI command, the RSP sends the message to the CPU when the
command is processed. When the CPU receives the message, it knows that arithmetic operations prior
to the command that sent the message have been completed.

9 NUS-06-0164-001A
Released: 1/9/98

Z-Sort Microcode User's Guide

Also, the RDP does nothing during processes (1) to (5) of method A. Thus, the RDP's idle time means
reduced drawing performance. Needless to say, to save RDP processing time, it is best that RDP
drawing processes that do not require RSP operations, such as screen clearing, be performed within the
first RSP pass.

Merely as an example, if the above points are improved, the following results.

Frame Frame
Start : End
CPU ::(1):) ==(2)=> ::::(4): ==(5)=>
>
RSP =(3)==== ::(6):)
>
RDP =(7T)=> s=ommn(])=m===>

in the third stage, each processor performs the following processing.

CPU: Creates ZObject data from RSP coordinate calcuiation data and sorts it. Also,
creates the DL for the second pass.

REP: Performs coordinate calculations and sends a message to the CPU every time a
vertex data point necessary to create a certain amount of ZObject data is
obtained.

RDP: Primarily performs processing that does not require RSP operations, such as

screen clearing

implementating this processing system to perform the above is more complex than system A. There is
no significant difference between the difficuity of this processing and that of 2-pass parallet processing
described below. Since the performance gain resulting from serial processing (3) and (4) is generally not
that great, a different method should be used when reducing the delay in response time after key input
and reducing the memory footprint are not important.

Implementation Method C

If the delay in key input response time is acceptable, the following implementation method may be used.
The processes (5) through (7) are carried over to the next frame.

Frame Frame
Start End
CPU | ==(5)=> | ==(1)=> | ==()=> ==(4)=>
RSP ====(g)======> | ==(3)=>
RDP zzmzsmz========(])============
>

in this case, the time between key input and screen response slows, lengthening the RDP processing
time.

10

Z-Sort Microcode Functions

Since processes (3) and (4) must wait until (8) has ended, the processing time of (8) in the RSP and the
processing time of (4) in the CPU must be as short as possible. Since the time the RSP must wait for
RDP drawing decreases when the FIFO buffer is enlarged, the processing time of (6) normally shortens,
boosting the performance of this processing system. When numerous small ZObjects appear, however,
the RSP processing time becomes longer than the RDP's. Since the RDP waits for the RSP,
performance dees not improve even when the FIFO buffer in enlarged. Thus, it would appear that (4)
should be impiemented using assembly language.

Considering the ease of implementation and performance, this method appears to be the most balanced
among the 2-task processing methods.
Implementation Method D

tn the rare event that implementation and sufficient performance in (3) can be obtained using the CPU
instead of the RSP, problem-free paralle! processing would be possible, as shown below. However,
since (6) and (4) sometimes overlap, ZObject data and the DL must be processed using a doubie buffer.

Start End
CPU ==(5)=> z=(1)-.:> =:(2)=> | ==(3)=> I ::(4)-...->
RSP ====(6):==========:==:=

’ >
RDP :======::::u:m'::=(7):::::::::::: ’
>

Whether or not this implementation improves performance depends on the extent to which (3) can be
performed faster. If possible, use assembly language for this part of the implementation as was done
with (4).

2-Pass Parallel Processing

In graphics processing, the RDP processing time rarely matches the RSP processing time. The FIFO
huffer exists to absorb this difference. When the RDP processing time exceeds the RSP processing
time, the End Processing RDP command is stored in the FIFQ buffer. Since the FIFO buffer size is
timited, if the wait is too long, the buffer becomes full.

In other microcodes (Fast3D, F3DEX, S2DEX), when the buffer is full, the RSP waits until space opens
up in the FIFO buffer, Merely waiting for RDP processing needlessly consumes the calculation capacity
of the RSP.

To eliminate this waste in Z-Sort Microcode, the RSP can perform other DL processing (mainly,
arithmetic operation processing) while waiting for RDP processing. This combines arithmetic operation
processing and drawing processing into a single task for a pseudo-paraltel processing called 2-pass
parallel processing.

In 2-pass parallel processing, the DL processed within the RSP stand-by time is called the Sub Display
List (Sub DL). Here, as in conventional microcodes, the nermal DL is called the Main DL to distinguish it
from the Sub DL. Just like the Main DL, the Sub DL has 18 dedicated DL stacks. Since the Sub DL is
processed while the RSP is waiting for RDP processing, the GBI commands that can be processed by
the Sub DL are limited. Naturally, commands using the RDP cannot be executed. Only commands
using the RSP can be used. If GBI commands using the RDP are included in the Sub DL, a malfunction
will result. Specific GBI commands which can be included in the Sub DL will be explained later. Mainly
arithmetic operation commands can be used.

In actual processing, the RDP processing time usually is not longer than the RSP processing time, and if
the RDP drawing area is small, the wasted RSP time mentioned above disappears. When this happens,
the Sub DL cannot be processed untit expressly called by the Main DL.

11 NUS-06-0164-001A
Released: 1/9/98

Z-Sort Microcode User's Guide

The specifications for this microcode assume that there will be inconveniences. Since the RDP drawing
area varies depending on the scene to be drawn, the RSP stand-by time in which the Sub DL can be
processed is not constant. RSP arithmetic operation processing must end within a certain time to ensure
the CPU's ZObject creation time. This is why Sub DL processing even outside the RSP stand-by time is
s0 desirable.

For the above reasons, a microcode gspZ-Sort.pl.fifo.o (z-Sort.pl ucode) has been prepared
that starts each GBIl command in the Sub DL, one at a time, each time a certain amount of ZObject
processing is completed; even outside the RSP stand-by time. The timing for calling the Sub DL
commands differs depending on the type of ZObject drawn. For polygon ZObjects, one Sub DL
command is required for every two to four ZObjects.

In contrast to Z-Scort.pl ucode, the microcode gspZ-Sort.fifo.o (2-Sort ucode) is for Sub DL
processing only during RSP stand-by.

Since this additional processing is performed by Z-Scxt. pl ucode, the overhead becomes larger
than In Z-sort ucode. Therefore, Z-Scrt ucode offers slightly better ROP drawing performance.
These two types of microcode are identical except for the difference in calling the Sub DL and the larger
overhead. Select the type desired according to the circumstances.

The 2-pass parallel processing implementation is as follows. Here, (3) and (6) are processed in parallel.

Installation E

Frame Frame

Start End
CPU ... | ==(5)=> ==({)=> | ==(2)=> | 1 ===(4)====>
RSP Main ====zossmsss=szs(f)Essss===========

>
Sub |] ==(3)=> I
RDP.... S=======zz=s====s===zz(7)Ss=55= ——————mmse—mz=m==
>

12

Drawing

Chapter 3 Drawing
Drawable Objects (ZObject)

As explained earlier, in Z-Sort Microcode, graphics are drawn in drawing areas calted ZObjects. The
~ drawing parameters for each type of ZObject are defined below, according to the corresponding
structure.

ZShTri triangle with smooth shading

zShQuad quadrangle with smooth shading

zTxTri triangle with textured smooth shading
zTxGuad guadrangie with textured smooth shading
zNull other drawing areas using RDP commands

(used for Fill Rectangle and Texture Rectangle)

Unfortunately, due to size limitations, Z-Sort Microcode does not provide ZObjects for drawing triangles
and quadrangles with flat shading. To draw these, specify the same color for all vertices.

Although the microcode supports only these simple types of graphics, every imaginable type of graphic
can be drawn using the libraries in the CPU. For details, refer to the sample programs.

ZObject List Processing

Since ZObjects can be put into a list format, pointer data for the next ZObject and the type ID for the
next ZObject can be saved at the head of the structure. The 4 bytes at the head of all ZObject structures
are reserved as the header area. ZObjects can be formatted as a list depending on the values of these 4
bytes.

GBIl Command
o | X | g[21SPZObject
{
Z0bj1 |0 — | ZObj2 jo — | ZObj3 | X

When the pointer and ZObject type ID in the head ZObject (ZObj 1 in the figure above) in the list are
specified by the GBI command g[s]5PZCbject, the RSP draws in order according to this list.

From 0 to 2 lists can be processed by the GBI command gis] SPZobject. In other words, two ZObject
lists A and B can be drawn by one GBI command.

GB! Command
o | o | gf2]SPZ0Object
1
Z0bi4 |0« | ZObj5 | X | ZObject list B
Z0bjl1 o —— | ZObj2 |0 -—— | ZObj3 | X] ZObject list A

The minimum size of a GBI command is 8 bytes, which is equal to two pointer data of 4 bytes each. If
fewer than two processing lists are being drawn, write the end value (= G_zCBJ_NONE) in the empty
space.

13 NUS-06-0164-001A
Released: 1/9/98

Z-Sort Microcode User's Guide

The data format of the GBI command g[s]SPz0Object is as follows, with the front and back halves

being the same.
* g5PZObject {(Gfx *gp, u3Zz listn, u32 listB)

ZHDR (Listh, ZidA)
ZHDR (ListB, ZidB)

listA Link parameter of Z0Object link A
listB Link parameter of ZObject link B

31 32 0
ListA ZidAa
List® ZidB
ListA/ListB The head 8 bits from bit 31 to bit 3 of the pointer to the ZObject list
must be 0x80. (Normally 0x80)
ZidA/zidB The ZObject type ID of head of the ZObject list

7EDR (pointer, type) has been provided as a macro for setting these data (32 bits), and can be used as
foilows.

gSPzObject {gfx, ZHDR (ptr listA, ZH SHTRI}, ZKDR (ptr_list®, ZH _TXTRI))/
To change only processing link A or B, the direct value may be substituted in as shown below.
* ((u32 *) gfx) = ZHDR (ptr_ listA, EH_SHTRI};
ZH xxxxx Is the ZObject type ID and takes the following five values.

ZH SHTRI triangle with smooth shading

ZH_SHQUAD quadrangle with smooth shading

ZH_TXTRI triangle with texture map and smooth shading
ZH_TXQUAD quadrangle with texture map and smooth shading
ZH NULL other drawing areas using RDP commands

Although only gspPzobject has been explained here, gsSPZ0Object also exists. Further GBI command
explanations foliow in later chapters; however, as with this GBI, gsspz*** explanations will be omitted.

Z-Sort Processing

The GBI command g{s]52Z0bject is a structure listing only the pointer for the ZObject list and type D
of a ZObject. When this command is arrayed in multiple lists, however, three or more ZObject lists can
be processed. For each ZObject list, a ZObject list of ZObjects with nearly the same screen depth is
created. By listing them in order from the ZObject list at the back of the screen using gi{s] sSPzCbject,
they can easily be packet sorted.

The processing procedure is as follows. In this example, processing is performed dividing the screen
depth for each ZObject into 1024 steps.

Preparation of gspzobject Array

Since there is one ZObject list per screen depth step, 512 commands (=1024/2) are required as the
gSPZObject array size. Since this array becomes part of the DL and is processed directly, as is, by the
RSP, gSPEndDisplayList is added to the very end of the gsPzCbject array. As a result, the
required size becomes 513 commands (=512 + 1}.

| Gfx zarray [1024/2+1]
!

14

Drawing

Array initialization

Substitute the end value (G_z0BJ NONE = 0x80000000) to all array efements to initialize the array.
Write EndD1, at the very end, as shown below.

Gfx *zp = zarray + 512;

I
I
I
f gSPEndDisplaylList (zp):;
!
I
I
|

while {(zp != zarray) {
gSPZCbject (-- zp, ¢_ZOBJ NONE, G_ZOBJ_NONE);
}
0 1 2 3 L, 510 511 512
VAR 4
zarray [X (X [X |[X |[X [X X |X X|X[X|X | X | EndDL
4 rd
X: End value (= G_ZOBJ_NONE)

Array Registration According to Screen Depth of each ZObject

Calculate the screen depth for each ZObject. Although the RSP can calculate the value of the screen

depth at each point, the decision as to which value to use as the screen depth for the ZObject is up to the
user. Here are some examples of screen depth values.

Examples of screen depths in triangle ZObjects

Smallest value for distance from 3 vertices

Largest value for distance from 3 vertices

Average value for distance from 3 vertices

Median vaiue between largest and smallest values for distance from 3 vertices

This value is normalized between 0 and 1023 and is the number of the array element to register. Store
this number in the header of the ZObject in which the pointer and ZObject type ID that originatly existed

in the applicable array element are registered, and write the pointer to the ZObject structure data and the
ZObject type ID to the corresponding array element.

|
I 332 zid; /* No., of array element to register
*/
! zHeader *zhptr: /* ZObject pointer */
i ul32 ztype; /* ZObject type ID */
|
| for (each ZObject)} {
| Calculate zid from the screen depth;
| if (zid < 0) zid = 0; /* Clemp zid */
I if (zid > 1023) zid = 1023;
| zhptr->t.header = *{uzarray+zid); /* Set next node */
| * (uzarray+zid) = SHDR {zhptr, ztype): /* Register to zarray */
f }
!
15 NUS-06-0164-001A

Released: 1/9/98

Z-Saort Micracode User's Guide

0 1 2 3 510 511 512

zarrayXXXXoXXX//XXXXXEndDL

Z0bj1 | X

Drawing processing can be performed when this process is performed on all ZObjects and the completed
arrays are called by gSPDisplayList.

gSPDisplaylist (o}

0 1 2 3 510 511 512

zarrayXoXXoXXX//[XXOXXEndDL

RS

ZOobj1 | o Zobj2 | o
Z0bj 3 | X ZObj4 | o Z0bj6 | X
Z0bj 5 | X

In the above example, drawing is performed in the order ZObj 3 — Z0bj 1 — ZObj 4 — ZObj 5 —» Z0bj 2
— 20bj 8.

ZO0bject Data Formats

Z-Sort Microcode supports five types of ZObjects and the data required to draw each differs. The five
types of structures for storing each type of ZObject data are explained below.

zshTri Structure

The zshTri structure is used for drawing a triangle with smocoth shading and no texture. The following
three groups of zshvtx vertex data are necessary for specifying this shape.

typedef struct {

316 X, y: /* Vertex screen cocordinates (s10.2} */
us r, g, b, a; /* Bach color in vertex 0. .255 */
} zShvtx;

16

Crawing

The z3hTri structure has the following data format.

+0 +4 +7
Hdr RDP cmd

Vo | X R{iG|B|A

Y
vil] X | Y |[R|G|B|A
Y

V2 X R|IG|B|A
typedef struct {
zHeader *header; /* Information on next Zobject */
Gfx *rdpcmdl ; /* Pre-processing DP command */
zShvtx v[3]: /* Vertex data */
} zShTri t;
typedef struct { /* Structure for word access */
zHeader *header;
Gfx *rdpcmdl ;
u3z xy0, clr0;
u3z xyl, clrl;
uiz2 xy2, clrz;
} z3hTri_w;
typedef union {
z5hTri_t tr
z5hTri_w Wi
ued force_structure_alignment;
} zZShTri;

A triangle formed from the three vertices specified by this structure is drawn. At this point, the back side
of the triangle is not taken into consideration. The triangle will be drawn regardless of the direction it
faces. When a triangle facing the back is not desired, after the CPU determines the front and back when
it creates ZObject data, draw only the ZObjects facing the front. The front/back determination is the
same as for other polygon ZObjects.

When the ZObjects are lined up by the list structure, the member variable header holds the pointer to the
next ZObject.

The member variable rdpemdl is used to change the current RDP processing mode. Specify the RDP
command DL string to be sent to the RDP before drawing the ZObject. For details on rdpcemdl, see,
“Controiling RDP Commands with RDPcmd Parameters” on page 23.

zShouad Structure

The zshQuad structure is used for drawing a quadrangle with smooth shading and no texture. The four
groups of zshVvtx vertex data necessary for specifying this shape are given below.

17 NUS-06-0164-001A
Released: 1/9/98

Z-Sart Microcode User's Guide

With zshQuad, a quadrangle is drawn by drawing the two triangles vo-v1-vz and v1-vz-Vv3,

Vo V1

V2 V3
The zshouad structure has the following data format.

+0 +4 +7
Hdr RDP c¢md
Vo X Y R|G|BJ|A
Vi X Y RIG|Bj{A
V2 X Y R{G|B|A
V3 X Y R|IGiB|A
typedef struct {
zHeader *header; /* Information on next ZCbject */
Gfx *rdpcmdl; /* Pre~processing DP command */
zShvtx vi4]; /* Vertex data */
} zshQuad t;
typedef struct { /* Structure for word access */
zHeader *header;
Gfx *rdpcmdl;
u3z xyQ, clrl;
u3z xyl, clrl;
u32 xy2, clri;
us32 Xy3, clr3;
} zShQuad w;
typedef union {
zshQuad_t =
zShQuad w w;
u64 force structure_alignment;

} z3hQuad;

Memory requirements differ for drawing the same quadrangle using one zshguad function or two
z3hTri functions. Using zshouad requires less memory, a significant advantage.

In addition, RDP drawing performance can be greatly improved by using the CPU to dramatically change
the quadrangle's dividing line to better suit RDP drawing. Specifically, compare the absolute value of the
Y coordinate of the v0-v3 diagonal (aBS Y0-Y3) to the absolute value of the Y coordinate of the v1-Vv2
diagonal (2Bs Y1~-¥2). Then, substitute in the ZObject data so that the quadrangie can be drawn as two
triangles along the diagonal with the smaller absolute value. Refer to the following algorithm.

18

Drawing

z5hQuad *zgquad;

|
[
|
| 1f (BB3 {Y0-Y3: > ABS (Yi-¥2}) {

| /* Divide at diagonal V1-V2, divide inte V0-V1-VZ and V1-vV2-V3 */
| zquad->t.v{0] V0; zquad->t.v[l] = VI1:

| zquad->t.v[2] V2; zguad->t.vi3] v3;
I

I

!

i

i

!

} else {

/* Divide at diagonal V0-V3, divide into V1-vV0-vV3 and V0O-V3-V2 */
V1; zquad->t.v[1l] v,
V3: zquad->t.v[3] v2;

zguad->t.wv{0]
zquad->t. w2}

o

!

However, since the diagonal to be selected as the dividing line is unknown at this time, the four specified
vertices must be in the same plane so that whichever diagonal is seiected, the division of the triangles is
problem free. Also, when using texture or smooth shading, the texture coordinate value (s, t) or color
vaiue (r, b, g, z)mustbe setto avoid contradictions. (A poor example is included in the sample
program cubes-1.)

