
v_

w

» :

i i

•v~

DPS 6 & LEVEL 6
GCOS 6 MOD 400
APPLICATION
DEVELOPER'S
GUIDE"

_/ "Sl̂ ^PÎ î ^iJV^X JL F ir/TULVJLu

u.

u'

^J

^J

vJ

^x

DPS 6 & LEVEL 6
GCOS 6 MOD 400

APPLICATION DEVELOPER'S GUIDE

SUBJECT

Instruction in MOD 400 System Usage for Application Programmers
x " "-its . *

SOFTWARE SUPPORTED

See the MOD 400 Guide to Software Documentation for information about
i - Executive Releases supported by this manual. _

• 9

-> •? i - <> , „ • • - % *

,> ,u* -v~ ' ,0/300 KU- «

•^•u b-sc>o-?q 5*«c Y-'ii-i-^ ^ud»5 «jx&ipo: :e »

ORDER NUMBER

CZ15-00 December 1982
-^. 9J

Honeywell

^J

PREFACE

This manual has been written for the applications
programmer^ Its purpose is to provide the information needed to
use GCOS 6 MOD 400 system services to write and run application
programs,

The reader is assumed to have basic knowledge of application
development and processing, and some programming experience in
one of the three languages supported. The languages supported
are COBOL, BASIC, or FORTRAN.

The major topics presented in this manual are:

• Terminal startup and user access procedures

« File management • __

« Screen Editor conventions, directives, and user
procedures

• Line Editor conventions, directives, and user procedures

• COBOL, BASIC, and FORTRAN compile, link, and
execute procedures

• Program debug utility user procedures

^J

USER COMMENTS FORMS are included at the back of this manual. These forms are to be used
to record any corrections, changes, or additions that will make this manual more useful.

Honeywell disclaims the implied warranties of merchantability and fitness Tor a partic-
ular purpose and makes no express warranties except as may be stated in itn written
agreement with and for lU customer.
In no event ic Honeywell liable to anyone for any indirect, special or consequential
damages. The information and specifications in this document are subject to change
without notice.

©Honeywell Information Systems Inc., 1982 File No 1R13, 1S13 CZ15-00

^

w

Networking overview and processing capabilities

Patch utility user procedures

• File backup and recovery procedures

• Memory dump interpretation procedures.

U

After reading this manual, the applications programmer should
be familiar with MOD 400 system services and be able to write,
debug, and run application programs.

The notation conventions used in this manual follow. The
first set of conventions applies to directive syntax as a whole;
the second set applies to flow chart symbols; the third set
applies to heading hierarchy; and the fourth set applies to user
keyins.

Syntax Convention

UPPERCASE CHARACTERS

lowercase characters

Brackets

Braces
'•' is <.->: 3i<q;'j.

Flowchart Symbols

Symbol

Meaning

Reserved keyword or symbol.
Enter as shown.

Variable field,
supplied value.

Replace by a user-

Include none or one of the enclosed
options.

^Include one of the enclosed
options.

Meaning

Process. Represents performance of
a computer operation(s)

Online storage. Represents
information stored on diskette,
cartridge disk, or storage module

Printed card,
input

Represents card

^
111 CZ15-00

,'-*• --. .-̂ oo:: -t3 W'*,:vi&ve £«.'> v^ *.}**{

Document. Represents printed
output

'-*'̂ . - - >i-3":s*:}'i,r wmuD ' *

Manual input, i.e., terminal input

Heading Hierarchy

Mandatory. Indicates that
designated flow of information,
type of processing, or output is
required. «-•

The following conventions are used to indicate the relative
levels of topic headings used in this manual.

Level 1 (highest)
Level 2
Level 3
Level 4

User Kevins
..-»•* «. r r

-̂ 1̂ ,'JJÊ

ALL CAPITALS, UNDERLINED
Initial Capitals. Underlined
ALL CAPITALS, NOT UNDERLINED
Initial Capitals, Not Underlined

•* -HOC-? 3
Indicates user input to the
system

X"

\, „. _.

IV CZ15-00

o

t -' -"I" ' t l 'S №*3 £.<

MANUAL DIRECTOR Y '

The following publications constitute the GCOS 6 MOD 400
manual set. Refer to the "Software/Manual Directory" of the
Guide to Software Documentation for the current revision number
and addenda (if any) of relevant release-specific publications.

Manuals are obtained by submitting a Honeywell Publications
Order Form to the following address:

Honeywell Information Systems Inc.
47 Harvard Street

- fc L- Westwood, MA 02090
> \ -«£<- L: .

Attn: Publications Services
* x ̂ >*• T$

Honeywell software reference manuals are periodically updated
to support enhancements and improvements to the software. Before
ordering any manuals, you should refer to the Guide to Software
Documentation to obtain information concerning the specific
edition of the manual that supports the software currently in use
at your installation. If you use the four-character base
publication number to order a document, you will receive the
latest edition of the manual. The Publications Distribution
Center can provide specific editions of a publication only when
supplied with the seven- or eight-character order number listed
in the Guide to Software Documentation.

Honeywell applications software packages, such as INFO 6,
TOTAL 6, and TPS 6, provide specialized services. Contact your
Honeywell representative for information concerning the
availability of applications software and supporting
documentation. OSXD

X_x " ~ -J HT CZ15-00

Base
Publication
Dumber

CZ01

CZ02

CZ03
CZ04
CZ05

CZ06

CZ07
CZ09

CZ10

CZ15
CZ16
CZ17
CZ18
CZ19
CZ20

CZ21
CZ34
CZ35
CZ36
CZ37
CZ38
CZ39
CZ40
CZ41
CZ47 -
CZ48 .

CZ52
CZ53 .
CZ54
CZ59

CZ60

CZ61

CZ62
CZ63
CZ64

Manual Tifr^Le

GCOS 6 MOD 400 Guide to Software
Documentation

GCOS 6 MOD 400 System Building and
Administration

GCOS 6 MOD 400 System Concepts
GCOS 6 MOD 400 System User's Guide
GCOS 6 MOD 400 System Programmer's Guide -
Volume I

GCOS 6 MOD 400 System Programmer's Guide -
Volume II

GCOS 6 MOD 400 Programmer's Pocket Guide
GCOS 6 MOD 400 System Maintenance Facility
Administrator's Guide

GCOS 6 MOD 400 Menu Management/Maintenance
Guide

GCOS 6 MOD 400 Application Developer's Guide
GCOS 6 MOD 400 System Messages
GCOS 6 MOD 400 Commands
GCOS 6 Sort/Merge
GCOS 6 Data File Organizations and Formats
GCOS 6 MOD 400 Transaction Control Language

Facility
GCOS 6 MOD 400 Display Formatting and Control
GCOS 6 Advanced COBOL Reference
GCOS 6 Advanced COBOL Quick Reference Guide
GCOS 6 BASIC Reference
GCOS 6 BASIC Quick Reference Guide
GCOS 6 Assembly Language (MAP) Reference
GCOS 6 Advanced FORTRAN Reference 5
GCOS 6 Pascal User's Guide
GCOS 6 RPG-II Reference
Data Entry Facility-II User's Guide
Data Entry Facility-II Operator's Quick

Reference Guide
DM6 I-D-S/II Programmer's Guide
DM6 I-D-S/II Data Base Administrator's Guide
DM6 I-D-S/II Reference Card
Level 6 to Level 6 File Transmission Facility
User's Guide

Level 6 to Level 66 File Transmission
Facility User's Guide

Level 6 to Level 62 File Transmission
Facility User's Guide

BSC Transport Facility User's Guide
2780/3780 Workstation Facility User's Guide
HASP Workstation Facility User's Guide

^J

VI CZ15-00

'̂ Base
Publication

Number Manual Title

CZ65 Programmable Facility/3271 User's Guide
CZ66 Remote Batch Facility/66 User's Guide
CZ71 > DM6 TP Development Reference
CZ72 DM6 TP Application User's Guide
CZ73 DM6 TP Forms Processing

In addition, the following publications provide supplementary
information:

AS22 Level 6 Models 6/34, 6/36, and 6/43
Minicomputer Handbook

AT97 ' Level 6 Communications Handbook
CC71 ' Level 6 Minicomputer Systems Handbook
CD18 Level 6 MOD 400/600 Online Test and

Verification Operator's Guide
FQ41 Writable Control Store User's Guide

Users should be aware that a Software Release Bulletin
accompanies each software product ordered from Honeywell. You
should consult the Software Release Bulletin before using the
software. Contact your Honeywell representative if a copy of the
Software Release Bulletin is not available.

^̂ - vii CZ15-00

*",fi 'v

*• r?
- -F» fc -

-, n ."_ r 'iCcc ^•* ' j c : >•". , no

?<SiiJ
dt*-5""
1^50
A VXD
?'sn

f ZV

- i. s*.̂

• >

"f •** r * • \-^1 ' «*

•~N

x^ -

^

V^x

CONTENTS

"* * ' " ' Page

SECTION 1 INTRODUCTION

System Facilities 1-1
Honeywell's Family of Information Systems 1-2

SECTION 2 SYSTEM ACCESS

-̂̂ User Access Procedures 2-1
Connecting the Terminal to the Central Processor 2-1
Direct-Connect Terminal 2-2
Dialup Terminal. 2-2

Connecting a User to the Executive. 2-2
Login Terminal 2-2
Manual Login Terminal 2-3
Abbreviated Login Terminal 2-3
Automatic Login Terminal 2-4

Non-Login Terminal c.... 2-4
Procedures and Conventions after Access 2-5

Sending Messages to the Operator 2-5
Interrupting (Breaking) a Task 2-5

SECTION 3 FILE CONVENTIONS

Overview.. 3-1
Disk File Conventions 3-2

\^, Directories. c.. „ 3-2
Root Directory 3-3
System Root Directory 3-3
User Root Directories .. 3-3
Intermediate Directories 3-3
Working Directory. 3-4
Locations of Disk Directories and Files 3-5

Naming Conventions 3-5
Uniqueness of Names 3-5

r Pathname 3-6
Symbols Used in Pathnames 3-6
Absolute and Relative Pathnames 3-7

Magnetic Tape File Conventions 3-8
Tape File Organization 3-10
Magnetic Tape File and Volume Names 3-10
Magnetic Tape Device Pathname Construction 3-11
Automatic Tape Volume Recognition 3-11

ix CZ15-00

CONTENTS

Page

Unit~Record Device File Conventions«, «,„. 3-11
VV © i Ks i riQ W J» W4l i X i c S « e o o o o c O € > o o o c c « « » o » * * » » e c o « o o o o e e e ' C » o « c « J ™J» ̂

C©fnitlGin.Cl i ITOC^SSOir c e e o e o o o o c e o o o e c « e « c « » » « * « c c o © e o « o c c i c o o o e ^5™"J.fci

Standard I/O FileSo .ec....*....„<>... . e . . < > < > . • < > . < . . . » < > . 3-12
Command Levelo«............... 3=13

Controlling Your Operating Environment 3-13
Volume Control*,.... . 3-13

Creating Volumes....«, 3-13
Renaming Disk Volumes. 3-15

Directory Control 3-15
Changing Your Working Directory...........«, .<,. 3-15
Creating Directories. 3-16
Renaming Directories. 3-17
Deleting Directories* . c. 3-18

Renaming Files.............................o<.......... 3-20
Deleting Files. . 3-20
Copying Files. 3-20
Locating Files, 3-21
Listing Files and Directories 3-21

Interrupting Execution,, 3-22
Controlling Output. 3-22
Directing Output to a File 3-23
Directing Output to a Printer 3-23
Redirecting Output to Your Terminal 3-23

Printing Control. 3-23
Printing Files at Your Terminal*......<,.„. 3-24
Deferred Printing. 3-24

Program Execution....o 3-25
Reserving Files or Devices. 3-26
Communicating With Other Users.... 3-26

Absentee Processing 3-27

SECTION 4 SCREEN EDITOR 4-1

Overview. 4-1
Screen Editor Processing,, 4-2
Terminal and Keyboard Requirements 4-3
Screen Editor Suffix Conventions. 4-3
Loading the Screen Editor 4-4

Description of the Screen. 4-4
D^at^us £%egxon. ...o.................................... H—o
Text Region„.........*....*.. 4-6
Directive Region 4-6

Creating a Source Unit 4-6
Changing an Existing Source Unit 4-7
Interrupting Screen Editor Processing 4-8

:? CZ15-00

v^x
<•*-'

CONTENTS

Page
a * • • - • * . < • a ,

Entering Screen Editor Directives 4-9
Screen Editor Directive Format Conventions 4-9

Designating Lines .. 4-10
Block Description . 4-10
Special Characters. 4-12

Summary of Screen Editor Directives 4-13
Screen Editor Directives..<,... «,. 4-13
BOTTOM LINE (BOTTON LINE OR BL} 4-16

• CHANGE (CHANGE OR C) 4-17
. CHANGE ALL (CHANGE ALL OR CA) . . 4-19

CHANGE BLOCK (CHANGE BLOCK OR CB) 4-21
^ DISPLAY... 4-23

LANGUAGE TYPE (LANGUAGE TYPE OR LT) 4-24
LEFT MARGIN (LEFT MARGIN OR LM) 4-25
LOWER CASE (LOWER CASE OR LC) . 4-26
QUIT (QUIT OR Q) 4-27
READ (READ OR R) 4-28
RIGHT MARGIN (RIGHT MARGIN OR RM) 4-29
SCROLL CHANGE (SCROLL CHANGE OR SC) 4-30
SEARCH (SEARCH OR S) 4-31
SEARCH BACKWARD (SEARCH BACKWARD OR SB) 4-33
SEARCH FORWARD (SEARCH FORWARD OR SF) 4-35
TOP LINE (TOP LINE OR TL) 4-37
TRAILING BLANKS (TRAILING BLANKS OR TB) 4-38
UPPER CASE (UPPER CASE OR UC) 4-39

c VERSION (VERSION OR V) 4-40
; WINDOW WIDTH (WINDOW WIDTH OR WW) 4-41
'' WRITE (WRITE OR W) . 4-42

WRITE BLOCK (WRITE BLOCK OR WB) 4-44
Function Keys 4-46

"̂ -̂ Function Key Descriptions 4-48
APPEND LINE . . 4-49

. BACKWARD WORD. 4-50
BLOCK 4-51
COPY BLOCK. . 4-52
DELETE BLOCK 4-53
ERASE BLOCK. _ 4-54
FORWARD WORD. ... 4-55
MOVE BLOCK 4-56
WINDOW DOWN . 4-57
WINDOW LEFT . 4-58
WINDOW RIGHT . 4-59
WINDOW UP 4-6 0

Labeled Keys 4-61
BACKSPACE . 4-6 2
CARRIAGE RETURN . 4-63
CLEAR/RESET 4-64

_̂ -x xi C215-00

CONTENTS

Page

CTL CLR/TAB/SETe 4-65

CURSOR DOWN (4).. 4-67
CURSOR LEFT (<-)<, 4-68
CURSOR RIGHT (-*) . . 4-69
CURSOR UP (T)... . 4-70
DEL CHAR. 4-71
DEL LINE. 4-72
ERASE EOLS . 4-73
HOME* 4-74
INS CHAR . . 4-75
LINEFEED...................... 4-77
TAB 4-7 8

SECTION 5 LINE EDITOR. 5-1

Overview. 5-1
Line Editor Suffix Conventions. 5-3
Line Editor Directive Format Conventions. 5-3

Methods of Specifying Addresses* „ «,.,. 5-5
Designating a Line Number as an Address. 5-6
Designating the Position of a Line Relative to the
"Current" Line as an Address 5-6
Designating Contents of Line as an Address 5-7
Compound Addresses. 5-11

Referencing a Series of Lines........................... 5-12
Loading the Line Editor................................. 5-14

Summary of Line Editor Directives and Escape Sequences.... 5-16
Creating a Source Unit. 5-21 /~N
Changing an Existing Source Unit. 5-22 ̂ >
Input Mode Description and Directives. 5-22
APPEND (A) 5-24
CHANGE (C)... 5-27
INSERT (I)...... 5-30

Edit Mode Description and Directives 5-33
DELETE (D) 5-35
PRINT (P) 5-37
QUIT (Q OR 1Q) 5-41

SUBSTITUTE (S OR IS).................................... 5-45
WRITE (W) ... 5-49

Advanced Functions of the Line Editor 5-51
General Advanced Line Editor Directives 5-51

EXCLUDE (V) 5-52
EXECUTE (E) 5-54

xii CZ15-00

v^

CONTENTS
* O ̂ *4

Page

GLOBAL (G) . 5-55
. LINE FEED (L OR !L) 5-57

LOWERCASE (U) . 5-58
NEW CURRENT LINE (N) .. 5-59
PRINT LINE NUMBER (=/iP) 5-60
PRINT WITH LINE NUMBER (IP) . 5-62

\ UPPERCASE (!U) . . 5-64
COMMENT (")................ . . 5-65

Auxiliary Buffer Directives and Escape Sequences 5-66
ACCEPT SINGLE LINE FROM A TERMINAL (!R) 5-68"
BUFFER STATUS (X) 5-69

v CHANGE BUFFER (Bx) 5-71
CHANGE ORIGIN OF TEXT DURING EDIT MODE (IB)... 5-72
CHANGE ORIGIN OF TEXT DURING INPUT MODE (!B) 5-75
COPY (K).c .o 5-77
COPY-APPEND (IK) „ 5-79
DESTROY (*B) 5-81
MOVE (M) c 5-82
MOVE-APPEND (JM) . . 5-84

Line Editor Debugging Directives 5-86
HEXADECIMAL DUMP (ZDUMP) 5-87
ZREGEXP. 5-89

$ ZTRACE 5-90
~i Line Editor Programming Directives 5-91

ADDRESS PREFIX (?) 5-94
GOTO (»..„.... 5-96
IF DATA (#)..... 5-98
IF EMPTY ("I) 5-9$
IF LINE (adrt) 5-100
IF NOT LINE (adr ~f) 5-101

V^ IF RANGE (addr(s) #).. 5-102
IF NOT RANGE (adrs *#) 5-103
SEARCH (*) 5-104
SEARCH NOT (**) 5-105

:- LABEL (:) 5-106
TYPE (T) 5-107

Programming Considerations 5-108

SECTION 6 LINKER 6-1

Overview 6-1
Linker Functions 6-1
Linker Directive Categories 6-3

Specifying Object Unit(s) to be Linked 6-3
Specifying Location(s) of Object Unit(s) to be Linked... 6-3
Creating a Root and Optional Overlay(s) 6-4

•'; Producing Link Map(s) 6-5

xiii CZ15-00

/•
1?

~N

' ^J

CONTENTS

External Symbols. 6-5
Protecting or Purging Symbol(s)...............0......... 6-6
Reloading After System Failure...<>...... 6-6
Terminating the Linker 6-6

Loading the Linker . . 6-7
Entering Linker Directives 6-9
Linker Directives Set. 6-10

BASE. , e . o o e . . 6-11

CC (CALL-CANCEL) . 6-17
COMMON. . 6-18
CPROTooc... 6-19
CPURGE. 6-20

FLOATB6 co...o.. o.o 6 = 2 5

GSHARE, o ... o 6=28

INCLUDE!!!!!!!!!!...!..... '. ! 6-32
1ST* 6-33
LDEF. 6-34
LIB or LIB1. 6-38
LIB Directive. 6-40
LINK c o . 6-41
LINKN. 6-43
LINKnn 6-47
LINKO. . 6-48

MAP and MAPU 6-50
OVERLAYTABLE 6-62
OVLY 6-63 ̂
PROTECT.... 6-65 ' '*>
PURGE... 6-67 ^S
QUIT.« 6-69
RERUN RELOCATABLE (RR) 6-70
RETURN 6-71
SEG. ". 6-72
SHARE. . 6-74
STACK. . 6-75
START. . e 6-76

VDEF...... 6-79
VPURGE. ... 6-80

Linker Procedures. 6-81
Overview 6-81
Using Overlays 6-82
Interrupting Linker Execution 6-82
Sample Link Sessions . 6-82

xiv CZ15-00 ;

^
CONTENTS

Page

SECTION 7 MULTI-USER DEBUGGER (SYMBOLIC MODE) 7-1

Debugger Overview.. 7-1
Debugger Capabilities*...«, 7-2
Invoking the Debugger 7-2
Debugger and Break Key Functionality 7-6
Planning Considerations. 7-7

Controlling Execution of the User's Program 7-7
Setting Breakpoints 7-7
Monitoring the Value of Variables .. 7-7
Controlling Output 7-8

v , ^ Maintaining a Trace History 7-8
Altering Values.. c 7-8

Debugger Directives „ 7-8
AT... 7-9
CHANGE 7-11
CLEAR. 7-12
DUMP. 7-13
GO......... 7-14
IF. 7-15
LIST. 7-17
MODE 7-18
ACTIVATE c c . 7-19
PAUSE. 7-20
QUIT 7-21
SET. . . 7-22
SP (SLEEP) 7-23
TRACE 7-24

SECTION 8 NETWORK PROCESSING FUNCTIONS 8-1
W

Network Control Center 8-1
Network Environment of a Process 8-2
Workstation Administration Commands 8-2
COBOL Session Control I/O Request Block Calls 8-3
COBOL Session Calls 8-3

SECTION 9 PATCH UTILITY 9-1

Using the Patch Utility. 9-1
Batch Mode 9-1
Interactive Mode 9-2

Loading Patch 9-3
Submitting Patch Directives 9-5
Patching Techniques 9-6
Naming the Patch 9-6

,* . „ Applying the Patch 9-6

v^ "-J" xv CZ15-00

^J -
CONTENTS

Page

COMMENT* c........................... o o . 9-9
DATA PATCH 9=10
ELIMINATE PATCH. e . o . . c . 9-15
GO « 9-16
HEXADECIMAL PATCH . . 9-17
INTERROGATE BOUND UNIT . 9-22
LDEF. = 9-23

• LIST PATCHES. . . . 9-25
LIST PATCHES NOW 9-27
LIST PATCHES NAMES 9-28
LIST SPECIFIED PATCH 9-29
QUITe,D...O..OOO...O.OO..e«....«........o« 9 = 30

SET GLOBAL SHARE BIT OFF................................ 9-31
SET GLOBAL SHARE BIT ON................................. 9=3 2
SET SHARE BIT OFF. 9-33
SET SHARE BIT ON. 9-34
SET SYSTEM BIT ON« 0 .. c , . . * c . * e 9-35
SYMBOLIC DATA PATCH..................................... 9-36
SYMBOLIC PATCH......................... 9 = 39

VERIFY/SET PATCH REVISION NUMBER 9-43

APPENDIX A USING THE LINE EDITOR A-l

Initiating a Line Editor Session...........o.............. A-l
Creating Work Files..................................... A-2
Line Editor Modes....................................... A-3
Quitting the Line Editor................................ A-3

Creating a File., A-4
Addressing Techniques„,.«« A-5

Addressing a Single Line. c.. A-5
Addressing Multiple Lines,,.. A-6
Printing Line Numbers. . A-6
Use of Period (.} for Current Line A-7
Character String Addressing. A-7

Selective Specification of Character Strings A-8
Specifying Initial Character String. A-8
Specifying a Character String Ending a Line........... A-8
Specifying a Single Character Substitution in
Search Strings.. A-9
Use of Escape Characters.............................. A-9

Saving File Contents. A-10
Reading File Contents A-ll
Deleting Lines in Current Buffer A-12

Deleting Multiple Lines A-12
Deleting All Lines in Current Buffer A-12

xvi CZ15-00 ^J

w
'UV:X ' CONTENTS

Page

Avoiding Post-Deletion Problems A-13
/ Adding and Deleting Lines A-14

Changing Line Contents A-14
Changing Character Strings Within a Line A-15
Changing All Occurrences of a String A-15
Substituting Initial and Concluding Strings „. A-16
Deleting Character Strings A-17
Appending a New String to an Existing String A-17
Adding Lines to the Current Buffer ». A-17

Inserting Lines. ..<>.. A-18
Appending Lines. A-18

Global Directives.. e A-19
x̂ , Global Delete..... .. A-19

Global Print. A-19
Current and Auxiliary Buffers... A-20

Repeating Lines in a File.. A-20
Moving Lines in a File.. A-21

, Using Existing Files....... A-23
Buffer Status..... A-24
Saving Modified Buffer Contents A-25

Using Editor System Commands A-25
Writing to Line Printer A-25
Date and Time ; A-26
Important Considerations A-27

APPENDIX B USING COBOL B-l

COBOL Compile, Link, and Executive Procedures B-l
Invoking the COBOL Compiler B-3
COBOL List File. B-5
List Header B-5

Aŝ x Source Listing B-5
Sample Listing B-5

Invoking the Linker B-8
Executing a COBOL Program B-9

Programming Tips for Communications via COBOL B-9
Interactive Devices and Files B-9
File System Considerations B-10
Source Program Entries in Communications B-10
Specifying Files in the Source Program B-10
Use of GET Command B-10
Assigning a File to a Device/Terminal B-10
Select and Assign Examples B-ll
Carriage Control B-12
Printer Emulation B-12
Specifying Asynchronous or Synchronous Read and
Write Execution B-12

v "• "• - xvii C215-00

^~
' , CONTENTS

Page

Synchronous Read and Write Operation (Call "ZCSYNC").. B-13
Asynchronous Read and Write Operation (Call "ZCASYN"). B-13 \
Wait for Completion for Asynchronous Input and Output* B-13 \
Binary Synchronous Communication (BSC) "with COBOL..... B-19 \
BSC Data Transmission Conventions . B-19 \

, BSC Data Transmission Modes B-20
BSC Multi-b'lock Transmission ". B-20
BSC 2780 and BSC 3780. B-20

BSC 2780 in Basic Transmission Mode. B-21
BSC 2780 in Advanced Data Transmission Mode B-22
BSC 3780 in Advanced Data Transmission Mode .. B-22

COBOL Program Examples . B-27
COBOL TTY or VIP Application Example..... B-27
Commands in the COBOL Example......................... B-27 >̂
File Assignments in COBOL Example..................... B-27
Error Messages in COBOL Example....................... B-43
Status Codes in COBOL Example. c. B-43
Execution of COBOL TTY or VIP Program Example B-43
COBOL BSC Application Example B-44

APPENDIX C USING FORTRAN C-l

Introduction. .. C-l
FORTRAN Compile, Link, and Execute Procedures. C-l

Invoking the Advanced FORTRAN Compiler C-2
Sample FORTRAN Listing Format C-3

Statement Error Diagnostics. C-4
Sample Listing.. C-5

Invoking the Linker. C-8
Executing a Program. C-9

Programming Tips for Using Communication Devices via
FORTRAN C-9

Interactive Devices and Files C-9
FORTRAN Program Execution with Communication Devices.... C-10
Assigning Interactive Devices at Execution C-10
Changing Terminal's File Characteristics C-10
Synchronous Input/Output C-10
Asynchronous Input C-10
"Asynchronous Output. C-ll

FORTRAN File Status Check (ZFSTIN and ZFSTOT).... ... C-ll
Call Statement for Z1STIN or Z1STOT. C-12

Z1STIN and ZlSTOT Programming Examples.................. C-13
FORTRAN Application Example for TTY C-13

i

xviii CZ15-00

w
?— —*

">x . CONTENTS
> * "" d v~-

Page

APPENDIX D USING BASIC D-l

Introduction D-l
Invoking the BASIC Interpreter/Compiler D-2
Executing BASIC Interactively D-2
BASIC Programs D-3

Compiling a BASIC Program.«, e D-4
Programming Considerations. . D-5
Making Procedure Calls... D-5
Resequencing Line Numbers D-5
Controlling Screen Processing D-6
Controlling Common Areas D-7

_̂̂ Linking a BASIC Program. D-7
Executing a BASIC Program D-7

APPENDIX E USING THE MULTI-USER DEBUGGER (SYMBOLIC MODE). E-l

Compiling a Program for Use with the Debugger E-l
Sample Compilation Dialogs. E-2

Linking an Object Unit with the Debugger E-2
Sample Linker Dialogs E-3
Invoking the Debugger E-4
Sample Initialization Dialogs E-5
Debugging Multiple Bound Units E-5

Executing Your Program with the Debugger E-6
Sample Execution Dialog E-6

APPENDIX F USING EXECUTION COMMAND (EC) FILES F-l

EC File Advantages F-l
EC File Features.... F-l

V^ Executing an EC File. F-2
Developing a Simple EC File F-2
Active Strings. F-3
Active Functions F-4

Using EC Active Functions F-4
Nested Active Functions F-4
Multiple Active Functions F-4
Using Active Functions as Commands F-5
Groups of Active Functions F-5
Arithmetic Active Functions F-6

Checkpoint Active Function F-7
- - Date/Time Active Functions F-7
*•„-:•' Directory Active Functions F-7
. r Logical Active Functions F-8

Question Active Functions F-8
String Active Functions F-9

f', "

^^ xix CZ15-00

^-v, CONTENTS

Page

User Active Function* « F-9
Creating a More Complex EC File.......................o... F-9

EC Control Directives* «, „ . „.«, <,. F-10
Creating a Generalized EC File0 «... F-12
- Substitutable Parameters.... F-12

APPENDIX G BACKUP AND RECOVERY G-l

Disk File Save and Restore G-2
Power Resumption. G-2
• Implementing the Power Resumption Facility...... G-3

Power Resumption Procedures G-3
File Recovery. G-4

Designating Recoverable Files....00.0. G-4 _̂̂
Recovery File Creation.,................................. G-5
File Recovery Process................................... G-5

Taking Cleanpoints. G-5
Requesting Rollback G-6
Recovering After System Failure G-6
Checkpoint Restart. G-7

Checkpoint File Assignment..« G-7
Taking a Checkpoint. G-8
Checkpoint Processing. G-8

Restart. G-9
Requesting a Restart G-9
Restart Processing...' G-10

APPENDIX H REQUESTING AND USING MEMORY DUMPS H-l

MDUMP Utility. H-l
MDDMP Requirements. H-l
Preparing to Execute MDUMP H-2 '' ^
Procedure for Using MDUMP H-2 —'
Procedure for Bootstrapping MDUMP H-3
MDUMP Halts. H-3

DUMP Edit Utility (DPEDIT) H-4
Page Header H-5
Dump Edit Line Format . H-5
Physical Dumps. H-6
Logical Dumps H-6
File System Structures.................................. H-26

Memory Pool Structures.................................... H-27
Task Group Structures..................................... H-28
Task Structures. «..... H-28
DPEDIT Command H-29
Operating Procedure for Dump Edit H-32
DPEDIT Error Messages H-33

. j „

xx CZ15-00

^>
""'.v.CY" ^"'J.lsU

CONTENTS

Page

Interpreting and Using Memory Dumps H-35
Significant Locations on Memory Dumps H-36

Locations Relative to the System Control Block or
Group Control Block . H-39
Locations Relative to the Task Control Block (TCB)
Pointer of the Desired Priority Level...... H-40

Interpreting the Contents of a DPEDIT Logical Dump H-42
Finding the Location in Memory of Your Code.. H-42
Determining the State of Execution of Your Code at
the Time of the Dump. H-42
Halt at Level 2 H-42

\ , User Level Active at the Time of Dump H-43
No Level Active at the Time of Dump. H-43

Determining Where a Trap Processed by the System
Default Handler Occurred in Your Code H-44

Finding the Location in Memory of Your Code H-44
Printing an Incomplete Memory Dump H-45

- ILLUSTRATIONS

Figure * ' '"'' Page

1-1 Honeywell's Family of Information Systems 1-3

2-1 Directory Listing 2-6

3-1 Example of Disk File Directory Structure 3-2
3-2 Sample Directory Structure 3-4
3-3 Sample Pathnames 3-9
3-4 Location of Directories SHEPARD and COOK 3-17
3-5 Location of Subordinate File REPORTS 3-19
3-6 Location of Subordinate File WORDLIST 3-19

4-1 Sample Screen for Creating a File 4-5
4-2 Sample Screen for Modifying a File 4-5
4-3 Screen Editor Template for 780X General Purpose

Asynchronous Keyboard 4-46
4-4 Screen Editor Template for 7300 General Purpose

Asynchronous Keyboard 4-47
4-5 Screen Editor Template for 7300 Word Processing

Keyboard 4-47

v v xxi CZ15-00

^J
ILLUSTRATIONS

Figure Page

6-1 Relative Location of Memory in Memory Pool AA«,..eoo. 6-16
6-2 Overlays in Memory Pool AA.. «=. 0..«0.. <, * <, 0..<,»0»..... 6-16
6-3 Link Map Formats, < , < > . « , . « c o . . o 0 o . c c c c e e e < , . > o . . e o . 6-52
6-4 Sample Link Map (CARDIN.M)....„..„«,.............00. 6-85
6-5 Contents of LKDIR c«...............«,. 6-87
6-6 Structure of the Bound Unit COBPRG*, 6-90
6-7 Source Listing of Root Segment COBPRG..... 6-93
6-8 Source Listing of First Overlay Segment PART2 6-94
6-9 Source Listing of Second Overlay Segment PART3 6-94

B-l Compiling and Linking a COBOL Program........; B-2
B-2 COBOL Source Program PROG1.C. B-4
B-3 Listing of PROGlcL... B-6
B-4 Linking PROG1. B-8 —^
B-5 Execution of PROG1................0................. B-9
B-6 COBOL SELECT and ASSIGN Examples.................... B-ll
B-7 Simplified COBOL Program Logic for Multiple

Interactive Terminals (Asynchronous Input/
Synchronous Output) B-15

B-8 Simplified Program Logic for BSC 2780.... B-23
B-9 Simplified Program Logic for BSC 3780............... B-25
B-10 COBOL TTY or VIP Application Example................ B-28
B-ll COBOL BSC Application Example...... B-45

C-l Compiling and Linking a FORTRAN Program C-2
C-2 FORTRAN Source Program TEST.F C-3
C-3 Listing of TEST.F C-6
C-4 Linking TEST, C-8
C-5 Sample Execution of TEST...... C-9
C»6 FORTRAN Application Example for TTY c. C-15

D-l BASIC Source Program PROG1.B D-2
D-2 Interactive Execution of PROG1 D-3
D-3 Compiling and Linking a BASIC Program D-4
D™4 Compiling PROG1 and Quitting BASIC 0. D-4
D-5 Execution of BPROG , D-8

F-l Sample EC File: Command-Only... F-2
F-2 Sample Complex EC., F-13
F-3 Sample Generalized EC File: Application Development F-14

H-l Memory Dump Example................................. H-8
H-2 Data Structure Map. H-37

xxii CZ15-00

TABLES

Table Page

4-1 Summary of Screen Editor Directives 4-14

5-1 Summary of Line Editor Directives and Escape
Sequences...... c.. 5-16

7-1 Summary of Debugger Directives 7-3
7-2 Terms Used in Debugger Directives 7-4
7-3 Debugger Special Symbols 7-5
7-4 Debugger Reserved Keywords 7-5

H-l MDUMP Halts H-4
H-2 Significant Locations on Memory Dump H-36

_̂x

J^

xxiii CZ15-00

• • * '"•"•* '-ri^. ^r

sa f\ e^

'<dX T V
.-£
V S

^J

^

c
R

^

u

^

s
o
u
=

^J

V , • ' ' ' " • -• ' ' ' . .oD: ;c'7iS 7 K -_qij3 TS-;j

} I. ' "''•' ''*

" 4» 9.-; i , !

id- - • * — « « ' -, r, ^ Section 1
INTRODUCTION

The Application Developer's Guide describes GCOS 6 system
facilities available to the application programmer and provides
procedures for using these facilities to write, debug, and run
application programs.

SYSTEM FACILITIES „

The GCOS 6 MOD 400 Executive supports concurrent execution of
one batch stream (such as program development or file
maintenance) and one or more online streams.

User-written online applications may be loaded and started at
any time after system initialization. The number of applications
in operation is determined only by the amount of available
memory. When one application is deleted or terminates, its
memory is automatically released to another.

MOD 400 allocates memory dynamically from pools and can relo-
cate programs at load time. Once an application is loaded into
memory, it is dispatched according to its assigned priority
level. When multiple tasks share a priority level, they are
serviced in a round-robin fashion. The Memory Management Unit
prevents user applications residing in different memory pools
from interfering with each other or with the Executive.

\̂

1-1 CZ15-00

APPLICATION DEVELOPMENT COMPONENTS

The components that support applications development are: ^j

Screen Editor — A full screen, interactive program
development, text editing, and documentation preparation
system that allows a user to enter an entire screen of data
into a work file. The ability to manipulate full screens of
data at once makes text editing faster and reduces I/O
processing.

Line Editor — An interactive program development, text
editing, and documentation preparation system that works on
data a line at a time.

COBOL, BASIC, and FORTRAN Run-time Services — A total system
of language processors including, compile, link, and execute
modules that validate and process COBOL, BASIC, and FORTRAN
programs. (

Forms Processor -- A software component that permits a
programmer to define terminal screen layouts, as well as
control characteristics of the data transmitted between the
terminal and program variable storage.

Multi-User Debugger -- A software diagnostic tool used to
debug programs.

Figure 1-1 illustrates the family of application development
components.

The Screen Editor, Line Editor, COBOL, BASIC, and FORTRAN
run-time services, and the Multi-User Debugger are described in
this manual. Forms Processing is described in the Display
Formatting and Control manual. The MOD 400 Executive is
described in the MOD 400 System Concepts manual„

U

1-2

SCREEN
EDITOR

FORMS
PROCESSOR

COBOL
RUN-TIME
SERVICES

LINE
EDITOR

GCOS6
MOD 400
EXECUTIVE

BASIC
RUN TIME
SERVICES

MULTI-USER
DEBUGGER

FORTRAN
RUN-TIME
SERVICES

)

*<^ Figure 1-1. Application Development Components

)

'>

^

1-3 CZ15-00

^

. 8 — .

,>"-\

U

^

CO
-<

v^

^J

u
<:

>-
t/3

X"
N

A*-

v^

)

*•>»
T<"5u ' i£ „".

Section 2
* B : 1 SYSTEM ACCESS

, $

a

This section describes MOD 400 user access procedures.

USER ACCESS PROCEDURES

When you are at a user terminal, access to the system depends
on the way your terminal is described to and recognized by the
system.

Access to the system requires: nfciu " -̂

1. Physical connection between your terminal and the cen-
tral processor

2. Logical connection between you (the user) and the oper-
ating system.

In some cases, the Executive performs the second step for you
automatically after you have made the physical connection.

CONNECTING THE TERMINAL TO THE CENTRAL PROCESSOR

You can connect your terminal to the central processor by two
methods, depending on the type of terminal you have: a direct-
connect terminal or a dialup terminal.

^ 2-1 CZ15-00

Direct-Connect Terminal

For a direct-connect terminal, place the POWER ON/OFF switch
in the ON position. This is sufficient to connect the terminal
to the central processor.

Djlalup Terminal

A telephone line connects a dialup terminal to the central
processor. Use the following steps to make the connections

lo Turn the terminal POWER ON/OFF switch to the ON position.

2. Lift the receiver, press the button marked TALK/CLEAR,
and listen for a dial tone.

3. Use the telephone number provided by the system opera-
tor for the dialup line to call into the central
processor. (

4. Press the button marked DATA when you hear a high-pitched
tone (this tone lets you know that the connection has
been made). Hang up the receiver. /̂

If you are unable to make a connection, hang up the receiver
and begin again at Step 2.

CONNECTING A USER TO THE EXECUTIVE

After you have made the physical connection between your ter-
minal and the central processor, you can make the logical connec-
tion that identifies and establishes you as a user known to the
Executive. The procedure you use depends on whether your termi-
nal is defined as a login terminal or a non-login terminal. If
your terminal is a non-login terminal, turn to "Non-Login
Terminal" later in this section.

Login Terminal

A login terminal is one that requires you to use the LOGIN _̂
command to connect to the Executive. If the system you want to ""̂
access incorporates user registration, you may be required to be ^s
registered as a user in order to log in. The system administra-
tor can register you, or may allow an unregistered user to log in
under the user identification USER.

Login terminals can allow a full login or an abbreviated
login, or generate an automatic login. Which of these is ~
acceptable to a given terminal is determined by the system
startup procedure. See your system operator to determine which
type your terminal requires before using it. After you have

2-2 CZ15-00

^ ••
logged in, your access to system facilities is governed by
control arguments entered in the LOGIN command or, under user

) registration, in your user profile.
y

MANUAL LOGIN TERMINAL

When the connection to the system has been made at a manual
login terminal, a message-of-the-day and the login prompter
message:

LOGIN :-

followed by the system identification and the current date and
time appears at the terminal. If the terminal (and your user
profile) allow it, you may enter a full login line, such as:

.L JONES

•̂"̂ to gain access to the system. (Check with the system operator for
the correct format of your full login line.) In a user registra-
tion system, you may then be required to enter your password in
response to the prompter message:

PASSWORD?

If you enter the login line and password correctly, the system
responds with a ready message and you can begin to enter com-
mands. (Typing errors can be corrected when they are made. See

> Appendix A for instruction on correcting errors.)
u — **

ABBREVIATED LOGIN TERMINAL

Some terminals and some user profiles allow login only by
abbreviation. Most systems have defined one or more
abbreviations that are available to users at any terminal, and
may have defined terminal-specific abbreviations in addition.

^ / Check with the system administrator for the abbreviations that
can be used at your terminal.

If you wish to login by an abbreviation, after the login
prompter message has been issued, enter a one-character login
abbreviation, such as:

In a user registration system, you may then be required to
enter your password in response to the prompter message:

PASSWORD?

If you have entered the correct abbreviation and password, the
system will respond with a ready message and you can begin to
enter commands.

^
2-3 CZ15-00

AUTOMATIC LOGIN TERMINAL

At a terminal that generates an automatic login, there is no
login prompt. The login process occurs automatically after con- /
necting to the central processor. After the message-pf-the-day x-x^
(if there is one) and the ready message are displayed^ you can
begin to enter commands.

N,on~Login Terminal

A terminal can be configured as a non-login terminal. At a
non-login terminal, you can start entering data immediately after
making a connection with the system. It is recommended that the
first command you enter is the Ready On (RDN) command. If the
system responds with the message:

RDY:

you can continue with the session. If the system does not /
respond to this command (or to any other command), you must ^
request the operator to activate a task group for that terminal.
After the task group is activated, your access to system facili-
ties is governed by the control arguments specified in the task , ,
group activation command. . ;, , - »

Examples

You have made a connection with the system. Your task group is
$H. The first command you enter is: (

"RDN" * 'r * K' "' " '" *

to activate a prompter message to signal you that the previous
command is complete and the system is ready to accept another
command.

The system responds with:

RDY: .; I ^

Enter the command to list your working directory: ' "̂

LWD

The system responds (in this case) with: ~ "̂
"" £., " * •

"ZSYS51 ' * *
RDY:

-_'Vj~;}^

2-4 CZ15-00

^J

I i3MJ7

/̂
\

—- To find out what files are under this directory, enter:

-) LI -> i

and the system responds with a listing of the files. Figure 2-1
shows a sample listing.

PROCEDURES AND CONVENTIONS AFTER ACCESS
>

It may be necessary to request operator intervention or
interrupt a running task while at your terminal. The procedures
and conventions used to perform these actions are described
in the following paragraphs. ; ~-~

"' dCta

Sending Messages to the Operator
 ij >ai8

To send a message from your terminal to the system operator
(e.g., when your terminal is remote from the operator terminal),
you can enter the Message (MSG) command described under "Working
With Files". For example, if you want to abort the current batch
request, you could enter:

MSG "PLEASE ABORT BATCH REQUEST".
>MMl*«n •—.î î.n№i

fc
,t.j»î

t
»̂ 3

Interrupting (Breaking) a Task

You can interrupt or break a running task to reenter com-
mands, temporarily halt the task, or terminate it.

To effect a break from the user terminal, press the BREAK
(BRK) key. The system then issues the break prompter message:

BREAK

Your response may be any one of the following:

1. Enter any command (see the Commands manual). This may be
followed by another command or by one of the responses
described in steps 2 through 4. If the entered command
is not Start (SR), Logoff (BYE), New Procedure
(NEW_PROC), Unwind (UW), or Program Interrupt (PI)

(described later)", the lead task again enters break mode
and issues another **BREAK** message requesting another
response.

-- - !

^^

2-5 CZ15-00

DIRECTORY: "ZSYSS1

TIMEs 1980/09/25 0724j27

PHYSICAL STARTING RECORD
ENTRY NAME TYPE SECTORS SECTOR HEX LENGTH
**

V

[
>̂

ZSYS51
Z3 EXECUTIVE!
STARTED P. EC
GROUP $H. EC
GROUP $P, EC
SUPER. EC
GROUP $D. EC
DEBUG .WORK
HIS
EML
MDD
UDD
LDD
SID
SYSLIB1
SYSLIB2
FORMS
TV
PROGS
TRANS
DEBUGDB
GROUP $Cc EC
GROUPB4cEC
GROUPBlcEC
GROUPB2 . EC
GROUPB3 . EC
CONFDIR
DEFMENU
ZDRT
SSR.EC

D
R2
S
S
S
S
S

R2
D
D
D
D
D
D
D
D
D
D
D
D
S2
S
S
S
S
S
D
D
D
S

13
848
8
8
8
8
8
64
8
8
8
8
8
16
8
48
8
8
0
0

56
8
8
8
8
8
8
8

16
8

B
18
368
370
378
380
388
390
430
440
5B8
610
618
15C8
1B38
1B58
3100
3120

0
0

3DO
408
410
418
420
428

3200
3228
3348
3740

32
256
256
256
256
256
256
256
32
32
32
32
32
32
32
32
32
32
32
32
256
256
256
256
256
256
32
32
32
256

**

(

Figure 2-1. Directory Listing ^„
/*"S

C
2-6

(
CZ15-00

•-n3 .1

ŷ
\ 2. Enter one of the following break mode responses to the

BREAK message:

.' a. Start (SR). This resumes execution of the suspended
- task as though the break had not been made.

b. Unwind (UW). This releases all tasks and you
return to command level.

., - , - c. Logoff (BYE). This aborts and deletes the current
task group request.

d. New Process (NEW_PROC). This aborts all task
requests in the task group except for the lead task,
then restarts the task group, using the same argu-
ments as specified in the initial task group request.

Any of these commands terminates the current break; i.e.,
there will be no other **BREAK** message after they are
executed.

3. Enter Unwind (UW). All tasks will be terminated and you
return to command level.

If the terminated task was invoked following a break, the
lead task reenters break mode, issues another **BREAK**
prompter message, and awaits a response.

4e Enter Program Interrupt (PI). The task interrupted is
currently suspended.

For Linker and Editor, suppress output and return to
directive input level. The PI command suppresses output
resulting only from the Linker MAP directive.

The PI command is meaningful only to the Linker and
Editor running in a task group whose lead task is the
Command Processor. The commands described in steps 1, 2,
and 3 may be used with the Linker and Editor.

Example:

You issue a List Names (LS) command and the output begins to
appear on the screen at your terminal. You want this output
to be printed on the line printer. You should immediately
press the Break (BRK) key and take one of the following
steps:

^ 2-7 CZ15-00

1. Enter?
*rw.'»» "**,-»>« - -•:
•FO IEPTOO--
'̂̂ T-%1 •,-«*•—" vy'-—̂

to change the output destination to the line printer; x

then'enter the SR command to resume execution of the LS
command. The output that had already appeared at the
terminal will not appear on the hard-copy printout.

2o Enter the UW command to terminate the current LS task; or
enter s

[PO ~ILETO.p] " r '
r .rt̂ jio-aAfcaua'juW.iJ

to change the output destination to the line printer; then
enter the LS command to restart the LS program from the
beginning0

•*" '••.'-• >?.:-, - - ~ij.:

;, a y, i t

(

-J
• -' v ^ --r1^, .̂ '"'l ' ''H.h

2-8 CZ15-00

^_>

ne

i

^x

u
e>

"x

V I r ?*

f
' t~

-on
•*ri?

V_x

>:v~«. *.s-.

Section 3
FILE CONVENTIONS

•' ~ >t.. r.^ 3~ ~ -

This section presents MOD 400 file conventions as well as a
procedural scenario titled "Working With Files". This scenario
provides a detailed explanation of frequently used file system
commands and procedures.

OVERVIEW

A file is a logical unit of data composed of a collection of
records. The principal external devices available for storing
files are: ^.^.

• Disk devices (diskettes, cartridge disks/ cartridge module
disks, and mass storage units)

• Magnetic tape units.

These external devices are referred to as volumes (e.g.,
diskette volume, tape volume).

Various conventions to identify and locate files have been
established for their effective control when stored on disk and
magnetic tape. The conventions facilitate the orderly and effi-
cient use of the stored data.

Unit record devices (such as card readers, card punches, and
printers) also use the file concepts. However, since unit record
devices cannot be used to store files, there is less need to

^
3-1 CZ15-00

establish conventions for identification and location. A unit
record file is simply the data that is read or written at any one
time.

DISK FILE CONVENTIONS

Users must be able to specify an access path to any given
file on a disk volume that contains multiple files. Files must,
therefore, be organized on the volume in some predictable
fashion. MOD 400 provides a set of volume organization
conventions by which the system can locate any element that
resides on the volume.

The principal elements of this organization, aside from the
files themselves, are directories. The access path to any given
element on a volume is known as a pathname.

P;j rectories

Files on disk devices reside within a tree-structured hierar-
chy. The basic elements of this hierarchy are files known as
directories. The directories are used to point to the location
of data files, which are the endpoints of the tree structure.

A directory on a disk volume functions like a catalog. It
contains the names and starting locations (sectors on the volume)
of files or other directories (or both). The elements whose
names are in the directory are said to be contained in or subor-
dinate to the directory; therefore, the organization of a disk
volume is a multilevel structure. The complexity of the access
path to any given element in the structure depends on the number
of directories between the root and the desired element.

A directory structure is illustrated in Figure 3-1. The base
directory on a volume is termed a root directory. In Figure 3-1,
the root directory is VOL01. The root directory VOL01 points to
two subordinate directories DIR1 and DIR2. The directories DIR1
and DIR2, in turn, point to the data files (FILEA, FILEB, FILEC,
and FILED). , , . .

•i:

- t
^,.

'^

Figure 3-1. Example of Disk File Directory Structure

3-2 CZ15-00

\^^ The following paragraphs describe the root directory and
other special types of directories.

ROOT DIRECTORY „„ , _

There is a tree structure for each disk mounted at any given
time. At the base of each tree structure is a directory known as
the root directory. This is the directory that ultimately con-
tains every element that resides on the volume either immediately
or indirectly subordinate to it.

The root directory name is the same as the volume identifier
of the volume on which it resides. The directory VOL01 in Figure
3-1 is a root directory.

SYSTEM ROOT DIRECTORY , . „ . . . ,

One or more disk root directories can be known to the system
at any time during its operation. One of these, the system root

"^^ directory, is required at all times. The volume used by the
operator to initialize the system establishes the system root
directory. This volume also normally contains system programs,
commands, and other routinely used elements. It must contain a
number of directories and files that the system needs to perform
its functions. These are described in the System Building and
Administration manual.

USER ROOT DIRECTORIES
i.

The File System can recognize one or more user root direc-
tories. These are root directories of volumes created and used
for the installation's own particular needs. They may contain
user application programs and their associated data files, appli-
cation program source and object unit files, listing files, or
anything else that you want to store, either temporarily or
permanently.

INTERMEDIATE DIRECTORIES
*̂ -x

When a volume is first created, it contains only a root
directory. You can create, within this directory, any additional
directories required to satisfy the needs of your installation.
Consider, for example, a volume that is to contain data used by
two application projects, each of which has several people asso-
ciated with it. Each of these people has one or more files of
interest to him. The volume has been initialized and contains a
root directory name. Two directories can be created subordinate
to the root directory, each identified by the project name.
Then, subordinate to these directories, a directory can be
created for each person associated with each project.

The data files are all contained within the personal direc-
tories. This sample intermediate directory structure is illus-
trated in Figure 3-2.

3-3 CZ15-00

N^X

APP2

i?S
EVANS SROPHY

FILE A FILE S

-•q;»T~- --G TV(>- jnjfT;,2

Figure 3-2. Sample Directory Structure

When the need for a user-created directory no longer exists,
the directory can be deleted from the File System, making the
space it occupied? as well as the space occupied by its attri-
butes in the immediately superior directory, available for
reuse- A directory must be empty before it can be deleted; all
directories and files subordinate to the one to be deleted must
have been previously deleted by explicit commands.

WORKING DIRECTORY - - . - . -

The File System always starts at a root directory when it
performs an operation on a disk file or a directory. At times
the search for an element residing on a disk volume may traverse
a number of intermediate directory levels before locating the
desired element? the File System must be supplied with the names
of all the branch points it must pass on the way. The files of
interest to a user doing work on the system are frequently all
contained in a single directory specific to the task being per-
formed; this directory can be three, four, or more levels deep
into the structure. It would be convenient to be able to refer
to files in relation to a directory at some arbitrary level in
the hierarchy rather than in relation to the root directory. The
File System allows this to be done by .recognizing a special kind
of directory known as a working directory. :

A working directory establishes a reference point that
enables you to specify the name of a file or another directory in
terms of its position relative to that directory. If the access
path of the working directory is made known to the File System,

'*\

} • '-

3-4 CZ15-00

and if the desired element is contained in that directory, the
V x element can be specified by just its name. The File System con-

catenates this name with the names of the elements of the working
directory's access path to form the complete access path to the
element.

LOCATIONS OF DISK DIRECTORIES AND FILES

The File System has total control over the physical location
of space allocated to directories and files; you need never be
concerned about where on a volume a directory or file resides.
When a volume is first initialized, space is allocated to ele-
ments in essentially the order in which they are created. But
after the volume has been in use for some time, elements may have
been deleted and the space they occupied made reusable. Hence,
when a new element is created, it is allocated the first avail-
able space ever though that space may eventually be too small to
contain the file. If more space is needed for even a single
extent of a file, it will be obtained from another free area.
Thus, there is not necessarily any relationship between a file's

\̂ _x extents and contiguous free disk sectors.
V-,.- '.. 9<SJw -J i jp t

Naming Conventions
'-•.-' . i *

Each disk file and directory name in the File System can con-
sist of the following ASCII characters: uppercase alphabetics (A
through Z), digits (0 through 9), underscore (_), hyphen (-), and
period(.). If lowercase alphabetic characters are used, they are
converted to their uppercase counterparts.

The first character of any name must be an alphabetic. The
underscore can be used to join two or more words that are to be
interpreted as a single name (e.g., DATE_TIME). A period fol-
lowed by one or more alphabetic or numeric characters after a
file name is normally interpreted as a suffix to a file name.
This convention is followed, for example, by a compiler when it
generates a file that is to be subsequently listed; the compiler
identifies this file by creating a name of the form "FILE.L".

t*~-S The name of a root directory or a volume identifier can con-
sist of from one to six characters. The names of other direc-
tories and files can comprise from 1 to 12 characters. The
length of a file name must be such that any system-supplied
suffix does not result in a name of more than 12 characters.

UNIQUENESS OF NAMES

Within the system at any given time, the access path to every
element must be unique. This leads to the following rules:

• Only one volume with a given volume_id can be mounted at
any given time. (The system will inform you of an attempt
to mount a volume having the same name as one already
mounted.)

^ 3-5 CZ15-00

• Within a given directory, every immediately subordinate
directory name must be unique. (The Create Directory com-
mand will inform you of an attempt to add a duplicate
directory name.) -̂̂

• Within a given directory, every file name must be unique.
(The Create File command will inform you of an attempt to
add a duplicate file name.)

PATHNAME

The access path to any File System entity (directory or file)
begins with a root directory name and proceeds through zero or
more subdirectory levels to the desired entity. The series of
directory names (and a file name if a file is the target entity)
is known as the entity's pathname. The total length of any path-
name, including all hierarchical symbols, cannot exceed 57 char-
acters, except that a working directory pathname cannot exceed 51
characters. > i

Symbols Used in Pathnames

The following symbols are used to construct pathnames.

• Circumflex ("). Used exclusively to identify the name of a
disk volume root directory. The circumflex is used in two
forms. In one form it directly precedes the root direc-
tory name (e.g., "VOL011). In the other it directly pre-
cedes a greater-than symbol (>) to refer to the root
directory of the current working directory (e.g.,
~>DIR1>FILEA).

• Greater than (>). Indicates movement in the hierarchy
away from the root directory. The symbol is used to con-
nect two directory names or a directory name and a file
name. It can also be the first character of a pathname,
in which case the element whose name follows it is imme-
diately subordinate to the root directory of the system
volume. Each occurrence of the greater-than (>) symbol
denotes a change of one hierarchical level; the name to '̂
the right of the symbol is immediately subordinate to the /̂'
name on the left. Reading a pathname from left to right
thus indicates movement through the tree structure in a
direction away from the root directory. If the root
directory "VOL011 contains a directory name DIR1, the
pathname of DIRl is:

~VOL011>DIR1
* * * -*4 • " > J - * / 1 v * - - i - ^

If the directory named DIRl in turn contains a file named
FILEA, then the pathname of FILEA is:

~VOL011>DIR1>FILEA - --;/ ,

3-6 CZ15-00

• Less than (<). Used at the beginning of a pathname to
V_^' " indicate movement from the working directory in a direc-

' " tion toward the root directory. Consecutive symbols can
be used to indicate changes of more than one level; each
occurrence represents a one level change. When followed
by elements of a relative pathname, those elements repre-

. . sent changes of direction away from the root directory.
One or more of these symbols may precede only a relative
pathname.

• ASCII "space" character. Used to indicate the end of a
• * ' pathname. When represented in memory, a pathname must end

with a space character.

The last (or only) element in a pathname is the name of the
entity upon which action is to be taken. This element can be a
device name, directory name, or file name, depending on the func-
tion to be performed. In the Create Directory command, for
example, a pathname specifies the name of a directory to be
created. The last element of this pathname is interpreted by the

-̂̂ command as a directory name; any names preceding the final name
are names of superior directories leading to it. An analogous
situation occurs in the Create File command, except that in this
case the final pathname element is the name of a file to be
created. ••" • •"-•"•

Absolute and Relative Pathnames

A full pathname contains all necessary elements to describe a
unique access path to a File System entity, regardless of the
type and location of the device on which it resides. The File
System uses this form in referring to a directory or file. How-
ever, it is frequently unnecessary to specify all of these ele-
ments; the File System can supply some of them when the missing
elements are known to it and the abbreviated pathnames are used
in the appropriate context. An understanding of these conditions
and contexts requires an understanding of absolute and relative
pathnames.

•̂~' Absolute Pathname

An absolute pathname is one that begins with a circumflex (*)
or a greater-than symbol (». (A pathname that begins with a
circumflex is a full pathname. This form is used to locate
directories and files that reside on a device other than that on
which the system volume, the volume from which the system was
initialized, is mounted.)

When an absolute pathname begins with a greater-than symbol,
the first element named in the pathname is assumed to be immedi-
ately subordinate to the system volume root directory. Thus, if
the system volume name is SYS01 and the pathname given is
>DIR1>FILEA, the full pathname becomes *SYS01>DIR1>FILEA.

_s 3-7 CZ15-00

Another volume, USER1, can also contain a >DIRl>FILEA access
and can be known to the File System? the two access paths

are made unique by requiring that the root directory be specified
when referring to the second volume. The full pathname of this —
file on the second volume is thus ~USER1>DIR1>FILEA.

Relative Pathname , „ . _ , . - , *

A relative pathname is one that begins with a file or direc-
tory name or less-than symbol (<). When a relative pathname
begins with an element name, the first (or only) name in the
pathname identifies a directory or file immediately subordinate
to the working directory* When the relative pathname begins with
one (or more) less-than symbols, the first (or only) name in the
pathname identifies a directory or file immediately subordinate
to the directory reached by moving from the working directory
toward the root the number of levels indicated by the less-than
symbol(s).

A relative pathname can consist of one or more elements. If
a relative pathname contains more than one element, each element
except the last must be a directory name, the first immediately ^/
subordinate to the current working directory level, the second
immediately subordinate to the first, and so on. The last or
only element can be either a directory name or a file name,
depending on the function being performed, as described
previously,,

A simple name is a special case of the relative pathname. It
consists of only one element: the name of the desired entry in
the working directory.

If a reference is to be made to a file or directory that is
on the same volume but not subordinate to the working directory,
there are two alternative ways of making this reference: by
using an absolute pathname, or by using any of the forms of rela-
tive pathname described previously.

Figure 3-3 shows some relative pathnames and the full path- ̂
names they represent when the working directory pathname is: ' \

>PROJ1>USERA '""" ">5'~ " "" ' ~'-1A

MAGNETIC TAPE FILE CONVENTIONS ' ' , ' -.X- '

The magnetic tape file conventions include tape file organi-
zation, tape file naming conventions, and tape file pathnames.

,. j. .-(sSu£ f. "

3-8 CZ15-00

^J

w RELATIVE PATHNAME" FULL PATHNAME

DELTA
OLO>DELTA
<USERB>ALPHA
«PROJ2>USERA>DELTA
<

* ,.I

OLD

DELTA

*SYS01 >PROJ1 >USERA>DELTA
,SYS01 >PROJ1 >USERA> OLD>DELTA
*SYS01>PROJ1>USERB>ALPHA
*SYS01 >PROJ2>USERA>DELTA
*SYS01>PROJ1

SYS01

PROJ1

I

USERB

ALPHA

«
«
ft
«

**
•*

•ASSUME CURRENT WORKING DIRECTORY is SYSOI>PROJI>USERA.

3..;̂ !-o

*
»
*

Figure 3-3. Sample Pathnames

\ -

*
*
&
«
*
*
«
»
»
*

^^

X.V6 . -^ or B*-

̂ • r

3-9 C215-00

Tape File Organization*

Magnetic tape supports only the sequential file organiza- ^
tion. Fixed- or variable-length records may be used. Records ^J
cannot be inserted, deleted, or modified, but they can be
appended to the file. The tape can be positioned forward or
backward any number of records. . . .

The unit of transfer between memory and a tape file is a
block. Block size varies depending on the number of records and
whether the records are fixed or variable in length.

A block can be treated as one logical record called an
"undefined" record. An undefined record is read or written with-
out being blocked, unblocked, or otherwise altered by data man-
agement. Spanned records (i.e.,, those that span two or more
blocks) are supported. (No record positioning is allowed with
spanned records.)

A labeled tape is one that conforms to the current tape
standard for volume and file labels issued by the American
National Standard Institute. The following types of labeled
tapes are supported: -̂̂

A «';,.?,:„

• Single-volume, single-file ; '•
• Multivolume, single-file —.-,-- —..
• Single-volume, multifile ^ .—— ̂ •
• Multivolume, multifile. ' , . -•"•--•*-.

The following types of unlabeled tapes are supported:
*i

• Single-volume, single-file _ĵ
• Single-volume, multifile. * :

Magnetic Tape File and Volume Names •

Each tape file and volume name in the File System can consist
of the following ASCII characters:

Uppercase alphabetics (A through Z)
Exclamation mark (!)
Double quotation marks (") ' ' - ''":" ' " •'••••-^
Percent sign (%)
Ampersand (&)
Single quotation mark (') , - . -n,..*-
Left parenthesis (()

• Right parenthesis ())
« Asterisk (*)
• Plus sign (+)
• Comma (,)
• Hyphen (-)
• Period (.)
c Slash (/)

*This information applies to 9-track magnetic tape only.

3-10 CZ15-00
.".' -« T ,
, „ ^J

Colon (:)
V s Semicolon (;).

Less-than sign (<) -
Equal sign (=)
Question mark (?) - i

Underscore (_).

The underscore (_) can be used as a substitute for a space.
If a lowercase alphabetic character is used, it is converted to
its uppercase counterpart.

Any of these characters can be used as the first character of
a file or volume name.

The name of a tape volume can be from one through six charac-
ters; tape file names can be from 1 through 17 characters.

Magnetic Tape Device Pathname Construction

A magnetic tape volume must be dedicated to a single user.
Therefore, the device pathname convention must always be used
when referring to magnetic tape volumes or files. The general
form of a tape device file pathname is:

idev_name [>vol_id [>filename]]

where dev_name is the symbolic name defined for the tape device
at system building, vol__id is the name of the tape volume, and
filename is the name of the file on the volume. Tape devices are
always reserved for exclusive use (i.e., the reserving task group
has read and write access; other users are not allowed to share
the files). 0

Automatic Tape Volume Recognition

Automatic volume recognition dynamically notes the mounting
of a tape volume. This feature allows the File System to record
the volume identification in a device table, thus making every
tape volume accessible to the File System software.

UNIT-RECORD DEVICE FILE CONVENTIONS , ,3

• Unit-record devices (e.g., card readers, card punches,
printers) are used only for reading/writing data; they are not
used for data storage and thus do not require conventions for
file identification and location.

Refer to a unit-record device by entering a pathname consist-
ing of an exclamation mark (!) followed by the symbolic device
name defined during system building. The format is: T

!dev_name

where dev_name is the symbolic device name of the unit record
device.

3-11 CZ15-00

WORKING WITH FILES

The following information addresses selected commands and
procedures that you may use frequently, including: »

•
• Using file pathname conventions " «
• Controlling your files and directories »
• Interrupting execution
• Controlling your output ~ ~; it,
• Controlling printing ^ -•. . _ \i
• Program execution -> *,
• Communicating with other users
• Performing batch processing. - ^ - <•«..

The examples that follow provide full details on performing
these functions. Note that some examples do not list all
optional control arguments for the commands described. See the
Commands manual for a complete description of all commands and
their arguments. For information on using Execution Command
Files, see Appendix F.

COMMAND PROCESSOR " - s_y

You communicate with the system through command lines entered
at a terminal or read from a command file. Your command lines
are read and interpreted by a system software component called
the Command Processor.

- - :<<* - . < .- '• •
Standard I/O Files - - ••• * ': --,: + _;e/ , -„

Four files are always associated with the Command Processor:
.--'•* --"izc <

• Command-in . ,
• User-in
• User-out
• Error-out.

* • *i •*

The command-in file is the file from which the Command
Processor takes its input. The command-in file is normally asso-
ciated with (or assigned to) your terminal. However, it can be j
reassigned, temporarily, to another device or file, and subse- ̂
quently reassigned to your terminal. ,

A command function reads its own input during execution from
the user-in file (normally assigned to your terminal). The
directives submitted to the Editor following entry of the Editor
command, for example, are submitted through user-in. A task
group normally writes its output to the user-out file (normally
assigned to your terminal). The user-out file can be reassigned
to another device or file (see "Controlling Output"). This
reassignment remains in effect until another reassignment occurs.

?,'£1 . £O

---'-'""',• i _ *, T> i«r_-.'-, - '*

3-12 CZ15-00

i The Command Processor, and any commands it invokes, writes
—' any errors detected to the error-out file. The error-out file is

the same as the initial user-out file; it cannot be reassigned by
a command or command argument.

You can determine the full pathnames associated with each of
these files by issuing a Status Group (STG) command at your
terminal.

Command Level

The system indicates that it is at command level by issuing a
ready (RDY) message at your terminal. This assumes that you have
not disabled the ready message by a previously issued Ready Off
(RDF) command; if you have, the system still comes to command
level, but you are not informed. You can activate the ready
prompt at any time by issuing a Ready On (RDN) command.

When executing a command function, you can return to command
.^ level in one of two ways: c "y?<«" o§>,;

• After a command function terminates, the system returns to
command level and awaits the entry of another command.
This command can be any function you wish to execute or it
can be a BYE command, indicating that you have no further
work to do and you want to terminate the current session.

• You can interrupt execution of an invoked command by
pressing the Break or Interrupt key at your terminal. See
"Interrupting Execution" below.

CONTROLLING YOUR OPERATING ENVIRONMENT

The following paragraphs describe the commands and procedures
that you may find most useful as an interactive system user.
Once at command level, you can perform a wide variety of system
operations using these commands and special system procedures.
Selected examples are designed to help you become familiar with

\ma, using the system for applications programming. For full descrip-
tions of all commands and their arguments, refer to the Commands
manual.

Volume Control

The following commands illustrate how to create or rename a
tape or disk volume.

CREATING VOLUMES

Before you can begin to perform useful work on a previously
unused tape or disk volume, you must assign it a unique name
(volume identifier or vol_id) that can be recognized by the
system. The vol_id designates the volume (or root) directory
name of the tape or disk volume.

3-13 CZ15-00

First you must ask the systtsn operator to mount your diskette
or tape on an available drive and notify you of the drive's sym-
bolic peripheral device name. (The symbolic peripheral device
name is the name the system uses to recognize the device.)

For example, suppose you want to create a diskette volume and
name it WORK. Send the following message to the system operator
(see "Communicating With Other Users" later in this section):

^HSG "WONT DISKETTE ftNC NOTIFY ME OF DEVICE NAME"1]
it."*̂ -» *. -V *»•«•* ,iu- *». ••-.£*.. - i *• J-_«rW -i —* *^.~*~. *, ' «/V3- * _-j»Js.n «»». ̂ ^*rv_ **."'**

The operator issues the Status System (STS) operator command
to determine which devices are available:

, - • , • ~»:' > ' „ *

t** "l £> L> X r ~ f

USAGE AVAILABLE SECTORS VOL/FILE MEMBER
PHYSICAL LOGICAL SET NAME NUMBER

0
0
0
D
0
0
0
0
0
D
D
D

^^

and the system responds:

SYMPD CHANNEL DEVICE VOLUME
NAME . TYPE ID

B
B
B
B
B
B
B
B
B
B
B
B

RCMOO
RCM01
FCM01
MSM01
RCDOO
FCDOO
RCD01
FCD01
FCD02
RCD03
FCD03
DSKOO

2800
2880
2880
1880
1400
1400
1480
1480
1500
1580
1580
0400

2380
2380
2385
2361
2332
2333
2332
2333
2333
2332
2333
2010

DMPVL
'OPEN
"SYSTST
n

"MINE
«i

"RJE
*FCD01
"FCD02

46504
51704

172792

9465
0

1216
19560
11960

5813
6463
21599

1182
0

152
2445
1495

3 <•

The operator then mounts a diskette on the available drive,
DSKOO, and sends you the following message:

VOLUME MOUNTED ON DSKOO

You can now use the Create Volume (CV) command to assign a
unique vol_id to your new disk volume, using the following form
of the command:

'-%

^

CV LDSKEff -FT WORE!

where WORK is the vol_id you want to assign.
r^-

Using the -FT argument initializes all data structures on the
volume and establishes WORK as the root directory name; the root
directory pathname for this volume is "WORK.

-!»! f'l

'J'f i

3-14 CZ15-00

^

\

RENAMING DISK VOLUMES

If disk volumes having the same vol_id are used, one of the
volumes must be renamed before the system will accept it. (A
tape volume cannot be renamed.) The command:

"jCV inSKOO>OLD -RN NEW (ĵ "ggM£MK,£KJ *

renames the volume OLD using the -RN control argument; the new
volume name is NEW.

Directory Control

You can create an unlimited number of directories to organize
your files. The following commands illustrate how to change your
working directory, and create, rename, or delete directories.

CHANGING YOUR WORKING DIRECTORY

The system provides you with tools to keep you aware of your
location within the directory and file structure, at any moment.
You can also request a list of the files and directories under
any directory to which you have list access.

To list-your working directory, use the List Working
Directory (LWD) command:

pr-— --y
i T I*JIV

"SYSVLA>ODD>PROGS>LOWELL

The system responds with the absolute pathname of your work-
ing directory. If you want to change to some other directory,
use the CWD (Change Working Directory) command. For example:

•f,. :CWD "SYSVLA>UpD>PROGS>JONES*
,;• > RDY: - - - - • •

:i,WD"
~SYSVLA>UDD>PROGS>JONES

The name of uour new working directory is JONES. Any number
of users can work in the sanve directory at one time, as long as
each user has list access to move there.

It is usually more convenient to use the relative pathnames
of directories. For example, you can change your working direc-
tory to LOWELL by typing: ,.. v

CWO'7 <LOWELir

^ 3-15 CZ15-00

When going from a directory to a subdirectory, the system
requires you to specify the directory name (there may be more
than one directory subordinate to your working directory). ^t

However, when moving up in the file structure, there is no
ambiguity. You can move up one or more directory levels by
entering one or more "<" signs:

Sfe&53 '
RDYs

" FLWB'. . " • - * : - ? - . _ . I J > -
*SYSVLA>UDD>PROGS

If CWD is entered with no arguments, the system returns you
to your home directory (your initial working directory):

LWDr
"SYSVLA>UDD>PROGS>JONES
RDY:3-̂ '.-.t..\d,-', : -,
RDYs
!5fcEM * « ; . - " -
~SYSVLA>UDD>PROGS>LOWELL

CREATING DIRECTORIES ,'?'--, _ - .

You can create a directory using the Create Directory (CD)
command. For example, you may want to put a COBOL program and a
BASIC program under separate subdirectories below your home
directory (your initial working directory). You first create the
directories?

Ctt-CQBOEjJIR, *' "' -(" ~ -' f "
'RDY j • ; - • ' - - ; , ' • . - ;
0̂.BAS±̂ _pIRJ •" "'^' ̂ ?--'-* • ' < - • -5.J i >

You can now create your programs in subdirectories subordi-
nate to your home directory (or create them elsewhere and copy
them into the directories COBOL_DIR and BASIC_DIR).

As another example, suppose that you have just created, for-
matted, and named the disk volume WORK, as described under
"Creating Volumes". You would like to create two directories,
named SHEPARD and COOK, immediately subordinate to the root *
directory "WORK.

T " ' - -
Before creating your two directories, you enter a CWD command

to change your working directory to "WORK:

CWD* ̂WORBT

x

3-16 CZ15-00

v (Note that this step is optional; you need not change your work-
-̂̂ ing directory to the volume ~WORK to create subordinate direc-

tories or files. You can create directories or files from any
location in the File System tree structure by supplying the
appropriate absolute or relative pathname of the file or direc-
tory you wish to create. However, for the sake of simplicity,
only simple pathnames are used here.)

To create the directory SHEPARD, enter the command:

CD SHEPARD'

This directory now resides immediately subordinate to the
root directory "WORK.

To create the directory COOK, enter the command:
X ĈD COOK :" •*--.'•! ww/

This directory now resides, along with SHEPARD, immediately
subordinate to the root directory "WORK. Figure 3-4 illustrates
this directory tree structure.

