
220 trends in analytical chemistry, vol. 6, no. 9,1987

Computer Co~ne~

XINBASE, a database system in the Unix
shell
C. R. Muthukrishnan and Jai Kumar
Madras, India

Recent advances in implementing user-friendly systems ad-
vocate tools for rapid prototyping. Interactive access to a da-
tabase using the relational model is a powerful basis on
which to develop such a tool. This work presents an inte-
grated set of tools using shell language under Unix and em-
ploys the utilities offered by it.

The system, named XINBASE, is a flatfile database sys-
tem. It combines the general Unix tools (commands) into
specialized tools (operators) and is presented in a menu-
driven, user-friendly environment. A number of Unix com-
mands (60 of them) have been combined to emulate 21 basic
database operations on the lines of the popular dBASE II
package.

Data are stored at two levels (pools) to allow for locking,
security and simple error recoveries to be incorporated. The
results of operations on the fla@les are sent to temporary
files and the user has the option to direct it to namedfiles or
to overwrite the original. XINBASE is designed to show that
efficient application programs can be developed in the Unix
environment.

Introduction
The Unix environment is productive because it

provides a clean and systematic interface to pro-
grams that run on it. Unix has a repertoire of small
and useful programs’ (called utilities or tools) that
can be combined into complex procedures using the
Unix shell*. XINBASE is a paradigm of such a com-
bination. The existing utilities (60 of them) are con-
nected at a very high level to perform 21 database
functions. In this system, each function is called an
‘operator’. XINBASE is a relational database sys-
tem, the relations being in the form of tables. Each
line of the table constitutes a record. Embedded
within records are user-defined fields, demarcated
by field separators3. The XINBASE operators ma-
nipulate data files consisting of these tables to pro-
duce the desired results.

Design of XINBASE
In addition to being a command interpreter, the

Unix shell2 is also a programming language with vari-
ables, control flow, subroutines (calling other pro-

grams) and interrupt handling features. It permits
the user to create programs in a straightforward and
well structured manner. These programs constitute a
combination of Unix commands and can be tailored
to meet specific requirements.

XINBASE is written in the shell language. Each
XINBASE operator is a customized shell script
which can be invoked via a menu display. Fig. 1 illus-
trates the structure of XINBASE.

Variable substitution forms the crux of XINBASE
operations. A dialogue is initiated between the user
and XINBASE. Based on the response, variables
are set and passed as arguments to the appropriate
operator. The operator then executes sequentially
the commands contained in its constituent shell
script file. Depending on the task to be performed,
each line in the operator file could be a simple com-
mand or another shell script containing more com-
mands. This is analogous to the procedure calls of
conventional programming languages. Fig. 2 shows
the organization of operators and the flow of data in
XINBASE.

In addition to its display on the terminal, the out-
put of an operation is sent to a file in the /tmp direc-
tory through pipes or I/O redirection. This technique
is useful for two reasons. Firstly, it is possible to
‘undo’ the effect of an operation by instructing XIN-

SHELL

INTERFACE

USERS

OPERATORS UNIX TOOLS

Fig. 1. Structure of XINBASE.

.
trends in analytical chemistry, vol. 6, no. 9,1987 221

XINBASE

\L
\

craat PERFORM VIEW QUIT
OPERATIONS HELPFILE

6

I
/

&
user PO01 Common Pool

A falls /\
&

/\

Flequestr &lE

File-test File-test

: i
1

8 \ \ ‘
I

FLOW OF OATA

THE OPERATORS l-4
ARE LISTED IN

i_,________~_,____________i TABLE I

file. Mutual exclusion is maintained by the ‘lock’
command. ‘lock’ is implemented using the Unix sys-
tem call ‘creaV5 by allotting a unique temporary file
to each user (the file semaphore protoco16). When
the user completes an operation in the common
pool, XINBASE ‘unlocks’ the file with the ‘unlink’5
system call. Since ‘treat’ is atomic, only one user
would succeed in gaining control over a file from
amongst all those users who try to access it simulta-
neously .

If a user fails to lock a file, XINBASE issues a
message requesting the user to try again later. When
a user quits XINBASE, all locked files are automati-
cally unlocked to prevent indefinite waiting on the
part of other users.

File types and field types
The files in XINBASE exist with one of the fol-

lowing suffixes:
.db. Data file, contains fields separated by de-

limiters.
.fdb. Format file, contains information about field

names, field types and widths.
.cdb. Crypted file, contains a coded version of the

corresponding . db file.
.pdb. Print file, contains formatted .db file.
XINBASE allows the following field types:
a. Alphanumeric.
12. Numeric.

Fig. 2. Organization of operators and dataflow in XINBASE. 1. Logical.

BASE to simply delete the temporary file. Secondly,
the temporary file can be named at the user’s discre-
tion. The use of temporary files also ensures that
original files are not accidently overwritten.

.Pools and locking
XINBASE allows data to be stored at two levels

(pools): the user pool and the common pool (Fig. 3).
The user pool contains those files that are local to the
user’s directory. Files in the common pool can be ac-
cessed by all users.

This leads to a need for concurrency control4 when
two or more users request an update on the same

Operators
The operators contained in XINBASE and their

file requirements are given in Table I. A brief de-
scription of the XINBASE operators and some of
the Unix commands (given in parentheses) used by
each of them will now be given.