For a specific explanation of texture map use. When the vectors v1, v2, and v3 are defined as:

V1l = (vl - v0), V2 = (v2 - v0}, V3 = (v3 - v0)
invo (x0, y0, z0, s0, t0), vl (x1, yi, =zl, sl, tl), v2 (x2, v2, z2, s2, t2},
and v3 (23, y3, z3, =3, t3),the actualfactors a and b must exist to satisfy:

V2 =a*Vl+Db * V3.

Geometrically, the four vertices in the 5-dimensional coordinate space that included s and t must exist in
the same plane.

Simitarly when smooth shading and lighting are used, the color value (r, g, b)orthe normal ray vector
(nx, ny, nz)mustsatisfy the above relationship.

For example, the vertices in the onetri demo, below, are not good for a quadrangle.

onetri/static.¢:
static Vtx shade vtx[l = {

{ -64, 24, -3, 0, a, a, 0, 0xff, 9, Oxff },
{ 64, &4, -5, 0, a, 0, 0, 0, 0, Oxff },
{ &4, -&4, -5, 0, Q, 0, 0, 0, Oxff, Oxff },
{ —641 _64/ ‘51' O(0] Of . Q?Eg:f__] _____________ Q e (_)_{_ Oxff }(
bi

This part

There would be no problem, however, if this were expressed as illustrated below.

static Vtx shade vtx[] = {

{ -64, g4, -5, 0, 0, 0, 0, Oxf£f, 0, Oxff },
{ 64, 64, -5, 0, 0, 0, 0, 0, 0, Oxff },
{ 64, -64, -5, 0, 0, 0, g, 0, O0xff, Oxff },
{ ~64, -84, =3, 0, 0, o, Q....0x£f, Oxff, Oxff },

}:

In other words, pay close attention when the values between the vertices continuously change. No
problem exists with Flat Shading in which the color values between the vertices do not change.

z5hQuad does not crimp the back of the quadrangle as was done with other ZObjects. Plan for this
when the CPU creates ZObject data.

When the ZObjects are lined up by the list structure, the member variable header holds the pointer to the
next ZObject. If there is no next ZObject, substitute the end value G_ZOBJ NONE.

19 NUS-06-0164-001A
Released: 1/9/98

Z-Sort Microcede User's Guide

The member variable zdpcmd1 is used to change the current RDP processing mode. Specify the RDP
command DL string to be sent to the RDP before drawing the ZObject. For details on rdpemdl, see,
“Controlling RDF Commands with RDEcmd Farameters” on page 23.

zTxTri Structure

The zT=zTri structure is for drawing textured triangles with smooth shading. The three groups of
zTxVtx vertex data necessary for specifying this shape are given below.

typedef struct {

516 X, ¥ /* Vertex screen coordinates (s10.2) */

uf r, g, b, a; /* Each color in vertex 0. .255 */

sle s, t; /* Texture coordinates in vertex {s10.5) */

532 invw; /* Texture pass vective correction parameter 1/W
{s15.16} {proportion to inv:rse of distance from
perspective} */

} ZTXVELH;

The member variable invw is found as shown below from coordinate vaiue (X, Y, 2, W} W after
multiplying the coordinate value of each vertex (z, vy, z, w) by the MP matrix. However, perspNorm
is the parameter for normalizing the perspective transformation that can be obtained by the
guPerspective function.

invw = {1<<30)/(perspNorm * W}:

The RDP uses this vaiue to correct the texture perspective. In the microcode’s arithmetic operation
processing GBI, this value can be found in the same way as perspective transformation.

The zTxTri structure has the following data format.

+0 +4 +8 +C +f
Hdr RDP cmd 1 RDP cmd 2 RDF cmd3
Vo X Y RIG|BJA S T invW
V1 X Y RIG|BI|A S T invW
Va2 X Y R|IG|BIA] T invW
typedef struct {
zHeader *header; /* Information on next ZObject */
Gfx *rdpcmdl; /* Pre-processing DP command 1 */
GEx *rdpemd?; /* Pre-processing DP command 2 */
GEfx *rdpcmd3; /* Pre-processing DP command 3 */
ZTxXVEX v[3]; /* Vertex data */
} zTxTri t;
typedef struct { /* Structure for word access */
zHeader *header;
Gfx *rdpemdl ;
GEx *rdpcmd2;
Gfx *rdpcmd3;
ul3z xy0, clr0, st0, invw0;
u32 xyl, clrl, stl, inwvwl;
u32 Xy2, clr2, st2, invw2;
} zTxTri Wi
typedef union {
zTxTri_t t;
zTxTri _w W
uéd force_structure_alignment

} zZTxTri;

20

Drawing

zTxTx: does not crimp the back of the triangle as was done with other ZObjects. Plan for this when the
CPU creates ZObject data.

When the ZObjects are lined up by the list structure, the member variable header holds the pointer to the
next ZObject. If there is no next ZObject, assign the end value G_20BJ_NONE.

The member variabies rdpemdl, 2, and 3 are used to change the current RDP processing mode to
load the texture. Specify the three RDP command DL strings to be sent to the RDP before drawing the
ZObject. For details on rdpemdl, 2, and 3, see, “Controlling RDP Commands with RbPamd

Parameters” on page 23.

zTxQuad Structure

The zTxQuad structure is for drawing textured guadrangles with smooth shading. The four groups of
zTxVtx vertex data necessary for specifying this shape are given below.

With zTx0Quad, a quadrangle is drawn by drawing the two triangles vo-vi-vz and V1-72-Va3.

VO V1

V2 V3

21 NUS-06-0164-001A
Released: 1/9/98

Z-Sort Microcode User's Guide

The zTxQuad structure has the following data format.

+0 +4 +8 +C +f
Hdr RDP cmd 1 RDP cmd 2 RDP cmd3
Vi X Y RIGiB A S T invW
V1 X Y RIGIB]|A S T invW
V2 X Y R|G|B|A S T invW
V3 X Y R|IG|BJ]A S T inv\W
typedef struct {
zHeader *header; /* Information on next ZCbject */
Gfx *rdpcmdl; /* Pre-processing DP command 1 */
Gfx *rdpcmd?2 ; /* Pre-processing DP command 2 */
Gfx *rdpcemd3; /* Pre-processing DP command 3 */
ZTxVEx v[4];: /* Vertex data */
} zTrQuad t;
typedef struct { /* Structure for word access */
ZHeader *header;
GEx *rdpcmdl ;
GEx *rdpemd? ;
GEx *rdpcmd3;
u3z xy0, clr0, stG, invw(;
u32 xyl, clirl, stl, invwl;
ul?2 xy2, clr2, st2, invw2;
u3i2 xy3, clr3, st3, invw3;
} zTxQuad w;
typedef union {
zTxQuad_t t;
zIxQuad w w;
ugd force structure_alignment
} zTrQuad;

For the advantages of using zTxQuad and performance enhancing technigues, see the explanation of
*zshQuad Structure” on page 17.

zTxTri does not crimp the back of the triangle as was done with cther ZObjects. Plan for this when the
CPU creates ZObject data.

When the ZObjects are lined up by the list structure, the member variable header holds the pointer to the
next ZObject. If there is no next ZObject, assign the end value G_ZOBJ NONE.

The member variables xdpemdl, 2, and 3 are used to change the current RDP processing mode to
load the texture. Specify the three RDP command DL strings to be sent to the RDP before drawing the
ZObject. For detaiis on rdpemdl, 2, and 3, see, “Controlling RDP Commands with RDPcmd
Parameters” on page 23.

22

Drawing

zNull Structure

The zlvull structure is not for drawing so-called polygons like triangles and quadrangles. It is for
drawing rectangle areas drawn by sending direct commands to the RDP {e.g., FillRectangle,
TexiureRectangle).

Not only the command for drawing the rectangle areas but the type of RDP command can be specified.
As aresult, a ZObject can be created merely by changing the Fog and Primitive colors and not actually
drawing anything.

+0 +4 +8 +C +f
Hdr RDP cmd 1 RDP cmd 2 RDP cmd3

typedef struct {

zHeader *header;

Gfx *rdpcmdl ;

Gfx *rdpcmd?2 ;

Gfx *rdpcmd3 ;
} zNull_t
typedef unicn {

zNull t ty

u64 force structure_alignment;
}ozNull;

When the ZObjects are lined up by the list structure, the member variable header holds the pointer to the
next ZObject. If there is no next ZObject, assign the end value G_ZOBJ _NONE.

Specify the three RDP command DL strings to be sent to the RDP before drawing the ZObject. For
details on rdpemdl, 2, and 3, see, “Controlling RDP Commands with RDEcd Parameters” on page

23.

Controlling RDP Commands with rorcmd Parameters

Each ZObject structure has one or three RDP Crd areas. The status of the RDP during ZObject drawing
processing can be changed by the member variable.

To change the RDP status, use the dedicated DL that fists the GBIl commands. This is called the RDP
command string.

The RDP command string can contain primarily only commands for controiling the status of the RDP. In
other words, the GB! commands that can be used as the RDP command string are limited. The RDP
command string and the possibie GBls are shown below. The operation of the GBI commands below is
the same as in the Fast3D-compatible microcode. GBI commands not listed below may not work
correctly.

GBI Commands Usakle in RDP Command Strings

gSPNoOp gDPNoOp
gSPEndDisplayList
gDPFiilRectangle
gSPTextureRectangle gSPTextureRectangleFlip
gDPSetColorimage gDPSetDepthimage
gDPSetTexturelmage gDPSetScissor
gDPSetFillColor gDPSetEnvColor
gDPSetFogColor gDPsSetBlendColor
gDPSetPrimColor gDPSetPrimDepth
23 NUS-06-0164-001A

Released: 1/9/98

Z-Sort Microcode User's Guide

gDP3etCombineMode gDPSetConvert
gDPSetKeyR gDPSetKeyGB
gDPSetOtherMode

gDPPipelineMode(*) gDPSetCycleType(™)
gSPSetTexturePersp(™) gDPSetTextureDetail(*)
gDPSetTextureLOD(*) gDPSetTextureLUT(*)
gDPSetTextureFilter(*) gDPSetTextureConvert(*)
gDPSetCombineKey(™) gDP3SetColorDither(®)
gDPSetAlphaDbither(*) gDPSetAlphaCompare(™)
gDPSetDepthSeource(®) gDPSetRenderMode(*)
gDPSetTile gDPSetTieSize
gDPLoadBieck

gDPLoadTextureBlcok gDPLoadTextureBlockS
gDPLoadTextureBlock_4b gDPLoadTextureBlock_4bs
gDPLoadTextureBlockYuv gDPLoadTextureBlockYuvs
gDPLoadMultiBlock gDPLoadMultiBlockS

gDPLoadMultiBlock_d4b

gDPLoadTile
gDPLoadTextureTile
gDPLoadTLUT _pal16

gDPLoadSync
DPTileSync

gDPLoadMultiBlock_4bS

gDPLoadTextureTile_4b
gDPLoadTLUT_pal256

gDPPipeSync
gDPFullSync

One important note here regarding the inability to use gsSPsegment. Although the segment address can
be used for gbrsetCeclorImage, and the like, the value cannot be set with the RDP command string.
Also note that g5PBranchDL and gSPDisplayList cannot be used.

It is assumed that the three RDP Cmd areas rdpemdl, rdpecmd2, and rdpemd3 will be used as

follows.
rdpemd1: for setting RDP rendering mode
rdpemd2: for loading to TMEM (mainly, loading to total TMEM/front half of TMEM}
rdpcmd3: for help in loading to TMEM (mainly, loading to TLUT/back half of TMEM)

Given this assumption, use only rdpcmdl for drawing graphics without texture (zShTri, zShQuad).
All three may be specified when drawing textured graphics (zTxTri, zTxQuad).

Z-Sort Microcode is different from the microcode using the Z Buffer function, in that it draws in order
from the back to the front. Thus, it cannot continuously draw only polygons with the same texture.

Therefore, when using Z-Sort Microcode, ZObjects must be provided with texture information. However,
Z-Sort Microcode is equipped with a mechanism for minimizing the waste that resuits when a texture that
is already loaded to the TMEM is loaded again.

The pointer to the just-processed RDP command string is memeorized. This is compared to the pointer to
the RDP command string to be processed by the current ZObject and is sent to the RDP only when it is
different.

The microcode contains RDP command pointer memory areas for the three RDP commands rdpecmdl,
rdpemd2, and rdpcmd3 in DMEM (tentatively called rdpemdl_save, rdpcmdZ_save, and
rdpemd3_save). The algorithm for each process is written on the following page in C language.

24

Drawing

For zshTri, zShQuad (one RDP Cmd area):

F

[if (rdpcmdl != rdpcmdl save}

| Processing of RDP command string displayed by rdpcmdl;
{ rdpcmdl save = rdpcmdl;
i
!
|

}
Drawing of ZObject;

The RDP command string for switching to the RenderMode is usually set to cdpomdl. A sample of an
RDP command string specific to rdpcmdl is given below.

ysDPSetOtherMode is the GBI for setting a number of DP mode settings at once. Since many RDP
comimands can be processed with a single instruction, using this command acceierates the processing
speed. The commands marked (*) in the above table of GBI Commands Usable in RDP Command
Strings, can be processed collectively by gDESetOtherMode.

i
| #define OTHERMODE;A(CYC) (G CYC #rcyc##iG PM lPRIMITIVEIG TP PERSP|¥
{ G _TD CLAMP|G_TL TILEiG TT NONE]G TF BILERPI¥
i

G_TC_FILT|G_CK_NONE|G_CD DISRBLE|G_AD DISABLE}
{ #define OTHERMODE B (rm)

(G_AC_NONE|G_ZS5_PRIM|G_RM ##rm##|G _RM ##rm##2)

|
| /% Shade Triangle mode switching ------ */

| Gfx modesShTri[] = {

| gsDPPipeSync(),

| gsDPSetOtherMede (OTHERMODEHA {1CYCLE) , OTHERMODE B (RA_OPA;SURF)),
{ gsDPSetCombineMode (G _CC_SHADE, G _CC_SHADE),

| gsSPEndDisplayList (),

I}

I

For zTxTri and zTxQuad (three RDP Cmd areas)

if (rdpcmdl != rdpemdl save) {
rdpemdl_save = rdpcmdl;
Processing of RDP command string displayed with rdpcmdl;

|
!
i
!
tl

| if (rdpcmd2 != rdpcmd2 save) {

| rdpemd2_save = rdpcmd2;

| Processing of RDP command string displaved with rdpcmd2:;
|

I

!

!

{

|

I

I

}
if {rdpcmd3 != rdpcmd3 save) |
rdpcmd3_save = rdpcmd3;
if (rdpcmd3 != NULL) { .
Processing of RDEF command string displayed by rdpcmd3;
}
}

As with zshTri and zshQuad, the RDP command string for switching to the RenderMode is set to
rdpcmdl. A sample of an RDP command string specific to rdpcmdl is given below. Palette-switching
in the 4b Cl texture, etc., can also be included here.

i
WAEEEEE Textured Triangle mode switching ---——-—- */

| GEx modeTxTri[) = {

| gsDPPipeSync(),

| gsDPSetOtherMode (OTHERMODE A (LCYCLE), OTHERMODE _B (RA_OPA_SURF}),
| gsDPSetCombineMode (G cc MODULATERGB G_CC MODULATERGB)

| gsSPEndDisplayList (),

| };

J

25 NUS-06-0164-001A
Released: 1/9/98

Z-Sort Microcode User's Guide

Set the RDP command for loading the texture to rdpcmd2. A sample of an RDP command string

specific t0 rdpemd?2 is given below.

|

| GEx modeTxTri2[] = {

| gsDPPipeSync(),

| gsDPLoadTextureBlock (brick, G_IM_FMT RGBA, G IM SIZ 1eb, 22, 32, g,

| G_TX WRAP | G_T¥X MIRROR, G_TX_WRAP | G_TX MIRROR,
| S, 5, ¢_TX_NOLOD, G_TX_NOLOD),

| gsSPEndDisplayList (),

b ts

{

Make settings to rdpcmd3 the same way as rdpcmd?2. Although rdpemd3 is presumably used for TLUT
loading, it can aiso be used for texture loading.

If rdpcmd3 is unnecessary, assign NULL (= 0x00000000). Atthistime, rdpemd2_save is *cleared”
by NULL and the RDP command displayed by xdpcmd3 is not processed.

For zNull (three RDP command areas):

i

if (rdpemdl != NULL && rdpcmdl !'= rdpcmdl_save) |
rdpemdl_save = rdpcmdl;

Processing of RDP command displayed by rdpcmdl;
}

if (rdpcmd2 != NULL && rdpemd? != rdpcmd2_save) {
rdpcmdZ_save = rdpcmdZ;

Brocessing of RDP command displayed by rdpcocmdZ;

if {rdpcmd? !'= NULL && rdpcmd3 != rdpemd3_save) |
rdpemd3 _save = rdpemd3;

Processing of RDP command displayed by rdpcmd3;
}

f

I

\

|

t

|

t

| }
i

|

i

|

i

There are no particular assumptions regarding zNull, so it may be used freely. As can be seen from
the above algorithms, when NULL (=0x00000000} is set to rdpemdl, RDP commands are not
processed. The value of the corresponding rdpcmd _save at this time is *saved™.

Clear Screen and Other Drawing Processing

One important note regarding the use of Z-Sort Microcode is the inability to write direct RDP commands
to a normal Display List. This is due to its being internally divided into SP command processing and DP
command processing. This determines the number of microcede instructions and processing speed.

Normally, background filling processes, such as Clear Screen, are necessary for drawing all ZObjects. In
Fast3D-compatible microcodes, such a GBI string is usually created in a static area and is called from
the Display List side.

However, since the RDP command string for controlling such DP operations as screen clearing is called
from the normal Display List, Z-Sort Microcode contains the following GBt commands. The GBI
commands that can be used for the RDP command string are limited, as are which ones can be used
during ZObject drawing. Refer to the preceding table. For specific examples, refer to the sample
program cubes-1.

gspzrdpcmd (Gfx *gp. Gfx *rdpcmd)
This is a pointer to the rdpcmd RDP command string.

Process the RDP command string. The RDP commands that can be called, however, are limited.
(Refer to the table “GB! Commands Usable in RDP Command Strings” on page 23.)