«rt •

. o.?:
">"S

WORK
root directory

'" t 9 i' i
•<* 3O'i

SHEPARD COOK

Figure 3-4. Location of Directories SHEPARD and COOK
»«.*< JL S9+*

RENAMING DIRECTORIES

You can change the name of an existing directory using the
Rename (RN) command. For example, assume that within your work-
ing directory >UDD?PROGS>SMITH, there is a directory TEST. The
command:

sUB TEST "WORK-:
«?-««—.., _.-,„... . t *?..

changes the pathname of the affected directory from:

>UDD>PROGS>SMITH>TEST to >UDD>PROGS>SMITH>WORK

^y 3-17 CZ15-00

N̂

DELETING DIRECTORIES

You can delete one or more directories using the Delete -̂̂ "̂
Directory (DD) command. For example, you may no longer need to
use a directory called EXAMPLE. The command:

m EXAMPLE]
^fc- - — - -*-* ^7«n D^

deletes the directory called EXAMPLE from your working direc-
tory. Note that you could not delete EXAMPLE if it was your
working directory*

As a safety measure, the File System will not allow you to
delete a nonempty directory. If you wish to delete a directory,
you must first delete any subdirectories or files it contains.

File Control •*'.-.•-* - -.-" : ̂ r^3 . . o <.' i . • ̂ - - -r

The following commands show you how to create, rename,
delete, copy, and locate files.

CREATING FILES

You create a file in the file structure with the Create File
(CF) command. For examples „„__ „

'.GET DATAFILEj > - -,f \

produces a sequential file called DATAFILE in your working direc-
tory, with a record size of 256 characters (the default) and a
length of zero sectors. The following command:

'CF MIME.D -KS£ 80E -MSZ 8Q<£; r~" —1

produces a file called MIME.D in the working directory, with a
record size of 80 characters and a maximum allowable size of 800
control intervals. This file is meant to be a card file; after
reading the cards (see "Copying Files"), a listing reveals the
following: '' "̂

^-S

LS? "~ '- - - - - - - ->-a s.& 5- ST. - er.-? yi*rrs»fic, -£- IT "i

DIRECTORY: *SYSVL1>UDD>PROGS>DIRA

PHYSICAL STARTING RECORD
ENTRY NAME TYPE SECTORS SECTOR HEX LENGTH

START_UP.EC S - 8 580 256
MIME.D S 40 8DO 80

3-18 CZ15-00

As another example, assume that you wish to create a file
\^_s under each of the two directories, SHEPARD and COOK, shown in

Figure 3-5. Your working directory is the root directory WORK.
To create a file named REPORTS under the directory SHEPARD, enter
the command:

CF SHEPARD>REPORTS

where SHEPARD>REPORTS is the relative pathname (relative to your
working directory) of the file you wish to create.

The file REPORTS now resides immediately subordinate to the
directory SHEPARD, as shown in Figure 3-5.

x̂

W

•
WORK

root directory

SHEPARD COOK

REPORTS

Figure 3-5. Location of Subordinate File REPORTS

' ' i - • A "* -J.'"1 '-(- ~ i l ' » « f c < K-V i<-» Ai4-<4 •= »- •» u r% A .

Suppose you want to create a file named WORDLIST under the
directory COOK. Since your working directory is still the root
directory, WORK, enter the command:

"CF COOK>WORDLIST~

where COOK>WORDLIST is the relative pathname of the file you want
to create. The file WORDLIST now resides immediately subordinate
to the directory COOK, as shown in Figure 3-6.

WORK
root directory

SHEPARD COOK

REPORTS WORDLIST

Figure 3-6. Location of Subordinate File WORDLIST

3-19 CZ15-00

~\
RENAMING FILES

Suppose that Cook wants to name his file more appropriately . "x
MATCHTM.D rather than MIME.Dc The file can be renamed using the —̂
RN command:

Rtt MIM£jbl!ACHTM-.ix5
- > •' " V '"r~ -*« M. --or T*?, ' . -"Tifc-S

DELETING FILES

You can delete files using the Delete File (DL) command. For
example, to delete the file DATAFILE in your working directory,

•~ -, , -5,

DL, DrftTSFIItE ;
* .*•. £*. ̂ ~£*-*r*- -j*%-4 -s-cV~* ' W_C* •*")*

COPYING FILES " "'

The Copy (CP) command allows you to copy files between direc-
tories, into directories from a card reader, out of directories
to a printer, and between tape or disk volumes. For example,
suppose Cook wants to read cards into a file HACHTM.D. From the
home directory (COOK), enters t _, B̂

CB:TCDRG& H&CHTK.bfl
. i

All peripheral devices (tapes, card readers, and printers)
are referred to by their symbolic peripheral device name; e.g.,
"CDR™ for card reader. • , - • , - „ no :,-. L,- r-••.,, .--t <*

When you read in cards, the card reader must be ready (the
READY light must be on). While the command is being processed,
your terminal locks; if the card reader is not ready or jams, the
operator receives an error message. Until the card reader pro-
cesses the end-of-file (EOF) card, the copy is not complete, and,
if you fail to include an EOF card, the reader and your terminal
remain locked. An EOF card is multipunched in column 1, rows 11,

5, 8, and 9. After copying is finished, you will receive the
ready message.

Cook wants to copy an Assembly language subroutine, "REC3.A",
from his home directory, ~SYSVLA>UDD>PROGS>COOK, currently his
working directory, to the directory "SYSVLA>UDD>PROGS>TOOLS.
Note the use of the relative pathname.

CP HECa.& <TOGLS>REC3.A -: .—

The command allows you to omit the second argument if you are
copying a file into your working directory. Thus, if Cook were

3-20 CZ15-00

in the directory ~SYSVLA>UDD>PROGS>TOOLS, and wanted to copy in
v the file ~SYSVLA>UDD>PROGS>COOK>REC3.A, he needs to type only:

'•CP <COOK>REC3,A ,
0

The command copies REC3.A into TOOLS and names it REC3.A by
default.. You must be in the target directory to use this
feature.

For another example, to copy cards onto a tape named BS001,
that is already mounted, enter:

ICF ! CDRO 0 1MT9 0 0 >BSO 01>WESTNAMES

LOCATING FILES •-'-"•••'• ̂~ -. ?*-^~ ^-.n»& *•— ac " *>, i*rfn«

You can use the Where (WH) command to locate and display a
file's full pathname. The system will search your working direc-
tory and the two system libraries, SYSLIB1 and SYSLIB2, looking
for your file. If the file is found, its full pathname is dis-

V , played. If the file is not found, an error message is dis-
played. You may find this command useful if you know the simple
pathname of a file but want to know its absolute pathname, or, to
determine if the file you want to locate exists.

LISTING FILES AND DIRECTORIES ' ' -

You can list the contents of any directory that you have at
least list access to by using the List Names (LS) command.

For example, Cook lists the contents of his working directory
by entering:

X. ' , . , - =•" VJ(xs;' " - . - * *~ • --•» ",.; -f.-. ow '

1 DIRECTORY: *SYSVL1>UDD>PROGS>COOK

; ',.' • > - ' • • ^' ' PHYSICAL STARTING RECORD
**S ENTRY NAME TYPE SECTORS SECTOR HEX LENGTH

**
START_UP.EC S 8 580 256

To determine the starting sector of the file for file dumping
purposes; the record length is the number of characters per line.
Listing Cook's file with the -BF argument would produce this
information.

.-•-•" -. V 3 i V •-.-• 3

3-21 CZ15-00

^3%
- DIRECTORY: "SYSVLl>UDD>PROGS>COOK

START_UP0EC S 8 ^ ~"~

TOTAL SECTORS 8 ^v *°

The -DIR argument of the command will list only directories
subordinate to your working directory.

With no argumentse the LS command lists all files and direc-
tories subordinate to your working directory.

To stop output (scrolling) during execution of a list com^
mand, press the space bar on your terminal keyboard. To resume
scrolling, enter "@" on the same line, followed by a carriage
return.

--.•*» T» 1 •" '*» •• n „ c . , ,. „ »•

Interrupting Execution

You can interrupt the execution of any command or program, at
any time, by pressing the terminal break (BRK) key. This signals
the processor to interrupt execution. You can now enter any —'
system commando To resume execution of the command or program,
enter the Start (SR) command for programs or the Program
Interrupt (PI) command for system software, such as the Editor or
Linker.

If you do not want to resume execution after a break, you can
use the Unwind (UW) command to return to command level, or a New
Process (NEW_PROC) command to restart your task group; i.e.,
return it to the state existing immediately after login.

For example, assume you are editing a large file, and you
accidentally press the BRK key while listing the file. To resume
listing your file as if no break had occurred, you could issue an
SR command, or you could save your work in the Editor and resume
processing in edit mode by issuing a PI command. You can also
enter the UW command if you want to close all your files, return
to system command level, and proceed with other work. Your final
option would be to issue a NEW_PROC command that would return you j
to command level in your home directory.

Controlling Output

Normally, all output goes to your terminal. (At login, for
example, all four I/O files, user-in, user-out, command-in, and
error-out, are assigned to your terminal.) If you are producing
a large output, you may want to redirect it elsewhere. The fol-
lowing paragraphs describe how to direct your output to a file or
to a printer.

3-22 CZ15-00

•!• * TA »

DIRECTING OUTPUT TO A FILE ,,, ̂ ^v ,

To direct output to a file (which need not have been pre-
viously created) using the FO (File Out) command, enter:

PO IMLEA*: =.-. f i a

All normal system output (such as a response to an LS com-
mand) will go to FILEA, which is your new user-out file. Error
messages and the ready message that go to the error-out file
cannot be redirected and will continue to appear at your termi-
nal o Thus, if you entered an LS command, the system would write
the listing to FILEA and respond at your terminal with only the
ready message. However, input directed to your terminal is
unaffected by the FO command.

DIRECTING OUTPUT TO A PRINTER

If you are performing functions that will lead to many pages
of output, you can direct output to a printer. The command:

IPO UjPTOb"

directs all subsequent output to LPTOO (assuming that you have
access to the printer). Note that while you are using the
printer, no one else can use it. In a multi-user system you may
wish to avoid tying up the printer. (See "Deferred Printing" for
information on printing large files.)

REDIRECTING OUTPUT TO YOUR TERMINAL

After you have finished directing output to a printer, you
should redirect output to your terminal. Enter the FO command
with no arguments:

(The default is to redirect output to your terminal.) "

Printing Control

You can print files at your terminal or you can request
deferred printing. If you use the Print (PR) command, output
appears on your terminal (i.e., output goes to the user-out
file). This is inconvenient, however, if you are printing large
files. For large files, you have the option of using deferred
printing. The system will store your print request in a
first-in, first-out queue.

*•£-£.

3-23 CZ15-00

PRINTING FILES AT YOUR TERMINAL

If you want to print a file at your terminal, issue a PR
command

, T5~*~f~J?-'¥*f***!<?~3.lrTil^7?-C-<<

;PRi PraEIMD̂ S]̂ ,

vj -

;>a..

^J
"\

Remember that not all files are meant to be listed at a ter-
minal. Some files are print files; some are not. Examples of
print files are listings from the Linker and compilers, and batch
output fileSo In print files? the first character of each line
is a print control character, instructing the printer how many
spaces to skip between lines and when to skip to the top of a
form. When printing a nonprint file, use the -SP argument of the
Print command. This argument instructs the printer to print the
first character of each line, and to skip one space between
lines.

DEFERRED PRINTING f • u:

To print large files, use the Deferred Print (DP) command.
The DP command frees you from the need to reserve a printer and
allows more efficient use of your system's printer resources.
The request is queued on a first-in, first-out basis in one or
more print queues.

Arguments of the DP command allow you to address your print
output. If you are not at the printer, the person who is can
separate printouts and route them to personnel. The Destination
(-DS) argument accepts a string of up to 13 characters that
appear as the first line of the address page. You can include
blanks in the string if you enclose the string in quotes. The
Header (HE) argument accepts a string of up to 26 characters that
appear as the second line of the address page. For example:

—n > ,-. «

f^9*--•»

*DF ST&RT.JJF*EC ̂ SB, -BE, "SHEEABD $$2n -DS"
"WEST COMPUTER" -Q 3

produces the following printer output:

An address page, with a header label and destination label; J
one blank page; one or more pages containing the file; one blank
page; and an end page, containing accounting information (e.g.,
the cost of the print job).

• - ~ o r
If you do not include a header and destination label, the

default is the user name for the header label, and the account
name for the address label.

Your request is automatically entered in the queue. In this
example, Shepard's print request will not be executed until it
reaches the head of print queue three.

3-24 CZ15-00

t * — wrt .„

NOTE .

Deferred print requests are queued on disk and
are not lost when the system is restarted.

Program Execution

Most of the programs you write will require some type of
input and output. Before you execute a program, you must provide
information that tells the program where your input will come
from and where your output will go. The GET and REMOVE commands
allow you to reserve files and devices for program input and
output, and, after program execution, to cancel those
reservations.

GET performs two functions. First, it reserves a file or
device for use by the executing program. This reservation may
set exclusive access or some degree of shared access (see
"Reserving Files or Devices"). Secondly, GET establishes a rela-
tionship between pathnames and the logical file numbers (LFNs) by

v—s which you can gain access to files and devices.*

Once program execution has terminated, you can use the REMOVE
command to cancel file/device reservations and the LFNs that your
program assigned with the GET command.

For example, if you are compiling the COBOL program CARDIN,
CARDIN uses two files, a card reader (from which input will be
read) and a disk file (to which output will go). The program
refers to these two files by internal file names (IFNs) OA and
OC, which correspond (map) to logical file numbers (LFNs) 1 and
3e** _ _ _

After linking your object unit into a bound unit, you must
use the GET command to reserve an input file (a card reader) and
an output file (a disk file).

To reserve the card reader, specify: , x*
i . ,̂

^ "GET JCDROO -LFN i., v:

* Using a GET command will override any internal LFN assignments
you have included in your FORTRAN, BASIC, or Assembly language
program.

**You assigned these IFNs when you wrote your COBOL program. The
system maps these IFNs to corresponding LFNs.

_s 3-25 CZ15-00

To reserve the disk file, specify:

GET- COBOL_DIR>MASTER -LFS'lj

In this example, it is assumed that the file MASTER was pre-
viously created under the directory COBOL_DIR. It is also
assumed that the directory COBOL_DIR is subordinate to your work-
ing directory. (The GET command could have directed program
output to any file, not necessarily one named MASTER,)

If you have already loaded the card reader, you can now exe-
cute CARDIN by entering the simple pathname (since the bound unit
CARDIN is in your working directory):

CARDIN

The program reads cards into the file MASTER. Once the pro-
gram terminates, remove the device and file reservations:

REMOVE iCDROQ -LFK 1'.
RDY:
REMOVE COBOL_OIR>M-ASTER -LFN-/S, /̂

R^g g e. r.Ying Files op..Devices - * -

You can use the GET command to reserve a file or device for
use by your task group., When you reserve a file, you can specify
whether other users will be allowed some form of concurrent
access. < -

For example, when you reserve a disk file, you can specify
that all users can read the file while you have it reserved, but
that only you can alter (write to) it. To do this, enter:

GET FILEB ~LFK 1 -SHARE RV

If a directory is reserved exclusively for you (using the
-SHARE N argument), then all subdirectories and files are also
reserved exclusively. Thus, entering: _ _ .

>

GET "VOL04 -SHARE N l''~: • '

reserves the entire volume VOL04 for your exclusive use. Note
that the system always reserves tapes exclusively for your use
when you reserve them.

-Communicating With Other Ussrs

You can send messages to the system operator and send (or
receive) mail to other system users by using the Message (MSG)
or MAIL commandsc Messages sent to the operator are displayed
immediately on the operator terminal; mail is not displayed until
the receiver enters the MAIL command.

3-26 CZ15-00

To send a message to the operator, you might enter the fol-
lowing request:

'•MSG "PLEASE MOUNT ~VOLA*

You must enclose your message in quotation marks (or apostro-
phes) if it contains embedded blanks.

To send mail to another person, you might enter:

miL LOWELL:

where LOWELL is the person_id of the receiver. The system will
respond:

INPUT:

You can then enter the text of your message. Terminate the mes-
sage by entering a period (.) or the letter Q followed by a car-
riage return. Your message is queued in Lowell's mailbox until
Lowell issues a MAIL command to display mail.

To mail a file that might be a program or a long message for
many users, use the filename argument of the MAIL command:

MAIL LOWELL HEX_AS^A\ - - - - ~ - - ̂ - ^-»~

This command mails the file HEX_AS.A to Lowell. Long mes-
sages should not be sent to users at a VIP terminal.

NOTE

Before you can receive mail, either you or your ' •
system operator must have previously created the
mailbox directory and the necessary mailboxes, and
have set access controls on these mailboxes. See
the System User's Guide for details.

ABSENTEE PROCESSING

MOD 400 offers both interactive and absentee (batch) process-
ing. As an absentee user, you submit requests against the system
batch task group ($). Absentee processing allows you to perform
multiprocessing on the system, i.e., you can process interactive
tasks while the system processes one or more of your absentee
requests simultaneously. All system software components are
available to you as an absentee user.

The system operator creates the batch task group against
which all users place requests on a queued first-in, first-out
basis. To enter a request into the batch queue, use the Enter
Batch Request (EBR) command. The EBR command requires you to

3-27 CZ15-00

specify a command-in file containing commands to be executed in
the batch task group. Normally, you create this file on disk in
your working directory before entering your batch request.

For example, suppose you want to compile, link, and execute
an application program called PAYROLL in batch mode. You have
previously created the command-in file PAYR_IN in your working
directory ~ZSYS01>IW. PAYR_IN is the file from which the Command
Processor will read its commands.

" " f *$r "•'**
The file PAYR_IN contains the following commands?

COBOLA PAYROLL -LO
LINKER PAYROLL ,„ - „ .
LIB ZSYS02>ZCART ' " ' "~ '
LINK PAYROLL
MAP ? QT
GET DEPT4 -LFN 2
GET OUTPUT -LFN 3
PAYROLL
BYE * *''

Your command-in file can contain any combination of legiti-
mate commands,, such as compile/link/execute sequences, including
any necessary file control commands (GET, REMOVE) ,• or file
print/dump commands. The commands must appear in the file as if
they were being executed from your terminal.

Any time after you create the file PAYR_IN, you can enter a
batch request against it, by specifying: s, »c - ~

EBR P.AYR_INv -WD "ZSYS01>IW

Output from the COBOL program PAYROLL that would normally
appear at your terminal is written to a file named PAYR_IN.AO.

--S

-iOjy-

, *> f .

• f x :>

â; >̂: »•?

3-28 CZ15-00

^

^

\

CO
a

^

V)
n

m

"* •"• ': "i .' •„ - •»$ jrju* ft

^> ' - x *:?«-

3T^Sf

Section 4
SCREEN EDITOR

o

: ,d-J^^->S»0 — a.̂ '.̂ t-vi-no:? *.n3ii? *•

The Screen Editor (also referred to as SCORPEO in the
software) is a full screen, interactive text editing, and
documentation preparation tool. You can manipulate full screens
of data at once making text editing faster and simpler by -using
the features of a video display terminal.

This section describes the Screen Editor capabilities as well
as the directives used to create, modify, and save files.

In this section, cursor position is designated by a shading.

OVERVIEW ' ' .-.£--

Vw'
The Screen Editor creates and/or alters character text in a

file. If you are creating a source unit file, the statements can
be written in FORTRAN, COBOL, BASIC, Pascal, RPG, or Assembly
language. See the appropriate language manual for details.

You control editing by using a combination of directives,
function keys, and labeled keys.

You can edit files created by the Line Editor with the Screen
Editor. The Line Editor is described in Section 5.

All editing is done in a temporary work area called a
buffer. This buffer references a pair of temporary workfiles.

4-1 CZ15-00

When you invoke the Screen Editor, a buffer and associated work
files are automatically created for you. To save the Screen
Editor outputr you must write the contents of the buffer to a _̂ /
file.

NOTE

During a single execution of the Screen Editor,
you can read only one file. You must write the
contents of the buffer out to another file or to
the same file. To edit a second file? you must
reinvoke the Screen Editor (see "Calling the Screen
Editor" later in this section).

SCREEN EDITOR PROCESSING

You control Screen Editor processing by specifying
directives, or using function keys or labeled keys. The
subsections that follow describe the following Screen Editor
processing functions.

• Terminal and Keyboard Requirements — Defines the ->—'
terminals and keyboards supported,,

• Suffix Conventions — Describes file naming conventions.

• Calling the Screen Editor —° Describes the command used to
invoke the Screen Editor.

• Screen Description — Defines and illustrates the three
regions of the screen.

« Creating a File — Describes the procedure for creating a
file.

« Changing an Existing File — Describes the procedure for
modifying a filec

« Interrupting Screen Editor Processing -- Describes the ,-^~,
procedures used to stop Screen Editor processing.

• Entering Screen Editor Directives —• Defines the rules for
entering Screen Editor directives.

• Directive Format — Defines the rules for specifying
directive formats.

• Designating Lines — Describes the procedure used for
locating, adding, and deleting lines from a file.

4-2 CZ15-00

v • Special Characters — Defines the characters used to
—' specify a processing function.

• Directive Set — Defines each directive in alphabetical
order by directive name. Provides the information
necessary for using the directives to create and modify
files.

• Function Key Descriptions — Defines each function key in
alphabetical order by function name. Describes function
key use in creating and modifying files.

• Labeled Key Descriptions — Describes each labeled key as
it is used by the Screen Editor in creating, and modifying
files.

TERMINAL AND KEYBOARD REQUIREMENTS

The Screen Editor can be used with the following asynchronous
_̂̂ terminal types:

-- • - -fj .- -•" nsiv u
- . „-'-. . 7801 7300 (general purpose)

: . .; 7802 7300 (word processing)
:; - ; 7803 (word processing) 7300 (data entry)

It is recommended that the baud rate of the terminal is at
least 1200 baud. nm,;̂

SCREEN EDITOR SUFFIX CONVENTIONS ; "" '

When you create a source unit, you should append the
appropriate suffix identification character to the name of the
file that will contain the source unit. The suffix designates
the type of programming language that constitutes the source
unit. The suffix must be .C for COBOL programs, .F for FORTRAN
programs, .B for BASIC programs, .PS for Pascal programs, and .A
or .P for Assembly language programs.

^s When you specify the file names of Screen Editor input and
output files (when calling the Screen Editor, and in selected
directives), you must designate the complete file name, including
the suffix that denotes the contents of the file (.C for COBOL,
.F for FORTRAN, .B for BASIC, .PS for Pascal, and .A-or .P for
Assembly language programs). The Screen Editor does not append a
suffix to its input and output files.

X^ 4-3 CZ15-00

LOADING THE SCREEN EDITOR
- :,..*:?.}- i^-iO . »

To load the Screen Editor when running under the menu
subsystem, select the SCORPEO option from one of the selection
menus that contains it, and press TRANSMIT.

To load the Screen Editor by a command line, enter the
SCORPEO command.

FORMAT? * ' *"*•"~ i
SCORPEO [path] (/-LINES) nnnnnl *- ~«* ĵ

U -L / I
• - f L J »

ARGUMENTS: ' , . - . , = . . . " . : * • * i ;

None or any number of the following control arguments
may be entered:

[path]

Pathname of the file you wish to edit. Can be any
valid form of pathname. If you are creating a new file
without any initial input from another file, do not
enter a pathname. If you specify path, the first 17
lines of the file will fill the window (text region).

/-LINES) nnnnn - ~-~
l-L f

Approximate number of lines the Screen Editor should
hold in main memory during the current editing
session, nnnnn is a positive decimal value. If you
specify less than 100 lines, a value of 100 lines is
used,

~J'- ••' j ' 5 , j j. C

Default: 200 lines.

Once you have loaded the Screen Editor, a screen such as that N,
described in Figure 4-1 or Figure 4-2 is displayed. If you are —̂'
creating a file (you invoked the Screen Editor without a
pathname), the screen shown in Figure 4-1 is displayed. If you
are modifying (editing) a previously created file, a screen
similar to that shown in Figure 4-2 is displayed.

Description of the Screen " " ' -""' * ' ~* •• - - -* - ~

The display on the terminal used by the Screen Editor is
broken down into three distinct areas called "regions". Each
region is described in detail in the following paragraphs. Refer
to Figure 4-1 and Figure 4-2 for the location of each region.

4-4 CZ15-00

Vx

^y

LEFT MARGIN « 001
**********TQP Qf

'T

*iG.£3Bfi

CURRENT LINE = 00001
TOP OF FILE

(17 blank lines)

^ xx -y ̂

&&?

t ******

*<j

DIRECTIVES
v.

Figure 4-1 Sample Screen for Creating a File

,1 <*- -̂ ir* «f ̂

"VOL1>DIR>INVTNRY
LEFT MARGIN « 001
**********fQp OF FILE

CURRENT LINE = 00001 M
TOP OF FILE

MODIFIED

W

f Ai t

= *d* A' V.

(17 lines of text are displayed here)

fte:

^ -» -

DIRECTIVE:

Figure 4-2. Sample Screen for Modifying a File

^
4-5 C215-00

STATUS REGION

The status region of the screen is that area at the top of
the screen that shows the status of the file.

A»

When you are creating a file, the information displayed in
the status region is; the current position of the left margin and
the current line number (as shown in Figure 4-1).

When you are editing a file, the information displayed is:
the full pathname of the file you are editing, the flag
"MODIFIED" (if modified), and the current position of the left
margin (as shown in Figure 4-2).

TEXT REGION

The text region of the screen is the large area in the middle
of the display where you actually create and modify the text.
The text region is also called the "window." The window is 18
lines long and from 80 to 256 characters wide. (You control the
width of the text with the Window Width directive described later ,
in this section,) The maximum record length of a file is 256
characters.

When the first 17 lines of a file appear in the window, you
will see at the top of the window a line designated as TOP OF
FILE. This line is called the control line. You can use this
line to verify that you are at the beginning of the file and to
position the cursor when you want to insert text before the first
line of your file. This line does not appear within your file.

At the bottom of the window is a line of dashes and vertical
barSc This line is called the tab designator line. The position
of the vertical bars indicates the current tab stops. To change
these tab stops, use the Language Type directive or the
TAB SET/TAB CLR key (both are described later in this section).

DIRECTIVE REGION
"̂

The directive region is at the bottom of the screen just /̂̂
under the tab stop designator line. The cursor is positioned
here when you press the HOME key to enter directives to the
Screen Editor. Screen Editor directives are described later in
this section.

Immediately below the directive region is the area where you
can view system messages.

Creating a Source Unit

To create a source unit, perform the following steps.
Directives, function keys, and labeled keys are described later
in this section.

. •*••»!*•£ >f~-3fitC, -•£ ' 1 ,p/

4-6 CZ15-00

v 1. Change the working directory to a user volume by
-̂x - specifying the Change Working Directory command (see the

Commands manual) or by using the CWD form.

2. Call the Screen Editor (see "Calling the Screen Editor"
earlier in this section).

3. Enter the source unit text.

4. Make changes, if necessary, by entering the appropriate
directives, by using the function keys or the labeled
keys, or by typing over existing text.

5. Write the contents of the buffer to a file by using the
Write directive.

60 Exit from the Screen Editor by entering the Quit
directive.

v ^ Chancing an Existing Source Unit

To change an existing source unit, perform the following
steps. (You can change a source unit that was created using the
Line Editor, described in Section 5 and in Appendix A, with the
Screen Editor.) Directives, function keys, and labeled keys are
described later in this section.

1. Change the working directory to a user volume by
specifying the Change Working Directory command (see the

' " - : ~ ~ Commands manual) or by using the CWD form. . A

2. Call the Screen Editor (see "Calling the Screen Editor"
earlier in this section) optionally specifying the
pathname of the source file you wish to modify.

'"•' ' 3. If you did not specify a file pathname when you called
the Screen Editor, use the Read directive to read into
the buffer the source unit you wish to edit.

\^
4. Use the appropriate Screen Editor directives, function

keys, and labeled keys or simply type over existing text
to modify the source unit.

5. Write the contents of the buffer to the file from which
- the lines were read or to a different file by using the

Write directive.

6. Exit from the Screen Editor using the Quit directive.

^
4-7 CZ15-00

Interrupting Screen Editor Processing

You can interrupt Screen Editor processing by eithers

• Pressing the QUIT function key.

Pressing the QUIT function key is the perferred way to
terminate processing., If no modified buffer exists (ice.,
the user has not changed a line in the file,, or has not
written a newly created file), then the Screen Editor
terminates when the QUIT function key is pressedc If a
modified buffer exists, then a question "Modified buffer
exists. Do you still wish to quit? (Answer yes of no.)" is
displayed and you make a choice (yes = teminate; no =
resume). Thus, the system does not process the QUIT
function keyf but the Screen Editor does in a very specific
way, as described here.

• Pressing the INTERRUPT or BREAK key on your terminal.

« Entering ACABgroup-id on the operator terminal, where
group-id is the two character task group name of the group —'
containing the Screen Editor task.

A **BREAK** message is displayed on the 25th line of your
terminal when the system interrupts the Screen Editor. At this
point, there are four actions you can take: .„ ;. Jfij ^

1. Enter any user command found in the Commands manual.

2. Enter the Start (SR) command. The Screen Editor resumes
processing as if it had not been interrupted. All of the
changes to the file you were editing at the time of the
interrupt are intact.

3. Enter the Unwind (UW) command. The Screen Editor
terminates processing and the system returns to command
level. None of the changes made to the file since the
last write directive are saved. ,,_ ,-• ,̂< + /-"••-

Using UW causes the Screen Editor to terminate
unconditionally. ? ?:

*

4. Enter the New Process (NEW_PROC) command. The current
task group is aborted and then restarted using the same
arguments specified when you logged in. None of the
changes you made to the file since the last write
directive are saved.

4-8 CZ15-00

ENTERING SCREEN EDITOR DIRECTIVES

—̂•" To enter any of the Screen Editor directives, press the HOME
key to position the cursor in the directive region of the
screen. See the description of the HOME key later in this
section under "Labeled Keys." After entering the directive and
its arguments (if any), press the RETURN key to execute the
directive.

If you have entered a directive line and you decide not to
use the directive before you press the RETURN key, you can cancel
the directive by pressing the Cursor Up () labeled key. (This
key is described in detail later in this section.) The cursor is
placed in the text region at the location on which the cursor was
positioned before you pressed the HOME key.

Screen Editor Directive Format Conventions

Most Screen Editor directives consist of only a directive
name, a directive name preceded by one or two line numbers, a

\s ^ directive name optionally preceded by one or two line numbers and
followed by text, or only a line number. You cannot specify a
directive line longer than 70 characters. You can specify only
one directive on a line. Directive formats are:

FORMAT Is

line_n umber • "̂

FORMAT 2s

"- , dirname

FORMAT 3s ,

line_number dirname

FORMAT 4:

\^/ - line_number ,line_number dirname

FORMAT 5:
, ' - * ' " ' • » 1 •& ̂ r £

dirname text
, - - -y ,. 1 *••-> . ,: i

FORMAT 6: ^ .. ̂ ̂ _

line_number dirname text

FORMAT 7s
..'SO' ',.<*-; S.CJ n: ^PJE-u. :

line_number ,line__number dirname text

4-9 CZ15-00
Jv^

NOTES

lo If a directive includes text, you must leave at least one _ ̂
space between the directive name and the text.

2. If you specify two line numbers in a directive line,
separate them by a comma (,); do not use any spaces.

DESIGNATING LINES

You can locate each line in the buffer by entering a decimal
number that indicates the file-relative position of the line
within the buffer. The first line in the buffer is line 1?
subsequent lines are numbered sequentially in ascending order.

Screen Editor directives may cause lines to be added to or
deleted from the buffer. Each time this occurs, all succeeding
lines are renumbered. For example, if line 15 is deleted, line
16 becomes 15, and each subsequent line number is decremented by
1.

If you specify a line that is not in the buffer, an error _ ̂ <
message is displayed. • - ,.*

BLOCK DESCRIPTION

The BLOCK function key defines a "block," or subset of the
buffer upon which some action will be taken.

You define a block by positioning the cursor on the desired
starting position and pressing the BLOCK function key. Next, you
position the cursor on the ending position and again press the
BLOCK function key. It is not necessary to set the starting
position of the block first. The starting block position is
always considered to be the block definition closest to the
beginning of the buffer. The ending block position is always
considered to be the block definition closer to the end (last
line) of the buffer.

A block is defined by its location, i.e., the line and column
numbers of its starting and ending points. For example, if you
define a block beginning in line 1, column 1, and ending in line
10, column 80, and then you delete lines 5 through 10, the
resulting block begins at line 1, column 1, and ends at the "old"
line 16 (now the "new" line 10).

Once you define a block, it can be acted upon. You perform
actions on a block using the Move Block, Copy Block, Erase Block,
and Delete Block function keys, and the Write Block and Change
Block directives. These function keys and directives are
described later in this section,

i^w .r cff .

4-10 CZ15-00

When defining a block for a Move Block or Copy Block
\^/ directive, it is possible to split a line. A line split occurs

when you try to insert or delete a block other than at the
... endpoints of a line. If you do this, the lines are truncated (if

you insert) or concatenated (if you delete). Spaces are
considered trivial characters and are truncated without a warning
message. If concatenation causes an overflow of the maximum line
length, the overflowing characters are truncated.

The DELETE BLOCK function key always deletes all the text in
the block. If both the block start and block end positions are
split lines, the two split lines at the end of each block are
concatenated. The result is the display of one line where the
block definition had been previously. For example:

The following lines are in the window with the block start
and end positions denoted by shaded rectangles.

THIS IS AN EXAMPLE TO SHOW WHAT HAPPENS
WHEN THE TEXT IS DELETED BY USING

V-x THE DELETE BLOCK FUNCTION KEY WITH SPLIT LINES.

Pressing the DELETE BLOCK function key results in the
following:

THIS IS AN EXAMPLE WITH SPLIT LINES.

Use of the COPY BLOCK function key has a possibility of two
different split lines. The left portion of the line to which you
are copying (up to the cursor position) is concatenated to the
block start position. The right portion of the line on which you
are copying is concatenated to the block end position. The
result is the same as if you inserted characters. For example:

The following lines are in the window with the block start
and end positions designated by shaded rectangles. The
position at which you want to copy is designated by an arrow.

4"*, i THIS IS AN EXAMPLE OFy COPY BLOCK FUNCTIONALITY.
~̂' THE DEFINED BLOCK WILL BE COPIED AT THE CURSOR POSITION.

THIS LINE IS THE START OF THE COPY BLOCK.
ALL THE TEXT IN THE BLOCK WILL BE COPIED
TO THE COPY POSITION. THIS SHOWS THAT THE BLOCK WILL NOT BE
DELETED. •- —-- - - - - —- -- > -

Pressing the COPY BLOCK function key produces the following:

THIS IS AN EXAMPLE OF THE COPY BLOCK.
ALL THE TEXT IN THE BLOCK WILL BE COPIED
TO THE COPY POSITION. THIS SHOWS COPY BLOCK FUNCTIONALITY.
THE DEFINED BLOCK WILL BE COPIED AT THE CURSOR POSITION.
THIS LINE IS THE START OF THE COPY BLOCK.
ALL THE TEXT IN THE BLOCK WILL BE COPIED
TO THE COPY POSITION. THIS SHOWS THAT THE BLOCK WILL NOT BE
DELETED.

t- f ^

V ̂ 4-11 CZ15-00

The MOVE BLOCK function key operates the same with split
lines as does the COPY BLOCK with a DELETE BLOCK. The split
lines are the same as shown previously, except that the block is
deleted from its previous position and the left portion of the
block start line is concatenated to the right portion of the
block end line. Using the same example as used in the COPY BLOCK
example above, pressing the MOVE BLOCK function key results in
the following:

THIS IS AN EXAMPLE OF THE COPY BLOCK.
ALL THE TEXT IN THE BLOCK WILL BE COPIED
TO THE COPY POSITION. THIS SHOWS COPY BLOCK FUNCTIONALITY.
THE DEFINED BLOCK WILL BE COPIED AT THE CURSOR POSITION.
THIS LINE IS THE START OF THAT THE BLOCK WILL NOT BE
DELETED.

The Write Block directive writes a split line as a line by
itself. For example assume you defined a block as shown:

MOVE PAY TO OUT_PAY.
MOVE CREDIT_UNION TO OUTPUT_CU.
MOVE FED_TAXES TO OUTPUT_FED_TAX. ^

Using the Write Block directive result in the following:

TO OUT_PAY.
MOVE CREDIT^UNION TO OUTPUT_CU. -, -. * .. -<H y.? g, v«
MOVE FED_TAXES ..

The Change Block directive is not affected by split lines.

SPECIAL CHARACTERS

When the following ASCII characters are included in
search_expressions or change_expressions, they have special
meanings. All special characters can be used only in
searetuexpressions, except the & special character, which can
only be used in change_expressions. c-, - •, - - -.«. -

Character ~ Description * • , • < • * . - - • <
N_X

* Request expressions that contain any number (or
none) of the preceding character(s). If this
character is the first character of a regular
expression, it has no special meaning.

* When designated as the first character of an
expression, request lines that begin with the
specified expression (excluding the character ").

4-12 CZ15-C

$ When specified as the last character of an
\^s expression, request lines that end with the

" " specified expression (excluding the character $).
<- j - * ,

. Can be any character on a line; specify one per
—•*--»' *• —— character (e.g., .. means any two characters on any

-- •<• li^e) . ,kU r4 *$iL 3-86! jg j

& Can only be used in the change_expression of a
change directive to indicate that the strings of
characters preceding and following & are to be

-- - concatenated to the target string of the search.

1C Request that the following character be interpreted
not as a special character (e.g., !C* means match an

* -'- ,-:: asterisk). Specify the "C" in upper case.

[n]x Request a repeat factor ([n]) of the specified
character (x). x can be any character including "."
(e.g., [25], matches any 25 columns characters).

Summary of Screen, Editor Directives
'-" ' -1 — ~ - 4

Table 4-1 lists each Screen Editor directive mnemonic,
summarizes its function, and designates the directive name under
which it is more fully described.

"iu j

SCREEN EDITOR DIRECTIVES

Screen Editor directives are described in detail on the
following pages. In the examples, numbers in parentheses are
references to line numbers and do not appear in memory or in the
text.

'_•'•< -.7 £, •*

?tf .

:>T^T - > ~ - • j »n:» ' ' K&

•* •• v,; «..t-'
, .. - ~ £ •&'.„.„.-:;> b^^^^^^^a

" " ,r3 «nj s?

°-nj I

'OCVjji; »rt?

4-13 CZ15-00

1̂
Table 4-1. Summary of Screen Editor Directives

Directive
Mnemonic

BL

C

CA
<U s

CB

v ^

line
number

V*.

LM

LT

Q

R

RM

S

SB

sc

-~ • Function

Display last line of buffer.

Change one character string
to another character string.

Change all occurrences of a
character string in the buffer
to another character string.

Change all occurrences of a
character string in a block to
another character string.

Display a line of text.

Convert all upper case charac-
ters in a block to lower case.

Display the left margin of the
buffer.

Set tabs stops for the specified
programming language.

Conditionally terminate execution
of the Screen Editor.

Read text from the specified
file to the buffer.

Display the right margin of the
buffer.

Search the buffer for the
specified character string.

Search the buffer for the
specified character string from
the current cursor position
backward to line 1.

Change the number of lines to
scroll.

Directive
Name

Bottom Line

Change

Change All

Change Block

Display

Lower Case

Left Margin

Language Type

Quit

Read

Right Margin

Search

*

Search Backward

Scroll Change

^

A
-S

4-14 CZ15-00

^

Table 4-1 (cont) Summary of Screen Editor Directives

Directive
Mnemonic Function

Directive
Name

SF

TB

TL

UC

V

W

WB

WW

Search the buffer for the
specified character string from
the current cursor position
forward to the last line of the
buffer.

Do not suppress trailing blanks
when text is written to a file.

Display line 1 of the buffer.

Convert all lower case charac-
ters in a block to upper case.

Display the current version of
the Screen Editor.

Write the contents of the buffer
to a file.

Write the specified block of
text in the buffer to a file.

Set the window width to the
specified value.

Search Forward

Trailing Blanks

Top Line

Upper Case

Version

Write

Write Block

Window Width

>̂
4-15 CZ15-00

BOTTOM LINE i • *t.

BOTTOM LINE (BOTTOM-LINE OR BL)<A&d&^k^kAAAna^nMA*^^^^^iMKJfaAcMiKAAiiBi>^B^KA*^H^M^^hMdK3i^b^HEdiB f

Display the last line of the buffer at the top of the current
window0 , , , , ^ ,

The cursor is positioned on the last line (the bottom line)
of the file in the same column in which it was positioned before
it was moved to the directive line.

FORMAL ,1 ' . . - * - ^ *. ;
(BOTTOM_LINE\ '" !

' «BL (x

Examples

BL
x̂

Display the last line of the buffer at the top of the current
window.

Tl

, '"t

4-16 CZ15-00

31

V_x
CHANGE

CHANGE (CHANGE OR C)

Search the buffer for the specified search_expression and
replace the first occurrence of the search_expression with the
change_expression.

Searching begins at the current cursor position. Searching
proceeds in a forward direction until the end of the file is
reached, and, if necessary, resumes at the top of the file and
proceeds forward to the current cursor position.

The search_expression must be found wholly on a line of the
file to be considered a matched string.

v ^ When the directive has completed execution and a match was
found, the cursor rests on the first character of the changed
expression. The changed line is displayed as the first line in
the window.

If a match was not found, the message "SEARCH FAILED" is
displayed. ->

It is not necessary to repeat the search_expression for
subsequent identical changes. Simply entering the first two
delimiters and the change_expression changes the next occurrence
of the search_expression to the change_expression.

FORMAT: . -

j CHANGE\ "search_expression"change_expression"
1C f

:'t f̂ q:.̂ -;*
ARGUMENTS:W

• t • F •--, r -..*.-. t - „ •-> i
(Delimiter) Can be any character. You must use the same
character in each of the three locations where a
delimiter is required. If using a delimiter that is a
character within the search_expression or the
change_expression, you must use the special character
"1C" before the character within the text. It is
recommended that you use a delimiter that is not within
the search_expression or the change_expression.

4-17 CZ15-00

CHANGE

seareh_expression

Character string for which the Screen Editor is
searching* The first occurrence of this character string
will be replaced with the character string specified in
the ehange_expression.

-~ -" - ' * a - -- v. . ~n; « ,
change^expression L~".i - ,.,•>.- , - ^-i?; & -n t

Character string that will replace the first occurrence
of the argument "search_expression."

Example Is •* . •

C "ABC"DEF"

Change the next occurrence in the file of ABC to DBF.
'̂ *- ' V, : -> ^ 1 <, "

Example 2;

C ra"DEF"

Change the next occurrence of the previously defined
search_expression ABC to DEF.

Example 3;

C n".*$lfDEF18 r-V<yC^

Change the next line to DEF. •' •> , - '

Example 4:

/-> « n n

Delete the next occurrence of the previously designated
search_expression.

4-18 CZ15-00

J

^ CHANGE ALL
.*jc

CHANGE ALL (CHANGE ALL OR CA)

Search the buffer for all occurrences of the specified
character string and replace all occurrences of the character
string with another specified character string.

Each occurrence of the search_expression must be found wholly
on a line of the file to be considered a match string.

After this directive is executed, the cursor is positioned on
the first character of the last changed character string. The
changed line is displayed as the first line of the window.

"i *• Af

\—s FORMAT: ' '

[n [, m]] (CHANGE_ALL) nsearch_expressionnchange_expression"
ICA f

ARGUMENTS:

' - ~ [n [, m]] .-.-;-. ; j- :- -lerci t

Starting line number (n) and ending line number (m)
between which the specified search_expression is changed.
If you specify both starting and ending line numbers, all
occurrences of the specified search_expression found
between the line numbers are changed. If you specify
only a starting line number, only those occurrences of
the search_expression from the specified line number to
end of the buffer are changed. If you do not specify
line numbers, the search for the search_expression begins
at the current cursor position. Searching proceeds in a

ŵ' forward direction until the end of file is reached and
resumes at the top of the file until all occurrences of
the search_expression are replaced. When the change is
completed, the cursor rests on the last changed
expression.

(Delimiter) Can be any character. You must use the same
character in the three locations where a delimiter is
required. If using a delimiter that is a character
within the search_expression or change_expression, you
must use the special character "1C" before the character
within the text. It is recommended that you use a
delimiter that is not within the search_expression or the
change_expression.

4-19 CZ15-00

CHANGE ALL

search_expression

Character string for which the Screen Editor is
searching,, Each occurrence of this string according to
the line number values specified by n or m (see above)
will be replaced with the character string specified in
the "ehange^expression" argument.

change_expression

Character string that will replace each occurrence of the
search_j2xpression0

Example 1: - ': - " '"

CA "ABC"DEFre

Change all occurrences in the buffer of ABC to DEF.

Example 2% '

5,10 CA "ABCnDEFn ET.'3Wtr -,

Between (and including) lines 5 to 10 of ABC to DEF, change
all occurrences

' ''& ' i -'i' "- *',.. .
Example 3:

5 CA "ABC"DEF"

Between (and including) line 5 and the last line of the
buffer, change all occurrences of ABC to DEF.

>• Ta „

."*

4-20 CZ11

*^.f $?S»&&D

CHANGE BLOCK

CHANGE BLOCK (CHANGE-BLOCK OR CBl

Search the current block for all occurrences of the specified
expression and replace each occurrence of the expression with
another specified expression.

Before using this directive/ you must define the block of
text you wish to change (see the description of the Block
function key under "Function Keys" later in this section).

See "Block Description" earlier in this section for details
on blocks.

FORMAT s

(CHANGE_BLOCK \ "search_expression"change_expression"
ICB]

ARGUMENTS:

(Delimiter) Can be any character. You must use the same
character in the three locations where a delimiter is
required. If using a delimiter that is a character
within the search_expression or change_expression, you
must use the special character "!C" before the character
within the text. It is recommended that you use a
delimiter that is not within the search_expression or the
change_expression.

search_expression

Character string for which the Screen Editor is
searching. Each occurrence of this string within the
defined block will be replaced with the character string
specified in the "change_expression" argument.

change_expression

Character string that will replace each occurrence of the
search_expression.

^
4-21 CZ15-00

CHANGE BLOCK

^J

Example:

You have previously defined a block as

Cs=A-B,Ds=C-B,E:=D°Cf

r**..

Snter the directive .' :->&•;,
•"." if&

t " i k- . c, < '"••"ij.jC «_• ' *.sC.. *-> •* H
*̂ji " w a ro

When the directive is executed, the resulting block is;

C s =A-B;D;=C-B|E $-D-C;

-.i. ?M :-,'

- * '•'-' -" ^^
i ",

^

-/a

4-22 CZ15-00

v^
DISPLAY

DISPLAY

Display a specified line of text.

After executing the Display directive, a new page (window) of
text is displayed. The specified line of text appears as the
first line of the new window.

The cursor is positioned on the new line in the same column
in which it was positioned before you executed the directive.

FORMAT:

"'-"'• line_number
•Ji-J

ARGUMENT;
Jse

line_number

, Line number (decimal) of the text you wish displayed.
The line number must be a positive integer whose maximum
value is 65535. The specified line will appear at the
top of the window.

Example;

~"if ' 7u

Display line 35 of the buffer on the first line of the
window.

x, a-.- >;*? cS& •

,8
sni

^
4-23 CZ15-00

'-\

LANGUAGE TYPE

LANGUAGE TYPE fLANGUAGE-TYPE QR LT)

Set tabs stops for the specified programming language.

FORMATS -•*--— • »

- • fLANGUAGEJTYPE) [language] C"'
\LT I

ARGUMENT;

language

Programming language in which you are creating or editing
your source file. Specify the language as shown below to
set the appropriate tab stops?

language Tab Stops fColumn)

(default) 11, then every 10 columns
~ i r

Assembly or A 11, then every 10 columns

COBOL or C 8, 12, 21, then
every 10 columns through
column 61, 73

FORTRAN or F 7, 11, 21, then every
10 columns through column

•Y ,. •<•& ••* , 61,73

PASCAL or P 11, then every 10 columns

BASIC or B 11, then every 10 columns

If you do not specify "language," the tab stops are set as
specified in the default tab stops above.

Example:

LT COBOL

Set tab stops at columns 8, 12, 21, and then every 10
columns. The tab stop line at the bottom of the text region
is changed accordingly.

4-24 CZ15-00

W LEFT MARGIN
X2*I_2iQ ~* ' - r

LEFT MARGIN (LEFT-MARGIN OR LM) ~̂ '*

Display the left margin of the buffer in the current window.

The left margin is always set to the first character of each
line.

The cursor is positioned in column 1 on the line on which it
was positioned before you executed the directive.

See the Window Left fuction key description later in this
section.

FORMAT:

\^_s fLEFT_MARGINl
ILM)

Example: -;^ -, - v- r ?0r, ̂ . « b^n.^b &.-?./! s>o-, -

LM ,?.,. q- j-.-s?> >?w sâ A.iu:. j*;> -

Display the first 80 columns of text in the current window.

Oj

: S L1 !?§• 5 '-• > f >4 5 C» T C" * 'J*?'

V̂ -

4-25 CZ15-00

LOWER CASE

LOWER CASE (LOWER-CASE OR LC)

Convert all upper case characters in a previously defined
block to lower case characters.

If you specify characters within apostrophes ('), those
characters are not converted,, - f

You must have previously defined a block before you can use
this directive. See the Block function key description later in
this section for information on defining blocks.

FORMAT:

/LOWER_CAS E\ ?A-*c -
ILC]

Examples '

Assume you have defined the following block:

THIS PROGRAM CALCULATES THE WEEKLY 'GROSS' AND 'NET' PAY

Enter the Lower Case directive? -- - •

LC

The block now reads:

this program calculates the weekly 'GROSS1 and 'NET' pay

0

4-26 CZ15-00

V_x

QUIT

V^

QUIT (QUIT OR Q)

Terminate the current screen editing session and close the
file associated with it.

You must specify the Quit directive at the end of a screen
editing session.

Quit is executed conditionally. If you have modified a file
and enter the Quit directive without having saved (written) the
file (see the Write directive later in this section), you are
warned that a modified file exists. If you want to save the
edited text, answer "NO" or "N" to the prompt "Modified buffers
exist. Do you wish to quit? (Answer yes or no.)", and enter a
Write directive to save the file. Now enter the Quit directive.
If you do not wish to save the modified text, answer "YES" or "Y"
to the prompt.

The QUIT function key operates exactly as the Quit directive.

FORMAT i ' '•

(QUITl *''— ' «
<Q f

Example;

.Q.
, \

Terminate the current screen editing session.

V^

1A/ HO*

^vs. £>c r.-) sL.r"l **ri3

43 &3

'- :.1 '. *> I •"' ^"t :c a.1.i«̂ not3 9-n..- hj>»c,

^

4-27 CZ15-00

READ

READ fRE.AJP QR. №

Place the contents of the specified file into the buffer.

The cursor is positioned in column 1 of the first line of the
file.

If you have not specified the pathname of the file when you
called the Screen Editor (see "Calling the Screen Editor" earlier
in this section), use this directive first to read in the file
you wish to edito -*--;

 j
 » -

?

You may only use the Read directive once during the current
screen editing session (i.e., you may only edit one file at a
time)o

File concurrency for the specified file is exclusive read am ^/
exclusive write.

 t
 ̂

>: . <?', .,.,.<•- > NOTES , ^ ^~i* —-o -,,-<-•

l
s
 During the read, all tab characters are replaced

with the appropriate number of blanks according to
the currently defined tan stops. If this occurs, the
"MODIFIED" status is displayed. When the file is
saved (written), it will contain no tab characters.

2. During the read, if any hexadecimal sequence contains
a non-ASCII character (i.e., hexadecimal characters
00 to 19 and 80 to FF), each non-ASCII character is
replaced by the ASCII period (.) character, and the
"MODIFIED" status is displayed.

FORMAT: ^
^\

(READ* path ^J
\R)

ARGUMENT:

path

Pathname of the file to be read. Can be any valid form
of pathname.

Examples

R FILEA

Read the contents of the file FILEA into the buffer.

4-28 CZ15-00

RIGHT MARGIN

RIGHT MARGIN (RIGHT-MARGIN OR RM)

Display the right margin of the buffer in the current
buffer0

The current window is moved to the right so that column 80 of
the display coincides with the column that is the current window
width. • j

The cursor is positioned in the last column of the line -on
which it was positioned before you executed the directive.

Use this directive to view text beyond column 80.

See the Window Right function key described later in this
section.

" FORMAT:

/RXGHT_MARGIN\
I R M /

Examples *»«; * ^ ^I»e-J9c

RM

Display the right margin of the buffer in the current window.

<O
i*)
{£}

W
i

'? : .

. _>• "'X •», , •-,:% •<- .- r Do f-~ •- " , • -

(d)a:

nr-t

4-29 CZ15-00

SCROLL CHANGE

SCROLL CHANGE (SCROLL. CHANGE OR SO

Change the number of lines that move through the text region
(window) when you press the Window Up or Window Down function
keySc (The Window Op and Window Down function keys are described
under "Function Keys" later in this section.)

FORMAT:
v "j " o.** L*v . r -.," wci.'r^v" ,TI?S •»» «i •=.•"*•
'-. .V7f»».i v- >.:-; -:_l

t«# 5:«bxj"i;^o

[lines]
1 • ?'j5> i,

- : 'i ,-q :, r * t n*

/SCROLL CHANGE \
\SC [

*.

ARGUMENT:

[lines] f

Number of lines to move the current window. Can be any
positive decimal integer. If a boundary (top or bottom
line) occurs before the specified number of lines are
scrolled, the boundary is displayed and scrolling stops.
This value remains in effect until explicitly changed by
another Scroll Change directive.

Default: 18 lines.

Examples

If the current window displays the lines

(1)
(2)
(3)
(4)
(5)

(18)

and you enter the directive line SC 4 and press the Window Down
function key, the current window will display:

(5)
(6)
(7)

(22)

^J

4-30 CZ15-00

SEARCH

SEARCH (SEARCH OR S)

Search the buffer for the specified search_expression
(character string).

The cursor is positioned on the first character of the
matched search_expression. The line containing the match is
displayed on the first line of the window.

If you have previously defined a search_expression, simply
entering the directive followed by the two identical delimiters
will search for the next occurrence of the search_expression.

Searching begins at the current cursor position, continues to
the end of the file, and, if no match is found, begins at the top
of the buffer (line 1 of the file) and continues to the current
cursor position. ' ~ ' ---- -.~ -- . -_ __ .

If no match is found, the message "SEARCH FAILED" is
displayed at the terminal.r «4s -i

FORMAT:

[n[,m]] (SEARCH\ "search_expression"
IS f

"•" ARGUMENTS?

[n] , *

Line number at which to begin the search. If you do not
specify n, search begins at the current cursor position.

[fin]

Line number at which to end the search. If you do not
specify m and have specified n, search ends at the last
line of the file.

(Delimiter) Can be any character. You must use the same
character in the two locations where a delimiter is
required. If using a delimiter that is a character
within the search_expression, you must use the special
character "1C" before the character within the text. It
is recommended that you use a delimiter that is not
within the search_expression.

* 4-31 CZ15-00

SEARCH

seareh_expression

String of characters that is the object of the search.

*e 1-C X o
V « - - - l f \ ^ » - * - r ? k ^ ' . T s^.^ • * * * - * . i ~»

S "ABC" •• \i

Search for the first occurrence after the current cursor
position of the string ABC. . ̂ , . ̂ tr. , w

Example 2;

S /AB"C/

Search for the first occurrence after the current cursor
position of the character string AB"C.

Example 3s

S BAB

' d.5« .
f „

Search for the first occurrence after the current cursor
position of A. Since the first non-blank character after the
directive (B) is used as the delimiter, the search_expression
is that character string found between the first and second
occurrence of the character B.

Example 4: p

S n n
£*? ~ t i •• ' v » \.

Search for the next occurrence of the previously defined
seareh_expression. \

n •»

4-32 CZ15-00

SEARCH BACKWARD

SEARCH BACKWARD (SEARCH-BACKWARD OR SB)

Search the buffer from the current cursor position back to
line 1 for the specified search_expression.

The cursor is positioned on the first character of the
matched search_expression« The line containing the match is
displayed on the first line of the window.

If you have previously defined a search_expression, simply
entering the directive followed by the two identical delimiters
will search for the next occurrence of the search_expression.

Searching begins at the current cursor position and continues
backwards, from right to left, toward line 1 of the buffer until
a match is found. If no match is found, the message "SEARCH
FAILED" is displayed.

FORMAT -.
"' * as.
'• ' •"-" (SEARCH_BACKWARD> "search_expression"

I SB /

ARGUMENTS:

(Delimiter) Can be any character. You must use the same
character in the two locations where a delimiter is
required. If using a delimiter that is a character
within the search_expression, you must use the special
character "1C" before the character within the text. It
is recommended that you use a delimiter that is not

\^/ within the search_expression .

search_expression

String of characters that is the object of the search.

^ 4-33 CZ15-00

\̂
SEARCH BACKWARD

Example 1:

SB "ABC"

Search for the first occurrence before the current cursor
position of the string ABC*

Example 2:
„' 4, • »0 - - • *- V ̂ - _• .; j r, k

SB "ABIC^C"

Search for the first occurrence before the current cursor
position of the string AB"C.
*• - < . J , „ J ,• .T, , , J, ^

Example 3s _,. l: , ^- ft1,- N s-i.,^, q,-.^ .̂ c
:. 3 r 3 » ;

SB BAB - -

Search for the first occurrence before the current cursor
position of A. Since the first non-blank character after the
directive (B) is used as the delimiter, the search_expression
is that character string found between the first and second
occurrence of the character B.

is
'~'r',~ .' \

^J

-* •»«. : '" j-i't^'i^c

4-34 CZ15-00

^ SEARCH FORWARD

SEARCH FORWARD (SEARCH-FORWARD OR SF)

Search the buffer from the current cursor position to the end
of the buffer for the specified search_expression.

The cursor is positioned on the first character of the
matched search_expression0 The line containing the match is
displayed on the first line of the window.

If you have previously defined a search_expression, simply
entering the directive followed by the two identical delimiters
will search for the next occurrence of the search_expression.

Searching begins at the current cursor position and continues
foward, from left to right, toward the last line of the buffer
until a match is found. If no match is found/ the message
"SEARCH FAILED" is displayed.

~i t -• 9 fl *
FORMATS

(SEARCH_FORWARD\ "search_expressionn

<SF > , , v , , :,

ARGUMENTS: .. ̂

(Delimiter) Can be any character. You must use the same
character in the two locations where a delimiter is
required. If using a delimiter that is a character
within the search_expression, you must use the special
character "1C" before the character within the text. It
is recommended that you use a delimiter that is not
within the search_expression.

search_expression

String of characters that is the object of the search.

X_y 4-35 - CZ15-00

SEARCH FORWARD

Example 1:

SF "ABC"

Search for the first occurrence after the current cursor
position of the character string ABC.

Example 2i "" ~
r* • • - ^ - »j - j ̂ , »

SF XAB"CX - j ^,

Search for the first occurrence after the current cursor
position of the character string AB"C. - -

Example 3s " - ; A

SF BAB

Search for the first occurrence after the current cursor
position of A. Since the first non-blank character after the
directive (B) is used as the delimiter, the search_expression
is that character string found between the first and second
occurrence of the character B.

Example 4%

SF "*

Search for the next occurrence of the previously defined
seareh_expression.

4-36 CZ15-00

x_, *
TOP LINE

» ••

TOP LINE (TOP LINE OR TL)

Display the first line (line 1) of the buffer at the top of
the current window.

The cursor is positioned on line 1 in the column in which it
was positioned before you executed the directive.

FORMAT: . . . - - . „ „

(TOP_LINE\
ITL f

Example:

^ TL i -

Display the first line of the buffer at the top of the
window.

«.- • t.jni pn.r: ̂ i .x ; ,-..

W

V^ 4-37 CZ15-00

TRAILING BLANKS

TRAILING BLANKS (TRAILING_BLANKS OR TB)

Do not suppress trailing blanks on the lines within the
buffer when text is written to a file.

A line'with trailing blanks is a line in which some number of
characters (at least one) at the end of a line are spaces. If
you do not specify this directivee these spaces are lost
(discarded) when"the line is written to a file. If you do -
specify this directive, the Screen Editor preserves them.

Once entered, this directive remains in effect until the end
of the Screen Editor session.

t »*?• ;

FORMAT:

j TRAILINGmBLANKS\/ — > y«-l

ITB J J i

• - • - * - < ' ,j a T ' "Example j "

TB

Do not suppress trailing blanks when you write the buffer to
a file.

o

4-38 CZ15-00

v^
UPPER CASE

: X,

UPPER CASE (UPPER-CASE OR UC)

Convert all lower case characters in a previously defined
block to upper case characters.

•51
If you specify characters within apostrophes ('), these

characters are not converted.

You must have previously defined a block before you can use
this directive.. See the Block function key description later in
this section for information on defining blocks.

FORMAT:

v , JUPPER_CASE \
^ iuc f -' >0*rt;' • - - • " • •-"-

X-/

r f* r r \ A ', \ *<, ?vExample;

Assume you have defined the following block:

This program calculates the weekly gross and net pay

Enter the Upper Case directive:

UC

The block now reads:

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY

^s 4-39 CZ15-00

>̂

VERSION (VERSION OR V)

Display the current Screen Editor version number.

This directive is informational only; the displayed version
number appears in the message region of the screen.

FORMAT s

.., (VERSION\
\V [

Example:

, "\ ̂ ••fCL'^n
9V » ̂ **%d A.tv / l

Display the current Screen Editor version number. For
examplet the message may read

SCORPEO 09/04/1121

where 09 is the month, 04 is the dayr and 1121 is the time
associated with the date the SCORPEO bound unit was created,

*

>:i

-b?.'rf* von ^o^'t. *rfT

0

4-40 CZ15-00

^ WINDOW WIDTH

WINDOW WIDTH (WINDOW-WIDTH OR WW)
ir? »VAJ»

Set the window width for the window.

The width of a window is a measure of how far the right
margin of the text can be. The Right_Margin directive positions
the right margin to the window's width. The Window Right
function key moves the window until the window width is column 80
of the display.

The Window Width directive defines the widest part of the
records of a file that can be seen by moving the window to the
rightc It is independent of the record length of the input
file. No data is lost when the window width is smaller than the
length of the lines read from a file. However, the parts of the

\^_s lines that are "beyond" the window width cannot be seen until the
window width is made wider.

When you call the Screen Editor (see "Loading the Screen
Editor" earlier in this section), the window width is initialized
to 256 characters.

FORflAT:

., 1 ' :. ' (WINDOWJWIDTH) [length]
' " \ \WW J

"l ; ARGUMENT; ' •'- *: *"'- °7

[length]

Maximum length in characters (bytes) of the window.
Specify a decimal digit from 1 to 256.

*S Default: 80 characters.
. -j ' „ , • i - „ - f.,-" -; s J ,- ~ >,- -fExample: " • -**-->..

' WW 132" , , .00,-
Set the window width to 132 characters.

;.<.., i r \ £ • - . » / •

•"- - <•>?..' r.< L"»a>

i:*-t
4-41 CZ15-00

WHITE
. ... '•„:•<• v ^
WRITE (WRITE OR W)

Save the specified lines of the buffer in a file.

If you specify a file pathname of a file which already
contains text, that text is overwritten.

NOTE

If you write text out to a file other than the file which
you are editing, the file of reference changes to the
pathname specified in this directive.

FORMAT: c

[n [, m]] / W R I T E \ [path]
ti; - \ W /

ARGUMENTS

None or any number of the following control arguments may be
entered;

ln[,mJl a

The starting line number (n) and the ending line number
(m) of the text to be placed into a file. If you do not
specify starting and ending line numbers, all lines in
the buffer are written to the file. 'If you specify only
a starting line number, all lines in the buffer beginning
with that line to the end are written to the file.

If you do not specify a pathname, do not specify line
numbers.

[path] >a ,, '^J

Pathname of the file that is to contain the specified
lines of text. Can be any valid form of pathname. If
you do not specify a file pathname, the text is placed in
the current file whose name you specified when you called
the Screen Editor or when you read in a file (see the
Read directive earlier in this section). This file is
called the file of reference. If you specify a file
pathname of a file that does not currently exist, the
file is created for you. If the file does not exist, the
Screen Editor creates a variable sequential file of
control interval size of 512 bytes and a maximum record
size of 256 bytes. If you do not specify path, the
default pathname used is the current file reference.

4-42 CZ15-00
*

^

WRITE

^

,'jg
Example 1: -*

W ~VOL1>DIR>INVNTRY *° *

Write the contents of the buffer to a file whose pathname is
~VOL1>DIR>INVNTRY.

Example 2: ^ .̂ (-

Assume you called the Screen Editor as follows
t,

SCORPEO ~VOL1>DIR>INVNTRY

After editing the file, you wish to write all lines back to
the same file. Enter the directive

X S » - I • !i* r

" * > . .

Example 3s

10,20 W "VOL1>DIR>INV_NEW ' " 6

Write the contents of lines 10 through 20 to the file named
~VOL1>DIR>INVNEW.

iDoja .
&*!

-i. "6'I - <».';'* **.< • *c

{ .- V , -

r ;

" - 5

4-43 CZ15-00

WRITE BLOCK ^

WRITE BLOCK (WRITE_BLQCK OR WB)
: j

Write the specified block of text into a file.

You must have previously defined a block of text using the
Block function key (described later in this section under
"Function Keys")„

You cannot write a block of text to the file you are
currently editing (i.e., the file of reference).

If you specify a file pathname of a file which already
contains text, that text is overwritten.

NOTE

If you write text out to a file other than the file which—^
you are editing, the file of reference changes to the
pathname specified in this directive.

Use this directive to "save" a piece (block) of the buffer in
a file=

See "Block Description" earlier in this section for details
on blockSc

FORMAT;

(WRITE_BLOCKl path
|WB f

ARGUMENT;

path ,-~N

Pathname of the file that is to contain the block of ^~^
textc Can be any valid form of pathname. You must
specify a pathname different from the pathname of the
file whose name you specified when you called the Screen
Editor or when you read in a file (see the Read directive
earlier in this section). If you specify a file pathname
of a file that does not currently exist, the file is
created for you. If the file currently exists, the new
text overwrites the file's current contents. Do not
specify the current file of reference.

4-44 CZ15-00

WRITE BLOCK
\^ ' '

Example:

Assume you have already defined a block of text such as:

CONST
FEDTAX = 0.05;
STATAXLO = 0.04;

„ . STATAXHI =0.07; ,
-, •* '

You want to write this block of text to a file named
~VOL1>D1R>PAY whose contents are:

PROGRAM PAY (INPUT,OUTPUT);
(*THIS PROGRAM CALCULATES THE WEEKLY GROSS AND
NET PAY OF AN UNDETERMINED NUMBER OF EMPLOYEES*)

By entering the directive line

WB "VOL1>DIR>PAY - — -i- —L . _ .

^

the contents of the file ~VOLl>DIR>PAY are now:

CONST
FEDTAX = 0.05; ~—.-~̂ ., --^ ...«-
STATAXLO =0.04; < . ̂ -, «- M
STATAXHI = 0.07; ' ~"> " i :*c *

vi .-.̂ . ̂ g ,i~P r. -. r
&

4-45 CZ15-00

FUNCTION KEYS

On the general purpose keyboard, the function keys are on tht_>
top row and are numbered Plr P2r etc. On data entry and word
processing keyboards the keys are inscribed with other text.
When a function code is pressed, the Screen Editor performs the
action associated with that key. Each Screen Editor function key
may have two definitions? one for normal (unshifted) depression,
and one for depression with the SHIFT key.

The keyboard design differs, depending on the kind of
keyboard you have. Figures 4-3, 4-4, and 4-5 summarize Screen
Editor function keys and associates them with their proper
function key by keyboard. Labeled keys are discussed later in
this section. fc ̂ jx̂ Jc

F1

s
H
I
f
T

F2 F3 P4 P5 P6

BACKWARD
WORD

FORWARD
WORD

COPY
BLOCK

wove
BLOCK

ERASE
SLOCK

DEFINE
BLOCK

APPEND
LINE

I?OV a l ; i «.*_- -jtnsiJfGC' ad"

fa Fg F 1 0 F12

S
H
I
F
T

DELETE
BLOCK

WINDOW
LEFT

WINDOW
UP

WINDOW
RIGHT

WINDOW
DOWN

QUIT HELP

Figure 4-3. Screen Editor Template for 780X General Purpose
Asynchronous Keyboard /"̂

4-46 CZ15-00

V_y n n F6

s
H

F
T

BACKWARD
WORD

FORWARD
WORD

COPY
BLOCK

MOVE
BLOCK

ERASE
BLOCK

DEFINE
BLOCK

APPEND
LINE

INSERT
CHARACTER

FT F8 F9 F10 F 1 1 F12

S
H

f
T

DELETE
BLOCK

DELETE
CHARACTER

WINDOW
LEFT

WINDOW
UP

WINDOW
RIGHT

WINDOW
DOWN

QUIT HELP

Figure 4-4. Screen Editor Template for 7300 General Purpose
Asysnchronous Keyboard

F1 F2 F3 F4

F7 F8 F9 F10

fS F6

S
H
1
F
T

RESET

QUIT

ERASE
BLOCK

DEFINE
BLOCK

APPEND
LINE

HELP

F12

S
H
I
F
T

DELETE
SLOCK

WINDOW
LEFT

WINDOW
UP

WINDOW
RIGHT

WINDOW
DOWN

BACKWARD
WORD

FORWARD
WORD

Figure 4-5. Screen Editor Template for 7300 Word Processing
Keyboard

4-47 CZ15-00

-N

fmiCtJ-Q" ffey Descriptions
->,

The following function key descriptions are alphabetized by —'
key name for quick reference. Refer to Figures 4-3, 4-4, and 4-5
for locations of function keys by keyboard type.

i JQ>' i --.A«.t; r-* • * &t
• r = , *v , '^f

1

i
-»— —_„ „,. »_,

-"/%»'«' !
* t

!
t

J _|

.*-*

'i4j>*

-<" ("*-«C
- i xSfiv-

. . 4__, 1 .„

JVv ^ f
(, V!f W

/^v

e'^-s-7 3 ,?~^

4-48 CZ15-00

T&-JS.

Q APPEND LINE

APPEND LINE

Append a new line after the line on which the cursor is
positioned.

The "new" line appears as a blank line on which you may enter
text. You must position the cursor in the text region of the
screen for the Append Line function key to take effect.

To insert a Tine before the first line of text (line 1 in the
file), position the cursor on the control line, and press the
Append Line function key. Enter the new text on the blank line
that is displayed.

You cannot insert lines before the Screen Editor control
^̂ line.

"» v ts~
The Append Line function key performs the same actions as the

INS LINE labeled key described later in this section.

Example:

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY

Press the Append Line function key and the text appears as
follows:

(

„ THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY

You may now enter text on the blank line on which the cursor
v ^ is resting. Be aware that all lines numbers following the
^~"^ new line are incremented by one.

4-49 CZ15-00

BACKWARD WORD

Position the cursor from its current position to the first
character of the previous wordc A word is considered a string of
characters delimited by blanks.

If the cursor is positioned in the middle of a word, it is
repositioned to the beginning of that word.

If the cursor is positioned on the first word of a line, it
is repositioned to the first character of the last word of the
previous line.

Example 1s

The current cursor position is: ̂

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY

Press the Backward Word function key. The cursor is now l
positioned as follows:

. . . . , THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY

Example 2s - -- — ..- - .

The current cursor position is:

.,. . , . THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY
OF AN UNDETERMINED NUMBER OF EMPLOYEES.

Press the Backward Word function key. The cursor is now
positioned as follows:

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET BAY
OF AN UNDETERMINED NUMBER OF EMPLOYEES.

/~\

4-50 CZ1S-00

^ BLOCK

£LQ££

Designate the first and last positions of a block of text.

Position the cursor on the character that is the first
character of a block of text on which you wish to perform some
action. Press the Block function key: this defines the beginning
of the block. Position the cursor on the last character of the
text you are defining as a block of text. Press the Block
function key agains this defines the end of the block. The
beginning and end of a block can be defined in any order.

A block is defined by its location, ie., the line and column
numbers of its starting and ending points. For example, if you

v ^ define a block beginning in line 1, column 1, and ending in line
10, column 80, and then you delete lines 5 through 10, the
resulting block begins at line 1, column 1, and ends at the "old"
line 16 (now the "new" line 10).

The definition of a block remains in effect until you use it,
or cancel the block by pressing the Erase Block function key
(described later in this section).

You may only define one block at a time.

You must define a block before using any of the block
function keys (Erase Block, Delete Block, Copy Block, and Move
Block: all are described later in this section), or any of the
block directives (Write Block and Copy Block) defined earlier in
this section.

Example:

\^/ Locate the block of text you wish to define:

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY

Position the cursor on the character that is the first
character of the block you wish to define, in this case "T". .
Press the Block function key.

Next, position the cursor on the character that is the last
character of the block you wish to define, in this case "Y".
Press the Block function key.

The block you have just defined is:

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY

4-51 CZ15-00

^
COPY BLOCK

a defined block of text to a specified position.

The text of the defined block is retained in its original
position and it is replicated at the current cursor position,,

You must have previously defined a block before attempting to
copy it. See the Block function key description and "Block
Description" for information on defining blocks.

Examplei

The previously defined block is; '

WEEKLY NET PAY ^

You wish to copy the block into the position specified by the
arrows

************************* «. *r»
THIS PROCEDURE CALCULATES
THE WEEKLY GROSS PAY
AND ̂ —
OF AN UNDETERMINED NUMBER OF EMPLOYEES --'-*

Position the cursor on the second space character on the line
beginning with AND. Press the Copy Block key.

The text now reads:
«i

THIS PROCEDURE CALCULATES .

 2

THE WEEKLY GROSS PAY """̂S
AND WEEKLY NET PAY '- »-*№-..; ^J

- OF AN UNDETERMINED NUMBER OF EMPLOYEES

The block of text remains in its original position and is
copied into the new position.

.;CY s'oô c; $ii':

4-52 CZ15-00

^ 1
DELETE BLOCK

-*?