TABLE I. Operators and file requirements in XINBASE (Fig.

2)
Definitions: type 1 = operators requiring two or more files; type 2 = op-
erators requiring only one file; type 3 = operators of type 2 which trans-
fer files to the common pool; type 4 g operators of types 1 and 2 whose
results are sent to temporary files.

type 1 we 2 type 3 type 4

compare append change transfer delete
X join create copy display
I project duplicate display duplicate

C 0 M M 0 N N delete insert edit

POOL.
B edit modify insert

locate sort join
rename sum locate

USER-2 POOL print transfer modify
sort

and SO on sum

Fig. 3. Data pools in XINBASE.
project

222 trends in analyticalchemistry, vol. 6, no. 9, 1987

append. Adds new records or fields to the end of a
database file or a format file (‘ed” and the ‘here doc-
ument technique’*).

change. Modifies the access rights to a file
(‘chmod” and ‘crypt”).

compare. Compares and lists the differences be-
tween two datafiles (‘comm”, ‘cmp”, ‘compare”
and ‘diff”).

copy. Duplicates a datafile to a new file (‘cp”).
create. Creates a new datafile structure (‘cat” and

‘echo’*).
delete. Removes records or fields selected by their

numbers or by user specified patterns (‘rm”, ‘grep”
and ‘awk’7).

display. Prints a formatted datafile (‘awkY7).
duplicate. Lists duplicate records and removes all

except one occurrence (‘uniq”).
edit. Invokes one of the three editors (‘ed”, ‘vi” or

<spy’s).
help. Displays the XINBASE help file.
join. Combines two datafiles on a common field

(‘join”).
locate. Searches the database for records that

match a specified pattern (‘fgrep”, ‘egrep”, ‘grep”
and ‘awkY7).

modify. Allows the modification of a field struc-
ture or the contents of a datafile interactively (‘ed”,
‘sed”, ‘ grep” and ‘awk”).

quit. Terminates the XINBASE session (‘exit’*
and ‘break’*).

insert. Adds a record or field at a specified location
(‘fgrep”, ‘egrep”, ‘sed” and ‘awkY7).

rename. Changes the name of a datafile (‘mv”).
sort. Sorts a datafile on any field or fields (‘sort”).
pro ‘ect. Projects fields from one or more datafiles

(‘cut’ H and ‘paste’8).
print. Prints a datafile according to a chosen speci-

fication (‘roff”, ‘nroff” and ‘tbl”).
sum. Performs totals on numeric fields (‘awk’7).
transfer. Sends a copy of files from the user pool to

the common pool (‘mv”).

Discussion
XINBASE was designed with several goals in

mind:
(a) to demonstrate the simplicity of building data-

bases. Much less effort is required compared to using
a conventional programming approach;

(b) to lay stress on the development of a cohesive,
integrated user-friendly and automated environ-
ment;

(c) to increase both programmer productivity and
application reliability;

(d) the idea of exploiting the potential of existing

Unix utilities instead of writing programs from
scratch.

Performance criteria
It is well known that Unix commands have been

designed to provide maximal efficiency in execution
times”5. Since each XINBASE operator is a combi-
nation of such commands, the overall performance is
limited by the following factors:

(a) variable assignment and their passing to pro-
grams written in shell and awk result in an overhead
in processing;

(b) the inherent response delay in any timesharing
system - more so in the case of Unix;

(c) the redirection of output to temporary files re-
duces performance speed but ensures data integrity.

Conclusions
The flexibility of developing programs in the shell

facilitates rapid prototyping. A prototype could be
built, experimented with and tailored to perform a
particular task - all with minimal investment of time
and effort. This methodology proved to be very ben-
eficial in the design phase of each XINBASE opera-
tor. Shell programs do not need compiling and they
produce immediate results. This allows the user to
test a shell script by varying input specifications,
modifying and retesting until a streamlined and effi-
cient program is developed.

We conclude that the XINBASE approach to ap-
plication program development proves to be reli-
able, efficient and requires much less coding than
programs written in conventional programming lan-
guages.

References
1 Unix Programmer’s Manual, Vol. 1, Bell Telephone Labs.,

Inc., New Jersey, 1983.
2 S. R. Bourne, BellSyst. Tech. J., 57 (1979) 1971-1980.
3 P. A. Bailes, Software Practice and Experience, 15 (1985)

1011-1020.
4 J. Ullman, Principles of Database Management, Computer

Science Press, Potomac, 1981.
5 B. W. Kerninghan and D. M. Ritchie, The C Programming

Language, Prentice Hall, Englewood Cliffs, NJ, 1977.
6 M. Rochkind, Advanced Unix Programming, Prentice Hall,

Englewood Cliffs, NJ, 1985.
7 A. Aho, B. Kerninghan and J. Weinberger, Software Practice

and Experience, 9 (1979) 267-279.
8 Guide to PNX, Appendix-3: Additional Software Specifica-

tions, ICL, U.K., 1984.

C. R. Muthukrishnan is a Professor and Jai Kumar is a research
scholar at the Department of Computer Science, Indian Institute
of Technology, Madras 600 036, India.