26

Arithmetic Cperations

Chapter 4 Arithmetic Operations
Display Objects and Arithmetic Operations

As explained previously, Z-Sort Microcode, can draw four types of polygons, zshT:i, zShQuad,
zTxTri, and zTxQuad. Though this initially appears to be a small number, inany more shapes can be
drawn by combining these basic four. This microcode offers the following three principal processing
operations.

(Operation A) -—- gSPZMultMPMtx
Model coordinate vertex data +
MxP matrix ==> Screen ccardinate wvertex data
(Operation B) --- gSPZLight / gSPZLightMaterial
Nermal ray vector data +
Material data +
Light data +
ModelView matrix ==>» Color data
(Operation C) -—— gSPZLight/gSPZlightMaterial
Normal ray wvector data +
Line of sight (LookAt) data +
ModelView matrix ==> Texture coordinate (environment map) data

In all polygon ZObjects, (Operation A) must be performed to find the screen coordinate vertex data.
Also, (Operation B) is required when processing light and (Operation C) is required when processing the
environment map.

Each GBI used to perform operations A, B, and C {(gSPZMultMPMEx,
gSPZLight/gSPZLightMaterial), however, is insufficient by itself. The vertex data and
transformation parameters (matrixes, etc.) must be prepared and the DMEM in the RSP must be loaded
before the GBI that performs the operations. in addition, the operation results must be written and
returned to the DRAM from the DMEM.

Work Area for Operations in DMEM

Z-Sort Microcode has a GBI for specialized arithmetic operations to perform transformation processing to
the 3D model screen coordinate system, lighting calculations, and matrix operations using the RSP.

By combining multiple operations, such values as coordinate and color values necessary to draw
ZObjects to the screen can be obtained.

For example, the following GB! commands are combined to transform model coordinates to screen
coordinates.

1. gSPZViewPort Sets VIEWPORT.

2. gSPZPerspNormalize Sets pass normalization factor.

3. gSPZSetMix Loads PROJECTION matrix to work area in DMEM.

4. gSPZSetMtx Loads MODELVIEW matrix to work area in DMEM.

5. gSPZMtxCat Mutltiplies PROJECTION and MODELVIEW matrixes.

6. gSPZSetUMem Loads model coordinate values inside DRAM to work area in
DMEM.

7. gSPZMuitMPMix Transforms model coordinate values to screen coordinate
values.

3. gS8PZGetUMem Outputs screen coordinate vailues to DRAM.

27 NUS-06-0164-0014
Released: 1/9/98

Z-3ort Microcode User's Guide

In Z-Sort Microcode, the work areas used in processing arithmetic operations are stored in DMEM.
There are two types of work areas, one for general purpose use and one for matrices, each with the
following sizes. Also, the general purpose work area is called the user area.

Generai purpose work area:

{User area) Total 2048 bytes

Matrix work area Total 192 bytes
{Breakdown) ModelView 64 bytes
Projection 64 bytes
MxP 64 bytes

The user area occupies address 0 to 2047. The apptication creator determines how this area is to be
used.

In 1ib2-3Sort of the sample program cubes-1, the user area is used as follows. Though the areas
overlap, this does not cause a problem because they differ in terms of time sequence. Refer to the user
area.

1200-1919; stores source of model coordinate values (Can hold up to 120 groups)

0-1919: stores resuits of screen coordinate vaiue (Can hold up to 120 groups)
calculations

0-383; stores source of normal ray vectors (Can hoid up to 128 groups)

£12-1023: stores source of material colors {Can hold up to 128 groups)

512-1023: stores resuits of lighting calculations {Can hold up to 128 groups)

1024-1535; stores results of environment texture map {Can hold up to 128 groups)
coordinate calculations
1920-2047: stores light data (3 DEFUSE lights + 1 AMBIENT
+ environment map)

The user can divide up and freely use the user area. Since the matrix area has been prepared for
storing matrix data, however, it cannot normally be used for other purposes. The user area can also be
divided up in detail by specifying a particular address; in the matrix area, basically one of the areas
(GZM_MMTX, GZM PMTX, or GZM_MPMTX) is specified. However, address 0~63 at the head of the
user area and address 64~127 can be used for the matrix area. Therefore, the five following areas can
be used for matrices. Note that the matrix areas have been named ModelView/Projection/MxP for
ease of understanding; their functions, however, are identical. |f there is any confusion, the ModelView
matrix can be assigned to the MxP matrix area.

GZM_ MMTX ModelView matrix area
GZM_PMTX Projection matrix area
GZM_MPEMTX MxP matrix area
GZM_USERO User area address 0~63
GZM_USERL User area address 64~127

GBls used for arithmetic operations operate with either the Main DL or the Sub DL. Thus, pay attention
when reading and writing the user area by either DL. When paraliel processing by the Main and Sub
DLs, Sub DL GBIs sometimes destroy the data calculated by Main DL GBIl. Accessing the user area via
either DL, therefore, is not recommended. Also, it is better to determine which DL will perform arthmetic
operations.

28

Arithmetic Operations

GBI List

This is the list of GBIs for arithmetic operations.

gSPZSetUMem
gSPZGetUMem
gSPZSetMix
gSPZGetMtx
gSPZMtxCat
gSPZMtXTmsp3x3
gSPZViewPort
gSPZMultMPMtx

gSPZSetAmbient
gSPZSetDefuse
gSPZSetLookAt
gSPZXfmLights
gSPZLight
gSPZLightMaterial

gSPZMixS16

gSPZMixS8
gSPZMixU8

GBIl Functions

This sections explains the GBIs for arithmetic operations.

Writes data to user area
Reads data in user area
Writes matrix

Reads matrix

Multiplies matrixes

Inverts 3x3 element of matrix
Sets VIEWPORT

Transforms model coordinate values to screen
coordinate values

Writes Ambient light (environment light)
Writes Defuse light (diffused light)

Writes LookAt structure data

Performs light parameter pre-processing
Performs light calculations

Performs light caiculations taking matrix into
consideration

Performs s16 numeric interpolation
Performs s8 numeric interpolation

Performs u8 numeric interpolation

gspzsetumem (GfX *gp, u32 umem, u32 size, ué4 *adrs)

umem user area address for write destination (0~2040)
size write sizs (8~2048)
adrs pointer to write source in DRAM

This GBI writes data to the user area. umem and size must be multiples of 8. Also, adrs has an 8-byte
boundary. if 10 bytes of data are needed, specify 16 bytes.

gspzeetUMem (GfX *gp, u32 umem, u32 size, ué4 *adrs)

umenm user ares address for read destination (0~2040)
size read size {8~20438)
adrs pointer to read destination in DRAM

This GBI reads data from the user area. umem and size must be muitiples of 8. Also, adrs has an 8-

byte boundary.

gspzsetuMtx (GfX *gp, u32 mid. Mtx *mptr)

mid matrix area for write destinaticn
mptr pointer to write source in DRAM

This GBI writes matrix data in DRAM to the matrix area. Generally, one of GZM_MMTX, GZM_PMTX, oOr
GZM_MPMTX is specified to mid. However, the 128 bytes at the head of the user area can also be used.
If so, specify GzaM _USERO and GzM_USERL. This allows address 0~63 at the head of the user area and

address 64~127 to be used for the ‘matrix area.

NUS-06-0184-001A
Released: 1/9/98

Z-Sori Microcode User's Guide

gspzeettMtx (Gfx *gp, u32 mid. Mix *mptr)

mid matrix area for write destination

mptr pointer to write source in DRAM
This GBI writes matrix data in DRAM to the matrix area. Generally, one of GZM MMTX, GZM_PMTX, Of
GZM_MPMTX is specified to mid. However, the 128 bytes at the head of the user area can also be used.
If so, specify czM_USERC and Gz USER1. This allows address 0~63 at the head of the user area and
address 64~127 to be used for the matrix area.

gspzMtxcat (GfX *gp, u32 mids, u32 midt, u32 midd)

mids matrix zrea $
midt matrix zrea T
midd matrix area D
This GBI calculates (Matrix D} = (Matrix 35) + (Matrix T). Generally, one of GZM_MMTX,

GZM_PMTX, Of GZM MPMTX is specified to mids, midt, and midd. However, the 128 bytes at the
head of the user area can also be used. If so, specify GzM USERO and GzM_USERL. This allows address
0~63 at the head of the user area and address 64~127 to be used for the matrix area.

When matrix T and matrix D areas are the same, however, the operation may not perform as expected.
There is no problem when areas S and D or S and T are the same.

gspzMtxTrnsp3x3 (GfX *gp, u32 mid)

mid matrix area to be transposed

This GBI transposes the 3x3 element of the matrix {(x, v, z). When the matrix is rotating, the
transposed result means the reverse rotation of the source matrix. This transposed matrix is used mainly
for light processing.

joo 01 02 03] |00 10 20 30|
f10 11 12 13} - [01 11 21 13|
f20 21 22 23| 02 12 22 23|
130 31 32 33| [30 31 3z 33|

One of GZzM_MMTX, GZM_PMTX, or GZM MPMTX is specified to mid. However, the 128 bytes at the head
of the user area can also be used. If so, specify GZM USERO and GzM_USERL. This allows address
0~63 at the head of the user area and address 64~127 to be used for the matrix area.

gspzviewport (GfX *gp, Vp *vp)

vp pointer to VIEWPORT data

This GBI is roughly the same as the gseviewPort GBI in FADEX. Although it sets the VIEWPORT,
there are differences in the VIEWPORT data parameters. In Z-Sort Microcode, the parameter to control
Fog is specified to the Vp structure member variables vscale, vscale[3] of vtrans and

vtrans [3] using the following macro,

GZ VIEWPORT FOG S ({in, out):;

vp->vp.scale[3] N _FOG_.
GZ_VIEWPORT FOG T (in, outf);

vp->vp.trans[3]
where:

in: Fog start distance
out: Fog end distance

A negative value must be set for the vacale{1] value to make the top part of the screen positive, i.e.,
the right, top, front direction (clockwise system).

30

Arithmetic Operations

Start Fog from a distance of 3000 from the perspective. When specifying so that the background color is
uniform at a distance of 4000, initialize as foilows.

Vp viewport = {
SCREEN_WD*2Z, *SCREEN HT*2, G _MAXZ/2, GZ_VIEWPORT_FOG_S (3000, 4000)
SCREEN_WD*2, *SCREEN_HT*Z, G_MAXZ/2, GZ_VIEWPORT_FOG S (3000, 4000)
boi

gspzMul tmMpmtx (GfX *gp, u32 mid, u32 src, u32 num, u32 dest)

mid MXP matrix

src user area head address that stores vertex nodel coordinate values
num number of wvertices to be processed

dest head address in user area that stores vertex screen cocrdinate

values after coordinate transformation

This GBI regards the data at the user area's src position as the 16-bit x, y, z value. This is multiplied by
the 4x4 matrix specified by mi d and that result (X, Y, Z, W) is normaiized by W=1. The screen
coordinate value is then obtained by transforming ViewPort to the obtained coordinates. Also, at this
time, the flags for the FOG parameter and clipping processing are calculated and that data is output to
the dest position. Next, 6 is added to src and 16 to dest, and the process proceeds to the next vertex.
The num vertices are processed continuously.

The formats of the coordinate values to be input and output at this point are defined as follows as the
zVtxSrc and zvtxDest structures in the header file gz-Sort.h.

typedef struct {
sle x, y, Z; /* Vertex model cocrdinate values (s510.2) */
} ZVExSrc; /* Size 6 bytes */
typedef struct {
slé sx, sy: /* Vertex screen coordinate wvalues (sl0.2) */
332 invw; /* Texture pass vective correction parameter 1/W {s15.16}
/*
sle xi, yi: /* X, Y values before normalization {integers cnly) */
u8d cc; /* Flag for clip processing determination */
ug fog; /* FOG factor */
516 wi-; /* W value {integers only) */
} zVtxDest; /* Size total 16 bytes */

Since the size of the zvtxsrc structure is 6 bytes, pay special attention to the 8-byte alignment when
transferring DMA using gsPzSetUMem. When the transfer size must be a multipie of 8, the DMA
transfer size must be rounded off to a multiple of 8.

Since the size of the zvtxDest structure is 16 bytes, only the 128-byte area in the 2048-byle user area
can be protected. As a result, the num range is from 1 to 128. (In actuality, since light and other
processes are performed, the range is usually smaller than this.) At this time, the num * 16-byte area
from the dest address can be rewritten; the exception is when num is 3 or less. In this case, the 64-byte
area from the position specified by dest is overwritten.

For exampie, when num is 3 and dest is 0, the correct value after transformation can be stored at
address 0~47 and meaningless data can be written to address 48~63. Be careful here because the
value of the source of address 48~63 will be destroyed. This specification is necessary for improving the
calculation speed.

31 NUS-06-0184-001A
Released: 1/9/98

Z-Sort Microcode User's Guide

The routine for this GBI is illustrated below. Be sure that the unprocessed src is not overwritten by the
dest output to allow the src and dest. areas to be overlapped. In libZ-Scrt of the sample program
cubes-1, with sre = 1200~1919 and dest = 0~1918, a maximum of 120 vertices can be processed.

for (1 = 0; 1 < num; 1 ++) {
*dest = MultMP (*src);
src += 6;
dest += 16;

}

The member variable invw is found as shown below from coordinate value (X, Y, Z, W) W after
multiplying the coordinate value of each vertex (x, y, z, 1) by the MxP matrix. However, perspNormis
the parameter for normalizing the perspective transformation set by guPerspNormalize.

invw = {1<<30}/(perspNorm * W):
The invw value can be used, asis, t0 set zT«Tri/zTxQuad for the ZObject.

When creating the MP matrix using quPerspective and guLookAt, the wi value usually indicates the
distance from the perspective point. Z-Sort can also be performed by selecting this value as the screen
depth.

Also, xi, vyi isthe non-normaiized coordinate value before perspective transformation. This value can
be used mainly for clipping processing. Z-Sort Microcode does not support clipping processing using the
microcode. However, clipping can be performed using the xi, yi, wi valueinthe CPU program.
The details are explained later in this manual.

By checking the value of the clipping processing determination flag cc, it can easily be determined
whether that vertex is in ViewPort (visible area). The following explains each cc flag.

GZ_CC_LEFT X coordinate is left of Left Plane of visible area
GZ_CC_RIGHT X coordinate is right of Right Plane of visible area
GZ_CC_TOP Y coordinate is above Top Plane of visible area
GZ_CC_BOTTOM Y coordinate is below Bottom Plane of visibie area
GZ_CC_NFAR Z coordinate is closer than Near Plane of visible area
GZ_CC FAR Z coordinate is further from Far Plane of visible area

To determine whether the triangle comprised of the vertices v0, v1, and v2 is completely outside the
screen, do an AND for the cc value of each vertex as shown below and check to see if the result is 0. If
the result is not 0, it means that the entire triangle area is outside at least one of the six clip planes. If this
is the case, the processing can be stopped at that peint, since the triangle is outside the screen.

if (v0., cc & vl. cc & v2. cc) |
Processing stopped because triangle is outside screen;

!

To determine whether the triangle v0, v1, v2 intersects the Near Plane, use the above formula to
determine whether the triangle is outside the Near Plane and then perform OR processing. This can be
used to determine whether clipping processing is being performed at the Near Plane.

if ((v0. cc | vl. cc | v2. cc) & GZ_CC_NEAR} {
Perform Near clipping processing;

}

fog is used when performing FOG processing. Using the fog value for A in RGBA enables FOG
processing. In Z-Sort Microcode, FOG is adjusted by ViewPort's Vp structure parameter. For details,
refer to the sample program.

In this GBI, obtainable vertex data is actually used as shown below. The numeric values actually to be
assigned to each ZObject structure are the sx, sy, fog, and invw values. The invw or wi value
can be used as the screen depth value for Z-Sort processing.

32

Arithmetic Cperations

[For zshTri structure]

zVtxDest 0, *vl, *v2;
zShTri *shtri;

/* Screen coordinate setting */

shtri-»>t.v[0].x = v0->35x%; shtri->t.v[0].y = v0->sy;
shtri->t.v[1].x = vi-»sx; shtri->t.v{ll.y = vl->sy;
shtri->t.v[2].Xx = v2->3%; shtri->t.v[2].y = vZ2->sy;

/* The settings below apply only when using Fog */
shtri->t.v[CG].a =
shtri->t.v{l]l.a = vl->fog;
shtri->t.v[2].a = v2->fog;

[For zTxTri structure]

zZVtxDest *v0, *vl, *v2;
ZTxTri : *txtri;

/* Screen coordinate setting */

txtri->t.v[0].x = v0->sX; txtri->t.v[0].y = v0->s5y;
txtri-»>t.vill.x = vl1->»sx; txtri->t.v[l].y = vi->sy;
EXtri-»>t.v[2].x = v2->sx; txtri->t.vi2]l.y = v2->sy;

/* Texture correction parameter setting */

txtri->t.v[0].a = v0->fog;
tXtri-»t.v([1l].a = vl->fog;
txtri->t.v[2].a = v2~>fog;

gsSPZsetAmbient (GfX *gp, u32 umem, Ambient *ambient);
gSPzSetDefuse (GfX *gp, u32 umem, u32 lid, Light *defuse);

umem head address for light data protection area
ambient pointer to Ambient light structure

lid Defuse light number (0, 1,)

defuse peinter to Defuse light structure

These GBIs write Ambient light (environment light) data or Defuse light {planar diffused light) data to the
user area. The light data area is protected in advance in the user area. ts size depends on the number
of Defuse lights and whether the environment is mapped. it is calculated as follows.

(Light data area size) =
B + 24 * (number of Defuse lights) + ({environment mapping)? 48 : 0));

In 1ibZ-Sort of the sample program cubes-1, since three Defuse lights and environment mapping are
used, the 128 bytes from 1920 to 2047 are reserved for the lights.

Fast3D macros can be used to set the Ambient and Defuse structures. When there are two Defuse
lights, they are set using gdspPDefLights2, as shown in the example below.