DELETE BLOCK

Delete the previously defined block of text.

You must have previously defined a block before attempting to
delete it. See the Block function key description for
information on defining blocks.

You do not need to position the cursor on the originally
defined block to delete it.

The definition of the block is erased after using Delete >
Block function key.

v ^ See "Block Description" earlier in this section for details
^~^ on blocks,

v -• • ' • - ' - '- - f''}-. Sv^r; t|ov *

Examples

Assume you have previously defined the block designated by
the shaded rectangles:

THIS IS AN EXAMPLE TO SHOW WHAT HAPPENS
WHEN TEXT IS DELETED BY USING
THE DELETE BLOCK FUNCTION KEYSWITH
SPLIT LINES.

Press the Delete Block function key. The text now reads:

THIS IS AN EXAMPLE WITH
- SPLIT LINES.

W

^̂ 4-53 CZ15-00

s_/

ERASE BLOCK

Cancel the definition of the previously defined blocke

You must have previously defined a block (or have partially
defined a block) before attempting to erase it« See the Block
function key description for information on defining blocks.

There is no effect on the text within the defined block; only
the block definition is cancelled.

You do not need to position the cursor on the originally
defined block to erase it.

Examples 2-^s aAf<:r - i*-
;o

Assume you have previously defined the following block:

AND WEEKLY NET PAY

Press the Erase Block function key to cancel the definition
of this block.

^ fQijjanui *3o;s s-j-siaa snJ aa«?<?

HTIV-'

^J

4-54 CZ15-00

X^

FORWARD WORD

FORWARD WORD

Position the cursor on the first character of the next word
after the current cursor position.

spaces,
word is considered a string of characters delimited by

Vv'..? i.-;.£;?£ \

If the cursor is on the last word of a linef the cursor is
positioned on the first character of the first word of the
following line.

* " *' J *

Example:
••* j

The current position of the cursor is: , .-K

SWT := STAJEAXLO * GROSSPAY;

Press the Forward Word function key. The new cursor position
is:

SWT s» STATAXLO IS GROSSPAY;
'̂ '? / <* Mr^V

t»4- -, -ft ? * i, a • ' • * * * **: *

*9W«̂ <«2S

_ - _ » , . ^ tp.;>.-jK fSKlrtliTaSK': « s -T.

f l 5 ! * ' * f - ' - » 1 l > ^ 4 - ^ i ^ < ; X

Oftu3 *r>c..c s

,K ., i ~Xs

4-55 CZ15-00

MOVE BLOCK ^>

MOVE BLOCK

Move a previously defined block of text to a specified
position*

The block is deleted from its original position.

You must have previously defined a block before attempting to
move it. See the Block function key description for information
on defining blocks.

The definition of the block is erased when you use this
function key.

See "Block Description" earlier in this section for details
on blocks. . ^

Examples - . ̂ f̂̂

The previously defined block is:

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY

You wish to move the block into the position specified by the
arrow

OF AN UNDETERMINED NUMBER OF EMPLOYEES.

Position the cursor on the space where you want the first
character of the block to appear:

***a
OF AN UNDETERMINED NUMBER OF EMPLOYEES.

Press the Move Block function key. The text now reads:

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY
OF AN UNDETERMINED NUMBER OF EMPLOYEES.

The block of text is deleted from its original position.

4-56 CZ15-00

^ WINDOW DOWN

WINDOW DOWN . . . _ . _

Move the current window toward the last line of the buffer by
the number of lines specified in the scroll amount (see the
Scroll Change directive earlier in this section for information
on scroll amounts).

~ _ Scrolling stops at the last line in the buffer.

If you append lines to the last line in the buffer, the
window is automatically moved down to accommodate the appended
lines.

Example:" "" *" -i?sJ **f^ *".ivc,.<.c» *r* ,«„«*

Assume the scroll amount is set at 5 and the text in the
window appears as:

^C " - IT - \ ' -« ~ *--•'• *•

(10) IF TOTWRK1 <= STRTIME ;" "'-?*«
(11) THEN
(12) SUBGROSS := RATE * TOTWRK1;
(13) SUBGROSS := SUBGROSS * PENNYRND;
(14) SUBGROSS :* ROUND (SUBGROSS);
(15) SUBGROSS :« SUBGROSS " PENNYRND;

(28) END

Press the Window Down function key. The current window now
displays:

(15) SUBGROSS := SUBGROSS " PENNYRND;

w :
•

(32) FWT s= FWT " PENNYRND?
(33) WRITE (FWT :9:2);

4-57 CZ15-00

WINDOW LEFT
s»>" * .. *

WINDOW LEFT

the current window 40 columns to the left (toward the
left margin) of the buffer*

Use this function key when you have entered text beyond
column 80 and you wish to view text entered before column 1 of
the current window.

If the current window is already at the left margin (displays
column 1), no action is taken.

Examples " - - - - - . .. 04.

Assume the following phrase begins in column 81: _

ENTERED BEFORE COLUMN 1 OF THE CURRENT WINDOW

Press the Window Left function key. The text that begins 40
characters before column 81 now appears in the window:

BEYOND COLUMN 80 AND YOU WISH TO VIEW TEXT ENTERED BEFORE COL

ass? c s £)
(%s 'T „ jcS*:rTu!t ~'V' . uo' ^^..;

^ % a2o«K>£":3 --• ,-,;?'• ̂ 3:ns 'cr ^
^-s

- •<• * r - <

. . $ ' "*"*. i

4-58 CZ15-00
'\--4

^ WINDOW RIGHT

WINDOW RIGHT "̂

Move the current window 40 columns to the right (toward the
right margin) of the buffer.

Use this function key when you have entered text beyond
column 80 and you wish to view text entered beyond the last
column of the current window.

If you enter text beyond column 80 of the current window, the
win-dow automatically moves 40 columns to the right.

If the current window already displays the text at the right
margin, no action is taken. ,, x ... ,,M,

v>—s Examples

Assume the following window begins in column 1:

USE THIS FUNCTION KEY WHEN YOU HAVE ENTERED TEXT BEYOND

Press the Window Right function key. The text that begins 40
characters beyond the first column of the current window is
now displayed:

RED TEXT BEYOND COLUMN 80 AND YOU WISH TO VIEW TEXT ENTERED B

•^ (•'.'<}

^

4-59 CZ15-00

WINDOW UP

Move the current window toward the first line of the buffer
by the number of lines specified as the scroll amount (see the
Scroll Change directive described earlier in this section for
information on scroll amounts)«

t -,

Scrolling stops at the first line of the buffer.

Example;

Assume the scroll amount is set at 5 and the text in the *'
current window appears as:

(15) SUBGROSS := SUBGROSS " PENNYRND; -» *

(32) FWT s» FWT " PENNYRND; Ioi *rtj

(33) WRITE (FWT s9s2) ,«

Press the Window Up function key. The current window now
displays:

(10) IP TOTWRK1 <« STRTIME
(11) THEN
(12) SUBGROSS := RATE * TOTWRK1;
(13) SUBGROSS := SUBGROSS * PENNYRND;
(14) SUBGROSS :- ROUND (SUBGROSS);
(15) SUBGROSS := SUBGROSS " PENNYRND;

(28) END %̂

^J

4-60 CZ15-00

LABELED KEYS

Labeled keys perform the functions described on the key.
Depending on the type of terminal you are using you may or may
not have these labeled keys. If your terminal does not have the
listed labeled key, one of the function keys performs the same
action. Function keys are described earlier in this section.
Labeled keys are listed alphabetically on the following pages.

'' Those labeled keys that have corresponding function keys are
identified in the labeled key description.

•*• * NOTE

The labeled keys AUTO LF (Automatic Line Feed) and
LOCAL may cause unpredictable results during a
screen editing session.

AUTO LF will cause an automatic line feed each time
you press carriage return. The Screen Editor then
performs another line feed/carriage return. This

—̂x- results in double spacing and loss of the correct
cursor position,,

LOCAL allows you to move the cursor on the screen
without interrupting processing. Using this key
causes the loss of the correct cursor position
unless the cursor is repositioned to its original
location before you exit from local mode.

Use of either of these keys is not recommended during
screen editing sessions.

^

s

4-61 CZ15-00

BACKSPACE

Move the cursor one position (character) to the left.

If the cursor is positioned on the leftmost column showing on
the screen, pressing BACKSPACE has no effect,,

If the current window does not display the left margin and
the cursor is positioned in column 1 of the current window,
pressing the BACKSPACE key automatically moves the window 40
columns to the left.

Examples

Assume the cursor is resting on a line of text as follows:

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY

Press the BACKSPACE labeled key. The cursor is now
positioned as follows: o. j .>•-

THIS PROGRAM CALCULATES SHE WEEKLY GROSS AND NET PAY

w v ^ ^.' j_js/ — 'y •-*.

B V3f X 5* o •$ \ \ 3 V r O *S»r.

o

4-62 CZ15-00
Id-|i

^ * CARRIAGE RETURN
CR

CARRIAGE RETURN *" ENTER

fiB - --'-- '«•' NEW LINE
NEW LINE - RETURN
RETURN

Move the cursor from its current position to the leftmost
column (column 1) of the succeeding line.

Scrolling occurs, bringing the leftmost column into the
window, if necesary. ;-

If the cursor is positioned on the last line of the window,
the window automatically moves to display the next nine lines in
the buffer.

v—x ' :T

Example:
•&,%

Assume the cursor is positioned as follows;
\sn.* >

IF TOTWRK1 <= STRTIME :
THEN
SUBGROSS :« RATE * TOTWRK1 ,-
SUBGROSS : = SUBGROSS * PENNYRND;

Press CARRIAGE RETURN. The cursor is now positioned as
follows:

IF TOTWRK1 <= STRTIME
THEN
SUBGROSS := RATE * TOTWRK1;
SUBGROSS := SUBGROSS * PENNYRND;

*•
^_s 4-63 . CZ15-00

CLEAK/BESET ^

CLEAR/RESET

Cancel the character string just entered on the 'line.

•>'• - -* NOTE

If transmission errors occur or if some other type of
.• • " ! - . - data corruption occurs on the screen, pressing the

CLEAR/RESET key .redisplays the entire screen (the three
regions).

."-- - r an? ia ̂
Examples

• Assume you have just entered the following line and the
cursor is positioned as showns

THISS PROOGRAM CALDCLATE % ^

Rather than using function keys and labeled keys to correct
the errors, press the CLEAR/RESET key. The line of text is
cancelled, and the cursor is positioned at the beginning of
the same line,,

\ ̂'

• - Set?

D

4-64 CZ15-00

v^

'' - * i- x • 3 ' i'- yr ,-> ,: >>^ Cf^'J

V-X

<>

o - *
X_x

fTT T A "R\jLLi IAS
r"FPT TABU A ttXj I AlS

C?L TAB
CTRL. , TAB

Move the cursor back one tab stop from its current position
according to the currently defined tab stops.

With the default tab stops set, the current cursor position
is;

THIS PROGRA8 CALCULATES THE WEEKLY GROSS AND NET PAY

Press the CTL TAB sequence. The cursor is now positioned as
followss

2HIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY

/̂

4-66 CZ15-00

^ 7 CURSOR DOWN

CURSOR DOWN f i)

Move the cursor down one line (row) leaving the cursor in the
same column.

If the cursor is positioned on the last line of the window,
pressing the Cursor Down labeled key positions the cursor on the
first line of the window. The column is unchanged.

'•-•• Examples . .,,.,-..-.,_ „„

Assume the cursor is positioned as follows:

IP TOTWRK1 <- STRTIME *
\^_s THEN , »i

SDBGROSS :- RATE * TOTWRK1;
SUBGROSS :- SUBGROSS * PENNYRND; - ."•-...— —

Press the Cursor Down labeled key. The cursor is now
' - positioned as follows:

IF TOTWRK1 <= STRTIME
THEN
SUBGROSS := RATE * TOTWRK1?
SDBGROSS := SDBGROSS * PENNYRND; •?•

^'

4-67 CZ15-00

(fYTeCAT? T T?T?TL»uivpUJtv Li&r 1

CURSOR LEFT («-)
f • ̂

Move the cursor one position (character) to the left.

If the cursor is positioned on the leftmost column on the
screen, pressing the Cursor Left labeled key moves the cursor to
the rightmost character on the screen of the preceding line.

If the cursor is positioned in the leftmost column of line 1
of the current window, pressing the Cursor Left labeled key moves
the cursor to the rightmost column of the last line displayed in
the window.

- - - - ;- t • ; -ij. ^

Examples
c *>

Assume the cursor is positioned as follows:

IF TOTWRK1 <= STRTIME
THEN
SUBGRSSS s» RATE * TOTWRK1,«
SUBGROSS :- SUBGROSS * PENNYRND;

Press the Cursor Left labeled key* The cursor is now
positioned as follows;

IF TOTWRK1 <= STRTIME <• -
THEN
SUBGfiOSS :» RATE * TOTWRK1; ' •
SUBGROSS :- SUBGROSS * PENNYRND;

J

4-68 CZ15-00

\^
CURSOR RIGHT

.t-LJ
CURSOR RIGHT (-»)

Move the cursor one position (character) to the right of its
current position.

If the cursor is positioned on the rightmost column on the
screen, pressing the Cursor Right labeled key moves the cursor to
the leftmost character on the screen of the succeeding line.

If the cursor is in the rightmost column of the last line in
the window, pressing the Cursor Right key positions the cursor in
column 1 of the first line in the window.

Example: °-

—' Assume the cursor is positioned as follows: "'^^

IF TOTWRK1 <= STRTIME
THEN
SUBGROSS : = RATE * TOTWRK1;
SUBGROSS := SUBGROSS * PENNYRND;

Press the Cursor Right labeled key. The cursor is now
positioned as follows: -•->

IF TOTWRK1 <= STRTIME
THEN ^
SUBGROSS := RATB!3* TOTWRK1; " "" *
SUBGROSS :* SUBGROSS * PENNYRND; "*: *

4-69 CZ15-00

CURSOR UP

CURSOR UP (t)
(i

Move the cursor up one line leaving the cursor in the same
column.

If the cursor is positioned on the first line of the window,
pressing the Cursor Up key positions the cursor on the last line
of the window. The column is unchanged.

If the cursor is positioned in the Directive Region of the
screen, pressing the Cursor Up key returns the cursor to the
position in which it was before you pressed the HOME key. (The
HOME key is described later in this section.)

ff i*-^ * ̂ ,

Examples .

Assume the cursor is positioned as follows: „„,., „ „
2H..,> ??,'"*y3'3l

v

IF TOTWRK1 <= STRTIME
THEN ; w>

SUBGROSS s* RATE * TOTWRK1;
SUBGROSS it- SUBGROSS * PENNYRND; *]

Press the Cursor Up labeled key. The cursor is now
positioned as follows? (

• «~- '- K. \ 3

IF TOTWRK1 <= STRTIME
THEN ' *"
SUBGROSS 5: » RATE * TOTWRK1 ;
SUBGROSS :» SUBGROSS * PENNYRND;

/--•
">

4-70 CZ15-00

w

DEL CHAR

DEL CHAR
* * •" ~ •" iTf .*.. ft* ** « t

Delete the character on which the cursor is positioned.

To delete a character, position the cursor on the unwanted
character and press the DEL CHAR labeled key. The line that
contained the deleted character is now one character shorter in
length. All characters following the deleted character are moved
one position to the left so that the first character following
the deleted character is adjacent to the character preceding the
deleted character.

The REPEAT key may be used to delete multiple characters
quickly.

The DEL CHAR labeled key performs the same action as the
Delete Character function key described earlier in this section.

Examples iv^ k, .

Assume the text reads as follows: *; :_

THIS PROOGRAM CALCULATES THE WEEKLY GROSS AND NET PAY

Position the cursor on the unwanted character:

THIS PROOGRAM CALCULATES THE WEEKLY GROSS AND NET PAY

Press the DEL CHAR labeled key. The text now reads:

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY

^ 4-71 CZ15-00

PEL LINE

Delete the line on which the cursor is resting.

After the line is deleted? the cursor is positioned in the
same column but on the line that immediately followed the deleted

!«

Examples J' -' ~«*-1 < **-* -

Assume the cursor is resting on the line as follows:

IP TOTWRK1 <= STRTIME
THEN *•:* YSM <<«*>
SIB
SUBGROSS j= RATE * TOTWRK1;
SDBGROSS := SOBGROSS * PENNYRND; ~— —-

Press the DEL LINE labeled key. The text now reads as
follows;

IF TOTWRK1 <s STRTIME - 4b?r-: "xe1* *t«- ^
THEN
3DBGROSS s« RATE * TOTWRK1;
SUBGROSS :- SUBGROSS * PENNYRND;

53UD 9fa tTOl:? C80<i

<•<: -. > ^ ^ ^ x w

";*>;• ->-'" -v9>. , rv , 2 aa.^V*

r-',-.-. '.,'??'i\T ,-;,, P.£'"-« J U) J A O MAH^O^ aif f^

^>

4-72 CZ15-00

^ ERASE EOL

ERASE EQL ^JSM

Delete any text from (and including) the current cursor
position to the end of the line.

To erase characters from the current cursor position to the
end of the line, position the cursor on the first character of
the text you want to erase, and press the ERASE EOL labeled key.

The cursor is positioned on the same line in the same column
in which it was positioned when you pressed the ERASE EOL key.

Example:

Assume the text reads as follows and you have positioned the
V ' ~ cursor as shown:

THIS PROGRAM CALCULATES THE GROSS AND NET PAY OF AN OP
AN UNDETERMINED NUMBER OF EMPLOYEES.

Press the ERASE EOL labeled key. The text now reads:

THIS PROGRAM CALCULATES THE GROSS AND NET PAY OF .
AN UNDETERMINED NUMBER OF EMPLOYEES.

w

4-73 ' CZ15-00

IPJUi;

Move the cursor to the directive input line of the screen.

When you press the HOME key, the system "remembers" the
cursor position before it is positioned to the directive input
linee The "remembered" cursor position is the cursor position
used for any cursor position related directives.

Example?

Assume the cursor is positioned as follows: . ._,-*.--

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY {

Press the HOME labeled key. The cursor position is
remembered and is repositioned to the directive input line as
follows:

DIRECTIVE:5

'" -•'"* - ~ < ^ * b" :<*a&r /O- T3AJI3 Hrna rfas, -r^

^J

4-74 CZ15-00

^ INS CHAR

t <-.! -TUSD ~ " - r asm 3>r/: s?-*-*
INS CHAR

Insert a number of characters to the left of some point in a
buffer.

To insert characters, position the cursor to the character
that should immediately follow the character(s) that you are
inserting. Press the INS CHAR labeled key. The flag "INSERT"
appears in the status region to alert you that you are in insert
mode. Enter the new characters.

Every character to the right of the current cursor position
(including the character on which the cursor is resting) will be
moved one space to the right for the insertion of each insert
character you enter.

To end character insertion, press the INS CHAR labeled key a
second time. The "INSERT" flag is removed from the status
region. Any characters you enter now will write over the
existing text. ' ' "l *""' •*"•-•>'< ' r> .*-.=•* m *

To insert characters at the end of a line, position the
cursor to the location you wish to begin the insert and simply
enter the characters. It is not necessary to use the INS CHAR
labeled key to enter characters at the end of a line.

Pressing the RETURN or LINE FEED key while in insert
character mode creates a new line. The characters from the
cursor position to the end of the line are placed on that new
line. If you press RETURN, the repositioned characters will
start in column 1 of the new line. If you press LINE FEED, the
new line is blank filled up to the cursor position. The
characters begin at the cursor position on the new line. An

v example of pressing RETURN in insert character mode is:

THIS IS A SPLIT LINE.

Press RETURN. The result is:

THIS IS A
SPLIT LINE.

An example of pressing LINE FEED in insert character mode is:

THIS IS A SPLIT LINE.

^ 4-75 CZ15-00

INS CHAR

Press LINE FEED* The result issi

THIS IS A
:. SPLIT LINE. ' * ' " - *

The REPEAT key can be used to insert multiple characters of
the same value.

If inserting characters in a line causes the maximum line
length to be exceeded, those characters in the rightmost columns
of the line are lost.

Example:

Position the cursor to the right of the position where you
want to insert characters. For example:

NETPAY :* GROSSPAY - FICA;

Press the INS CHAR labeled key. Enter the characters you
wish to insert. The new line of text (after insertion) now

NETPAY s- GROSSPAY - FWT - SWT - PICA;

Press the INS CHAR labeled key again to leave insert mode.

- •** » '"t**/ *- * J

; , -^1

•9 "I - J. .- - •> 3 f
' ' *• '

~ * J ~ ou i*i , c ,
* r—^

U
3«*T I ' • „ ? ; e P.J ^si*

.-.s'.e*sj 3c .iqjiffeX" .tA

4-76 CZ15-00
;* .*

fV » »

V

LINE FEED

LINE FEED

Move the cursor down one line from its current position and
leave the cursor in the same column.

If the cursor is positioned on the last line of the window,
pressing the Line Feed labeled key moves the window down 9 lines,

, '" <a--' • •'T' i<- : JT. s<Example:

Assume the cursor is positioned as follows:

, IF TOTWRK1 <= STRTIME
THEN '*- ''
SUBGROSS := RATE * TOTWRK1; t£

SUBGROSS := SUBGROSS * PENNYRND;

Press the LINE FEED labeled key. The cursor is now
positioned as follows:

«•*

- IF TOTWRK1 <= STRTIME
"" THEN

SUBGROSS := RATE * TOTWRKl;
SUBGROSS := SUBGROSS * PENNYRND;

T

^S 4-77 CZ15-00

-N

>̂.
I

£1L_I
CTRL I

Move the cursor from its current position to the next tab
stop to the right on that line according to the current tab stop
definition. . i,.

The key sequences CTL I or CTRL I perform the same actions as
the TAB key.

Examples z~ ** - —"^ - ' " ̂ '- -a-

With the default tab stops set, the current cursor position
iss

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY

Press the TAB labeled key. The cursor is now positioned as
follows?

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY

4-78 CZ15-00

TAB CLR
» •-V..M., oo r ' .•. ,,./ to -jSStt

TAB CLR
,'- C; ' •'." ! •; "T.V i ;" ' .'; .if •» -

Cancel (clear) the tab stop definition in a specified column.

Position the cursor in the column containing the tab stop and
press the TAB CLR labeled key.

Example: :'

Assume you have set tab stops as shown by the designated
cursor positions:

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY -

Positioning the cursor in the column containing the tab stop
you wish to cancel (say, the first cursor position) cancels the
definition of that tab stop.

^ 4-79 CZ15-00

~\

W A t } GTffTLAO DUfl

TAB SET

Set a tab stop in a specified column.

Position the cursor in the desired column and press the TAB
SET labeled key. - . ?• ^uJf _-. -r,r -ssic s .̂ rinsD

Example: . - • i - . •-„ . TI -•• i ̂ J? (*"^ -i

Assume this line begins in column 1. At each designated
cursor position, you have pressed the TAB SET labeled key.

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY

Tab stops are now set at columns 9 and 19.

4-80 CZ15-00

w

=
(D

^J

^

LU
91

^J

^

s*r.-

2o

• a. CJtt

Section 5
LINE EDITOR

•-SHJ-'- _,l

< .O*»

This section describes Line Editor functions and the Line
Editor directive set. For procedural information on using Line
Editor directives to create and edit files, see Appendix A;
sample user dialogs with the Line Editor are provided.

OVERVIEW

The Line Editor creates and/or alters character text that
constitutes files; the files usually are source unit files. The
statements in a source unit file can be written in FORTRAN,
Pascal, COBOL, BASIC, or Assembly language. Throughout this
section, it is assumed that source unit files are being edited.

W
Editing is controlled by directives entered to the Line

Editor through the device specified in the in_path argument of
the Enter Batch Request (EBR) or Enter Group Request (EGR)
command. This device can be reassigned in the command that loads
the Line Editor.

All editing is done in a temporary work area called the cur-
' rent buffer. When the Line Editor is invoked, the Line Editor

creates a current buffer. To save Line Editor output, you must
write the source unit contents of the current buffer to a file.

5-1 CZ15-00

During a single execution of the Line Editor/ the Line Editor
can operate in input and/or edit mode. In input mode, you can
create a source unit and/or add one or more specified lines to an ^/
existing source unit. In edit mode, you can locate and change
single characters, words, or a string of characters, read the
contents of a file into the current buffer so that the line(s)
can be edited, write lines from the current buffer to a file, and
terminate execution of the Line Editor.

NOTES

1. During a single execution of the Line Editor,
you can create and/or change any number of
files. You must delete the contents of the

.•'Y"" current buffer before you begin to edit
another file, unless you want that file to
comprise the same information that was in the
previous file(s).

2, At any time during execution of the Line
Editor you can request a message that will
indicate whether input or edit mode is in -—/
effect. Each time I? is entered, the
following message is issued:

(INPUT) MODE
I EDIT J

Line Editor processing can be interrupted by either:

« Pressing the QUIT, INTERRUPT, or BREAK key on your
terminal ~ ~ -

• Entering A CABgroup-id on the operator terminal, where
group°id is the two-character group identification code
associated with the group containing the task to be
interrupted.

A **BREAK** message appears on your terminal when the system x-x
interrupts the Line Editor. If the Program Interrupt (PI) ' J
command is entered, output is suppressed and the task returns to ̂
directive input level. See the Commands manual for a detailed
description of the break function.

«

Each Line Editor directive's name and function is listed in
Table 5-1. They are described in detail in "Input Mode
Description and Directives", "Edit Mode Description and
Directives", and "Advanced Usage of the Line Editor." Directives
described in the input and edit mode subsections operate within
the current buffer.

5-2 CZ15-00

:£ ,
v , LINE EDITOR SUFFIX CONVENTIONS

During program preparation, it is convenient to identify
output file(s) with the name of the input file.

When you create a source unit, you should append the appro-
priate suffix identification character to the name of the file
that will contain the source unit. The suffix designates the
type of text that constitutes the source unit. The suffix must
be .C for COBOL programs, .F for FORTRAN programs,-.B for BASIC
programs, .PS for Pascal programs, and .A for Assembly language
programs.

* .
When you specify the file names of Line Editor input and

output files (in Line Editor directives), the editor requires
that you designate the complete file name, including the suffix
that denotes the contents of the file (.C for COBOL, .F for
FORTRAN, .B for BASIC, .PS for Pascal programs, and .A for
Assembly language programs). The Line Editor does not append a

\ , suffix to its input and output files.
* *»

LINE EDITOR DIRECTIVE FORMAT CONVENTIONS

Most Line Editor directives consist of only a directive name,
a directive name preceded by one or two addresses, or a directive
name optionally preceded by one or two addresses and followed by
text and termination escape characters (!F) that designate the
end of the directive and cause the Line Editor to switch from
input mode to edit mode. These formats are illustrated here.
Note that if a directive includes text, the text may be specified
beginning immediately after the directive name (see Format 4) or
beginning on the next line (see Format 5).

•t
FORMAT 1:

ft * t

dirname - -~- ---

FORMAT 2; '; - " 3 .£
W

adr dirname
ff

FORMAT 3:

adr, <nadr2 dirname

FORMAT 4:

tadr, ["/; \adr2 dirname[text]IF

V^x 5-3 CZ15-00

FORMAT 5:

adr

[text]
[{.'}•*•]'

dirname * -̂̂ ~N

. fOi,2& fe

1- yT!&,

!P

ARGUMENTS; • ̂ "% ', .a , ,, ̂ ^̂

dirname

Valid Line Editor directive,

adr adr

Valid addresses for the current buffer.

Any text.

NOTES

1. Spaces are not permitted, except in the fol-
lowing circumstances;

a« Spaces are permitted in expressions con-
stituting addresses.

be A space is permitted after the Execute,
Read, and Write directive names (these
directives are described later in this
section).

f tK, 1 I ,*. x

2, One or two addresses may be specified without ,'*"-%
a directive name; if no directive name is ^j
specified, the last (or only) addressed line
will be printed (see "Print Directive").

When a single address is specified, the Line Editor locates the
specified line in the current buffer. When two addresses are
specified within a single directive, the Line Editor locates a
specified series of lines in the current buffer; the lines that
are located depend on whether the addresses are separated by a
comma or a semicolon (see "Referencing a Series of Lines"). If a
Line Editor directive format designates that either a single
address or a pair of addresses may be entered, you can enter that
directive and omit one or both addresses; their default value(s)
will be used. Address default values are described later in this
section under each directive's argument descriptions.

5-4 CZ15-00

w

SN̂

Multiple Line Editor directives can be entered on a single
line; it is 'not necessary to separate each directive with a
delimiter, but one or more spaces can be specified, as
illustrated below:

Directives not separated by delimiters:

di rnamedi rname .. __„— ~ .~L ~ _

Second directive
First directive

Directives separated by delimiters;

di rname di rname adr, di rname ~

Qi
c^g

Third directive
Second directive
First directive

A comment can be included at the end of a directive line
(i.e., at the end of the last or only directive); the comment
must be preceded by a quotation mark ("), as illustrated:

adr dirname dirnamencorament

To include a comment after an input mode directive, specify the
comment after the terminator IF; otherwise, the comment is
included as text. , « _̂,

adr

' II
adr2 dirname[text]IF"comment

Directive comment
Directive

If a terminal is the directive input device, press RETURN at
the end of each line.

Methods of Specifying Addresses

Each address can be specified by one of the following methods
or by a combination of these methods:

• Number of line
• Position of line relative to the "current" line
• Contents of line.

-1
.K, f> -

5-5 CZ15-00

DESIGNATING A LINE NUMBER AS AN ADDRESS
>̂

Each line in the current buffer can be located by a decimal
number that indicates the current position of the line within the
buffer.* The first line in the buffer is line 1; subsequent
lines are numbered sequentially in ascending order. - Multiple
decimal numbers separated by plus or minus signs can be specified
to represent a line nuraberc

Example; . , ;

10
5+5 ,;,)- ,-<. „:.- ;

Each of the expressions above request line number 10. The
last line can be referenced by its line number or by the
character $. •

If an address designates a line that is not in the current
buffer, an error message is issued.

Line Editor directives may cause lines to be added to or
deleted from the current buffer. Each time this occursr all
succeeding lines are renumberedc For example, if line 15 is
deleted, line 16 becomes 15, and each subsequent line number is
decremented by 10

DESIGNATING THE POSITION OF A LINE RELATIVE TO THE "CURRENT" LINE
AS AN ADDRESS

Most Line Editor directives affect either the current line or
a line a designated number of positions from the current line.
If the last Line Editor directive entered was an Input directive
(ice., input mode was in effect), the current line is the last
line added or read by the Line Editor (regardless of whether the
condition specified in the directive was met). If the last Line
Editor directive entered was an Edit directive (edit mode was in
effect), the current line is the last line of text edited. The
current line can be located by specifying a period (.).

NOTE

If you do not know which line is the current line,
you can obtain a display of the line number of the
current line by specifying the Print Line Number
directive, which is described under "Advanced
Usage of the Line Editor" later in this section.

*To determine the line number of a specified line in the current
buffer, enter the Print Line Number directive; to determine the
line number and contents of specified line(s) in the buffer,
enter the Print With Line Number directive. (These directives
are described under "Advanced Usage of the Line Editor", later
in this section.)

5-6 CZ15-00

^ ^ You can locate lines relative to the current line by specify-
ing an address that consists of a period followed by one or more
signed decimal numbers. For example, the address .+1 specifies
the line immediately following the current line, the address .-1
specifies the line immediately preceding the current line, and
.+5+5-3 specifies the seventh line after the current line.

When specifying an increment to the current line number, you
can omit the plus (+) sign; e.g., .5 is interpreted as .+5. When
specifying a decrement to the current line number, you can omit
the period; e.g., -3 is interpreted as .-3, and .5+5-3 is inter-
preted as .+7.

<5 f

DESIGNATING CONTENTS OF LINE AS AN ADDRESS J

You can designate that the Line Editor locate the first line
that contains a specified character or a specified sequence of
characters by designating those characters in an expression as an
address. An expression comprises one or more ASCII characters,

x ^ which must be delimited by slashes (e.g., /ASCII characters/).

The Line Editor will search the lines in the current buffer
until it finds the fJLu± occurrence of the specified expression;
unless specified otherwise,* the expression can be in any
position within the line. The Line Editor searches from the line
immediately following the current line (i.e., .+1) through the
last line in the buffer; if a line containing the specified
expression is not found, the Line Editor then searches line 1 to
the current line. In the directive format:

/BBB/dirname i

the address is the expression BBB. The Line Editor searches as
many lines as necessary for the first occurrence of BBB. The
contents of the source unit being searched are listed below. ,
(The numbers within parentheses represent line numbers.) j

(1) AAA
^ (2) BBB .., ̂

- (3) CCC (current line) ~" -' ' J I
(4) BBB !

The specified directive causes the Line Editor to locate line
number 4, since this is the first line after the current line
that contains the expression BBB.

*If a circumflex (") is designated as the first character of the
expression, the expression must be the first expression on the
line; if $ is designated as the last character of the expres-
sion, the expression must be the last expression on the line.
Use of these special characters is described in the following
paragraphs.

5-7 C215-00

\̂
When the following ASCII characters are included in expres-

sions, they have special meanings:

Character Description

line feed
(hex OA)
(see Note 3)

Requests expressions that contain any number (or
none) of the immediately preceding character(s).

When designated as the first character of an
expressionr requests lines that begin with the
specified expression (excluding the character *).

When specified as the iasi character of an expres-
sion, requests lines that end with the specified
expression (excluding the character $).

Can be any character on any line; specify one
period per character (e.g., .. means any two char-
acters on any line).

Can be used in the string expression of a Substi-
tute directive to indicate that the strings of
characters preceding and following & are to be con-
catenated to the target string of the search* See
the description of the substitute directive later
in this section.

The occurrence of a line feed in the string expres-
sion determines the point in the resulting line at
which the line is to be split into two lines. See
the Substitute directive for further details.

- -- NOTES

The special meanings of the above characters,
/ (which delimits an expression) and !? (which
causes display of the mode currently in
effect), can be removed by preceding the spe-
cial character with 1C. For example, !C!?
causes I? to be interpreted as text rather
than as a request for display of the mode that
is in effect.

The characters . and $ can be specified as
line numbers or as special characters in
expressions; the Line Editor can interpret
their meaning from the way they are used.

J

5-8 C215-00

^
For the Line Editor, two hexadecimal
characters can be interpreted as one ASCII
byte by using the escape sequence IHxx, where
xx are the two hex characters. However, this
feature must be used with care since some of
the hexadecimal characters may be confused
with control or special characters in ASCII
strings. The following is a list of the
hexadecimal characters whose use is
restricted:

OA is the line feed character; in a string
; expression, it is interpreted as a request

for advancement to a new line.

2E and AE in a regular expression are
treated as ".".

26 and A6 in a string expression are
treated as "&".

2A and AA in a regular expression are
treated as "*".

24 at the end of a regular expression is
interpreted as "end-of-line ($)".

5E at the beginning of a regular expres-
sion becomes "beginning-of-line (")".

Rather than attempting to substitute in an
expression using the characters above, execute
a Change directive, reentering the line using
hexadecimal and ASCII characters for the
entire line.

V *
x*.\

^

Following are some examples of expressions specified as addresses
in Line Editor directives. Following each expression is a
description of the line/character(s) in the current buffer for
which the Line Editor will search. In each case, the Line Editor
searches the lines sequentially, starting with the line
immediately following the current line to the end of the file,
and then from line one through the current line.

Expression

/A/

/ABC/

/AB*C/

Description

Locates the first line that contains the expression
A in any position in that line.

Locates the first line that contains the expression
ABC in any position on that line.

Locates the first line that contains the expression
AC or A followed by any number of B's and a C.

5-9 CZ15-00

Expression Description ~ -"• ~—•"«~——»—--^
ŝ >

/IN..TO/ Locates a line that contains IN and TO separated by
any two characters.

/IN.*TO/ Locates a line that contains IN and T0r in that i
orderf with any or no characters between those two
words0

/"ABC/ Locates a line that begins with the expression ABC.

/ABC$/ Locates a line that ends with the expression ABC.

/ABCIC$/ Locates a line that contains the expression ABC$.
ABC$ can be in any character positions, since the
character $ was preceded by !C.

/~ABC.*DEF$/ Locates a line that begins with ABC and ends with '
DEFy there may be any number of characters between
ABC and DEF.

/.*/ Locates any line.

The Line Editor remembers the last specified expression.
That expression can be reinvoked in a subsequent Line Editor
directive by specifying a null expression (e.g., //). j

!
Examples;

i
/ABC/dirname .< ;

Expression ABC specified as address
!

2dirname - ~ •
!

Second line in buffer specified as address s

//dirname

Specifies ABC as an address, since ABC was last specified
expression

An address can be specified as an expression followed by one
or more signed decimal integers. Each of the following three
expressions requests the second line after the line that contains
ABC.

/ABC/2 ^ - . 4. -.-, , j - j \«\
/ABC/+2 - «.i -; i
/ABC/+S-3

J^nj- • .-:. { - \~jfts"
" ' s . i ,1 ," n

'• - - ' ' " " + \"'*SAN

5-10 CZ15-00

^ COMPOUND ADDRESSES

An address can be formed by combining any of these methods. If
a compound address contains a line number, the line number must be
the first element of the address.

The first element of the compound address determines the
starting location from which the Line Editor will search for the
designated expression. If the first element is a line number, the
Line Editor searches for the expression starting with the line
that immediately follows the specified line number. (Ordinarily,
the Line Editor searches starting with the line that immediately

• follows the current line.)

Example 1:

10/ABC/ "-•" -

The Line Editor searches the lines in the current buffer for
\̂ the characters ABC, starting with line 11. '

Example 2: I

,-8/ABC/

The Line Editor searches the lines in the current buffer for
the characters ABC, starting eight lines before the current
line*

i
Example 3 °,
n"~- /ABC//DEF/

The Line Editor searches for the first line containing DEF
that occurs after the first line containing ABC.

Each expression in a compound address can be followed by a
signed decimal integer.

^'
Example 4s

'? - <~~." i1' ~ 7
/ABC/-10/DEF/5

The Line Editor searches for the first occurrence of the
character string DEF that is within 10 lines before the first
line that contains ABC. After DEF is found, the current line
is the fifth line after the line containing the match for DEF,

5-11 CZ15-00

g^ferencing a Series of Lines

A Line Editor directive that permits two addresses to be
specified causes the Line Editor to locate a series of lines in
the buffer. The addresses can be separated by a comma or a
semicolon. If the second address is relative to the current line
(plus or minus), both the addresses and the plus or minus sign
determine which lines will be located by the Line Editor;
otherwise, only the addresses are relevanto

If the addresses are separated by a comma, the Line Editor
locates the line at the first address through the line at the
second address, inclusive.. The current line remains unchanged
until the directive is executed? the current line then becomes the
line specified by the second address.

If the addresses are separated by a semicolon, the line
located by the first address becomes the current line and the
value of the second address is calculated.

Example 1: - -_ w r S.+^KZ- . v*3-'-

l,5dirname

These addresses specify lines 1 through 5, inclusive. After
the directive is executed, line 5 becomes the current line.

- • * : • -.11
Example 2: ,c _ r.n-7;^..

l,$dirname

These addresses specify line 1 through the last line in the
buffer, inclusive. After the' directive is executed, the last
line becomes the current line.

Example 3: ; --„ - t d-,v "Oi

,1,/ABC/

These addresses specify the line immediately following the
current line through the first line that contains ABC. The
first line that contains ABC then becomes the current line.

Example 4:
' .- , . jr:' * -• T.

.1, .2dirname

The contents of a sample source unit are following. The
numbers within parentheses represent line numbers.

5-12 C215-00

(1) ABC
(2) DEF (current line)
(3) GHI . „
(4) ABC • . - • * -
(5) XYZ - - - - -'-- — --- — -•*--

< 6> MC *M

These addresses specify the line immediately following the
current line through the second line after the current line.
The Line Editor locates lines 3 and 4. Line 4 becomes the
current line. ^ — ~ --..

Example 5s

,l;2dirname

These addresses are the same as those in Example 4, but they
are separated by a semicolon. If the contents of the sample
source unit are the same as in Example 4, this directive
causes the Line Editor to locate lines 3f 4, and 5. This
first address specifies the line immediately after the current
line, i.e., line 3. Line 3 then becomes the current line.
The second address specifies that the Line Editor locate
through the second line after the (new) current line, i.e.,
lines 4 and 5.

The same series of lines can be requested by specifying their
addresses in more than one way, using different delimiters.

Example 6 s

/ABC/,/ABC/+3dirname -"l*a -
/ABC/;.+3dirname

The contents of a sample source unit follows. The numbers
within parentheses represent line numbers.

-*•

1 * ' (1) ABC * " J "' -~" •-'SI* *"
(2) ODD (current line) • - 5

(3) EEE
(4) FFF
(5) GGG
(6) HHH

The first series of addresses specifies that the Line Editor
\; locate the first line that contains ABC (line 1) through the

third line after that line (lines-2, 3, and 4). Line 4
becomes the current line.

The second series of addresses specifies that the Line Editor
locate the first line that contains ABC (line 1), make that
line the current line, and then reference three lines from the
"new" current line (lines 2, 3, and 4). Line 4 becomes the
current line.

^ 5-13 CZ15-00

Loading the Line Editor _ „„«x*»vr**.r - vg^ ^
X_X .,

The Line Editor command loads the Line Editor. Upon loading,
a message indicating the current Line Editor release number is
sent to the error-out file.

To load the Line Editor, enter the ED command.

FORMAT:

ED[?SILENT] [ctl_arg]

ARGUMENTS:
•

[7SILENT] . • •

Optional entry point that suppresses the welcome message.

[ctl_arg]

None or any number of the following control arguments may ^~s
be entered?

-IN path

Pile from which Line Editor directives are to be
read. -IN path in the Line Editor command line
results in the user-in file being changed to "path" or
the contents of "path" being copied to buffer (EXEC).
Execution starts with the first line of (EXEC).
Defaults Directives are obtained from the current
user-in file.

-LINEMEN nnl - . . . - ,
-LL nn (. ̂ fi -

Alter the line length to be acted upon by the Line
Editor and can be any value from 20 to 256. Default:
nn equals 80.

-PROMPT \
,-PT f

Print the prompt characters E? (in edit mode) or I?
(in input mode) on the user-in file upon completion of
the previous Line Editor directive; no carriage return
follows. If the user-in is other than a terminal-like
device, this argument is ignored.

- -*"* " ' •-»-•„ „ 3"»

c - f-. , £ " s> *•*,.£ ».

5-14 C215-00

^J

j-NO_BLANK_SUPPRESSl
l-NBS I

No blank suppression; i.e., the Line Editor does not
suppress trailing blanks on the input line (for one
invocation only). Subsequent invocations without -NBS
will suppress trailing blanks. w

*
I-FILE_SIZE nn)
I-FS nn > - I- ,--^3 9ft,->

Alter the initial size of the work file to the size in
the user-supplied value of nn, where nn is a decimal
integer comprising up to four characters and des-
ignates the number of 256-byte control intervals. If
an output file is created, it is initialized to the
same size.

f—

- Default: 4. .- "

ARCS strings)
3 strings J

i (

Up to nine character strings that are numbered sequen-
tially and may be passed to the Line Editor in the
"Change Origin of Text During Edit Mode" (!B) Line

•iK ' Editor directive. Each argument following the -ARC !
keyword is copied to buffer (ARGn). n denotes the
position of the argument following the -ARC and can be
any value from one through nine. If specified, this
argument and its strings must be entered last. I

-"* - (-SAFE name) , .. '-j. ' i~ *" 8
(-SF name)

Permanent work files called name.EDWKl and name.EDWK2
-' contain the latest copy of the current buffer. Name

v ^ can be from one to six characters. Abnormal termina-
tion causes the work files to be closed in their cur-

' rent state and saved for later use, and normal termi-
nation releases them. To reuse the work files, invoke
the Line Editor without -SAFE or with -SAFE and a

••' • different name. Default: Work files are temporary]
files and are released under all conditions. |

!

(-SIZE nn)
l-SZ nn)

- j » Define the number of 1024-byte words to be used for
dynamic storage in memory, nn can be any value from 1
to 64. The formula for calculating the number of

• ~ - - - lines possible is (2*nnK/LL+6)-3, where K is 1024 and
LL is the line length value (or 80 by default).

Default: 1.
t

~>^< 5-15 CZ15-00

SUMMARY OF LINE EDITOR DIRECTIVES AND ESCAPE SEQUENCES

Table 5-1 lists each Line Editor directive name and escape
sequence, summarizes its function, and designates the topic in
this section under which the directive/escape sequence is
described. The topics refer to the following level headings:

• "Input Mode Description and Directives" (input mode)
• "Edit Mode Description and Directives" (edit mode)
• "Advanced Usage of the Line Editor18

-"General Advanced Line Editor Directives" (advanced
usage — general)

"-" • -"Auxiliary Buffer Directives and Escape Sequences"
(advanced usage — auxiliary buffers)

-"Line Editor Debugging Directives" (advanced usage —
debugging)

-"Line Editor Programming Directives'
programming).

(advanced usage —

Table 5-1. Summary of Line Editor
Sequences

Directives and Escape

Directive
Name/Escape
Sequence Function

Topic Under
Which Described

A

B

C

D

E

Add line(s) after speci-
fied address. ...-;

Make specified auxiliary
buffer the current
buffere

Delete specified line(s)
and insert other line(s),

Delete specified line(s)
from current buffer.

Execute command other
than Line Editor without
exiting from the Line
Editor.

Search for
line(s) that contain
specified character
string.

Append directive (input
mode)

Change Buffer directive
(advanced usage —• auxil-
iary buffers)

Change directive (input
mode)

Delete directive (edit
mode)

Execute directive
(advanced usage —•
general)

Global directive
(advanced usage —
general)

A

5-16 CZ15-00

Table 5-1 (cont). Summary of Line Editor Directives and
Escape Sequences

Di rective
Name/Escape
Sequence Function

Topic Under
Which Described

K

M

P

Q

R

S

U

Add line(s) before a
specified address,,

Copy line(s) in current
buffer to specified
auxiliary buffer. Do not
delete lines from current
buffer. Overlay existing
line(s) in auxiliary
buffer.

Send line feed to the
user-out file.

Move line(s) from current
buffer to specified
auxiliary buffer; delete
the lines from current
buffer and overlay exist-
ing line(s) in auxiliary
buffer.

Designate different line
as the current line.

Print specified line(s)
in current buffer.

Conditionally terminate
execution of Line Editor,

Read text from file to
current buffer.

Substitute character
string with another
character string.

Display line of text on
user-out file. Subse-
quent input/output will
be on the next line.

Convert specified upper-
case expression to
lowercase.

Insert directive (input
mode).

Copy directive (advanced
usage — auxiliary
buffers)

Line Feed directive
(advanced usage —
general)

Move directive (advanced
usage — auxiliary
buffers) \

New Current Line directive
(advanced usage —
general) '

Print directive (edit
mode)

Quit directive (edit mode)

Read directive (edit mode)

Substitute directive (edit
mode)

V: I

Type directive (advanced
usage — programming)

Lowercase directive
(advanced usage —
general)

5-17 CZ15-00

Table 5-1 (cont). Summary of Line Editor Directives and
Escape Sequences

Directive
Name/Escape
Sequence Function

Topic Under
Which Described

V

W

ZDUMP

ZREGEXP

ZTRACE

!B

1C

IP

!Hxx

IK

Search for specified
line(s) that do not con-
tain specified character
string,,

Write specified line(s)
from current buffer to
specified file.

Request status of auxil-
iary buffers.

Print contents of speci-
fied line(s).

Display last specified
expression.

Display each directive
line before it is
executed.

Change origin of text to
specified auxiliary buf-
fer or execute specified
auxiliary buffer.

Remove meaning of follow-
ing special character.

Terminate an input mode
directive.

Interpret two following
hexadecimal characters as
one ASCII byte.

Copy line(s) in current
buffer to specified aux-
iliary buffer? do not
delete existing line(s)
in auxiliary buffer.

Exclude directive
(advanced usage —
general)

Write directive (edit
mode)

Buffer status directive
(advanced usage — auxil-
iary buffers)

Hexadecimal dump directive
(advanced usage •—
debugging)

ZREGEXP directive
(advanced usage
debugging)

M

ZTRACE directive (advanced
usage -- debugging) i

Change origin of text
during input/edit mode
(advanced usage —
auxiliary buffers)

(Input mode)

Copy-append directive
(advanced usage —
auxiliary buffers)

5-18 CZ15-00

Table 5-1 (cont). Summary of Line Editor Directives and
Escape Sequences

Directive
Name/Escape
Sequence Function

Topic Under
Which Described

1L

!M

IP

!Q

!R

IT

NW
iu -

I •?

address f

Send line feed to the
error-out file.

Move line(s) from current
buffer to specified aux-
iliary buffer; delete the
line(s) from current buf-
fer and append them to
existing line(s) in aux-
iliary bufferc

Type line number and con-
tents of specified
line(s) in current
buffer. ;

Unconditionally terminate
execution of Line Editor.

Accept single line from
terminal.

Display line of text on
user-out file; subsequent
input/output will be on
the same line.

Convert specified lower-
case expression to
uppercase.

Cause message indicating
whether input or edit
mode is in effect.

If current buffer con-
tains data, execute
specified directive(s).

If current line is speci-
fied line, execute speci-
fied directive(s).

Line feed directive
(advanced usage —
general)

Move-append directive
(advanced usage —
auxiliary buffers)

!

Print With Line Number
directive (advanced
usage — general)

Quit directive (edit mode)

Accept Single Line from
Terminal directive
(advanced usage — auxil-
iary buffers)

Type directive (advanced
usage — programming)

Uppercase
(advanced
general)

directive
usage —

If Data directive
(advanced usage —
programming)

If Line directive
(advanced usage —
programming)

5-19 CZ15-00

Table 5-1 (cont). Summary of Line Editor Directives and
Escape Sequences

Directive
Name/Escape
Sequence Function

Topic Under
Which Described

addresses #

'B

address * t

addresses*!

Replace each occurrence
of specified character
string with another char-
acter string*

If current line is within
specified lines, execute
specified directive(s).

Release a specified aux-
iliary bufferc

If current buffer does
not contain dataf execute
specified directive(s).

If current line is not
specified line, execute
specified directive(s).

If current line is not
within specified lines,
execute specified
directive(s).

If specified expression
is within specified
lines, execute specified
directive(s).

If specified expression
is n&t within specified
lines, execute specified
directive(s).

Define location to which
Line Editor can be
directed for subsequent
directive(s).

Type line number of
specified line in current
buffer.

Substitute directive (edit
mode)

If Range directive ^,
(advanced usage —
programming)

Destroy directive
(advanced usage —
auxiliary buffers)

If Empty directive <3 j
(advanced usage —
programming)

If Not Line directive
(advanced usage —
programming)

If Not Range directive
(advanced usage --
programming)

Search directive
(advanced usage —•
programming)

Search Not directive '"N
(advanced usage — ^J
programming)

Label directive
(advanced usage ~
programming)

Print Line Number
directive (advanced
usage — general)

5-20 CZ15-00

Table 5-1 (cont). Summary of Line Editor Directives and
Escape Sequences

Directive
Name/Escape
Sequence Function

Topic Under
Which Described

Accept subsequent direc-
tive(s) from specified
location in current buf-
fer or interactively.

If specified line is in
current buffer, execute
specified directive(s).

Annotate
files.

Line Editor

Go To directive (advanced
usage — programming)

Address Prefix directive
(advanced usage —
programming) -

Comment directive
(advanced usage — l

programming)

V

CREATING A SOURCE UNIT

To create a source unit, perform the following steps listed.
Input mode directives are described under "Input Mode Description
and Directives". Each of the directives referenced is described
under "Edit Mode Description and Directives".

1. Change the working directory to a user volume by specify-
ing the Change Working Directory (CWD) command (see the
Commands manual).

2. Load the Line Editor. (See "Loading the Line Editor"
earlier in this section.)

3. If there already are lines in the current buffer, clear
the buffer by specifying: 1,$D.

4. Enter the appropriate Input directive and text to be
included.

« \'
5. Make changes, if necessary, by entering the appropriate

Input and/or Edit directive(s).

6. Write the contents of the current buffer to a file by
using the Write directive.

7. Exit from the Line Editor by entering the Quit directive
(Optional).

\̂ 5-21 CZ15-00

CHANGING AN EXISTING SOURCE UNIT

To change an existing source unit, perform the following ^
steps. Input mode directives are described under "Input Mode
Description and Directives". Each of the directives referenced is
described under "Edit Mode Description and Directives" later in
this section.

. 1. Change the working directory to a user volume by specify-
ing the Change Working Directory (CWD) command (see the
Commands manual)0

2. Load the Line Editorf if it is not already loaded. (See
"Loading the Line Editor" earlier in this section.) c ,

3. If there already are lines in the current buffer, delete
unwanted lines by specifying the Delete directive. ,

4e Use the Read directive to read into the current buffer the
source unit to be edited. ,I t

5. Enter the appropriate Edit and/or Input directive(s). N '

6« Write the contents of the current buffer to the file from
which the lines were read or to a different file by using
the Write directive. ^ ...

7. Exit from the Line Editor by entering the Quit directive
(Optional)„

INPUT MODE DESCRIPTION AND DIRECTIVES

During input mode, you can create a source unit or add lines
to an existing source unit by entering through the directive input
device one or more input directives.

Input directives have the following capabilities:

• Add lines after a specified address (Append directive). -\

• Delete specified lines and insert other specified lines
(Change directive).

• Add lines before a specified address (Insert directive).

You can create a source unit by using the Append or Insert
directive. You can add lines to an existing source unit by using
any or all of the above directives.

5-22 CZ15-00

Each input directive must have one of the following formats:

FORMAT 1:

adr,

ktextl

adr, dirname

' f-
IP*["comment]

FORMAT 2s
er* radr, I ii) adr-

- '~ ijU> f-

[«}
dirname[text]!F*["comment]

If directives are being entered through a terminal, the directive
name can either be immediately followed by a carriage return, and
then text (i.e., the lines to be included in the source unit) or
directive name can be immediately followed by text, with addi-
tional lines of text (if any) added on subsequent lines. The text
can be any number of lines of ASCII characters. The maximum
number of characters per line is determined by the value specified
in the ~LINE_LEN n argument of the ED command. The last line of
text must be followed by the escape sequence IF* to terminate
input mode? otherwise, the next Line Editor directive is
interpreted as additional text. The escape sequence IF can be
entered at the end of the last line of text or in the first
character position of the next line. The next directive can begin
in the next character position or on the next line.

2.

NOTES

To enter a blank from the operator terminal,
as the first character on a line, precede it
with an 1C sequence.

The characters IF can be included as text by
preceding them with 1C; in this case, IF does
not designate the end of the text.

. D&

Input directives are described in detail on the following
pages. In the examples, numbers in parentheses are references to
line numbers and do not appear in memory or in text.

*When entering directives from a card reader, the punch for an
exclamation point is 12-8-7.

5-23 CZ15-00

- * - ' . - - r-':o ^Vh.- " s.i)f • .. ?:>»»,;£
APPEND >̂ -

. i

APPEND (A) --^n-;j»i 3- " '' t:,bj

Move one or more specified lines into the current buffer after
a specified addresSc If multiple lines are specified, they are
put into the buffer in the order in which they were entered* The
Append directive can be used to create a source unit or to add
lines to an existing source unit. * - . ±

After the Append directive is executed, the current line is
the last line appended. The appended line(s) are given line
numbers and subsequent lines, if any, are renumbered.

FORMAT 1: ..r -. £ • • - - * - - * , . , . - -

J / [adr]A ' :

' " " text

-'$. ' .:-. - - > ;- ,,, ,,
FORMAT 2:

" [adr]Atext!F

ARGUMENT?
i t-v. ;c

adr

Address of the line immediately after which the specified
line(s) will be inserted.

Default; Current line. If the buffer is empty, the
current line is line number 0. -''""S

-,/--'" NOTE

If you are creating a new source unit, there is no
need to specify ah address.

CIS
.r-8

5-24 CZ15-00

APPEND

Example lf Creating a New Source Unit:

In this example, the buffer is empty.

A
WWW
xxx <,-; r ^ ;
YYY
'1,7,7,
IF

This Append directive puts lines WWW, XXX, YYY, and ZZZ into
the current buffer. Since the buffer is empty, it is not nec-
essary to specify an address. The lines will be inserted, in
the order in which they were entered, starting at line 1. The
lines put into the buffer constitute a new source unit which
can then be edited and/or written to a file.

Example 2, Adding Lines to an Existing Source Unit:

/TTT/A
UUU
!F
3A
WWW
XXX
IF

These Append directives put line UUU into the buffer immedi-
ately after the first line that contains TTT, and lines WWW
and XXX into the buffer immediately after the third line.

The contents of the buffer are:

(1) TTT
(2) VW

After the first Append directive is executed, the buffer will
contain:

(1) TTT
(2) UUU (current line)
(3) VW

5-25 CZ15-00

APPEND

After the second Append directive is executed, the buffer will
contains

(1) TTT " '? • • ' -< - ~ 2Si a ' JC! a>fi? 71

(2) UUU
• (3) VW A

(4) WWW
(5) XXX (current line)

t-.- f * , " .- iiJfel&XS

3
&

WA

^
if e

• "»(--I. . i

^ . 3 "*

5-26 C215-00

CHANGE

CHANGE 1C) . 4 _
• V i»

Delete a single line or a series of lines in the current
buffer and then insert the text specified between the directive
name and the insert terminator !F.

After the Change directive is executed, the current line is
the last line of inserted text. The inserted line(s) are given
line numbers and subsequent lines, if any, are renumbered.

FORMAT Is
Js*

adr, Hn adr2~|

JM Ji-textL

XXX
YVY

adr^ CtextiF

xs ~, ; t- A
•>

AA* 11,

ARGUMENTS s

adr

Address of the first or only line to be deleted and
replaced. Default: Current line. 3

tT«fc»

i "-,!"*.»'adr

Address of the last line to be deleted and replaced.
i i r r Default: Only the line identified by adr is deleted and

changed.

NOTE (

If both adr, and adr2 are omitted, only the current
line is deleted and replaced.

5-27 CZ15-00

•-N

CHANGE

^ -N

In the following examples, the contents of the current buffer
are:

(1) AAA
(2) BBB
(3) CCC (current line)
(4) DDD
(i) EEE

* v,.-"t

Example Is " ' *' -- 1 -•• "'=>••> — - • - a

2C ' * -
XXX ,
YYY '} l^c ,t». .itefe.
IP !f '..'' !

This Change directive deletes the second line and replaces it
with lines XXX and YYY, Subsequent lines are renumbered.

After the Change directive is executed, the buffer will
contains

(1) AAA
(2) XXX
(3) YYY (current line) : } V I
(4) CCC
(5) DDD
(6) EEE

** • , •

Example 2;
• " - : • , *•;; r?^ 30 .->,. JL ,1 V'T

/BBB/,. 1C • • ' J •••-«•-•:'
XXX
YYY tbsi
Z 2 Z 1 F

This Change directive deletes the first line that contains BBB
(line 2) through the line immediately after the current line
(line 4) and replaces them with lines XXX, YYY, and ZZZ,
respectively.

After the Change directive is executed, the buffer will
contains

(1) AAA
(2) XXX
(3) YYY
(4) ZZZ (current line)
(5) EEE

5-28 CZ15-00

CHANGE

Example 3

.,5C . ,$C
XXX or XXX
IF IF

j %, J v*

Each of the Change directives above deletes the current line
through line 5 and replaces them with a single line containing
XXX.

After the change directive is executed, the buffer will
contain;

(1) AAA
(2) BBB
(3) XXX (current line) JRft?

"A

?b«

' * 10 c
'**'"''* •* • - i ' *'

\-/
•».- ci >; •. . *-^/3

-V-' 5-29 CZ15-00

INSERT

INSERT (I)

Insert one or more specified lines into the current buffer
before a specified addressc If multiple lines are specified,, they
are inserted in the order in which they were enteredc

The Insert directive can be used to create a source unit or to
add lines to an existing source unit.

After the Insert directive is executed, the current line is
the last line inserted. The inserted line(s) are given line
numbersr and subsequent lines, if any, are renumbered.

s*

FORMAT 1;
i. s X. i e -

[adrll
text #t*"- i ->*;-• - ..-..,

IF

FORMAT 2:

[adrlltextlF

ARGUMENT:

adr

Address of the line immediately before which the specified
line(s) will be inserted. Defaults Current line.

NOTE

If you are creating a new source unit, there is no
need to specify an address.

5-30 CZ15-00

T "-
INSERT

Example 1: . ,

In this example, the current buffer is empty.

I „,..,.
AAA J-! •'"- — -*
BBS
CCC
DDD
IF i j*•...., J<*5i* IT j«-.'

This Insert directive creates in the current buffer a new
source unit comprising lines AAA, BBB, CCC, and DDD, respec-
tively. The lines can then be edited and/or written to a
file.

In Examples 2, 3, and 4, the contents of the current buffer
ares

(1) AAA -ii
(2) BBB
(3) CCC
(4) DDD (current line)

Example 2j - - „ . „ si *Vi ••<,-& .,
w

-21
XXX
IF

This Insert directive designates that a line containing XXX be
inserted two lines before the current line.

After the Insert directive is executed, the current buffer
will contain:

(1) AAA
(2) XXX (current line)
(3) BBB
(4) CCC
(5) DDD

Example 3:

/AAA/I
H1C1FH
KKK
IF

^ 5-31 CZ15-00

INSERT
pj :

This Insert directive designates that lines H!FH and KKK be
inserted into the current buffer immediately before the first
line that contains AAA« Note that when IF is part of the
text? it is preceded by 1C? when IF delimits the last line of
text, it is not preceded by 1C.

After the Insert directive is executed, the buffer will
contains

(1) H!FH ^
(2) KKK (current line)
(3) AAA

- (4) BBB
(5) CCC

•v (6) DDD

Example 4s —̂'
" ' r 3 • T • • - > . - "> " *c . r V -

I '

XXX
IF A4' . <

This Insert directive designates that a line containing XXX be
inserted immediately before the current line.

After the Insert directive is executed, the current buffer
will contains

(1) AAA ixx
(2) BBB i
(3) CCC

• - (4) XXX (current line)
(5) DDD

^ ^

:̂ <z: -vi";-? tc A.

5°32 CZ15-00

EDIT MODE DESCRIPTION AND DIRECTIVES

During edit mode you can create a source unit or edit an
existing source unit.

Edit mode directives have the following capabilities:

• Delete specified line(s) from the current buffer (Delete
directive)

• Print on the user-out file specified line(s) in the current
buffer (Print directive)

• Terminate execution of the Line Editor (Quit directive)

• Read text from specified file into the current buffer (Read
directive)

• Substitute a designated string of characters in specified
line(s) with another specified string of characters
(Substitute directive)

• Write specified line(s) from the current buffer to speci-
fied file (Write directive).

NOTES

1. To edit an existing source unit, the Read
directive must be previously specified.

2. Until you are familiar with the Line Editor,
enter Print directives frequently so you can
determine the status of the lines being
edited.

3. To save the results of an edited or newly
created source unit, you must specify the
Write directive before you terminate execution
of the Line Editor.

Most edit mode directives have one of the following formats:

FORMAT 1:

dirname["comment]

FORMAT 2s

adr dirname["comment]

FORMAT 3:

adr2 dirname["comment][adl' »]
5-33 CZ15-00

Edit mode directives are described alphabetically on the fol-
lowing page§e In the examples, numbers in parentheses are refer-
ences to line numbers and do not appear in memory or in text.

'-' . .'•'"-"" ; f ": j 'j ."('. S 'Vi ;V ;'V' '.'

, ;/:> <*•;-:.? dK ' i i i S J d C U J &*i5.:^

• S'-T •--. •• " -i>-M ^ i~- /•;,'> : • + • ' - « . . '« .--, •* <i -v > ,-i . ._J-TI ,.:-/ -• - ' - -> -' - ' » ^ -i ••• - ^ .» * ^- - - '. w .., ~,f 3^. ; „„ ;,; t !T .J. £•

- . < ; . • . . ; v 1: \ l>ss'i i•:.<?• ••m;--- vo'il *

., j -:;ri * :.^f- ::.
' — • .- ;

•'. ? , '•' "i

- •••• . . •• ;s:-' i

.;:Uw 2i.: Ii,i:&-5 ? • ' • ; • • ^ vv IxJbli.-

& ' ^ ^ O =i^ .L i ST
•v ;-ov ,5.i>'..
;.; •;.•• v s 3 o •

•*•*•.;• s ^«^n •?.•?>: -^ -• .."*'.i j rc «•

. :*r<?i?«.-xo^' »»ff l |Bn?. t ;

: C 74?l«0r
U 5

5-34 CZ15-00

DELETE (D)

DELETE

sf.

Delete a single line or consecutive lines from the current
buffer.

After the Delete directive is executedr each subsequent line
in the buffer is renumbered, and the current line is the line that
immediately follows the last line deleted or the last line in the
buffer if the previous "last line" was deleted.

FORMAT: " ̂ '"

adr, H;i adr2l]o

. l>> JJ
•̂*" ARGUMENTS s ,

adr.

Address,of the first or only line to be deleted.
Default: Current line.

5.52 !*}
adr2

. £•

Address of the ias± line to be deleted. Default: Only
the line identified by adr is deleted.— •» v •« *

• " - . " . ; ; • " --v'̂ NOTE ' ,

If both adr, and adr2 are omitted, only the current
line is deleted.

In the following examples, the contents of the current buffer
*s are: ssr ,'Sj

(1) AAA ,£ j
(2) BBB (current line)
(3) CCC a
(4) DDD

... (5) EEE r F

: **: : rr^-rsuo;

^̂ 5-35 CZ15-00

DELETE

Example Is
,il

1,3D

This Delete directive deletes lines 1 through 3. After this
Delete directive is executed, the current buffer will contain:

(1) ODD (current line)
(2) EEE

- ~ —'-" jy • i » j ; _ > _ ca. i » 17 j .j ~ < • i ., „ [

Example 2%
:']

/CCC/D f, ,

In this Delete directive, adr is CCC and adr is not speci-
fied, so the only line that will be deleted is the first line
that contains CCC. After this Delete directive is executed,
the current buffer will contains

(1) AAA
(2) BBS ' • o
(3) DDD (current line)
(4) EEE

v ;&fe
Example 3s

.,3D

This Delete directive deletes the current line through line
3. After this Delete directive is executed, the current
buffer will contains *^ <-"*

(1) AAA
(2) DDD (current line) .--. - - ,:I
(3) EEE 37!! \̂

Example 4: A4/- \ ~ v

' » , - % , 4 _ O

D

This Delete directive does not include any addresses so only
the current line, line number 2, is deleted. After this
directive is executed, the current buffer will contains

(1) AAA
(2) CCC (current line)
(3) DDD
(4) EEE

5-36 CZ15-00

PRINT

PRINT (P)

Print a single line or consecutive lines in the current
buffer. You can specify the address(es) of the line(s) to be
printed, or you can request a printout of the first line that
contains a specified expression. The printout is issued to the
user-out file; i.e., the file designated in the -OUT out_path
argument of the Enter Batch Request (EBR) or Enter Group Request
(EGR) command, unless the file was reassigned in the File Out (FO)
command. If the printout occurs on the operator terminal, each
line of text is preceded by the group identification characters.

After the Print directive is executed, the current line is the
last (or only) line printed.

FORMAT Is

Format including directive name P:

fadr, Hn adr2~|lp

L № JJ
ARGUMENTS: - ?n

 4
-<j

> *

adr

Address of the first or only line to be printed. The Line
Editor begins its search at the second line in the current
buffer. y,
Default: Current line.

adr
o «

•\^.- Address of the last line to be printed. Default: Only
the line identified by adr, is printed.

t+

NOTE

If both adr and adr are omitted and P is speci-
fied, only the current line is printed.

FORMAT 2:

Format excluding'directive name P:

adriin
,̂ 5-37 CZ15-00

PRINT

adr2

ares

ARGUMENTS:
*i>

adr,

If adr2 is not specified, adr, designates the address of
" the only line to be printed.

fibX} ;

Address of last line to be printed.

In the following examples, the contents of the current buffer

* * "** " *

(1) AAABBB
(2) CCGDDD (current line)
(3) EEEFFF : I \».*™
(4) GGGHHH

'v * SV -„ ;b

e 1:

1,$P •-»!

This Print directive causes a printout of each line in the
current buffer.

the.
AAABBB
CCCDDD • • • :-
EEEFFF - ' - ' . - • • .
GGGHHH

After this directive is executed, the current line is line
number 4.

Example 2: /̂

P

This Print directive causes a printout of only the current
line.

i -- *. • „ ™*

CCCDDD

After this directive is executed? the current line still is
line number 2.

5-38 CZ15-00

f PRINT

V^

Example 3: - "• --~. f-'' -. V

4P

This Print directive causes a printout of line number 4.

GGGHHH

After this directive is executed, the current line is line
number 4.

Example 4:

. ,4P

y y This Print directive causes a printout of the current line
(line number 2) through line number 4:

CCCDDD
EEEFFF
GGGHHH

After this directive is executed, the current line is line
number 4»

Example 5s

/AAA/

This Print directive causes a printout of the first line that
contains AAA.

AAABBB

\t>^/ After this directive is executed, the current line is line
number 1.

Example 6:

3D/AAA/

This example illustrates a directive line that contains both a
Delete directive and a Print directive in which only an
expression is designated.

This directive line deletes line number 3 and causes a print-
out of the first line that contains AAA. After the directives
are executed, the current buffer will contain:

(1) AAABBB
(2) CCCDDD
(3} GGGHHH

--̂ ^ 5-39 CZ15-00

PRINT

^̂

There will be a printout of line number 1, and that line will
be the current line.

• $«,:r frill ~ x n T

3 t =>

, ",t?3 £ ~ 1 , J 7

-tt -f-! ^ ^ -> I ft

'* 2

•^A

:* t v>

: 3 * .Of t» sx^

5-40 CZ15-00

QUIT

QUIT (Q OR 1C)

Exit from the Line Editor. Quit must be specified at the end
of the editing session. This directive must be the last or only
directive 9n a line. If the directive input device is a terminal,
the Quit directive must be immediately followed by a carriage
return.

Quit is executed conditionally or unconditionally, depending
on which Quit format is specified. In a conditional Quit request
(Format 1), if a buffer has a pathname associated with it via a
Read or Write directive and the contents of the buffer have been
modified but not written to a file before the Quit directive is
entered, a warning message is issued and Quit is not executed.
After the message, any Line Editor directive(s), including Write,
may be entered. If Write is not specified and Quit is reentered,
the Quit directive is executed and changes specified in previous
Line Editor directives are not saved. In an unconditional Quit
request (Format 2), modified buffers are not checked before Quit
is executed.

FORMAT 1:
ri^sa

FORMAT 2:

!Q

Example:

.?.'.*• 2

AAABBB
CCCDDD
EEEFFF

IF

2D • r •

W FIRST

Q

Append directive, which puts specified lines
into current buffer.

Lines that will be put into current buffer.

Designate the end of the insertion.

Delete the second line of text (e.g., CCCDDD).

Write all lines in buffer to file named FIRST,

Return control from the Line Editor to the
Command Processor.

5-41 CZ15-00

N̂

READ

READ (R)

Read text from a specified file into the current buffer. The
Read directive must be the only or last directive on a line.
After the Read directive is executed, the current line is the last
line read from the file.

*• v~

FORMATS

-- ' - [adr]R[path]

- ARGUMENTS:

adr

Address of a line in the current buffer,- the contents of
- - the specified file will be appended after this line.

Default: Last line in the buffer; if the buffer is empty,
the file is appended starting at the first line in the
buffer. - ;- < i, . • &

path

Pathname of the ASCII file to be read into the current
bufferc (Methods of specifying pathnames are described in
Section 2.) The pathname may be preceded by any number of
blanks. Defaults Pathname specified in the latest Read
or Write directive associated with the current buffer. To
determine which pathname was specified last, specify the
Buffer Status directive, which is described under
"Advanced Usage of the Line Editor™ later in this
section. If the path argument is not specified and a
pathname was not previously specified, an error message is
issued.

\

NOTE \J

!CDR or any other device name beginning with an
exclamation point (I) may cause errors. The
exclamation point is a Line Editor escape
character. A read of ICDRxx (R ICDRxx) will try
to read file name DRxx because !C is a conceal
flag. Use >SPD> in place of the exclamation point
(e.g., R >SPD>CDRxx), or conceal a C (e.g., R
1ICCDRxx).

5-42 CZ15-00

READ

^

* r-tlyc. "^S^ii:" ^j}-?)o ? 2 ,-j*'? PC : -srfT
Example 1;

R START j f . f J T t

This Read directive reads into the current buffer the contents
of a file whose simple pathname is START. Since an address is
not specified, the lines are read into the buffer after the
last line that currently is in the buffer.

The contents of START are? *

»' . »^| A^A - - " • •-; - c. •* js * -• 1 *•' —v-^j:b o&a>: *
(2) BBB
(3) CCC

^^ If the buffer is empty, after the Read directive is executed,
the current buffer will contain:

(1) AAA ,„ r ,t

(2) BBB ' " yj, .v
(3) CCC (current line)

3 ' - •
If the buffer already contains:

(1) XXX .
(2) YYY
(3) ZZZ

After the Read directive is executed, the current buffer will
contain:

^̂ ty

\ J°) XXX " - ri i L -, ^t **f • ^ ' *J (

(2) YYY
(3) ZZZ

W (4) AAA " 4,
(5) BBB

. (6) CCC (current line) ..J,
/ J5*̂

Example 2: : . i(. ..^_ .

/CCC/R NEW

This Read directive designates that the contents of the file
whose simple pathname is NEW be read into the current buffer
after the first line in the current buffer that contains CCC.

J • J " " . - " • v! V

V i, v^ •» u>

5-43 CZ15-00

READ

The contents of the current buffer are:

(1) AAA
(2) BBB (current line)
(3) CCC
(4) CCC

The contents of NEW are:

(1) XXX
(2) ZZZ

After the Read directive is executed, the current buffer will
contains

(1) AAA
(2) BBB
(3) CCC
(4} XXX
(5) ZZZ (current line) *** '
(6) CCC I*-** l l >

' i - : . • . - - , I ' "

Example 3;

This example illustrates the Read directive used in conjunc-
tion with Append and Write directives. The current buffer is
empty. '* _ v

 r

A Puts subsequent lines into the current buffer.
A A A - . . . • > .
BBB
CCC
!F Designates the end of the insert.
W NOW Writes the contents of the current buffer to the '~x

file whose simple pathname is NOW. J
R Reads into the current buffer, after the last line

in the buffer, the contents of NOW; NOW is the
pathname specified in the last Write directive.