/*-—— Light parameter —---+/
static Lights2 scene light =
gdsPDefLights2 (0x20, 0x20, 0x20, /* Ambient */
Oxe0, 0Oxe0, Oxel, 0, 40, 8O0, /* Defuse 0 */
0x40, Ox00, 0x00, ©, 80, 40 }; /* Defuse 1 */
/*--- Load light parameter —-—-%*/
gSPZSetAmbient (gp++, 1220, &scene_light. a}:

gSPZZetDefuse {gp++, 192¢, 0, &scene_light. 1{0]);
gSPZ3etDefuse (gp++, 1920, 1, &scene light. 1[1]};:

33 NUS-06-0164-001A
Released: 1/9/98

Z-Sart Microcode User's Guide

gspzsetLockat (Gfx *gp, u32 umem, u32 Inum, LookAt *lookat)

umem head address for light data protection area
lnum number of Defuse lights
lockat pointer to LookAt structure

This GBI writes the Lookat structure data that constitutes the parameter for envircnment mapping io the
light data area. The light data area is protected in advance in the user area. Refer to the explanation for
gSEZSetAmbient/gSPLSetDefuse on page 33 for further details.

______________ Z-Sort Microcode supports TEX_GEN_LINEAR inthe TEX GEN and TEX_GEN_LINEAR processing modes

of the Fast3D-compatible microcode for environment map processing. it is already set up for TEX_GEN
processing.

Although the functions quLookAtRefleact and guLockAtHilite in the gu library of the N64 OS can
be used to set the Lookat structure, part of it differs from Z-Sort. Since the macro guzrixLockAt is
available for correction, correct using this after setting Lookat using the library functions.

Shown below is the data write processing when gdSPDefLights?2 is used for two Defuse lights. The
lights are set and the reflection is mapped using guLocok&tReflect.

/*—-- Light parameter ---*/

static Lights2 =scene light =

gdsPDeflights2 (0x20, 0x20, 0x20, /* BAmbient */
0xe0, Oxe0, Oxe0, 0, 40, 80, /* Defuse 0 */
0x40, 0x00, 0x00, 0O, *8Q, 40): /* Defuse 1 */

/*--- Make reflection parameter --=*%/

gulookAtReflect (&dynamicp->viewing, sdynamicp->lookat,
o, 0, 1000, Q, O, 900, Q, 1, 0}:

guZFixLookAt (&dynamic;*>lookat);

/*--— Load light parameters =--*/

gSPZSetAmbient (gp+tt, 1920, §scene light. a);
gSPESetDefuse (gp++, 1520, 0, &scene_ light. 1[0])/
gSPZSetDefuse (gp++, 1820, 1, &scene light. 1[1]);

/*--— Load reflection parameters —---*/
gSPEZSetLookAt (gp++, 1920, 2, &dynamicp*>lockat);

guZfixLoeokAt is defined in gZ-Scrt.h as shown below.
#define guZFixLookAt(lp)
{ (1p)—>1{11.1.col[1l] = (1p)}->1[1].1.colc[1l]1 = Ox00; }

This is because two elements have been cleared to Q. (0x80 has been assigned by the gu library.) if
you want to optimize your processing time, refer to the source file of the gu library function in the N64
OS under the /libultra/gu directory in the libultra sample program, to correct and replace the library
function.

gspzxfmLights (gfx *gp, u32 mid, u32 Inum, u32 umemy)

mid matrix with 3x3 element at upper left of MadelView matrix inverted
lnum number of lights to be processed
umem head address in user area that holds light data

This GBI performs lighting pre-processing. The GB! must be called after one or both of the light data
and ModeiView matrix has been changed and by the time g*SPLight or g*SPLightMaterial is
calied. .This enables pre-processing in which light data can be used in light caiculations by gSPZLight
and gSPZLightMaterial. Since light data will rarely change in ane scene, this GBI is called when the
ModelView matrix changes.

34

Arithmetic Operations

To execute this GBI, the reverse rotation matrix of the ModelView matrix is necessary. Forthis, the
matrix with the 3x3 element at upper left of ModelView matrix inverted can usually be used. (The
shading is sometimes off when scaling only certain axes, but this is not a notable problem.)
gSPZMtxTrnsp3x3 is used for the inversion.

The number of 1num basically is the number of Defuse lights. This does not include the Ambient lights.
Also, Lnum cannot be set to 0 in Z-Sort Microcede, To process only Ambient lighting, specify one black
(RGB=0, 0, 0) Defuse light using a dummy.

When processing the environment map, use two so-called Defuse lights. When expressing highlighting
and reflection, load the environment map parameter to the light parameter area and set (2 for the
number of Defuse lights) to Lnum.

When using only the environment map without using lights (no Defuse lights}, the dummy Defuse light
described above is unnecessary. Specify 2 to 1num and call the GBI,

Shown below is a processing example with the changed McdeiView matrix, the light data area head at
address 1920, two Defuse lights, and the environment map.

/*-—= Set ModelView and MxP matrix -—-~-*/
gSPZSetMtx (gp++, GZM MMTX, &dynamicp->modelingfi]);
gSPEMtxCat (gp++, GEZM MMTX, GZM PMTX, GEZM MPMTX);
/*——- Xfm light data ---*/
gSPEMtxTrnsp3x3 (gp++, GEM_MMTX) ;
gSPZXfmLight (gp++, GZM MMIX, 1920, 4);
gspzLight (GfX *gp, u32 nsrc, u32 num, u32 cdest, u3d2 tdest)

gsSPzZLightMaterial (GfX *gp, u32 msrc, u32 nsrc, u32 num, u32 cdest, u32

tdest)

msrc head address in user area that stores material color data (color of

vertices)
nsrc head address of user area that stores normal ray vector data
num number of normal ray vector data to be processed (multipie of 2)
cdest head address of user area that stores color value of vertices after
light

calculation
tdest head address of user area that stores textire and coordinate values
of

vertices after environment map calculation

This GEI regards the data from the nsre address in the user area as the signed &-bit normal ray vector
value (nx, ny, nz). It calculates the lighting using the light parameters specified by gSPZXfmLight.
This provides the light color that corresponds tc the normal ray vectors. The vertex color is obtained by
multiplying this light color and the material celor, which is the color of the vertex itself, by eachr, g, b
element. These calculated color values are stored at the cdest address in the user area.

With gspzLight, (r, g, b, a) = (255, 255, 255, 255) is used as the material color. As with Fast3D
microcode, this indicates vertex coloring using light color. Also, with gspPzLightMaterial, use data
from the ms r< address in the user area as (r, g, b, a), in order, as the unsigned 8-bit color data.

In addition, when Lookat structure data is set as the light data, lighting calcuiation and environment
map calculation are performed simultaneously. Texture coordinate vaiues (S, T = 0.00~32.00) are
output to the tdest address in the user area as the calculation results. Even when Lcokat structure
data is not set, an undefined value is output to tdest so be careful that the (num * 4) bytes area is not
destroyed.

After cdest and tdest are output, 3 is added to nsrc and 4 is addedtomsre, cdest, and tdest,
and the process proceeds to the next vertex. Althgugh the num normal ray vectors are processed

35 NUS-06-0164-001A
Released: 1/9/98

Z-Sort Microcode User's Guide

continuously, num must be an even number. If it is odd, (num+1) is output to cdest and tdest to make
an even number. Meaningless data will be output to the output data position of num+1.

The formats of the data values to be input and output using this GBI are defined as follows as the
zNorm, zColor, and zTxtr structures in the header file gz-sScrt.h.

typedef struct {
s8 nx, ny, nNz;
} zMNorm;

typedef struct {
uf r, g, b, a;
I zCcler_t;

typedef union {
zColor t n;
u3z W7
} zColor;

typedef struct {
s1l6 5, t;
}ozTxtr t;

typedef union {

ZTXtr_t n;
u3z Wy
} 2TXtr:

Since the size of each structure is 3 or 4 bytes, pay special attention to the 8-byte alignment when
transferring DMA using gSFZSetUMem, When the transfer size must be a multiple of 8, the DMA transfer

size must be rounded off to a multipie of 8.

The routine of this GBI is basically as foliows. If you are careful not to overwtiite the unprocessed nsrc
and ms rc with the output of cdest and tdest, it is possible to overlap these areas.

for (i = 0; 1 < num; i ++) {

{*cdest, tdest) = CalclLight (*nsrc, *msrc);
nsrc += 3;
msrc += 4;

cdest = 4;
tdest += 4;
}

gspzMixs1e (GfX *gp, u32 src1, u32 src2, u32 num, uié factor)
gspzMmixss (Gfx *gp, u32 src1, u32 src2, u32 num, u16 factor)
gspzmixus (GfX *gp, u32 src1, u32 src2, u32 num, u16 factor)

srcl head address 1 in user area where data to be interpolated is stored
and head address (common) in user area from which interpolation
results are to be output

src? head address 2 where data to be interpolated is stored
num number of data (multiple of 8)
factor mixed factors {u. 15 format 0x0000~0x7fff value)

These GBls perform linear interpolation on two numbers using the formula below. The s16, s8, and u8
data types are handled by the respective GB!.

{(*srcl) = (*srcl)*factor + (*src}*({l.0*factor);

In gSPZMix3516, srel and src2 combined are limited to 16 bytes. Also, in gSPZMixs8 and
gSPZMixU8, srcl and sre2 combined are limited to 8 bytes.

num must be a muitiple of 8, |f a number which is not a multiple of 8 is specified, meaningless data will
be output to srcl until the number becomes a multiple of 8.

36

Other Processing

Chapter 5 Other Processing

GBI List

This is a list of other GBis.
g3PZSegment Sets segment
gSEZSetSubDL Registers/starts Sub DL
gSPZLinkSubDL Processes unprocessed Sub DL
gSPZSendMessage Sends message to CPU
gSPZWaitSignal Waits for signal from CPU

GBI Functions

This chapter explains the remaining GBIs.

gspzsetsubDL (Gfx *gp, Gfx *subdi)

subdl Sub DL head address

This GBI registers the Sub DL and can only be processed in the Main DL. If a Sub DL has already
started, a second Sub DL may not function properly, if entered. Register a Sub DL only after the
processing of any Sub DL already registered by gSPz1.inkSubDL is compieted.

gsPzLinksubDL (Gfx *gp)

This GBI processes the Sub DL remaining to be processed and can only be processed in the Main DL. If
a Sub DL has already ended, nothing happens when the Sub DL are not registered.

gsSPzsendMessage (GfX *gp)

This GBI sends a SP_BREAK message to the CPU to inform the CPU of the status of Display List
execution.

When the DL execution status is unknown, the CPU cannot determine whether or not processing has
been completed, forcing it to wait until RSP processing has ended (until the RSP message Is received).

Display List

| ZObject A vertex calcuiation
I ZObject B vertex calculation
[ZObject C vertex caiculation
1 At this point, end message is sent to CPU

If the Display List is prepared as shown below using this GBI, the CPU can know whether or not the
vertex calculation for each ZObject has ended and can immediately build ZObjects.

Display List

ZObject A vertex calculation
gSPZSendMessage — message sent to CPU
Z0Object B vertex calculation
gSPZSendMessage — message sent to CPU
ZObject C vertex calculation
gSPZSendMessage — message sent to CPU

—

37 NUS-06-0164-001A
Released: 1/9/98

Z-Sart Microcode User's Guide

Given the overhead resulting from actually sending and receiving messages for each Zobject, as
explained above, it may be better to send messages for multiple ZObjects rather than for each object.
This is up to the user.

Just as with the delivery of normal messages, for the CPU to receive the SE_BREAK message sent from
the RSP, a message queue is used. Get the message queue for the sS2_BREAK message and connect it
to 0S_EVENT SP_BREAK uUsing osSetEventMesg. Also, although it is safer 10 set the size of the queue
to greater than the number of gSPZSendMessage in the Display List, this is not necessary. As long as
the number of sp_BREAK messages can be controlled, a smaller size presents no problem.

In conventional microcode, rmonThread used this S?_BREAK message. Originally, the message was
prepared for microcode BREAK POINT processing when using the GameShop DEBUGGER. This
function currently is not used significantly, so it was left up to the user. As a result, when rmonThreadis
not used, no problem occurs. When it is used, note that the SE_BREAK message queue must be set
after creating or starting rmonThread (executé osStartThread {0 rmonThread).

gspPzwaitsignal (Gfx *gp, zSignal *sig, u32 param)

sig pointer to Signal buffer

param Signal value (U32)
This GBI waits until the CPU Signal value exceeds the param value. Since the Signal value from the
CPU is updated through an RDRAM buffer, that buffer must be contained in the application itseif. During

execution of this GBI, the RSP determines whether or not the CPU has rewritten the buffer's Signal. If
so, the Signal buffer on the RDRAM is DMA transferred to DMEM and compared to the param.

The following is a macro for rewriting the CPU's Signal value.

GZ_SENSIGNAL (zSignal *sig, u32 val)

sig pointer to Signal buffer
val new Signal wvalue

After the Signal value is rewritten to val, notice that the change that has occurred is sent to the RSP,
Since the Signal value is an unsigned 32-bit variable, the smallest value is 0.

So far in the microcode, the Display List is handed over to the RSP after it is complete. In other words,
the RSP cannot process until the Display List has been completely created. However, even if the
Display List is not completely created, this GBI can send any created portion to the RSP, i.e., the RSP
can be made to wait until the rest of the Display List is created. When this gSPZWaitSignal and the
earlier output gSPZSendMessage are combined, simple synchronicity occurs between CPU and RSP
processing, demonstrating the great power of serial processing of the Display List.

38

Compatibility With Other Microcodes

Chapter 6 Compatibility With Other Microcodes
About GBIs

Z-Soit Microcode is not compatible with other Fast3D-compatible microcodes. However, some GBIs will
be shared to allow switching by the microcode and self-loading of the F3DEX system. This section
explains those GBIs that will likely belong to both microcodes.

The names of the GBls explained here basically have the new prefix g3PZ instead of the corresponding
prefix gSP of the GBI macro in F3DEX.

Z-Sort Microcode GBls inciude a subset of FADEX GBI Level 2. This F3DEX GBI Level 2 is a new and
improved GBI set offering faster RSP processing speeds in F3DEX Microcode and will be adopted in the
upcoming F3DEX Microcode release.

As a result, Level 2 is not compatible at the binary leve! with the GEls adopted in F3DEX Microcode
Version 1.23 or earlier. Thus, performing such processing as the microcode and self-loading in the
F3DEX microcode system is difficult.

Since Z-Sort Microcode uses F3DEX GBI Level 2, when using Z-Sort Microcade, F3DEX GBI 2 must be
defined by the #define statement or compile option D

Common GBls

gSPZSegment Sets segment
gSPZPerspNormalize Sets perspective correction value

gspPzsegment (GfX *gp, u32 seg, u32 base)

seqg segment number (0~15)
base segment base address

This GBI sets the segment. Although processing by either the Main DL or a Sub DL is possible, when the
same segment number has been rewritten in the Main DL or a Sub DL, problems can be expected when
parallel processing is started. To avoid these probliems, try as much as possible not to overlap the
segments to be used in the Main and Sub DL.

gSPZPerspNormalize (GfX *gp, u16 persp)

persp pass comrection value

This GBI sets the perspective correction value. It is the same as the gSPPerspNormalize GBI in
F3DEX.

39 NUS-06-0164-001A
Released: 1/9/98

2-Sort Microcode User's Guide

40

CPU Support Library

Chapter 7 CPU Support Library

tn Z-Sort Microcode, building plane data from the vertex data on the screen, i.e., ZObject data, depends
on the CPU. Using arithmetic operation GBI commands, 3D coordinate vertices can be transformed into
screen coordinate vertices. The CPU's role is to connect these vertices to build polygons, The CPU
performs other processing as wetl and, therefore, a CPU library must be created by the user to perform
this processing. The library used in the sample program cubes-1 is explained below to provide a

sample library.

[Multiplv model matrix by perspective transformation matrix

| Calculeats

for model
{ Determine
| Determine
| Comstruct
I

coordinate transformation/perspective transformation/screen depth
vertices

whether there are vertices in the screen

clipping/back plane

Z0bject data

Create ZObject list

41 NUS-06-0164-001A
Released: 1/9/98

Z-Sort Microcode User's Guide

42

Programming Cautions

Chapter 8 Sample Programs

The sample programs are installed under the /usr_/src/PR/gZ"Sort directory.

zonetri/

This displays one quadrangle and is the simplest application of Z-Sort.

cubes-1

A wide variety of polygons can be drawn using Z-Sort Microcode. The general-purpose library 1ibz-
Scrt is created and data is sent to it for drawing. Near clipping and other processes are performed in
the library. its 2-pass processing, however, hinders performance.

43 NUS-06-0164-001A
Released: 1/2/28

Z-Sort Microcode User's Guide

S2DEX Microcode

User’s Guide

NUS-06-0136-001 A
Released: 1/9/98

S2DEX Microcode User's Guide

D.C.N. NUS-06-0136-001 REV A

“Confidential”

This document contains confidential and proprietary information of
Nintendo and is also protected under the copyright laws of the
United States and foreign countries. No part of this documeni may
be released, distributed, fransmitted or reproduced in any form or by
any electronic or mechanical means, including information storage
and retrieval systems, without permission in writing from Nintendo.

@ 1998 Nintendo

TM® and the “N” logo are trademarks of Nintendo

Tabie of Contents

Table of Contents

Chapter 1. Introduction 5
What is S2DEX Microcode? 3
Features of S2DEX 3

The Drawing Primitive 5
Self Loading Function 6
DEBUG Information Output Function 6
Passing Commands from RSP to RDP 6

Chapter 2 Compatibility with F3DEX 7
GBIs Supported by Both S2DEX and F3DEX 7
GBIs Not Supported in S2DEX 8
New GBIs 3
Precautions Regarding GBIs 8

Changing Mode Using GtherMode 8

Chapter 3 S2DEX GBIs 9

BG Drawing GBI 9
uObjBg Structure 9
gSPBgRectCopy 11
g5PBgRect1Cyc 14

The Sprite Drawing GBI 16
1u0bjSprite Structure 16
u0bjMtx/uObjSubMtx Structures 17
gSPObjRectangle 17
gSPObjRectangleR 20
gSPOb;jSprite 20

2D Matrix Operation 21
gSPObjMatrix 21
gSPObjSubMatrix 22

Setting the Object Render Mode 22
gSPObjRenderMode 22
RenderMode when Drawing Sprites 24

The Texture Load GBI 24
uObjTxtr Structure 25
gSPObjLoad Txtr 26

Compound Processing GBI 29
nObjTxSprite Structure 29
£SPObjLoadTxRect 29
gSPObjLoadTxRectR 30
gSPObjLoad TxSprite 30

iii NUS-06-0136-001A

Released: 1/9/98

32DEX Microcode User's Guide

Table of Contents (Continued)
Conditional Branching GBI

g5PSetStarus

gS8PSelectDL

gSPSelectBranchDL

Chapter 4 Emulation Functions

30
30
31
31

33

guS2DEmuGBgRect] Cyc

guS2DEmuSetScissor

Chapter 5 DEBUG Information Output Function

33
33
35

37

Chapter 6 Installation of S2DEX Package

irtroduction

Chapter 1. Introduction
What is S2DEX Microcode?