After the Read directive is executed, the current buffer will
contains

(1) AAA
"* (2) BBB '

(3) CCC
(4) AAA ' -- —
(5) BBB
(6) CCC (current line)

5-44 CZ15-00

^ SUBSTITUTE

SUBSTITUTE fS OR IS)

"" * " Replace each occurrence of a specified string of characters in
a single line or in a sequence of lines with another specified
string of characters. , . - , . .

After this directive is executed, the current line is the last
line located by the Line Editor.

FORMAT:
o r : - : y

fadr, f j;) adr 2T]s/regexp/string/

or

[adr, ["<;)

[№

m »• " X I I ' • w ^ w ••> ̂ f w w •» ~ ~ - -^ f

I JJ -H5"" •'

{adr! fin adr2"j| JS/regexp/str ing/ (See Note 3)*[LVf JJ ... «....,«..,
ARGUMENTS:

adr

Address of the first line to be searched for the specified
string of characters. The search begins at the second
line in the current buffer. Default: Current line.

adr "•- ' -

Address of the last line to be searched for the specified
string of characters. Default: adr, .

•- '" - ' NOTE

If both adr, and adr
2
 are omitted/ only the current

line is searched.

/ :L s

(Delimiter) Can be any character that is not in regexp or
string. However, the same delimiter must be used in each
of the three locations where a delimiter is required.

•i i •*•* r~

5-45 C215-00

SUBSTITUTE

regexp

String of characters for which the Line Editor is
searching; each occurrence of this character string within
the specified addresses will be replaced with the
character(s) specified in the argument "string".

Default: The last regexp specified. This can be
determined by entering the ZREGEXP directive, which is
described under "Line Editor Debugging Directives".

string

String of characters that will replace each occurrence of
regexp.

NOTES

1. If string contains the character "&" in any
position, each occurrence of regexp to be
replaced will be replaced with regexp included
in string, in place of "&"«, For example, if
regexp is "in" and string is "&to", each „,
occurrence of "in" becomes "into"., To ignore
the special meaning of "&'", precede it with

* 1C. r ' ° -., , - *o

2. The occurrence of a line feed in the string
expression determines the new line characters,
i.e., point in the resulting line at which the

- line is to be split into two lines.

3. If the directive name IS is used (as illus-
trated in the second directive format) and the
specified substitution fails, no error message
is issued and execution of the command file
(if any) continues.

Example 1:

S/ABGDEF/ABC linefeed DEF/ *<• 16~

This Substitute directive searches the current line and (1)
replaces each occurrence of ABGDEF with ABCDEF and (2) causes
the character string to be split between two lines. ABC will
be on the first line, and DEF will be on the second line.

5-46 CZ15-00

SUBSTITUTE

—̂./

- : •• =ir'^ .b~3r.,: --.•s £; ov.1' :_=>;•. cf> $r
Example 2:

The contents of the current buffer are: }

(1) E
(2) NTE >t - 1- -MOTU-V •
(3) R
(4) YOUR t" *_

l,3S/linefeed key// >'-*•.•

After this Substitute directive is entered, the current buffer
will contain:

- 20 =>or,:* , ~j;.oc. «,'>*= onj ,- ;,,

(1) ENTERYOUR

In the following examples, the contents of the current buffer
are?

(1) AAACCC
(2) BBBAAA (current line)
(3) CCCBBB '-u.:'< A
(4) DDDAAA

: ; •*
Example 3;

/*;•
2,4S/AAA/XXX/

This Substitute directive searches lines 2 through 4 and
replaces each occurrence of AAA with XXX.

After this directive is executed, the current buffer will
contain:

(1) AAACCC
(2) BBBXXX
(3) CCCBBB ' '7* "'u'- *
(4) DDDXXX (current line) /• ;*•

Example 4:

. f4S-CCC-UUU-

This Subsitute directive searches the current line (line 2)
through line number 4 and replaces each occurrence of CCC with
UUU.

5-47 CZ15-00

SUBSTITUTE

After this directive is executed, the current buffer will
contains •; *

(1) AAACCC - ,^i -j3.-ij.w- , ̂ r »? 9 -
(2) BBBAAA
(3) UUUBBB
(4) DDDAAA (current line)

Example 5s •{.,-,,

-1 ,/DDD/S//&J JJ/ -,- » - •• ?

This Substitute directive searches one line before the current
line (line 1) through the first line that contains DDD (line
4) and replaces each occurrence of DDD with DDDJJJ.

After this directive is executed, the current buffer will x_
contain: • . _ , - , - . - £ ,. _ -. 1 ?

(1) AAACCC
(2) BBBAAA
(3) CCCBBB -M.
(4) DDDJJJAAA (current line)

i

Example 6;

/BBB/S//XXX/

This Substitute directive searches the first line after the
current line through the current line (line 2) and changes the
first occurrence of BBB to XXX.

After this directive is executed, the current buffer will
contain:

(1) AAACCC
(2) BBBAAA
(3) CCCXXX (current line)
(4) DDDAAA , „ , 3-<• , j.

? ' "I t
 J,.-

* - *"»**• *"i•* -'„ *• i

=* &̂ ,r
-' " - , „ " " » ' - . ' - . -ctfi- '» ^« » ,

x-y

5-48 CZ15-00
^ i-r

^ WRITE

WRITE (Wl M

Write a specified line or a series of lines in the current
buffer to a specified file. If the file does not already exist, a
new file is created with the specified file name. If the named
file does exist and currently contains other data, the line(s)
written to the file via the Write directive replace the existing
contents.

To save the results of previously specified Line Editor
directives, you must specify the Write directive before you
terminate execution of the Line Editor (i.e., Write must be
specified before Quit). ĵ,, ^

\^^ The Write directive must be the last directive on a line.
After the Write directive is executed, the specified line(s)
remain in the current buffer; a copy of them is written to the
specified file.

FORMAT:
„ «j

[adr, H n a d r j l W[pa th][irf •iQZ

ARGUMENTS: ^ ~ < ^ . , , ,™
" « , ' " " • '. J V*" J

adr,

Address of the first line to be written to a specified
file., Defaults First line in the current buffer.

adr2

Address of the last line to be written to a specified
file. Defaults Last line in the current buffer.

NOTE t: .

If both adri and adr2 are omitted, all lines in the
current buffer are written to the specified file.

path

Pathname of the file to which the specified line(s) will
be written. (Methods of specifying pathnames are
described in Section 2.) The pathname may be preceded by
any number of spaces. Default: Pathname specified in the
latest Read or Write directive associated with the current
buffer. If a pathname was not previously specified, an
error message is issued.

5-49 CZ15-00

WRITE

Example 1:

W IDENT

This Write directive writes all lines in the current buffer to
a file whose simple pathname is IDENT.

^ '. -i.;* -dm
Example 2s

This example illustrates use of a Write directive in a sample
Line Editor session. In this example, there is a file named
EXIST that contains the following lines:

• • r *•-

(1) AAA ' - " ^ * ' '
(2) BBB
(3) CCC
(4) DDD ' '

I

R EXIST ' ' "- : vcr< ' * : i

Read into the current buffer the contents of the file
named EXIST. The current buffer will-contain:

(1) AAA
(2) BBB ;' x v « i
(3) CCC
(4) DDD (current line) : : ".r̂ nq/

1, $S/AAA/XXX/ -̂>

Search each line in the current buffer and change each
occurrence of AAA to XXX. The buffer will contain:

(1) XXX
(2) BBB ' ,
(3) CCC /̂

" ' (4) DDD (current line)

1,3W

Write lines 1 through 3 to the file specified in the
last Read or Write directive; i.e., EXIST. EXIST will
contain:

.1 y sq
(1) XXX
(2) BBB - - . . . - . - . . - . , . . . („

(3) CCC

Terminate execution of the Line Editor. ;

3
5-50 CZ15-00

^

ADVANCED FUNCTIONS OF THE LINE EDITOR
V_

The directives described on the previous pages permit you to
create a source unit and perform basic editing. The following
subsections describe Line Editor directives that perform general
advanced functions, permit usage of auxiliary buffers, perform
debugging, and perform programming functions. Within each subsec-
tion the directives are summarized and then described in detail
alphabetically by full directive name.

QENERAL ADVANCED LINE EDITOR DIRECTIVES

The general advanced Line Editor directives have the following
capabilities:

• Cause another specified directive to act on only those
lines that do not contain a specified character string
(Exclude directive)

• Permit execution of a command instead of Line Editor
\— directives without exiting from the Line Editor (Execute

directive)

• Cause another specified directive to act on only those
lines that contain a specified character string (Global
directive)

0 Send line feed to user-out file and error-out file (Line
Feed directive)

i

« Convert the specified expression to lowercase (Lowercase
directive)

• Make a different line the current line (New Current Line
directive)

< - "• r vx .£> fr -fl ir% it f>. ,

• Print the line number of a specified line in the current
buffer (Print Line Number directive)

^
• Print the line number and contents of specified line(s) in

the current buffer (Print With Line Number directive)

* Convert the specified expression to uppercase (Uppercase
directive). - ,, _,_.

i: --j f_-r jo \v - -.
i

— --*- -q i.'t
'• " >* o* 2&dt

«• -- (?" I* -j^ -i
{t y £•» ̂ »

5-51 CZ15-00

EXCLUDE •AK":t" "iy~

EXCLUDE f V)

Exclude specified elements. The Exclude directive can be used
in conjunction with Delete, Print, Print Line Number, and Print
With Line Number directives so that the specified directive acts
on only those lines that do not contain a specified character
string*

After the Exclude directive is executed, the current line is
the last line searched by the Line Editor; i.e., the line
specified in adr

T
 (see below).

FORMAT;

tadr, fin adrj")№ J
ARGUMENTS:

Vx/regexp/

adr

Address of the first line to be searched. Default: First
line in the current buffer.,

adr
2

Address of the last line to be searched. Default: Last
line in the current buffer.

- ... NOTE - 1 »

If both adr, and adr
2
 are omitted, all lines in the

buffer are searched. *

^Directive name with which the Exclude directive is being
isued; must be one of the following:

D - VD deletes line(s) that do not contain regexp.

P - VP prints the contents of line(s) that do not contain
regexp.

!P - VIP prints the line number(s) and contents of line(s)
that do not contain regexp.

- - V= prints the line number(s) of line(s) that do not
contain regexp.

5-52 CZ15-00

^

EXCLUDE

V^

< £ >

- - „ . - , " - fr- • _
.

-t-"f'- (Delimiter) Can be any character that does not occur in
regexp. The same delimiter must be used before and after
regexp.

regexp

- "' String of characters for which the Line Editor will
-°* search; only lines that do not contain regexp will be

acted upon by the Line Editor during execution of the
directive name specified in argument x.

In the following examples, the contents of the current buffer
are:

^ (1) JJJKKK (current line)
(2) LLLMMM
(3) NNNPPP - -•
(4) RRRJJJ

Example 1:
h-

1,3V!P/JJJ/

This Exclude Print with line number directive causes the Line
Editor to search lines 1 through 3 and to print the line
number and contents of each line that does not contain JJJ.

Typeouts
- - ' - '- ' - .9?-- ;•"., :t ' ' V; i t _•

2 LLLMMM - - ' . * - •- -M ' ;: %.. » , :.c-
3 NNNPPP

\^s Current lines 3

Example 2;

VD*JJJ*

This Exclude Delete directive deletes each line that does not
contain JJJ; since no addresses are specified, each line in
the current buffer is searched.

After this directive is executed, the current buffer will
contain:

(1) JJJKKK
(2) RRRJJJ (current line)

5-53 CZ15-00

^

EXECUTE
x,

EXECUTE (E)

Cause execution processing* The Execute directive permits you
to execute a command instead of Line Editor directives without
exiting from the Line Editor; i.e., you can enter any command and
then continue to use the Line Editor. For example, the Execute
directive can be used to designate a printer as the Line Editor
output file. Otherwise, if you want a printout of Line Editor
output, the printout is issued to the terminal, which is the
original user-out fiTe. If the user-out file is a line printer
and a Quit directive is entered to exit from the Line Editor, the
user-out file remains set to the printer.

The Execute directive must be the last directive on a line.

The current line is not affected by Execute directives.

FORMATS : • • -. -j

E command

ARGUMENTS
r i .-U'i-aX?

command
- * <*':>>>

Any command (see the Commands manual).

Example: - -
'** *' « * . -..̂ & ., * v-

E FO >SPD>LPTOO

This Execute directive includes a File Out (FO) command, which
sets the user-out file to the line printer whose pathname is
>SPD>LPTOO.

•-' ^

' 10-x2

5-54 CZ15-00

^

w GLOBAL

GLOBAL (G)

Act on only those lines that contain a specified character
string and can be used in conjunction with Delete, Print, Print
Line Number, and Print With Line Number directives.

After the Global directive is executed, the current line is
the last line searched by the Line Editor.

FORMAT:

adr'[{:}•*}Gx/regexp/ - «* - .r ~f ic j- $ti ri~
• o

ARGUMENTS:

adr,

Address of the first line to be searched,
line in the current buffer. ,,

Default: First

adr2 «-: ;3 . f

Default:

>.><«£•

LastAddress of the last line to be searched,
line in the current buffer.

NOTE

If both adr, and adr2 are omitted, all lines in
the current buffer are searched.

^-i j IPS * *t, ;

Directive name with which the Global is being used; must
be one of the following:

D - Delete all line(s) in the specified range containing
regexp.

P - Print the contents of line(s) containing regexp.

!P - Print the line number(s) and contents of line(s)
containing regexp (see "Print With Line Number
Directive" later in this section).

= - Print the line number(s) of line(s) containing
regexp (see "Print Line Number Directive" later in
this section).

5-55 CZ15-00

\̂
GLOBAL

/

(Delimiter) Can "be any character that does not occur in
regexp., The same delimiter must be used before and after
regexp, -.7 ? ->j

4 f

regexp

String of characters for which the Line Editor will
search; only lines that contain regexp will be acted upon
by the directive name specified in argument x.

In the following examples, the contents of the current buffer
a r e; • , ; ' . . « ! .

(1) JJJKKK
(2) LLLMMM
(3) NNNPPP
(4) RRRJJJ

v ' * " " * * . ' , " " " • *

Example Is - : > . - . - • • .,'..; .„

1,3G1P/JJJ/

This Global Print With Line Number directive causes the Line
Editor to search lines 1 through 3 and print the line number
and con- tents of each line that contains JJJ.

Typeout;

1 JJJKKK

Current lines 3

Example 2s ~ - • - • . * -»-,«. iiry,

GD*JJJ*

This Global Delete directive deletes each line that contains
JJJ; since no addresses are specified, all lines in the buffer
are searched.

After this directive is executed, the current buffer will
contain:

i .:* -< ' "", JO'-- u1*
(1) LLLMMM

" (2) NNNPPP (current line) * • ' --, 1 • - t

5-56 CZ15-00

^

^
LINE FEED

LINE FEED (L OR !L)

Send line feeds to the user-out file and the error-out file,
respectively. After the Line Feed directive is executed, the
current line is unchanged. Default: none (addresses are
ignored).

FORMAT:

L or !L
< i $"•'!

^ •-*• a $ gp , • \ ft i j "• H',w 1
<?

,?bx.

A
v*»5W J, j >'",J

.36&

9^-J 1v S.-'SjfcfcA

~ ' ; v i o •$ s a *; v - • • • - « - - -
'4 '1 -1 *v « T» •* ,T v .

w
t '• ~ _f r'" -t if. ~ ' ' ^ .• f .•» . -' "!

T»'_ «. " ' Cj." ;
» . O *i "

-r<3

?h§

5-57 CZ15-00

>

LOWERCASE

L,Q.WFRCASE (V)

Convert all occurrences of a specified expression within
specified addresses from uppercase to lowercase. After the
Lowercase directive is executed? the current line is the last line
read*

FORMATS

U/regexp/[adr'[{;}adcj]
ARGUMENTS:

adr,

Address of the first line to be searched. Default:
Current line*

adr2

Address of the last line to be searched. Default: adr, .

regexp

String of characters for which the Line Editor searches.
Only uppercase letters (A through Z) are converted; others
are not changed.

Example:

U/ADR/

This Lowercase directive searches the current line and changes
each occurrence of ADR to adr. If the current line is:

ADR FIRST

after the Lowercase directive is executed, the line contains:

adr FIRST

5-58 CZ15-00

NEW CURRENT LINE

NEW CURRENT LINE (N)

Cause the specified line to become the new current line. The
contents of the new current line are not printed after the
directive is executed.

FORMAT: :"": - "' '
- - *• y. »,a vv TH

adrN -*-' ^ «> *" ****-**

ARGUMENT: ' - "•"* "* -'"'"' " * * • -; '•' i - ̂ -' - - ̂
.c-*;7-'* c.v, ;->«i,, .. .A< -,5.c,f*v

adr

Address of the line that is to be the new current line.

^ Example:

/CCC/N
abs

If the following condition exists prior to execution of the N
directive:

AAA (current line) -?-'•-.'. ?---i - .-
BBB

' CCC ' - " '"""'"•• •»"f" ** ?•-•-•* - :* *«5 ai,
DDD * '? "5' *:

The situation will be as follows after the N directive is exe-
cuted,

AAA
BBB
CCC (current line)

\^ DDD

". „ f "is>': " - ^ '=' c ;.
• .. - r< "• * ̂

; ,fje, rn r 3*

5-59 CZ15-00

PRINT LINE NUMBER ->

PRINT LINE NUMBER f-/!P)

Print out the line number of a specified line in the current
bUffer» - --* c. -_~ ! -« -, - . -,,.,! f -, - -,^ -» * , i i . J - . . , - * v . x H * } - - ' p ^^ }

The printout.is issued to the user-out file, i0e., the file,
designated in the -GUT out_path argument of the Enter Batch
Request (EBR) or Enter Group Request (EGR) command, unless that
file was reassigned«

After this directive is executed, the current line is the line
whose line number was typed.

FORMAT?
, * ~* *̂ -, ~ "" * ", -v •". ' ^

[add- ' " "

ARGUMENT; '* ' '*

adr

Address of the line whose line number is to be typed.

Defaults Current line*

In the following examples the contents of the current buffer
ares

(1) AAABBB (current line) ., „ . +
(2) CCCDDD
(3) CCCEEE

Example 1; .-:,' ',

/ccc/^ ~' "" "'"'''"" ',,,; ^J
This Print Line Number directive causes a printout of the line
number of the first line that contains CCC.

Printout;

2

Current lines 2

5-60 CZ15-00

PRINT LINE NUMBER

^

Example 2:

This Print Line Number directive causes a printout of the line
number of the current line.

% - 3y&3 ji, »~j , -
Printout: . civj^:i^ t

1 ' " • * . ; > . • > •„> • •'•-
- - •- -t jsdci^ j,, „ ^ , _ , (-

Current line: 1

, j.ous ;i . - ,.
* * • !

'5*5 1 3f!2 ^A

•C . 3-q-;- •*-* ^

/.tt,

» - - ^ i
Ko. -,- a

-J > x - • -' iio? * •* - •
. d i G

«,

^ x

5-61 CZ15-00

N

mim WITH LINE NUMBER
N

PRINT WITH LINE NUMBER (IP)

Print out the line .number â nd contents of a single line or
consecutive lines in the current buffer. The printout is issued
to the user-out file? i.e*? the file designated in the -OUT out
path argument of the Enter Batch Request or Enter Group Request
command, unless the file was reassigned. If the printout occurs
on a terminal, each line of text is preceded by the group
identification characters.

After this directive is executed, the current line is the last
line whose line number and contents were typed.

FORMAT: "-3^'

Fadr, fin adr2~| IP

ARGUMENTS s

adr,

Address of the first line whose line number and contents
are to be typed. Default: Current line.

adr2

Address of the last line whose line number and contents
are to be typed. Defaults Address specified for adr, .

NOTE

If both adr, and adr2 are omitted, there is a print-
out of the line number and contents of the current
line* -"-"̂

In the following examples, the contents of the current buffer
ares

(1) AAA
(2) BBB (current line)
(3) CCC
(4) DDD

5-62 C215-00

^

PRINT WITH LINE NUMBER

)1
Example 1:

1,$!P

This Print With Line Number directive causes a printout of the
line number and contents of each line in the current buffer.

Printout:

1 AAA
2 BBB . ,
3 CCC
4 DDD

Current line: 4 i t

Example 2s - •- *-. L A JR :•»
i

!P

This Print With Line Number directive causes a printout of the
line number and contents of only the current line.

Printout: i*»3n\

2 BBB

Current line: 2

* <4<E£.AC'

' ' - ^ *> " " * - * « c. $ i < ^ f £• tf 5- . ' fJ-^S'^ j '?" -•

\̂ . : - - '•"-,- i- c—, v, 9^

3r- j i ; ' Tbj>

' - • c * y 1 " ~ "•»'*." <• - -' - ^c_ _ 7 3" 7 j $.'

' fc l j _ "Ur

f > " "
5-63 CZ15-00

UPPERCASE

UPPERCASE (I D)

Convert all occurrences of a specified expression within
specified addresses from lowercase to uppercase.

After the Uppercase directive is executed/ the current line is
the last line read.

FORMAT? :-;..c+nj3-.

adr, H;i adr2l
|W J

!U/regexp/
t'ur-.

*as •"•
vD c

ARGUMENTS: * -/ c •

adr^ ^ ' •* r «•" - - -

Address of the first line to be searched. Default;
Current line*

'T _

adr2
« i- r n •* t - s-

Address of the last line to be searched. Default: adr, e

regexp

String of characters for which the Line Editor searches.
Only lowercase letters (a through z) are -converted; others
are not changed. - .«

Example:

iU/adr/

This Uppercase directive searches the current line and change ̂
each occurrence of adr to ADR. If the current line is: *̂/

adr first

after the Uppercase directive is executed, the line contains:

ADR first

5-64 CZ15-00

, - . COMMENT

. •* ,*iro€ ?'os? ir >"c -
COMMENT (") , ~-«.-r '_^g^ »a

Annotate Line Editor command files. The text after the
Comment directive appears as program output but is ignored by the
Line Editor.

FORMAT?

"comment " ,

\^

. * •* 3C
J ~ , . *- jt s

^ • a - - ' o ' - * , f ~ ; - 25:*^^ '; 0

* » . , - . -q*j, . . J..,'l a"1;;
" 9 ~ . ' ^ v,i r* " 5 Tr.' ^r>jj -»j.-7r. !.c-

-' I *" v « «J" *

{• ' , - , ̂ l ^ n

> . t- „ * • 1 *

X k . - S C •<•/- ~

^ J;Ja--'.o

t ' j> a .

." - i v--j ? jr j «.>*, ?
, ,' ̂ -,., , **.^t , -*.-t it.

i» ' ~ ' * c ' * - - / r ' - ? S ' c < J

-».'j:f^- :,-o

, t , - - - i» - ._ ^ ' r^ Id1* -,C -

•=> .*.-.**.: it

5-65 CZ15-00

AUXILIARY BUFFER DIRECTIVES AND ESCAPE SEQUENCES
!

In the previous pages of this section, it was assumed that
there is only a single buffer, the current buffer. The current
buffer must be used, but one or more additional buffers, called
auxiliary buffers, also can be used. There are 64 auxiliary
buffers available for use.

The most common use of auxiliary buffers is for moving or
copying text from one part of a file to another0

To make an auxiliary buffer available and to put lines into
it, specify the Move, Move-Append, Copy, and/or Copy-Append direc-
tives, which are described in the following paragraphs.

Lines cannot be written directly from an auxiliary buffer to a
file; the auxiliary buffer must be designated in the Change Buffer
directive as the current buffer or the lines must be read back to
the current buffer via the escape sequence IB, which is described
under "Change Origin of Text During Input Mode", later in this
section. Lines can be written from the current buffer to a file
via the Write directive (see "Write Directive" earlier in this
section).

You can determine the status of each buffer currently in use
by specifying the Buffer Status directive,,

Auxiliary buffer directives have the following functions:

t> Cause Line Editor to accept a line from terminal (Accept
Single Line From a Terminal directive)

• Determine status of each buffer in use (Buffer Status
directive)

« Make specified auxiliary buffer the current buffer (Change
Buffer directive)

• Cause Line Editor to accept subsequent text from a
specified auxiliary buffer

- During edit mode (Change Origin of Text During Edit Mode
directive)

- During input mode (Change Origin of Text During Input
Mode directive)

• Copy line(s) in current buffer to specified auxiliary
buffer; lines in current buffer are not deleted

- Delete existing lines in auxiliary buffer (Copy
directive)

- Do not delete lines in auxiliary buffer (Copy-Append
directive)

5-66 CZ15-00

• Destroy a buffer (i.e., release its file space) (Destroy
N—' directive)

• Move line(s) from current buffer to specified auxiliary
buffer; lines in current buffer are deleted

- Lines overlay existing lines, if any, in auxiliary buffer
(Move directive)

- Lines appended to existing lines, if any, in auxiliary
buffer (Move-Append directive).

, ̂ 11".

—̂/ - 'A'/ *

*W

« % -

•" ;-. . t - • v - . '-d

*rj

-3 , V

5-67 CZ1S-00

ACCEPT SINGLE LINE ' ^̂ *

ACCEPT SINGLE LINE FROM A TERMINAL f!R) ' " • '- "' - - - —

Permit a single line of directives or text to be entered
through a terminal. 1R normally is used when Line Editor
directives are being executed from a buffer. When the Line Editor
encounters !R, the entire escape sequence is removed from the
input stream and replaced with the line read from the user-in
file.

FORMAT?

T/ENTER YOUR NAME/
AJRIF

These directives are in the buffer that is being executed.

There will be the following message on the terminal?

ENTER YOUR NAME

You will respond with your name? ice., Jane Jones.

Following the current line in the current buffer will be:

Jane Jones

5-68 CZ15-00

BUFFER STATUS

BUFFER STATUS (X)

Cause a message of the status of each buffer currently in
use. The current line is not changed.

FORMAT: - - - >^^

x :-=•> r ,

DESCRIPTION:

The following information is designated:

e Name of each buffer. The original current buffer is always
named 0.

* s> t ' 1J

« Number of lines in each buffer.

• Indicator as to which buffer is the current buffer. The
name of the current buffer is preceded by ->.

If a buffer has been read into and/or written from, the mes-
sage includes the pathname specified in the last read or write.

If the contents of the current buffer have been modified
(i.e.r in the message, MOD is designated before its name), all of
the following conditions must exist:

• Lines from an existing file have been read into the current
buffer via a Read directive or the contents of the current
buffer have been written to a file.

• The contents of the buffer were modified via one or more
Line Editor directives.

Each message has the following format:

number of lines ->[MOD] (buffer-name) [pathname]
[number of lines [MOD] (buffer-name) [pathname]]

„ ,-M

3 J ^ If, -.,<->.. * ,

. .. c

5-69 CZ15-00

BUFFER STATUS

Example:

This example illustrates usage of the buffer status direc-
tive. The file USE, which is in the working directory, com-
prises the following lines;

(1) AAA (current line)
(2) BBB
(3) CCC
(4) ODD

R USE

Read the contents of USE into the current buffer,
which is named 0. , „-, v •, u .-•-,•*

1,$S*BBB*XXX*

Search the first line through the last line in the
• current buffer and changes each occurrence of BBB to
XXX. After this directive is executed, the current
buffer will contain?

* - '-,&,. ', J* ttjf! ". I '

(1) AAA , <j : i- ^ „ ..„ ' . ' ? * - > „
(2) XXX
(3) CCC - ,~ ; -- , . , . » -

- . (4) ODD -„; xv.

3,4M2

Move lines 3 and 4 of the current buffer into auxil-
iary buffer 2. After this directive is executed, the
current buffer will contain;

(1) AAA ': ,
(2) XXX

Auxiliary buffer 2 will contain:
.-•a ^c

(1) CCC - * ,« *
(2) ODD

i~ -*,,IV 11

Request the status of each buffer currently in use.
The following message will be issued;

2 ->MOD (0) USE
2 (2)

5-70 CZ15-00

CHANGE BUFFER
.-'. - , W.-.'.''ii«,t_̂ »i, t»J>t-».

CHANGE BUFFER (BxJ

Designate that a specified auxiliary buffer is to become the
current buffer. The previously designated current buffer becomes
an auxiliary buffer.

After this directive is executed, lines can be written from
the new current buffer to a file.

FORMAT: " " --

Ex -

ARGUMENT:\

^
Buffer name. The name must be 1 to 6 ASCII characters.
If the name comprises more than a single character, the
name must be enclosed within parentheses; otherwise, the
parentheses are optional. The original current buffer
name is 0. This name can never be altered. An auxiliary

- : buffer name, once specified, cannot be altered during the
current Line Editor session.

Example: - " -'• '" '" »"•* ^>; *'-*?*. ̂
. *tl t j. ' ,. Y a ~*-J- »' , - S>~'

B3
;•-.-•".,', i =) < • ' :.^ •-? „ /Tt> ufikf>r. •

This directive designates that auxiliary buffer 3 is the cur-
rent buffer. If desired, lines can now be written from this
buffer to a file.

' - i , i - • ' 1 / - S ,' , 4. <!-.„_ i, 1 ^ - ̂ T V- -% '.,

^

a^i" = • ,t~,r ~ >.-. ?
*^ • -a^vf

'• ,'^r. " it>«* •- ;
~ " j ~ '•' ̂

- ' * ~ •* - i*i - "

5-71 CZ15-00

CHANGE ORIGIN OF TEXT , >
DURING EDIT MODE
CHANGE QR^GJff OP TEXT DURING EDIT MODE (I E)

Cause the Line Editor to read subsequent directives from a :
specified auxiliary buffer- IB can be specified within an
expression, pathname, text to be typed (i,ec»> in the Type
directive) , or as a directive,, When the Line Editor encounters
this sequence in an expression, pathname, or text, the entire
escape sequence is removed from the input stream and replaced with
the literal contents of the first line of the specified buffer; if
IB is a directive,, the input stream is replaced with the entire
literal contents of the specified buffer. If another IB escape
sequence is encountered while accepting input from buffer x, the
newly encountered escape sequence will also be replaced by the
contents of its named buffer.

The buffer to which the input stream is redirected may contain
Line Editor requests, literal text, or both. If the Line Editor '
is executing a request obtained from an auxiliary buffer and an
error occurs, the usual error comment is suppressed and the
remaining contents of that buffer are skipped. Control returns to
the statement immediately following the IB escape sequence that
called the auxiliary buffer* For example, if one thinks of the
escape sequence IB(x) as a subroutine call statement, the failure
to match a regular expression specified by some request in buffer
x may be thought of as a return statement. Once the last commands
in the auxiliary buffer have been processed, control returns to
the statement immediately following the IB escape sequence that
called the auxiliary buffer.

The buffer name may be in the format (ARGn), where n is a
number from 1 to 9 that refers to the nth argument that followed
the -ARG argument of the ED command. The escape sequence is
replaced with the first (or only) line of the buffer (ARGn)
created during initialization of the Line Editor. ,-̂

FORMAT:

IBx

ARGUMENT:

Name of the buffer that contains subsequent Line Editor
text. The buffer name must be 1 through 6 ASCII
characters. if the buffer name comprises more than a
single character, the name must be enclosed within
parentheses; otherwise, the parentheses are optional.

5-72 CZ15-00

CHANGE ORIGIN OF TEXT DURING EDIT MODE

Example Is IB as a directive " ~'^tfc •;**»; UxaA

!B(TEST) ^̂

In this example, the contents of the current buffer and the
auxiliary buffer named TEST are:

Current buffers ,,,
i t I

(1) A
(2) B

(4) D '-'•'" *° : ̂ ' —^ - ":
(5) E

Auxiliary buffers

1e$S/A/X/

. *so ". rj 'fi*' •$..-:-? o» i *
" .• •-"> r\ f i * ?.,!.' A < i" ^

- 1 •* 1 : u. '••',' =*?i, <ji.;» rK.

This Substitute directive designates that in the current
buffer all occurrences of A be replaced with X. After the
Substitute directive is executed, the current buffer will
contain;

(1) X
(2) B <t - ,,, . _,,. ,..v .iaii_ f4 -,(.,',o) x . , ; • "- • '
(4) D - "
(5) E -- -

The auxiliary buffer named TEST will contain:

1,$S/A/X/

V^ Example 2: !B Within an Expression

2S/AAA/IB2/

This Substitute directive designates that in the second line
of the current buffer, each- occurrence of AAA should be
replaced with the first line of auxiliary buffer 2.

The contents of the current buffer and auxiliary buffer 2 are:

Current buffer:

(1) AAABBB
(2) CCCAAA
(3) XXXYYY

5-73 CZ15-00

CHANGE ORIGIN OF TEXT DURING EDIT MODE

flv -j ' ,»ft -r ,
Auxiliary buffer 2:

DDD
EEE

After the Substitute directive is executed, the current buffer
contains s

(1) AAABBB >*-:•.»& .'̂ ĵ ;
(2) CCCDDD
(3) XXXYYY

Example 3: IB Within Text to be Typed " '[
i *>

T/1B2/ 3 •"'

This Type directive (which is described later in this section)
requests that the first line of auxiliary buffer B2 be dis-
played on the user-out file.

Example 4; Buffer Name (ARGn)

The ED command includes the argument -ARG ABC "MY NAME" XYZ

S/DEP/iB(ARG3)/
**•- «

This Substitute directive searches the current line and
replaces each occurrence of DEF with XYZ (i.e., the third
argument following -ARG in the ED command).

- .-, *." j >i • •-. . .1 <? *> :S. •. ' <>: l r}. ̂ •-> >« ••

:̂ A\a^. .

ir2 ;IB a; -1 - <•!> I 3, -j-rtsx:

^P: vAAA -

.-c a VG? ,
- ' 73 sffi i J'i-

' *;. «riT

• -»j'lw ;~ -•- :, ~

5-74 CZ15-00

•j ?.->** <y*M£.v7
« * ^ < " 3 i 5 t . . j L - _-„»

^ CHANGE ORIGIN OF TEXT
DURING INPUT MODE

CHANGE ORIGIN OF TEXT DURING INPUT MODE (IB)

Cause the Line Editor to accept subsequent text from a
specified auxiliary buffer,, The escape sequence !B can appear
within text of an Input directive,

When the Line Editor encounters !B, the entire escape sequence
is removed from the input stream and replaced with the literal
contents of the specified buffer. If another !B escape sequence
is encountered after accepting text from the specified buffer, the
newly encountered escape sequence will also be replaced with the
contents of the named buffer*

FORMAT: : . * .

_ _ i 1 t »^ __ I P i __ t i l »ei |

D « C £f> <^ i * £ yx -r^j '•';,* *"-<**',£[text]<Bx ("[text]IB

ARGUMENT; ^ , ,

(\
x

Name-of the buffer that contains subsequent Line Editor
text. The buffer name must be 1 through 6 ASCII
characterSc If the buffer name comprises more than a
single character, the name must be enclosed within
parentheses; otherwise, the parentheses are optional.

Example:

/D/I
!B(TEST)!F

In this example, the contents of the current buffer and the
auxiliary buffer named TEST are:

Auxiliary buffer:

(1) X
(2) Y
(3) Z

Current buffer:

(1) A
(2) B
(3) C
(4) D
(5) E

5-75 CZ15-00

CHANGE ORIGIN OP TEXT DURING INPUT MODE

This Insert directive designates that the contents of the
auxiliary buffer named TEST be inserted into the current
buffer before the line that contains D.

After the Insert directive is executed, the current buffer
will contains 1 * K JT

(1) A * ' ' ^ "'' ' '- ̂ *' ' ~* ' '
(2) B

< 3> C " ' - , -
(4) X . ' -~' c""'^-:

(5) Y " ' *
(6) Z
(7) D
(8) E

The auxiliary buffer named TEST will contain:

(1) X r •'">••
(2) Y
(3) Z

-. <

5-76 CZ15-00

V i ' f~* r< - *J.,'

COPY

COPY (K)

Write into a specified auxiliary buffer a single line or
consecutive lines contained in the current buffer. The lines in
the current buffer are not deleted; i.e., the lines are in both
the current and the auxiliary buffers. Any lines previously in
the auxiliary buffer are destroyed during execution of the Copy
directive.

i
After the Copy directive is executed, the current line in the

current buffer is the line immediately after the last line moved
to the auxiliary buffer. There is no current line in the auxil-
iary buffer until that auxiliary buffer is changed to the current
buffer via a change buffer directive.

ARGUMENTS :

adr,

Address of the first line to be written into the specified
auxiliary buffer. Default: Current line.

. adr2

x

Address of the last line to be written into the specified
auxiliary buffer. Default: adr, .

NOTE

If both adr, and adr2 are omitted, only the current
line is written into the specified auxiliary buffer.

Name of the auxiliary buffer into which the specified
line(s) will be written. The name must be 1 through 16
ASCII characters. If the name comprises more than a
single character, the name must be enclosed within paren-
theses; otherwise, the parentheses are optional.

5-77 CZ15-00

COPY

Example:
-.xi.x&Q';

1,3K(52)

This Copy directive copies into auxiliary buffer 52 lines 1
through 3 in the current buffer. The contents of the current
buffer are;

(1) FIRST (current line)
(2) SECOND
(3) THIRD
(4) FOURTH

After the Copy directive is executed, the contents of the cur-
rent buffer are unchanged, but the current line is line number
4„ Auxiliary buffer 52 will contains

(1) FIRST
(2) SECOND t';
(3) THIRD ,,̂

j

There will be no current line in the auxiliary buffer,

^

£ -£" :

5-78 CZ15-00

•3fc?<??A -r^OD

COPY-APPEND

COPY-APPEND (IKl

Write a line or lines from the current buffer to an auxiliary
buffer without destroying-the contents of the auxiliary buffer.
The lines copied from the current buffer are appended to the
contents of the auxiliary buffer. The lines written are also
retained in the current buffer.

After the Copy-Append directive is executed, the current line
in the current buffer is the line immediately after the last line
written to the auxiliary buffer or the last line in the buffer.
There is no current line in the auxiliary buffer.

• i ':

FORMAT:

adr. n adr21{:} J.
ARGUMENTS s

!Kx
.vr>; .•.)'- -a** "jftj^cc riiv vfrf'c

adr,

Address of the first line to be written to the specified
auxiliary buffer. Default: Current line.

•adr,

Address of the last line to be written to the specified
auxiliary buffer. Default: adr, .

NOTE

If both addresses are omitted, only the current
line is written to the auxiliary buffer.

'<s
x

Name of the auxiliary buffer into which the specified
line(s) will be written. The name must be from'l to 16
ASCII characters. If the name is more than one character,
it must be enclosed within parentheses; otherwise, paren-
theses are optional.

5-79 CZ15-00

COPY-APPEND

Example:

lr3!K(ABUF) *:i' CTO^'l 3? rl ^o sn;^ c 3 ': iW

This directive appends lines 1 through 3 of the current buffer
to the contents of auxiliary buffer ABUF. Thus, if the cur-
rent buffer and ABUF contain the following lines prior to
execution:

> „ -. » .' I .*3--> ' i£ v""t r-^-'T-^

Current ABUF ~-

(1) AAA (current line) (1) MMM .v •-.
(2) BBB (2) NNN
(3) CCC i-*.«*•-.•?
(4) ODD

They will contain the following after executions j "̂
i

Current ABUE : -,

(1) AAA
(2) BBB
(3) CCC
(4) DDD (current line)

(1) MMM
(2) NNN
(3) AAA
(4) BBB
(5) CCC

1* : t L > .< /' t t

. •-: ..; \.. : 6 ̂
i; J U:--^ j:
i W 3 •' <?'-»£

^

5-80 CZ15-00

DESTROY

DESTROY f*Bl

Release a specified auxiliary buffer's file space. Any buffer
other than buffer 0 and the current buffer may be removed; if the
current buffer name is specified, the directive is ignored and an
error message is issued.

FORMAT.-

-•* " j 'iJL * ' *~Bx

ARGUMENT:

- - * ' . - , ,>r ; LXXi'Js : r- \i SruA

•7" «*•£';. i

X "

Name of the auxiliary buffer to be destroyed. The name
must be from 1 to 6 ASCII characters. If the name com-
prises more than one character, it must be enclosed within
parentheses? otherwise, parentheses are optional.

c

Examples _ ,^, ,, ̂ a.;^ ^ ̂ _ .^

*B(AX) .-^.-c ̂

This Destroy directive removes buffer AX. : •

«E»ft

'- : ' ; '--M -s'-

^ ' ' . " : . ' - ' > r% ,
'}

35ni. ; VT'

^m^r; •> ;

5-81 CZ15-00

MOVE (Ml

Move a single line or consecutive lines from the current
buffer to a specified auxiliary buffer; the lines no longer exist
in the current buffer. If the auxiliary buffer already contains
lines? those lines are destroyed.

After the Move directive is executed, the current line in the
current buffer is the line after thre last line moved to the auxil-
iary buffer or the last line in the buffer. There is no current
line in the auxiliary buffer.

FORMAT:

adr,[i;ri MX

ARGUMENTS:
' I ̂ -,A rt

••',! -U- % ~i*>
• ~i $C- £ U

adr.

Address of the first line to be moved from current buffer
to auxiliary buffer.

Default: Current line.
XAjfi

<TI'» i ev "„*•"» f '.>?;>«!<• -1 * ; H ."

adr-

Address of the last line to be moved from current buffer
to auxiliary buffer,.

Default: adr, .

NOTE

x

If both adr, and adr2 are omitted, only the current
line is moved from the current buffer to the auxil-
iary buffer.

Name of the auxiliary buffer to which the specified
line(s) will be moved. The name must be 1 through 6 ASCII
characters. If the name comprises more than a single
character, the name must be enclosed within parentheses;
otherwise, the parentheses are optional.

^

5-82 CZ15-00

MOVE

Example:

1,3M5 ; 1 1*9j 5c '
£'•£ ~Pi* -1;'?

This Move directive moves lines 1 through 3 from the current
buffer to the auxiliary buffer named 5. In this example, the
contents of the current buffer are:

3» . i I . .0

(1) FIRST (current line)
(2) SECOND
(3) THIRD
(4) FOURTH

" \

After the Move directive is executed, the current buffer will
contain:

(1) FOURTH (current line)
rot

Auxiliary buffer 5 will contain:

(1) FIRST
(2) SECOND
(3) THIRD

" ' * * 1111. -. - ' • •-, •> •' r \ :> «,', •* j c c"

j-;;~

- i*." ' '»",' ^ O fc > ? ,'

j • - *?"".". * e, •, - •* 11."" .'

. _-, 7 , _j i,- : - - •- - *• - -̂ r
' C - . .7 1 .-

5-83 CZ15-00

x_y

2> fl J* „ * -' 1 ',
. f k >5lO',-

MQVp-APPEND f i M l
_ • 3S,

Move one or more lines of text from the current buffer to the
specified auxiliary buffer* The lines are appended to the
existing contents of the auxiliary buffer; the existing contents
of the auxiliary buffer are not overlaid. If the auxiliary buffer
contains no text, the lines are placed in the auxiliary buffer
starting at line 1. The lines moved are deleted from the current
bufferc

FORMAT:
•* " i

adr,jlrt a d r 2 l l l M x

D'f J« .

ARGUMENTS s
^•m^

adri
i

Address of the first line to be moved from the current
buffer to the auxiliary buffer. Default: Current line.

adr2 , <

Address of the last line to be moved from the current
buffer to the auxiliary buffer. Default: adr, .

NOTE ' -

If both adr, and adr2 are omitted, only the current
line is moved from the current buffer to the auxil-
iary buffer.

x ^
^J

Name of the auxiliary buffer to which the specified
line(s) will be moved. The name must be 1 through 6 ASCII
characters. A name of more than one character must be
enclosed in parentheses; otherwise, parentheses are
optional.

Example?

1,31M(SOOZ)

This directive appends lines 1 through 3 to the contents of
auxiliary buffer SOOZ. If the contents of the buffers are as
follows prior to the move:

5-84 CZ15-00

W

< "•£• ",'-:.-r~r-£ j. <~ V >>4*-ve

*? :

Current
-, -"••• i

SOQZ

MOVE-APPEND

*

(1) FIRST (current line) (1) AAAAA
(2) SECOND (2) BBBBB
(3) THIRD -:-<Kl -*«j, -v;
(4) FOURTH

The buffers will contain the following after the move:

Current SOOZ

(1) FOURTH (current line) (1) AAAAA
(2) BBBBB
(3) FIRST
(4) SECOND
(5) THIRD

5-85 CZ15-00

LINE EDITOR DEBUGGING DIRECTIVES

The functions of Line Editor debugging directives ares

• Print contents of specified line(s) on the terminal
(Hexadecimal Dump directive)

"j

« Display? on the user-out file/ the last specified regular
expression (ZREGEXP directive)

« Display each directive line before it is executed (ZTRACE
directive)„

-"- . - . • < * . -t ,e ~- . _ .v - ,,-f.

:r, , - .̂.f-..̂

CZ15-00

HEXADECIMAL DUMP

HEXADECIMAL DUMP (ZDUMP) * ~"' " "̂ ' i& "'*:'' "

Print the contents of specified line(s) on the terminal in
both hexadecimal and ASCII formats. The output format consists of
the line number, the length (number of characters) expressed in
hexadecimal, eight words in hexadecimal format, and eight words in
ASCII format.

The display of each buffer line is separated from following
•„, displays by a blank line. If a buffer line is too long to be dis-

played on a single line, it is continued on the next line, with no
blank line separation.

After this directive is executed, the current line is the last
. (or only) line printed.

>—^ FORMAT:

[""[{I}adr,f/;» adrJ ZDUMP

ARGUMENTS:

adr.

Address of the first buffer line to be dumped.

Defaults Current line.

adr2

Address of the last buffer line to be dumped.

• • * , Defaults adr, .

NOTE

If both addresses are omitted, only the current
line will be dumped.

Example:

The contents of lines 1 and 2 of the current buffer are:

(1) START EDIT
(2) VDEF ZFVER,X'3031'

1,2ZDUMP

\̂ / * S 5-87 CZ15-00

HEXADECIMAL DUMP

'' . \ ^

This Hexadecimal Dump directive produces the following output
at the terminals

0001 OOOA 5354 4152 5420 4544 4954 • START EDIT

0002 0012 5644 4546 205A 4656 4552 2C58 2733 3033 VDEF ZFVER,X'303

3127 " 1'

Thus, 0001 indicates line number 1? OOOA indicates a length of
10 characters (A); followed by the hexadecimal equivalent of
START EDIT. A blank line is followed by the dump of line 2,
with a length of 18 characters (12). Because nine words are
required to fully dump the line, the output continues on the
next line of the terminal, with no blank line intervening.

r
i . -. * » t ,

!
1 t

t t

}f

>£

it. " 1 - •?

• r -J^S * 1. 1 1«?«J

;«. - */« v - -^ t (i~-'o t^
t * * ' CV '•sf!Zl

» * ; 'S.t* 1

~ * - --,',•> *">C" r^nT

; .-, c ^

5-88 CZ15-00

^ ZREGEXP

ZREGEXP

Display the last specified expression on the user-out file.
The current line is not changed.

FORMAT: :TA|№0~

ZREGEXP
«

Example:

S/ABC/DEF/
' "" ZREGEXP -

 :
-
:
 ^n

1 1
- '- '-TSSTife nn&'

:
 f«

This ZREGEXP directive displays the last specified expression,
^ i.e., /ABC/.

"V."q[.njfx3

/ - <%••: ^^^TJfT-f^V , - O, ,%L-I, vr.

-,^i

-."^

,,tl

W i

r d

P»3 :, f

> "*- *"\? '.I i
^ ' 4 s ,sr ' N " " 7 - '.-:

' - r" , . i -f « !' ̂

* <>U
f» M <•

"" , S

5-89 CZ15-00

!2B&££

Display each directive line on the user-out file before it is
executed6

FORMAT? :?A*MC*i

2TRACE /ON \
loppf

ARGUMENTS s

ON Each directive line is displayed before it is executed."

OFF Subsequent lines are not displayed before they are
executed.

Example:

This example illustrates a program that includes an ED command
to load the Line Editor and a ZTRACE ON directive. Following
is a printout of the Line Editor output.

Program including ED command and ZTRACE ON directives

1 RL DIRECTORY
2 FO DIRECTORY
3 WS &1 "LS -BF" ' •
4 FO
5 &A
6 ED
7 ZTRACE ON
8 Bl
9 1 " .
10 R DIRECTORY ^
11 GD/~ &/
12 GD/*. ENTRY NAME TYPE?/
13 GD/ D$/
14 l,$S/~. //
15 1,$S/"DIRECTORY: . //
16 $N
17 sC ?/*V;M(2)
18 :D "*/"/S/A.*$/& !ClB2>&/?-«-l?>D
19 ?+lf-lN>C
20 */*VDlP
21 BO
22 IB1
23 W DIRECTORY
24 Q

5-90 CZ15-00

v^ ZTRACE

25 ED -NBS -LL 160 v ''^ ' *'"
26 R DIRECTORY
27 l,$S/..$/
28 1,$S/*.
29 1,$S/1.*$//
30 l ,$S/VlHOO/
31 W DIRECTORY
32 Q
33 SORT -IN SORT_CMD_SD -FP
34 FO >SPD>LPTOO
35 PR SORTED_DIR -LL 132
36 FO

Line Editor output?

\~s

EDIT-0200
EDIT
EDIT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT

-09/11/0948
Bl
I
R DIRECTORY
GD/* $/
GD/~. ENTRY NAME TYPE$/
GD/ D$/
1,$S/*. //
1,$S/"DIRECTORY: . //
$N
sC ?/*V;M{2)
:D **/*VS/*.*$/filClB2>&/?+l;>D
?+lr-lN>C
*/""/D!F
BO
1B1
R DIRECTORY
GD/^ $/
GD/". ENTRY NAME TYPE$/
GD/ D$/
1,$S/A. //
1,5S/"DIRECTORY: . //
$N

?/**/«M(2)
;*/AVS/".*$/&!B2>&/?+l;>D

VS/A .*$/&!B2>&/?+l;>D
VS/*. *$/& !B2>&/?+! : >D

:C
:D
iD
:D

'*/'

'*/'
?+l,-lN>C
:C ? /*V;M(2)
:D **/"VS/*.*$/fiiB2>&/?+l;>D
:D **/"VS/A.*$/&!B2>&/?+l;>D
:D **/*VS/*.*$/fi!B2>&/?+l;>D
?+l,-lN>C
iC ?/"V;M(2)
:D **/"VS/".*$/&!B2>&/?+l»D
:D -*/*VS/".*$/&!B2>&/?+l;>D

5-91 C215-00

ZTRACE

EDIT sD **/AVS/*.*$/&!B2>&/?+l;>D
BDIT ?+l r-lN>C
EDIT */~VD
EDIT W DIRECTORY '
EDIT Q " l "'

>2 „!>',

- K'j

'h.t ,

v- ' 3

^

K * s

' 0 ;
' - • • * • n

*
5-92 CZ15-00

LINE EDITOR PROGRAMMING DIRECTIVES

^ Line Editor programming directives cause conditional execution
of subsequent directives, change the location of subsequent Line
Editor input, and display a line of text on the user-out file.
Programming directives can be in the directive input file
(specified in the -IN path argument of the ED command) or an
auxiliary buffer, or they can be entered through a terminal.

Each conditional directive includes one or more other Line
Editor directives. The directives must be on a single line. If
the specified condition exists, the subsequent embedded
directive(s) are executed. The following conditions can be
testedj j

• Does specified line exist (Address Prefix directive)

• Does current buffer contain data (If Empty and If Data
directives)

^̂ • Is current line a specified line (If Line and If Not Line
directives)

« Is current line within specified lines (If Range and If Not
Range directives)

• Is specified expression within specified lines (Search and
Search Not directives).

Programming directives also have the following capabilities:

• Change location from which Line Editor accepts subsequent
directives (Go To directive)

e Define location that can be the endpoint of a Go To direc-
tive (Label directive)

t> Display a line of text on the user-out file (Type
O directive). ^ .,._,_ ,., „,,, ,1A, _, , ,4,,.;

NOTE

If a directive format comprises multiple directives,
the directives may be separated by spaces for
readability.

<:2r: 'a*'.3 ' „•?* f

^ 5-93 CZ15-00

ATiTt'D'E'GG TS'O'C'lSf'*?' ,ADJJKJb&S FS&EiS LA >_/
« - ~ ' ', -^ ~>- - b c i j

f tPPRFuSg PREFIX (?)
..*> >a± - ̂ _j *

Execute the directives contained in the Address Prefix Line
if the specified line exists in the current buffer; otherwise,
they are not*

FORMAT?

?adr< ; {directive [directive] ... - ~ *•
I' f

ARGUMENTS? ' ~'"" ": » * * " = . - - **... ',?, *«»t.C *

, ' ' £ it," "C'r- " , 1 5 *«a* • -f A =. <• ̂ •* /»

Address of the line for which the Line Editor will search.

NOTE ** '* '

If adr is immediately followed by a semicolon, adr
becomes the current line. If adr is immediately
followed by a comma, the current line is not changed.

" ** ' -f* ̂ i r < tf

Any Line Editor directive(s); they are executed only if
the specified line is found.

* - - 3F

Example 1:

?8,°P ^ ""

This Address Prefix directive specifies that if there is a
line 8 in the current buffer, print the contents of that line; *~~\
that line will become the current line. ^J

Example 2s -

In this example, the contents of the current buffer are:

(1) DEFGHI
(2) ABCXYZ
(3) ABCGGG (current line)

?/ABC/;S/ABC/DEF/

This Address Prefix directive designates that if there is a
line that contains ABC, make that line the current line, and
in that line replace each occurrence of ABC with DBF.

5-94 CZ15-00

ADDRESS PREFIX

^
V S V*v.!

After this directive is executed, the current buffer will 3
contain:

(1) DEFGHI ' .„*
(2) DEFXYZ (current line)
(3) ABCGGG

W

- *>v i .•*

4"'yd* -

'•:vr;/':iO«!A

, »ds,

:• - . -sn .'.•) - *' i :• 'i1" ~ ' - '
-* -! • ' J^' . -'V . f ji ' ±> u " "• - <1 > ' <f

'> a> » ^ -! j T; r

' 1 ?

?•: '..i , /fit-;J •-*•'" e "j ,i £u.."sxt ^

v/s

5S . C v . -x i 1- 'J :r. ; :-.:..»- TO$ i

-1 -\.~'- :'A ,.iv ft, :; ;»S^

, ,T

5-95 C215-00

GO TO (» ' '- < ! , • > _ . - » - „ . rf t „ n

Change the location from which the Line Editor accepts
subsequent directives*

If the Go To directive is encountered in the buffer that is
currently being executed? the Line Editor accepts subsequent
directives from a specified location in that buffer. The location
must have been previously defined in that buffer by a label
directive.

If the Go To directive is entered interactively, only direc-
tives in the current directive line are used.

FORMAT:

>label

ARGUMENT:

label

Location to which control is transferred; the Line Editor
accepts subsequent directives from this location.

If the label comprises multiple characters, they must be
enclosed within parentheses; otherwise, the 'parentheses
are optional.

Example Is

In this example, the contents of the current buffer are:
/•"*"-.

(1) EAST ROCKAWAY, NY j
(2) LONG BEACH, NY ****
(3) BRIGHTON, MASS
(4) ANDOVER, MASS
(5) HEWLETT, NY

Buffer 2 contains the following directives:

: (REPEAT)1,$P

Assign label REPEAT to Print directive line.

1,$S/MASS$/MASSACHUSETTS/P

Substitute each occurrence of MASS at the end of a
line with MASSACHUSETTS and prints the contents of the
last line in the buffer (i.e., line number 5).

5-96 CZ1S-00

GO TO

^ *T/. , „

NOTE

When the Line Editor searches the buffer the second
time and does not find MASS at the end of a line,
control returns to the previous buffer or to the
terminal.

1,$S/NY/NEW YORK/>(REPEAT) ._:>*..:. ' * U^jj1*

Substitute each occurrence of NY with NEW YORK and
prints the contents of all lines (i.e., lines 1
through 5).

Example 2i

i A7/ABC/; S/ABC/DEF/P>A

If this directive is entered interactively, the following
actions take place. The information to the right of each
action indicates how the action is requested in the directive
line.

Assign label A to directive line. :A

If ABC exists, take the subsequent actions. ?/ABC/

Change the current line to the location of ABC. ; preceding
the substitute directive

Replace each occurrence of ABC with DEF. S/ABC/DEF/

Print the current line. P

Go to line A (i.e., reexecute the same directive line) >A

After all lines containing ABC have been acted upon (i.e.,
each occurrence of ABC has been replaced with DEF and the
resulting lines printed), control returns to the next direc-
tive entered interactively.

5-97 CZ15-OQ

TT? Til AT AIE iJALA

If DATA ft)

Execute the directives contained on the If Data directive line
if the current buffer contains data? otherwise, they are note

FORMAT: ^ «

f directive [directive] ... A -„ __ >-§ - P
•

ARGUMENT? . - -
J , . * ;

directive

Any Line Editor directive(s) ,« they are executed only if
the current buffer contains data.

•> - *••* te *
' . \ T... * ,- f V«A " \

•» ~s~' >. • ., -.1 irv f i ! -* * '

. -><3o a - , ,. A

- U .. _ -„ *;

•• •*-'i sen,,.

j .- / " ~> S •• ' *•

-" :»-r J - , i q

-•» L •> A 9"-:.r . - ->D

5»98 CZ15-00

-̂ IF EMPTY

-. ,' & «* *S*' lr J7'jC'' "> »2^IF EMPTY (t) £*%«*lu- -n-js ,̂.*.̂ ^

Execute the directives contained in the If Empty directive
line if the current buffer is empty; otherwise, they are not
executed.

FORMAT:
•̂ , -. ****** ti'~ *-**'*', -i1-

*#directive [directive] ...

ARGUMENT:
:>^

directive

Any Line Editor directive(s); they are executed only if
the current buffer does not contain data.

"*-3 " ' '>S »fi-

j > j z -. -• ".: . jv . •>«-•", r

•̂ 5-99 CZ15-00

IF LINE

|f LINE (adrJM

Execute the directives contained on the If Line Directive line
if the current line is the specified line; otherwise, they are not
executed, ' "• • ~ ~ - . - . . _ - ,

FORMAT?
t r

adrtdirective [directive] ...
' ,* ' it ', '•••v-',:n̂ f. -. '• b-"'

ARGUMENTS:

adr

Address of the line being checked to see if it is the cur-
rent line.

directive

Any Line Editor directive(s); they are executed only if
the specified line is the current line.

/• v
-̂/

5-100 CZ15-00

'̂ IF NOT LINE

IF NOT LINE fadr *»)

> Execute the directives on the If Not Line directive line if
the current line is not the specified line; otherwise, they are
not executed.

FORMAT: '"
**?* I .(,&$ r2

adr~#directive [directive] ...

ARGUMENTS:

adr JQi

Address of the line being checked to see if it is the cur-
> rent line.

, ~f~iir
directive

Any Line Editor directive(s); they are executed only if
the specified line is not the current line.

5-101 CZ1S-00

IF RANGE fadrfs) tl

Execute the directives on the If Range directive line if the
current line is within specified linesi otherwise, they are not

• ij-J

FORMAT?

adr,madr2 ^directive [directive] ...
W '"• *

ARGUMENTS: -A

adr, .-t's

Address of the first line to be searched.

adr2
"••-. * t<

Address of the last line to be searched.

directive " • '-' ^ <:: ••- - ; '• i' n-

Any Line Editor directive (s) ,• they are executed only if
the current line is within addresses adr, through adr2 .
The current line is unchanged.

^

5-102 CZ15-00

^ IF NOT RANGE

IF NOT RANGE (adrs **!

Execute the directives on the If Not Range directive line if
the current line is not within specified lines; otherwise, they
are not executed*

FORMAT s _

' adr,m adr2 *#directive [directive] ...
I >]

ARGUMENTS:

adr,

Address of the first line to be searched.
4

adr2
.2 Of.

Address of the last line to be searched,

directive

Any Line Editor directive(s); they are executed only if
the current line is not within addresses adr, through
adr2 «, The current line is unchanged.

Examples

l,10*IS/yes/no/

This If Not Range directive specifies that if the current line
is not within lines 1 through 10, in the current line substi-
tute each occurrence of "yes" with "no". --

- ' -• ; '-•- 1-,'0 ;

5-103 CZ15-00

SEARCH f*>

Execute the directives on the Search directive line if a
specified expression is within specified lines; otherwise, they
are not executed.,

FORMAT ?

adr,< ?i adr2 */regexp/directive [directive] ...

I''
ARGUMENTS:

adr,

Address of the first line to be searched for the regular
expression. Defaults Current line.

adr2 -iufe

Address of the last line to be searched for the regular
expression. Default? adr, .

T/,' *..<!$•} , r
NOTE

^ • { "

If both adr, and adr2 are omitted, only the current
line is searched. -

regexp

String of characters for which the Line Editor is
searching,,

directive .". , v . . -̂̂•--*x ; :- f- » • •"•" ';•> nc.ft-=> ?-:\, ? >

Any Line Editor directive(s); they are executed only if ^~*
the specified expression is within the specified
addresses.

5-104 CZ15-00

SEARCH NOT

SEARCH N O T . (* *)
? ^

Execute the directives on the Search Not directive line if a
specified expression is not within specified lines; otherwise,
they are not executed. The current line is unchanged.

*•> "J !,

FORMAT;

adr,/; > adr2 ""Vregexp/directive [directive] ...
w

ARGUMENTS: '"

adr,

Address of the first line to be searched for the regular
expression. Default: Current line.

adr2

Address of the last line to be searched for the regular
expression. Default: adr, . ^

- - ' * - . ' - '? . NOTE

If both adr, and adr2 are omitted, the directives
are executed only if the regular expression is not
in the current line.

regexp

String of characters for which the Line Editor is
searching.

directive

Any Line Editor directive(s); they are executed only if
the specified expression is not within the specified
addresses. The current line is unchanged.

5-105 CZ15-00

LABEL (;)

Define a location to which the Line Editor can be directed
(via a Go To directive) for subsequent directives. If a Go To
directive is entered interactively, only the current directive
line is searched for the label. The Label directive must be
specified at the beginning of a line.

FORMAT:
*

;labeldirective [directive] ...

ARGUMENTS s

label ?b

Location that can be the argument value of a Go To state-
ment? i.e«r a location to which control can be transfer-
red,, If multiple characters constitute the label, they
must be enclosed within parentheses? otherwise, parenthe-
ses are optional„

directive

Any Line Editor directive(s)? they are executed when
control passes to the specified label.

ti.e f ';'..-{

.Â r/'i T

—/

-r.i I >n»; ji;.

5-106 CZ1S-00

TYPE

TYPE (1M " ' î -'-

Display a line of text on the user-put file. If the optional
exclamation point (1) is specified in the directive format, the
next input or output will appear immediately after the printout,
on the same line; otherwise, the next printouts are on subsequent
lines.

>- *

FORMAT:
i

[!3 T/text/

ARGUMENTS: -*

^ ..'.-•':.,
(Delimiter) Can be any nonblank character, but the same
character must be used in each place where a delimiter is
required.

text . - • _ _ . , __ .

Text to be displayed. Default: One blank line. .*

Example 1:

T/IDENTIFICATION NUMBER/

This Type directive prints IDENTIFICATION NUMBER. Since the
optional exclamation point was not specified, subsequent input

' or output will appear on subsequent lines.
i

Example 2:

•̂"̂ •-' IT/IDENTIFICATION NUMBER !B2/

This Type directive prints IDENTIFICATION NUMBER and the con-
tents of auxiliary buffer B2. If B2 contains FOR THIS YEAR,
the printout will be: IDENTIFICATION NUMBER FOR THIS YEAR.
Since the directive name T was immediately preceded .by an
exclamation point, the next input or output will appear imme-
diately after the printout, on the same line.

5-107 CZ15-00

PROGRAMMING CONSIDERATIONS

le Tabbing causes embedded tab characters to be replaced with
the appropriate number of spaces so that printed output on
a printer or terminal has "tab stops" at character posi-
tion 11 and at every subsequent 10 character positions.
Tab characters can be entered into Assembly language
source lines by pressing CTRL I on the terminal device
while entering insert and/or substitute directive(s).
CTRL I is a nonprinting tab character that has a hexadeci-
mal value of 09. Tabbing is not apparent until a printout
occurs.

2C The Line Editor uses a minimum of two temporary work files
in the working directory. These files are created by the
Line Editor when the Line Editor is invoked; they exist
only during the current execution of the Line Editor* A
minimum of 16 diskette or 8 cartridge sectors must be
available in the working directory for temporary work
files. Additional temporary files are created for each
auxiliary buffer used? the number of temporary files is
limited by the space available in the working directory.

3. If you specify a buffer name comprising more than a single
character and omit the parentheses, only the first charac-
ter is considered the buffer name; subsequent characters
are treated as directives. , ,.

4. If a file manager error (190223, lack of space) or a phys-
ical error (190107) is encountered, use the Quit directive
to exit from the Line Editor, and restart after the
problem has been corrected. Attempting to recover by
other mea'ns (such as the escape sequences) may cause
unspecified results. If an error occurs while processing

: >' a work file (this situation is indicated by an error
message that is not followed by a file name), the Line
Editor may terminate processing and a fatal error message
is issued.

5. An error occurs if the maximum number of lines that the
Line Editor will accept in a program has been reached.
Control is returned to command level.

. ~> ': q',
- ' i? •;, , .-u<j7"i < - '? ^ ;33.fv

5-108 CZ15-00

C5 '

^

• ' XI * j i

.I' M ,

i 1

* •„ •-> '

Section 6
LINKER

* -
• y «.-•

t̂?i' ^ ̂

4?*: »»
t?i' -

"»l v . '

'<:>

OVERVIEW

The Linker combines object units created by the language pro-
cessors (compilers and the Assembler) into a bound unit that you
can then execute. During a single execution of the Linker, a
single bound unit is created. A bound unit contains a. root or a
root with one or more overlays. The root and overlays cannot
exceed the physical memory available in your system's
configuration.

LINKER FUNCTIONS

\^ The Linker functions are:

• CREATE A BOUND UNIT — A bound unit is the output file
that results from Linker execution. The bound unit is an
executable program.

• BUILD A SYMBOL TABLE — During the linking process, the
Linker builds an internal symbol table used for resolving
external references. You can define a symbol within an
object unit or by using Linker directives defined later in
this section.

"" > " " » 5 fct ̂ »: •*" ^

W 6-1 CZ15-00

» PRODUCE A LISTING ~ The linker listing has two parts, a
dynamic part and a static part.

- The dynamic part is generated continuously and contains
information about each object unit linked, the direc-
tives used, and a summary.

- The static part is produced in response to the MAP or
MAPU directive and is a picture of the state of the link
when the MAP(U) directive is processedo It lists the
external definitions currently in the symbol table and
the undefined external references, if any exist.

During the link process, summary information about the
bound unit is automatically output to a list file. The
format of this information is:
««<?***«*
ROOT TESTP2

* HIGHEST OVERLAY NUMBER: 2
LAF

***a*ftft*«6
* » CHMN DATA BASE: 000000 START: 000000 .F.. HIGH: 000011

ROOT TESTP2 BASEs 000000 START: 000000 . .0. HIGH: 00003F
t OVLY OVLNO I 0001 BASE: 00003F STARTS 00003F HIGH: 000060

KEY: S*SHAREABLE; F=FLOATING,° I-CONTAINS AN IMA; U*CONTAINED AN UNDEFINED
REFERENCE? ->*IN-LINE DIRECTIVE; [...J-EMBEDDED DIRECTIVE

SIZE OF ROOT AND FIXED OVERLAYS: 000060
LAST BU RECORD NUMBER: 4
«c**««<?«»*
LINK DONE
********««

RESOLVE EXTERNAL REFERENCES — The Linker resolves
addresses or values of external symbol references in
object units being linked., To do this, the Linker uses
external definitions found in the object units or declared
by the LDEF or VDEF directives. (LDEF and VDEF are
described fully later.) When a bound unit is linked, the
unresolved external references are listed at the end of
the link map,, If unresolved external references exist at
the end of the list, an error message is displayed on the
error-out file, usually the terminal.

* Each control interval (logical record on the bound unit file)
has a size of 256 bytes (128 words).

**This line only appears if common has been gathered into one
contiguous area. The -R ECL parameter was specified.

'This line repeated for each overlay.

6-2 CZ15-00

X ; LINKER DIRECTIVE CATEGORIES

The Linker directive set may be grouped into eight functional
categories described in the following paragraphs.

Specifying Object Unit(s) to be Linked ^ „ a

LINK, LINKN, LINKnn, and LINKO designate that one or more
specified object units are to be linked. Object units specified
in LINK directives are not linked immediately; their names are
put into a link request list. Once a directive has been entered
which requires that all preceding link requests are honored,
linking begins. Specified object units in the primary input
directory are linked before specified object units in the
secondary input directory; within each directory, the object
units are linked in the order in which they were requested.

LINKN causes the Linker to link object units already named in
the link request list, and then to link object units specified in

*_^ the LINKN directive in the order in which they were requested.

LINKO performs in the same manner as LINKN, except that all
embedded directives in the named object unit(s) are ignored by
the Linker. LINKnn is a special form of LINKN used to perform
selective linking.

Specifying Location(s) ofObiect Unit(s) to be LinkedC~ ~~J - — — f - ̂ " - ~ — ~— _ • f c V >»* ir I X f » V Vm M * i > n •». M lr ,- -. y^j

Object units to be linked must be in at least one directory.
The Linker searches the primary directory first, proceeding to
the secondary, and tertiary directories if they exist. When the
Linker is loaded into memory, the primary directory is the work-
ing directory, and there are no other directories. The direc-
tives used to specify location(s) of object unit(s) to be linked
are listed below.

IN is used to designate a different directory as the primary
directory.

±~s
LIB is used to designate a directory as the secondary

directory.

LIB2 is used to designate the third directory to be searched.

LIB3 is used to designate the fourth directory to be
searched.

LIB4 is used to designate the fifth directory to be searched.

LSR is used to request a list of the directories in the order
in which they are to be searched.

6-3 CZ15-00

RETURN may be used in an INCLUDE file. It acts like an EOF,-
it returns the Linker to USER-IN. Return provides a way to
signal EOF from a user-terminal. ^^

INCLUDE is used to cause the Linker to accept Linker direc-
tives from the indicated pathname rather than USER-IN. When the
Linker encounters EOF or RETURN in the INCLUDE file, it returns
to seek directives from USER-IN.

Creating a,, Root a,nd Optional Qverlay(s) ,; ,~-y$f •

START is used to specify the relative address at which the
root or overlay will begin executing when it is loaded into
memory by the Loader.

BASE is used to define relative addresses (within the bound
unit) for subsequent object units to be linked. Note that when
the lowest address of a root or overlay has been established
(i.e., an object unit has been linked), it is invalid to define a
lower BASE address within the root or overlay.

OVLY is used to name the nonfloatable overlay that follows, ^_s
and designates the end of the preceding root or overlay.

FLOVLY is used to name the floatable overlay that follows,
and designates the end of the preceding root or overlay.

CC permits a COBOL program that used CALL and CANCEL state-
ments to call overlays by their names.

1ST is used to identify the beginning of initialization code
in the root.

SHARE is used to designate that the bound unit is sharable
within the task group.

QUIT is used to designate that the last Linker directive has
been entered. Execution of the Linker terminates after the bound
unit has been created. _

FLOATB6 is used to suppress certain error checking on local -̂
common references when the -R Linker argument has not been speci-
fied. Local common references are relocated as if B6 pointed to
the base of the containing overlay.

STACK is used to specify the size of the stack area.

GSHARE is used to specify that the bound unit is globally
sharable.

SEG is used to specify that the subsequent object unit is to
be linked into one or two physical segments in memory.

. -- - . : , ' " , f • , .w - C

6-4 CZ15-00

_̂̂ SYS is used to designate that the bound unit can be loaded
into the system area as part of the system.

LINK, LINKN, and LINKO are used to specify those object units
to be linked. The order in which specified object units are
linked, and when they are linked, is determined by the link
directive used.

Producing Link Map(s)

LDEF is used to assign a relative location to an external
symbol. When a symbol is defined, its definition is put into the
Linker symbol table so that it can be used to resolve references
to the symbol during linking.

VDEF is used to assign a value to an external symbol. When a
symbol is defined, its definition is put into the linker symbol
table so that it can be used during linking to resolve external
references.

MAP is used to create a map that lists both defined and
undefined symbols.

,-. «- " * *v Z! ''." C , c* ;"_ V* "~

MAPU is used to create a map that lists the undefined symbols
only.

-V ECL option will automatically list symbols as they are
defined.

- - * : • - ftOL" •"•~."- ,<r-, ?". >.o ;«,--,. s-. , "ST tir-,

Defining External Symbols

EDEF permits definitions in the Linker symbol table to be
made part of the bound unit so that they are available to the
Loader at execution time.

OVERLAYTABLE is used to put a value definition containing the
name of each overlay and its overlay number in the bound unit
symbol table.

W'
COMM is used to define a labeled common block. A symbol can

be defined as a relative location or value by specifying the LDEF
or VDEF directive, respectively. The symbol's definition is then
put into the symbol table by the Linker.

VAL is used to specify a value definition at LINK time. This
value is equivalent to the difference between two external loca-
tion definitions.

6-5 CZ15-00

Pj^pfcecting .QjL-.PuEgj.yig, Symbpl^s)

CPROT and CPURGE are used to protect and remove symbols asso-
ciated with labeled common blocks.

PROT and PURGE are used to protect and remove symbols and
object unit names from the symbol table. PROT prevents certain
symbols and/or object unit names from being removed from the
symbol table* Symbols are protected if they identify a specified
address or an address within a specified rangei object unit names
are protected if they are equated to a specified address or an
address within a specified range»

PURGE is used to remove from the symbol table unprotected
symbols that define a specified address or an address within a
specified range, and/or object unit names equated to a specified
address or an address within a specified range.