The S2DEX microcode has beer developed to use Super NES-like sprite and BG functions on the
Nintendo 64 (N64). Due to these functions, it is easier to create a game using sprites. Also, by treating
drawing objects as sprites and BG, N64 programming is similar to the conventional sprite game
programming.

Features of S2DEX

The Drawing Primitive

Since S2DEX is designed specifically for processing 2D expressions, 3D primitive drawing for Fast3D
and F3DEX is not supported. However, the following primitives can be drawn using S2DEX Microcode.

Rectangle A -- gsPobjRectangle,gSPObjRectangleR {(Copy Mode)

Size is fixed. Texture flipping (vertical / horizontal) and drawing in the copy mode is possible. Scale
change (magnifying / shrinking) and rotation are not possibie Texture interpolation display and subpixel
movement are rot possible. Anti-aliasing processing is not possible. The texture must be loaded to
TMEM before drawing.

Rectangle B -- gsPobjRectangle, gSPObjRectangler(1, 2 Cycle Mode)

Texture flipping is possible {vertical / horizontal). Drawing in 1, 2 cycle mode is possible. Texture
interpolation display and subpixel movement are possible. AntiAlias processing is possible. Scale
change (magnifying / shrinking) is possible, but rotation can not be done. Texture must always be loaded
to TMEM. '

Sprite -- gspobjsSprite

Scale change (magnifying / shrinking) and rotation are possible. Texture flipping is possible (vertical /
horizontal). Texture interpelation display and subpixel movement are possible. AntiAlias processing is
possible. Drawing in copy mede is not possible. Texture must always be loaded to TMEM.

BackGround (BG}) A -- gSPBgRectCopy

Scrolling in closed region (vertical / horizontal loop) is possible. Horizontal texture flipping is possible
(not vertical texture flipping). Drawing is possible in copy mode only. Scaie change (magnifying /
shrinking) is not possible. Texture interpolation display and subpixel movement are not possible.
AntiAlias processing is not possible. Drawing is done by loading the texture on DRAM to TMEM as
necessary.

BackGround (BG)} B -- gspRgrRectlCyc

A CPU-based emulation routine is availabie. Scale change (magnifying / shrinking) is possible.
Scrolling in closed region (vertical / horizontal loop) is possible. Horizontal texture flipping is possible
(not verticai texture flipping). Drawing can be performed in 1 cycle mode only Texture interpolation
display is possible. Subpixel movement is possible in the horizontal direction only. AntiAlias processing
is not possible. Drawing is done by loading the texture on DRAM to TMEM as necessary.

5 NUS-06-0136-001A
Released: 1/9/98

S2DEX Microcede User's Guide

From Old GBI...
The foilowing functions can be used from the old graphics binary interface (GBI).

e FillRectangle
e TextureRectangle
e TextureRectangleFlip

The following functicns can not be used from the old GBI.

o« 1Triangle

s« 2Triangle

» 1Quadrangle

There are not many similarities between S2DEX and old Sprite2D Microcode. S2ZDEX is not an upgrade
to Sprite2D, but it is rather a new microcode. Also, sprite libraries such as spInit () can not be used in
combination with S2DEX because sprite libraries use 3D microcode. The S2DEX library is completely
different from the sprite library.

Self Loading Function

As mentioned above, S2DEX is not capable of drawing 3D primitives. However, S2DEX has a
microcode seif loading function which is supported by F3DEX (Release 1.20 or later). Therefore, it is
possible for S2DEX to draw 3D primitives by loading F3DEX microcode.

DEBUG Information Output Function

There are two types of S2DEX Microcode. One is installed for master ROM, and the other is for
debugging. The Microcode for debugging is equipped with the foilowing features.

» Output display list processing log
« Ifillegal input value or illegal command detected, stops RSP, and send the report to CPU
These functions are fully described later in this manual.

Passing Commands from RSP to RDP
S2DEX only supports fifo versions (same as FADEX series).

However, a larger FIFO buffer is required by S2DEX than for FADEX. While this buffer had to be 0x300
bytes or larger for the F3DEX series, it has to be at least 0x800 bytes for S2DEX. Please be aware that
If you want the FIFO buffer to be shared by the F3DEX series and S2DEX, it must be at least 0x800
bytes to fulfill the S2DEX requirements.

Compatibility with FADEX

Chapter 2 Compatibility with F3DEX

The GBI of S2DEX was derived from F3DEX. So, there Is no compatibility with the GBI of Fast3D.
When you use S2DEX, you need to define F3DEX GBI like F3DEX before ultra64.h is included.

Also, to use the GBI of S2DEX, you need to include the header file <PR/gs2dex.h>. Insert this include

specification after the include specification of <ultra64.h>.

Next, let's compare ithe GBIl of S2DEX and the GBI of F3DEX. Simply put, you can cansider that S2DEX
does not support GBls which deal with 3D primitives, 4x4 matrices, and light definition.

The following refers to gsp* and gDe+ only, but the same applies to gsse* and gsDp>,

GBls Supported by Both S2DEX and F3DEX

The following GBIs are fully supported by both S2DEX and F3DEX, except as noted.

DL Process Control

Setting Up Segment
Loading Microcode
Scissoring

Setting RDP Mode

Setting Color Value, etc.

Loading to TMEM

Primitives

Sync Processing

NOOP

gSPDisplaylist (*)
gSPEndDisplayList

gSPSegment (*)
gSPLeadUcode*
gDPSetScisscr

gSPSetOtherMode
gDPSetTexturePersp
gDPSetTextureLOD
gDPSetTextureFilter
gDPSetCombineKey
gDPSetAlphaDither
gbPSetAlphaCompare
gDPSetRenderMode
gDPSetDepthImage
gDPSetCombineMode

gDPSetEnvCeolor
gDPSetFogColor
gDPSetPrimColox
gDPSetConvert
gDP3etKeyGB

gDPSetTilesSize
gDPFSetTile
gDPLoadMultiBleock*
gDPLoadMultiTile*
gDPLoadTLUT palZ5é

gDPFillRectangle
gSETextureRectangle
gsSPTextureRectangleFlip

gDPFullSync
gDPPipeSync

gSFNoCp
gDPNoOpTag

gSPBranchlList

gDPSetScissorfFrac

gDPSetCycleType
gDPSetTextureDetail
gDPSetTexturelLUT
gDPSetTextureConvert
gDPSetColorDither
gDPSetBlendMask
gDPSetDepthSource
gDPSetCclorImage
gDhPSetTexturelmage

gDPSetBlendCclor
gDPSetFillColor
gDPSetPrimDepth
gDPSetKeyR

gDPLoadTile
gDPLoadTextureBlock*
gDPLoadTextureTile*
gDPLoadTLUT _pallb

gDPScisFillRectangle
gS3PScisTextureRectangle

gDPTileSync
gDPLoadSync

gDPNoQp

NUS-086-0136-001A
Released; 1/9/98

52DEX Microcode User's Guide

GBls Not Supported in S2DEX

The following GBls are not supported by S2DEX,

Setting View
Matrix Operation

Vertex Operation
Conditional Branch
Polygon Type Setting

Primitives .

Lighting

Fog
For Old Sprite2D Use

New GBls

gSPViewport
gSPFPerspNormalize

gSFMatrix
gSPInsertMatrix

gSPVertex
g5PCullDisplaylist

gSFSetGeometryMode
gSPTexture

gSP1lTriangle
gSPlQuadrangle
gSPLineW3D

g3PNumLights
gSPLightColor
gSPLookAt™>
gDPSetHilitelTile

gSPFogFactor

gSPSpriteZDBase
g3PSpriteZDDraw

The foliowing GBIs have been added to S2DEX.

BG Drawing
Sprite Drawing

2D Matrix Operation
Drawing Mode Setting
Load Texture Processing
Compound Commands

Conditional Branch

g3PBgRectCopy

g3PObjRectangle
gSPObjSprite

gSPObjMatrix
gSPObjRenderMode
gSPObjLoadTxtr

gSP0ObjlLoadTxRect
gSPObjLcadTxSprite

gSESelectDL

Precautions Regarding GBls

Changing Mode Using OtherMode

When changing the mode in F3DEX with g[s] SESetOthezMode, no more than a maximum of 31 bits
could be set with a single g [s] SPSetOtherMode command. This has been corrected in S2DEX so that

you can change 32 bits worth of parameters at once with a single command.

gSPClipRatio

g3PPopMatrix
gSFForceMatrix

gSPModifyVertex
gSPBranchlessZ*

gSPClearGecmetryMode
gSPTexturel

gSP2Triangles
gSPLine3D

gSPLight
gSPSetLights [0-7]
gDPSetHilitelTile

gSPFogPosition
gSP3priteZDScaleFlip

gSPBgRectlCyc
gSPObjRectangleR

gSPObjSubMatrix

gSPOkJ1LoadTxRectR

g3PSelectBranchDL

S2DEX GBis

Chapter 3 S2DEX GBils

The following paragraphs contain detailed descriptions of the GBls available in S2DEX.

BG Drawing GBI

S2DEX can easily create vertical and horizontal scroll surfaces in a closed area (this function was
included in the Super NES). Developing scrofl games such as 2D Mario will be easier using this feature.

uohk jBg Structure

uCbjBg structures hold the drawing information of BG. The pointer to this structure is given as the BG
drawing GBI parameter,

uCbjBg structures can be precisely divided into 3 common structures. The first is for aligning the
structure with the & byte boundary and dees not require attention. The remaining 2 have data structures
which adapt for the two BG drawing GBI structures described below.

The structure that adapts for the BG drawing GBI resulting from the Copy Mode is uobjBg t and the
structure that adapts for the BG drawing GB! resulting from the 1 Cycle Mode is ucBjScaleBg t.
typedef union {
ulkjBg_t b;
udbjScaleBg t 57
long long int force_structure_aligmment;
} udbiBg;

u0bjBg_t Structure
Members of the uokjBg t structure can be divided into two groups (first half and second half).

The first half consists of the member variables to be set by the user. BG drawing can be controlled by
changing these variables. This first half can be shared with the uobjscaleBg_t structure.

The second half consists of the variables to be calculated and stored by the CPU to help the Microcode.
These member variables are set by calling the function gus2DInitBg (}, using the uchjBg structure's
pointer as the parameter. However, there is no need to call gus2DInitRg every time.

Since the second half's member variables can be derived frorn the first haif variables (imageLoad,
imageFmt, imageSiz, imageW, and frameW), guS2DInitBg needs to be called only immediately after
these variables are changed.

Using ucbjRg as BG plane, these variabies don’t normally change very ofien. Therefore, it is usually
sufficient to cail gqus2DInitBg once before using BG plane.

However, when the ucbiscaleBg_t structure’s member variables scaleW, scaleE, imagYorig have
changed the uckjBg_t second haif's member variables may be changed. In this situation, it will
probably be necessary to cali qus2DInitBg again.

The following is the definition section of ucb3jBg in gs2dex.h. uObjBg's size is 40 bytes; and uCbjBg
must be aligned to 8 bytes.

The first half member variables will be explained in the GBI section. Please understand that the
arrangement of member variables is sormewhat complicated to optimize RSP operation.

8 NUS-06-0136-001A
Reieased: 1/9/98

S2DEX Microcode User's Guide

typedef struct

ulé

imageX:

(ul0.5)

ule

imageW:

(uif.2)

sie

frameX;

(s10.2)

ule

frameW;

(uls.z)

ulé

imageY;

(ul0.5)

ule

imageH;

{(ul0.2)

s16

frameY¥;

{s10.2)

ule

{ul0.2)

u6d
ulé
us
us
ule
ule

frameH;

*imagePtr;
imageload;
imageFmt;
imageSiz;
imagePal;
imageFlip;

’
’
/
’

/
/
/I
/

//
/
//
/
/!
s

The

The

The

The

The

The

The

width of BG image

height of BG image

width of the transfer frame

height of the transfer frame

upper-left position of the transfer frame

upper-left position of the transfer frame

x-coordinate of the upper-left position of BG image

y-coordinate of the upper-left position of BG image

The texture address of the upper-left positicn of BG image
LoadBlock and LoadTile

Which to use,

The format of BG image

The size of BG image
The pallet number
Image horizontal flip.
// Bll of the above are commen with uObjScaleBg_t

G_IM_FMT_*
G_IM SIZ_*

Flip using G BG FLAG FLIPS.

// The user doesn’t have to set the following since they are set within the

//initialization routine,

ule tmemW;

ule tmemH;

ulé tmemLoadSH;
ulé tmemLoadTH;
ulé tmemSizeW;
ulé tmemSize;

} uObjBy_t;

/f
/
/f
//
//

/7
//
//
/
//
’
’
/f
’
’
’
/
//
/

gusS2DInitBG() .
The width of TMEM for 1 line's worth of the frame.

is the Word size.
At LoadBlock, GS_PIX2TMEM (imageW/4,imageSiz)

At LoadTile,

GS_PIX2TMEM{frameW/4,imagesiz)+1

The width of loadable TMEM at a time.
// times wvalue
At the normal texture,

At the CI texture,

The SH wvalue

512/tmemW*4

256/ tmemW*4

At LoadBlock, tmemSize/2-1
tmemW*16-1
The TH wvalue or the Stride wvalue
GS_CALC_DXT(tmemW)

At LoadTile,

At LcadBlock,
At LoadTile,

tmemH-1

(513.2)

The width

The height is 4

The skip value of imagePtr for 1 line's worth of the image.

At LeadBlock,
At LeadTile,

TImemw* 2

GS_PIX2TMEM (imageW/4, imageSiz) *2

The skip value of imagePtr for one loading.
= tmemSizeW*tmemH

40 bytes

The following structure defines the initialization function gus2DInit3Bg.
Void guS2DInitBg{uOhiBg *bg):

This function is used for initializing the uobjBg structure (uCbjBg_t). If the uckjBg data structure is
used as the parameter without initialization, the S2DEX Microcode’s GB! may not function properly.

Parameter:

bg

10

The pointer to the uObjBg structure.

S2DEX GBis

udbjscaleBg_t Structure

There is no member argument required to calculate the vaiue by the CPU in advance like uObjiBg _tin
members of the ucbjScaleBg t structure. All member arguments are directly set by the user, and BG

plane drawing is then controlied accordingly.

In addition, when shared by the uob Bg structure, the uobjscaleBg_t structure’s member variables
from imageX to imageF1ip are shared with the uChjBg_t structure,

typedef struct ({

uleé imageX; /{ The x-coordinate of the upper-left position of BG image
(uld.5)
ulé imagew; // The width of BG image
(ulc.2)
3lé frameX; // The upper-left position of the transfar frame
{s10.2)
ulé frameW; // The width of the transfer frame
(ul0.2)
ule image¥; -// The y-coordinate of the upper-left peosition of BG image
{(uion.5s)
ulé imageH; // Thes height of BG image
(ulo.2)
816 frameY; // The upper-left position of the transfer frame
(s10.2)
ulé frameH; // The height of the transfer frame
(ul0.2})
usd4d *imagePtr; // The texture address of the upper-left position of BG image
ulé imageLoad; // Which to use, LoadBlock and LoadTile
ud imageFmrc; // The format of BG image G_IM FMT *
u8 imageSiz; // The size of BG image G_IM SIz *
2l6 imagePal; // The pallet number

u2lé imageFlip; // Image horizontal flip. Flipped using G_BG_FLAG FLIPS.
// ALl of the above are commen with uCbjBg_t

ule scaleW; // The scale value of the x-direction {(us.10)
12l6 scaleH; // The scale value of the y-direction {u5.10)
$32 imageYorig; // The drawing start-point on image (s20.5)

u8 paddingl4];
} uobjscaleBg_t; // 40 bytes
gSPBgRectCopy

g5PBgRectCopy (Gfx *gdl, uObjBg *bg)

gs5PBgRectCopy (UObjBg *bg)

Gfx *gdl; The display list pointer

ucbjBg *hg; The pointer to the drawing data structure of BG

gis]SPBgRectCopy is the simplest BG drawing GBls supplied by S2DEX, This GBI has the following
features.

* Scale change (magnifying / shrinking) is not possible.

* Scrolling in a closed region (making verticai / horizontal loop) is possible.

« Horizontal texture flipping is possible (not verticai texture flipping).

» Drawing is possible in copy mode only.

« Texture interpolation display and subpixel movement are not possible.

* Anti-aliasing is not possibie.

» The GBI loads the texture data from DRAM to TMEM as necessary, then draws.

11 NUS-06-0136-001A
Released: 1/9/98

S2DEX Microcede User's Guide

Designed for drawing in the copy mode, the biggest advantage of g[s] SPBgRectCopy is that it has the
fastest drawing speed. When using the GBI, CycleType must be set to the Copy mode.

S2DEX sends data from the BG image buffer to the actual frame buffer's rectangle region, shown below.
Scrolling becomes possibie by establishing the relationship between the upper left hand comer of the
frame buffer rectangle region (transfer frame) and a peint in the BG image buffer, specified by imageX
and imageY. imageX, imageY can be specified in the (u10.5) format, but due to restrictions when using
the Copy mode, the values for imageX, imageY are limited to integer values.

BG Image
""""" Color Frame Buffer
: {frameX, frameY)
......... *.-...-.-.-.-.-...-.-...-.-.......... &
: imageH T
: {imageX, '
imageY) frameH
Transfer
Frame
- imageW ——— 4——— frameW —"

The size of the BG image is set by imagew and imageH. The beginning address (the top ieft hand
comer) is specified by imagePtr. That is, you can consider the BG image to be a large texture data
having width (imagew) and height (imageH) starting from imagePtr.

BG image's width, imagew must be aligned to 8 bytes. Since the actual vaiues used for ima geW and
imageH are in (u10.2) format, the values to be assigned must be muitiplied by 4. The following chart
shows the imageW's value constraints, taking (u10.2) format into consideration and multiplying by 4.
There is no need to align imageH values.