VPURGE is used to remove a specified value definition from
the symbol table.

R^^Q^dj-ng,, ftf,ter,.,S.y,5,te,ini,.. failure ...„.,

RR indicates a sharable bound unit can be reloaded after a
system failure into locations other than those it occupied at
checkpoint*

Terminating the Linker , , . „ . ,*-»«.»ii«t -"-r -"- — „ ..._,..• •-,' ., ,- . ; •>. u , . !-|o lU,,;. >„. ,

QUIT is used to terminate the Linker. If a bound unit is
being created, execution of the Linker terminates after the bound
unit has been created. If no bound unit is being created, QUIT
terminates execution of the Linker. . . . _ • , .

Subsections that follow include full information on:

Loading the Linker -- Describes the Linker command used to
call the Linker and initiate Linker processing.

--"X
Entering Linker Directives — Describes the format line used ^_;

to enter directives.

Linker Directive Set — Provides an alphabetic listing of the
Linker directives. Detail descriptions of each directive and
examples of use are provided.

Linker Procedures —• Describes frequently used Linker
procedures.

6-6 CZ15-00

v , LOADING T H E LINKER

The command LINKER is used to load the Linker.

After the Linker is loaded, a message is sent to the
error-out file indicating the version. The message format is:

LINKER-nnnn-mm/dd/hhmm

where nnnn is a release identification, mm/dd is the month and
day the Linker component was linked, and hhmm the time (hour,
minutes) at which that link took place.

FORMATS - - , . v- ft. ,.•...'-

LINKER bound-unit-path [ctl_arg]

ARGUMENTS:

\^_^ bound-unit-path c • -^'

Pathname of the bound unit file. The pathname can be
simple, relative, or absolute and must be preceded by
a space. If the specified file already exists, the

' ' - - existing information in the file is deleted and
"• ' ;- : replaced with the new bound unit. The bound unit

- ' pathname must be specified. It may be up to 57
characters in length. The format of the bound unit
file is relative.

ctl_arg

Control arguments; none or any number of the
' following control arguments can be entered,f in any
order :

<:H path

Pathname of the device disk, card reader, operator's
terminal, or another terminal that will read Linker
directives.

Default: Device specified in the in_path argument
of the Enter Group Request command.

When this argument is specified, the prompt character
will not appear.

6-7 CZ15-00

-PT

If the -IN argument is not specified, -PT can be
specified to produce a prompt character on the user
terminal. A prompt character is issued only if -PT
is specified.

* - < v

(-COUT \list-path-name
\-COUTA (

Designate the list file. The list file can be sent
to a disk, another terminal, or a printer. The list-
path-name is associated with this list file. If
-GOUT is not specified, the list-path-name has a
default value of bound-unit-name.M in the working
directory. If -COUTA is specified, the listing is
appended to the specified file.

Error messages are written to the error-out file and
the list file. Linker error mesages are described in
the System Messages manual.

•SIZE) nn '->•<.
•SZ f • " - - - - . - ,

nn designates the maximum number of 1024-word (IK)
blocks of memory available for the Linker symbol
table? nn must be from 1 to 64. At least 1024 words
must be available.,

•*- - ~- - • '. i T
Defaults 2

!-' «t > " j

-W

Specify that the Linker work files are to be saved.

Defaults Linker work files are automatically
released by the Linker upon Linker termination.

-R ^J

Designate that a bound unit is to be created, where
all data areas defined as common are separated from
all other code. Required for sharable bound units
containing common data areas.

/-VERBOSE)
l-v f : «'.-. .

Cause externally defined symbols to be written on the
list file as they are defined. Eliminates the need
for the MAP directive.

6-8 CZ15-00

v_̂ . * " ' ' • • •'
-NOMAP . - *,.1:: -...., ̂ .,

Suppress the list file.

(-SYMBOLS _.. ',7-5 A „.
l-SYM I

* i. ""
Specify that a debugger information file is to be
created. This file is used for symbolic debugging.

? The name of the file is buname.v. This option should
- -_ only be used for FORTRANA or COBOLA programs.

Example:

- ' LINKER MYPROG -IN MYDISK>CNL -GOUT 1LPTOO -SIZE 6

This LINKER command loads the Linker and designates the
following;

^ 1. Bound unit will be a relative file named MYPROG in the
working directory.

2« Linker directives will be entered through disk file
MYDISK>CNL.

3. List file goes to a line printer (configured as LPTOO),
rather than to a variable sequential file named MYPROG.M
in the working directory.

4. The symbol table will use a maximum of 6K words of
memory.

NOTE

LPTOO must have been previously defined in the
DEVICE configuration directive at system
generation time.

*^
ENTERING LINKER DIRECTIVES

Linker directives are entered through the directive input
device. Several directives can also be embedded in Assembly
language CTRL statements. They are: LINK, LINKN, LINKO, SHARE,
EDEF, SYS, COMM, LSR, and VAL.

Linker directives consist of a directive name or a directive
name followed by one or more arguments. Each directive name may
be preceded by zero or more blank spaces. If one or more argu-
ments are to be specified in a Linker directive, the directive
name must be immediately followed by one or more spaces.

Multiple directives can be entered on a line by specifying a
semicolon (;) after each directive, except for the last directive
on the line.

^ 6-9 CZ15-00

last directive on a line can be followed by a comment; to
include a comment, specify a space and a slash (/) after the last
directive and then enter the comment. ' an,-̂ .*

FORMAT: >H

directive [^argument,] [argument2] [A/comment]

If the directive input device is "the operator's terminal or
another terminal, press RETURN at the end of each line (i.e*, at
the end of the comment, or at the end of the last directive if
there is no comment)0 There is no continuation between lines?
the values associated with a single directive cannot be continued
on a second linee

If an error occurs when entering a directive, an error
message is written to the error-out file. Linker error messages
are described in the System Messages manual. Determine what
caused the error, and reenter the directive correctly. If
multiple directives are entered on a line and an error occurs,
the error does not affect the execution of previously designated
directives. The directive that caused the error and subsequent
directives on that line are not executed.

LJNKER DIRECTIVES SET

Linker directives are described in alphabetic order on the
following pages. Examples are provided to illustrate directive
usage.

- : - ..'~ p>- - - ,.-H - .

^

i*J» »I<I1-

6-10 CZ15-00

a&&a

BASE

BASE t * -. - •*

Define the relative link address within the bound unit for
subsequent object units to be linked. At load time, all v
addresses are relative to the beginning of available memory
(relative 0) in the memory pool of the task group. When a task
group is c'reated, you specify the memory pool into which its
bound units are to be loaded.

•.f. • -''*'« '• <fc • v

Unless BASE directives specify otherwise, the root will be
linked, by default, at relative 0, and subsequent object units
are linked at successive relative addresses. A BASE directive
can be used at any point during linking to change the relative
locations of the root, overlays, or individual object units. A
floatable overlay always begins at relative 0; therefore, in a
floatable overlay, BASE can be specified only Af_t£I the first
LINK, LINKN, or LINKO directive. A BASE directive can specify a
previously used or defined location, or an address relative to
the beginning of the available memory.

If unprotected symbols define locations that are equal to or
greater than the location designated in the BASE directive, those
symbols are removed from the symbol table. ^,

*

The BASE directive cannot be embedded in Assembly language
control statements.

FORMAT:

BASE

$
%
X'address1
=object-unit-name

{*}xdef
*
*ODD
*EVEN
*X'offset'

X'offset

•.»

OV2 -

ARGUMENTS z

$

Next location after the highest address of the linked
root or previously linked nonfloatable overlay.

6-11 CZ15-00

BASE

%

Highest addressn-1 ever used in the linked root or any :,
previously linked nonfloatable overlay.,

X1address1 ' ' -" * 'nL

A one- to five-character hexadecimal address enclosed in
single quotation marks and preceded by X. The specified
address is relative to the beginning of the root
(relative 0). - ^ . - "' } : r -s. 2

•object-unit-name

Specified object unit's base address? the subsequent
rootr overlay, or object unit will be linked at the same
relative address as the specified object unit, which must
have already been linked. Furthermore, the object unit
name must still exist in the symbol table (i.e., it has
not been purged).

xdef \\±\ X'offset'l
T"

Address of any previously defined (non-common) external
symbol. If an offset is specified, it must be a hexadec-
imal integer with an absolute value less than 8000 (32168
decimal).

f
>•_'*<," ̂ T

The current address.
\

*ODD f

Establishes base address at current address, if it is
odd; if it is even, base address is converted to current
address+1.

*EVEN

Establishes base address at current address, if it is
even? if it is odd, base address is converted to current
address+lc

6-12 CZ15-00

BASE

x̂

*X'offset'

Establish base address at the next location whose
rightmost hexadecimal characters equal the offset.
(Where the offset is a hexadecimal integer of four or
fewer characters.)

Default: $ with the following exceptions:

Root - 0
Floatable overlay - 0

Example:

^

LINKER TEXT -GOUT 1LPTOO

START TEXTEN -PT

LINKER-2100-08/27/1042
L? ,

1ST INIT :

L?
LINK OBJ1,OBJ2

L?
MAP

i ->
L?
OVLY ABLE

L?
BASE =OBJ2

Designate address where execution
begins when the root is loaded.

Linker identification rressage.
Linker prompt.

Define INIT as the beginning of
initialization code.

Request that OBJl.O'and OBJ2.0 be
linked.

Cause OBJ1.0 and OBJ2.0 to be
linked, and produce a link map.

Designate end of the root, and that
a nonfloatable overlay named ABLE
immediately follows. The Linker
assigns the number 00 to this
overlay.

Subsequent object unit(s) consti-
tuting overlay ABLE will be linked
starting at the base address of the
object unit OBJ2.0; this address
can be determined from the map.
Unprotected symbols that define
locations equal to or greater than
the address of OBJ2 are removed
from the symbol table.

6-13 CZ15-00

L?
LINK OBJ5

>̂

Request that OBJ5.0 be linked.

L?
MAP

LT
LINK OBJ6

t •"*
|.w«

, Request that OBJ6.0 be linked.

L?
OVLY FOX

L?
BASE $

L?
LINK OBJA,OBJB

L?
MAP

L?
OVLY ZEBRA

L?
BASE X'llOS1

Designate the end of the above
overlay, and specifies that a non-
floatable overlay named FOX immedi-
ately follows. The Linker assigns
the number 01 to this overlay.

Subsequent object unit(s) consti-
tuting the overlay named FOX will
be linked starting at one location
higher than the ending address of
OBJ6cOo This is the default BASE
address, so BASE $ need not be
specified.

Request that OBJA.O and OBJB be
linked*

Request the status of the symbol
table and causes OBJA.O and OBJB.O
link requests to be honored, i.e.,
linkedc

Designate end of above overlay 01
and names subsequent nonflotable
overlay. The Linker assigns the
number 02 to this overlay.

Designate that subsequent object
units constituting overlay ZEBRA
will be linked starting at relative
location 1105.

6-14 CZ15-00

Vf« H». , /<•- .

BASE

L?
LINK OBJC , ̂ Object unit OBJC.O will be linked

"i" -'»-'•- starting at relative location 1105.
L?
LINK OBJD c ' " Request that OBJD.O be linked.

L?
MAP

* / t-

L?
FLOVLY FLOAT ^ Designate end of above overlay, and

that a floatable overlay named
~~ FLOAT immediately follows. The

Linker assigns the number 03 to
this overlay. This overlay will be

V x linked starting at the default base
- address of 0.

L? " " ~"~ *
LINK OBJE Request that OBJE.O be linked.

L? - •" >v " *.ffc">o' *?. -"- »h .'-<•• >:t*y I**
MAP

L?
QUIT

ROOT TEXT ' '
LINK DONE
RDY:

Figure 6-1 illustrates use of BASE directives in a bound unit
that consists of a root and overlays. This example assumes
that the bound unit being created will be executed as part of

**/ task group Al, and memory pool AA will be used by this task
group. Figure 6-1 also shows memory pool AA's location in
memory relative to the system pool and another pool. The
object units specified by the following directives are loaded
into memory pool AA during execution of the bound unit.

Figure 6-2 shows the configuration of memory pool AA at
different times during execution. Note that OBJ.C of the
root is overlayed by overlay ABLE and that overlay FOX is
partially overlayed by overlay ZEBRA. Also note that overlay
FLOAT is positioned by the Loader and is not necessarily at
the location shown in the diagram.

') / » " • <_ i. ,«>v>" •;-/• -, pi '

6-15 CZ15-00

BASE AODStSS HIGH MEMORY

RELATIVE 0 FOR ROOT

RELATIVE 0 Qf ROOT

ADDITIONAL TASK
GROUP INFORMATION

ROOT AND OVERLAY AREA

TASK GROUP CONTROL
STRUCTURES

ADDITIONAL TASK
GROUP INFORMATION

ROOT AND OVERLAY AREA

TASK GROUP CONTROL
STRUCTURES

SYSTEM POOL

OPERATING SYSTEM

MEMORY POOL
._ AS (TASK
fGROUP A2

WILL USE
THIS AREA)

MEMORY POOL
AA (TASK

>• GROUP A1
WILL USE
THIS AREA) ~.n i

LOVK MEMORY i ?.

Figure 6-1. Relative Location in Memory of Memory Pool AA

RELATIVE 0
OF ROOT

ADDITIONAL
TASK GROUP
INFORMATION

O8J2O

O8J1 O

TASK GROUP
CONTROL
STRUCTURES

OVERLAY
FOX '

OVERLAY
ABLE

>HOOT

ADDITIONAL
TASK GROUP
INFORMATION

OBJAQ

O8J6O

08JSO

08J1 0

TASK GROUP
CONTROL
STRUCTURES

OVERLAY!
ZFBRA 1

1

ADDITIONAL
TASK GROUP
INFORMATION

08JOO

O8JCO

08JAO

08J60

O8JSO

OBJ1 0

TASK GROUP
CONTROL
STRUCTURES

OVERLAY
FLOAT

LOCATION
1105

ADDITIONAL
TASK GROUP
INFORMATION

08JEO

OBJDO

O8JCO

O8JAO

08J6O

O8J5O

08J1 O

TASK GROUP
CONTROL
STRUCTURES

^

Figure 6-2. Overlays in Memory Pool AA

6-16 CZ15-00

CO

CC (CALL-CANCEL)

Place each overlay name and its associated Linker-generated
overlay number into the bound unit attribute table so that the
COBOL program can call/cancel overlays by name. This directive
is used when linking COBOL programs that contain CALL/CANCEL
statements that invoke overlays.

To support the CALL/CANCEL facility, two object units are
required? ZCCEC.O and ZCCECO.O. ZCCEC will be automatically
linked into the root, with ZCCECO linked as an overlay. These
object units require only the CC link directive.

The CC directive must be specified before the first LINK,
LINKN or LINKO directive in the root, and cannot be embedded in

v, / Assembly language control statements.
^ v * * »

FORMAT:
-'}'.": ' . --•»(•< ^ ,', ' • j *i < .,' » - 1 -

CC •' - ' - ' : ;•»«:">*

6-17 CZ15-00

COMMON

COMMON

Define a labeled "common" area of a specified size. It may
not be embedded in source code.

FORMAT. ' * ' " ***»''

(COMMON) 3 >v ->- . * f c j
< > symbol fX 's ize 1

(COMM) ----- _i :- - W;. r

ARGUMENTS:

symbol

Identifies the external symbol to be treated as common.

X'size'

Size is specified as a one- to four-character hexadecimal
number bound by single quotes and preceded by the letter
X.

6-18 CZ15-00

CPROT

CPROT ' '• . .y ? '.- ' .,-•• >i->nt> ~f *.-«,* <

Prevent specified common symbols from being removed from the
symbol table.

This directive cannot be embedded in Assembly language con-
trol statements.

FORMAT: . ^̂

CPROT symbol , •-••: . - , ; • . , - . • < • -: t

ARGUMENT:

symbol

Name of the external symbol that is to be protected. The
symbol must be specified in the COMM directive or defined
as common during Assembly or compilation.

w

.••<.

6-19 • CZ15-00

CPURGE

Remove an unprotected common symbol from the symbol table,

FORMATS ' -,c.J5.-v no.-- - - - •

CPURGE symbol
H "l *C Jv . s - ' "T

ARGUMENT? 'ic

symbol ' " :

Identify the external symbol to be removed from the
symbol table. The symbol must have been defined as
common.

"• ;«",3

^

6-20 CZ15-00

3 _. s

^
EDEF

£D_EE

Make a symbolic definition available to the Loader at load
time.

When EDEF is specified, the symbol's definition must already
be in the symbol table.

Secondary entry points of bound units, whose code is to exe-
cute under control of a task, must be defined in an EDEF direc-
tive. This includes secondary entry points of overlays and the
root entry point when it will be explicitly used in -a Create
Group command. The start address of the root and of each overlay
is placed by the Linker in the bound unit attribute table and

-̂-x does not need an EDEF definition. The bound unit attribute table
is part of the bound unit.

If a bound unit is memory-resident, symbols (entry points and
references) can be defined by EDEF so that they can be invoked by
any bound unit loaded by the system. At system configuration
time, when the resident bound units are loaded using the LDBU
system configuration directive, these symbols are placed in the
system symbol table. When the Loader loads other bound units
that contain unresolved references, it tries to resolve them with
the list of symbols defined for resident bound units.

If the bound unit is not memory-resident, the symbols in the
attribute table of the bound unit are meaningful only as defini-
tions of secondary entry points. Although shared bound units can
be in the address space of more than one task group, the bound
unit attribute table is available to the Loader only when the
bound unit is being loaded. Unresolved references in any bound

v ^ . unit will be resolved only to symbols defined in attribute tables
^̂ of resident bound units.

The EDEF directive can be embedded in Assembly language con-
trol statements.

FORMAT?

(EDEF) '̂ • "-V^--? Vxl..'
symbol, [,symbo!2]

EF

v~ T
i.-

X SEjjj1'

6-21 CZ15-00

EDEF

ARGUMENTS:

symbol,

Any external definition comprising one to six charac-
tersc The symbol must have been previously defined? it
can name a root or overlay once the root or overlay has
been linked. If the symbol was multiply defined, the
first definition will be used.

symbo!2 " , ' ' ' '* „ ' '

Name of the symbol incorporated in the bound unit
comprising 1 to 12 characters. If symbol is not speci-
fied, the name of the symbol placed in the bound unit is
that specified by symbol .

Example; " ~* ' - ' • - • * * •

LINKER MYPROG -FT Load the Linker. The bound unit named
MYPROG will be created on the working
directory. The list file MYPROG.M is
also created on the working directory.

LINKER-2100-08/27/1042
L?
> , '

LINK A , , .„. ,, .

L?
LINKN B . ,

L?
MAP

L?
EDEF B B is a symbol defined as an external

location or value in B.O.

L?
LDEF SYM,X'1234' Assign relative location 1234 to

external symbol named SYM.

L?
OVLY FIRST Designate end of root, and names non-

floatable overlay that immediately
follows.

L?
LINK X,Y

6-22 CZ15-00

EDEP

3. 1

L?
EDEF SYM

L?
QUIT Designate that the last Linker direc-

tive has been entered. Execution of
the Linker terminates after the bound
unit has been created.

^_s

ROOT MYPROG
LINK DONE
RDY;

LINKER PROG 2-COUT iLPTOO -SIZE 2 -PT

LINKER-2100-08/27/1042

L?
BASE X'2222'

L?
LINKN W

Load the Linker; the bound unit to be
created is named PROG2. The list file
is the printer. The symbol table is a
maximum of 2K words of memory.

Subsequent object units will be loaded
into memory starting at the relative
address 2222.

Request that object unit W.O be
linked.

\~s

L?
MAP Produce a link map; in this map, it is

determined that object unit W.O
contains an unresolved reference to
the symbol SYM, which was defined in
the root of the bound unit MYPROG.

L?
QUIT
ROOT PROG 2
***BU CONTAINS UNRESOLVED REFERENCES
LINK DONE

This example illustrates use of EDEF directives in bound
units.

6-23 CZ15-00

If MYPROG is loaded into memory via an LDBU configuration
directive, when the Loader loads PROG2 the Loader will resolve
the unresolved reference in PROG2 to the symbol SYM, which was
defined in the root of MYPROGc

NOTE

An EDEP directive cannot be entered on the direc-
tive line in which the object unit is specifiedc
For examplet if the symbol TAG is defined in

- object unit A, the following directive line is not
alloweds LINK A;EDEF TAG.

'KV-. • • • OC?q

.. -j. -.'.,

4C r^.;y&-

^(i\

°E\ C ix :̂ '-u

Uy

a? v,

6-24 CZ15-00

FLOATB6

FLQATB6
, S *. <«,-' 4=

Suppress certain error checking on local common references
when the -R argument has not been used. The directive tells the
Linker that the user will manage $B6 himself and causes each
local common reference to be relocated as if the $B6 pointed to
the base of the floatable or fixed overlay containing the
reference. Normally, $B6 is set by the system to the base of the
fixed (root and fixed overlay) area, and local common references
within floating overlays would be invalid.

Before using this directive, consult with the person respon-
sible for system building and determine available system memory.

This directive must be specified before the first object unit
containing a local common reference is linked.

FORMAT:

FLOATB6 *j-«,f

. f :*sn' ~j s i * i * •

«*.*.*

• •• '. • • t.
:*, ; i,~ .

"X »,

W

6-25 CZ15-00

FLQVLY

Assign the specified name and a number to the floatable
overlay that immediately follows, and designate the end of the
preceding root or overlay. The characteristics of floatable
overlays are described at the end of this directive.

PLOVLY must be specified as the first directive of each
floatable overlay.

The Linker assigns a two-digit number to each overlay. Over-
lays are numbered sequentially in ascending order; the first
overlay is 00.

FORMAT:
:_~" ?*.. - v;; -a a •»,,-. - -.,3fc.3iv

FLOVLY name . : -? - •?:- -o--,->c- .* 3 - £ t yt.

ARGUMENTS: \, ̂c.̂

name - ~ -

Name of the floatable overlay that immediately follows.
The overlay name must consist of one to six alphanumeric
characters? the first character must be alphabetic.

Example:

LINKER BU ~PT Load the Linker and designate BU as
the bound unit name.

LINKER-2100-08/27/1042

L?
LINK A,B

L?
MAP Produce a link map.

L?
FLOVLY GR Designate the end of the root that,

consists of object units A.O and B.O,
and specify that the next overlay is
a floatable overlay named GR. The
Linker assigns the number 00 to this
overlay.

6-26 CZ15-00

^
FLOVLY

^

W

L?
LINK X,Y; MAP
L?
FLOVLY BR Designate the end of floatable over-

lay GR and designate that the float-
able overlay that immediately follows
is named BR. The Linker assigns the
number 01 to this overlay.

L?
LINK R6

L?
MAP

L?
QUIT
ROOT BU
LINK DONE

NOTE

External location definitions defined within a
floating overlay will automatically be purged at
the end of the overlay, because they cannot be
referenced from outside the overlay.

A floatable overlay must have the following characteristics:

1. External location definitions in the overlay are not
referenced by the root or any other overlay.

2. There cannot be external references between floatable
overlays.

3. The overlay does not contain external references that are
not resolved by the Linker.

4. The overlay must be linked after all desired nonfloatable
overlays have been linked.

5. The overlay cannot contain P+DSP references to any other
overlay in the root.

6. The overlay cannot contain IMA (immediate memory address)
referenes within itself.

7. There can be IMA references (with or without offsets) to
locations in the root or any nonfloatable overlay.

6-27 CZ15-00

GSHAEE

G^HARE

Indicate that the bound unit is globally sharable, which
means that the program is sharable between groups and the root is
always loaded into the system memory pool* This directive should
not be used if a SHARE directive would suffice. System
performance may be affected if this directive is misused*
Floatable overlays are loaded into user space and are not shara-
ble unless overlay area tables (DATs) are used«

Before using this directive, consult with the person respon-
sible for system building and determine available system memory.

NOTE •i u
ftf

Nonsharable bound units (linked without SHARE or
GSHARE) are always loaded into the user's memory
pool.

FORMAT? :;

GSHARE ^mt

• r " - •>:• 9a:1 io &n*;. erf:?
'F '. i- .• ,. , .. ' • : : - sT'Ol!; ' '3

• ; . ~ ' v •••::• <**•. z--.~:. ^«i..:;r •-;?-. ; - ; ^vo *

. '-^.o . . / ; : • ; . ^-jfc - M i - - a o " > . I •'~ ~ ' - ' l
•'t:.:~i vne : c . r > c ; - « *.ri* vo b-

a ron aeoo
, . /6>: r i - I »f!^ -d t

»:^J>j: £i«*.X:'Xi ';.::; ?&iif>i

, ^ - ; n i&jr ioo Jonn*

v :,'* ' S3^nt?::giS7 4.MJ *^
.V.' :v-.-: vn& -jo ;oai 3ris r

•^

6-28 . CZ15-00

Sfl

\^
Of

. .

JH - r

Designate a different directory as the primary directory.
(The primary directory is the first directory that the Linker
searches for the specified object unit(s) to be linked.) This
directive permits the linking of object units that are in
directories other than the default primary directory or secondary
directory (if any). If the IN directive is not specified, the
working directory is the primary directory. (The secondary
directory is designated in the LIB directive.)

NOTE
• • f , i-,-,

The IN directive must be specified before the
v first LINK, LINKN, or LINKO directive that

' requests the linking of an object unit that is in
the specified directory.

The specified directory remains the primary directory until
another IN directive is entered. If the primary directory is
changed via an IN directive and at a later time you want the task
group's working directory to be the primary directory, enter the
IN directive and omit the pathname.

FORMAT;
- -' i * M io

IN [path] ;

ARGUMENTS:
* *-.'

[path] - --. .-c • -~ " yt
- - r1 " * <_ r. ,

Pathname of the directory being designated as the primary
V y - directory. The pathname can contain a maximum of 57

characters. A simple, relative, or absolute pathname can
be specified (methods of designating pathnames are
described in Section 3 of this manual). If path is
omitted, the working directory becomes the primary
directory. \.j

"- : '*<**
NOTE

The IN directive can not be embedded in Assembly
language control (CTRL) statements.

6-29 CZ15-00

IN
-N

Example 1:

IK "DIR>PRIM tti

This directive
directory.

Example 2 s

designates that "DIR>PRIM is the primary

LINKER OUTPUT -PT

LINKER-2100-08/27/1042

L?
LINKN X

L?
IN 'NEW>PRIM

L?
LINKN A,C

L?
IN

L?
LINKN Y

L?
MAP, QUIT

Load the Linker; a bound unit named
OUTPUT will be created on the working
directory.

•A: i

Request the linking of object unit -̂̂
X.0,° X.O is in the working directory.

Designate that "NEW>PRIM is now the
primary directory.

Request the linking of object unit
A»0 and C«0 in the primary direc-
tory* ~NEW>PRIM>A.O is the pathname
of A.O and ~NEW>PRIM>C.O is the path-
name of C.O, as expanded by the
Linker.

Designate that the primary directory
is now the working directory.

'~~\
Request the linking of object unit j
Y.O, in the working directory. ^^
WORK>CURR>Y.O is the pathname of Y.O,
as expanded by the Linker.

6-30 CZ15-00

^

^
IN

ROOT OUTPUT
LINK DONE

This example illustrates use of the IN directive in conjunc-
tion with directives that request the linking of object
units. Assume the primary directory is the working direc-
tory, whose relative pathname is WORK>CURR; object units X.O
and Y.O, are in the working directory. A.O and C.O are not
in the working directory. _„, .

^ ff -1 •5 V '.',

'!?*'„_ '•• f, *t -" ».fc.

6-31 CZ15-00

INCLUDE

Accept directives from a file other than user-in or the file
specified in the -IN ECL argument. When the Linker encounters an
end of file or a RETURN directive in the file specified by the
INCLUDE directive, it again seeks directives from the previously
active file. If used, the INCLUDE directive must be the last
directive entered on a line*

FORMAT:

INCLUDE [path]

ARGUMENT;

[path]

Pathname of the file from which the Linker directives are
to be read* A simple pathname can be up to 12 char-
acters in length,- an absolute pathname can be up to 57
characters in length.

Example?

INCLUDE iREADER

This directive causes the Linker to accept directives from
the card reader.

NOTES

1. The directive file specified by the INCLUDE
directive cannot contain an INCLUDE directive.

^ x

2. The INCLUDE directive cannot be embedded in ^j
Assembly language control statements.

6-32 CZ15-QO

x̂
1ST

MUAU

1ST O^

Identify the beginning of the initialization start address in
the root. Initialization code is to be executed once,
immediately after the root is loaded at system boot time. After
the initialization code is executed, its space can be made
available for overlays. The 1ST directive must be associated
with an LDBU directive that specifies an Initialization
Subroutine Table (1ST). LDBU, a CLM directive, is explained in
the MOD 400 System Concepts manual. 1ST does not execute unless
the bound unit is specified in an LDBU directive.

FORMAT s

1ST

IT
external symbol

• 1

4 ,ARGUMENTS s * ' '
*

external symbol

Symbol specified by label in 1ST section of LDBU.

NOTE

The 1ST directive cannot be embedded in Assembly
language control statements.

w , ' ~, ~ ~» • '•„
i '

^ ~i
ir .

6-33 CZ15-00

LDEF

LDJLE

Assign a relative location to an external symbol. A symbol
should be defined only once, either as a location or as a value.
When a symbol is defined,? its definition is put into the Linker
symbol table so that it can be used to resolve references to the
symbol during linking. When a symbol defined as a location is no
longer used, its symbol table entry can be cleared by specifying
the PURGE directive. PURGE has no effect if a PROTECT (PROT)
directive was previously specified.

FORMAT:

(LDEF)

UP ;
symbol,

$
%
X1address'
sobject-unit-name

xdef G±| X1 off set8]

?r,

ARGUMENTS s
. i> ' ' *3i ~f

,•*»/ l; ,•»'_!£

One to six alphanumeric characters.

Next location after the highest address of the linked
root or previpusly linked nonfloatable overlay.

Highest address+1 ever used in the linked root or any
previously linked nonfloatable overlay.

\J

X1address1

Hexadecimal address comprising one to five integers
enclosed in single quotation marks and preceded by X.
The specified address is relative to the beginning of
available memory (relative 0) in the memory pool*

6-34 CZ15-00

LDEF

=object-unit-name " ' jtf*-, . ••.

Specified object unit's base address,

xdefl± X'offset1]

Address of any previously defined external symbol. If an
offset is specified, it must be a hexadecimal integer
with an absolute value less than 8000 (32768 decimal).

The current address.

NOTE

The LDEF directive cannot be embedded in Assembly
language control (CTRL) statements.

Example?

LINKER BOUND -PT

LINKER-2100-08/27/1042

L?
LINK A, B, C

L?
MAP

L?
LDEF SYM, X'12341

L?
OVLY FIRST

L?
LINK R; MAP

L?
LDEF QUIZ,=C

L?
OVLY SECOND

Load the Linker and designate
BOUND as the bound unit name.

SYM assigned relative location 1234.

Designate end of root and name first
nonfloatable overlay.

QUIZ assigned base location of the
previously linked object unit named
C.O.

6-35 CZ15-00

LDEF

L?
LINKN Dj LINK Pf MAP

L?
LDEF NEW.SYM

L?
OVLY NEXT

L?
BASE X'1300'

L?
LINK W,X? MAP

L?
LDEP ANY,$

L?
OVLY THIRD

L?
LINK Z

L?
LINK Q? MAP

L?
LDEF FIND,%

i %

TV ~ " *< '-O

NEW assigned same location as the
symbol SYMr which was defined in the
root? i«e<=, NEW is assigned relative
location 1234.

. ** * i j „ •*-

•>£•: L ', ^i Y

- « , - -1 r T

ANY assigned next location after
highest address of the previously
linked nonfloatable overlay, SECOND,

,- , A >* ;„

FIND assigned next location after
highest address of the root or any
previously linked nonfloatable over-
lay. (A previous nonfloatable over-
lay was named SECOND; if it ended at
location 1566 and this is the high-
est ever reached during the linking
of object units constituting this
bound unit, FIND would be assigned
location 1567.)

J

6-36 CZ15-00

LDEF

L?
QUIT
ROOT BOUND
LINK DONE
RDY:

This example itlustrates the use of each format of the LDEF
directive.

6-37 CZ15-00

T T"D At?LtitS \JR>

LIB or LIB1

Designate a directory as the secondary directory. This
directory permits the linking of object units that are in
directories other than the primary directory., If an object unit
specified in the LINK, LINKN, or LINKO directive cannot be found
in the primary directory, the Linker searches the secondary

If LIB is not specified, there is no secondary directory; the
Linker searches only the primary directory.

The specified secondary directory remains in effect until the
LIB directive is respecified with a different directory name, or
without any directory name.

NOTES

1. The LIB directive must be specified before the
first LINK, LINKN, or LINKO directive that
requests the linking of an object unit in the
secondary directory.

2o This directive cannot be embedded in Assembly
language control (CTRL) statements.

FORMAT:

LIB [path]

ARGUMENT:

[path]

Pathname of the directory being designated as the second-
ary directory. A relative or absolute pathname can be
specified. (Methods of specifying pathnames are
described in Section 3.) If path is omitted, no search
of that secondary directory is made.

Example 1:

LIB DIR>SECND

This directive designates that DIR>SECND is the relative
pathname of the secondary directory«

6-38 CZ1S-00

LIB OR LIB1

Example 2:

LIB DIR>SECND Designate that DIR>SECND is the relative
pathname of the secondary directory.

LINK B Request the linking of object unit B.O;
s ;,.?fn; .toe'5 B,0 resides in the primary directory.

LINK A Request the linking of object unit A.O;
A«0 resides in the primary directory.

LINK W 7,0 -- Request the linking of object unit W.O;
WoO resides in the secondary directory.
DIR>SECND>W.O is the full pathname of

... W.O, as expanded by the Linker.

This example illustrates usage of a secondary directory that
contains unit W.O, Y.O, and Z.O. ^

All specified object units in the primary directory are
linked first; then all specified object units in the secondary
directory are linked, and so on. To cause object units to be
linked in a specific order, the LINKN or LINKO directive must be
used.

6-39 CZ15-00

LIB

. * - o,i"sx3i

Designate directories as the third, fourth, or fifth
directory<= If an object unit specified in the Linker directive
cannot be found in the primary or secondary directory, then the
third directory is searched and so on.

The specified directories remain in effect until another
LIB2, LXB3, LIB4 statement is given.

•x -*1'"<:.:
NOTES

1. The LIB2, LIB3, LIB4 directive must be speci- '-•>
fied before the first LINK, LINKN, or LINKO
directive that requests the linking of an ^J
object unit that is in one of these
directories.

2. The LIB2, LIB3, LIB4 directive cannot be
embedded in assembly language control
statements.

FORMAT?
i o ~-j "Mi ,1 ,1 v :T. -i „» $1

(LIB2) • . , .
< L I B 3 > [path]
ILIB4)

ARGUMENT s

[path]

Pathname of the third, fourth, or fifth directory to be ,
searched (if LIB is specified) if the object unit speci- -̂'
fied in a Linker directive is not found in the preceding
directories. A simple, relative, or absolute pathname
can be specified. If path is- omitted, the specified
directory (2, 3, or 4) is removed from the list of direc-
tories to be searched by the Linker.

6-40 CZ1S-00
£,-_?. ^~S

»K1J

LINK
t3T

LIM

Link one or more specified object units. Each specified
object unit name is put into the link request list. The object
units are linked when the first subsequent directive other than
LINK or START is encounteredc When this occurs, the Linker
searches the primary directory and links the specified object
units in the primary directory-in the order that they were
requested. If all of the object units are not found and there is
a secondary directory, the Linker searches the secondary
directory and links specified object units found there, in the
order that they were requested* If there is a copy of an object
unit in both the primary and secondary directory, the copy in the
primary directory is linked.

The order that object units are linked is important for the
following reasons: (1) it determines which object units will be
in memory when parts of the root or overlay are overlaid (2)
within the root and each overlay, the first start address encoun-
tered by the Linker (either in an END statement or a START direc-
tive) is used as the start address for that root or overlay.

During each execution of the Linker, at least one LINK,
LINKN, or LINKO directive must be entered for each root or over-
lay. Multiple LINK directives can be specified within a single
root or overlay. If LINK and/or LINKN and/or LINKO directives
request that the same object unit be linked more than once within
a single bound unit, only the first request is honored, unless
the object unit name has been purged.

LINK directives can be embedded in Assembly language control
statements; the specified object unit(s) are added to the end of
the current link request list. See "LINKN Directive" and "LINKO

V^ Directive" for the order that object units are linked if there
are embedded LINK directives and/or LINKN and/or LINKO
directives.

FORMAT:

LINK o b j - u n i t i [, o b j - u n i t 2] . „ .
LK

^ 6-41 CZ15-00

LINK

ARGUMENTS:

obj-=unit <siL14

Name of an object unit to be linked. An object unit name
consists of one to six characterst each of which must be
an alphanumeric character or a dollar sign ($), a period
(.), or an underscore (_) . If multiple object units are
specified, they are linked in the most efficient order.
The first character must be a letter or a dollar sign
($).

NOTE

For a COBOL segmented program, an object-unit name
can be up to eight characters. See the Advanced
COBOL Reference manual for further details. ^J

'3.1, '&C

V «if I-. "s^y .' aj ; at*

1C .
-:.-t

>̂

"'IMfcC'i

6-42 CZ15-00

LINKN

LIMN

Link object units in the exact order specified.

If directives designate that an object unit be linked more
than once within a single bound unit, only the first request is
honored, unless the object unit name has been purged.

During each execution of the Linker, at least one LINKN,
LINK, or LINKO directive must be specified for each root or
overlay,,

Multiple LINKN directives can be specified within a single
root or overlay,,

LINKN directives can be embedded in Assembly language control
(CTRL) statements; the specified object unit(s) are added to the
end of the link request list and the library search restarts at
the primary directory.

FORMAT: '-t

(LINKN)

UN)

*
obj-uni t , [,obj-uni t 2]

[I

~<PI -,- •.- ^.c*

w
"i I , -J-L >»<•'.? n. »c . J iw

:£ '.

v« ir. ^n - 'w , Io5 dfli n;

- ? ^o , s

I ^fi J i i w

q

6-43 CZ15-00

LINKN

"̂

y

ARGUMENT?

obj-unit

Name of an object unit to be linkedc An object unit name
must be one to six alphanumeric characters and must not
include a suffix; the first character must be a letter or
dollar sign ($). The Linker appends the suffix .0 to
each object unit name and searches for the specified
object unit name/ including the suffix.

O»fifF_ NOTE
^c^-'1. ; ^ i - « - - - . » /

J*1*;!" OXMIJ

For a COBOL segmented program, an object unit name
may be up to eight characters. See the Advanced
COBOL Reference manual for further details. J0*

Examples of LINK and LINKN

In the following examples, assume that the working directory
is the primary directory and LIB and LIB2 directives have
been specified.

A.O

' C P . O
D.O

E t O
*,

H.O

C.O
1.0
J.O
K . O

^ 2nd copy
of C.O

T

..1
LIB LIB2PRIMARY

Example Is

LINK A,G,K,C,F

The modules will be linked in the following order:

A,CP,G,F,K

Example 2:

LINKN A,G,K,C,F

The modules will be linked in the following order:

A,G,K,C,F

U

6-44

f A ''

CZ15-00

LINKN

:f ' :l
Example 3; ,.

LINK A,G,K,CP,F

Assume that module G.O contains "CTRL LINK B,J". The modules
will be linked as follows:

AfCp fGfFfKfBpJ

Once Linker has started to search LIB, it does not return to
the primary directory unless a new link request list is
foundo The two embedded requests were added to the current
link request list, forcing a rescan of all libraries.

Example 4:

LINKN A,G,K,C,F

Assume that module G.O contains "CTRL LINKN B,J". The
modules will be linked as follows:

A,G,K,C,F,B,J

Example 5:

LINKN G,B

Assume that module G.O contains "CTRL LINK C". The modules
will be linked as follows:

G,B,Cp

Example 6:
'̂

LINK G,D,F

Assume that module G.O contains "CTRL LINK CfB". The modules
will be linked as follows:

D,G,C,BfF

6-45 CZ15-00

LINKN

Example 7;

LINK G,D,F -
f
 «I<3SJax,*

Assume that module G
0
0 contains "CTRL LINKN C,B"

e
 The

modules will be linked as follows?
v. *> - a .,№ "erf, 3

D G
 «
 c
 « . *H^i 1 • ^>^X4 S>3 . ,w

U f V3 f £ fV^fO

In this example, C and B are not added to the current link
request list because LINKN was specified instead of LINK.

^ -\
* ! 'v

1 i "' , ts* *•

4 , ,?! '' r

: v . crt Mtc

' - ^ ^ ^'«/ ,s

1 '

» 0 , «

'̂
• t . O . ' v X5*i ,

6-46 CZ15-00

v^
LINKnn

LINKnn -

Check if the LINK directive is to be processed; i.e., allows
selective linking.

The LINKnn directive must be used in conjunction with the
VDEF directive (or a VALDEF directive in a compilation unit).
The VDEF directive is used to modify the bit setting in a 32-bit
array. The leftmost 16 bits in the array are set by the symbol
Z_MSKR; the rightmost 16 bits In the array are set by the symbol
Z_MSKU. Through the VDEF directive, you assign a value to Z_MSKR
or Z_MSKU that sets the appropriate bit "on" (a value of 1) or
"off" (a value of 0).

< via <

s Each occurrence of LINKnn causes the array to be indexed by
' nnc If the referenced bit is on (1), the link request is pro-

cessed. If the referenced bit is off (0), the link request is
ignored,,

The bits in the array are initially set on; i.e., all LINKnn
directives are processed. The array is modified by the VDEF
directive (as described above). The VPURGE directive must be
used to remove Z__MSKR and Z_MSKU from the symbol table before
these symbols can be redefined.

FORMAT?

LINKnn obj-unit,[,obj-unit2...]

ARGUMENTS s

nn

\̂ - Two-digit hexadecimal value between 00 and IF used as an
index in a 32-bit array.

obj-unitn

Name of the object unit to be verified for linking.

6-47 CZ15-00

LINKQ

Operate in the same manner as the LINKN directive, except
that all embedded link directives in the named object units are
ignored*. - - - - - , - - - , - .

i

Only the object units named are linked.

The LINKO directive cannot be embedded in Assembly language
control (CTRL) statements.

FORMATS

/LINKO\obj-unit, [,obj-unit,]...
Uo (

ARGUMENTS

obj-unit ' *' J - *• -^ f

, Name of an object unit to be linked. An object unit name
~ must be one to six alphanumeric characters and must not
include a suffix; the first character must be a letter or
dollar sign ($), The Linker appends the suffix .0 to
each object unit name and searches for the specified
object unit name, including the suffix.

NOTE

For a COBOL segmented program an object unit name
may be up to eight characters,, See the Advanced
COBOL Reference manual for further details.

î.

,,, i n i. •

«"- "> - . r* * >e - »o 3'^ t *;o ^tf.k.y'

^

6-48 CZ15-00

tfr-d

^

W-/

LSR

L££

List the Linker search rules. The directories to be searched
by the Linker for the object unit(s) are listed in the order in
which they will be searched.

The LSR directive can be embedded in Assembly language con-
trol (CTRL) statements.

FORMAT: 'r '*'" "* '

LSR

!"**:- •*... ; ••

< -=, ,->. * £, :_,nnff

I «i as ji«o

, l-*fti

*- №f

icj q&(f. oH s 1

!!»*' ; ".>S3 > .-\4.: !>;:; '/O

6-49 CZ15-00

MAP AND MAPU

MAP and MAPU

Create a link map containing: (1) defined symbols that were
not purged and (2) undefined symbols to be written to the
list-file (see -COOT in the Linker command).

The MAPU directive functions in the same manner, but only applies
to undefined symbols. Both the MAP and MAPU directives can be
embedded in Assembly language control statementsi

If MAP is specified, each defined and undefined symbol gener-
ated by the linking of object units is listed in the map and pre-
ceded by the name of the object unit in which it is located. A
map also includes the names of object units that were linked
because of embedded Linker directives? and the symbols contained
in those object units,, If the MAP directive immediately precedes
a QUIT directive, the link map will contain all the defined sym- -̂̂
bols and undefined symbols of the completed bound unit that have
not been removed (i.ee, purged).

If MAPU is specified, the map contains each undefined symbol
an.d the object unit in which it is located.

MAP and MAPU directives can be interspersed among other
Linker directives^ When these directives are encountered all
object units named in the link request list are linked before a
map is produced. Maps are useful for determining whether all
required object units have been linked, and whether all symbols
referenced in those object units have been defined.

If there are any undefined references remaining after the
last object unit is linked, a MAPU directive is automatically
generated by the linker*

FORMAT: '^j

MAP
MP
MAPU
MU

Defaults No map produced.

A full link map (a map generated by the MAP directive) com-
prises the following sections:

START Address at which execution of the root or overlay
will begin; specified in the START directive or in
a linked object unit.

6-50 CZ15-00

MAP and MAPU
«*

LOW

HIGH

$COMM

CURRENT

EXTERNAL
DEFINITIONS

^^

I
Lowest memory address at which the current root or
overlay was based.

Next location after the highest address of the
current root or overlay.

Address assigned to COMMON for the bound unit. If
no common defined, this does not appear on the MAP.

Next location after the current address of the root
or overlay (when the map was created).

All external symbols currently defined in the sym-
bol table. Unprotected symbols defined in the root
or a previously linked overlay will appear in the
map unless the symbols are purged via a PURGE or
BASE directive. Symbols erroneously defined as
both a value and a location will appear twice under
EXT DBFS.

I * -
All references to undefined symbols contained in
the object unit root and overlay(s) are listed in
the map.

For the root and each overlay containing undefined
symbols, the following information is presented:

« Root and overlay(s) containing references to
undefined symbol(s)

• Relative address of the last reference to the
symbol

If an undefined symbol is referenced in multiple
overlays, the symbol will be listed in the map more
than once.

If there are external references in both P-relative
;; £ . and Immediate Memory Address forms to an undefined

symbol, the symbol is listed twice under UNDEF.

Figure 6-3 illustrates the formats of maps generated by the
MAP and MAPU directives.

UNDEFINED
REFERENCES

NOTE
*
*

^
A
t

*,
t «

The date and time that the bound unit was created
is automatically put in the bound unit's attribute
section.

^ 6-51 CZ15-00

MAP and MAPO

'•'JBS*

*6

ce IT ct
U «-» fVS
e o e
o ® o
o c> o
o o o

>>£
« >•
c-»eo
X, 8
-e
o
t a£
e i

6

PI «J

J «-•
I -I

O 03
o e
9
O
O 9
3 e

«
«e ©
co •»
C «
tj 3"
cs> o

f»o
o

cvs
«c
^

z
o
o

<V t&t
»«•x
O> 2

43
(V

Sffl
«_s

Z
V
«e
99
O
u
C5

f

r** «J
0 a,
1 x

Qg X
taJ 4&j
5g
Z N

«S
^«
te.
iw
A
C
O
_J
A
Z
a
j
>=
«_»
«

ac
^

sr
z
4

~tt=

I

03
(9
O
<r
a.
H-
CO
Ul
I—
A
CE
Jt

£
«

I\J
<X3

IS
•

o
c

•~}~

-is

a j

1*4
934
<*• o fu
e © K>
•v o o
& o e
o © o
•s, o e
•-e
O •• •«
e <n <n

v* o> «r>
«UJ Ul

ru IE cr
o a

t o o
X. < •<
UJ
_i rw sj1

a^ OB f^ >O
O Z O O
» UJ O O
o co o o
o en o o

*X
o ft
CJ ~ e->
_J »»= J
«» CO C

O

4> rO 1/1
O •» <V
O O 0
o e o
o o o
e c o

-o <c x
t> «j s nj
o o O f* <-e
O O tj H> oJ
o o «J <W O
o o

•«> •= CJ
TO 9)
CO 03
UJ IU
ae K f<s *• o
O O ft »* «*
o o o o o
<t < o o o

o o o
(\J 5T O O O
Kt •£
O O
O O fW
o o X •«
« o X «S< «-»

O »" J
00 €• tj *> O

Itl WJ

M l«>4
•-» (-9 <J
OT 9J

^f*(;';-:

«
i

vo

«
k4
3
CT>

=r
k
J<

«>
CE
3£
an

FM

o
>

«
o

*X

t- C9
(E O
< K
t~ m*
CO >«•

IU OE 5T
05 =* 2
« >- »-t
is <re j

Oo

4
z

£E
A
K
UJ_t

CB
Z
UJ O «K
«O O ee e»
co^-«««ujuj<->'zoiyr^
« * | S 9 N X 2 G > « » *
A < ^ > M t ^ £ Q O O O
«o « v < W (w o u o o o
C9 ~ CJ «l O O O
C —= —i •» c. e o
Q£ rw
a, « »• »v » •« •*
»- o3Ei^^«-«l-
«n x x o o x «
uj « « a o x s x 4 a .
>- K $ « J t J S Z O ^ K
A -v 3 a «j «o uj
(E. OD «e •= ti tJ
X « O ̂ 2
ZC'S .OOJ- l t J
_i K -« Z X <t «t
sr a, « s s u o
x t- a o a a o
< GE -» 0 tJ -J _l

(O
„«
o

It tec
ItJ UJ
o o
tej UJ

O

It
UJ
o
tt«

o
«Jt,
ttl
o
UJ

IAI»

"u u^uoa •>
' i> ' - ^ ' ^ « » , - ^ jv /J+s

» < • — •- i - ^ ^ x j ;?•».

•*t:ri 5 <* "t«. h o.-»
?c

6-52

;?-?

CZ15-00

^^

v^
MAP and MAPU

s>
«

CC
O
c
S»
e*

iw

*
>
O

U*
*V
•*»
«
S»
<?

X

*
3
5,
W

VJ

c.
IS.

>t
o

I

X.
2
O
u

X
c;

o
c
O

^

Ot
1C
(O
£
I

INI

<t \r c.
o —> <vi
c c. c
c> o o
c c e
0 0 0

<
3
O Kl
CJ ^ +~
_l I- -I
*: cr C

x
o

« rt in
o «•» r\»
o o o
c o o
o o o
c e o

af
2, ru
O f*> »-4
t> H- -J
_* er) o

x
O

K>
O
O
O
o
ff\

>
o

0}
4J
(0
E
u
O
Eh

&
(0
s
J«£
C

9
e

*
*
*
*
*
«
«
«
«
«
«
«

*
*
«
«
II

«
*
*
*
«

a,
«*
2,

«

«

*
«

*

*
«

«

«

«

«

«

«

«

«

«

«

*

*
«

«

«

C
9
e

r*
o
^̂̂
r*
o
N»
fU
«
a«-•

_i
a.
z
x-
UJ

*
*«
«
«

n

UJ O U. U.
«-! «-• r*i K>
o o o o
o o c c
o o o o
o o o o

H- •» UJ
(t •• I or
-» 3E O tt
>- O »-e O
«n _» x o
« « « «
« « « «

tk
«

JC
LJ
O

?
o
z
2
O
o
«
«
«
«
«

ft
Kt
O
O
C1

*r̂
5.
C
U

o
o
o
o

000
M »- O

o o
o o
O 3 —«
»-k It f

•V
(£ C

-J O O
a cr
x a,
>* »- «j
ui ac
« «
*

o
o
o
o
o
o

«
* -J
« aJ
* o:
* x

Nl
cr>
2 a.o

z o
»-> o

o —«

X
UJ

*«
«
«
«

£
£o
(_)
X
INI

o
ft

OL
£
X
UJ

«
*

fU -« O
M •« »•«
o c o
o o o
o o o
o o o

(V

r —S fw >-.
O •- -I
U CO C>

U

o ui r*. in
O « « K»
o o o o
o o o o

o o o o o
•10000
o
o «•»
o ~+ t-
«-> *• O' s»
r •< <t •-•

cs o H- or _i
O U CO UI O
a
a.
H- U
tr

* t

*'
*«

*«
CO
UJ
U
z
UJ
or
UJ
u.
UJ
<£

a
UJ

^
r\j
o
o

nj
>
<

O

>

4J
C
o
u

CO
I

vo
<U
u
3
a»

A
J

«

*
*«
«

000
^« — O
O O
O O —«
o o >-

ts >
-too
a. or
z a. >
x i-
uj ac
* «
«

*£--£

6-53 CZ15-00

MAP and MAPU

5£ 6
O UJ
Z 13
£ Of
O 3
u a,
K M
U SC

«»O
C» №

iQ It*

%
«v
V

«w

At

1*

UJ
IA
«•«
O
O

O
O

a
«•

<c

«
W»

V

•«n
j
i
o
O !

41

i
£

!
**

«
R

0
0

T

O
R

O

V
E

R
LA

Y
N

A
M

E
;

O
H

H

E
A

!
•R

E
N

C
E

f
V

«V
A

L
U

E
R

E
FE

R
E

N
C

E
S

P
«P

R
O

T
I

-** *A0

taJ k.
Z U
< acz i-
M Z
-t Ul
«-z
fe U

u
*-> <
u _l
toll*
"5 CO
ffi IX

00

« o
•w
>•

g

« «

* «
« «
« «
« «
« «

« «
« «
« «
c «

« «
«: «

« «

« «

« «

« «

«

«

«

«

«

«

«

• 1

«

«

«

«

«

«

«

«

K
E

R
 D

IR
E

C
T

IV
E

S

Z
3

r~
0*

>-
«
-J
»
o
^_

^_l
>•
0

A
t

-s

1.
o
•

C9
0
ec,
a.^>
oe
z
VJfe
2
^«
=J

A
(

JL
E

R
>

R
T

P
R

O
S

.O
O

.O
)S

F
J

}E
M

B
U

fi
-0

2
0

0
-Q

7
/i

&
/®

8
0

«

6
C

0
8
6

M

Q
I

)0
0

3
3

A
D

D
R

E
S

S
!

Q
O

O
Q

O
O

)0
0

6
«

A
O

D
R

E
S

S
l

0
0

0
0

1
2

[Z
E

8
9

0
0

0
3

2
A

D
D

R
E

S
S

^
0

0
0

1
2

C
iZ

E
«

0
0

0
0

9
6

A
D

D
R

E
9S

S
O

O
O

i^
E

[Z
E

s
0

0
0

0
3

2
A

D
D

R
E

S
S

!
0

0
0

&
F

4
:

C
O

M
M

2
0

0
0

0
3

2
C

LC

Q
M

M
S

»
t«

ti

X e - * > 0 0 « 9 5 B 5 1
ibi © «e '
0S © «0 OB

«65 »-" « UJ UJ <s< I <M O «
« e p ^ N X S T X O I kA o*-**-! x o a: o -«
«rj o«rs«3ouoo^
ts •» tj -J w o oC w «j w j e o
OE O
A, 9 o « (V « e i o n fU
>=• <«xr2^a : *«ac
fi •»-*-f-ior>i«'*
uj « o o z z ^ x a
l°° O U U 7 X 2 O O
A %t C3 O Q U J
a An •"• ten ff S 4 1 Hv^ •» •» -̂# ^# \JI

S£ »e 0 2 Z
2>XOO^«J ,J iU tJ
_j •*' * X X «c « «r
V ^ ^ X X L J U U
Z ^ ' O ' Q O O O O
« O -» tJ <J ̂ «J =J

•l̂ *

c
c^

<

^

f

x^,

ci
7S

r>

£
Z

u/
ẑ
0

*=.

v4

O
^c

z
»•<
«l
A
1

|

t-=
•*«
<
•»•

«V
O
3£
Z
c-<
.J

A
1

Jr

»

If-

?x>

V,

, 1
o
WS
«>
K
*>
9
>•»
«»

%
«
er
*->
•3

k&,
It!
O
«t

A
t

)5
3

)
iE

M
B

L
E

R
-

2
.1

*0
1

/0
9

/0
8

0
8

G

C
D

S
6

M
QI

i
.̂̂ w«

O o «n
t O •«

№ 0
Z ««
i-« •
»*•> lA
A ni
>•» 0 ••
K 0 **
•» •« »*\
Ik 0 M
P4 ni •«
A <r»
d <M ^«
O » o
=J V

A f^
Z 0
0- V
J UJ «l
>> z «
U w <*

< -̂ -«

IU
z
»-:

^_
«M

N

^
Z
»-«
J

»
£

£

V*ff

^H

m
O tf»

_. ^bv ^y
l&i 0
Z o
»-« o
h- «-»
•«
*t
A
HO 0

K 0
«-s ««
Ik, O
ise iv
A <»
o nt
o •>
-J
A
Z US
o z
_| >=s
>• ^=
o «
< N

1 f
9 -̂Z a
o •**m J

1 -§ i.,. .,,j.
« 7
* *«• «,
« 9«* - 2,
• 5
o fc

e
«4

I
A

!%>

5 *

Ift M
• tn

•O 0
m o
«• 0
m o
0
»•
o '

Ml
9> Z
«« e-»
V 1-
<v
o
N»
IM
9
»•

/^s

^ ^

6-54

i«-d

CZ15-00

^_x

0^ '

MAP and MAPU

CD
O
o
o
o
o

E
£
O
<_)_l

«A

X
O

«C IT
O «•«
e o
o o
o o
o o

i w
cj sr
_J H-
W 05

X
w

u.
us
o

A
I

A
1

« * «

* * *

* * *

* * *

* * *
« «

* *
* a *
* «« *
« 2 «

« «

« «

« « «

« * «

« « *

« « «

* « *

^>
e

g-
O
AC

CO
!f
O
04

r»
o
X.
i*»
o
V
fit
<c
rt*. ,

>

§
E
O
U,

1
p
s
oe
o
Ik

2

i
IU
(E
a
a
<

o
ut

P
z
8
o

i$
UB

i
Ul
OE
0
a
<

«
« » *

* » l
* * 0>

•»

0
l««
K-
1-4

Z
M
U.
u>

o
a
o
o
o

£
z
o
tJ

X
u

(U

fU
z.
z
a
u

X
CJ

UJ
in

M

(M
r.
z
o
u

in

•» * ,*

* * »•

U. 00 «
ft r- »-
o o o
000
000
o o o

* 8

a.
z.
X
Ui

at
«*
H-
m
«
«

z
*• UJ

•• i tr
s o a
o »•« o
_j i o
« « «
« « «

«
u
o
_j
OD

T
£
O
CJ

*«

*«
«

O
000
•- «* o
o o
o o
o o -<

ts o
_i o o
a, K
z a.
X H- (_>
UJ (T

« «
«

o
u

X
o

u
ru

u. u. o
Kt K» O
O O
O O ^4

o o z
«-» r* «r

O

— U

> o
o •

« *
«

X
u

f\l
fart

«
* _l
« UI
« a
« x

Nl
9)
z a.
a

f o
—« o
u. o
UJ O
o o

o

z z
«^ r»
ui u
i- x
X NJ
IU a.
*
J » X

«
«

« r*>
O> «« (0
00 4-1
O O <0
o o S
e o u

O
.-> Cu

« s-O ro «J
U H- S
-*« ^

x e
O -H

IV —
»*»-• TToo *i
00 C
o o O
SS o

(M
Z
Z IM
0»-
U CO

o ui
o «-«
o o
o o

o o o o
-« -» o o
o o
O O «4

z <
to o i-

_l O O CO
o. a
z a.
x»- <_>
LU a:
« «
«

m
I

vo
a>u
3
O>

»5-&

6-55 CZ15-00

MAP and MAPU

e
at

K»
•»»

0

tfl
Ai

•»

AI
Mt

*

j-

© «e
««a ©
© ©
® O
©
O

It*
>-

«>s ««
e-J ,J
«S 2»
0 0

„

»*» lf»
«•« KS
0 0
© 0
® 0
0 O

s»
0, «•«
OE _l
Ul O

U,
Kl
O
O
O
t~»

«•*

>>

<

-J
•»

0

«
«

=y
u,
«4

0
0
O

m
z
X
O
«J
~J

X
O

ly
№
«•»
O
6
©

3E
£
O
0
J
•t

X
SJ

u
fU
«•*

0
-U, 0
KT 0
0
O «•«
0 X
«t •*•

O
u
_i

0 >€
0 U

«

«

r*V r«\
tr> IA
o o
0 G
0 O
«•» *^

UJ
s

U t-4

X »-
(-< •**
*- l»̂

« «

w
nt
&
0
@
o

<
9
»-
03

KS
IT)
0
0
0
o

k(
X
t*
»—

*k

e
«
« .
« *
«
«
yj

g
IU
oc
Ul
u.
Ul
ft.
o
Ul
z
»-«
>e
Ui
o
2
Z>

«
«
«
«
«

0
0

3
1

V

O

V
L

A
Y

«
0

0
0

0
3

9

o
@
w
>•
««
=*
>
o
>

O'
«v
o
0

000
•« «•« o
o o
O 0 (%i
o o >-
«-> <r» «r

J
19 >

-1 O O
a. CE
x a= »
x *-
u* OE

« «
«

O
V

E
R

lA
V

N

A
M

E
s

O
H

H

E
A

D
IN

G
?

C
B

C
O

M
M

Q
N

LU
E

H

E
F

E
R

E
N

C
E

?
P

sP
R

D
T

E
C

T
E

D
f

X
«P

U
R

G
E

D

C£ •«
0 =*> 1

It
»= •»
o
o «*.
ft Ui
n o
* 2« Ul

K
<% Ul
UJ U.
£ U
«S £E
Z

»-
UJ Z
^ Ul
«-» X
u, w

u
K= •«.
U _t
i»« n.
•̂ to
(E •-»
O Q
11 U
« o
•c
>=
Ul
X

« «
« «
« «

« *
« *
« «
« «

« «

« *

« «
« «
46 »

« «
* «

« «

* «
« «

«
«
«

«
«
«

*
«

«

«
«
«?

«

«

*
«

«

3

1

A
q

>
t
J?o
A-
i

sJ.
#
Jr

-^

3
a
<*
x
A
g

^

">
<

* «

« «

« «

« «

« «

«

*
« a=
« •«
* 2

«

«

« «

« «

« *

« «

« «
^

J
«

«

«

«

«

«

«

«

«

«

«

«

«

«

*

*
*;

9
•

*O
M

«5
s»
O
^»

r̂ >
o
%>
»>=.
o

f̂tj
CO

*«=<

J

_l
a,
a:
X
U!

K9

-' ^

*

*
* If
< ^

V

in u.
sr m
0 O
0 0
o o
O 0

»c

««

t-
Of •«
•« X
»~ 0
03 „»
« «
« «

* »-

09
4J

U

2

1
J£
e
•H
iJ

•

44

î̂

«

1.
«»<
fld

«
f-
0
o
o
0

•e
X
ts
»°«
I
«
«

,

-

X

/"r

<&,

-"J

ce

A
<

6-56 CZ15-00

v^ MAP and MAPU
*j

«?*• **-?t
•9

-k.

«

*»
it-

H

-Bf

I?**1

;*
V
C
V..

-

-
«
!>•
o
e
o
o

••
*•
9
in
ac
at
3
u

*

«
«
*«
«
w
tu
u
z
IU
ce
UjJ>

u.
Ul
a
c
UJ
Z
**M
UJ
C
•£
rs
«
«
«
«
«

»•
»«
o
c
o
o

a
*>
«
_!
>

^
»

VC

K»
&
O
e

•«. a ^

fO

«̂
_J
>•
C

>

A»
^^«\i
o
o

O 0 O_ «_ c

o o
e c <M
o o >•
^> «-> «

_)
e >

_i rs o
Q. a
i a. >
X t-
Ul K

« «
«

: <.
•> a'
i c

•sb

^1U X

•*~ c.
•J> UJ
<» t=-
« O

c «*
« —U. C
r T

a
r u
c. &
ft «*

Ul UJ
7 U
<* r-
2 UJ

a:
> I*.'
i u.
«U bJ
or «
lA,
> aJ
C O

J
a «
3 »

n
>-= •>

3 •»
X UJ
II U
« z
« UJ

or
•a, UJ
UJ U.
£ UJ
4 a

*-UJ 'Z
_»UJ

>-> r
U, It,

u
»- «.
u -1
1.1 n
-> <n
a> 1-1
o o
n n
« A
••
>•
UJ
x

« «
« «
« «
« *
« «
* «
« «
« «
•e «

« «

« «

« *

* «

« «

« «

« «

« «

«

«

«

«

«

«

«

«

«

*
«

«

*
«

«

«

«

t
•»
«s

? |
fo
1C
O

-̂•5

->

S
-*t
C»
,f
idsV«

OB

•c
"

Q
N^

-1
O IM

^•- at
u
UJ UJ
1- O
O or
Of =>
a. a.
A A
1 1

*!
«*«COT4 V

* *

» *

* »

» •!!•

* S

7

»

* A

A Jpr

4 £

<

4

n 9

•t, »

* i
r<»
«•*
_»
0

UJ
m
«
33

A
1

«0uc*>

»

*

*
4

»

»

n

K

j-

»

*
«

>

*
rvj
>•
<
i

>
c>
>-
-1
>
o
A
1

1

!

wq

e
•

cs
o
a
a.
»<.
cr
o
*•
7
fm

_l

A
1

i-: I b? i it> 5 o

^
-i

«
\$

i\
tt

jc

o
t*

 w
^o

»<
»o

X
fl9

1
I

«
C

O
S

»
t̂«

li€
9

t?

.t
*.

9
0

0
0

0
3

2
3

s
0

0
0

2
2

6
3

S

0
0

0
2

5
8

3
1

0

0
°
3

2
0

a

^
-
_

_
_

C

L
C

O
M

M
1

0
0

0
2

2
6
 C

*'
»
L
C

a
'«

|f
 t
*
|i
»
8

o- c o co er> «r
O O O UJ Ul UJ

C v o o Q. a; a <\J
• •" O O, ̂ fO

•~ o ~ ~ c o o o
o i m co 4 <t < o
• « «O CO O

19 « UJ UJ IM <f <>J O
c »v. <r a HI o fi
K a o o o o
a i o o o c c rv.
t— X <S < O O O S
IT UJ C O O Z'
A _t ru 9 O
tt<-»a:Ki^)~~»«Lj
UJOT o 0 'xl UJ UJ
_Jf\ iU.OOIMt^lst
<ro (Ooo>- i i— ii-"<j
Z O O 3 O O C O 0 5 C O
Ul O «
•> o •• ••

> CO *L *̂ ^y uj Ui *^ Z ^4 C9 ^9
4 » r M i N i i 3 Z o « V i

' A O- I - IWIOZOKI
co iMcnooouOoo
u •• o _j o o o
C «• _i «*• _/ o o
z rw
a «. — r v i »«««~ ru
»— o i i ^ z^ — r
m » ^ o r » r - i T ^
'aJ ^ O O Z T I Z O
H- K 1 W O Z I I C O
A v, o o o o _i
or 0 •• •• u u «J
se rv» o z -f
2 r j - " ^ co_ j_ i _ j i JL j
- (•« -«zr<<<
? _ J < B Z z:ouu
Z S ' O ' O O O O O
« O —> O <_>_<_) _l

3
(c

o
n

t)
 .

L
in

k

M
a
p

F

o
rm

a
ts

i
vo

0)
u
g
HrtV
, , 1
•̂ H

Cu

_Ti
|

6-57 CZ15-00

MAP and MAPO

e»
e
%,
«

b.
cs
<«
a

^J

o
«
o
e

<J>
O

e
e

<*
OB
O

g

K?»
«J
t

3-
oa
£

I

O

o»

?
**
*<«
I
as
3*•»«

^oS1

9 UJ
O 03

O O CD
»0 4

W
O
u
B

«>
"̂
tf*
(M

s
<v

•̂
«•
o

<«
Z
A

r*
m

a,
«
m
^
t

№. O *•>
«: CT« pf\ »̂
fe, © P<n K>
N ru -̂ <-<
A <^ ^Cs fV «-e i
O ® O we
-8 "<» N*
A Kl

2 O ^O ^v 2
j t— «\| t-e
>-!-»«) J
u» < <y
« x« ^

<3-4

O «J
C O

M ©
t=l O
« o
s +*

OS. O
•"3 <ft

u. e
rsc ru
A «•»
O Ai
O CO
_<
A
Z t~
o»=<
_s <«
>• X
<J <=«
« M

«
£L

lf» =«
e Sf
* o
ru o
•e O

o» o
o
»

* t=o

(V
o
X,
nj
«
o»

« « «
« « «
« « «
« « «
« « «
« «
« «
« a, «
* < «
« z «
« «
« «

« « «
« « «
« « «
« « «
« « «

,j 2
r. »>
y ~
j ^
»i r

•.-• *_
•f «;

*«

It

0S
z
a

«^
x
x
o
<_>

rv
e
»

K>
in

S
v

-4a.
z
x,
UJ

as
<
N-
93
«
«

O <, <<
rw in w»
o o o
o o o
o o o
e o o

z
•e UJ

«x ae
M ts oc
0«3
=J Z <J
« « «
« « «

u,
№
O «

o
it o
<J O
O o o o
_J va ort O
(O O O

O O
2 O O -t
fl «-» «% IT
X Z
r ts o
o _i a o
(_> a, a:

r a.
« X »- U
« ixi ae
«
« * «
« «

jj
c
o
o

en
I

0̂)
Id
s
cr»

•H
b

<v «-
«iv4 ^E
~ w
*« »

< "-
c ; 4-

c *
*• .A t

C
'->
**•

6-58 C215-00
* d - d

^

MAP and MAPU

»- •«
?* a
*• s
•* E

Ki IT
•* (V
o e
o o
o c
© o

IM
Kl »-i
»-» _J
№ C

z o
O UJ
X <9
Z (E
O =>
ua.
• •« x

v^y

At
9*

cv»

I
u

X
u

1f

o
9

(X
it
0)
Z

O
O
o
o

f * *
* _l

O « us
tj * a
j * x
•» N

•* A * 0)
x z a,
u o

UJ O
»-o *x
O O
o o
© o
o ©

or ««
« «=«
S- _J
0» O

jv r* «=»
1*1 »=S O

O O O
o o o
o o
© ©

<p*
IV X
Z «t
5 Q. «J
3 (T »>
«J UJ O

IS
V*

IS
o

n»
o

-̂
Ol
X

«fcO
(9 Ui
Z I-
«oo ut
« H-
UJ O
z ae

a.
O£ •
Oft.

UI UJ
X U
« z
z w

(T
X UJ
«u.

u
4J
me
u
O
Cu

a<
nj
s
J£
c

in
At *>s »
O

3

-W *
<v
<\i
o

o o o
iv ru o
o o
o o •««
o o Z
«-»«->»•

O
(V U
X _J
<c
_l — X
> O «J
o »
« «
«

z
1-3

u*
UJ
o
u
<
z
w
UJ
>-
X
Ui

*
*«
«
«

©
o
o

z
o
o
X
M

a.

o o
«« v<
o o
© ©
© ©
«-6 «-»

o
-IO
a, ac,
¥, a.
x t-
UJO£

« «
«

© u*»
© «-o
© O
© O
O O
o o

in in
ft . l\l
o o
o o
© U. U, K» r*« ©
o m KI in in o

o o o o
o o o o
o o © o

sv «-><-»«-> «~> ̂

»*w **»« »

4)
IV
(V
o

O O
«v ©

!
*
a»

»*
Vs»

u
A
4C
?«
30

-SJ
*

S W
O H-
(_J 0» O

6.

UJ »-
£ <0

a
CM

f*

m

o z
r^ •»

O
U

9
O
O~ O O

_i o s »-
> © t-1 «
O •>- FM

« « « «

I •* X
o o
•

«
«

N

«

ochi ~*
u. tn
UJ O
ex. o

o o o
o — «- o
UJ 00
Z O O ft
«4 O O >-
to «->«->.*
UJ -I
O C9 >
Z -I O O
3 a. <r

f . a. >
« X »-
« u/ ae
«
« * «
* *

ce oc
ui

K *
o >

•M> >
o
o •»
o: u
• u
« z
« UJ

ae
•K> UJ
UJ U.
•x. u<
•« a:

^Ul
•-oX
U, UJ

U
H- <
U _l
III It.
•̂ 80
OB 1-4
00
N •
* O

X
UJ
X

& J

4J
c
o
u

«n *
I

vo
o
w
3
D^

i j < -: c»-e

^x 6-59 CZ15-00

MAP and MAPU

Z O
OIU
X O
x cr
OS
«j a,m «
M X£

-• O
s r»

«.Q
OUi
Zl-
*«4O
ou*
«« I—
IUO
xcra
OK H
OOL

UJIU
X O
«* z
Z UJ

ce
>» u/
< tfc
-J Ifct
K CE
UJ

O

CQ.u
<a
€
w
O
&4

a
«S
S

.*
c

« *
« «

* «

« «

« «

« «

« «

« «

* «

« «

« «

« «

« «

« *

« *

« *

« *

«

«

«

«

«

«

«

«

«

«

«
«

«

«

«

«

«

1
' -'

*v

«
«
«
«

<r «
«n «
-i «

«
A «
« «

O
D

»
Z

F
JR

T
T

£
S

T
P

R
0

6
§

»
A

S
S

E
M

B
LE

R

,=« A
£E A CE
^ 2 ̂
^ f-i 3"
J _8 _J
» »= 5S-

X O S
« « c

X rw
s— = (B tB
at >=s «-<
0. _J _l

*
fe <

I

«
«
«
«
«
«
«
«
«
«

«

«

«

«

«

«

«

«

«

«

«.

>- *

«

•K

«
O

*A
1 «

; ,
-

« «
« *
« «
« «
« *

«
«

& *
«s «
at «

*«

« «
« «
« «
« «
« «

c;

*
-i

»

S
9

8
3

/0
7

/0
7

S

0
<

*8
|0

v.
«&

_1
a.
x
X
ua

K» O
ft «w
O O
O O
O O
0 0

«o

K-
OE <M>

-* X>- a
80 _J
« «

« *

trt -«t •

^ * «•

© «£
^ (/•(
O O
O <S
O 0
0 0

o«

2̂
•* LLJ
X a
fcS K
t=« 3
X 0
« «

« *

C'

*="

D
RE

FE
RE

NC
ES

 *
**

**

UJ
z
1-4
It
UJ
0
Z
3

«
«
«
«

*

~V

0 0

O O
O O
0 0
«•» «-»

cs
_i O
0. K
Z 0,
X »—
Ut OE

« «
«

% «Ai

•a J-
A

0
0
O

Sf

X
<
J
»
0

>

»^
O
O
O
O

Kl
>>
<tf
-1
>
O

•»

~

_l

F
IL

E

N
A

M
E

l
**

a
R

O
O

T

O
R

F
M

E
N

T
R

E
F

E
R

E
N

C
E

l
V

»
V

*

CJ
H- <
LJ _l
tot l».
"1 CO
02 1-1
a a
H N
« O

•0

>•
UJ
S£

-*.