When c_IM SIZ_4b : imageW is a multiple of 64
When G _IM SIZ 8b : imageW is a muitipie of 32
When G_IM SIZ_16b: imageW is a multiple of 16
When G_IM_SIZ_32b: imageW is a muitiple of 8

For honizontal scrolling, imagew must be larger than framewW. The foliowing values take the (u10.2)
format into consideration. When G_IM SIZ_16b, imageW must be 4 pixels larger than £ramew.

WhenG_IM SIZ 4b ! frameW+B84 <= imageW
When G_IM SIZ_8b : frameW+32 <= imageW
When G_IM sIZ_16b: framew+16 <= imageW
When G_IM SIZ 32b: frameW+ 8 <= imageW

The size of the transfer frame is specified by £framew and £rameH, and the position of the upper left
hand corner of the transfer frame on the screen is specified by frameX and framev. The parameters of
frameW and frameH are in (110.2) format. It is possible to specify negative values for framex and
framey. if the transfer frame projects out of the scissors box specified by gls]DPSetscissor, the
microcode will clip the excess portion.

A problem is not created when the BG frame is bigger than the transfer frame: however, if the transfer
frame is bigger than the BG frame, proper operation may not occur. Please be sure to keep a transfer
frame smaller than a BG image.

12

S2DEX GBls

In addition, the right and left ends of BG image are offset in the Y direction by 1. Specifically, a BG
image’s right end pixel is at {imagew-1, n), and one pixe! to the right is (0, n+1). This arrangement is
necessary to improve RDRAM access efficiency for loading texture. 1t is very important for application
developers to keep this in mind.

Texture format and size for a BG image will be set by specifying imageFmt and imagesiz using the
macros: G_IM FMT * and G _IM SIZ_*, respectively. Also, when using Cl4 texture, assign TLUT
number to imagePal.

There are two ways to load texture for a BG image—-using LoadBlock and using LoadTile. Since
there are advantages and disadvantages for each method, S2DEX’s GBI design allows the user to select
the proper method by setting a member variable (imageLoad). Depending on the situation, the user can
assign an appropriate value (G_BGLT *) t0 imageLoad 10 use LoadBlock or LoadTile.

The value of imageload Meanings
G_BGLT LOADBLCCK Use LoadBlock
G_BGLT LOADTILE Use LoadTile

When using LoadBlock, maximum performance can be gained under certain circumstances. However,
when certain conditions are not satisfied, LoadBlock can not be used because processing overhead will
become too large. On the other hand, LcadTile can always perform at a certain level. We
recommend using LoadBlock when the maximum benefit is expected, and use LoadTile in other
cases.

LeadBRlock’s use is limited by the width of BG. When image3iz s 16 bit, the possible values of
imageW usable for LoadBlock are the following:

4, 8,12, 16, 20, 24, 28, 32, 35, 40,

48, 64, 72, 76,100,108,128,144,152 164,
200,216,228,256,304,328,432,456,512,684,
820,912

When imagesiz is 8 bit long, the usable set of numbers for imagew can be obtained by doubling each
of the numbers above. Similarly, multiply each number by 4 when imageSiz is 4 bit, and multiply each
number by 1/2 when imageSiz is 32 bit. This is consistent with the chart in the N64 Programming
Manual, Chapter 12, Appendix A, “LoadBlock Line Limits”. If the width of the BG image does not allow
the use of LcadBlock, LoadTile must be used.

In order to draw a transfer frame line by line, LoadBlock reads the entire line of the corresponding BG
image. Since scrolling BG requires a larger BG image for BG refresh, imageW must be greater than
frameW. Forthis reason, excess data wiil be loaded when using LocadBlock.

On the other hand, LeadTile loads necessary data only. Since the processing speed of LoadBlock is
faster than that of LoadTile, using LoadBlock is advantageous when the difference of loaded data is
only a few pixels. However, when imageW is much larger than £ramew, the processing overhead could
become too high. The use of LoadTile is advantageous in this case. The user should choose the
command best suited for the given application.

As an example, let’s assume we are using BG to cover the entire screen {320 X 240).

Since the transfer frame is the entire screen, frameW becomes 320 pixels. Reserving 8 pixeis for the
BG refresh area, imageW is 328 pixels. In this case, the difference between frameW and imageW is
small; and using LoadBlock at 328 pixets is the best solution.

The GBI supports BG image flipping for the horizontai direction only. A texture image can he flipped by
assigning G_BG_FLAG_FLIPS to imageFlip. Assign O for normal display (no flipping).

13 NUS-06-0136-001A
Released: 1/9/98

S2DEX Microcode User's Guide

gSPBgRectlCyc
g2PBgRectlCyc(GEx *gdl, uObjBg *bg)
gsSPRBgRectlCvec (WOhiBg *bg)
Gfx *gdl; The display list pointer
uchbjBg *bg; The pointer to the BG drawing data structure
gis]sSPBgRectlCyc is one of the BG drawing GBIs provided by S2DEX, whereby the BG screen can be
enlarged or reduced. The features of this GBI are listed below.
+ Scale change (magnifying / shrinking) is possible.
+ Scrolling in a closed region (making vertical / horizontal loop} is possible.
» Horizontal texture flipping is possible (not vertical texture flipping).
+« Drawing in 1 Cycle mode only.

s Texture interpolation display is possible, subpixel movement is possible only in the
horizontal direction.

» Anti-aliasing is not possible.
+ The GBI loads the texture data from DRAM to TMEM, then draws

The parameters necessary for drawing with g{s] sPBgRect1Cyc are the parameters required when
using g [s i SPBgRectCopy, discussed previously, plus the parameters scaleW, scaleH, and
imageYorig. The additional parameters will be explained here.

The biggest difference between g[s] sPBgRect1Cyec and g[s] SPBgRectCopy is that it supports BG
scaling. BG scaling is controlled by the uckjscaleBg t structure’s member variables scalew and
scaleH. This scaling-is centered at the BG image’s (imageX, imageY).

In other words, even when scaling has been performed, BG image's (imageX, imageY) are drawn at the
position of (frameX, frameY) in the frame buffer, just as if scaling had not been done. (However, if
herizontal flipping has been performed, they are drawn at the position, (frameX+£frameW-1, frameY).

in addition, when magnifying, the image is clipped by the frame size. Conversely, when shrinking, the
frame is sometimes clipped by image size. Refer to the S2DEX sample program for more about this,

However, frame clipping during shrinking can sometimes be slightly greater or lesser depending on
calculation error. When a precise size is required, calculate and set the values for frameW and frameH

on the CPU side.

Bilinear interpolation display is supported by g[s] SPEgRect1Cyc. When using bilinear interpoiation
display, jagged lines in texels become less apparent in magnification compared with normat point
sampling display, giving a smoother appearance. However, this effect is less apparent in images which
are scaled down in size.

When bilinear interpolation is used, the RDP drawing performance decreases compared te when it is not
used. The rate of this decrease in perfermance is greater when a smaller number of image lines are
loaded in TMEM at one time. When drawing a 320X240 image in a 320X240 frame with no scaling is
compared to drawing a 640x480 image at 1/2 reduction, the share of overhead taken by using bilinear
interpolation will be greater when shrinking the 640x480 image. This causes a substantial drop in
performance when a 640x480 image is similarly reduced and displayed using point sampling.
Considering that the effects of hilinear interpolation diminish when used in reducing images, as

. discussed above, you should probably consider switching to point sampling display when reducing an
image.

14

S2DEX GEBIs

g[s]SPBgRectlCyc draws an image by automatically dividing it into several subplanes, but it is
passible that the drawing result will unexpectedly develep unnatural wrinkles during the division process
if the division is done carelessly. This is especially noticeabie when the image is scrolled. The member
variable imageYorig has been provided for u0bjScaleBg t to prevent these wrinkles. The value of
imageYorig refers to the Y coordinate of the origin for scaling, but it also describes the division origin of
a subplane. It is thus possible to prevent the wrinkles described above. Typically, imageYorigis used
in the following situations.

At initialization:
Set the value of imageY t0 imageYorig.
When the value of scaleE changes: '
Set the value of imageY to imageYoriqg.
When imageX and imageY have been wrap processed:
Perform the same processing that was performed in imageY on imageYorig.
When changing only imageY (change not accompanying wrap processing):
Do not change imageYorig
Based on the above, processing for an image which is being scrolled by dx and dv would be as follows.

/*Addition of scroll wvalues. */
bg->»s3.1imageX += dx;
bg->s.imageY += dy;

/* Wrap processing of the screen edge. */
if (bg->s5.imageX < 0){
bg~>s.imageX += bg->s.imageW;
bg->s.imageY ~= 32;
bg->s.imageYorig -= 32;

if (bg->»s.imageX >= bg->s.imageW) {
bg->s.imageX ~= bg->s.imageW;
bg~>s.image¥ += 32;
bg->s.imageYorig += 32;
}
if (bg->s.image¥ < 0){
bg->s.image¥Y += bg->s.imageH;
bg->s.imageYorig += bg->s.imageH;
}
if (bg->s.imageY »>= bg->s3.imageH) {
bg->s.imageY -= bg->s.imageH;
bg->s.imageYorig -= bg->s.imageH;
}
BG images can be flipped in the horizontal direction only with this GBI and functions just like it does in
the COPY mode. The texture image can be flipped by substituting G_BG_FLAG FLIPS for the member
variable imageFlip. Fer normal display (no flipping) substitute 0.

When using this GBI, there are limitations on the value of the uobjscaleBg_t structure’s member
varable, imagePtr. Any position from the head of RDRAM to the 4096 byte position cannot be
specified as the value for imagePtr. This represents physical addresses 0x00000000 to 0x00000fff, in
which range imagePtr (after segment conversion) cannot be placed. Please keep this in mind.

This GBI is built into S2DEX Version 1.00 and later.

In addition, the function gus2DEmuBgRect1Cyc has been added, beginning with S2DEX Version 0.75.
This function emulates processing which is equivalent to gsPBgRect 1Cyc by combining several GBis,
such as gSPTextureRectangle, etc. This can also be used for performing scaleable BG drawing.
See Chapter 4 for detaiis.

15 NUS-06-0136-001A
Released: 1/9/98

S2DEX Microcode User's Guide

The Sprite Drawing GBI

The sprite mentioned here corresponds to OBJECTSs in Super NES programming. Sprites have been
used for drawing areas smaller than BG, and historically they have been used as “player characters”
quite often. In S2DEX, magnifying / reducing, and rotation of sprites are all possible. Also using sprites,
more natural expression is possible due to the use of bilinear interpolation processing.

To support a sprite’s rotation, a two dimensional coordinate conversion matrix is used. By setting the
matrix's elements, a sprite can be rotated freely. The matrix must be set befare drawing a sprite. Also,
unlike the matrix for Fast3D or F3DEX, there is no matrix stack; so Push/Pop operation can not be
performed. Matrix multiplication can not be done either. Only the load operation is possible. (Please
refer to, “2D Matrix Operation” on page 21.)

S2DEX specifications call for using separate GBIs for TMEM loading and sprite drawing. In other words,
hefore drawing a sprite, the texture used for the sprite must already be loaded using the texture ioad GBI
(Please refer to, “Texture Load GBI” on page 24)).

The sprite drawing mode can be divided into two categories, rotating sprites and non-rotating sprites.
For each respective case, the corresponding GBI wiil do the processing.

» The Drawing Mode Corresponding GBI
+ No Rotation gls]1SPObjRectangle, g[s]5P0bjRectangleRr
« Rotation g{s]5PCbjsSprite

uobisprite Structure

The wObisprite data structure holds a sprite’s information. The pointer to the data structure will be
given to the sprite drawing GB! as a parameter.

typedef struct {

516 objX; // The x-ccordinate of the upper-left end of 0BJ. (s10.2)
ulé scaleW; // The width of direction scaling. {u5.10)
ulé imageW: // The width of the texture. (The length of the S

//.direction.) (uld.5)
ulé paddingX; // Unused. Always 0.

sl6 obj¥Y; // The y-coordinate of the upper-left end of 0OBJ. (s10.2)

ule scaleH; // Scaling of the height direction. (u5.10)

ulé imageH; // The height of the texture. (The length of the T
// direction.} {ul0.5)

ulé padding¥; // Unused. Always 0.

ulé imageStride; // The folding width of zhe texel. ({In units of 64-bit word.}

ulé imageldrs; // The texture starting peosition in TMEM. {(In units of 64-bit
// word.)

uf imageFmt; // The format of the tex=l. G _IM FMT_*

usg imageSiz; // The size of the texel. G IM SIZ *

u8 imagePal; // The pallet number. -0 T

ug imageFlags; // The display flag.
} uObjsSprite_t; // 24 bytes

typedef union {

uObjSprite_t si

long long int force_structure_alignment:

} udbjsprite;
Although the sequence of member variables is somewhat compiicated, this is unavoidable to optimize
RSP processing (same as with uobjBg).

18

S20EX GBIs

uob3iMtx/uobjsubMtx Structures

S2DEX Microcode has the area to hold a 2D matrix for controlling a Sprite’s rotation. There are eight
parameters (&, B, C, D, X, Y, BasgeScaleX, and BaseScaleY).

uObjMtx data structure has one-to-one correspondence to this 2D matrix area, and the structure is used
for modifying the whole 2D matrix. Rotation operation using the 2D matrix is explained in
“‘gSPCbijsSprite” on page 20.

typedef struct {
s32 A, B, C, D; /* s15.18 */
516 X, Y¥: /* s10.2 */
ulé BaseScaleX; /* ub.10 =/
ulé BaseScaleY, /* ub.10 */
} uObjMtx_t; /* 24 bytes */

typedef union {

uChbjMtz_t ms

long leng int force_structure_alignment;
} uObjMtx;

uCbjSubMtx is a subset of uObiMtx, and is used for changing X, Y, BaseScaleX, and
BaseScaleY. The main use for uobjsubMtx is drawing a sprite using g[s] SPObjRectangleR.
Please refer to “gSPObjRectangleR” on page 19 for details.
typedef struct {

s16 ¥, ¥; /* sl0.2 */

ulé BaseScaleX; /* u5.10 */

ulé BaseScale¥; /* u5.10 */
} uObjsubMtx_t; /* B bytes */

typedef union {

uobjsubMtx t m

long long int force_structure alignment;

} uCbjsubMtx;
The eight elements of a 20 matrix (&, B, C, D, X,¥Y, BaseScaleX, and BaseScaleY) can be
referenced by g[s]SPObjSprite and g[s]SPRectangleR. However, not all 8 elements are actually
referenced (please refer to the chart below). X, and ¥ are referenced by both.

Referred by g[s]SPObjSprite —

A, B
c, D X, Y BaseScaleX
BaseScaleY

—Referred by g[s]5PObjRectangleR

gSPCbjRectangle
gSPObjRectangle (Gfx *gdl, uObjSprite *sp)
gsSPObjRectangle (u0biSprite *sp)

GEx *gdl; The display list pointer.

udbjsSprite *sp; The peinter to the structure of the sprite drawing data.
gls]lsrObjRectangle is one of the sprite drawing GBls supplied by S2DEX and used for non-rotating
sprite drawing. The process inside the RSP is to create the TextureRectangle command from the
input uCb’ Sprite structure data and send it to the RDP.

17 NUS-06-0136-001A
Reieased: 1/9/98

S20EX Microcode User's Guide

The g[s1SPObjRectangle GBI draws texture for the rectangle area defined by the upper left hand
corner screen coordinate (ocbjX, objY), and lower right hand corner screen coordinate
(obi¥+imageW/scaleW~1, obiY+imageH/scaleH-1). The drawn texture region will be defined by
upper left hand corner (0, 0) and tower right hand comer (imageW-1, imageH-1). If scaleW and
scaleH are 1 << 10, texture will be drawn with equal proportions, without scaling. Please refer to the
following page.

TMEM Frame Buffer
{obiX,obiY}
{0,0) X
imageAdrs—>¥
Texture Sprite area
area ===>
X

{imageW-1,)4
imageH-1} {objX¥+imageW/scalew-1,
objY¥+imageH/scaleBE-1)

Also, when a sprite is drawn, the scissors box defined by gDPSetScisscr is referenced, and automatic
drawing area clipping is done. Therefore, it is possible to set negative values for objX and ob3Y.

The TMEM address corresponding to the origin of texture region (0,0) can be specified by imageAdrs.
Normally, imageAdrs is set as the beginning of the TMEM leading focation specified by the texture load
GBI. Itis convenient to use the G5_PIX2TMEM () macro for this operation. G5_PIX2TMEM (), which is
defined in gs2dex.h, is the macro used to convert a pixel unit number to a TMEM address number.

e GS_PIX2TMEM(pix,siz)
s pix The number of pixels
s sz ~ The size of 1 texel. Specified by G_IM_SIZ_*

The horizontal width (folding width) at the time of texture load is assigned to imagestride. The reason
for this is that sometimes the loaded texture width and the imagew of the actual sprite drawn are
different. Since this is also specified in the TMEM address unit, GS_PIX2TMEM (} can be used.

An application using imageAdrs and imageStride is introduced, as follows. Load the muitiple of
small texture (subtexture) in TMEM first. Now the user can choose the appropriate drawing texture by
setting the imageAdrs as shown below.

imageWw = {sub-texture width}:

imageH = {sub-texture height):

imageAdrs = GS_PIX2TMEM((S-coordinate in TMEM)+(T-coordinate in TMEM, *
(texture width at lcad time),G IM SIZ_*);

imageStride = GS_PIX2TMEM (texture width at load time):;

Moare specifically, prepare a large texture consisting of 4 textures, as follows:

<615

18

S2DEX GBls

Load this composite texture as a 64 x 32 texture; and when drawing a sprite, specify each texture as
follows:

Sub-texture A:imageW = 32;

imageH = 32;

imageAdrs = GS_PIX2ZTMEM(0%*64+0, G IM $IZ 16b);

imageStride = G3_PIX2TMEM(44, G_IM SIZ 16b};
Sub-texture B: imageW = 16;

imageH = 16;

imageAdrs = G3 PIXZTMEM(0*64+3Z, G IM 8IZ léeb);

imageStride = GS_PIXZ2TMEM(64, G IM SIZ 1ék);
Sub-texture C: imageW = 16;

imageHd = 16;

imageAdrs = GS_PIX2TMEM(0*64+48, G IM SIZ 16b;;

imageStride = GS PIX2TMEM(64, G_IM SIZ 16b);
Sub-texture D: imageW = 32;

imageH = 16;

imageAdrs = GS_PIXZ2TMEM(16*64+32, G _IM SIZ 16bj;:

imageStride = G5 _PIXZTMEM(64, G_IM S5IZ_1sek);

There is a limitation to this method however. The format for storing data at TMEM is different for an odd
numbered line and an even numbered line. in the calculation formula for imageadrs (T coordinate in
TMEM), you can not specify an odd number value.

When using g[s] 8PObjRectangle, the format and size of the texture is specified by setting imageFmt
and imagesiz using the macros G_IM FMT * and G_IM SIZ *. Also, if Cl4 texture is used, specify
imagePal using TLUT number.

gls]sPObiRectangle supports texture pattern flipping in the s and T directions. The drawing direction
can be changed by setting the following values.

Value of imageFlags Drawing Effect
0 No flipping
G_OBJ_FLAG_FLIPS The inversion of the S direction (X!
G_OBJ_FLAG FLIET The inversion of the T direction (Y)
G_OBJ_FLAG FLIPES|G_OBJ FLAG FLIPT The inversion of the S (X) and T (Y}
directions

glsisPObjRectangle can be used for 1 cycle, 2 cycie, and copy modes. Drawing speed using copy
mode is faster than other modes; however, there are more drawing restrictions using copy mode.

Copy mode does not support bilinear interpolation, subpixel processing, and enlarging/reducing in the X
direction. If these operations are attempted in copy mode, they may not be performed properly. In the
worst case, the RDP may become uncontrollable. We recommend selecting the proper mode to perform
necessary functions.

The drawing resuit using g[s] SPObjRectangle will vary depending on the render mode, such as;
bilinear interpolation, etc. Please refer to, “Setting the Object Render Mode” on page 22 for details.

g[siSPObjRectangle does not reference the 2D matrix setting. For this reason, the 2D matrix setting
does not affect this GBI's drawing result.

19 NUS-06-0136-001A
Released: 1/9/98

S2DEX Microcode User's Guide

gSPObjRectangleR

gSPObjRectangleR (Gfx *gdl, uCbjsprite *sp)
gsSPObjRectangleR (udbiSprite *sp)

Gfx *gdl; The display list pointer

uCbjsprite *3p; The pointer to the structure of the sprite drawing data
g[s]SEObjRectangleR is one of the sprite drawing GBIs provided by S2DEX. Like
gis]SPObjRectangle, g[s] SPCbjRectangleR is used for drawing non-retating Sprites. Unlike
gls]SPObjRectangle however, g[s]SPChjRectangleR changes drawing screen coordinates by
referring to the 2 D matrix.
Gis]SEObjRectangleRrefersto X, Y, BaseScaleX, and BaseScalevY inthe 2D matrix, and
determines the vertex coordinates of a sprite using the fallowing formula.

Upper-left hand coordinate (X + objX / BaseScaleX, Y+obiY/BaseScaleY)
Lower-right hand coordinate (X 4+ (objX + imageW / scaleW) / BaseScaleX - 1,
Y + {(objY + imageH / scaleH) / BaseScaleY - 1 }

To change the values in {X, Y, BaseScaleX, BaseScaleY}, usethe g{s]}3PObjSubMatrix GBI
When ¥ = ¥ = 0 and BaseScalaeX = BaseScaleY = 1.0, the result isthe same as using
g[s] SECbjRectangle.

By changing the values in {X, Y, BaseScale X, BaseScale Y} ofthe 2D matrix, multiple Sprites
can be moved or their scale changed, as if they were one sprite.

For example, consider the arrangement of the three Sprites A, B, and C in the following example:

32 32 32

32 A B c

and set the (objX, objY) data as follows.

It

A: {(objX, obijY¥)
B: {objX, obj¥)
C: {objX, objY)

{ 0<<2, 0<<2)
(32<<Z, 0<<2)
(04<<Z, 0<<2)

it

Now, by changing X and Y in this exampie, the three Sprites will move as one sprite.

However, because of a calculation error (performing multiplication for example) sometimes gaps are
created between A and B or between B and C. To solve this problem, the adjacent Sprites are slightly
overlapped (see below).

B: (ob3iX, obiY} ({32<<2)-2, 0<<2)
C: {(objX, cbi¥Y} = ((64<<2)-4, 0<<2)

This completes the explanation of the differences between g[s] SPCbjRectangleR and
g{s]SPobiRectangle. For other features of g[s] SPCbjRectangleR, please refer to
“g[s1SPCbjRectangle” on page 17.

gSPObjsprite

gSECbjsSprite (Gfx *gdl, uCbjsSprite *sp)
gsSPObjSprite (uObjSprite *sp)

Gfx *gdl; The display list pointer
uCbisScrite *sp; The peinter to the structure of the sprite drawing data

20

S2DEX GBls

gls]sPObjSprite is one of the sprite drawing GBIs provided by S2DEX. This GBI is used for drawing
rotating sprites. To rotate a sprite, use {8, B, C, D, ¥, Y}ofthe 2D matrix. g[s]SEObiMatrixis
used for setting these elements of the 2D matrix. (Please referto *gSPobiMatrix” on page 21.)

A point (x, v) on a non-rotating sprite will move to the point (x*, y’) by performing 2D matrix
muitiplicaticn as follows.

Each vertex of the sprite will move, and the sprite is drawn in the new region defined by the new vertices.
if the 2D matrix {8, B, ¢, D}is defined by the rotation matrix as follows, a sprite will make a T rotation.

cosT sinT

C D " |- sinT cosT

‘A B
In this case, a sprite will rotate centering around the screen coordinate (x, ¥). If scaling is to be added,
multiply each element {&, B, C, D} by the scaie value.

By changing (objX, ob3jY)}, the rotation center of a sprite (x, ¥) can be changed. if objX=cbjY=0, a
Sprite's rotation center will be the upper left hand vertex. If you wish to rotate a sprite about its center,
set objX, and cbiY as follows.

ObjX = - (imageW/scaleW) /2;

ob]Y = - (imageH/scaleH)/2;

Also, similar to ¢ {s]5PObjRectangleR, by adjusting the values of ob3x and ob3jY, multiple Sprites
can be rotated as if they were one sprite. Here, as with g{ s] SPObjRectangleR, we recommend
drawing Sprites in a slightly overlapping fashion to eliminate gaps caused by calculation errors.

Bysetting(A = D = 1,0, B = ¢ = 0.0), a non-rotating sprite’s location will coincide with a sprite
drawn with g[s]SPObjRectangleR by setting BaseScaleX = BaseScaleY = 1.0. We recommend
drawing a non-rotating sprite with g{s]SPObjRectangle, and using g[s] SPObjSprite for rotating
Sprites. Since g[s]sPobjsSprite usestwo polygons in combination for drawing, it requires more
RSP/RDP processing than using g [s] SPObjRectangleR,

Also, when using g{s]sPObjSprite for a non-rotating sprite, a magnified sprite drawing may not

coincide with the drawing done by g[s]SPObjRectangle. This is unavoidable since the drawing
methods are different {(polygon combination vs. rectangle drawing).

The setting for the texture to be placed on a sprite is the same as g[s] SPObjRectangle Please refer
to the appropriate section above.

2D Matrix Operation

As mentioned above, S2DEX Microcode uses a 2D matrix as the drawing parameter. Several GBls are
provided for the purpose of modifying this 2D matrix.

gSPCbjMatrix

gSPObjMatrix {Gfx *gdl, ulbiMtx *mtx}
gsSPObjMatrix (uObjMEtx *mtx)

GEx *gdl; The display list pointer

uObjMtx *mtx; The peinter to the 2D matrix structure
Load the 2D matrix parameter in the uckjMtx structure to the 2D matrix area in the RSP. Usually, this
GBI is used for a rotating sprite.

Since only 6 matrix elements (A, B, ¢, D, X, Y)are needed for rotation processing, it appears that

there is no need to transfer the entire 2D matrix. However, 24 bytes including {BaseScaleX,
21 NUS-06-0136-001A
Released: 1/%/38

S2DEX Microcode User's Guide

RaseScaleY} are transferred, because an 8 byte unit must be maintained for transfer from main
memory to the RSP matrix region.

Far this reason, the values of BaseScaleX and BaseScaleY are always overwritten. If you are not
using these parameters (not using g[s]SPObjRectangleR immediately after calling gSPObjMatrix}, we
recommend assigning the default vaiue of 1024 (1.0 for s5.10 format) to BaseScaleX and
BaseScaleY.

gSPObjSubMatrix

gSPCbjsSubMatrix (Gfx *gdl, uCbiMtx *mtx)
gsSPObjsSubMatrix (UObjMEtx *mtx)

GEx *gdl; The display list pointer

uCbj SubMtx *mtx; The pointer to the 2D matrix structure
gis]SPObjSubMatrix loads the data in the uobjsubMtx structure to the 2D matrix region of the RSP.
However, the uckjsubMtx structure is a subset of uOb3iMtx, and holds the values of 2D matrix
elements {¥, Y, BaseScaleX, BaseScaleY}usedby g[s]SPObjRectangleR.

This GBI changes 2D matrix elements {£, ¥, BaseScaleX, BaseScaleY}corresponding to the
variable of uObjSubMtix structure only, and it does not affect the valuesin{a, B, C, D}

This GBI is used mainly in conjunction with g[s] SPObjRectangleR.

Setting the Object Render Mode

Many drawing parameters exist in the RDP, which control sprite/BG drawing. Depending on the RDP
mode, polygon drawing and rectangle drawing processes are affected in some subtle ways. For
example, by setting bilinear interpolation on and off, texture coordinates will vary by 0.5. S2DEX
Microcode has been designed to correct these effects at the RSP to minimize the user’s efforts to get
around these problems. The RSP’s correction process corresponds to the RDP's mode. We call the
RSP's correction mode “Object render mode” (or OBJ render mode).

Automatic selection of this mode will increase the processing overhead of the RSP; 50 currently Copy
Mode and 1,2CycleMode have the benefit of automatic operation. For other modes, it is necessary to let
the RSP know in the form of the GBI. The current Object render mode has an independent rendering
function, in addition to the capability to correct the effects caused by changing the RDP’s mode. See the
next paragraph for the details.

gSPObjRenderMode
gsPObjRenderMode (Gfx *gdl, u32 mode}
gsSPObjRenderMode {(u32 mode)

Gix *gdl; The display list pointer

u32 mcde; The Object render mode
g[s]5PObjRenderMede is used for changing the Object render mode of the RSP, Usually, Object
render mode is set based on the dispiay mode,

The flags used are shown below. If multiple settings are required, connect the conditions using the OR
operator. However, G OBJRM SHRINKSIZE 1 and G_CBJRM_ SHRINKSIZE_2 can not be used at the
same time.

Macro Name Function

&_OBJRM_NOTXCLAMP does not perform clamp operation for peripheral part
cf the texture

G_OBJRM BILERP switches to on for bilinear interpolation

G_OBJRM SHRINKSIZE 1 cut 0.5 texel around the image

G_OBJRM_SHRINKSIZE_2 cut 1.0 texel around the image

G _OBJRM WIDEN expand the image by 3/8 texel

22

S2DEX GBls

Each flag is explained in detail below:

G_OBJRM_NOTXCLAMP

To place texture on a sprite, the following relationships exist among texture size (imageW and imageH),
scale values {scaleW and scaleH), sprite size, {objW and obiH).

obiW = imageW / scaleW;
objH = imageH / scaleH

When placing texture on the sprite, the region (0, 0} - (imageW-1, imageH-1) in the texture

coordinates will be displayed on the sprite. However, sometimes texture slightly outside of this region

may be displayed, exceeding the outermost edge of the sprite.

To prevent this from occurring, the RSP performs a clamping operation for the excess texture outside of
the defined region. For details on this clamping operation, please refer to Chapter 12 of the N64
Programming Manual, “Texture Mapping”.

The flag G_OBJRM NOTXCLAMP causes the RSP not to perform this clamping operation. Normally it is
not necessary to set this flag to "ON",

G_OBJRM_BILERP

This flag is set when using texture bilinear interpoiation. As we have explained above, the texture
discrepancy of 0.5 due to bilinear interpolation will be corrected by setting this flag.

Alsa, when this flag is ON, the RSP supports internal image movement by sutpixel units, using bilinear
interpolation. As a result, a sprite can be moved by 1/4 pixel units,

G_OBJRM_SHRINKSIZE_1

When combining multiple bilinear interpolated Sprites and treating them as one large bilinear
interpolated sprite, care must be taken to assure continuity of the images at boundary lines. To maintain
the continuity between the images, it is necessary to overlap each Sprite's texture by one fine. If this is
done, 0.5 texel (denoted by # in the chart below) from outer edge will become unnecessary, since this
portion will be covered by the adjacent sprite.

0 0.5 1 2 3 s
0
HHHHHHE | ARAHEAE | FHAHHE | 48
0.5 | ##4#
Hit#
1
##4#
#it#
#i#
2
T #i#

23 NUS-06-0136-001A
Released; 1/9/68

$2DEX Microcode User's Guide

When the flag G_OBJRM_ SHRINKSIZE_1 is ON, the RSP will shrink the Sprite’s drawing image by
eliminating 0.5 texel, and draw the texture image. The texture image will shrink by 0.5, but the upper left
hand corner coordinate will not change. The resultant drawing becomes:

(objX,objY) 1/scaleX
<>
+*
< G_CBJRM_SHRINKSIZE_1 ON
<——— G_OBJRM_SHRINKSIZE_1 OFF
1/scaleY @

G_OBJRM_SHRINKSIZE_2

This is similar to ¢_OBJRM_SHERINKSIZE_1. The only difference is that the amount of image shrinkage
is doubled (1 texel from the outer edge).

This flag is used for overlapping adjacent Sprites’ texels by two lines for better continuity for subpixel
processing.

G_OBJRM_WIDEN
This expands the image by 3/8 texel in the positive 5, T directions.

This flag is used to prevent blank spaces from opening at the seams when Sprites are combined to
display a rotating Object which is larger than TMEM.

The importance of this flag was decreased as calculation for sprite rendering is processed more precisely
with S2DEX Version 1.04 and later, hawever this flag is still usable.

» G _OBJRM ANTIALIAS
s G _OBJRM XLU

RenderMode when Drawing Sprites

The RenderMode of the RDP which needs to be set for rendering a sprite is defined in a header file,
gs2dex.h. Please use this when rendering a sprite.

For Anti-aliasing off:
Opaque sprite G_RM_SPRITE*
Semi-transparent sprite G_RM XLU_SPRITE*
For ~aliasing on:
Opaque sprite G_RM AA SPRITE* (G_RM RA_SPRITE¥)
Semi-transparent sprite G_RM_AA XLU SPRITE*

When a semi-transparent sprite is used for Anti-aliasing On, and two sprites are layered, sometimes the
edge partion of the sprite which is layered on the bottom may affect the edge portion of the sprite on top.
Since this is inevitable, please use G_RM_XLU_SPRITE if this is unacceptable.

The Texture Load GBI

The sprite drawing process for S2DEX was described in the sprite GBI section. Here, we will describe
the TMEM load process, which is another important operation.
24

S2DEX GBls

uobjTxtr Structure

In the Texture Load GBI, three different texture types are processed by the same GBI, These three
different types (methods) are distinguished by ucbjT=tr structure’s member variable type, which is
provided to the GBIL. These three methods are shown below.

1. Texture load using LoadBlock

2. Texture load using LoadTile

3. TLUT load

Texture load using LeadBlock can be faster than texture load using LoadTile; however, there is a

limitation to loadable texture width. Since this limitation is the same as “LoadBlock”; please refer to page
13 for details.

Corresponding to the three different methods, three different data structures are defined. These data
structures are constructed the same way, having different member variable names. These data
structures are combined into a union (uCbjTxtr structure).

1. Texture load structure uobiTxtrBleck_t for using Loadblock

typedef struct {
u3z type; // by type G _OBJLT_TXTRBLOCK
uéd4 *image; // texture source address on DRAM
ulée tmem; // TMEM word address of loading destination (8byteWORD)
ulé tsize; // texture size specified by macroc GS_TB TSIZE()
ulé tline; // texture width specified by macro GS_TB TLINE()
ulé sid: // Status ID { 0, 4, 8, or 12 }
u32 flag; // Status flag
u3z mask; /{ Status mask

} ulbjTxtrBlock t; // 24 bytes
2. Texture load structure uOb3TxtrTile t forusing LoadTile

typedef struct {
u3z types // by type G OBJLT TXTRTILE
u6d4 *image; // texture source address on DRAM
ulg tmem; // TMEM word address of loading destination ({(8byteWORD}
ulé twidth; // Texture width specified by macro GS_TT_TWIDTH()
ulé theight; // Texture height specified by macro GS_TT THEIGHT{)
ule sid: // Status ID { 0, 4, 8, or 12 }
u3z flag; // Status flag
u3z mask; // Status mask

} uobjTxtrTile_t; // 24 bytes
3. TLUT load structure uCbjTLUT_t

typedef struct {
u3z type: // by type G_OBJLT_TLUT
u6é4 *image; // texture source address on DRAM
ulé phead; // first TLUT area number 256 £ phead <€ 511
ulé pnum; // number of TLUT to be lcaded - 1
ulé zero; // always 0
ule sid: // Status ID { 0, 4, 8, or 12 }
u3z flag; // Status flag
u32 mask; // Status mask

} uCbjTxtrTLUT_t; // 24 bytes

25 NUS-06-0136-001A
Released: 1/9/98

S2DEX Microcode User's Guide

The shared structure, uObjTxtr unicn
typedef union {

uObiTxzrBlock t blocky // texture load parameter using LeoadBlock
uObijtrTilewg tile; // texture load parameter using LoadTile
uob3TxtrTLUT t tlut; // TLUT load parameter
long long int force structure_ alignment;

} uObjTxtr;

gSPCbiLeoadTxtr

gSPObjLoadTxtr (GEfx *gdl, uObjTxtr *tx)
gsSPObjLoadTxtr{udbjTxtr *tx)

GEfx *gdl; The display list pointer

uObjTxtr *tx; The pointer to the texture lcad data structure
g5PObjLoadTxtr performs each loading operation by referring to the texture loading parameters which
are held by the above-mentioned three structures. The three structures have the common member
variables type, image, sid, flag, and mask. First, we will explain these five common member
variables.

type
gSPObjLoadTxtr distinguishes each structure using the value of type, the structure’s member
variable. Each value of type and corresponding structure, and each operation is shown below.

type Value Structure Operation

G _OBJLT TXTRBLOCK uObjTxtrBlock t texture load using LoadBloeck
G_ORJLT_TXTRTILE ulbiTxtrTile t texture load using LoadTile
G_OBJLT_ TLUT uObITLUT_t loading of TLUT

image
image, the member variabie, specifies the texture data in the main memory to be loaded, or TLUT data
address. This texture data must be 8 hyte aligned.

sid, flag, and mask

These three member variables are used for bypassing the reloading operation if the texture in question is
already loaded. If the requested texture is already loaded, g[s]SPObjLoadTxtr will not perform the

load operation.