***•
J»
s

*

't_

« «

« *

« «

« «

« *

« «

« «

« «

« «

« «

« «

« *

* *
* «

« «

« «

« «

t.

•

« 5
« §
* -*

* ?
« vo
« <u

u
« 3

0!
« -H

Cn
«

«

«

«

«

«

«

«

«

* '.i

*• ^

*

f ^.
^J

6-60

«?.-a

CZ15-00

MAP and MAPU

a
Z IA
3

f« It, «0 <*
ift »»* *- in
Ki © O O
o o o o
O O O O
O O O O

U (S » C9
»•=« »-e •-« i-»
X I I I

e M e •
• 333

Hhp • • •

• • • •

O Ul (ft Ft
O o» 9 t*
O O O O
O O O O
O O O O
•O O O O

«e as or ac
< •« « «»_»_»«,*.
03 03 03 05

O O U, O
o «* m «vt
O O O O
O O O O
O O O O
e o o o

1*1 UJ UJ UJ
09 09 09 09
« «. « «
(O CD OB (B

•~e fV
O O
O O
O O

* *

u.
UJ
o
z
3

«t 111
>

ca«-«
UJt-
•z. ci
*-< Ul
«(C
*•= e-4
2 O
O
O O
• UJ
30

O
•K.UJ

« CD
X Z
»-a bJ

•Z «=•»
< •

•
0) o

I-UJ
2 >>
O»-»
<J>-
• CJ
MUJ

<r
•K. **
(50
Z
t-t Ul

I
id

!
•

x
O 0>
O Ul
o o

z
IU

«• oe
0> UJ

tr
UlfM

|
«a

•-• o

\^
OE

4 tot
O. >>
a: o
x „
UJ »-

0>

o o
O i-e
DC Z

0}
U=
UJ
o
III

CE
UJ O
09 «-e
Z _i
3 0>

I •»»
< Q» «S
I- Z _(
< X >
O UJ O

2 >- >-
Z O -I
z o >
o a o

(M^
«t
_j
»
o

>-
_J
»
o

o_l I
u, z
m •"•
U H

A
Ofe |

Ul
-J •»
CB UJ
< U
UJ Z
fP Icl
•< OL
X Ul
0) U.
H UJ
co or

UJ
X

o - o
UJ (E 09
X UJ Ul
**«n ac
U.Z Z

3 3
oz
Z 09
40 Z

K **
t-O <:
n «» »_

« O UJ Z
* ae. CE o
* u
* u. 3
« O !t 3
« «J
« Ul H»
« IX 03 «
« l-4< «
* ««J «

« «
* UJ *
« Z «
* o *
*o «
« *
« 3t *

* Z ** »-« *
* -J «

(9

05
ac
o
ac
a

ac
ui

Ula:
UJ
X

«
«

*

to

•M
fa

V^

£^"d

6-61 CZ15-00

QVERLAYTABLE

Include the name of each overlay and its
associated Linker-generated overlay number in the set ©f
symbols passed to the Loader at load time.

FORMATS ift •«*•

OVERLAYTABLE

OE

OT
tif '.-
{**

in»
-. s

w

-*»
•3
C?

» 4»
*^tr *

**

*'

^ • f^

;».
^ *>
-a
o --*
< 5 •»

<-*. •'_ *

>* 3T- *

"•,.,•*

•c *
A
c »

*<
if,

•f

c
T

'>
x""*N

^
< jB *

V, fjF * -* M><. -*W v

A^

6-62

.?-c

CZ15-00

^

*JVO

w

v'.

OVLY

OVLY

a
<*m

Assign the specified name to the non-floatable overlay that
immediately follows, and designate the end of the preceding root
or overlay.

OVLY must be specified as_ the first directive of each non-
floatable overlay,,

The Linker assigns a two-digit number to each overlay. Over-
lays are numbered sequentially, in ascending order; the first
overlay is 00.

FORMAT:

OVLY name

ARGUMENT:

name

Name of the nonfloatable overlay that immediately fol-
lows. The overlay name must consist of one to six alpha-
numeric characters; the first character must be
alphabetic.,

Example:

LINKER BD -PT

LINKER-2100-081/27/1042

L?
LINK Af B; MAP

L?
OVLY A2

Load the Linker and designate BU
as the bound unit name.

Designate the end of the root (which
comprises object units A.O and B.O)
and specify that the next overlay is
a nonfloatable overlay named A2.
The Linker assigns the number 00 to
this overlay.

L?
LINK X

L?
LINK Y

kn-r>.

6-63 CZ15-00

OVLY

L
MAP

L?
QUIT
ROOT BU ' i
LINK DONE , ^ 70
RDY?

---.. 3 - « „ * 2* t : ' ; ̂^- - - i •*- • - • ••-

1 . ~ ' i- ^w^ t
A ^ - _ J&» ' ̂

.: iev

9" &l

']'• <? •? r

.̂ /

/ *«1J

6-64 ' CZ15-00

v_.- PROTECT
a*&x

PROTECT

Prevent certain symbols and/or object unit names from being
removed from the symbol table. Symbols that identify addresses
within the range of addresses specified by the first operand
through the second operand are protected, and object unit names
equated to addresses within that range are protected. If a
second operand is not specified, the symbol at the address of the
first operand and any other symbols or object unit names equated
to that address are protected. Once a symbol or object unit name
is protected, it cannot be purged later. The protect directive
cannot be embedded in Assembly language control (CTRL)
statements.

W

FORMAT?

IPROT)
IPT I

ARGUMENTS:

$

'$
;%
'X'address'
•object-unit-namej

'xdef
V*

$ TBRI<3* „ \

% I
'X'address1 \
!object-unit-name(
xdef 1

t 9Ztl? >

Next location after the highest address of the linked
root or previously linked nonfloatable overlay.

Highest address+1 ever used in the linked root or any
previously linked nonfloatable overlay.

X'address'

Hexadecimal address comprising one to five integers
enclosed in apostrophes and preceded by X. The specified
address is relative to the beginning of the root
(relative 0).

=object-unit-name

Specified object unit's base address.

3d-o
6-65 CZ15-00

PROTECT

?; ;*
xdef

Address of any previously defined external symbol.
^ ' • < T 'i " ' " ' *r>\ F»««w

The current address.

Example 1:

"..I PROT X' 1234 ',X' 4565 '
O "*

This directive protects symbols and object unit names that
identify addresses from 1234 through 4565.

r

Example 2s ^

PT =*FIRST

This directive protects symbols that identify the base
address of the object unit FIRST and all symbols equated to
that addresso The base address of FIRST is determined by
producing a link map (see "MAP and MAPU Directives").

e 3:
•i

PROT SYM,X8S55Se

This directive protects symbols that identify addresses from
the address of the previously defined external symbol named
SYM through 5555; object unit names equated to those
addresses also are protected.

-> i

' a<r,s»'io5s' <<

^ &'«<.. ' ." i "* . 9'Jf"1 »*" t ." j '>*<. ^

6-66 CZ15-00
<•*

PURGE

PURGE ,%.r-. w,,,,..

Remove the following items from the symbol table:
unprotected symbols that define addresses greater than or equal
to the first address and less than or equal to the second
address. If a second operand is not specified, the symbol at the
address of the first operand and any other symbols or object unit
names equated to that address are purged.

An object unit currently being linked can contain definitions
used for previously linked object units that will not be used for
subsequent object units to be linked. By removing symbols that
are no longer required, there is more room for symbols that will
be required by subsequently linked object units.

NOTES isfc*
*

1. Undefined symbols cannot be purged. *

2B Symbols and object unit names that are pro-
tected by a PROTECT directive cannot be ,
purged.

3. Only symbol addresses (not values) can be
purged by this directive.

'i

4. The PURGE directive cannot be embedded in
Assembly language control (CTRL) statements.

• ;) ' f. < ;*;•?,»•
FORMAT:

'$
%

(PURGE))x' address1

\PE f \=object-unit-name/
xdef
*

S
'$
%
'X'address
'Object-unit-name^
xdef
t

ARGUMENTS:

$

Next location after the highest address of the linked
root or previously linked nonfloatable overlay.

*3~a

6-67 CZ15-00

PURGE

Highest address+1 ever used in the linked root or any
previously linked nonfloatable overlay.

X'address8

Hexadecimal address comprising one to five integers
enclosed in apostrophes and preceded by X. The specified
address is relative to the beginning of the root
(relative 0).

=object-unit-name

Specified object unit's base address. *

xdef

Address of any previously defined external symbol„

* ifi ~- ~ * ,
The current address. ~ - '-:

Example 1s

PURGE X'1234',X'4565I ' • - - " '

This directive purges unprotected symbols that identify
addresses from 1234 through 4565, and unprotected object unit
names equated to addresses within that range.

Example 2;
»

PE =FIRST *

This directive purges unprotected symbols that identify the
base address of the load unit FIRST and any other unprotected
symbol names equated to that address.

Example 3:

PURGE SYMrX'5555'

This directive purges unprotected symbols that identify
addresses from the address of the previously defined external
symbol SYM through 55551 unprotected object unit names
equated to addresses within that range also are purged.

6-68 CZ15-00

x̂

Vw/

QUIT
jlHLL««*.=c

QUIT

Designate that the last Linker directive has been entered.
Specify QUIT after the last overlay, or at the end of the root if
there are no overlays.

If object units were successfully linked, the bound unit is
completed and the Linker terminates? otherwise, the Linker
terminates execution immediately.

The QUIT directive is required; it cannot be embedded in
Assembly language control statements.

<?R
FORMAT?

3T"<Vi
(QUIT)
{QT } 4

(Q) :""

G~--*

6-69 CZ15-00

RERUN RELOCATABLE

ftERUN RELOCATABLE (RR)

Specify that the sharable bound unit can be reloaded at
restart into locations other than those it occupied when the
checkpoint was taken (see the Commands manual for details on
checkpoint-restart). If this directive is not specified? the
bound unit is reloaded at the same system memory pool locations
it occupied when the checkpoint was taken, ~ ~*

The RR directive can be embedded in Assembly language control
statements.

FORMAT: > - . -

RH

»'r $.~#s-i<y^
NOTE '

If the RR directive is used, it is important to !

remember that after reloading? the current values
of the IMAs1 referencing locations in the bound
unit are no longer valid; therefore, if the bound
unit contains IMAs (see the link map or compiler
list file to determine this)f RR should not be
used.

^

6-70 CZ15-00

^
RETURN

44fl
RETURN **'* i ~o ••̂.•jfi

Signal the Linker to expect subsequent directives from the
user-in file. This directive should only be specified in an
INCLUDE file. A RETURN directive in a file specified in an
INCLUDE directive is logically equivalent to an EOF mark; it
returns the Linker to the user-in file.

FORMAT:

RETURN

_- _» * •$.

'- i C > » '"a J

~%9~) 1*_&36» bn& B^9r3*>fl,,j»fcf 'J

w * £

?,% >T>^ -3 i s "*

^ T a

6-71 CZ15-00

Cause the bound unit to occupy one or two physical segments
in memory. Before using this directiver consult with the person
responsible for system building and determine the segment numbers
available to task groups* The SEG directive can be entered at
any point- You can specify the physical segment number(s) to be
assigned as well as the access (read, write, and execute) to the
segment (s) «, This directive is only meaningful when the bound
unit is executed in a swap pool.

:' tR« j '
FORMAT:

/SEG)
ISG } [©'

code_segment,_no '1 ~i, code_access [, data_access]
(, ,data_access 3

ARGUMENTS;

eode_jsegment_no

Hexadecimal number from 1 to F that specifies the number
of the physical segment containing the whole bound unit
if the »R ECL parameter in the Linker command is not
specified. When -R ECL argument is specified, code
segment^no is a hexadecimal number from 2 to F and data
segment^no is equal to code_segment_no -1« There are 15
big segments in memory. Each big segment is at most
64K. The user can use big segment numbers from 1 to F.

code_access and data_access

Bit strings of exactly 6 bits that specify the access
right for the readable and writable segments, respec-
tively. Each bit string represents the corresponding
access fields in the segment descriptor. Representation
of the format of the access argument iss ^

RR RW RE

Execute access

•Write access

Read access

6-72 CZ15-00

^ SEG

The two bit positions that designate each access repre-
sent ring number:

Ring
jUJ; Niimbey

11 M.a 0 Executive
10 1 Privileged real time
01 2 Unprivileged real time

- _ . ,0$ • _ 3 Batch

A program making a reference (read, write/ and execute)
to memory is given access, if the value of the ring

v ^ number of the program's privilege is less than or equal
to ring value of the desired memory location.

The defaults for the access fields are:

Data access - -R - always 000000
«

Code access - sharable
h 001100

- globally sharable

- otherwise 000000

Example Is

SEG X'06',,000100

In this example if -R was not specified, segment 6 with
default access is assigned to the bound unit and the

\^ specified data access is ignored. If -R was specified,
segment 6 with default access is assigned to the code and
segment 5 with the specified access is assigned to the
data.

Example 2s

SEG ,001000

In this example, if -R was not specified, the loader
assigns a segment number with the specified access to the
bound unit. If -R was specified, the loader assigns a
segment number with the specified access to the code and
segment number -1 with default access to the data.

• ?-&.
i

6-73 CZ15-00

SMJUS

Designate that the bound unit is sharable within the task
group* If another task requests that the bound unit be loaded,
instead of another copy of the bound unit being loaded, the
existing copy in memory is usedo The bound unit ffiiisj; have
reentrant codef but the system does not check to see that it

SHARE must be specified in the definition of the root before
the first overlay is defined.

SHARE-directives can be embedded in Assembly language control
statements.

, - 3 :. --•'. i,- - - - >' &,"
FORMATS ' v ' - - " * < « . *

(SHARE)
ISE /

• - r - i '. . - •>& *,"1 5O~ - JL.S. * ;*^

- °: - =?s—,?. 6w f.(

- » . i£r* - cJ- : w>i- *:.u>0

fcC^BX

-̂*" T ' £ ii'vt fi — ~ I *« !

r- ^" ̂ j , v ? j s v . j ' *

6-74 CZ15-00

x̂
STACK

SIh£&

Specify the size of the stack in a decimal number of words,
If no STACK directive is specified, the Linker will use the
largest stack size specified in a object unit linked into the
bound unit.

FORMAT:
»

STACK value-n

ARGUMENTi

^ value-n I-xUrvs

Indicate the size of the stack in a decimal number of
wordSc

.r - d

6-75 CZ15-00

START

Designate the relative location within a root or overlay at
which execution of the root or overlay will begin once it is
loaded into memory by the Loader.

If a linked object unit contains a start address (an
Assembler or compiler END statement was specified) and the START
directive is specified, the first start address encountered (in
either a START directive or an END statement) is used by the
Linker for that root or overlay. ~ "

FORMAT: r'"" sv ** '* "'

(START!
\ST } symbol r^ ,fiv

ARGUMENT: . . , , . . . , . , .

Name of the external symbol whose address designates the
relative address that the root or overlay will begin
executing.

Defaults Start address specified in the first linked
object unit that has a start address. If the
symbol is never defined or a start address
is not found, the start address is the first
non-common location in the root or overlay.

NOTE

For very large programs, the start address must be within ^̂
64K of the beginning of the root or overlay. ' j

N^X

6-76 CZ15-00

^ OAV

SYS

sis
Indicate that this overlay or root can be run as a system

task. This directive does not control where the bound unit is
loaded, rather it allows a bound unit to be executed either as a
system or user task. Before using this directive, consult with
the person responsible for system building and determine
available system memory. The SYS directive can be embedded in
Assembly language (CTRL) statements.

jv
FORMATS

.^
JSYS)

^ ISS J 3

Example; -'• ' " "• ' '•:<.'> &i * -i:1 *«iSu »
f -

SYS
A

. VJlftf22f»^X» *>dfSil*»£j stC.j.tf»£J6J

• • i - :•:- sr-d
V>

6-77 CZ15-00

~"\

3&L

Create a value definition at link time that is equivalent to
the difference between two external location definitions.

VAL directives can be embedded in Assembly language control
statements0

FORMAT: tc •

VAL symbol, external location, - external Iocation2
VL

ARGUMENTS: '
'".f ̂

symbol < £?.

Assign a name to the value of the distance between two
locations,,

- * t;
external location

Location defined externally.

6-78 CZ15-00

.«cJrt9f*s3&*£ JLo^ntQS

^ VDEF

VDEF

Assign a value to an external symbol. The VDEF directive
cannot be embedded in Assembly language control statements. A
symbol should be defined only once, as a value or as a location.
When a symbol is defined, its definition is put into the Linker
symbol table so that it can be used during linking to resolve
external references.

FORMAT s

(VDEF\
IVF) symbol,X'value1

ARGUMENTS %

symbol

One to six alphanumeric characters.

X'value'

Value of the designated symbol; must be a one-word hexa-
decimal integer enclosed in single quotes and preceded by
Xo

W

f'B-?

6-79 CZ15-00

language control statements.

FORMAT?

VPURGE value-definition-symbol

ARGUMENT % 3S&:
value-definition-symbol

External symbol name associated with a particular value.

/IStfV't
J '„-',

* ir' Ov *»isO

^i-^fe^ 'X

>̂

6-80 CZ15-00

?*• .

. 'I. -i<

^-s LINKER PROCEDURES
*

This subsection describes the frequently used Linker proce-
dures. The examples provided show different methods for linking
COBOL programs, including one example that uses overlays.

Overview

The Linker is a system software program that functions as the
final stage of program development before program execution is
possible. Before linking, a program must be compiled (or assem-
bled) to produce one or more object units or compile units that
the Linker identifies for linking. The Linker recognizes object
units by the .0 suffix (appended to each file name by the com-
piler) . The Linker combines one or more object units to produce
a bound unit. A bound unit is an executable program consisting
of a root segment and zero or more overlay segments that can be
loaded into memory.

^
Using Overlays

In situations where memory is limited, it may be necessary
for you to divide your program into one or more overlay segments
so that individual portions of your program may be called into a
single memory area only when they are needed. Unlike the root
segment, which cannot be reloaded once it is read into memory, an
overlay segment can be read in as often as it is needed. See
Example 4 for a link session that uses overlays.

Interrupting Linker Execution

If at any time during Linker execution you want to interrupt
processing, you can perform one of the following actions:

• Press the QUIT, INTERRUPT, or BREAK key at your terminal.

• Enter ACABID at the operator terminal, where id is your
two-character task group identification.

After performing one of the above actions, a **BREAK** mes-
sage will appear on your terminal. You can now:

• Enter any valid ECL command.

• Resume Linker execution as if no break had occurred by
entering the Start (SR) command.

«-. CS !j j rt
W

6-81 CZ15-00

« Terminate Linker processing and return to command level by
entering the Unwind (UW) command.

« Restart your task group by issuing a New Process **"*
(NEW_PROC) command.

*. • • NOTE

If you interrupt a MAP, and you want to terminate
the MAP operation and jump to the next Linker
directive, issue a Program Interrupt (PI) commando

- ̂ j

Sample Link Sessions

The sample link sessions that follow will help you become
familiar with Linker procedures.

The first three examples illustrate different methods for
linking a COBOL program. The fourth example describes a method
for linking a COBOL program that contains two overlays.

g^ampjle. 1,5

This example illustrates a link session requiring a minimum
of Linker directives.

The COBOL program CARDIN has just been compiled. A List (LS)
command is issued to examine the contents of the programmer's
(Cook) working directory;

~1 » ._J

Entry Name

CARD IN. C
CARDIN. 0
CARD IN. L

IY42£

3 .1
S
S

Physical
Sectors

j i« .'
8
16

Starting
Sector Hex

3250
3258
3260

Record
Length

256 ,-<
256
256

The file CARDIN.C contains COOK's source program. The files "-̂
CARDIN.0 and CARDIN.L were produced by the COBOL compiler.
CARDIN.O contains the object unit that the Linker will use to
produce a bound unit named CARDIN.

Cook now wants to link his program into a bound unit. He
enters the command; ^ ;

.dŜ Vfr̂ rCOCEC''JLI **

6-82 CZ15-00

W«a

^̂ Cook has specified that he wants to create a bound unit named
C&RDIN. Cook also specifies that his link map will be directed
to printer 1LPTOO rather than to a file named CARDIN.M in his
working directory. (The contents of CARDIN.M are described later
in this example.) The -PT argument causes the Linker prompt L?
to appear when the Linker is ready to receive input. It is
recommended that new users include this argument in the Linker
command format.

f ^ I 5The Linker responds*

LINKER-1982/06/18 0912:50.5 " 'l

L?

Cook now enters Linker directives. Each directive has been
keyed to the explanatory notes that follow. (The Linker prompts
have been omitted from the text.)

(1) ********** '•
=» 7g; PRIM WORKING DIRECTORY .

********** -°

***-»«•>«•"- "f. r»i

(2) 3JB. SYSRES>LDD>ZCART
(3) LSR

PRIM WORKING DIRECTORY
LIB "SYSRES>LDD>ZCART

(4) S2MjC2J8iOTl *i:*i
(5) JM&P.
(6) 'Ml£ ' , - savj

ROOT CARDIN ~ *3*x~
f.f LINK DONE b
.1 • * ¥

i ' - -: * NOTES C'

v , 1. Cook asks the Linker to list the search rules
v~'' it currently uses to locate object units to be

. • . linked. The Linker's response indicates that
the primary directory searched is Cook's work-
ing directory.

o

This directive is optional. Omitting it will
not affect the linking process. It is
included here to illustrate how the Linker's
search rules are modified by the LIB
directive.

*•-« -t>
'V_y

6-83 CZ15-00

, -i""

6.

Because Cook's COBOL program requires the run-
time routines located in the directory ZCART,
Cook must designate ZCART as the secondary
directory to be searched by the Linker. If
the required object units cannot be found in
Cook's primary directory, the Linker will
automatically search the secondary directory
~SYSRES>LDD>ZCART0

Cook lists the Linker's modified search
rules., (See Note 1.)

This LINK directive queues the object unit
CARDIN.0 for linking. • • - -- - —

The MAP directive produces a link map that is
written out to the printer LPTOO (as specified
in the -COUT argument of the Linker command).
This link map is shown in Figure 6-4. It also
causes CARDIN.O to be linked before the map is
produced.f * - , . < : <•; n- »

Cook enters the QUIT directive to indicate
that there are no more directives. The Linker
builds the bound unit and terminates.

The linking process has been successfully completed; Cook now
enters an LS command to examine the contents of his working
directory;

i*~rfli

Entry Name

CARDIN.C
CARDIN.O
CARDINAL
CARDIN

Type

s
s
s
R2

Physical
Sectors

8
8
16
8
8 7. ;

Starting
Sector Hex

3250
3258
3260
3240
3270

Record
Length

256
256
256
256

^J

The bound unit CARDIN now resides in Cook's working direc-
tory, ready for execution. Note that CARDIN.M, the link map, is
not listed in the working directory. This file was written out
to the printer LPTOO when Cook issued the MAP directive.

6-84 CZ15-00

w

w

LINKER-1982106118 0912:50.5
BU= CARDIN LLINKED ON:
•*LIB ~SYSRES>LDD>ZCIRT/~|
•*LINK CARDIN/ L I N K DIRECTIVES FOB L I N K I N G CARDIN
-» MAP/ _J

CARD - c-M--o tiiorfC
CARDIN 82/04/29 (000000)
COBOL REV. 300 DATE 82/04/29 TIME 0811

GCOS6 MOD400-S3.0-12/12/1635
1982/05/05 0809:00.6 LAF

LOCAL COMMON: SLCOMW: SIZE: 000133 ADDRESS:
[LINK ZCIPER /]
[LINK ZCSTOP /]
[EDEF ZCMAIN /]
[LINK ZCIPIO /]

000000
LOCAL COMMON-AREAS OF MEMORY
DEFINED FOR SEPARATE CODE AND
DATA PORTIONS FOR THE COBOL
PROGRAM

~SYSRES>ZCIRT>ZCIPER.O
ZCIPER 79010900 (000307)
HRS ASSEMBLER 5=05 01/10/81 1647.5 est Wed
(C) COPYRIGHT 1977 BY HONEYWELL INFORMATION SYSTEMS INC

"SYSRES>ZCXRT>ZCSTOP.O ~* ""'
ZCSTOP 79010900 (00036C)
HRS ASSEMBLER 5.05 01/10/81 1641.6 est Wed
(C) COPYRIGHT 1977 BY HONEYWELL INFORMATION SYSTEMS INC

0906.8 edt Thu
RUN-TIME MODULES
REQUIRED BY THE
COBOL PROGRAM

~SYSRES>ZCIRTZZCIPIO.0
ZCIPIO 79050200 (000387)
HRS ASSEMBLER 6.00 05/03/81

[LINK ZCDEAD /]

"SYSRES>ZCIRT>ZCDEAD.0
ZCDEAD 79010900 (0003A2)

HRS ASSEMBLER 5.05 01/10/81 1647.7 est Wed
(C) COPYRIGHT 1977 BY HONEYWELL INFORMATION SYSTEMS INC

t * » i

* * 4 «
•: * * »

* * * ft

** CARDIN
**START 000173
**LOW 000000
**HIGH 0003B5
**CURRENT 0003B5

MAP
» * * * *

* * * *

LINK MAP 1982/05/05 0808:00.6

MEMORY ADDRESS
LIMITS FOR THE
ROOT CAROIN

***** COMMON BLOCK DEFINITIONS

**CARDIN 000000
*CARDIN 000000
C SLCOMMW 000000

« -' J-HOC- - *•

Figure 6-4. Sample Link Map (CARDIN.M)

^

88-d

6-85 CZ15-00

***** EXTERNAL DEFINITIONS

P ZHCOMM
P ZHREL

** ROOT
* CARDIN
C $LCOMW

ZCZERO
* ZCIPER

ZCRTER
* ZCSTOP
* ZCIOIO

ZCOP1
ZCOP5
ZCRD3
CZWR4
ZCST3
ZCDL1

* ZCDEAD

000000
000000

000000
000000
000000
000133
0001DE
0001FO
000210
000213
000213
000221
00028A
00033F
0003A9
000383
0003B4

KEY: *OBJECT FILE

-.
! "

CARDIN

ZCOP2
ZCOP6
ZCWR1
ZCWR5
ZCCL1
ZCDL2

w •

NAME ;

y
-"D ^Sfe"

jt
" ' " ~ •• ••> >v

0773 ZCMAIN 0170

-

000217 ZCOP3 00021B
000224 ZCRD1 000273
00031A ZCWR2 00031E
00031C ZCST1 000393
00036A ZCRW1 000374
000388 ZCS 00038D

'" ~ 4 d j

**SROOT OR OVERLAY NAME
D»DISPLACEMENT REFERENCE; V=VALUE REFERENCE

* * * * * *

* * * * * *

QUIT/

ROOT CARDIN

« * 4t *W W K

* * * *

W Ttt X

* * 4W 18

* * A

r-

IB M *S K

* ft * *
* * 6 *

;"• s • , C .

HIGHEST OVERLAY NUMBERS 1 - '
NUMBER OF EDEFS: 1
LAF

ROOT CARDIN

^r. ' t" T

BASE 000000 ST000173

•«

. :-f
j

v^ (j ^

^ y ' - *

ZCOP4 00021E
ZCRD2 000275
ZCWR3 000338
ZCST2 00039E
ZCRW2 00037C
ZCA 00038F

— i

!
i
iI

]
'

MEMORY
ADDRESSES
Of
EXTERNAL
NAMES
IN
THE
SOUND
UNIT

•

, OR HEADING; C=COMMON
; P*PROTECTED; X=PURGED

1

i

s\ " '
• - • • C ^ ' T ,^ '

HIGH=0003B5

SIZE OF ROOT AND FIXED OVLYS= 03B5 ' f „
LAST BU RECCM»n NHMR P R ? Q

LINK DONE

i - • C3* c - ^^ . *
.' " i Af>r >

Figure 6-4 (cont). Sample Link Map (CARDIN.M)

•.t̂

6-86 CZ15-00

—̂' Example 2;
»

— T • _* _ *

This example shows you how to specify a directive input
device (such as a file, another terminal, or card reader) from
which the Linker will read its directives. This procedure is
useful if you have many directives to enter, or if you wish to
create a Linker directive file for future use.

Programmer Cook wants to have the Linker read its directives
from a file named LKDIR. He invokes the Editor, types in his
Linker directives, and writes the file to the pathname
"SYSRES>WORK>LKDIR. The contents of LKDIR are listed below.
(The object unit to be linked, CARDIN.O, resides in Cook's work-
ing directory.)

LIB ~SYSRES>LDD>ZCART
LINK CARDIN
MAP
QUIT

• i * * *•****:

Figure 6-5. Contents of LKDIR
(«)

'Oil

To activate Linker processing, Cook need only enter the fol-
lowing command:

jt

LINKER CAKDIN -IN *WSR̂ >WORK>LKDÎ

Cook has specified that he wants to create a bound unit named
CARDIN. The -IN argument specifies the pathname of the file from
which Linker directives will be read. Cook could also have des-
ignated another terminal or a card reader as the directive input
device. c

The complete dialog as it appears at Cook's terminal is shown
below;

.LINKER CARDIN -IN SYSRES>WO!IK>LKDXR;.
LINKER-1982?06?18 912:50.5 - l

ROOT CARDIN
LINK DONE

Example 3;

In this example, Cook wants to link the object unit CARDIN.O,
which resides on a diskette volume named ~DSK, and whose full
pathname is "DSK>MYDIR>CARDIN.O. Since Cook wants to create the
bound unit CARDIN in his working directory ~SYSRES>WORK, he must
designate the directory MYDIR as the primary directory the Linker
will search.

6-87 CZ15-00

A second object unit NEXT.O is also to be linked into the
bound unit. It resides on the current working directory,, Cook
wants to link NEXTcO to CARDIN.O which has been linked.

Cook's dialog with the system is shown below. The dialog has
been keyed to the explanatory notes that follow.

"̂"̂ tn—̂ JM*** vrvKjf^ jf̂ -̂ *̂ ̂ m^^ f

(I) ,&l$KEKlGAKDIli;
LINKER-1982/06/18 0912:50.5

(2) JLIB" ~SY.SRE&>LDD;>&caRT;f
(3) ,a& ^DSJttMKDIRij
(4) *£§$£

PRIM ADSK>MYDIR
LIB ASYSRES>LDD>ZCART

(5) "fclNKfCARSINl
„- (6) £l!fe .., _ ___ _ __

(7) ;£SÎ » . .
********** *•"•''-
PRIM WORKING DIRECTORY
LIB "SYSRES>LDD>ZCART

(8) LINK NEXT ., ,
(9) f'Mfta
(10) IflBEI*

ROOT CARDIN
_^ LINK DONE

(II) -̂ S vrf

DIRECTORY: SYSRES>WORK

Physical Starting
Eftt^y Name

CARDIN.M

CARD IN

NEXT.O

Ixse.
s

4 R2f

„

Sectors SQC^QC Hex

8
-J.: 32 i ; "•
8

8
, 8

3240
3278
3248
3280
32A8

Record
Length

256

256

256

c.
«rf

NOTES

1. Invoke the Linker and specify CARDIN as the
name of the bound unit to be created.

2* Request that the Linker search the secondary
directory ZCART for the required COBOL r,. „
run-time routines. »"̂ 4̂ &4̂

^»O, «•?*

f,.*.

J

6-88 CZ15-00

V̂ / - ' 3. Specify the IN directive, designating
"DSK>MYDIR as the primary directory in which
the Linker should search for the required
object unit,,

4. List the Linker's search rules. The Linker's
response indicates that the primary directory
to be searched is ~DSK>MYDIR.

50 Request that CARDIN.O be queued for linking.
\

6e Enter the IN directive again, this time omit-
ting a pathname. This action modifies the
Linker's search rules; the primary directory
to be searched is Cook's working directory.

7 o List the Linker's search rules again, and
notes that the Linker's primary directory has
been redirected to his working directory.

^~s
8e Request that NEXT.O be queued for linking.

' -'" ~' 90 Issue a MAP directive. A link map is written
'•<;* to a file named CARDIN.M in Cook's working

directory.

"-- ' -- 10. Indicate that there are no more Linker
directives.

11. Specify an LS command to verify that the bound
unit CARDIN has been created in his working
directory. CARDIN.M contains link map
information. ,—— ,

r ii •
Example 4s

This example describes how to link a program containing two
; overlays.

^~s
Programmer Shepard has written a COBOL program called COBPRG

which calls two overlays, PART2 and PART3. Figure 6-6 shows the
relationship between the root COBPRG and the two overlays.
Source listings of the root program and the two overlays are
shown in Figures 6-7, 6-8, and 6-9. (Source listings are
included to show you the relationships that exist between a root
program and its overlays. In Figure 6-4, for example, note how
the source program calls in its overlays. If Shepard's link is
successful, each greeting message will join with the others in
the specific order Shepard intends.)

.,- !

(*!
!.t

- - 'a)

6-89 CZ15-00

Following COBOL
Shepard issues an LS
ing

LS
DIRECTORY;

Entrv Name

COBPRGoC
COBPRG,0
COBPRG.L

,C
PART2.0
PART2.L
PARTS.C
PAHT3

 0
 0

PART3.L

S
S
S

S
S
S
S
S
S

of all three source files,
to display the contents of her work-

'SYSVOL>SHEPARD

gectors

•* tea " *"'

8
8

16
8
8
8

16
8
8

16

Starting
Sector Hex

3278
3280
3288
3298
3248
32A8 "- ^
32BO
32B8 a •
32C8
32DO
32D8

Record
.Lenath

256
256
256

256
256
256
256
256
256

Note that all three object units to be linked are located in
Shepard's working directory. COBPRG.O is the object unit that
will form the root segment of the bound unit COBPRG. PART2.0 and
PART3.0 are object units that will form the two overlay segments
of the bound unit. Figure 6-6 shows the bound unit Shepard will
create when she links the root segment COBPRG and the two overlay
segments, PART2 and PART3.

Root
*

J
 ' (COBPRG) :

Overlay 1

(PART2)

Overlay 2

(PART3)

Figure 6-6. Structure of the Bound Unit COBPRG

Shepard is ready to link her programs. Her dialog with the
system is described below. The dialog has been keyed to the
explanatory notes that follow. i

(i) LINKER CQBBRG! - -.- «-
LINKER-1982/06/18 0912:50.5

(2) "LIB ~SYS^Qk>L»D>ZC3№
(3) CC,
(4) LINK CQBBRG:
(5) №S
(6) 03TL2 PftlM

6-90 CZ15-00

"-L _ . U

^ (7)
(8) '.MK-ESHEt
(9) 94AP
(10) SHLXlgSRTa: -P^'-ifuJ ml £*a*9 t»*«*Q ,ff£
(11) :BASE -PAKT21
(12) ,L1HK -EAJ03. ':**:<: Jr:fr * •£?
(13) iMAP
(14) SECT. **-*

ROOT COBPRG
., . „- ^ LINK DONE
'̂ ~ " NOTES

1. Invoke the Linker/ specifying COBPRG as the
name of the bound unit to be created.

20 Request the Linker search the secondary
directory ZCART for the required COBOL
run-time routines.

3. Specify the CC (Call-Cancel) directive since
Shepard's main COBOL program contains
CALL/CANCEL statements that invoke overlays.
By specifying this directive, Shepard tells
the Linker to use the call/cancel logic for
the -programs. (This directive applies only to
COBOL programs and must be specified before
the first LINK directive in the root.

4. Queue the object unit COBPRG.0 for linking.

5. Specify a MAP directive. A link map is
written to a file named COBPRG.M in Shepard's
working directory.

6. Designate the end of the root segment and the
beginning of the first overlay PART2.

^t^/ 7. Identify the relative load address for PART2
within the bound unit. The BASE $ directive
specifies that PART2 will be linked beginning
with the next location after the highest
address of the root segment COBPRG. This is
the default base address for PART2. This BASE
directive could be omitted.

8. Queue the object unit named PART2 for linking.

9. Specify a MAP directive.

10. Designate the end of the overlay PART2 and the
beginning-of the second overlay PARTS.

6-91 CZ15-00

lie Request that the overlay named PART3 be loaded
starting at the same relative address as the
object unit PART2. Overlay PART2 and PART3
can never be in memory at the same time. •*'

12. Queue PART3 for linking. ^j

13 e Request a link map.

14, Terminate Linker processing.

Shepard is now ready to execute the bound unit COBPRG. (No
data files are required.) She enters the bound unit names

The program responds?

HELLO FROM PROGRAM SAMPLE.
HELLO FROM PART2—THE FIRST OVERLAY , .,
*****BACK TO SAMPLE ***** ' ' '
HELLO FROM PARTS—THE SECOND OVERLAY
GOODBYE FROM PROGRAM SAMPLE. , , .,

w *" * '**• JF«~ *J r V

> f^+ — - j f. jf
t i 1 Ĵ .

'- *- * - ̂ ^ * *!j» ?^i ̂

. =>

>-/

r T

M

6-92 CZ15-00

.SI <!/»

^

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE.
AUTHORe FOSTER.
INSTALLATION. PHOENIX,ARIZ.
DATE-WRITTEN. 042980.
SECURITY. NONE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HIS-SERIES-60 LEVEL-6.
OBJECT-COMPUTER. HIS-SERIES-60 LEVEL-6.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 PNAME PIC X(5).
01 QNAME PIC X(5).
77 REC-NUM USAGE COMP-1 VALUE ZERO.
PROCEDURE DIVISION.
GREETING.

DISPLAY "HELLO FROM PROGRAM SAMPLE.".
ADD 10 TO REC-NUM.

OVERPROC.
MOVE "PART2" TO PNAME.
CALL PNAME.
MOVE "PART3" TO QNAME.
CANCEL PNAME.
DISPLAY "***** BACK TO SAMPLE *****".
CALL QNAME.
CANCEL QNAME.
DISPLAY "GOODBYE FROM PROGRAM SAMPLE"
STOP RUN.

END COBOL.

Figure 6-7. Source Listing of Root Segment COBPRG j

ji^T- f ""Ciq MOJ?*3
. fr

dtfS

^n,os? ~o prurMj..,, »t^ut»% ,§-8 &*&$*'$

fr^-a
6-93 CZ15-00

IDENTIFICATION DIVISION.
PROGRAM-ID. PART2c
AUTHOR„ FOSTER.
INSTALLATION. PHOENIX,ARIZ.
DATE-WRITTEN. 042880.
SECURITY* NONE.
ENVIRONMENT DIVISION,
CONFIGURATION SECTION. _^
SOURCE-COMPUTER, HIS-SERIES-60 LEVEL-6.
OBJECT-COMPUTER, HIS-SERIES-60 LEVEL-6. ;
DATA DIVISION.
WORKING-STORAGE SECTION.
01 PNAME PIC X(5).
01 QNAME PIC X(5). .
77 REC-NUM USAGE COMP-1 VALUE ZERO.
PROCEDURE DIVISION. !
GREETING.

DISPLAY "HELLO FROM PART2—THE FIRST OVERLAY".
EXIT PROGRAM.

END COBOL.

^J

Figure 6-8. Source Listing of First Overlay Segment PART2

IDENTIFICATION DIVISION.
PROGRAM-ID. PART3.
AUTHOR. FOSTER.
INSTALLATION. PHOENIX,ARIZ.
DATE-WRITTEN. 042980.
SECURITY. NONE. . s
ENVIRONMENT DIVISION
CONFIGURATION SECTION.
SOURCE-COMPUTER. HIS-SERIES-60 LEVEL-6.
OBJECT-COMPUTER. HIS-SERIES-60 LEVEL-6.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 QNAME PIC X(5).
01 QNAME PIC X (5) . — —~~~ —
77 REC-NUM USAGE COMP-1 VALUE ZERO.
PROCEDURE DIVISION. -d
GREETING.

DISPLAY "HELLO FROM PART3—THE SECOND OVERLAY"
EXIT PROGRAM.

END COBOL.

•' -K

Figure 6-9. Source Listing of Second Overlay Segment PART3

6-94 CZ15-00

^

^
o
CB
(3-

! =
I •=

x-^

^J

^J

• r- T * T l ^ fJt :

L, g

Section 7
MULTI-USER DEBUGGER

(SYMBOLIC MODE)

The following two debuggers are available in the MOD 400
, environments

• SDEBUG - A special debugger used for system maintenance,
This debugger is described in the System Programmer's
Guide. Volume II.

• The Multi-User Debugger - A general purpose tool used
for normal user applications. This debugger operates
in two modes:

- Numeric Mode - Used for applications written in
»̂ / Assembly language.

- Symbolic Mode - Used for applications written in
Advanced COBOL or Advanced FORTRAN.

Numeric debugging is described in the System Programmer's
Guide, Volume II. Symbolic debugging is described in this
section; full information on symbolic debug functions and
directives is provided. See Appendix E for a sample symbolic
debug session.

DEBUGGER OVERVIEW -t o' j* -\> L»-<iof5 en:? lc saiâ

The debugger can be used with object units that have been
compiled with the debug option (-SYMBOL). The debug option
causes the compiler to generate a file for later use by the
debugger.

^ " 7-1 CZ15-00

Additionally? the object unit must be linked with the Linker's
debug option (-SYMBOL). In any bound unit there may be a mixture
of programs compiled with and without the debug option.

DEBUGGER CAPABILITIES

The debugger uses the object unit tables and a Linker symbol
table to manipulate breakpoints, process action linest and alter
and display (dump) data variablese The debugger uses the same
referencing format for variables as in the source program,, This
referencing format can be variable name, label, or line number.,

The various debug directives can be used to halt a program at
selected breakpoints during execution, restart the program from
the same point, or change sequence and start from a different
point. While the program is halted, you can examine and alter
program data and set further breakpoints.

The debugger can be used to debug Advanced COBOL and Advanced
FORTRAN programs. Programs must be compiled with the debug
option (-SYMBOL). This option generates an object unit file.

The debugger uses the object unit symbol tables and link
symbol table (produced by the Linker debug option, -SYMBOL) to
manipulate breakpoints, process actions lines, and alter data
variables. The symbol table is called object_unit_name.Z. The
special link map is called bound_unit_name. object_unit_name is
the name of the Advanced COBOL or Advanced FORTRAN source
program. Do not try to edit these symbol table files because you
may destroy necessary information.

INVOKING THE DEBUGGER '~ ' "

To use the debugger effectively, you should become familiar
with the terms, symbols, and reserved keywords listed in Tables
7-1 through 7-4.

After the program to be debugged has been compiled and linked
with the debug option, you can invoke the debugger with the
following command:

FORMAT:

fc DEBUG program_narae

ARGUMENTS:

program__name ' " ~j~--* 015
j

Name of the bound unit to be debugged.

* ' ' ~ i K ,„ y r -.T*

7-2 CZ15-00

ŷ Table 7-1 lists the debugger directives by function,
indicating the directive name and its meaning. Table 7-2 is a
list of terms used in debugger directives. Table 7-3 is a list
of debugger special symbols and their meanings. Table 7-4 is a
list of reserved keywords. The reserved keywords and special
symbols should not be used as variable names or labels in
programs to be run with the debugger.

Table 7-1. Summary of Debugger Directives

Function
Directive
Name Meaning

>̂

Breakpoint control

Trace trap control

Display and mod-
ification of data

General execution

AT

CLEAR

LIST

TRACE

CHANGE

DUMP

SET

GO

IF

MODE

ACTIVATE

* •*

PAUSE

QT

SP

STEP

Set breakpoints
t

Clear specified or all
breakpoints

List current breakpoints

Trace flow of program j
*-« jXtffr j

Change specified variable's
control contents {

Display specified variable (dump)

Set values represented by special
symbols

Resume execution

Conditional requirement for
breakpoint and request lists

Switch between symbolic and
numeric modes

Change reference to a different
object unit

$<U
Enter interactive mode

Terminate debugger (quit)

Temporarily suspend the Multi-
User Debugger; return control
to the Command Processor (sleep)

Execute one program statement

ŷ 7-3 CZ15-00

Table 7-2. Terms Used in Debugger Directives

Term Definition

Character string

Directive

Hex value

Identifier

Input unit

Integer

Statement

Type

Variable

A string of characters enclosed in apostrophes
(!) or quotes0 The string may include all
printable characters except those used for
terminal editing. Use two apostrophes to
include an apostrophe in the string. _ „

i

A statement to the debugger containing
keywords, which cause the debugger to perform a
specified action (e.g., AT, CLEAR, TRACE).

A maximum of eight hexadecimal digits prefixed
by a percent (%) sign.

A name containing a maximum of 30 characters.
Valid characters include all alphanumerics, the
hyphen, and the underscore. The first charac-
ter must be alphabetic^

- »- , . NOTE

A minus sign in an expression must be preceded
and followed by a blank to distinguish it from
a hyphenc

A line consisting of one or more debugger
directives separated by semicolons. The maximum
length is the input device's maximum line
length.

A value less than 65535 and greater than or
equal to -65536 entered as a string of decimal
digits.

A single source statement that generates exe-
cutable code.

Identification of the internal storage and
external display formats of variables. All
source-defined variables have a basic type such
as integer, real, character, string, or
alphabetic.

A single field, array element, entire array,
record, or single component of a record.

7-4 CZ15-00

^
Table 7-3. Debugger Special Symbols

Symbol

$R1-$R7

$B1-$B7

$P

$

$T

$F

$L

Definition

Index registers (containing data)

Base registers (containing
addresses)

Program counter

Current breakpoint

True

False

Prefix for numeric statement
labels

\^

te , Table 7-4. Debugger Reserved Keywords

AT
CH
CHANGE
C
CLEAR
DUMP
IF
L
LIST
MODE
ACTIVATE
PAUSE
SET
TRACE

P
QT
SP
-NUM
-NUMERIC
-SYMBOLIC
$
$P
$R1-$R7
$B1-$B7
$L
$F
TR

, Ŝ lfc

V_y 7-5 CZ15-00

After invoking the debugger, you are prompted with the
greater than character (>). To initialize the debugger, set, ^j
list? and clear breakpoints using the AT, LIST, and CLEAR
directives. . , ..- - - - - . • • -'/sva j

After you have arranged breakpoints to your satisfaction, use
the SP directive to return to the Command Processor. Execute
your program normally. When a breakpoint is reachedf program
execution is suspended and the debugger enters interactive mode.
Now you can enter any valid debugger directive to debug your
programe

To leave the debugger, either continue execution of the
program to the normal end (perhaps clearing unwanted breakpoints
with the CLEAR directive) and then enter the GO directive, or
enter the Quit directive which terminates debugger control and
resumes normal execution of your program.

While the debugger is in operation, it maintains two internal
variables which identify the current bound unit and the current
debugging modes - '

• current^object^unit identifies the object unit to which
symbolic debugging directives refer. The initial default
is the first linked object module with a symbol table.
During execution of a program, current_object__unit is
automatically changed to identify the object unit in which
the most recent breakpoint occurred. You can override the
automatic setting with the SET directive.

• current_mode is automatically set to symbolic if the
debugger is invoked with a bound unit name.

DEBOGGER AND BREAK KEY FUNCTIONALITY

Typing DEBUG after pressing the Break key and getting the
BREAK message transfers you to the debugger. To return to
the previous level, enter the SP directive or terminate the ,„—̂
debugger completely with the QUIT directive.

If DEBUG was the task that was broken, the responses allowed
are:

••**-„* !

• Any command
« UWr PI, SR or NEW_PROC

7-6 CZ1S-00

^ ^ ' NOTE
•Is".": f-

The PI response will return the user group to the
debugger input mode and allow the entry of debugger
directives. ,

If the Debugger task was broken and DEBUG was
entered as the response, the user would be placed

;;••: in the debugger input mode.

The UW response will cause the debugger to be exited
as if a GO-or SP directive had been input depending on

*»7,£ which was appropriate for the current state of the
debugger. That is, if debug had been invoked as the
result of encountering a breakpoint, a GO is **
appropriate to exit debug.

PLANNING CONSIDERATIONS

v ^ Controlling Execution of the User's Program

The following directives can be used to control execution of
the user program.

IF is used to specify if statement processing.

GO causes execution to resume.

STEP steps through a program one executable statement at a
time.

PAUSE enters input mode and allows you to request display of
variables and registers.

PAUSE used with IF causes execution to stop and entry into
interactive mode.

Setting Breakpoints
W

You can set, list, and clear breakpoints during initializa-
tion as well as during execution. All other functionality can
only be done during execution. The AT directive sets
breakpoints; CLEAR deletes them. The LIST directive lists
breakpoints.

Monitoring the Value of Variables

The IF directive can be used in a number of ways to perform
other directives when a certain condition is met. The primary
use of the IF directive is to monitor the value of a variable
during execution of the user's program. If the value meets a
given condition, program execution stops and the user is
notified.

7-7 CZ15-00

CQnfcFoXJi,^ng. pu^pmt
~ ~ 1 .".

The DUMP directive displays the contents of variables and
constants. f , v •

MaJ.pfcaJ,ninG a Trace History •• •>-•*

The TRACE directive controls tracing program execution. It
can be used in conjunction with IP for conditional tracing, You
can issue the TRACE directive only while stopped at a breakpoint.

A^ter,ing_y.sLliL£-S

The CHANGE directive alters the values of variables. SET
sets or alters the values of special symbols.

DEBUGGER DIRECTIVES

The remainder of this section provides an alphabetic listing
of the debugger directives with detailed descriptions for each
directive*

"• "* ' •» > * 9 - •. '*• , , ...-,

' 1 • ~V-",.'- ,. - ^; Q , ^ ,.-.!-

*™: '• " '• "«- >=*VS .i'Vl, -."; il

^K -r.Z "S---. r -..ozr'- Ovj . ^ >""?

,s,:.ji -

*-r ^ ̂ • t'oor; ' ..or

•«• '.•»« :yi *,̂ -f
.» l»v "̂ S'fa.

5L.2jû-.!*:. f k, ALuĵ i, i

l-.c

^

7-8 CZ15-00

PA

AT

Al

Set breakpoints in the program.

FORMAT: * * - '•>**

AT location_list [(request_list)]

' ARGUMENTS: • - •• - • - : - . ' - (• -f^.-j .

location_list

One or more places in the program where you want to set a
- - breakpoint. Location specifiers are separated by

^ , -<v commas. Individual statements in the program are
identified either by statement label or source line
number. Set breakpoints only on executable statements.
For FORTRAN programs, do not set breakpoints on FORMAT
statements.

request_list

Optional list of one or more directives to be executed
when a breakpoint is reached. A request list can be a
single directive or a series of directives delimited by
parentheses. Directives in a request list are separated
by either semicolons or newline characters. GO is under-
stood to be the last directive in a breakpoint request
list. If no request list is given, PAUSE is assumed.

DESCRIPTION:

A breakpoint is set in the program for every statement in the
^̂ location list. A breakpoint identifier is assigned to each

breakpoint, and a -brief message is printed showing the line
number, label (if any), and assigned identifier number.
Breakpoint identifiers are numbers assigned in descending
order beginning with 31. You can set a maximum of 32 break-
points (from 31 through 0, inclusive). Request_list direc-
tives are saved in the DEBUG.SM file for each breakpoint. To
distinguish FORTRAN statement labels from line numbers,
prefix statement labels with "$L".

^ ' 7-9 CZ15-00

AT

Examples:

AT 1020rLOOP (PAUSE)
AT 1020,LOOP

;a
. '---o.^c 9r.* a r

These two directives are equivalent. Both cause program
breakpoints to occur before execution of statement number
1020 and the statement labeled LOOP. When a breakpoint
occursf the debugger enters interactive mode and prompts you
(with the "greater than" (» sign) to enter directives from
the terminal.

AT LOOP1 (DUMP INVENT_PART_NO,A(J_INDEX),J_INDEX;CH BUFNO=1)

Each time execution reaches LOOP1, the DUMP and CHANGE direc-
tives are performed, and execution of the target program
resumes without user intervention.

-10; r<iio;.dG

^

7-10 CZ15-00

T *
A *
? *

CHANGE

£HM£E

Alter the contents of variables. sSRl

FORMAT:

/CHANGED change_list 3**i~J*
ICH (

ARGUMENT?

change_list

List of change statements of the form:

/decimal integer
variable name ihexadecimal string
record component =<character string

)$T
UP

DESCRIPTION:
rv*» ' • j

For each change statement, the item on the left is assigned
the value of the element on the right. Change statements are
separated by commas.

Examples
-j ' "»

CHANGE TAGA » %3031, TAGC • 5

The hexadecimal value 3031 is placed in TAGA and 5 is loaded
into TAGC.

The data types of the left side and right side must match.
For example, a variable name defined as a hexadecimal string
may not be changed to a decimal integer. The one exception
is that any type variable may change to a hexadecimal string
that represents exactly the internal format of the data.
There is no other conversion of data types.

7-11 CZ15-00

x_>

C&EAR islfciaa

Delete breakpoints* ^ , . . , ? ^ , ^ ls c^-i^ m snt - ^ U -

FORMAT:

jCLEARl breakpoint_J.ist , — < < • < < - ,-. -M* ' ^/ _ / - •>*•>*" • - -"-'r .-
{\« f i

•

ARGUMENT: -V3; ̂ ,K

breakpoint_list

List which can includes +- • - >? t, i - • y *:

• Individual breakpoint numbers -̂y/
• A range of breakpoints (e.g., Nl to N2)
• $ (indicating the current breakpoint)
• * (indicating all currently defined breakpoints)

DESCRIPTION:

All breakpoints specified in the breakpoint list are deleted.
' I •

Exampless . - -

CLEAR *
, * 3T .. '

Clear all currently defined breakpoints.
+ 1 j^ • - ~ '" ^ *'«-- K^

C $f 14, 15, 0 TO 5
•~ Q " *»'<•'/

Clear multiple breakpoints. >- - -~̂
s->

-,1 j e J 1 » _ " • -s <,ij,: " '"" •»-4?
•"?I •„« s» ~ o ?

-. „ i > "M;^- . T.-

7-12 CZ15-00

v~x
DUMP

DUMP

Display program variables and other information about the
program execution.

FORMAT:
t:'»'-J">t/i .<"***?•.» qj OS

(DUMP) dump_list
1DP f

ARGUMENT?

dump_list , *-"rf _ , T L-^<SI*_ „,? ' t a

List of items separated by commas, which can include:

• Variable names representing individual values, or
record structures: •? ̂

DUMP HEAD_OF_LISTf TABLE, MASS_REC

• Range of variables as declared textually in the
program:

DUMP ABC TO J_MODE

• Record component:

DUMP C OF B OF A
DUMP C IN B IN A (these two are equivalent).

If "f" precedes a variable name, the variable is
displayed in hexadecimal.

DESCRIPTION:

Each requested item is displayed on a new line. Record com-
ponents are indented according to level. The item name is
printed on the left followed by the item value. The value is
printed in a format conforming to its data type unless the
hexadecimal override character (#) precedes the name.

Example:

DUMP ABC, 'RESULT1

Display the contents of variable ABC and print the character
string RESULT.

-̂ > 7-13 CZ15-00

GO

SQ . J£Q£

Resume execution of the program.
•2'i

FORMAT?
, '̂ - ji. •:•

GO [programraloeation]
. ; ' !<-:*'

ARGUMENT; ' c

program_location

Either a statement label or a statement line number.

DESCRIPTION: •

If no argument is given, the debugger resumes execution of
the program where it left off. If a program location is
given, the debugger resumes execution at the new location.

NOTE

The progranulocation option should be used with
caution because registers used by the bound unit
may be scrambled by such a jump«

- r- ,-_'!-•-.•> :? vjjsE

'M: :.

t, -i

7-14 CZ1S-00

IF

IF <•' - ' • ' -- • «API1 Nt^ ';>:.-,' 54.?

Provide a simple conditional for use in breakpoint and trace
request lists.

FORMAT?

'•V*=/Icharacter string
IF variable / > I/hexadecimal stringv request_list

> Adecimal literal (^
< \/$T
< A$F

ARGUMENTS:

« Equals

** Not equal
-&•' * . '*• ^FUS^

> Greater than
-- -3? . \or:,y *„} ncn -, s-^

>- Greater than or equal to
- - - ^; vC'io eifj

< Less than
'•• m-

O Less than or equal to

request^list * '~-~- >ni

Required list of one or more directives to be performed
when the IF expression evaluates to True. A request_list
consists of a single directive or a series of directives

. delimited by parentheses. Directives in a request_list
*—̂ are separated by either semicolons or new line characters.

DESCRIPTION;

When an IF directive is performed, the comparative expression
is evaluated. If the result is True, the request_list is
performed. When execution of the request is completed
(without encountering a GO or PAUSE), processing continues
with the next directive following the list.

If the result of the comparison is False, the request_list is
ignored.

ŷ ' ^ 7-15 'CZ15-00

IF

The data types on the left and right of the relation must
match* For example, a variable name defined as a hexadecimal
string may not be compared to a decimal literal« The one
exception is that any type variable may be compared to a
hexadecimal literal which represents exactly the internal
format of the data. There is no other conversion of data
types.

The length of a comparison corresponds to the language rules.
If an expression being evaluated is determined to be invalid,
an error message is issued and the debugger pauses.

Exampless

AT 1020 (IF VAR1 - 8ABCB'(PAUSE)) . p "'3»» ><< J
AT 1020 (IF VAR1 - %41424344 (P))

These two directives are both valid assuming the base type of
VAR1 is a character string= A True condition causes a
Pause? False causes a Go0

AT 1020 (IF BOOL » $F (PAUSE))
• i *» y > •

The debugger pauses only if BOOL is False.

TR (IF J_INDEX < 0 (PAUSE))

Establish tracing for all statements in the compiled
program. At each statement, the IF expression is evaluated.
If J_INDEX is ever less than zero, the PAUSE occurs.
Otherwise, the program continues.

f tVv

~N

7-16 CZ15-00

^ LIST

LIST

List current breakpointSc

FORMAT:

(LIST) [breakpoint_list] [-LG]
\L f

ARGUMENT: " . «'-

breakpoint__list • j. {- ; i

List, which can include:

• Individual breakpoint numbers
c A range of breakpoints (e.g., Nl to N2)
• * (indicating all currently defined breakpoints)
« $ (indicating the current breakpoint).

DESCRIPTION:

The breakpoint identifier (an integer between 0 and 31), the
line number, and label (if any) are printed for all specified
breakpoints. In addition, if -LG is given, the request list
(if any) associated with each breakpoint is printed.

Examples: . .

LIST 3,4,10 TO 15 -LG

Print the basic information and request lists for breakpoints
3, 4, and 10 through 15.

W L »

Print the basic information for the breakpoint at which the
program is currently stopped.

7-17 CZ15-00

?fi^ **• *A»U

Define the debugger mode of operation desired. Specify
Symbolic mode for Advanced COBOL and Advanced FORTRAN program
debugging. Specify NUMERIC mode for Assembly language program
debugging,. See the System Programmer's Guide. Volume I for
information on numeric debugging operations.

FORMAT:

(I NUMERIC) ^
11NUM I

MODE \
//SYMBOLIC)
VISYM])

-. '-.J,

<̂ -, ..Z'.". :u, • ĵ.nw

DESCRIPTION:

The debugging mode is set as specified.

*
4-

If the debugger is currently in symbolic mode, type MODE
NUMERIC to put the debugger in numeric mode. See the System
Programmer's Guide. Volume I for a description of numeric
directives.

If the debugger is currently in numeric mode, type MODE
SYMBOLIC to put the debugger in symbolic mode.

Symbolic mode can only be used with bound units which have
been compiled with the debug option on. Also a bound unit
must have been initialized for symbolic debugging prior to a
switch from numeric to symbolic mode. ,., (- F ^~^,

sV
f »

v :r - , - 1 i r

- 7-18 CZ15-00

^
ACTIVATE

ACTIVATE

Change reference to a different object unit.

FORMATS
•* *

(ACTIVATE) object_unit_name[/overlay_name]
(AC J

ARGUMENTS:

©bject_unit_,name
<ta

Name of the object unit other than the current one.

-̂̂ overlay_name

Number of the overlay in which the bound unit is linked.

DESCRIPTION?

The object unit named becomes the current object unit.

Examples - - -

AC PROC1
DUMP ABC
AC PROC2 '
DUMP DEF
AC PROC3/4
DUMP XYZ

ABC, DEF, and XYZ are variables declared in three separately
v / compiled object units. This sequence of directives displays
̂̂ ABC, activates the PROC2 symbol block, and displays DEF.

Then the symbol table for PROC3, linked in overlay 4, is
activated, and variable XYZ is displayed.

>̂ . ,- - 7-19 CZ15-00

£M£&
Enter interactive mode, --«******& * ̂ »3ft*i»ltn »ori6<i'

FORMATS

(PAUSE* " "• ' " -»-̂ '. •••--. ,̂ ;c«o I
\P f ' •'*'

DESCRIPTIONS

When a PAUSE directive is performed, the debugger enters
interactive mode, sends a prompt message (the "greater than"
sign (>)) to the user-in file, and reads the user-out file
(generally a terminal) to obtain its next directive.

When a PAUSE is encountered within a request_list, it takes
effect immediately, and any directives remaining in the list
are ignored.

Examples* " - - . - _ . . .̂ .?; ,r s_i<?

AT 1020 (DUMP I,NEXT?IF NEXT=%40 (PAUSE))

Whenever line 1020 is reachedf the variables I and Next are
dumped. Then, the IF expression is evaluated. If NEXT is a
hexadecimal 40, the debugger pauses. Otherwise, execution of
the program resumes at statement 1020.

7-20 CZ15-00

v^
QUIT

SHU
Clear all breakpoints, close all debugger work files, and

disable the debugger trap handler before terminating the debugger
task.

FORMAT; „: f \"I '. •*.? ! j

Q* . - : ' ! IJ »

^y v ,:S3

^"*- (, . " » - ', ;, -J0,-

^- V j f '-J-- <5>

S V £. ,T, S-,^ f ,_J / Jf ..J

9 u ' f c * ' . - f " " t ?O<>L Silt,' 1st-

• 4

^ ' t ^ J ' r " -I ~ f - - * > i ^ » f l » * S . - * " f ^ ^ f " **I.t» * " f- j « »vO

> JK? T". £

7-21 CZ15-00

JLlJjj*
Set values represented by special symbols,

FORMAT:

($Bn)
SET <$Rn>

($P)

$Bn
$Rn
$P
hex value
dec valued

($Bn
<$Rn
($P
hex value
dec value

':-tt*.l~

ARGUMENTS:

$Rn

$P

hex value

dec value

DESCRIPTIONi

base register

index register

p-counter

hexadecimal value

decimal value

For each set_list item, the item on the left is assigned the
value of the item on the right. The expression must evaluate
to a hexadecimal value when setting base or P-registers, or
to a decimal or hexadecimal value when setting index
registers.

Example:

SET $R1 %F3E2

Register Rl is set to hexadecimal value F3E2.

NOTE

The SET directive is generally not useful to users running
only COBOL or FORTRAN programs.

7-22 CZ15-00

w
. fe SP

SP (SLEEP) . - "»

Return processing to command level after initial breakpoints
have been set.

FORMAT:

SP
' ̂ *._-"s <•»#».: , 73C-

DESCRIPTIONS

The SP directive temporarily suspends the execution of the
debugger and returns control to the Command Processor.

Vs_y You may now start execution of the bound unit in the standard
manner. The debugger becomes active again if:

1. A breakpoint is reached in the user's program.

2. The user types DEBUG from the command level.

• i £»v
•>'5>;-< i<">

\ T ^ £ rt ^ t2< c^ f

, •'* ,i' V3 ?,t -' ' ' '

~; t. : , , - • O - ! - 5 0 s C

W 7-23 CZ15-00

"N

TRACE

2B&SI

Trace the flow of a program,, It can also be used in
conjunction with the IF directive to monitor the contents of a
variablec You must be at a breakpoint to issue the TRACE
directive,,

rA- *>'"•
FORMAT g

* ?•
(TRACED -OFF [(request_list)]
ITR J

ARGUMENTS: - - . - ' . „ * - - . , . - .
"• H r_ ,^

Turn tracing off for the current bound unit.

request^list
A'*

Optional list of one or more directives to be performed
when a tracepoint is reached* A request list consists of
a single directive or a series of directives delimited by
parentheses* Directives in a request list are separated
by either semicolons or new line characters.

DESCRIPTIONS

A trace is defined and becomes active when the next Go direc-
tive is entered* As each statement is executed, a trace
message consisting of the line number, bound unit name, and
statement label (if any) is listed, the request list (if any)
is performed, and execution of the program continues.

7-24 CZ15-00

TRACE

Multiple Trace directives may be entered, but only one
request_list (the last one entered) will be in effect.

Examples:

TRACE (DUMP TAG)

Print the variable TAG at every statement.

TR (IF J_INDEX - 0 (PAUSE))

Monitor the contents of J_INDEX during execution of the
current object unit. If J_INDEX goes to zero/ execution
pauses.

w

7-25 CZ15-00

. ,; • - .r -•".- it ;>,;r ;•..:•.... ; £ . - < -5 u ir*.

--T

• .,'•?} >

ff

^/

W

v^

ej
£
e>

'". « ^ ' ^ K O ' >J*.

-r t - ~ , v — o ^*w- jrv R :,..'o:v, n ^rfT

•«pr-"!jr!oD noi.'s."

- -> ~ t_> 0'

Section 8
? NETWORK PROCESSING

FUNCTIONS
-' * ' ' ' ~ 1 "r'3 - :-?;..'.?*- to »*q,- ^-o^

DPS 6 DSA is Honeywell's minicomputer-based networking
system. DPS 6 DSA combines processing power and high-speed
information dissemination over communications lines. This is
also called data communications. Data communications carried out
in real time (i.e., multiple, concurrent accesses from terminals
to a computer with practically instantaneous response) is called
online processing.

A DPS 6 DSA system is a combination of hardware and software
processing facilities. Hardware facilities include the central
processing unit, peripherals, terminals, lines, and modems (or
related devices). Software facilities include user application

\^/ programs, a user access method, and a network control center.
i

NETWORK CONTROL CENTER

The network control center is a software product that runs
under the MOD 400 Executive. The control center resides in a
region of main memory and manages this region much like the
Executive manages the machine environment: handling terminal and
file I/O operations, dispatching concurrent processing
activities, validating user requests for services, and performing
other network-related functions. DPS T DSA software allows a
MOD 400 application on one node to establish a session with an
application on a different node to exchange application data.

Network software exchanges data between programs executing in
the same or separate computers). The layer of network software
that establishes connections, queues message text, and synchro-
nizes the cooperating process is called session control.

W

8-1 CZ15-00

This section summarizes and briefly describes the COBOL ^_>
Session calls for use in Advanced COBOL programs. For complete
information on Network application programming/ see the Network
Programmer's Guide. V

The session control software provides two types of calls;

Workstation Administration Commands
COBOL Session Calls

The Workstation Administration commands create the networking
environments the workstation, mailboxes, and session type
descriptions. COBOL Session Calls manage sessions. In addition
to the COBOL Session Calls there are COBOL COPY files that are
used to create and modify the session control I/O request blocks.

NETWORK ENVIRONMENT OF A PROCESS

Four types of entities compose the network environment of a
process; ^~S

Workstation
Mailbox
Session Type Description
Task Group

The commands that define the data entities create parameter
lists in the user's program space. These parameter lists do not
control sessions; they provide input to the activating calls. (
These commands create data structures in network memory. Once
the activating call completes, the parameter list in user's space
is free. This structure can be modified and reused. Thus, you
could create a single mailbox parameter list in program space,
activate it, modify it to create a different mailbox, and then
activate that mailbox.

WORKSTATION ADMINISTRATION COMMANDS ^-^
' ' rT " —̂"̂ - --_!__•- IT—._TT • _1 ^ ^ ^

The Workstation Administration commands create and activate ^^
entities required by COBOL programs. For information on COBOL
programming considerations, see the Network Programmer's Guide.

A brief description of the Workstation Administration
Commands follows: u

Activate Workstation NWKS ,
Attach Task Group to Workstation NATWS v~ * 9i -
Detach Task Group From Workstation NDTWS
Activate Mailbox NMBX
Activate Session Type Descriptor NSTD
Print Expanded Network Structures " NPX '
Modify Workstation .̂ - , NMWKS
Deactivate Workstation ' NDWKS
Deactivate Session Type Descriptor NDSTD ,-

: •' - -' " - -- t^-J.M. :,rUJf. y. , P*Sin

3-2 CZ15-00 ^̂

Activate Spawning Mailbox EC NMBXEC
Deactivate Mailbox NDMBX

_< COBOL SESSION CONTROL I/O REQUEST BLOCK CALLS

Three data structures are used directly by the calls cnat
manage the session. The data structure addresses are input
parameters to the session callsf and data are returned to these
structures when the session calls complete. These data struc-
tures are GCOS 6 standard extended input/output request blocks
(lORBs) and are in user space« The session management request
blocks are:

; i ! *.")

Session Initialization Request Block NSIRB
Session Control Request Block NSCRB
Session Recovery Request Block *- NSRRB

Session initialization request blocks (NSIRBs) are used by
the following COBOL session calls:

Accept Session * ^ .
Initiate Session ' "**•<••*•

W
Session control request blocks (NSCRBs) are used by the fol-

lowing COBOL session calls:

Cancel Enclosure
Receive
Send

Session recovery request blocks (NSRRBs) are used by the fol-
lowing COBOL session calls:

Send Interrupt
Receive Interrupt
Terminate Session
Test Session

1 Wait Session
Request Attributes

In COBOL I/O request block administration, you COPY the
**~S request block data division declarations from library files to

create and modify data structures. Your program uses the copy
file as a template.

For detailed descriptions of the COBOL session calls
and contents of the COBOL copy files, see the Network
Programmer's Guide.

COBOL SESSION CALLS

The COBOL session calls allow your program to control the
establishment, management, and termination of sessions.

8-3 CZ15-00

^y

r,, o j .

The COBOL session calls are described briefly below. The
appropriate COBOL calls, IORB used by each call, and processing
method of the call (synchronous or asynchronous is also
specified).

For detailed descriptions of the COBOL session calls, see the
Network Programmer's Guide.

HaHL£
-;- "4

Accept Session
Cancel Enclosure
Initiate Session
Receive
Receive Interrupt
Request Attributes
Send
Send Interrupt
Terminate Session
Test
Wait

£all

ZACPTS
ZCANCL
ZINITS
ZTRECV
ZRINT
ZRAT
ZTSEND
ZSINT
ZTERM
ZTESTS
Z WAITS

" - -*- - • '« if , *.

IORB Synchronism

SIRB
SCRB
SIRB
SCRB
SRRB
SIRB
SCRB
SRRB
SRRB
SIRB
SIRB

Async
Sync
Async
Sync
Sync
Sync
Sync
Sync
Async
Sync
Sync

' '< .7° • . : ->VGO?S -i-^' j ,-:^-
-' -b-, noiS3*3 aOS'-G s.jiwu

(

S • /• : t ' O f t O , i:} V
- ** J JC St

w ' l i & n .
: 'ir

• s> a . t. Tifif 'v"-' -/>'•

8-4 C Z "

w

v^

o

i3 '
f
CO

8

W

v^

^

: •* f S 11

W

tr.4

'rr:;,rt ,-JOj:«1tv & f l ic '-.{.»•* r

c -s. . sr ' -*

;s j<,* -, 2/;»35 • ,-r* e"

•<^~

Section 9
PATCH UTILITY

The Patch utility is used to apply patches to and remove
patches from object units and bound units. Patches are
identified by patch-ids. The Patch utility can also be used to
list/ by patch-id, all patches for an object unit or bound unit.
The listing is written to the user-out file, terminal line
screen, or printer for a hard copy.

The Patch utility, in modifying object or bound units, will
extend the file space, as necessary. Insufficient file space
will terminate Patch operations; therefore, you should ensure
that sufficient space exists to accommodate the patch(es) on the
medium (disk, etc.).

Y . J'-1 "'?sy<i it- jj V-8J3
USING THE PATCH UTILITY

Patch execution is controlled by directives entered to Patch
through the operator's terminal, user terminal, a card reader, or
a sequential file. The Patch utility operates in batch mode or
in interactive mode. Each mode is described separately below.

Batch Mode

In batch mode Patch processes directives and applies them to
the file specified on the Patch command line. These directives
allow patch application with or without verification of patches,
the elimination of patches, and listing patches.

\^_s - • " - 9-1 CZ15-00

By using Patch directives, the user can;

• Manipulate shared and system attributes of bound units

• Create and maintain a version number facility for the
bound unit

• Provide a method for patching all references to
undefined external references in bound units

• Interrogate the current contents of a bound unit,,

The Patch utility processes version number and attribute
modification. It also interrogates directives as they are
entered. Regardless of the input sequence of other directives,
Patch processes directives in the order: eliminate patches,
aPPly patches, and then list the patches.

Interactive Mode

By specifying the Patch command with the -IA argument, a
bound unit can be patched in interactive mode. In interactive
mode, Patch directives must be completed before they are applied;
a directive is completed when the Patch utility reads a new
directive. Only the file specified on the Patch command line can
be patched with each invocation of the Patch utility.

Version number processing, manipulation of the shared or
system attributes, and interrogation are always performed as the
directives are keyed-in*

The Patch directives are listed and briefly defined below.
Detailed descriptions for each Patch directive are provided later
in this section. - - . -> . ,Y-:ii^». r^.v-i ••>(*"

Directive
Name - .' Function

CLSY Clear system bit

DP Apply patch(es) to data section of bound unit or
to common area of object file

tH? ' ' Eliminate named patch or all patches

GO Process previous patch directive

GNSH Set global share bit off

GSHR Set global and root share bits on

HP Apply hexadecimal patch(es) to specified file

9-2 CZ15-QO

^ , Directive
Name ~ 1 41 K, Function

w

4- '*.

si*T

LDEF

LN

LP

LS
r •.

NS

g

SD

SP

SS

STSY

VDEF
'r

VN

WA

it

LOADING PATCH

Assign an address to an undefined external
location reference

List patches but do not exit from Patch

List patches and exit from Patch if mode is batch

List patches by name only and exit from Patch if
mode is batch

Set share bit off

Process previous patch directives and exit from
Patch

Apply symbolic data patch(es)

Apply symbolic patch(es)

Set share bit on ^

Set system bit on •* - r/,t«

Assign a value to an undefined external symbol

Verify or change revision number of bound unit

Interrogate bound unit

List a comment on the user-out file
W-

To load Patch, enter the PATCH command/ as follows:

FORMAT:

PATCH filenra [ctl_arg] - o55 4

ARGUMENTS:

filenm

I*j-

Pathname of the object unit file or bound unit file to be
patched. If an object unit is being patched, the last
two characters of the pathname must be .0.

^
9-3 CZ15-00

etl^arg

The following control arguments may be entered?

-IA

Operate in interactive mode. Process one directive
at a time? error messages (if any) immediately follow
the applicable directive,, If this argument is not
specified, Patch operates in the batch modec

-IN path

Pathname of the device through which Patch directives
will be entered; can be the operator terminal,
another terminal, a card reader, or a sequential
file. Error messages are written to the error-out
file. Patch error messages are described in the
System Messages manual.

Default? Device specified in the in_path argument of the ^ /
"Enter Batch Request" or "Enter Group Request"
command.

-M6 - - J«-i <-.,

Bound unit to be processed was created by the MOD 600
Linker.

• \. 3 i

This argument should not be used when patching an
object file. (The cO at the end of the filenm on the
command line identifies to Patch that the file is an
object file.) Default? MOD 400. A*.

-PROMPT " - ^
-PT

If input is from the operator terminal or another _̂
terminal, each time the PATCH utility program is ^
ready to accept an input line, the typeout P? appears
on the input device.

Defaults No prompt. * • * . - ' •:. 3^TAi

-SI

Suppress the display of the sign-on message (i.e.,
PATCH, followed by the revision number and the date
patch was created). Default: Patch sign-on message
is displayed.

9-4 CZ15-00

SIZE n

Create a patch work area of n 1024-word blocks of
memory. .

Default for n: 1.

Patch can operate on two types of files:

o Object units, which are variable sequential files created
by the compilers

o Bound units created by the Linker.

SUBMITTING PATCH DIRECTIVES

Each Patch directive consists of only a directive name or a
directive name followed by one or more values. Values must be
separated by a delimiter. The delimiter can be a space, a comma,
or a semicolon. However, on an interactive device (i.e., a
terminal) , the carriage return replaces the delimiter. Lines may
neither begin nor end with a comma or semicolon. If directives
are entered from a card reader, trailing blanks or column 80
replace the delimiter »

Multiple Patch directives may be specified during one
execution of the Patch utility. To patch another bound unit or
object unit, Patch must be re-executed.

For patching in the interactive mode:

• Patch directives are processed in the sequence in which
they are entered.

• Patch directives can be entered in any order, except that
Quit (Q) must be entered last.

" ' • A patch directive must be complete before it is processed;
, ̂.* it is complete when Patch reads a new directive.

For patching in the batch mode:

• .The List Patches Now (LN) directive must be the first,.
directive, otherwise, it is processed like an LP
directive.

• Patches are first eliminated, then applied, and finally
listed regardless of the sequence in which the associated
directives are entered. -~~*-.

9-5 CZ15-00

The version number directives (VN) , the share bit and sys
tems bit directives (SS, STSY, CLSY, GSHR, GNSH, and NS)
are always processed interactively in the order in which
they are entered.

• The WA directive is processed when it is entered.

If directives are being entered through the operator terminal
or another terminal, press RETURN at the end of each line* Each
time RETURN is pressed, except after quit, the typeout P? is
reissued if the prompt control argument was specified in the com-
mand line.

To enter Patch directives for a different file, you must
reload Patch, specifying a different file in the filenm argument.

PATCHING TECHNIQUES

Techniques used when "Naming the Patch" and "Applying the
Patch" are described in the following paragraphs.

Naming fch.6.--rr-1-r- n.,r,

Each patch has a patch-id by which it is identified. When
you designate in Patch directives (DP, HP, SD, or SP) that one or
more patches are to be applied to a specified object unit or
bound unit, you must specify a patch-id. The patch-id identifies
the patch(es) and designates whether the patch(es) are to be
applied to an object unit, root, or overlay of a bound unit. To
eliminate patches from an object unit or bound unit, you must
specify in the Eliminate Patch directive the patch-id with which
the patch (es) are associated. See "Data Patch Directive (DP)"
for a description on how to designate patch-ids.

in. ,.fehe Patch

If an object unit is being patched, object records are
created for the specified patches and appended to the end of the
object file. When the object unit is processed by the Linker,
existing values are replaced with the specified patch values.
Locations that contain external references should not be patched;
results are unspecified.

If a bound unit is being patched, each specified patch value
is applied directly to the proper image record in the bound
unit. The previous value, the patch-id, and the patch value are
saved in a Patch history record that is written at the end of the
file area allocated to the bound unit. This record is referred
to each time a List Patch or Eliminate Patch directive is speci-
fied. - -

9-6 CZ15-00

NOTE
rtfiiH*r

>

Use caution when patching executing bound units. If a
program or one of its overlays is loaded while in
the process of being patched, results are
unspecified.

PATCH DIRECTIVES

The Patch directives are described on the following pages in
alphabetic order by directive function.

9-7 ' CZ15-00

CLEAR SYSTEM BIT

CLEAR SYSTEM BIT

Turn off the system bit in the bound unit's attribute table.
This directive prohibits the patched bound unit from executing in
the system ($S) groupc The CLSY directive is not allowed for
object

FORMAT?
*

CLSY

NOTE

The system bit was initially set at link time by
the SYS Linker directive.

9-8 CZ15-00

COMMENT

COMMENT

List the accompanying text on the user-out file. The
contents of the Comment directive are not saved.

FORMAT:

* comment-text

^i: tit-" -». : ^ ?- -3125

"j~; sv - .1 : ̂ sV .1 :

9-9 CZ15-00

DATA PATCH

PATCH
APPly (for bound units) one or more hexadecimal patches, by

relative location, to the data section of -the bound unit. The
bound unit must have separate code and data sections , and have
been created by tire Linker when the -R Linker argument is

For object files, the DP directive causes patches to be
applied to common arease

FORMAT s

For Bound and Load Unitsf Without Verification:

DP patch-id /addr patchval[patchval...][/addr
..3

For Bound and Load Units, With Verifications

DP patch-id /addr (verval patchval[verval patchval...])
[/addr (verval patchval[verval patchval...])]

For Object Filese Without Verification — Local Common Block:

DP patch-id /offsetl patchval[/offsetl patchval]...

For Object Filesf With Verification — Local Common Block:

DP patch-id /offsetl (verval patchval)[/offsetl
(verval patchval)]...

For Object Files, Without Verification — Named Common ,>-~K
Block -- One Blockname Per Directive? j

DP patch-id blockname /offset patchval[patchval...]/
offset patchval [patchval...]...]

For Object Files, With Verification — Named Common Block —
One Blockname Per Directive:

DP patch-id blockname /offset (verval patchval[verval
patchval]»..)[/offset (verval patchval[verval
patchval]«c c)*..)]

9-10 CZ15-00

DATA PATCH

ARGUMENTS:

patch-id

Patch-id of the patch(es) to be applied. A patch-id com-
prises eight to ten characters: the first six characters
can be any ASCII characters except spaces. The last two
to four characters must identify the root or overlay to
which the patch(es) are being applied. If an object unit
or the root of a bound unit is being patched, the
patch-id is eight characters, the last two of which must
be RT« If an overlay is being patched, the last two to
four characters identify the hexadecimal overlay number;
the first overlay is 00 for bound units created by the
Linker, and subsequent overlays are numbered consecu-
tively in ascending order. There may be no embedded
blanks. Within the root and each overlay, patch-ids must
be unique.

/addr ^ ./..c. '- ": - . - Id :; ~»&nt-r- *r*? io %,-Rcn

Relative location at which the first (or only) subsequent
patch value will be applied. Each address must comprise
one to six right-justified, hexadecimal characters, and
must be preceded by the slash character (/). Subsequent
patch values, if any, are applied to succeeding memory
locations.

? , <- NOTE *-"' Oi* *'• - '

Care must be taken in specifying an address to be
patched. If the address of a location to be
patched is identified when a bound unit is being
executed, that memory address contains three pos-
sible factors:

1. The original address of the location in the
bound unit relative to the beginning of the
bound unit

t&v
2. The linking relocation factor

3. The loader relocation factor

If the address is identified at execution time and
the bound unit is to be patched, the loader relo-
cation factor must be subtracted from the address

9-11 CZ15-00

DATA PATCH

identified in the executing bound unit. If the
object unit is to be patched, both the linking and
loader relocation factors must be subtracted.,
Object unit locations can also be obtained through
examination of the listing produced during assem-
bly of the object member, ;

t
i

offsetl • »

Non-negative offset from the beginning of $LCOMW.

patchval . _ - •: , I

Specify a value of one to six hexadecimal
characters to insert into $LCOMW. Relocatable
values are no_£ permitted and only one patch value
can be specified for each patch.

'.*.*:) V " ,, >'*z £ O C ^ v C

blockname

Symbolic name of the common block. The name can
contain one to six characters.

-) .: *^ : -1
offset ' • -• •;•• . .-•-« b .;

Offset from the symbol name of the common block.
** *,

/patchval • •

Value to be inserted at an address, replacing the
contents of that location. The value must be
specified as one of the followingi

1. Data, represented by one to four hexadecimal
characters.

2. Relocatable address, represented by one to six
hexa- decimal characters, preceded by the
character <.

•J f :

verval
* >

Verification value; one to six hexadecimal
characters specifying value that should be in
location before patch is applied.

9-12 CZ15-00

DATA PATCH

' .'. O' NOTES

1. Each verval must be immediately followed by a
patchval.

2. The verification value(s) and patch value(s)
associated with each address must be enclosed
within parentheses.

3. For consecutive locations, the old and new .£1
values can be included within one set of
parentheses. The /addr field is adjusted
internally by Patch.

4. Within a set of parentheses, the number of old
values must equal the number of new values.

5. The IMA indicator cannot be used with an old
value. IMA status is determined by Patch from
the module or from the new value.

6. For SLIC or LAF IMAs, old value and new value
can be up to six characters.

7c For SLIC or LAF iMAs, Patch allocates two
words. For example, assume that the following
directive applies to a SLIC module:

DP patch-id,/100,(1111,<12345,ABC,DBF)

If the contents of 100 and 101 are 001111, and
the contents of 102 are ABC, the patch will be
applied, and as a result the contents of the
specified addresses will be:

Address Contents

100 01
101 2345
102 DEF

8. Verified and nonverified patches can be
included within one patch directive; however,
if the verify fails, none of the addresses in
the directive are patched.

9-13 CZ15-00

9o A left parenthesis cannot immediately follow a right
parenthesis. There must be a /addr field between them,

10o In a bound unit? an IMA may be patched to a non-IMA or
a non~IMA is patched to an

11« In object modules, patches to areas that have no
defined value cannot be verified.

12. In a bound unit, if the new value is not an IMA, the
old value can be no more than four hexadecimal
characters even if the old value is an IMA.

NOTE

SLIC means SAF/LAF independent code. MOD 400 bound units are
usually LAF, but SLIC bound units may still be patched and
executed.

r f. * -;* .u '-, * ' -

9-14 CZ15-00

ELIMINATE PATCH

O

Qt

Eliminate all patches associated with a specified patch-id
from the designated object unit or bound unit. The patch (es)
must have been previously applied by DP, HP, SD, or SP
directives. To determine what patches have been applied, and
their patch-ids, enter one of the list patch (LN, LP, LS)
directives described later in this section.

FORMAT:

EP (patchid\
\ ALL J

ARGUMENTS :

patchid

Patch-id of the patch (es) to be removed. A patch-id
comprises eight to ten characters: the first six
characters can be any ASCII characters except spaces; the
last two to four characters must identify the root or
overlay to which the patch (es) are being applied. If an
object unit or the root of a bound unit is being patched,
the patch-id is eight characters, the last two of which
must be RT. If an overlay is being patched, the last two
to four characters identify the hexadecimal overlay
number, the first overlay is 00 for bound units created
by the Linker, and subsequent overlays are numbered
consecutively in ascending order. There may be no
embedded blanks. Within the root and each overlay,
patch-ids must be unique.

ALL

If the ALL option is used, all patches in the file are
eliminated in the order that they were applied.

9-15 CZ15-00

Tell Patch that the previous directive is complete and is to
be proeessedc This directive is effective only in the
interactive mode. In the interactive mode*, a new Patch directive
signals the end of the previous onec The Go directive is used in-
circumstances in which the user would like to have a directive
processed before entering any other directive.

1 "j?s 'u.;ij rx >'?"friJ_
FORMAT:

GO "'̂

6:

."•>

9-16 CZ15-00

w
HEXADECIMAL PATCH

HEXADECIMAL PATCH

Apply one or more individual patches, by relative location,
to an object unit or bound unit.

If a bound unit is being patched, you can designate that
specified patch(es) be applied only if specified location(s) cur-
rently contain specified value(s); these are called verification
values. Within a single HP directive, verification values may be
specified for some or all of the locations. If any of the veri-
fication values do not match the values currently at the loca-
tions for which verification values were specified, none of the
patches specified in the HP directive are applied.

FORMAT:

Without Verification Values:

HP patch-id,[base,]/addr,patchval[,patchval...patchval]
[,/addr,patchval[,patchval...patchval]]...

With Verification Values:

HP patch-id,[base,]/addr,(verval,patchval[,verval,
patchvalj)[,/addr,(verval,patchval[verval,

1 " - • ' " patchval)])]

-' •<•'- - -• , . r NOTES

'-'vC* 1. One or more lines of arguments may be speci-
fied. When two or more lines of arguments are
entered for an HP directive, the last charac-

"••" ter on each line must be a valid hexadecimal
character or right parenthesis. Individual
fields, values, and addresses must not be
split between lines. The entry of a Patch
directive name (e.g., EP, LP) at the beginning
of a line designates the end of the previous
Patch directive.

2. A space may be used in lieu of a comma as a
separator.

9-17 CZ15-00

ARGUMENTS-.

pat chid

Patch-id of the patch (es) to be applied. A patch-id com-
prises eight to ten characters: the first six characters
can be any ASCII characters except spaces; the last two
to four characters must identify the root or overlay to
which the patch(es) are being applied. If an object unit
or the root of a bound unit is being patched, the
patch-id is eight characters, the last two of which must
be RTe If an overlay is being patched, the last two to
four characters identify the hexadecimal overlay number;
the first overlay is 00 for bound units created by the
Linker f and subsequent overlays are numbered consecu-
tively in ascending order c There may be no embedded ^~s
blanks. Within the root and each overlay, patch-ids must
be unique,

base

Optional argument allowed only for bound units. Base
defines a value that is added to all locations; i.e.,
/addr specified in the associated DP, HP, SD, or SP
directives and all IMA references. If this argument is
omitted? the default value is zero. Base can be entered
as a hexadecimal address of one to six characters or as a
name that has been specified as an EDEF at link time and
placed in the bound unit symbol table. If a symbol name
is used, Patch finds the name in the symbol table and
uses its address as the base value. The format for the
symbol name as a base is +symname, where symname com-
prises 1 to 12 characters. If a hexadecimal address is
used for base, the plus sign is not required.

For bound units created by the MOD 400 Linker the values
specified for the /addr fields and IMA references (if
any) must include the displacement of the root or
overlay. The displacement is equal to the base address
of the root or overlay as printed on the link map. The
user may add the displacement to each /addr field and
IMA, or achieve the same result by specifying the base
parameter in the Patch directive. For example, if the
first overlay of a bound unit is based at 1000 and a
patch to locations 100 to 103 and 200 to 204 is to be
made within the overlay, the following two patch
directives are equivalent when applied to a LAP bound
unit.

9-18 CZ15-00

HEXADECIMAL PATCH

SP NUMBRAOO;/1100/LDR $R1, 1500;STR $R,=$R2

/1200/ADD $R1, 1600;JMP 1156

SP NUMBRAOO;1000;/100;LDR $R1,500;STR $R1,$R2

/200,-ADD $R1,600;JMP 156

/addr *'\ , . .£

Relative location at which the first (or only) subsequent
patch value will be applied. Each address must comprise
one to six right-justified, hexadecimal characters, and
must be preceded by the character /. Subsequent patch

- values, if any, are applied to succeeding memory
locations.

- NOTE - -

Care must be taken in specifying an address to be patched
in either an object unit or a bound unit. If the address
of a location to be patched is identified when a bound
unit is being executed, that memory address contains three
possible factors:

lo The original address of the location in the object
unit relative to the beginning of the object unit

2. The linking relocation factor

^ 3» The loader relocation factor

If the address is identified at execution time and the
bound unit is to be patched, the loader relocation factor
must be subtracted from the address identified in the
executing bound unit. If the object unit is to be
patched, both the linking and loader relocation factors
must be subtracted. Object unit locations can also be
obtained through examination of the listing produced
during assembly of the object unit.

9-19 CZ15-00

HEXADECIMAL PATCH

The value to be inserted at an address, replacing the
contents of that location. The value must be specified
as one of the following s

!«, Data, represented by one to six hexadecimal
characters

2. Relocatable address , represented by one to six
hexadecimal characters, preceded by the character

verval
r „

Verification value? one to four hexadecimal characters
specifying value that currently should be in location at
which subsequent patch will be applied. See the notes on
verification that follow the DP directivec

Example 1: .v 9fi ^^tut,

HP PTCHXDRT,/lB2AflFFF,lDFC,<2BFC,2D4E,<ABF2

This Hexadecimal Patch (HP) directive requests that the sub-
sequent patches f identified by the name PTCHIDRT, be applied
to the rootc Patch values 1FFF,6 through <ABF216 are to be
inserted in successive locations, with the first patch value
1FFF16 to be located at address 1B2A,6 «, The hexadecimal
patches are to replace any previous values in these
locations. The value to be inserted in address lB2Ci6 is the
two word addresss 2BFCi6 , which is to be relocated at load
time? the relocatable address ABF2)6 is to be inserted in
address 1B2F,6 .

9-20 CZ15-00

HEXADECIMAL PATCH

Example 2:

HP VPATCH01,/lFEA,(1A1,1B7,1A7,IBS),/lE72,8900

This example illustrates the use of verification values in a
Hexadecimal Patch (HP) directive requesting that specified
patches, identified by the name VPATCH01, be applied to over-
lay 01. Patch will check location 1FEA,6 for the value
1A116 , and location 1FEB16 for the value 1A716 ; if the values
are at those locations, then the contents of locations are
changed as follows: location 1FEA,6 will contain 1B7,6 ,
location 1FEB16 will contain 1B816 , and location 1E72,6 will
contain 890016 . If either of the verification values is
incorrect, none of the three locations will be changed.

9-21 CZ15-00

INTEEROGATE BOUND UNIT

INTERROGATE BOUND UNIT
, f

Display the current contents of locations specified on the
user-out file0 This directive cannot be used to display
locations in object files0

FORMATS

WA, [ovlyf]/addrl [r words] [,/addr2 . . e]

ARGUMENTS s

ovly

Overlay number in hex that the address references. If
this field is omitted, the root is the default. The root
can also be specified as RT. For -R type bound units,
this field can be DP for data section or RT for code
section as well as being an overlay number.

addr

Specify the hex address within specified root or overlay
indicating where the display is to start.

9-22 CZ15-00

LDEF

Assign a specified address to an undefined external location
reference and change all locations that reference this name.
This directive is not allowed for object files.

FORMAT s

LDEF ; symname ; [<]addr [;L] •?

ARGUMENTS : a ;

symname r "~ - . - . - - ,. - .

Name of the undefined external reference that will be
assigned an address; can be from 1 to 12 characters in
length.

addr

Address to which symname will be assigned.

Address specified is an IMA address. If this argument is
specified, the address is treated as P+DSP.

List all changed external references to symname on the
device specified as user-out.

Default: No list.

Undefined external references in a bound unit can only be changed
one time. If you make a mistake, you must use HP patch
directives to correct each location containing the wrong
information.

NOTE

The user should be aware that there is no history
kept of the changes that are made when the LDEF directive
is used. It is wise, therefore, to utilize the L argument
and retain the listing for future reference.

9-23 CZ15-00

LDEP

LDEFfEPPTRfSOfL

This directive assigns address 50 to symbol EPPTR and lists
all locations that are changed to the address 50.

2s :- t-.bz*.,* • i

LDEF?PK,-<50?L t£

This directive assigns address 50 to symbol PK and changes
all IMA references to external symbol PK to address 50.

OH

"•*•!

, L

. 1 --

i 9-24 CZ15-00

LIST PATCHES

LIST PATCHES *'

Produce a listing of all patches within the object unit or
bound unit being patched. The listing is produced on the
user-out file.

If a bound unit is being patched, the listing designates, for
each patch, the following information in the order listed: full
patch-id, address at which the patch was applied, -contents of the
location before the patch was applied, and the patch value.

;,. NOTES
. \ i •" > * i "*" " •

v lo In the listing, the characters that identify
the root or overlay appear iitat, and are _ .
separated from the other character constitut-
ing the id by spaces. When a bound unit is
being patched in a common area, the letters CM
are printed rather than RT.

2c If termination of the listing of patches is
desired before normal completion of the list
process, use the BREAK facility followed by a
NEW^PROC command. The PATCH program must then
be reloaded.,

FORMAT:

LP

Example:

0001 NOHLT3 000002E2 00000000 OOOOOF02

This printout is one line of a listing of patches applied to
a bound unit being patched. The printout has the following
meaning; a patch identified by the patch-id NOHLT3 was applied
to overlay 01. The patch was applied to location 02E2; this
location previously contained 0000, and now contains OF02.

If an object unit is being patched, the listing designates,
for each patch, the following information in the order listed:
patch-id (excluding the last two characters, which identify the
root), address at which the patch was applied, and the patch
value.

9-25 CZ15-00

LIST PATCHES

NUMBRP 00000162
00000163
000001A6
000001A7
000001A8
000001AA
000001AC

00000444
00000222
00000333
00000444
<00000221
00000004
<00000321

This typeout is a listing of patches applied to an object
unit being patched^ The first line designates that patch 0444,
whose patch-id is NUMBRF, was applied to location 0162. Note
that the last two characters of the patch-id (e.g., RT) were
omitted from the printouts

9-26 CZ15-00

LIST PATCHES NOW

LIST PATCHES NOW

List all patches in the specified file and then allow more
patches to be applied. This directive is effective only in the
batch mode and can be applied only to bound unit files. It must
be the first directive issued. If it is not the first directive,
or if it is entered in the interactive mode, it is processed the
same as an LP directive. The LN directive allows the current
patches to be listed and additional patches to be applied without
reloading Patch.

FORMAT? ' £'
•

LN

Example:

0000 CONRCT OOOOOOA8 0005A4D 0005A4E

This printout is one line of a listing of patches applied to
a bound unit being patched. The printout has the following
meaning: a patch identified by the patch-id CONRCT was applied
to overlay 00. The patch was applied to location OOOOOOA8; this
location previously contained 0005A4D, and now contains 0005A4E.

9-27 - CZ15-00

LIST PATCH NAMES _ _

List the names (pateh_ids) of the patches in the specified ̂
file,. Addresses and values are not listed.

FORMATi
..'i < ** _ - - »•

LS

Example?

0000 CONRCT

The printout is one line of a listing of patches applied to a
bound unit being patched. The printout has the following
meanings The patch identified by patch-id CONRCT was applied to
overlay 00 „

9-28 CZ15-00

LIST SPECIFIED PATCH

LIST SPECIFIED PATCH

List those patch ids specified. Up to five patch ids can be
requested per run.

'* -• '£ '*
FORMAT? 9" • *'}~* '••'- —

LS patchid [,-PATCH_id. . .]

Example:

LS NUMBRART; NUMBRBOO

In this example, the directive will cause the entire patch
NUMBRART and the entire patch NUMBRBOO to be listed.

9-29 CZ15-00

Inform Patch that the last Patch directive has been entered?
and initiate processing of the specified Patch directives. This
directive should be preceded by at least one other Patch
directive* When the directive(s) have been executed, execution
of Patch terminateso

FORMATS '' ; * SJ

9-30 CZ15-00

SET GLOBAL SHARE BIT OFF

SET GLOBAL SHARE BIT OFF

Turn off the global share bit in the MOD 400 bound unit. The
share bit of the root is not affected by this directive. This
directive cannot be used in MOD 600 systems nor object unit
files.

FORMATS

GNSH 3H8S

9-31 CZ15-00

GLOBAL ftHARE

Set the global share bit of the root on in the bound unit.
This directive cannot be used for MOD 600 bound unit or object ,
files. - '»•-< ^

FORMAT

9-32 CZ15-00

SET SHARE BIT OFF

SET SHARE BIT OFF

Turn off the share bit of the root segment of a bound unit.
Patch alters the status of the share bit only; it makes no check
on the sharability of the module. This directive is not allowed
for object files. «» t;i

FORMAT j

NS ;.*

NOTE

This is the bit that is set on by the Linker
directive SHARE. . . , , - . - Aj!B7 ,. ̂ ^

9-33 CZ15-00

SET SHARED BIT ON 3

Turn on the share bit of the root segment of a bound unite
Patch alters the status of the share bit only? it makes no check
on the sharability of the module. This directive is not allowed

FORMATS

SS -;'̂

NOTE

This bit designates that the bound unit is sharable
with a task group.

9-34 CZ15-00

SET SYSTEM BIT ON

SET SYSTEM BIT ON

Turn on the system bit in the bound unit's attribute table.
This directive must be employed if the patched bound unit is to
execute in the system ($S) group. The STSY directive is not
allowed for object files.

- C U J

FORMAT j

STSY

NOTE

Before using this directive, consult with the
person responsible for system building and
determine the available memory. This Patch
directive is equivalent to the Linker SYS
directive.

-~

»ft»"s. ̂

JO

I A,. ^V* *> *

9-35 CZ15-00

SYMBOLIC DATA PATCH

Apply patches for object units and bound units created by the
MOD 400 Linkere For bound unitsf the directive causes patches to
be applied to the data portion of separated object units. For
object unitst the directive causes one or more Assembly language
one-word symbolic instructions to be applied to common
areas, i.e., to either named or local common blocks. You can
verify the current contents of locations while patching.

FORMAT:

For Bound Units — No Verification:

SD patch-id/of f, patchval, t/off2 patchva!2 ...]

For Bound Units — With Verification:
si

SD patch-id/off, (oldval, ;newval,) [/off2 (oldva!2 ;
newva!2) . « .]

For Object Units — Named Common Block — No Verification:

SD pateh-id;blockname;/of f s,°patehvaln [patchval,2 ...
3

For Object Units ~ Named Common Block ~ With Verification:

SD patch-id;blockname;/offs;(oldval, ;newval,) [(oldva!2
?newva!2).,«•]

For Object Units — Local Common Block — No Verification:

SD patch-id;/offsypatchval

For Object Units —• Local Common Block — With Verification:

SD patch-id;/offs?(oldval,-newval)

NOTE

You can mix verification and nonverification
patchesc For example: SD NUMBRART;/135j(111;CMV
$R7,8;2?STR $R6,-$R1);/150;ADD $R4,100Q. Only the
patches at locations 135 and 136 are verified.

9-36 CZ15-00

SYMBOLIC DATA PATCH

ARGUMENTS:
"> * ' « t

patchid

i Patch-id of the patch(es) to be applied. A patch-id com-
prises eight to ten characters: the first six characters
can be any ASCII characters except spaces; the last two
to four characters must identify the root or overlay to
which the patch(es) are being applied. If an object unit
or the root of a bound unit is being patched, the
patch-id is eight characters, the last two of which must
be RT<, If an overlay is being patched, the last two to
four characters identify the hexadecimal overlay number;

v the first overlay is 00 for bound units created by the
-̂̂ MOD 400 Linker, and subsequent overlays are numbered

consecutively in ascending order. There may be no
embedded blanks. Within the root and each overlay,
patch-ids must be unique.

offn

Non-negative offset from the beginning of the block,

oldval

Current contents of specified location. If the current
contents are not oldvaln, all patches associated with
patchid are not applied.

patchval (object units —- local common block)

Specify a value to insert into the block. Relocatable
v y values ae not permitted, and only one patch value can be

specified for each patch address.

patchval (object units — named common block)

Value to be inserted at an address, replacing the
contents of that location. The value must be specified
as

opcode fieldl [,field2] [,field3]

where opcode specifies an Assembly language instruction
(except for I/O or floating point instructions); fieldn
specifies either a register or a hexadecimal value.

9-37 CZ15-00

SYMBOLIC DATA PATCH

bloekname

Symbolic name of the common block. The name can contain
one through six characters.

offs

Offset from the symbolic name of the common block,

patchval (bound units)

Value to be inserted at an address, replacing the
contents of that location. The value must be specified
as a symbolic instruction.

newval

Specify the patch value to be applied* See the appro-
priate description of patchval, above.

9-38 CZ15-00

SYMBOLIC PATCH

SYMBOLIC PATCH

Convert and apply one or more Assembly language symbolic
instructions into the form of a hexadecimal patch. You can
verify the current contents of the location while patching.

FORMAT :

Without Verification:

SP patch-id [;base] ;/addrl ;instructionl
[? instruction2. . . instructionn]
[/addr2| instruction/ [2. . .n]]

With Verification:

SP patch-id [;base] ;/addr; (oldvall ;instructionl
[;oldva!2;instruction2. . . ;oldvaln; instructionn])

NOTES — -

!«, One or more lines of arguments may be speci-
fiede When two or more lines of arguments are
entered in an SP directive, instructions and

, ., verification values must not be split between
. lines. No line may begin with a semicolon

(?). Individual fields , values, and addresses
, , , must not be split between lines. The entry of

.... a Patch directive name (e.g., EP, LP) at the
beginning of a line designates the end of the
previous patch directive. Hexadecimal patches
are not permitted.

2. You can use a carriage return instead of a
semicolon as a separator. _,.<,

3. You can mix verification and nonverif ication
patches. For example:

^ gp NUMBRDRT;/135; (ni;LDV $R1,1;2;CL =
$R2) ;/150;STB $B2,400

Only the patches at locations 135 and 136 are
verified.

9-39 CZ15-00

SYMBOLIC PATCH

ARGUMENTS s

pateh-id

Patch°id of the patch(es) to be applied. A patch-id com-
prises eight to ten characterss The first six characters
can be any ASCII characters except spaces. The last two
to four characters must identify the root or overlay to
which the patch(es) are being applied. If an object unit
or the root of a bound unit is being patched, the
patch-id is eight characters, the last two of which must
be RT« If an overlay is being patched, the last two to
four characters identify the hexadecimal overlay number.
The first overlay is 00 for bound units created by the
MOD 400 Linker, and subsequent overlays are numbered
consecutively in ascending order» There may be no
embedded blanks. Within the root and each overlay,
patch-ids must be unique.

base

Optional argument allowed only for bound units. Base
defines a value that is added to all locations; i.e.,
/addr specified in the associated DP, HP, SD, or SP
directives and all IMA references„ If this argument is
omitted? the default value is zero. Base can be entered
as a hexadecimal address of one to six characters or as a
name that has been specified as an EDEF -at link time and
placed in the bound unit symbol table. If a symbol name
is used, Patch finds the name in the symbol table and
uses its address as the base value,, The format for the
symbol name as a base is +symname, where symname com-
prises 1 to 12 characters. If a hexadecimal address is
used for base, the plus sign is not required.

/addr

Relative location at which the first (or only) subsequent
patch value will be applied. Each address must comprise
one through six right-justified hexadecimal characters,
and must be preceded by the character "/" Subsequent
patch values, if any, are applied to succeeding memory
locations. _ , ,,

9-40 CZ15-00

SYMBOLIC PATCH

NOTE

Object unit locations can be obtained by examining
' the listing produced during assembly of the object

unit.

instructionn T'

Value to be inserted at an address, replacing the
contents of that location. The value must be specified
as:

opcode fieldl [,field2] [,field3J

.' where opcode specifies an Assembly language instruction
(except for I/O or floating point instructions); fieldn
specifies either a register or a hexadecimal value.

J-t'iSv
oldvaln

•*•*- «•> 3t .̂ A • _n »*. v- i . j ^ . _ r » >

Specify the current contents of the specified loca-
tion. If the current contents are not oldvaln, all
patches associated with patchid will not be applied.

* =•• ?•- ., - >*iv>e •$*
NOTE

When using verification patches, specify oldvaln
in hexadecimal notation, not as an Assembly lan-
guage instruction. j

if

9-41 CZ15-00

VERIFY/SET PATCH REVISION NUMBER

VERIFY/SET PATCH REVISION NUMBER

Allow a revision number to be assigned to a bound unit
pateho The revision number may be assigned unconditionally, or
on condition that a specified number agrees with the revision
number currently in the unit. The patch revision number is
stored in the unit as an external value definition with the name
ZPTREV.

FORMAT;

VN (str,, str2)

ARGUMENTS s

Character string from one through four hexadecimal digits
that is compared with the current patch revision number.
If the string does not match the current revision
number, no change is madef and Patch terminates.

str

Character string from one through four hexadecimal digits
to which the patch revision number may be set. If str,
is omitted or if str, matches the current revision
number, the patch' revision number is set to the value of
stri. If str2 is omitted and ZPTREV does not exist in
the bound or load unit, an external value definition is
created with a value of str2. If str, is specified, str,
and str3 must be enclosed by parentheses.

NOTE

This directive should not be used when patching an
object file.

9-43 CZ15-00

Assign a specified value to an undefined external symbol and
change all locations that reference this symbol to the specified
value.

FORMAT % .1 •- ') i -to i *< 3 ,-. ,1 i

VDEF;symname lvalue [;L]

ARGUMENTS: *:

symname ' - "U •*•,•!<» - t . j „ -? */=; ^f r-,qc

Name of the external reference that will be assigned a
value? can be from 1 to 12 characters in length.

value

Value that is assigned to all references to symname.

List all changed references to symname on the device
specified as user~out.

Default: No list.

Examples

VDEF ; VALZZ | 50 |L

Assign the value 50 to the undefined external symbol VALZZ
and changes all locations that referenced VALZZ to 50.

NOTE

Undefined external references in a bound unit can
be defined by a VDEF patch directive only one
time. If you make a mistake you must use HP or DP
directives to change each location containing the
incorrectly defined value. No listing of the VDEF
patch processing is kept, therefore, the L
argument should be used,

VDEF is used for changing undefined value
definitions. LDEF is used for changing undefined
location definitions»

9-42 CZ15-00

, 37 .. x j

Appendix A
USING THE

LINE EDITOR

This appendix provides information on using the Line Editor
to create and modify files. When using the Line Editor, each
directive or line of information entered must be followed by a
carriage return. Throughout this text, all user entries shown in
examples are shaded. This distinguishes user entries from system
messages and prompts.

INITIATING A LINE EDITOR SESSION ~J~(: ^'^ '-"D£- ovT

To initiate a Line Editor session, enter the ED command
followed by a space and a -PT as shown:

RDY; , . «o x J f J T to.r.
ED -PT
Edit -REL -09/09/81
E ? - . * » . - *

The entry ED -PT causes display of an E? prompt. The E?
prompt is caused by the -PT part of the entry and informs you
that the Line Editor is ready to accept directives. The E?
prompt also indicates that the Line Editor is ready for use.

A-l CZ15-00

Creating Work FJLLaa

In addition to the -PT argument, other arguments can be
included with the ED command. One argument is the -SF argument.
There may be times when you are working on file contents in a
temporary work area known as the current buffer. If the system
fails while working in the current buffer, the contents of the
current buffer will be losto The -SF option creates two perma-
nent work files.. If the system fails, current buffer contents
are not lost.

- The two files created by the -SF argument are the .EDWK1 and
and 0EDWK2 files. The format for the -SF argument is -SF, a
space, and a name for the work files. The .EDWK1 and .EDWK2 suf-
fixes are appended to the specified file name automatically. The
file name can be from one to six characters long.

The following example uses the -PT and -SF arguments.
Immediately following the -SF argument is a space and filename
CSRC. This entry creates two permanent files named CSRC.EDWK1
and CSRC.EDWK2. As modifications are made to the current file,
the permanent work files are updated alternately. If the system
fails while you are working with the Line Editor, the files named
CSRC.EDWK1 and CSRCcEDWK2 will be saved.

ED -PT -SF CSRC
Edit REL -=09/09/81

Once the system is working again, you can sign on, invoke the
Line Editor, and read in CSRC.EDWK1 or CSRC.EDWK2 to begin
modifying the file again. Reading a file into the current buffer
and working on the file are described later.

Two facts about the use of the -SF argument are very
important: J,

• The permanent files with the «EDWK1 and .EDWK2 suffixes
are updated alternately. You should check both files to
determine which file has the latest version of the update
file. Use the X directive (described under "Buffer
Status") to determine file status. These files can be
read in by the Line Editor only if there is a system
failure. When you create the files with the -SF argument,
you cannot examine those files. Also, if there is no
system failure, the two files are released when you quit
the Line Editor. The files are available for examination
only after there is a system failure during use of the
Line Editor,,

• Whan you sign on and invoke the Line Editor after a system
failure, the -SF argument should be followed by a file
name that is different from the first backup file name;
otherwise, the Line Editor will overwrite the old safe
files.

A-2 CZ15-00

v Example; -- - --

Assume that you have signed on and invoked the Line Editor as
shown below. Later, during the building or modification of a
file through the current buffer, there is a system failure.
Once the system is running again, sign on and invoke the Line
Editor again. This time the -SF argument is followed by the
file name CTEMP. As a result of this series of terminal
entries, the permanent work files named CSRC.EDWK1 and
CSRC.EDWK2 are available for examination and a new set of
backup files named CTEMP.EDWK1 and CTEMP.EDWK2 are created.
In this way, old files can be read into the current buffer
for modification and two backup files are available in case
there is another system failure. When the new update session
is complete, the files named CSRC.EDWKl and CSRC.EDWK2. You
should release the files named CSRC.EDWKl and CSRC.EDWK2. If
there is no system failure, the files named CTEMP.EDWK1 and
CTEMPcEDWK2 are released automatically.

v^ - - RDY:
ED -PT -SF CTEMP
Edit REL -09/09/81 e '* *'
E?

JTC2
Line Editor Modes ' ;

The Line Editor works in two modes: input mode and edit
mode. Input mode is used for adding lines to an existing file or
for building a new file. Edit mode is used for making changes to
an existing file. In edit mode, deletion of lines, substitution,
and printing of lines can be done.

Quitting the Line Editor

After invoking the Line Editor and finishing your editing
session, you will want to quit, or exit, the Line Editor.

To exit the Line Editor, you must be in edit mode. The Line
\^ Editor prompt indicates the current mode. If the Line Editor

prompt E? is displayed, the Line Editor is in edit mode.

If the prompt displayed in response to a terminal entry is
I?, the Line Editor is in input mode. If the I? prompt is
displayed and you want to quit the Line Editor, you must switch
to edit mode. This can be done with the !F directive, as shown:

E? ABUILD A PILE
I? IF

The I? prompt indicates that the Line Editor is in input
mode. The IF entry causes the Line Editor to return to edit
mode, as indicated by the E? prompt displayed. The uses of input
mode and edit mode will be covered in detail throughout this
section.

A-3 . CZ15-00

Once the Line Editor is operating in edit mode, exit from the
Line Editor is accomplished with the Quit directive or Q. This
directive causes the Line Editor to halt and returns you to
command level <>

-•• i> ' '" 2 3W-.U v j- -*7 •-*

' . Examples ' '" ̂ '' : ' '-*J

The following example shows that the Line Editor is operating
in edit mode due to the IP directive c In response to the E?
prompt enter Q to return to the command level. This return
is shown by the RBYs prompt c At this point, you can execute
any command or reenter the Line Editor with the ED -PT
directive.

ma ' * " ~" - c*"" :jn* :
E?Q
RDY: . ̂

CREATING A FILE

To create a source file using the Line Editor, invoke the
Line Editor (with the -PT and -SF arguments) and invoke input
mode using the I directive as shown %

I?

Once in input mode, your lines of code are entered sequen-
tially into your current buffer. The current buffer is allocated
when the Line Editor is invoked, and a pointer is established to
point to this buffer as the working buffer. The current buffer
is a temporary work area that is established in your working
directory and memory pool (allotment) . You can build a new file
or read a permanent file into the current buffer for additions or
modifications.

When you quit the Line Editor, the current buffer is
released. Buffer management will be discussed later. Each line
of data entered starts in position 1 of the line and is
terminated with a carriage return. When all lines of data have
been entered, you terminate input mode with the IF directive.
The following example shows directives used when entering data
and terminating input mode:

ITSRQGRfttt-XDU
I? Up
E?

In this example, enter an I to switch to Input mode. Enter
two lines of a COBOL program, pressing the carriage return after
each entry. Enter IF to switch processing back to Edit mode.

A-4 CZ15-00

As shown later, the A directive may also be used to build a
new file.

ADDRESSING TECHNIQUES %•}&

After entering all the lines of data or source code, you may
need to make corrections to a line (or lines) before saving the
file. However, before you learn the directives for making cor-
rections, it is necessary to understand basic addressing tech-
niques. You must be in edit mode to address current buffer
contents.

Addressing a Single Line

To address (specify for access) a single line you need to
enter only the line number (assigned by the Line Editor as each
line was entered) followed by a directive. Or, in the case of
addressing the current line, you need to enter the directive
only. The current line is established either as the last line
addressed in edit mode or as the last line entered in input mode.

For example, assume that you want to address line 3 to view
its contents. You enter 3 followed by the P directive to view
the contents of the line. The following example uses these
directives.

t \s nf\io.
E?3P 3*
AUTHOR. NAME. 3«i/! T8AJ
E?

Notice that the P follows the 3. The sequence that you enter
directives is very important. The syntax rule for entering
directives is:

[adrl][,adr2] command

Since you are working in edit mode and line number 3 is the
last line addressed, it is now the current line. To print line 3
again, as shown in the following example, you enter the P
directive alone.

4I ' V

E?P
. fr- AUTHOR. NAME.

'.I' «.' E? 41

A-5 CZ15-00

To print the contents of several lines in sequence use two
line numbers separated by a comma. The comma informs the Line
Editor that the line numbers are inclusive. An example is
10?12P, as shown?

DATA DIVISION.
- - WORKING-STORAGE SECTION.

01 PNAME PIC X(5) v- *..v,,. . . .<. ... ;,;; J 4 J. ,n „.,.,,E? .«;
In this example the contents of lines 10, 11, and 12 are

listed at the terminal.

To print the contents of the entire current buffer/ use the
special character $ as the end-of-file character. When the $
follows the comma in line number addressing, all lines from the
initial value to the end of the file will be affected. For
example, if the addresses 7,$ are specified with the P direc-
tive, line 7 through the end of file will be listed. The follow
ing example shows a use of the $ with the P directive.

IDENTIFICATION DIVISION.
AUTHOR. NAME.
OTHER LINES
STOP RUN. LAST LINE ;'!,= :- ,
E?

': The entry shown in this example tells the Line Editor to
start with line 1 and list to the end of file (the last entry
made Input mode) the contents of all lines. The printing of the
contents is caused by the P directive.

Line

Note that when the P directive is used, only the contents of
the line (or lines) specified is shown. To print specified con-
tents of the current buffer and display the line numbers assigned
to each line, specify IP.

The following example shows the use of the !P directive.
Notice that the only difference in the listing is that line num-
bers are displayed at the terminal with the buffer contents.

E ?1-V$» E
1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. PROGNAME.
3 AUTHOR. NAME.

E?

A-6 CZ15-00

i Use of Period (.1 for Current Line

If you use multiple line addressing and want to start with
the current line, use the period (.} character in the first
address.

For example, your current line is 10 and you want to print
through line 20. If the !P directive were used instead of the P
directive in the following example, the line numbers 10 through
20 would be listed with the file contents.

E?'.'r20P
OBJECT-COMPUTER. HIS-SERIES-60 LEVEL 6.
DATA DIVISION.
OTHER LINES " """ * • - , . - -
MOVE "DATUM" TO QNAME. i
E?

Character String Addressing

/̂ The Line Editor can also address a line (or lines) by
contents.

The contents, called a character string, are expressed using
two delimiters. Delimiters are slashes (/) that precede and fol-
low the designated search string. For example, the slashes in
the expression /ABC/ delimit the string ABC. The two slashes are
the delimiters and the characters between are the string that is
searched for. The search begins with the line following the cur-
rent line, continues to the end of the file, and then starts with
line number one and searches to the current line. When the Line
Editor finds a line containing the specified string it executes
any directive specified with the search string and positions the
current line pointer to that line.

In the following example, enter PROGRAM-ID as a character
string with delimiters, with the P directive. As a result, the
line containing PROGRAM-ID is printed, revealing the that the

Vw/ internal name of the program is PROG1. If the !P directive were
used, the line number would have been printed with the line
contents.

E?/PROGRAM-ID/P
PROGRAM-ID. PROG1
E? ' . f.... w » *«.»- ;,», ,

The search for the contents ends when the first line that
contains the specified character anywhere in that line is found.
The current line pointer is then positioned at that line. If no
match is made with the search string, the current line pointer is
positioned at the line that was the current line before the
directive was executed. Also, if there is no character string
match, the message SEARCH FAILED is displayed at the terminal.

A-7 CZ15-00

SELECTIVE SPECIFICATION OF CHARACTER STRINGS

To be more selective when specifying search characters, make
the string within the delimiters more specific. For example, you
may want to print the line number and the contents of a line that
contains the character X, Suppose there are two lines that con-
tain X« One contains PIC X(5) and another PIC X(10) . To specify
the first , you designate the search string so that the Line
Editor can determine that you want the line that contains PIC
X(5)0 You could specify PIC X(5) as the character string. Or,
you could specify only that portion of the string that
distinguishes it from all othec strings in the file. The string
X(5 would be sufficient. If you enter /X(5/IP at the terminal,
the only line that qualifies for printing is PIC X(5).

In the example only DATA DIVISION is printed because others,
like PROCEDURE DIVISION, do not fit the search characteristics.

T DIVISION/ r&
11 DATA DIVISION.
E?

it, r:ftt, -cJ:b3 *.\.
SPECIFYING INITIAL CHARACTER STRING

The Line Editor can also be told to search for a line
beginning with a character string. This is done by preceding the
character string with a circumflex (*). For example, assume that
the specified character string TAG must occur as the first
characters on a line. The following example shows specification
of this search strings .-,-:&:» 2

2 TAG EQU 10 - s ,.-,-,,
E?

In this example the use of the circumflex (A) specifies the
character string TAG must occur as the first three characters of
the line searched for. The !P directive is used to print line
contents with the line number.

SPECIFYING A CHARACTER STRING ENDING A LINE

A string occurring as the last character(s) on a line can be
specified as a search string. You specify this with the $ char-
acter. To specify that you want to find the line that ends with
the characters FILE, use the search string: /FILE$/.

The following example shows the use of the $ character to
specify the FILE ending character string with the IP directive.
The result is the terminal listing of FD INFILE with the line
number 32. ;_ _*- « _• -.- -

A-8 CZ15-00

v E?/FILE$/iP
^^ • 32 FD INFILE

E?

Remember that the results of the directive shown in the pre-
vious example are dependent upon the location of the current
line. If the current line was after line 32 in the buffer (at
the time of execution of the directive in the previous example),
the terminal display might contain a different line number and
contents, such as FD OUTFILE. Therefore, it is important to know
the location of the current line when you initiate a character
string search.

As shown in the addressing methods, certain characters repre-
sent special or control characters. The character * is used to
specify a line beginning with a specified string. The $ is used
to specify a string ending a line when it is used in a search for
line contents. The $ is also used to specify the end of file
when it is entered as the second address to designate multiple

^ , lines as in this examplec The period (.), when used in line num-
ber specification, represents the current line. It has another
use — single character substitutions.

SPECIFYING A SINGLE CHARACTER SUBSTITUTION IN SEARCH STRINGS

When a period (.) is used in a character string search, it
takes on a special meaning. When a period is used in a search
string such as /A.C/ it means that any character between the
characters A and C can be substituted. This means that ABC fits
the search as does A1C or AZC.

In the following example, EDB is the first search match, so
line 10 is printed. « , „„,

E?/E,B/IP
10 LABEL EDB $B5, X'FFFF1

E?

V^ USE OF ESCAPE CHARACTERS ,. r ,. > .
'̂ r •*- * i If t. K. «

It is possible that any of the special addressing characters,
($, !, or ") are part of the data to be searched for. The pre-
ceding example contains such an example in the display of
line 10.

To distinguish between a special character as data and a
special character used to affect a search string, escape char-
acters are used. For example, to specify that the character has
its data meaning and not search meaning !C escape characters are
used.

A-9 CZ15-00

The escape characters remove the search meaning from the next
character For example? the search string /A11C$/ contains 1C,
which removes the search meaning from the $. the Line Editor
searches for three characters designated as Al$ rather than Al at
the end of a line,, The following example shows another use of
the escape characters.

1 IDENTIFICATION DIVISION.
E?

In this example, 1C precedes the period so that
IDENTIFICATION DIVISION, is found. Also, the $ symbol insures
that ION, will occur in the last four characters of the line that
is found and listed.

SAVING FILE CONTENTS

All of the work done building a file in the current buffer is
destroyed when you quit the Line Editor. The current buffer is a
temporary working file* The contents of the current buffer must
be stored in a permanent file if the buffer contents are to be
saved after you quit the Line Editor.

If you are building a new file in the current buffer? you
need to create a new permanent file to accept the contents of the
current buffer. A new file can be created using the CR command
at the command level before you call in the Line Editor. The
current buffer contents can be copied into the previously created
file. If the file you want to create is to be a sequential file,
you can create that file at the same time that you copy current
buffer contents by using the W directive.

As shown in the following example, a COBOL source program has
been built in the current bufferc The file (source program) is
saved to a permanent file called COBOL?. Cc The file named
COBOLP.C did not exist before the W directive was entered. When
the W directive is entered, the file named COBOL?. C is created as
a sequential file immediately subordinate to the working direc-
tory (however, a full or relative pathname could have been
used) . After the W directive creates the file, the same direc-
tive copies the contents of the current buffer to the designated
permanent file, which is COBOLP.C in this case.

E?W COBOLP.C U f 91- I
E?

A-10 CZ15-00

. Two other situations exist in which you may want to save the
—̂-̂ current buffer contents to a permanent file. One situation was

already mentioned. The file may exist before the W directive is
used because the file was created using the CR command. Another
situation is the one in which you want to replace the contents of
a file with the contents of the current buffer, as in the case of
making modifications to a program. In either case, the W direc-
tive stores the contents of the current buffer in the designated
file.

In the case of the file that was created using the CR com-
mand, the contents of .the current buffer are copied into the
existing permanent file. In the case of the permanent file that
exists and contains a previously stored program or data, the old
file contents are replaced by the contents of the current
buffer. The format for copying the current file contents to the
existing permanent file is the same as the one shown in the pre-
ceding example. Just be sure to designate the correct pathname
for the existing permanent file that is to contain the current

v buffer file* , .- • >. -., > ju ...

After preserving the contents of the new file you can quit
the Line Editor, return to command level, and perhaps compile the
program, if this is a source program. Remember, if you did not
write the buffer file to a permanent file prior to quitting the
Line Editor, all data from the editing session is lost.

READING FILE CONTENTS *<*»:' . •-

This subsection describes the procedures used to modify the
contents of a new file, or to modify a source or data file
already in existence. • s ~ $3

Invoke the Line Editor and be sure you are working in Edit
mode. 'n

If you want to modify the contents of an existing file, you
must copy that file into the current buffer before you can use

V^ the file modification techniques.
n

If the file to be modified exists as a permanent file, you
must copy the file contents into the Line Editor's current
buffer. This is done with the Read (R) directive followed by the
pathname of the file to be altered.

Note that in the following example, a full pathname is speci-
fied. You may use any of the pathname variations allowed.

E?RTVOLA>D1R1>COBOL. C
E?

A-ll CZ15-00

The R directive is a read and append directive. That is, the
contents of the file read are appended to the contents of the
current buffer* If you want the contents of the file being read
as the only data in the current buffer, first delete the contents
of the current buffer and then perform the read. If the Line
Editor was just invoked, the sequence is:

E? R pathname

UNES W CURRENT

The D directive is used to delete lines from the current
buffer. To delete lines, specify the line (or lines) to be
deleted followed by the Delete directive (D) . To delete one
line, use the line number followed by D, as shown:

E?$Q
E?

To delete the contents of the current line specify just the
directive D, as shown:

E?D!
E?

Deleting Multiple Lines • . „ ^ .: r- • - . f 4-jM

To delete multiple lines in sequence, specify the line num-
bers separated by a comma and followed by the D directive.

In the following example, 5,10D causes lines 5 through 10 to
be deleted from the current buffer: -, , .,„

Deleting All Lines in Current Buffer ,t *-•**, < ,-,v -5 -

To delete all lines in the current buffer, use the character
$ as the second address and line number 1 as the first address.

The following example shows the directive sequence (1,$D).
This directive sequence is used to delete or clear the contents
of the current buffer for the use of the R directive explained
under "Reading Contents of Existing File". There are times when
you will not want to clear the current buffer before using the R
directive; these instances will be covered later in this
appendix. Usually you will want a clean current buffer before
you read a permanent file into it.

E?

A-12 CZ15-00

The following example shows a typical clear-and-read
sequence. The 1 e $D directive clears the current buffer. Then
the file named COBTEST, immediately subordinate to the working
directory, is read into the current buffer.

, $D
E?R COBTEST
E?

Avoiding Post-Deletion Problems

In the preceding examples, the use of line numbers to specify
lines to be deleted was shown. After the line is deleted any
remaining lines following the deleted line are automatically
renumbered,, This can cause problems in the deletion or modifica-
tion of remaining lines«

For example, if you delete line number 10, what was line 11'
is now line number 10 and line 12 is now line 11 and so on

V ; through the end of the file. If your next directive is to affect
old line 15, you must remember that it is now line 14.

Example 2 shows the results of deleting lines 2 and 3 from
the current buffer file shown in Example 1. Note that line 4
.(containing the PROGRAM-ID) becomes line 2. All subsequent line
numbers are affected in the same way. Notice that line numbers
before the deleted line(s) are not affected; the line number for
the IDENTIFICATION DIVISION statement, in this case does not
change.

Example Is

E?,1,$IP
1 IDENTIFICATION DIVISION.
2 ****NOTEj MAKE SURE THAT YOU CONFIRM INSTALLATION,*****
3 ****AND SECURITY BEFORE COMPLETING PROGRAM***********
4 PROGRAM-ID. COURSE.
5 AUTHOR. AMY SMITH.

<^s 6 INSTALLATION. LOMPOC, CA.
7 DATE WRITTEN, 05181

, 8 SECURITY. NONE.
. ' 9 ENVIRONMENT DIVISION.

10 CONFIGURATION SECTION.
11 SOURCE-COMPUTER. HIS-SERIES-60 LEVEL-6.
12 OBJECT-COMPUTER. HIS-SERIES-60 LEVEL-6.
E?

A-13 CZ15-00

Example 2s
&

E?1,$IB . ̂ _ . . „. ,
1 IDENTIFICATION DIVISION* • - • -' - *̂̂ '
2 PROGRAM- ID. COURSE.
3 AUTHOR. AMY SMITH.
4 INSTALLATION c LOMPOC, CAC
5 DATE-WRITTEN. 05181
6 SECURITY c NONE.
7 ENVIRONMENT DIVISION. i
8 CONFIGURATION SECTION.
9 SOURCE-COMPUTER. HIS-SERIES-60 LEVEL-6 .
10 OBJECT-COMPUTER. HIS-SERIES-60 LEVEL-6.
E?

Abiding and Deleting Lines

To avoid confusion when adding or deleting lines , use one of
the following methods. The first is to delete or add lines
starting with the line nearest the end of file. For example, you ^/
must delete lines 10, 15, and 20 in a buffer containing 25
linesc If you start with line 20 first, lines 10 and 15 are
unaffected because only the lines following 20 are renumbered.
Then line 15 should be deleted so that line 10 will not be
affected by the change. Finally, line 10 should be deleted.

The second method is to delete by contents of a line. For
example, you know that only the line containing STOP RUN is to be
deleted. So, you specify a search for only the line by its con-
tents with the D directive. _ ,

The following example shows how a line can be deleted,
regardless of its line number. Naturally, any number of lines
may be deleted using this method, but a separate D directive must
be used for each line to be deleted.

E7/STQB RUN/0 ~ ^

' ' J
Due to automatic resequencing of line numbers after line

additions or deletions, it is helpful to list the file to deter-
mine the new line numbers before you attempt any subsequent modi-
fications by line number.

CHANGING LINE CONTENTS - - - - ~ -„-.., ^ „_ ,,̂ . .. _

To change the contents of a line, use the Change (C)
directive or the Substitute (S) directive. The C directive
allows you to change the entire contents of a line» This
directive is considered an input mode directive. After executing
the C directive the Line Editor will be in input mode. This
requires that you execute the IF directive to exit input mode.

A-14 CZ15-00

In the following example, the whole new line had to be
entered. You cannot use the C directive to change just portions
of a line. Also, the use of the IF directive at the end of the
entry to causes the Line Editor to return to edit mode.

E7101P " " r

' ' ' ' 10 MOM'S APPLE PIE.
E710CSOURCE-COMPUTER. LEVEL-6- IP
E?

Changing Character Strings Within a Line

To change portions of a line, use the Substitute (S) direc-
tive. The S directive allows you to substitute one character
string for another within a line. The S directive is an edit
mode directive.

To make a substitution enter a line number, an S, a delim-
iter, the character string to search for, a delimiter, the sub-
stitute string, and a final delimiter. '̂

To substitute a new character string for a specified char-
acter string on line 5, you could use this method:

••3

E?51P *'<*
5 PROGRAMMER- ID. ROGER.
E75S/ROGER/GARY/

'"• E?

In this method all occurrences in the line of the character
string ROGER would be replaced by the character string GARY.
This means that if ROGER occurs three times on line 5, three sub-
stitutions will be performed.

To specify that only one occurrence of a character string is
to be altered, you must be more specific in the search character
string. For example, the word ROGER occurs only once in the line
shown in the preceding example. If ROGER occurs twice in the
affected line and you want to change only the first occurrence to
GARY, the search character string must be made more specific.
This is described under "Selective Specification of Character
Strings".

•I ,. -., ™r,^, , f -,,.n ,,/«..

Changing All Occurrences of a String

The Line Editor can be told to search one line, multiple
lines, or all lines for a specified character string and to
substitute all occurrences of that string for the new string.

In the following example, all occurrences of IONFILE in the
current buffer are changed to INFILE:

, $S/IONFIL.E/INFILE/
E?

A-15 CZ15-00

Techniques for substituting? printing, and deleting all
occurrences of a specified string will be discussed below* These
techniques for affecting all occurrences of a string can be help-
ful in program modification.

For example, a program that already exists might be almost
perfect to meet a new data processing need? but the record or
field names are wrong* With a single directive, all occurrences
of the unwanted record name or identifier can be changed to the
necessary entry,

,, initial ^nd Concluding Strings

As explained previously, the circumflex (") and dollar sign
($) may be used in an address search. Those same rules apply
here. To specify a character string that begins a line, use the

character.

The following example shows a directive used to replace the
character string PROGRAM with the occurrence of PRGRAM at the
beginning of line 3. PROGRAM replaces PRGRAM as the initial
character string. To affect a string that ends the line, use the
$ character. ,. . , . _ ,-

E?

The next example shows that the concluding character string
OUTPILD at the end of line 7 will be replaced by the string
OUTFILE., through the S directive. Of course, it is possible to
replace all occurrences of an initial or concluding string with a
specified character string.

E? "̂ * •- ""

In the following example, starting with line 1 through the
end of the file, all occurrences of the I at the beginning of a
line will be replaced by 7 spaces.

E? - - 1^--,c , ,_» .' -̂ ,

The technique shown in this example is commonly used in edit
ing source programs that by convention have coding statements
begin in specific columns of a line. Column 7 in FORTRAN and
columns 8 and 12 in COBOL are examples of columns that are speci
fied for coding purposes. For example, all statements that
should start in column 8 might begin with a t character . As a
result of the use of the directive in the example, all of those
statements now begin in column 8 because of the preceding 7
spaces.

A-16 CZ15-00

v Deleting Character Strings
>̂ x

If you have entered a character string and later find that
you do not need it, you can delete that string using the substi-
tute directive. To delete a character string specify the
substitu- tion field as blank.

In the following example, the substitution field is specified
as //„ This informs the Line Editor that there is no replacement
string. Therefore, the string specified in the search field
(DATA) in line 20 is to be deleted.

E720S/BATA// "'
E?_ *~ t>>, ̂ ».ir-4 •» „ ;

Appending a New String to an Existing String

Expanding a character string on a line (or lines) can be done
with the ampersand (&). The position of the & will dictate where

^ ; the new character string will occur in the new line. For
example, the character string L6 is on line 23, and that char-
acter string should be LEVEL-6. The following example shows how
the use of &, by its position, changes the line in the correct
location. . „^ i- i. ",•• i . • .,..

E?23JP
23 OBJECT-COMPUTER. HIS-SERIES-60 L6.
E723S/L/&EVEL-/
E723IP
23 OBJECT-COMPUTER. HIS-SERIES-60 LEVEL-6.
E?

The substitution causes the L in L6 to be followed immedi-
ately by EVEL-. The result is LEVEL-6. Notice that there are no
spaces between delimiters and strings or between special char-
acters (such as & or ") and the strings. It is important to
define the search strings and the modification strings accu-
rately, or the result will be incorrect.

W
The escape characters (1C) cause the editing character to

have no meaning to the Line Editor. For example, if the
character & is to be used as a non-editing character in the
second field of a Line Editor directive, the & should be preceded
by the 1C escape characters.. Such an example would occur if you
want to change the string $ION to &ION. The line entry would be
S/!C$ION/1C&ION/.

Adding Lines to the Current Buffej-

To add a new line to your current buffer, use either the
Append (A) directive or the Insert (I) directive.

A-17 CZ15-00

INSERTING LINES

Using the I directive you can insert a line (or lines) before
the line specified in the address. To insert a line of code pre-
ceding line 15, enter 151.

The result of the directives shown in the following example
is to have a new line 15 and to have all subsequent line numbers
incremented by 1» Therefore? the old line 15 becomes line 16,
and so forth „ . ,

E? "

Notice in this example that the E? prompt is displayed after
you press the carriage returnc In this case, because the IF
directive follows the entry of the new line, the E? prompt sig-
nals that the Line Editor is ready to work in edit mode. If the
IF directive were not entered, the I? prompt would be a request
for another line of input « Remember, the I directive causes the
Line Editor to work in input mode.

Two lines are inserted in the file in the current buffer in
the next example* The first line added becomes line 15 because
of the 151 directive* The I? prompt requests another line of
input . The RBN-STATUS line is entered. It becomes line 16. The
I? prompt requests another line of input. The IF response causes
a switch to edit mode.

WOBKTNG'-S'EQRffGE ' SECSXQM;j , ̂ .
I? HBN--STATUS- PIC X- * "• J '
I? IK:

' • E?

Remember, because lines 15 and 16 are inserted as new lines,
the old line 15 becomes line 17 and all subsequent line numbers
are incremented by 2.

APPENDING LINES

To append a new line to any point in a file, the A (Append)
directive is used. Append will add a new line following the num-
ber specified.

The example below shows the use of the Append directive.
This directive creates a new line 16 and all subsequent lines
are renumbered. The new line follows line 15. The A directive
allows you to add more than one line* If the IF directive was
not used in this example, the Line Editor would be expecting you
to enter another new line, that would have line number 17.

E7IS& f WQRKING-STORSGS. SECnnOK." fR.
E?

A-18 CZ15-00

- - -- ..»

Note that when using the A directive, the !F directive is
needed to exit input mode.

GLOBAL DIRECTIVES ' -:

Searching for lines that need to be modified or listed can be
simplified by using the Global directive. The Global directive
(G) will work only with the following directives-: P, !P, D,
and =o

With the Global directive only the lines that contain the
specified character string will have the directive P, !P, D, or =
applied to it.

global Delete

Global Delete (GD) is used to remove a character string
throughout a file. To issue a Global Delete, type the directive

V / G followed by D followed by the character string to search for in
delimiterso The following example shows a Global Delete - - -
directive.

E?GD/DATA7
v- -' -- E? • - - - - • " " ' • ,

In this example, no line numbers are specified. Line numbers
can be specified, but when they are absent, the directive
defaults to start at line 1 and works to the end of the file. If
line numbers are specified, only those lines specified are
affected by the delete. For example, the entry 1,15GD/DATA/
removes all lines containing the string DATA from line 1 through
X 3 .

Global Print "' '' "'*•' ' '"' ~*rji*

To print only lines that contain certain characters, specify
the GP or GIF directive.

The GP directive prints just the contents of the lines that
contain the character string and the G!P directive prints the
contents and the line numbers associated with those contents.

The following example shows the terminal entry requesting the
line number for each of the four COBOL divisions for a program
that is in the current buffer. The G directive with the IP direc-
tive and the SION search directive is entered. The SION has been
used as the search string because it is common to all four COBOL
program divisions.

E?GiP/SION/
3 IDENTIFICATION DIVISION.
7 ENVIRONMENT DIVISION.
10 DATA DIVISION.
21 PROCEDURE DIVISION.
E?

^ A-19 CZ15-00

The next example shows the G and » directives with the same
search and current buffer file used in the previous example. Note
that only line numbers are printed.,

"tft. . •*
21
E?

AND AUXILIARY B U F E R S

Thus far, changes have Been made to a permanent file through
the use of the current buffer. In addition to the current
buffer, there are five auxiliary buffers available to assist in
manipulation of file contents*

For example, to repeat lines of coding in a program, move
lines of coding from one location in a file to another location,
or build a new file from coding lines of other files, auxiliary
buffers are used.

^ ~~ ^ •" **< = - 1

n Lines in -

There are a number of file-building and file-modification
functions that can be carried out through buffer management. The
current buffer and up to five auxiliary buffers assist in creat-
ing or modifying file contents,. The auxiliary buffers can have
alphabetic or numeric names, the examples shown below will use
single number names.

The next two examples Illustrate buffer manipulation used to
repeat lines in a file. The directives used in the manipulation
of current and auxiliary buffers are the K and IB directives* K
and IB are used for copying lines to a specified auxiliary buffer
and for fetching lines from a specified auxiliary buffer.

The following example shows how the current buffer and an
auxiliary buffer can be used to repeat lines of a file at the end
of the file. The program stored in the file named COBPRG.C is
read into the current buffer, and lines 50 through 63 are copied
to an auxiliary buffer named 1 through the Kl directive. Note
that if any lines exist in the auxiliary buffer at the time that
the K directive is used to copy new lines to that buffer, the old
lines in the buffer will be deleted before the new lines are
copied to that buffer.

A-20 " CZ15-00

RDY:
ED -PT
E?R COBPRĜ C
E?.50,63K1
E?$AIB11F
E?W COBPRG»C
E?1,$D
E?

After the copy is completed, the lines in buffer 1 are
appended to the end of the file in the current buffer. The $A
directive causes lines to be appended to the end of the file.
The SB1 directive causes the lines in buffer 1 to be fetched for
appendingo The !F directive is jused to change to edit mode
(after the A directive is used)." Then the W directive causes the
current buffer contents to be copied to the file named COBPRG.C
to replace the old contents in that file. Finally, the contents
of the current buffer are deleted with the D directive to allow a
new file to be read into the current buffer. If no more editing
is to be done? the current buffer contents do not have to be
deleted. The Q directive would be sufficient to quit the Line
Editor.

The next example demonstrates two editing concepts important
to buffer manipulation — how to repeat lines within a file and
how to use a different auxiliary buffer to save the contents in
an existing auxiliary buffer.

E?R CFILE.C
E?9,17K2
E745A1B21F
E?W CFJLLE-C

A file named CFILE.C is read into the current buffer, and
lines 9 through 17 are copied to an auxiliary buffer named 2. If
there are lines in another auxiliary buffer, such as buffer 1,
the copying of lines to buffer 2 will allow the lines to remain
in buffer 1. The lines in buffer 2 are then appended to line 45
in the current buffer (through the 45A directive). The !B2
directive causes those lines to be fetched from buffer 2. Again
the !F directive causes a return to edit mode. Finally, the
changes must be made to the file named CFILE.C through the W
directive.

Moving Lines in a File

The next example shows moving lines within a file. The first
situation involves moving lines to a location near the end of the
file.

A-21 CZ15-00

The following example shows how lines 8 through 12 in a file
ean be moved to follow line 27. A file named PILEN is. read into
the current buffer c Lines 8 through 12 are copied to buffer 1.
Then the lines are appended to line 27 in the file. Because the
lines in the original location remain, they must be removed
through the D directive0 Then the current file contents are
written back to PILEN. The current buffer contents are deleted
to allow for additional editing of a different file.

RDY:

E?R
E?8,12KE

E?

When lines are moved to a location closer to the beginning of
the file than their current location, the deletion of the old
lines after the move presents a different problem.

The next example shows the steps taken to move lines 21
through 37 of a file to the beginning of the file. The file
named RNGT is read into the current buffer, lines 21 through 37
are copied to buffer 1, and lines 21 through 37 in the current
buffer are deleted.

The I directive is used to insert the contents of buffer 1
before line 1 of the file. The file is listed. The current
buffer is written to RNGT.

The Line Editor keeps track of the actual line numbers of the
lines in a buffer. You can add, delete, or rearrange lines and
the Line Editor automatically renumbers to keep the count
correct.

E?2t«37EI|

file is listed

E? - . : - ,

A-22 CZ15-00

Using Existing Files

Sometimes a new program must be created and it contains logic
elements that are similar to elements in one or more existing
programs. In this case, you can call an existing program into
the current buffer, delete the unnecessary coding from the cur-
rent buffer, and build a new file around the useful coding. At
other times, you may want to call portions of different programs
into the current buffer and use those portions as a basis for
building a new program. These Editor and buffer techniques can
save program development time.

The following example shows how two programs can be used for
developing a single new program. In this example only two
buffers are used. It should be noted that all five can be used.
Additionally, if necessary, the entire contents of the current
buffer can be copied to an auxiliary buffer as different portions
of the program are developed. This example shows the steps that
can be used to develop the a program from two existing programs.

E?R ABPRG.C Read in ABPRG.C.
E?1,8K1 Copy lines 1 through 8 to buffer 1. ?
E?59,67K2 Copy lines 59 through 67 to buffer 2.
E?1,$D Delete contents of current buffer.
E?R GGPRG22. C Read in GGPRG22.C.
E?29f32D Delete lines 29 through 32.
E?26,27D Delete lines 26 and 27.
E?1,12D Delete lines 1 through 12.
E?1,$!P List file with line numbers.

listing is produced

E?5A!B2!F Append contents of buffer 2 after line 5.
E?1I!B1«F Insert contents of buffer 1 before line 1.
E?l,$iP List file with line numbers.

listing is produced !

ft
E?W NEWP.C Write to a permanent file. '3
E?

The lines are deleted from the end of the file (29,32D)
towards the beginning of the file (1,12D). The next step shown
in this example is the listing of the current buffer at the ter-
minal. This listing indicates line numbers for the insertion of
lines from the two auxiliary buffers. The lines in buffer 2 are
appended to line number 5 of the current buffer (5A!B2!F). If
the lines from buffer 1 were inserted at the beginning of the
file, the line numbers in the current buffer would change. Then
you would have to list the contents of the current buffer again
to see where the lines from buffer 2 should be appended. After
the lines from buffer 2 are appended to line 5, the lines from
buffer 1 can be inserted before line 1 of the current buffer.

A-23 CZ15-00

To make sure that the current buffer contains all the lines
in the proper sequence , list the file contents again* Then you
can write the current buffer contents to a permanent file or con=
tinue working on the current buffer contents to create a pro-
gram., The contents of the current buffer are saved to a perma-
nent file named NEWP.C.

Puffer Status

The X directive is used to determine buffer size or current
buffer status. Buffer status can be checked at any time during
the editing process. The following example shows the use of the
X directives

15->(0) ~VOL10>EDMOD> COBPRG.C

The example indicates that there are 15 lines in buffer
zero. The second field of the display information is an arrow'
pointing to the buffer that is the current buffer. In this
example , only one buffer is shown; the following example shows
two buffers. - -, .-,«-, ..„ , ,

15->(0) *VOL10>EDMOD> COBPRG.C
8 (1)
E?

This example indicates that there are two buffers, one with
15 lines, one with 8 lines * The buffer pointer is pointing at
buffer Or the current buffer.

If you were to add, delete, change, or substitute lines in
the current buffer, MOD would appear, as shown:

15 MOD->(0)~VOL10>MOD>COBPRG.C
8 (1)

The next field is the buffer name in parenthesis. The name
for the first is 0 (the default current buffer), which was cre-
ated when the Editor was invoked. The second is 1, which was
created when data was moved into it.

The final field in the buffer status is the absolute pathname
used in the last read or write operation using that buffer.
Notice in the preceding examplest that the file with the absolute
pathname ~VOL10>EDMOD>COBPRGcC has been read into the current
buffer. - . , ,<w

A-24 CZ15-00

Saving Modified Buffer Contents
^^^^^^^^j^m^^m^^-^^^^^^^^^^^^^^j^

The following example shows part of a terminal session where
a file has been modified using the Line Editor. You attempt to
quit the Line Editor with the Q directive. Because you have not
saved the current buffer contents with the W directive, the
system displays the QUIT DEFERRED message. This message
indicates that modifications have been made to the current buffer
but the current buffer contents have not been saved.

E?Q
MODIFIED BUFFERS EXIST, QUIT DEFERRED
E?W TESTFL

.
RDY:

In this case, you respond to the message with the entry W
TESTFL and to the E? prompt with the Q directive to return to the
command level of processing. If you responded to the QUIT
DEFERRED message with the Q directive, the system would have
accepted the directive, the current buffer contents would have
been destroyed, and processing returned to command level.

USING SYSTEM COMMANDS IN THE EDITOR

The escape directive (E) allows you to use system commands
while you are working with the Line Editor.