To determine the existence of the texture in question in TMEM using the RSP, the RSP must analyze the
loading destination area for each texture load operation. This is time consuming, and not a very good
option.

In S2DEX, the loading destination area data are inciuded in texture data structure, Therefore, rather
than performing analysis using the RSP, simple calculation will determine whether or not the loading
operation needs to be performed.

For example, when texture data are loaded to TMEM, an |D which corresponds to the loaded texture can
be written to a status area. By simply comparing the IDs when the next TMEM loading operation is
performed, the loading question can be resolved rather easily.

The loading decision method used hy S2DEX is an exiension of the ahove concept. When partial
loading by dividing TMEM is performed, S2DEX can aisc make loading decisions for different parts of
TMEM using two 32 hit variables (flag and mask); this makes partial loading possible.

The RSP provides four 32 bit status variables in the status region. When the microcade starts up, these
variables are set to 0. sid will determine which status value to use. sid can assign one of the values

{0, 4, 8, 12}.

28

S2DEX GBls

glsl0CkjLoadTxtr actually makes the loading decision using the steps below.
1. Check the condition of (Status [sid] & mask == flag).

2. If the result is true, assume that the texture is already loaded and terminate the joading
operation.

3. If the result is false, load the texture, and change Status(sid] to:

Status{sid] = (Status{sid] & ~mask} | (flag & mask);

The easiest way to use flag is to assign -1 (=0x(ffffffff) to mask, and texture’s source data address (= the
value of the member variable “image™ to £1ag. If there is no texture data starting from the same
address, this will act as a texture cache.

Also, when (flag & ~mask) i= 0, the condition will always be faise, and texture wiil always be
loaded.

The next example will divide TMEM into two areas and control each area. Here, assign Status[0]'s bits
31~18 to the first half of TMEM, and assign bits 15~0 to the last half of TMEM. Assign the sequence
number to each texture. The value of sid is always G.

Load Area flag mask
A: tTexture 1 0 to 255 0x0C0010000 Oxff££0000
B: texture 2 256 to 511 0x00000002 0x00Q0ffff
C: texture 3 0 to 511 0x0C030003 Oxffffffff
D: texture 3 only the last half 256 to 511 0x00000003 0x0000ffff

At C, the entire texture 3 is loaded. Even though the loading operation of A changes the first half, since
the TMEM's last half retains texture 3 data. The request for loading texture 3 at D to the last half will not
require actual loading.

Similar to this example, S2DEX has GBI gSPSelectDL / gSPSelectBranchDi, which performs a DL
branching operation, using the same principle as the operation using status.

The member variables of other the structures are explained in the following paragraphs.,
1. Texture load using LoadBlock (uchiTxtrBlock t structure)

tmem

The texture’s loading destination TMEM address is assigned to tmem in DoubleWord units. Normally,
this loading address is used as the value of imageAdrs of u0bjSprite structure. If this value is to be
specified in pixel units, the macro Gs_PIX2TMEM (), described earlier, will become useful,

tsize

The size information of the texture to be loaded is assigned to tsize. To obtain this value from texture

size, the macro GB_TB TSIZE() is used.
G5_TB_TSIZE(piX,siz): tsize setting

pix: the number of texels to be lecaded (=width of texture X height ef
texture)

siz: 1 texel size, specify G_IM SIZ *

tline

The width information of the texture to be loaded is assigned to tiine. Use the macro
GS_TB_TLINE(} for obtaining the value from the texture width.
G3_TB_TLINE(pix,siz}: setting of tline

pix: the number of texel of texture width
siz: 1 texel size, specified by G_IM SIZ *

27 NUS-06-0136-001A
Released: 1/9/98

S2DEX Microcode User’'s Guide

2. Texture |oad by LcadTile (uCbjTxtrTile t structure)

tmem

This member variable is commeon to the load operations using LeadBlock. The TMEM texture locad
destination address is assigned to tmem in DoubleWord units.

twidth

The load texture width information is assigned to twidth. Use the macro GS_TT TWIDTH () to obtain
the value from texture width.

GS_TT TWIDTH({pix,siz): setting of twidth

pix: texture width
giz: 1 texel size specified by G_IM SIZ_*
theight

The height information of the texture to be loaded is assigned to theight. Use the macro
Gs_TT_THEIGET() to obtain the value from texture height.

GS_TT_THEIGHT (pix,siz): setting of theight
pix: texture height
siz: 1 texel size, specified by G_IM SIZ_ *

3. TLUT load (u0bjTLUT t structure)

phead

The first TLUT area number is assigned to phead. The palette number can be obtained by adding 256
to the normal palette ID. Therefore, the value ranges from 256 to 511. Use the GS_PAL. HEAD ()} macro

for this setting.

GS_PAL_HEAD {head): setting of phead (add 256 to head)
head: first ID of TLUT to be loaded

pnum

A value representing “(the-number-of-colors-of-the-locaded-TLUT) -1” is assigned to pnum. Use the
GS_PAL NUM() macro for this setting.

GS_PAL_NUM{num): setting of pnum (num -1)
num: the number of TLUT to be loaded

Zero

This member is not used in uobjTLUT_t. However, to maintain compatibility with other structures,
always assign 010 zere,

The foilowing illustrates an example of the set-up for the three structures.
1. RGBA16 Texture load using LoadBlock

uObjTxtr ob)TxtrBlock RGBAlE = {

G_OBJLT_TXTRBLOCK, /* type */
(u64 *)textureRGBAlLG, /* image */
GS_PIX2TMEM (O, G_IM SIZ_16b), /* tmem >/
GS_TB_TSIZE{32*32, G_IM SIZ_16b}, /* tsize ¥/
GS_TB_TLINE{(32, G_IM SIZ_16b), /* tline */
0, /* =id */
{u32) textureRGBAlG, /* flag */
-1 /* mask */

28

S2DEX G8ls

2. Cl4 Texture toad using LoadTile

uObjTxtr objTxtrTile CI4 = {

G_OBJLT TXTRTILE, /* type */
(ued *)textureCI4, : /* image */
GS_PIX2TMEM (0, G _IM SIZ 4b), /* tmem */
GS_TT _TWIDTH (32, G_IM SIZ 4b), /* twidth +/
GS_TT_THEIGET (32, G_IM SIZ db), /* theight */
0, /* sid */
(u3z) textureci4, /* flag */
-1 /* mask */

¥

3. TLUT load

uobiTxtr obiTLUT CT4 = {
G_OBJLT_TLUT, /* type */
{ued *)textureCI4ipal, : /* image */
GS_PAL HEAD(0), /* phead */
GS_PAL NUM(16), /* pnum */
0, /* zero */
o, /* sid */
(u32) textursCIidpal, /* flag =/
-1 /* mask */

Y

Compound Processing GBI

In actual game development, combining the Texture Load GBIl and the sprite Drawing GBI is sometimes
advantageous for controlling Sprites. S2DEX provides the mechanism to control the two GBIs with one
GBI. The following is an explanation of compound processing cf the GBis.

ucbjTxSprite Structure

uoObjTxsprite structure, which is shown below, has been constructed by combining uobjTxtr
structure and uCkjsSprite structure. The pointer t0 uObjTxSprite Structure is provided to the
compound processing GBI as the parameter.
typedef struct {
u0bjTxtr txtr;
uchjsSprite sprite;
} uObjTxSprite; /* 48 bytes */

gSPObjLoadTxRect
gSPObjLoadTxRect (GEX *gdl, uObjTxSprite *txsp)
g55P0ObjLoadTxRect {uOkbjTxSprite *txsp)

Gfx *gdl; display list pointer
UobjTxSprite *txsp; The pointer to texture load and sprite draw data structure

The g[{s] SPOb3LoadTxRect GBI performs the Texture Load operation, and then draws a non-rotating
sprite.

Essentially, this command performs two GBI operations g [s} SPObjLoadTxtr and
g[s]1SPOkjRectangle with one GEI. The resulis of {A) and (B) shown below are identical.

(A) gs5PObjLoadTxRect (txsp);

(B) gsSPObjLoadTxtr (& {txsp->txtr));
gsSPFObjRectangle (& {txsp~>sprite));

28 NUS-06-0136-0014
Released: 1/9/98

S$2DEX Microcode User's Guide

gSPObjLoadTxRectR

gSPObjloadTxRectR{GLfx *gdl, uChjIxSprite *txsp)
gs5SPOkbjLoadTxRectR (uOkjTxSprite *txsp)

Gfx *gdl; The display list pointer
uChiTxSprite *txsp; The pointer to the textures load and the sprite drawing
data
structure

The g[s]SPObjLoadTxRectR GBI performs the Texture Load operation, and then draws a non-rotating
sprite referencing a 2D matrix.

Essentially, this command performs two GBI operations, g [s] SPObjLoadTxtr and
gls]SPObjRectangleR with one GBI. The results of (A) and (B) shown below are identical.
(A) gsSPCbhjLoadTxRectR{txsp)’

(B) gs3PChjlLoadTxtr{e&(txsp->txtr));
gsSPObjRectangleR (& (txsp->sprite));
gSPObjLoadTxSprite

gSPOb]LoadTxSprite (GEx *gdl, uOb]TxSprite *txsp)
gsSPObjLoadIxSprite {uCbjTxSprite *txsp)

Gfx *gdl; The display list pointer
uokiTxSprite *txsp; The pointer to the texture load and the sprite drawing
data
structure

The g[s]spObjLoadTxSprite GBI performs the Texture Load operation, and then draws a rotating
sprite.
Essentially, this command performs two GBI operations, g{s] SPObjLoadTxtr and g[s]SPCbjSprite
with one GBI. The results of (A) and (B) shown below are identical.

(A} gsSPCbjLoadTxSprite (txsp);

(B} ¢gs3PObjLoadTxtr (& (txsp->txtr)}:
gs8PObjSprite (& (txsp->sprite)):;

Conditional Branching GBI

We have explained that S2DEX is using the RSP’s Status for making a loading decision. Here, we will
explain the GBI which uses Status for DL branching and linking.

gSPSetStatus
gSPSetStatus{GLfx *gdl, u8 sid, u32 wval)
gaSPSetStatus (u8 sid, u32 val)

GEx *gdl; display list pointer
ug sid; Status ID { Q, 4, 8, or 12 }
u32 val; A value the user desires to set

gls]sPsSetStatus assigns the value of val to the Status area (Status{sid]) specified by sid. The
Status value is referenced for Texture Loading and making conditional branching decisions.

30

S2DEX GBls

gSPSelectDL
gSPSelectDL (GEx *gdl, Gfx *1ldl, uB sid, u32 flag, u3Z mask}
gsSPSelectDL (Gfx *1dl, u8 sid, u3Z flag, u3Z mask)

GEIx *gdl; display list poilnter

Gfx *1dl; display list to be linked
ug sid; Status ID { 0, 4, 8, or 12 }
u32 flag; Status flag

u32 ’ mask; Status mask

g[s]3PSelectDL inspects Status [sid] using the same method used for texture load decision
making. Depending on the True/False resuit, other display lists are called.

g{s]SPsSelectDL determines whether or not to call the display list by going through the following steps.
» Check the condition of (Status[sid] & mask) == flag
s |fthe result is true, finish GBI without doing anything.
« Ifthe result is faise, change the Status[sid] by performing:
Status{sid] = (Status(sid] & ~mask) | (flag & maskji;s

and call display list “1d41".

gSPSelectBranchDL

gSPSelectBranchDL (Gfx *gdl, Gfx *bdl, uB sid, u32 flag, u32 mask)
gs55P5electBranchDL{GEfx *bdl, uf sid, u3Z2 flag, u32 mask;

GEfx *gdl; display list pointer

Gfx *1link; display list to be linked
ug sid; Status ID { 0, 4, 8, or 12 }
u32 flag: Status flag

u3d mask; Status mask

g{s]SESelectBranchDL examines Status[sid] using the same method used for texture ioad
decision making, and depending on the True/False result branches out to other dispiay lists.

g[=] 8PSelectBranchDL determines whether or not to cail the display list using the following steps.
» Check the condition of {Status[sid] & mask) == flag
» ifthe resuit is true, finish GBI without doing anything.
o Ifthe resuit is false, change the status[sid] by performing:
Status[sid] = (Status{sid] & ~mask) | (flag & mask);

and branch out to display list “1d1".

ch! NUS-06-0136-001A
Released: 1/9/98

S2DEX Microcode User's Guide

32

Emulation Functions

Chapter 4 Emulation Functions
These are functions for using the CPU to emulate S2DEX GBI functions.

quS2DEmuGBgRectlCyc

void quS2DEmuGBgRectlCyc (GEx **gdl p, uObjBg *bg):

This function uses the CPU to emulate the action of S2DEX function gsPBgRect1Cyc by combining
other GBl's.

Parameters: gdl p Pointer to pointer teo display list
* The value feor gdl p is automatically calculated.

bg Peointer to uOkjBg structure

Calling gspBgRectlCyc (gdl ++, bg) canbe replaced by gus2DEmuGBgRect1lCyc {&gdl, bg).
Refer to "gsPBgRect1Cyc” on page 13 for an expianation of the parameter kg.

In addition, in order to notify the main routine that a scissoring box setting and Texture Filter setting, the
function gus2DEmus=stScissor, discussed below, must be called before gus2DEmuBgRect1Cye,

This function produces GBl's which are functional not only in S2DEX, but in the F3DEX series as well.
Because of this, one microcode can be processed when displaying a scaled scrolling BG screen and a
3D model at the same time.

guS2DEmuSetScissor

vold guSZDEmuSetScissor {u32 ulx, u32 uly, u32 lrx, u32 1lry, u8 bilerp);

This function sets the scissoring parameters and Texture Filter referred when the function
guS2DEmuBgRect1Cyc is processed.

Parameters: ulx upper left X coordinate of scissor box (ul0.0)
uly upper left Y coordinate of scissor box (ul0.0)
lrx lower right X coordinate of scissor box (ull.0)
lry lower right Y cocrdinate of scissor bex (ulQ.0)

bilerp set to value other than 0 to perform Bilerp interpolation
processing on the image, or set to 0 for PointSample.

Normally, the range of the scissor box set by g[s]DESetScissorx is handled by this function as
parameters. In addition, the initial values foruix, uly, lrx, iry, and bilerp are 9, 0, 320, 340,
0, respectively, which are settings that draw to a 320x240 pixel frame buffer with PointSample.

This function only needs to be called once before gus2DEmuBgRect1Cyc is called. As long as there is
no change in the scissor box and Texture Filter, it only needs to be called once during game initialization,
and doesn’t need to be called every time a frame is drawn.

33 NUS-06-0136-001A
Released: 1/9/98

S2DEX Microcode User's Guide

34

DEBUG Information Qutput Function

Chapter 5 DEBUG Information Output Function

There are 2 versions of S2DEX Microcode; one version for debugging and another version for refease.
The relationship between the two microcodes is the same as the relationship hetween libultra_rom.a and
libultra_d.a.

Although the debug version microcode, s2DEX_D is slower than the release version of the microcode, it
has the following additional features.

+ OQutputs the display list processing log.

« Inthe event of bad input or encountering undefined commands, stops RSP and reports the
problem to the CPU.

Investigation of problems, such as finding the cause of a runaway RSP, will become easier by checking
the display list processing log.

To use S2DEX_D, it is necessary to prepare an output buffer for the RSP dispiay list processing log. The
size must be the same as the display list, and must be 8 byte aligned.

Once the area is reserved, provide the pointer data of the first address of the area to data_size, which
is a member variable of the 0sTask structure. This member variable is not used in the S2DEX and
F3DEX series to mean the size of the DL is the essential meaning. A remnant of N64 OS/Library
Version 1.0, it is used as a log output buffer.

This address must not be the Segment address. When gspS2DEX. £ifo_d.o activates as microcode, it
Is stored in the address specified by the process log.

For details concerning the processing log’s display methaods, please refer to the function
ucDebugGfxlogPrint () in the sample program uc_assert.e. Also, for details concerning the
decision making process for stopping the RSP, please refer to ucCheckassert {} in the same file

35 NUS-06-0136-001A
Released: 1/9/98

S20EX Microcode User's Guide

36

Instailation of S2DEX Package

Chapter 6 Installation of S2DEX Package

The description here applies to S2DEX Microcode when it is received as a patch. If the package is
included in the N64 OS/Library that you received, the work described here is not necessary.

S2DEX Microcode consists of the following files:

gspS2DEX.fifc.o S2DEX Microcode
gspS2DEX.fifo d.o S2DEX Microcode (for Debugging)
include/gs2dex.h Include files for S2DEX
libultra/Makefile Makefile for updating libultra
libultra/us2dex.o Initialization rautine for BG structure
libultra/us2dex_emu.c Scaleable BG drawing routine
sample/* S2DEX Sample programs

libultra~.a are created by executing the make command in the 1ibultra directory. Copy
libultra=.afilesto /usr/1ib. Also, copy gspS2DEX.£ifc.o and gspS2DEX. fifo d.oto
/usr/1ib/PR, and copy include/gs2dex.ht0 /usr/include/PR.

In addition, perl is necessary to compile affiliated sample programs. Please install the following
packages from the IRIX 5.3/6.x CD.

For IRIX 5.3
eoe2.sw.gifts_perl

For IRIX 6.x:
eoe2 sw.gifts_perl

37 NUS-06-0136-001A
Released: 1/9/98

$2DEX Microcode User's Guide

38

	dev_manual_1of3.pdf
	dev_manual_2of3
	dev_manual_3of3