The Line Editor must be in edit mode. Then an E followed by
any system command causes the Line Editor to pass that command to
the Command Processor. After executing that command, the system
returns control to the Line Editor.

- {i % - -; ' a \j
Writing to Line Printer ' " *

To write the contents of the current buffer to the line
printer, first reserve the line printer as the user output file.
This is done with the FO command explained earlier. The following
example shows the commands used to reserve a line printer. ,

E7EF01LPTQO " '"" *"" ' " '" -
E?

' i "
After executing the command shown in the example, the Line

Editor sends all output that would go to the screen (except for
the ready display and errors) to the line printer. To get hard
copy of the current buffer, type the directive line that prints
the entire contents of the buffer.

A-25 CZ15-00

The next example shows that once user output is directed to a
printer any variation of the P directive will cause printing to
take place at the printer., In this ease, the entire file (1?$)
is printed with line numbers (!P)0

* £

E?EFO~
E?l
E?

After printing the contents of the current buffer on the line
printer , to change output back to the terminal (or default
device) enter the FO command with no pathname »

The following example shows the Escape (E) directive is nec-
essary to execute the FO command while the Line Editor is
invoked.

E?lr$lP
E7EFQ
E? ' "-''•

The execution of commands from the Line Editor is similar to
the execution of commands at command level. Two of the differ-
ences includes

• The E? prompt instead of the RDY: prompt to indicate sys-
tem readiness to execute a command or directive.

• The need for the E directive prefix when commands are exe-=
cuted from the Line Editor.

Date and Time
,'•-',•'' + '•:* 3~I . 5!" O_- _

When the lines of the current buffer are listed on the line
printer they are printed as is* There is no date or time dis-
played with the printing0 Sometimes it is helpful or important
to know when a listing of a file was made, particularly when
various updates of files must be compared.

To display a date and time heading with your listing on the
line printer, use the system command TIME after directing output
to the line printer.

TIME is a system command. Therefore, the Escape (E) direc-
tive must be entered too.

The command ETIME will cause the system date and time to be
displayed on the output device » This display becomes a header
for the file listing which follows. For example, as a result of
the following entries, the entire contents of the current buffer
are listed at printer LPTOO with a date and time header.

E7SFXI ILPTdff
E?ETIMET

E?

A-26 CZ15-00

Important Considerations

When using the Escape (E) directive you can execute any sys-
tem command. However, if the E prefix is omitted, certain prob-
lems can occur. For example, if the E prefix is not used, the
Line Editor will not pass the entry to the Command Processor. As
a result, the Line Editor will try to execute the entry as a Line
Editor directive. For this reason, accidentally entering a
command to the Line Editor without the E prefix can cause
problems. Accidentally entering a command that begins with any
of the following characters can be particularly problematical:
W, LW f D f I, C, and A „

For example, an entry beginning with a C will change line
contents. An I or an A will cause additions to a current buffer
file. A W will copy the current buffer contents to a permanent
file. Using the E directive prefix is important.

For instance, if LWD is entered without the preceding E, the
Line Editor will cause a line feed and write the contents of the
current buffer to a file called D under the working directory.
The correct way to enter the LWD command is shown in the example:

E7-ELWD
"VOL3>DIR23
E?

A-27 CZ15-00

;:: s. j.

- - ~i ,J _.

'5, -A

Appendix B
USING COBOL

ff nMrrw*M̂ >ap- -«»•«- •* »«̂ MBwmiu

K« »

This appendix describes procedures for using COBOL. The fol-
lowing information is provided: %

• Explanation of the compile, link, and execute procedures
for COBOL programming, including a sample program
illustrating these steps

• Programming tips for communications via COBOL, including a
sample program.

COBOL COMPILE. LINK. AND EXECUTE PROCEDURES f ''*' j

To compile a COBOL program, invoke the Advanced COBOL ^
(COBOLA) compiler and the Linker. Input to the COBOL compiler
consists of a source program written in COBOL and optional con-
trol information.

Output is a: >f ^ , , , , r .„

• COBOL object (.0) unit
• COBOL listing and diagnostics.

Input to the Linker is the relocatable object unit.

Output is a:

• Bound unit
• Link map.

B-l CZ15-00

Figure B-l illustrates the compile and link operation, pro-
dueing an executable module«

LISTING

MAP

SOURCE
PROGRAM

COBOLA

f
OBJECT
PROGRAM

LINKER
EXECUTABLE
MODULE

Figure B-l. Compiling and Linking a COBOL Program

B-2 CZ15-00

Invoking the COBOL Compiler „ . _ _ _ _ _
^ " ""

The command used to invoke the COBOL compiler is:

COBOLA path [ctl_arg...]

where: -

path

The pathname of the source file that is to be compiled by
the Advanced COBOL compiler. If path does not have a
suffix of .C, then one is assumed. However, the suffix
.C must be the last component of the name of the source
file.

ctl_arg ;

" ~ *" ~ t

None or any number of control arguments. (See the j
\. Advanced COBOL Reference manual.) i

For example, the source file might be PROG1.C shown in Figure
B~2.

To compile PROG1.C, enter: '
'3wo. -. ;

COBOLA PROG1 '

This causes compilation of the source file PROG1.C that, in this
ease? is in the current working directory.

]
The terminal dialog is: I

COBOLA PROG1. . Invoke the compiler
COBOLA 2.0 02/28/0057
NO FATAL ERRORS, 1 WARNING IN PROG1. A warning is issued

11 DATA DIVISION. !

W ' * !
** 1 2-3 A PERIOD IS REQUIRED PRIOR TO THIS WORD

RDYs .:'• ' . 1

B-3 CZ15-00

IDENTIFICATION DIVISION, <o '" - ,H v, S
PROGRAM-ID. PROGlcC
ENVIRONMENT DIVISION. . ?-*_!*• - - • „ AJj"r~i
CONFIGURATION SECTION.
SOURCE-COMPUTER. LEVEL-6c
OBJECT-COMPUTER. LEVEL-6,
SPECIAL-NAMES. ,—.,c
INPUT-OUTPUT SECTION.
FILE-CONTROL. - . -
I-0-CONTROL.
DATA DIVISION. .»-i ' > :,
FILE SECTION. - *... ,-,„,.
WORKING-STORAGE SECTION. *: '
01 WORD PICTURE X(72).
01 GOOD PICTURE X(72). , t« - 2
77 BLANKER PICTURE X(72) VALUE SPACES.
01 TEST1 PICTURE X(3). au e-.-o
01 TEST2 PICTURE X(4). ,
PROCEDURE DIVISION.
READING-ROUTINE.

•- DISPLAY "WHAT WORD?18. < a — - - « - ?,
MOVE BLANKER TO WORD.
ACCEPT WORD.
MOVE WORD TO TEST2.
IF TEST2 EQUAL TO "DONE" GO TO END-CARD; ELSE NEXT

SENTENCE.
DISPLAY "YOUR WORD WAS " WORD.
DISPLAY "CORRECT?™.
ACCEPT GOOD.
MOVE GOOD TO TEST1.
IF TEST1 EQUAL TO "YES" GO TO READING-ROUTINE; ,-rr

ELSE NEXT SENTENCE.
- MOVE GOOD TO TEST2.
IF TEST2 EQUAL TO "DONE" GO TO END-CARD;

ELSE NEXT SENTENCE.
DISPLAY "TOO BAD"0 . «'>"
GO TO READING-ROUTINE.

END-CARD. • A £-£ ; **
DISPLAY "THAT'S ALL FOLKS 1".
STOP RUN.

Figure B-2. COBOL Source Program PROG1.C

B-4 CZ15-00

COBOL List File

Unless you specify otherwise, the Advanced COBOL compiler
produces a list file for the program being compiled. Specify
NOLIST on the COBOLA command line to delete the list file. The
list file contains the source listing, the cross-reference list-
ing, and the object map or object listing.

LIST HEADER

The list file begins with a header containing the program
name? date and time of compilation, the compiler version used,
and arguments, if specified, in the format shown in Figure B-3.

SOURCE LISTING

The source listing is a line-numbered, printable ASCII list-
ing of the source program. The entire source line image for each
line is presented, always in the fixed reference format. The
line number shown with each line, referred to as the external
line number, represents the relative position of that line in the
source file (i.e., the relative record number). This is a
two-part number if it represents a line from a COPY file. The
first portion is the relative number of the COPY statement in the
program (the first COPY statement in the program is 1, the next
2, etCc)c The second portion, separated by a hyphen from the
first, is the relative line number within the COPY file (e.g.,
13-126). This is the line number permanently associated with the
statement(s) on that line for the reporting of run-time errors.

SAMPLE LISTING " " *

Figure B-3 shows the listing produced by compilation of
PROG1.C.

B-5 CZ15-00

o
CM <-)

o
o

M3
O Cd
ca cj
0<
CJ Q<

I- O
CM — 1
f* Cft
-t O

^3

CM
x^
Cn Wi
0 0

M m
• 0

<«3 <— (
1 09

O
CS
^»

Q
O
£ •*-*

CO O
O OS
CJ 0

,

-

^

— A

u

?-
«
B

At
(0

-

-3 0 c

i© vd

r- « J a
in Z • W W
0 O • Z > >
0 CO Z O Cd Cd Z
v^ M • O M «J -J O
ce > <•* M E-» 1-4
CM M CJ CO CJ 6-1
v» Q o 1-1 ca • • cj
CM as > co as as ca
O Z CU w Cd Cd • CO •

O Q Z En 61 CO • Z

CJ CM C j M C d ' < O O Z 6 " ' 6 = ' a S M
• M I £ O S C J C J 1 3 Z 6 " i >

t3 O O M < O C J W 6 - « < I C J O Q

8 M Cta 05 W CJ 3 Cd 1 ̂
^ Z 2 r 3 C d P 4 b 4 O 6 - 4

Cd O a * Z O O Q 3 Q * Z M I < 4
Cu ^> in t— a f i e C d C J C O O t O * — • k» M Q p
O 0

CJ tj m
Z O O Cd
HI 03 "\ Z
£- O -H 0
W CJ 00 z
>— 4
«J

«• «a e«

Z >. Z CO
O 03 O Z
w O
6- Q Q 1-1
< J Cd 6-1
j j j a. 0-5
a. a, a.
£ £ £
O O O
CJ U U

*

"

>

i
M
Jg

flfi

*
is
CQ
M

8-
g
as
O
ce
a.
a
as
H<
3

Sf
as

u
CO <1J
i—) ^3

-I B
Q 3
O Z

as 01
w e
a. H

^<^
o>>
•4

f5** Js*
1 us

CM .— (

-< OS

4̂1

CJ
as
5
O

•

z
o
g*<

CJ
Cd

Cd
j
i-t
Cv

CM
->«

£

^ - - ,

8
K
e*
r, ' ̂ > _r» 20 ;>r

•

*. * ^

*•'

"•̂ ^ *^
•i .< i '

< > ~

e •
s a

Z c*° OS c

Q c o o » Q O C M

61 CM CM m »P O CO
cj r» r- — ̂ — • 20 cd
U • X,^< Z E- 6«
c/} x x o e-

CdCdFH • < OS > O
Ci3Ci2Cd O S O S C O U X C d Q i - *
c josas 3 Z3 « z 3 ^ as
<S3 6 ^ £ < > > - i « z O Q
a s 6 ^ £ < c j c jwe- i <2ce
gcju w i - iQa>< j o

MM OaOj O< f l 3 t «3
1 ii r H C M O S I C k C d C d C d

C J Q Q Z » 6 ^ E - i 3 C J C O > C J >
Z 0 5 O < C O C O C O Q Z i - l O C j O
i i O O > J W C d C d c d i - < Q £ < £
! « S 2 C 3 S 3 C J & « 6 - 5 C j a
as •< O ̂
O"H-<r~O4^ i -)ascd
2 O O [^ > C O O O Q d O S

Cd
Q
J
lOJ

^
,,1̂
CM
P-

X

§
c"»x* in\o3r»cocftoMCMrF i '^»

t< "* CM CM CM

M
04

8

«
8

13
ca
>i
BS

i

CO
3

i
H4
25

|
aca
CJ
Cd
a,
x
Cd

Cd
as
Cd
X

w
as

ĈJ
CJo
z
o

ĈJ
z
3
as
E-i

E-x
CJ

OS

03

^*
i"4
|

m

M

41

u
0)

Ê
3
Z

4)
e•4
-3

01
>
M4

4J

<Q

11
ce

jf 2_

a
as

CJ

a
z
ca

g
O
o
B

Ed •
Z Cd
O O

B C&3
&*

gw
CO

^ g<
D X
OW
Cd Z

CM Cd
6< co
CO M-
cd ca
61

Cb

m ~js
CM CN

4

*

.
a
as
O

B
CO

2

Q
as
O

as

O
x
E

>»

J

a,
CO

Q

r»
CM

^C ,. -7

**• r -*• c

• 0

K)-<
fV g^

e-» en
U CiJ
U 6* <-!
fX
05 - O
O Q H
CJ O
• Q Q

*°8
< EI CJ
J Og
QU r*l U
CO CJ >
1-1 CJ O
a < £

co en o
CM CM f*l

„

..< -"•

a
z
H<4
z
as
3

a
ca
EI
CJ
ca
a.
x
Cd

Cd
as
Cd
X

CO
OS
3
CJ

z
0
HI

6"
<
CJ
z
3
as
6-1

&«
x
CJ
1—1
as
CQ
^5

*•<

1

m

-1

4g

-

J

j

•H
Uo
a.
u_>

CP
c
•H
4J

"
°̂ H
»j

Mj
ca
CU
M

3

•H
fci

^>

B-6 CZ1S-00

z
£_,

3

i

O
Z

Q

U
K

g

Oo
8

W
&3
^4
K

g
to3

1

3
CO
u

tfa
>•«)

, ̂

1 >

—

c

W
u
2
U
EI
Z
W
C/3

6^
X
u
z
u
to
W

*

•*

-

f4
EI
CO
w
E*i •—

g

O

0

u

£

^

.

U
Uce
o
CO

•r

-<

*
O
Z

z
K

O
u
g-1
£j

a.
>i
u

«

W
a
u
X

CO
ce
3
U
U
o

0
1— 1
£-*

*4

(̂z
aee
E^

yj

K

«B

«»-

1
in

_, rs| ro -H
ro

•*•
U
CJ
X.

ro ro

41

£ • ̂ ' I«>n -
ffi

U

o t'" &„. .' . ; '"-"

". . . , - , , . , :

fi "- -
CJ &<

1 0
Q QS co
z , >< u u
U -* , * t- Q! ij O

g £ O< C O
£ £ CO

« 3 O W
O « CO CJ £rp e

CO
« u:
u « j
Z W O , , ,
O O U fa '
a z z
E U w _3 o

g Z * 3 < <N CN
W Q O 0
CO < K CO O

J CQ 1 - < 0
< E-i O EI J
3 X O Z < O W
O> CC O i-i X CQ O
W Z E i Q E i O <

s < t . UO. I ^ i * -
04 U U Z
E-i W >i K X 3
CO i-3 < < CS
U U -J O • J
EI ft, EI Q a, a, o

co cs co o t-» o z
It, — i O < « E-i (Ni-i M
»-i Q O C J Q C O r-o> 2

i rt o ce
a x. <
Z " 3
U CM

x^ ,_4

o^ in
00

1 V. CO
>H m cc

I • O O
tSX. K
Jrt (K
1 00 U

* ~ -~~ - ~.~*T~ Q J

Q H =

i i ^
^P in VO f**» GO &\ ^S rH O
rorororororo^ voO O K

CO O Z •• O.
O as u^»
CJ U />> O Q «
C5 \ 1 U CC &

* V -

F-l

1
fm
y-t
0

cn
c
4J
CQ
•H

c

JJ
C
o
o
^
r*>
ii

CQ

<U
u
3
CT>
•^

CL4

^.

JOS'

'3

B-7 CZ15-00

Once the source program is compiled, it can be linked. The
command used to invoke the Linker iss „. „

LINKER progname -PT [etl_arg]

wheres

progname

The bound unit pathname (simple, relative, or absolute)
of the bound unit to be created (usually the program
name, may be up to 62 characters in length).

-PT

Requests the Linker issue a prompt (L?) for input.

ctl_arg

Other valid control arguments for the Linker (see Section
6,

For example, to invoke the Linker for PROGI (compiled above),
enter % f _ ,

LINKER PROGI -PT : ̂

Figure B-=4 shows the dialog used to link PROGI, '-

RDY-.
LIHKER PROGI -PT Invoke the Linker with prompt
LINKER -1982/06/18 0912s50.S

Linker responds with version and
date

L? ~ Linker prompts for input
~ Link the run-time routines
- Linker prompts for input

PROGI * Link the object program
L? Linker prompts for input
QUIT r Quit the Linker
ROOT PROGI " Linker responds with name of root
LINK DONE

L?

Figure B-4. Linking PROGI t
c

B-8 CZ15-00

Executing a COBOL Program

To execute the compiled and linked COBOL program, type in the
program name. Figure B-5 illustrates a sample manual execution
of PROG1.

PROG1
WHAT WORD?
MARY
YOUR WORD WAS MARY
CORRECT?
YES
WHAT WORD?
MANUAL
YOUR WORD WAS MANUAL
CORRECT?
•80
TOO BAD
WHAT WORD?
DONE
THAT'S ALL FOLKS
RDY:

Figure B-5. Execution of PROG1

If data files are used they must be made available to the
program by using the GET command before typing the program name.
When execution terminates, use the REMOVE command to release the
data files. For more information on GET or REMOVE, see the
Commands manual.

PROGRAMMING TIPS FOR COMMUNICATIONS VIA COBOL

The File System interface provides the logical transfer
between the COBOL program and an external device (terminal or
another computer). The COBOL run-time routines issue File System
macro calls according to the corresponding input/output state-
ments in the compiled programs. „ ,._ . ., . .. ,

Interactive Devices and Files *-- »s

The Executive defines communications devices and local TTY
terminals in COBOL communications processing as "interactive."

Interactive devices are considered sequential files in COBOL.
Data is read or written with the same COBOL read/write interface
as for a file on a noninteractive device.

B-9 CZ15-00

Considerations

Aside from the use of various COBOL I/O statements you should
be aware of other considerations in using the File System within
a communications environment These considerations are detailed
in the System Programmer's Guide. Volume I.

Source Program Entries in Communications -».IT vim-, l--i.,,,,ft,l- IT on- n-.rn,,, nr-r -TIT -r-r -n.i.™ nrnn, (

This subsection refers to certain COBOL source program
entries in the context of COBOL communications. The Advanced
COBOL Reference manual describes the COBOL source program lan-
guage in detail.

SPECIFYING FILES IN THE SOURCE PROGRAM

You must describe every file with a separate SELECT statement
in the FILE-CONTROL paragraph of the Environment Division. File
organization and access mode must be stated as sequential .

Each file must have a unique name and, in the ASSIGN clause ,
be identified by a 2-charaeter COBOL internal file name (IFN)
consisting of a combination of the letters A through I and the
digits 0 through 9; one letter must be included , The logical
file number (LFN) is specified in the GET command (before execu-
tion) to connect the COBOL internal file name to the external
file. This LFN is the same as the COBOL internal file name with
letters A through I replaced by the digits 0 through 9. For
example , a COBOL IFN of OC would correspond to an LFN of 03 and
an IFN of OD to an LFN of 04, as in the commands.

GET 03 IVIP1
GET 04 1TTY1

USE OF GET COMMAND

In addition to connecting the internal file name to the
external file, the GET command reserves the interactive file for
processing until it is removed via the REMOVE command. GET guar-
antees exclusive use of the file prior to program execution and
maintains use of the file until the corresponding REMOVE command.

ASSIGNING A FILE TO A DEVICE/TERMINAL

A device-type name of MSB used in the ASSIGN clause of the
SELECT statement is the way to inform COBOL that the internal
file is assigned to a terminal/device file.

B-10 CZ15-00

For data entry applications (TTY or VIP) the file should be
v opened in INPUT mode.

For output-only terminals such as the receive-only printer
(ROP) the file should be opened in OUTPUT mode. Bidirectional
devices, such as the BSC 2780 can be opened in INPUT mode or
OUTPUT mode but not for both INPUT and OUTPUT at the same time.

For interactive applications (TTY, VIP or BSC3780), the file
can be opened in 1-0 mode allowing both input and output
operations.

SELECT AND ASSIGN EXAMPLES - '
«f * •

Figure B-6 shows an example of a FILE-CONTROL paragraph with
SELECT and ASSIGN statements for the input file COMIN and the
output file COMOUT. The internal file name for COMIN is OC and
for COMOUT is OD» Before the program is executed, associate
these files with the appropriate device(s) with either GET com-
mand. In this example, the commands could bes

GET 03
GET 04

ITTY1
ITTY1

Although these are different files, they can be associated with
the same interactive device; i.e., TTY1, by matching the logical
file numbers (03 and 04 for the device pathname 1TTY1) with the
internal file name OC and OD, respectively. .„ , , ~

FILE-CONTROL.

SELECT COMIN

ASSIGN TO OC-MSD
ORGANIZATION IS SEQUENTIAL WITH VLR
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS IN-STATE.

SELECT COMOUT

ASSIGN TO OD-PRINTER
ORGANIZATION IS SEQUENTIAL WITH VLR
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS OUT-STATE. _

Figure B-6. COBOL SELECT and ASSIGN Examples

B-ll CZ15-00

CARRIAGE CONTROL -v -

The print carriage control of some devices can be changed by
the application program. If the device-type name is MSD, the
application program controls the carriage directly by inserting a
program-accessible control byte as the first character in each
output record. This byte is the first character in each level-01
record description entry for the output file,, It is counted as
part of the record area and is directly accessible through state-
ments in the COBOL application program.

PRINTER EMULATION

Printer emulation is the capability of assigning printer
characteristics to other terminal devices. If the device-type
name is PRINTER in the ASSIGN clause COBOL will automatically
generate the carriage control byte as a result of an ADVANCING
phase in the WRITE statement. This one byte print control char-
acter is inserted before each data record being written to the
file. It is not counted as part of the record area and is not
directly accessible to the application program.

SPECIFYING ASYNCHRONOUS OR SYNCHRONOUS READ AND WRITE EXECUTION

If the device is configured (see STTY directive) or modified
(see STTY command) for synchronous I/O? READ and WRITE statements
are always executed synchronously (i.e., the application is
placed in the wait state until the read or write is complete).

If the device is configured (see STTY directive) or modified
(see STTY command) for asynchronous I/O, READ and WRITE state-
ments may be executed synchronously or asynchronouslyr as indi-
cated through calls to the COBOL run-time routines ZCASYN
(asynchronous execution) or ZCSYNC (synchronous execution). If
neither call is specified, reads and writes are executed
asynchronouslyc

A separate call to ZCSYNC or to ZCASYN is not necessary for
each read or write, but when first issued, remains effective
until changed by another call. However, if the same run unit is
to execute several COBOL programs, each program must separately
define its own synchronous or asynchronous condition.

" ' - " • NOTE

With either the ZCSYNC or ZCASYN call, the -CC argu-
ment must not be specified with the COBOLA commando
The -CC argument causes CALL statements to refer only
to overlays. (See the Advanced COBOL Reference
manual.)

B-12 CZ1S-00

SYNCHRONOUS READ AND WRITE OPERATION (CALL "ZCSYNC")

In synchronous operation, the COBOL routine issues a read or
write order without any file status checks. This puts the appli-
cation program in the wait state until the read or write opera-
tion is complete, thus allowing other tasks to be executed.

The source language for synchronous read and write execution
is:

CALL "ZCSYNC"

Synchronous operation is not useful for a program application
that interacts with more than one terminal since each read from
or write to a terminal must be satisfied before the next terminal
can be processed.

ASYNCHRONOUS READ AND WRITE OPERATION (CALL "ZCASYN")

In asynchronous operation COBOL READ/WRITE runtime routines
issue a test-file call prior to issuing a read or write order.
For READ orders, a 91 return status is returned to the applica-
tion if no data is available to be read. Likewise, for a WRITE
order, a 91 status is returned to the application if the device
is busy with the previous output. This permits the COBOL program
to support terminal I/O without giving up control of the central
processor until the I/O is complete. Note that this facility is
only available for terminals which have been configured (see STTY
directive) or modified (see STTY command) to allow asynchronous

WAIT FOR COMPLETION FOR ASYNCHRONOUS INPUT AND OUTPUT

For a multiterminal application, you can control asynchronous
read and write operations by calling the COBOL runtime routines
ZCWIN and ZCWOUT. r. , ,„ ,

A call to ZCWIN results in a Wait File ($WIFIL) macro call,
which waits until input is available from one or more of the
specified terminals.

A call to ZCWOUT results in a Wait-File ($WOFIL) macro call,
which waits until output is complete to one or more of the speci-
fied terminals.

• •' «*" ="* *- >n° NOTES

1. With Advanced COBOL programs, the -OC argument
must not be specified with the COBOLA command
for compilation when ZCWIN or ZCWOUT are called.
ZCWIN and ZCWOUT must be called with dope
vectors.

B-13 CZ15-00

2* With the ZCWIN or ZCWOUT call, the -CC argu-
ment must not be specified with the COBOLA
command. The -CC argument causes CALL state-
ments to refer only to overlays.

3o See the Advanced COBOL Reference manual.

The System Programmer's Guide. Volume II describes the wait
file macro calls

f
 their format and arguments in detail. Note

that the macro call arguments are similar to the values for the
data-name description for the CALL statements (see below) «,

The source language to call ZCWIN or ZCWOUT iss

CALL (
№
ZCWIN" \ USING data-name

I"ZCWOUT"/

Data-name is defined as follows; „.„,.
37 . •• - IV-\ .1 • Stf 2;>;;<*; v

01 data-name
02 out-LFN USAGE COMP-1. ft-
02 list-length USAGE COMP-1.

.
f
 ' * 02 LFN~entry-l USAGE COMP-1.

' r 02 LFN-entry-n USAGE COMP-1.

The values for out-LFN, list-length, LFT-entry-1, and LFN-entry-n
are identical to those for the wait file ($WIPIL and $WOFIL)
macro calls, and are passed by the ZCWIN or ZCWOUT routine to the
file system.

\ . ',
 !
 ' -*" j.

When CALL "ZCWIN" is specified, the list of LFNs may refer
only to those devices for which READ statements have been issued.
When call "ZCWOUT" is specified, the list of LFNs can refer only
to those devices for which WRITE statements have been issued.

When an input/output operation is completed on any device in
the list of LFNs, the application program resumes execution fol-
lowing the CALL statement. The LFN for the device for which
input/output is complete is stored in the out-LFN data item.

*

Figure B-7 provides simplified program logic for processing
multiple terminals. The call to "ZCWIN" stalls program execution
until input is available from at least one of the terminals.

r
7 »

B-14 CZ15-00

OPEN 1-0 (FILE II

I
OPEN I-O (FILE 2)

I
OPEN 1-0 (FILE 31

I
CALL "2CWIN" (FOR FILES 1. 2, 3)

NOT BUSY- FILE N

I ,-
READ (FILE Nl

NO

WRITE (FILE Nl

YES-C EXIT)

CLOSE (FILE 2)

CLOSE (FILE II era

ro

Figure B-7. Simplified COBOL Program Logic for '
Multiple Interactive Terminals
(Asynchronous Input/Synchronous Output)

B-15 C215-00

- The following example illustrates portions of a COBOL program
processing two terminals. This processing allows asynchronous
input and synchronous output operations. The call to ZCWIN gives
up control of the central processor unit input is available from
one of the terminals=

IDENTIFICATION DIVISION.
PROGRAM-ID. TESTS. —-— — -,„,..„._,.,
AUTHOR. HONEYWELL. , j

* ' - " 'lf* . ;
* ***COMMENTS*** '
*
* THIS PROGRAM PERFORMS COMMUNICATIONS VIA
* COBOL. TWO TERMINALS ARE TREATED AS
* SEQUENTIAL FILES. DATA IS ASYNCHRONOUSLY
* READ FROM AN SYNCHRONOUSLY WRITTEN TO EACH
* OF THESE TERMINALS, DEPENDING UPON WHAT IS
* TYPED AT THE TERMINAL.
* ;
* WHEN THE DATA IS READ - IT IS ECHOED BACK,
* EVALUATED, AND EITHER WRITTEN OUT AGAIN WITH A
* MESSAGE (I.E., "TERMINAL ONE?") OR PROCESSED
* THROUGH AN ERROR ROUTINE OR A HALT PROCEDURE.
*
*
DATE-WRITTEN„ DECEMBER 10, 1980.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION. ' :
SOURCE-COMPUTER. LEVEL-6.
OBJECT-COMPUTER. LEVEL-6.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT COM1 ' '
ASSIGN TO OC-MSD
ORGANIZATION IS SEQUENTIAL WITH VLR
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS Cl-STAT. ~' :

SELECT COM2
ASSIGN TO OD-MSD
ORGANIZATION IS SEQUENTIAL WITH VLR
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS C2-STAT.

DATA DIVISION.
FILE SECTION.
FD COM1

LABEL RECORDS ARE OMITTED.
01 COM1-REC. I

02 DA-TA1 PIC X(40). \ i
02 FILLER PIC X(40). '

FD COM2 _- , -,_̂ _f
LABEL RECORDS ARE OMITTED.

01 COM2-REC. ..* 3,̂ .-?
02 DA-TA2 PIC X(40). "
02 FILLER PIC X(40).

B-16 CZ15-00

WORKING-STORAGE SECTION. ~̂ «
01 MES1.

02 FILLER PIC X(01) VALUE "A".
02 FILLER PIC X(13) VALUE "TERMINAL ONE:".
02 INS1 PIC X(40) VALUE SPACES.
02 FILLER PIC X(26) VALUE SPACES.

01 MES2.
02 FILLER PIC X(01) VALUE "A".
02 FILLER PIC X(13) VALUE "TERMINAL TWO:".
02 INS2 PIC X(40) VALUE SPACES.
02 FILLER PIC X(26) VALUE SPACES.

01 DONE.
02 FILLER PIC X(04) VALUE "DONE".
02 FILLER PIC X(76) VALUE SPACES.

01 LFN-LISTle
02 WHICH PIC 99 USAGE COMP-1

VALUE ZEROES.
02 NUMB USAGE COMP-1

VALUE IS 02c
02 LFN1 USAGE COMP-1

VALUE IS 03.
02 LFN2 USAGE COMP-1

VALUE IS 04.
01 LFN-LIST2.

02 WHICH2 PIC 99 USAGE COMP-1
VALUE ZEROES.

02 NUMB2 USAGE COMP-1
VALUE IS 01.

02 LFN1A USAGE COMP-1
VALUE IS 03.

01 LFN-LIST3.
02 WHICH3 PIC 99 USAGE COMP-1

VALUE IS ZEROES.
02 NUMBS USAGE COMP-1

VALUE IS 01.
02 LFN2A USAGE COMP-1

VALUE IS 04.
01 MSGo

02 FILLER PIC X(01) VALUE "A".
02 FILLER PIC X(ll) VALUE "ENTER DATA":.
02 FILLER PIC X(28) VALUE SPACES.

01 ECHO.
02 ECH01 PIC X(01) VALUE "A".
02 ECH02 PIC X(39) VALUE SPACES.

01 Cl-STAT PIC X(02) VALUE SPACES.
01 C2-STAT PIC X(02) VALUE SPACES.
PROCEDURE DIVISION. w

BEGIN. lrt"
* THIS CALL CAUSES THE SYNCHRONOUS OPENING OF
* THE TWO FILES (TERMINALS).

CALL "ZCSYNC"
OPEN 1-0 COM1. ^ *
OPEN 1-0 COM2.

B-17 C215-00

SCR1. .
MOVE MSG TO DA-TAl .

* ENTER DATA MESSAGE IS WRITTEN ON SCREEN 1
WRITE COM1-REC.
MOVE SPACES TO COM1-REC.

MOVE MSG TO DA-TA2 . '
* ENTER DATA MESSAGE IS WRITTEN ON SCREEN 2.

WRITE COM2-RECo
MOVE SPACES TO COM2-REC.

R-Dc
* "ZCASYN" CAUSES ALL I/O TO BE ASYNCHRONOUS.
* aZCWIN" CAUSES A WAIT UNTIL INPUT IS AVAILABLE U'
* FROM 1 OR MORE FILES (TERMINALS) . THE FIRST
* TIME THROUGH THE LOOP IT IS WAITING FOR THE
* ANTICIPATORY READ FROM AT LEAST ONE OF THE ''
* OPEN STATEMENTS TO BE COMPLETED. ^
*

CALL "ZCASYN-o
CALL "ZCWIN" USING LPN-LIST1.
READ COM1 AT END GO TO EOF1, '~
READ COM2 AT END GO TO EOF2 .
IF Cl-STAT IS EQUAL TO "91" GO TO R-D2.
IF Cl-STAT IS EQUAL TO "00" GO TO WR1 .
IF Cl-STAT IS EQUAL TO "10" GO TO EOF1. .:: "
GO TO ER-ROR.

R°"D2
IF C2-STAT IS EQUAL TO "00" GO TO WR2 . x 'J

IF C2-STAT IS EQUAL TO "10" GO TO EOF2.
GO TO ER-ROR o

WRle
MOVE DA-TAl TO ECH02 . ; '
MOVE ECHO TO DA-TAl .
WRITE COM1-REC.

* THE WRITE IS ASYNCHRONOUS BUT THE CALL
* TO "ZCWOUT" CAUSES THE I/O TO BE PERFORMED < ..
* SYNCHRONOUSLY BECAUSE IT CAUSES A WAIT UNITL '"'!

* THE WRITE IS COMPLETE. .
CALL "ZCWOUT" USING LFN-LIST2, , r~ '•'
IF ECH02 IS EQUAL TO DONE ,. „

GO TO EOP1. * '
MOVE ECH02 TO INS1 - - - „ . -
WRITE COM1-REC FROM MES1. v .-
CALL "ZCWOUT" USING LFN-LIST2 . ''* ~ ' '"'
MOVE SPACES TO INSl , DA-TAl, ECH02 .
GO TO R~D,

WR2.
MOVE DA-TA2 TO ECH02 . - - - - - - - -
MOVE ECHO TO DA-TA2 .
WRITE COM2-REC.
CALL "ZCWOUT" USING LFN-LIST3.
IF ECH02 IS EQUAL TO DONE

GO TO EOP2.

B-18 CZ15-00

MOVE ECH02 TO INS 2.
. WRITE COM2-REC FROM MES2. 'l

' CALL "ZCWOUT" USING LFN-LIST3 .
MOVE SPACES TO INS2 , DA-TA2 , ECH02
GO TO R-D.

-
ER-ROR.
DISPLAY "ERROR IN COMM PROCESSING.
CLOSE COMlc
CLOSE COM2.
STOP RUN,

EOPlc
DISPLAY "TERMINAL ONE TERMINATES PROGRAM".
DISPLAY "BY ONE MESSAGE.".

- ' CLOSE COM1.
CLOSE COM2.
STOP RUNo -%1- " '-' -

EOP2c
DISPLAY "TERMINAL TWO TERMINATES PROGRAM".
DISPLAY "BY DONE MESSAGE.".
CLOSE COMlc
CLOSE COM2 . ;0 J' " " ' rf ni 1T *<" * C • i , j fcfl JB
STOP RUN,

" EOF1«
DISPLAY "END OF FILE 1 REACHED.".
CLOSE COM1.

' CLOSE COM2. - ' ""•
STOP RUN.

EOF2.
DISPLAY "END OF FILE 2 REACHED.". *
CLOSE COMlc • ----
CLOSE COM2o
STOP RUN. '"•" --->^.nor Ja * i -f.*i *jf;5 «

END COBOL (GENERATED)
d, f ̂ ~* A

Before program execution, specify these commands to connect
the LFNs to the specific terminal files.

3 ,TTyl (for IFN oc
GET 4 1TTY2 (for IFN OD-MSD)

BINARY SYNCHRONOUS COMMUNICATION (BSC) WITH COBOL

Binary Synchronous Communication (BSC) , operating in 2780 or
3780 modef permits a COBOL program to transmit data over
communications lines from one DPS 6/Level 6 system to another DPS
6/Level 6 , to a Level 66 system, or to a non-Honeywell host
system.

BSC DATA TRANSMISSION CONVENTIONS
• -- O3 V *

BSC Data Codes *- *5-~ ~ J'^ Y?--—-

Data can be in alphanumeric ASCII, alphanumeric EBCDIC, or
binary format. In communication between DPS 6/Level 6 and remote

• ' ' B-19 C215-00

host, each system must use the same code set (either ASCII or
EBCDIC)„ When EBCDIC is usedr the application programs must know
whether transmission is nontransparent or trnsparent (i.e./ BSC
control characters are interpreted as data)«

BSC Data Transmission Modes

There are two BSC transmission modes: basic and advanced.

In basic transmission mode there is no control byte. The
absence of a control byte limits the functionality of the proto-
col? e egcr an application cannot send or receive two message
blocks or cannot initiate a reverse interrupt (RVI) sequence.

In advanced transmission mode there is a control byte which
is the first byte in the program's input or output buffer. The
control byte is used to control the tranmission of data and is
used to convey information concerning the receipt of data. With
the control byte? the application has complete control over the
transmission and reception of data to a remote host.

BSC Multi-block Transmission

The BSC multi-block feature allows an application to send or
receive from one to seven message blocks (records) in a single
transmission,, It is available in both BSC 2780 and BSC 3780, and
in both basic and advanced transmission modes. To use this fea-
ture, the application musts

« Specify this feature during system build (refer to the
S.yjg,£efH., ?iE.fl,g£flmffl§r '.s,. Guide. Volume I)

• Select this feature at connect time .

• Organize the data buffer.

Unique rules apply to the usage of this feature. Refer to
the sections dealing with multi-block trnsmission in the System
Programmer's Guide. Volume I. For example: if the multi-block
feature is used during 2780 basic mode transmission, a word must
be allocated at the beginning of the application's buffer (for
the control byte), even though a control byte is not used in
basic mode. ;

BSC 2780 and BSC 3780 '""

BSC 2780 is a subset of BSC 3780. Technical differences
between the two protocols can be summarized as a set of exten-
sions to the 2780 protocol which are:

• Ability to receive a conversational reply without a pre-
liminary bid sequence

B-20 CZ15-OQ

• Ability to receive and transmit selected BSC control
^-s characters

4 ~

The differences between the two protocols can be summarized
as: <••! - - f j •»«.

• BSC 2780
1

Specified at system building time by the BSC device
directive.

Operates in basic or advanced mode. *

. ^ Supported with bidirectional use of BSC 2780 communication
line. A CLOSE/OPEN sequence must be initiated prior to
the reversal of the communication line. - fc_e?

« BSC 3780 • • - ' - • - -' -f-J •>

Specified at system building time by the XBSC directive.

Operates only in advanced mode.

Supported only in receive mode. Transmits must be per-
formed in single-block mode (refer to the System

-, - programmer's Guide. Volume I) .

Supported with interactive usage of the BSC 3780 communi-
cation line. To terminate a transmission the application
must initiate an EOT sequence by setting the appropriate
bit within the control byte.

An ETX message transmission sequence can also be terminated if
the other application sends a conversational reply. Receipt of a
conversational reply is indicated by a bit setting within the
transmit control byte. Receipt of a conversational reply forces
the application to issue a read order to receive the con-
versational response. The termination of a read seqeunce is

V_v indicated by the AT END condition.

BSC 2780 IN BASIC TRANSMISSION MODE

The following conditions apply in the use of binary synchro-
nous communications in basic data transmission mode:

• An application cannot send an RVI (reverse interrupt) con-
trol character through the file system.

i

• BSC devices in basic transmission mode cannot initiate
double (ITB) block transmissions (see "BSC 2780/3780 Line

, , Protocol Handler".)

B-21 CZ15-00

« An application can send only the ETB (end of transmission
block) BSC control character, not the ETX (end of text)
BSC control character.

« An application cannot detect the receipt of a DLE EOT
(switched line disconnect). Refer to "BSC 2780/3780 Line
Protocol Handler".

"ty

« An application can send data in either transparent or non-
transparent mode.

• An application can send EOT (end of transmission) control
characters by a CLOSE call.

e BSC operation assumes that the detab option is set off.

Figure B-8 illustrates the necessary logic to support a BSC
2780 application in basic transmission mode. ,<JS ,

* .̂ *y*n $

BSC 2780 IN ADVANCED DATA TRANSMISSION MODE

In the BSC advanced daca transmission mode, the first byte of
the application program's input or output buffer is a control
byte that controls or supplies information about read/write oper-
ations., This byte can indicate, for example, whether data is to
be transferred in transparent or nontransparent mode, or whether
an ETB (end of transmission block) or ETX (end of text) control
character is to be sent or received or if data is to be sent in
single or multi-block mode (see the System Programmer's Guide,
Volume I) . -.. , 3 _ .,

It is not necessary to send EOT control characters through
the control byte since the user must close the file in output -
mode before attempting to read. Closing the file forces BSC if
not in idle mode, to send an EOT control character.

BSC 3780 IN ADVANCED DATA TRANSMISSION MODE

The first byte of the application program's input or output
buffer is a control byte* The control byte controls or supplies
information about read/write operations. As with 2780 in
advanced mode, the control byte controls whether data is to be
sent in transparent mode, how the data is to be blocked (ETB or
ETX), of if the data is to be sent in single=block or in
multi-block streamSo "~ " - - - ~

The following conventions apply in using 3780 binary synchro-
nous communication in advanced data transmission modes

• The rac-3ict of an optional conversational reply is indi-
cated by a bit setting in the transmit control byte«
(This can occur if the application has transmitted the
last (ETX) block of a message.) The application must
issue a read to receive the conversational response".

B-22 CZ15-00

* i *f *

Figure B-8. Simplified Program Logic for BSC 2780

B-23 CZ15-00

The termination of a transmit sequence is signaled (via
control byte) by the transmission of an EOT control char-
acter following the last block of a message. Once this
has been done a read macro call will be needed to receive
transmissions from the remote system. (It is not neces-
sary to close and reopen the file to turn the line

« The termination of a receive seqeunce is indicated by the
AT END condition,, A transmission sequence can be reiniti-
ated by issuing another write macro call« (It is not
necessary to close and reopen the file to turn the line
around,)

• A line turnaround (receipt of an EOT or DLE EOT) is
indicated at the AT END condition. At this point the
application can use the line for data transmission by
issuing another write request. It is also possible to
receive an EOT control character that indicates the
abortion of the current transmission seqeunce by the
remote host. Such an occurrence is indicated by an AT END
condition. If this occurs the application must close the
line.

« The multi-block feature is only supported for receive
operationsc Transmit operations must be in single-block
mode (refer to the System Programmer's Guide. Volume I).

Figure B-9 illustrates the necessary logic to support a BSC
3780 application.

B-24 CZ15-00

Figure B-9. Simplified Program Logic for BSC 3780

'-

B-25 CZ15-00

CONV6RSATIONA
REPLY
RECEIVED

Figure B-9 (cont). Simplified Program Logic for BSC 3780

B-26 CZ15-00

Examples u.r,^r. jCwr. . ^ * , * / • ! ~ ~ ~ ~ 7•f • , j

COBOL TTY OR VIP APPLICATION EXAMPLE ----- " --" '-

The COBOL source program listing in Figure B-10 is an example
of an interactive application that involves either VIP or TTY
devices. % i

r- ,

This program (named CARCOM) processes commands entered from j
the op.erator terminal, and includes input/output operations to j
three communications terminals (TTY or VIP). An input and output
file is assigned to each device. The program uses the operator
terminal for. entering commands and for receiving error messages.
Input/output processing messages are displayed on the line
printer. '

COMMANDS IN THE COBOL EXAMPLE ,i(^ (f^ m - ft

The program processes the following interactive commands
received from the operator terminal. The command COMND is
entered from terminal 1, 2, or 3. (See "File Assignments"
below.) ss>

Command Program Action ^- es
OPEN filename Opens the file <•$

CLOSE filename Closes the file *»a

ROUTE Routes terminal output to other y*
terminals as input J^

GO Exits command modef looks for input ?/
from terminals «><

COMND Exits terminal input mode; returns to
(entered from operator terminal in command mode
a terminal) -....-•* :.}f, , v

STOP Stops execution f-

FILE ASSIGNMENTS IN COBOL EXAMPLE -^ *-•'
A v

The program uses the following file names and corresponding
logical file numbers (LFNs);

File Name LFN Device **'
f 5

COM1IN 03 Input terminal 1 ..-. ^
COM10T 04 Output terminal 1 • ?c
COM2IN 05 Input terminal 2 • *e
COM20T 06 Output terminal 2 ^
COM3IN 07 Input terminal 3 *?

•• - • - COM30T 08 Output terminal 3 __««
PRINTFILE 01 Printer

B-27 CZ15-00

6COS6
SOURCE

1

3
4
5
6
7
8
9 .
14
it
12
13
' 14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
40
49
50
51
52
53
54
55
56
57
58

I

MOO«00»S100«=12/01/1«13 COBOL «200 01/01/01 000^ PARE 0001
PROGRAM -,

• r v
IDENTIFICATION DIVISION.

- ' • COBOL COMMUNICATIONS
ENVIRONMENT DIVISION, : ->°
CONFIGURATION SFCTION 0 .&wi •*&
SOURCE-COMPUTE*. HlS°Sfe»IFS-60 LtvEL-ft0

1 ' OBJECT°CO«PUTER. Hl-S"S£*I£S-60 LfeV6L-6.
t
INPUT»OUTPUT SECTION.
FILE-CONTROL c

r SELECT COUSIN
ASSIGN TO OC-MSO,
ORGANIZATION IS SEQUENTIAL WITH VLW,
ACCESS MODE is SEQUENTIAL,
FILE STATUS IS IM-STAT.

SELECT COM10T . ,. ., .,,,„ ,, _ , „
" * * y iC^/r.'-'*

ASSIGN TO 00-MSO, ' '*
QBGANIZA1ION IS SEUUfeNTI'AL,

' ! ACCFSS MQOt IS SEQUENTIAL,
FILE STATUS IS OTt-STAT.

SELECT COwaiN r̂
ASSIGN TO OF^MSD, v
O R G A N I Z A T I O N IS SFUUESHAL «ITH VLK, l '' ' "' '
Af.CFSS «OD£ IS SFQUENTUL,
FILE STATUS IS IN2-STAT.

SELECT COM^OT
ASSIGN TO OF-MSD, *Z£'.i5>.--i HS*i'*.
ORGANIZATION IS SFQUENMAL,
ACCFSS MOOE IS StQUENTIAL, . - 4 - 'r-'.J'.
FILE STATUS IS OT2-STAT.

SELECT COM3IN . , ., , „.
ASSIGN TO OG-MSO, "* -'-"'"
O RGANIZATION IS SFOUfcNTIAL w I T M VLW,
ACCESS MODE IS SEQUENTIAL,

' " PILE STATUS IS IN3-STAT.
SELECT COM30T 5 ;RO ,

ASSIGN TO OH-«SD,
„,. ORGANIZATION IS SEQUENTIAL,

ACCESS *00£ IS S E Q U E N T I A L ,
FILE STATUS is OT^-STAT. '- i:

SELECT PHINTFILF tf • •; S
ASSIGN TO Oa-PHlNTt»,
O R t A N l Z A f l O N IS SEQUENTIAL, -^-; ^
ACCF.SS MUOE IS SEQUENTIAL, ^ J ^
FILF STATUS IS PfrT-STAT.

* — * " * * * • -

DATA D I V I S I O N .
is j - * . ^ . * ' " . ^

FILE SECTION, " r
FD COMIIN "- *"

BLOCK C O N T A I N S t HECOWOS,
LABEL HECOKOS ARE O M I T T E D ,

«
01 IN1-REC PTC X(80). -- * :_.
*
FD COMiOT

BLOCK CONTAINS 1 RECORDS,
LAflEL HECOHDS ARE O M I T T E D .

Figure B-10. COBOL TTY or VIP Application Example

B-28 CZ15-00

GCOS6
SOURCF

59

60

61

62
61
6«

65
66

67

60
69

70
71
72
7 5

75
76

7 7
7 a
'
7 9
60
81
82
65
8l
85
86
67
68
89
90

92
95
9o
95
96
<*7
9fl
VQ

100
101
102
1 0 3
1 Ott
105
1 06
107
1 0*

09
10
1 1
1?
1 5
1«

15
16

"UD«00-SIOO
P R O G R A M

e

01

*
F 0

- 1 2 / 0 1 / 1 « 1 J

(nilCO*! -WEC .
02 0 T I - K t C

co*2 i M
HLOC* L t ' N T A j

COBOL 0200 ' ' ""

1 <-

P I C

NS 1
L A B E L M t C O w n S Ak t

01
•
H)

0 1

c

FO

01

F r>

01

e

FO

01
c

RllKH

01

01

01

01

f> 1

01

01

01

1N2»»*FC Pi

Cf)"">2') t
MLOC* C O N T A I
L*«EL *£Cf ip i>
O U T C O * 2 - » F C .
02 O T 2 - P F C

>

BLOCK C O N T A I
L A B E L w tco*< r>
1N3-HI-.C P

C O « 3 n T
bLOC* C O N T A I
L & B E L * f r c o w r >
O u T C i) « * 3 - w F C .
02 !) T 3 - H f c C

P H I N T F 1 L E
t t L U C * . C O N T A I
L A H F L wFCOHi)
P S T - W F C P I C

INI", - S T O W A G K
r 1 1 r L h .
02 ' F. lLLfR
02 F I L L E D
C C ^ N D 1 .
02 F t L l t W
0 2 F f L L f e "
02 F ILI Eft
C C M N f) f .
02 F iL l fc W
"2 F I L L E P
M F A D i .
02 f 1 L L k H
02 F in fcP
0 2 F I L L E D
MOP2 .
02 MLlt«
02 HLL f fc
02 H()k2F IL
M O O J .
n2 F I L L E P
02 F l L L E "
02 MdR T>f I L
L O A O C O M P .
02 F I L L E P
0 2 F l L L f c W
C O N I N .

C x

NS 1
S AU t

P I C

•̂ i-.

NS 1
S A W E
1C

* '

NS 1

S A W E

P 1C

NS I
S A f t

X (1

S F C T I

P I C
PIC

P I C
PIC
P I C

P I C
P I C

P IC
P I C
P I C

P I C
PIC

P I C

P I C
PIC

P I C

P I C
P I C

•3 > , f T (f

n u
X (8 n) . * ! '

t!t> f

" S !

RtCukDS, ' " > < '
O K J T T F D . - ' ^*'

(80) . . **u ' ' * **^ !

^S !
«K*

ptcowos, "<• _t'
 v *y

()MI T T FU . ' **-* *
Siv, ,

f ** f > 1 ' ' l " f » '

" ^ ' f

"' ' - • " <.fr
P- tCUPDS,
0«I 1 T F O . tv '
X { 8 0) . ' ' " **'*

\ V- < , •

' i- " ^ ? ^ " "
- ! ' . . • '. ,> (

• iECl .wOS, ' A? '
0 " I T T F O . f!-

, ' f , j i

M80) . _ ' ' '"• '
6 "* * ' l i ̂ t

t r

•*> gt ~ \ .y fc f* i 1 ij O C i. f* • \ l » a / *

U"I T T F D . ' (*»'

20) . ' ' * t t !

* i ' t-* .. «- j

(IN 'V 'J< I • "' ^* *
- * ' - r .H, '

x x v A L U F S P A C E S .
MIS) V A L U t "COHdL f (!«•*» 1FST" .

x x v A L U F S P A C E S .
x (2 7) V 4 L " E " T Y P E F ILF CU^^ANDS, T i tN 1,1)".
x x V A L U F S P A C F S .

«* • .

* X V A L U E S P A C E S . '•'
X (S) V A L U F "C ' l ^^AND ? " .

X (S 2) V A L U E S P A T E S .
x (i s) V A L U E "ennui rn("M T F S T " .
x (S J) V A L ' i t S P A C E S .

' « .

x (f t) V A L U E S P A C E S .
x (2 7) V A L U E "•••• iNt^uT HSG FILF: •„

X C 6) V A L U F S P A C t - S .

X (h) V A L U E S P A C E D . S*4

« (2 8) V A L U E "«••• O u l P U T ^SC> F IL t : * .
X (f c) V A L U E S P A C F S .

x x V A L U E S P A C E S .
x (l j) V A l ut " L O A D C O M P L E T E ' .

Figure B-10 (cont). COBOL TTY or VIP Application Example

B-29 CZ15-00

GCOSh "*'l
SOURCE «*

117
llfi

S 2 0
121

III

12S

s a s
129

i so
131
132
133
1 5«
1 3^
136
137
138
1 i'
1 40

141
142
143
Q J* «

| uG

1 46
1«7
14ft
l«9
150
151
152
153

' 1JW--
155
156
157
1 59
159
160
161
162
163
164
l*S
166
167
169
46*
170
171
172
173
174

rceno~S! o<
tf QGto A i»

01

01

0
0

0

0
0

0

0

01
01

a

7 7

Tt
7 7

77

7 7
77

7 7

77

77
7 7

77

77

77

7 7
77

77

77
77

77

7 7
77

7 7

77

77

77
77

7 7

77

77
77
77

l « = l ? / 0 1 / 1 « l i COHUL 0 ? r v O
•• * 0 .

<H GULFLO PIC x (?) V A L U F S P A C E S .

o ^ F I L L E D >*ic x (\) V A L U F S P A C E S .
I'.? F | LI E w PIC x v A L u f S P A C E S .
Q? F I L ^ L P PIC x (*) V A I U E s p a c e s .
0? F T L L f P ^ I C « («) v A L u h S P A C E S . ' •"
0 ? F I L ^ L P ^ ^IC « (6) V A L U E S H A C K S .
CU^I^ l 9 E O f e F I i w E , S CUNlN.

ii? F I u f - L r ' S P I C x t b) .

^. '

0? ' J l r w f e O PIC 999v v A | . i i F / E ^ u . f

J * l ° S f A T P I C x x v A L n F S w * f E S .
t l f l - S T A T PIC x x v A L U t i P A C E S .
J V ? - S f « T P I C x x V A L U E b P A C f c S .
0 ? ? » S T A T P IC x x v A L l ! F S P A C t S .
I ^ « S f & T M I C x x V A L U F S i ^ A C F b .
(J ^ ^ ^ S T & T ^*IC S B V & L U t S ^ & C ^ S " '

0

P W Y ^ b t T A f P I C ^ S V A L U f S ^ - ^ C ^ S

B O « - S r * T P I C x x V A L U E S P A C F S .
I f > < v F « S T A T PIC x x V A L i ' E S P A C t S .

W * E T < = I P I C 9 9 9 V A L U E / f c ° 0 o

u n = l T PIC xx V A L U F "(Ui". "'•
UP"oFlL ^ ! C s (u) v A L U F "OPtN". ["'
CLSFI l . P IC x (S) V A L U E ' C L O S E " . V'
ALLOU*J PIC x { u) V A L U E "uu IT" .
S T A W P I C X VALUF. " e c o

GO-OM P I C x (u) V A L U E " M E x l " .

L O A O F P J C X C U) V A L U E , " L n A O " .

E N D F W P J C x (u) V A L M E " E O F " .
1*41 P I C x (e >) V A L U E ° C O « ! I N " 0

O T l P I C M b) V A L U E • r O - i n T " .
l*i? P I C x (s) V A L U E ° C U M ? I ^ ° .
f) T ? P I C x f e) V A L U E 0 C U « < J n t " .
IN? P tc « (f >) V A L U E " cn^^ IN" . '"' j
U T 3 C T C * (h) V A L U F "Cn>«501 B . '* i
E C H U PIC x (u) V A L U E "EC^n", , . ""' •
M E C H O P I C x (S) V A L U E "NFCnO* .
KOWF PIC x (6) V A L U E " C A w n i N " . '*'- i
1NVF P I C X (h) V A L U F " I ^ V F S L " . ' !

«M()-f)Ol) P J C 9 V A L U E Z t - S O .

^ H O » E W W P I C 9 V A L u F Zf t 'c
• * • * * " 'F I L C O U M T ^ ic 9 9 V A L U E z f c w o . " • '

S O C ^ U M T P I C 9999 V A L U E Z E H U c

S01COUd«I P IC 9999 V A L U F Z E W O .

S O ^ C O u ^ T PIC 9999 vALuF. Z t H O . ,, i
S03Cnuf>oT P IC 9999 V A L U E Z E " w n .
S O t t C O U N T P I C 9999 V A L U F Z £ W O C

S01MSG P IC 9999 V A L U E Z E f c O .

SO^^Sf. PIC 9999 V & L U E Z E ^ O . ' '. '

so3«sr, PIC 9999 V A L U E ZF«U. ; ' '
SOttMSG PIC 9999 V A L U E Z F W O . " '

Figure B-10 (cont). COBOL TTY or VIP Application Example

B-30 CZ15-00

GCOS6 '
SnuHCE

175
176
177
1 7 A
179
160
161
18?
165
1 8«
1 65
186
187
186
169
190
191
1 9?
195
1 9«
195
196
197
19P
199
?00
?0t
20?
20-5
?0«
205
206
207
208
209
210
211
212
215
2 1 «
215
216
217
218
219
220
221
222
225
22«
225
226
227
22*
229
230
231

'- "? -

su!")4l 00 °S 1 00
P w o f, H * »

77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77

«
0!

v *-

01

-,-,

•1 2/0 1 / 1 «1 5 CdMdL 0?oo

, » - , > * 0,1 ,-£•** TH Vf >£$

("S&COUNT PIC 9999 VALUE 11*11.
KHFLGI PIC 9 VALUE ZERO.
EC*FL<v? PIC 9 V A L U E ZERO.
EC*FLG3 PIC 9 VALUE 7Fkn«,
w l l F L G PJC 99 VALUF 7F»0.
WT2FLC, PIC 99 V A L U E 7FWU.
WT5FLG PIC 99 V A L U E ZERO.
ROUTE PIC x(5) VALUE 'WUUTF".
RE-bET PIC x(«s) VALUE "MESET-.
CO"»r)N«« PIC X(5) VALUE •COfNLi". <fi-S
S F M R - D A T A PIC xx V A L U E "SO".
S E K O - T E x l PIT xx v A L U F 'ST*.
*FYE(<» PIC « (1 3) VALUE "^ELATIvt «EY •.
hORYNM PIC »(13) VALUF 'INVALID KfcYS '. ,
ORDERC**!) PIC ** VALUF "0 '.
UPOATC«»I' PIC XA VALUF "U '. '-•*.»
DISPJT" PIC xx VALUF -H '. i.e.
CCCHAb PIC X VALUF 'A". -i
N O T I F Y PIC 9999 VALUE 9V99.
S«ITC«1 PIC 99 V A L U E 7€*0.
SWITCH? PIC 99 VALUE ZFKO.
S»»ITCw5 PIC 99 VALUF ZF«u.
SOI~FLG PIC 9 VALUF ZEWU.
SO?-FLU PIC 9 VALUE 7Ewu. ^?-
S05~FL& PIC 9 VALUE ZERO. *?S
SO«-FLG PIC 9 VALUE ZEBU. P^
1NVS"TCM PIC 9V VALUF 7E«0.
TBNSnTCH PIC 99 VALUE ZERO.
S T A T I N ! PIC 99 V A L U E ZERO. ^<l'
S T A t n r i PIC 99 VALUE Zfwn. ^<5r»
S T A T I M 2 PIC 99 VALUE 7Fwi). -o'i
S T A T O T ? PIC 99 V A L U E ZEWD. , i»s
S T A T I N 5 PIC 99 VALUF ZEWQ. •> + --
S T A T O T 5 PIC 9V V A L U E 7Fwu. t«,
ERSU»1I*« PIC 99 V A L U E ZERO. .^f

s

ERSUM10T PIC 99 VALUF 7FRU. "*'
£RSU*«2IN PIC 99 VALUE 7E«0. ofs
ERSU«?OT PIC 99 VALUE ZE"0. • ' '>
ERSU»«^IN PIC 99 V A L U E ZERO. ^-,
EHSU««5f)T PIC 99 V A L U E Zf-WO. '•"'-
QTVSUR PR S9999 V A L U E ZFP-0. V f,
NMCKHSLT PIC 9 V A L U E ZFPO. i-* •
MAXNU 1" PIC 9999 VALUF 7ERO. 7 < *
W A X l f M N O PIC 999 VALUE 200. ' X *, ''
M A X O T Y PIC 9999 VALUE 1000. ' >» T v

CHKMIW PR 9999 VALUF ZERO. *!*.
!"<*i

INSPECT I. .'»S
02 INC«O PIC x(5) V A L U E SPACES. ~;

02 FILLER PIC *(75) VA L U E SPACES.
COMCMO REDEFINES INSPECTI. - ,
0? C"OINO PIC x. 0 ?8<
0? C«OTYP PIC xx.
o? F I L L E R PIC x. r

02 LFNNUM PIC 99. »r<
02 FI L L E R PIC x. ?H*
02 NUMSENOS PIC 9999. '- oPS-
02 F I L L E R PIC x.

Figure B-10 (cont). COBOL TTY or VIP Application Example

B-31 CZ15-00

GCOS6 w(JO
SOURCE PP.

233
23«
235
236
237
238
23<?
2«0
2<U
2tt2
2«3
2««
2«S
2«6
2<»7
248
24<9

250
251
252
253
25«
255
256
257
258
25<?
260
261
262
263
26«
265
266
267
268
269
270
271
272
273
27U
275
276
277
278
279
280
281
282
283
28a
285
286
287
288
289
2<?0

UOO-S) 00-12/01 / t « l 3
OGHAf* ,, -

02 TFXT~MS
01 OPDSPL0

02 FILLER
02 OFLNA"
02 FILLfcW
02 F T L L F W

01 UPEWOSPL.
02 FILLER
02 FILLER

* ' o? OF L NEW
02 FILLER
02 FILLER
02 KF YFfcR

01 ROEWMSGo
02 FILLEW
02 F T L L E W
02 RPERF1L
02 FILLER
02 FILLER
02 ROERSTA

01 WBERMSG.
02 FILLER
02 FTLLEW
02 *w£wF I L
02 FILLER
02 FILLER
02 wWEPS T A

01 CLOSPLo
02 FILLEP
02 CFL^AW
02 FI L L E R
02 FILLfcS

01 CLEWMSG.
02 FILLER
02 FILLER
02 CFLNEW
02 FILLER
02 FILLER
02 CKEYEPN

01 BAOF IL .
02 FILLEW
02 FILLER

0 1 8 AOCfri .
02 FILLER
02 FILLER

0 1 toO TF SU"* c
02 FILLER
02 FILLER
02 FRWQI
02 FILLEW
02 FILLER

0 1 S TOPCOH .
02 FILLER
02 FILLER

01 KEY-MSG.
02 FILLER
02 RAO-KEY
02 FILLER

'
COHOL 0200 "-J -» —«- -*. .. .» ~̂— — — -~*« • ̂

•"' i i \ ••> ' \ • >; •- s j » 0- ,5 '

a PIC «(6f). '*'
•»«•

PIC xx VALUF SPACES. \, '
PIC x(h) VALUF SPACES. 'rr
PIC xx VALUE SPACES. ,, ,
PIC X(hJ VALUF "UPfMFD". ;..

PIC XX VALUF SPACES.
PIC X(19) VALUE "OPEN £PWi)W FlLF: ".
^IC X(b) VALUF SKATES.
PIC X(S) V A I U F SPACFS.
PIC X(H) VALUE "STAIUS= ".
PIC XX VALUF SPACFS. f.

PIC XX VALUF SPACES.
PIC x (t <<) VA L U E "wfftu E^KIIW F I L f c : ".
PIC X f b) V A L U E SPACES.

PIC X(h) VALUF SPACFS.
PIC X(«) VALUE "STATlJSs ". „.',,

T PIC XX VALUE SPACFS. f'9' :

PIC XX VALUE SPACES.
PIC x(iv) V A L U E "*I<ME FKWUW FILE: ".
PIC X(b) VAL U E SPACES.

PIC x(fe) VALUF SPACES. ^-, . ,
PIC X(fl) VALUF "STATUSs ".

r PIC xx VALUF SPACFS. ^
• f1 '-

PIC XX VALUF SPACES. ^ tt
PIC X«>) VALUF SPACES. :'.'c'
PIC XX VALUF SPACES.
PIC X(M VALUE "CLUSfl'".

PIC xx VALUF SPACES.
PIC X(l«» VALUE "CLOSE FHWuR F I L E : ".
PIC x(iS) VALUF SPACFS.
PIC X(6) VALUE SPACFS. , .
PIC X(8) VALUF "STATUS= " . '. '
PIC xx V A L U E SPAft S. .(; s

PIC xx VALUF SPACES.
PIC XUM VALUE "ILLEGAL F I L E N A M E " .

PIC XX VALUE SPACES.
PIC X(15) VALUE "ILLEGAL CUVMANO".

PIC XX VALUF SPACFS. " " '
PIC X(S) VALUF "FRF: ".
PIC X(6) VALUE SPACES.
PIC x(o) VALUE SPACFS.
PIC X(10) VAL U E "STATUS= ''I".

PIC xx VALUE SPACES.
PIC x(io) VALUE "STOP COBOL".

PIC X(16) VALUE "FILE >^EY S T A T U S ".
PIC xx V A L U E SPACES.
PIC XU2) VA L U E " TEST FAILED".

Figure B-10 (cont). COBOL TTY or VIP Application Example

B-32 CZ15-00

GCOS6
SOURCE

291
292
293
290
295
296
297
298
299
300
301
30?
303
30<t
305
306
307
306
309
310
311
312
313
310
315
316
317
31*
319
320
321
322
323

M|>D«00-S100-12/01/lus
PHOGRAM

01

O?OIT

32«j
326
327
32P
329
330
331
332
333

335
336
337
33*
339
3«0

3«2
3«3

02
02
02
02
02
02
02
0?

«SGNUM

F

F
F
F
F
F
F

I
I

I
I
T

I

L L f c W

LUR
LIE*

LLEP

L L E W
L L E W

H
P
P

P

P
P
P

1C
1C
1C
1C
1C
1C
1C

ILLER HIC

09QQ

X

X

X

x (
X

X

X

(*)
(1 0)

(1 0)

i n) \
(1 0)
(2 0)
(2 0)

V A L U E
V A L U F
V AI tjF
V A L U E

4 A L O E
V A L U E
V A L U F

V A L U E

OIVISIUN.

in'

7 F . W U .
• « 5 h 7 P O - .
•0 l < » 3 U S 6 7 f l < 9 " .
• O l ? ^ t t S b 7 e « ' 1 .

• 0 1 ? 3 < * S h 7 * > < y " 0

• 0 1 2 3 U S 6 7 0 9 - .
" 0 1 ? i u S 6 7 e < * 0 1 < i J « S 6 7) m >

• 0 1 2 3 « S o 7 M 9 0 l < > * « S 6 7 « < > 1

<r '.'

DISPLAY CT ITLf .
OPEN nuTPUJ P H 1 N T F 1 L E .
MOVE M E A D 1 TO HRT-&FC.
w«ITt PWT-WFC A F T E R ADVANCING PAGE.

01 SPLAY CC"N01 .
**OVt SPACES TO CONJN.
ACCEPT CUNI^.
JF C M n FLU IS F U U A L TO OPNl- lL GO Tn OPFM
]F C«OFLO IS EUUAL 10 CLSML GO To CL i 'S I
If. c^nt-Lu IS FUOAL TO GO-ON Gn TO
DISPLAY
bO TO

I.
T.

D I S P L A Y C C »
f c O V f e S P A C F !
A C C E P T CON
IF C*I)FLU

* IF
IF
IF
IF
IF
IF
J F

DI
GO

UPtNI T
IF
IF
IF
IF
IF
JF

Dl
IF
GO

C«OFLU
CMHFLD
CWOH.O
C"<r>FLD
C«I>F 1 D

C M O F L O

«N02.
i in C 0 N I

N.
S t U O A L

S

S
s
s
s
s

C^HFLD IS

F
F
F
F

F
E
F

UUAL
U O A L
tJUAL

UUAL

UOAL
U O A L

UUAL

T O

T O
T O

T O

T O

T O

T O
T O

OPNf I

C L S F I
W O U T E
kF-SE
tCM(l

NFCHO

DO-I T

L GO TO OP
L GO T

GO T O
f GO T
r.o

GO
Gn

TO
T O
T O

e N l T .
0 C L f ' S I T .

S f c l
n pt

W U U I E .
"OIJ |f .

S E T E C n n .
MI-
KE A

FCHO.
r ' l .

A L L O U N G O T O H O N E I F .
S > » L A V HAUCMi) .

T O PC-De1.

c

*• 1L»- 1 01 I
F I L F L 0 1 I
F I L F L O 1 I

FRFL01 I
F I L F L 0 1 I
(• I L F L 0 1 I

S P L A T *AI)F
F ILCnuNT
T O PC^O 1 .

J)
s
s
b
5>
S
Il_

t UUAl

E U U A L
F U U A L

EUUAL
t UUAL
t U O A L

^

t n
T O
T n
T o
T n
in

, •

INI
nil
T N ?
o t ?
IM
nT ^

G^t A I F k T HAN 1

^f -.

,

(.0
i,()
GO
GO
(.0
1.0

GO

T n
T n
i n
T n
T n
T 0

T O

o^lN
OPf lT
npi N
npnT
nn i N
opni

VJj f

1 «

1 .
f .

•> ,

J •

^.

PC«U?.
' 1$.

3«5
3«6
3«7

OPEN INPUT ro-lIN.
IF I N 1 - S T A J = "on- OK>

«OvE 1 To S T A T 1 N I ;
1 TO S w I T C M l ;
I N I TO

Gn TO UP"SG.
MOVE INI TO uFLNfcw.

I N 1 - S T A T =

Figure B-10 (cont). COBOL TTY or VIP Application Example

B-33 CZ15-00

GCOSfo
SOUSC!

5«9
550
551
352
553
35«
355
356
557
$%fr
359
360
361
36?
363
364
365
366
367
36«
369
370
371
37?
373
37a
375
376
377
378
379
3*0 '
3*1
38?
303
3*4 '
3*5
586
3*7
388
389
390
391
59?
395
394
395
J9fc
597
598
599

400
4 0)

402

4 0 5
404

405

406

"U0400-SI 00- t ?/(M / | «* | 4 tuwt'l. "j>'Mi
H H Q G K A *

MOVfc IM -S 1 a f I " « * • * (• * * .
(,0 S O dPF **»•(». • P^

O^UT 1 0 ^»c,
(iPf KJ i HI T *M> t C ' > M 1 ' i T .

' *' IF (U l - S T A T s - f i . i - im d l l - S I A T r " w s " ;
' " »"\if- i T U bi A T U I i :

" O v f c f H l T d o f ' U N A ' " ! ; - («-S
UO TO dM^Sl. „ «>c

»*QVE O! 1 t (i (If- L ̂ t W <. „
MOVt O r i = !) I 4 t I I I > » f c Y f H « i 0 *«•
GO Id u P P b w G . .^

O"3 1^2 , > ! . < * • • ?

o>*6^ fMPu rc i^ f ' iN.
IF ! M ? - S f T = " D O " OH I N ? - S T * I s • W S B ;

**0vt f t) S T 4 r i ^ ' 2 ;
«fWf T O S" I T C « < ? ; w '
MOvf ^i? Td (iF(.NA«»; - «.",i
Go to OP*so. ' i

^OVt 1W? TO O f - L ^ F w . » •* t
M O V £ I ^ ? = S T A T 10 K k t f r U k . L
un TO OP£& M U. «

0^*0 t 2 c ^ {
OP? ̂ O U T P U T cu«?ufo
IF U T ? « S T A t s °00 S ON O T ^ o S T A I s ' ^S 0 ;

M r i v f j f O b T A T O T ^ ;
»"vF O t ? T o OFt , 6 <A**J
UO TO OP*«SG.

*>nv£ ni^ TU O F t N t w . " n
* " O v 6 n T ? « > S T A T T O K f c T F W B . ,'
Gii T f i OPIB|B '°OO

0 P I N 3 „ ^ j) * ^ •
OPt w II^PUT c o ^ j f i v .
IF S " < i < « i s t A T s *no" n« i ^ s ^ b t A f s " ^ s * j

"OvF I T o S T A T l N S ; i
w o v e i TO S « I T C « \ ; 5,1
«OVF TNJ TO t lFLNAw; c '^c

Gd TO O P W S G . -'i
<*OV€ I W J TO O F L ^ f c P o ' •,'
"•OVf l ^ i ^ S f f t f T O r t t f f W t e ,
GO t 0 (iPfc "^G c

OP(IT3 .
OPt*» O U T P U T C ' I M J O T .
IF O T ^ - S T A t s •00" Ok U T 3 - S T A T s '95':

««ftvF 1 TO ST A T O T i?
«<OvE O T 5 T O O F C N A M ; V f ,
GO TO OPMSG. s

»ovt o t \ t o O F L N £ W O
»OV€ 0 1 5 - S T A f lo n t f f c w w .
GO 10 OP£**(». (

OPMSG. ' v* t
0 I SPL A r QPDSPL . ^
A O O i to F i LCOU^ r . - ' -r

IF F l L C f i U N T G H f e A T f c W r«»N t GO Td PCM1)<>.
UO TO PC"»0 I .

OPfe»"«G.
O I S P L A f O P t w O S ^ U o
SF F I L C O O N T U f l f e A T f e W IHAH [GO T(t ^CMU^.
uo to POOI .

• ' -« * « '

i

i
i

1

1
!

j

i
1

f

t

'
!
(

t

j
1

}

'

!

.
i

Figure B-10 (cont). COBOL TTY or VIP Application Example

B-34 CZ15-00

SOURCE
»-d0400-Sl on- 1 ?/o i /
p H o r, w A M

u i 4 CU*"l n?no

4 0 7
4 0 M

4 0 9

4 1 0

41 1

41?

413

4 1 «

415

416
4 1 7

41 8

4 1 9

420

421

422
423
424

425
426
4 2 7
426
u29
430
4 3 1

4 3 ?

4 3 3
43ti

435
4 3 6

4 3 7
43*

439
ay 0
44]

44?

443

444

445

446

Ai ii 7

448

449

450

451

452
453
454

455
456
457

458
459

460
461
462

463
464

C L d S T .

F t- LM 1) IS f - U d A L T i ' INI f.n Hi (. L I N 1 .

f F LKb IS F U U A L I" nil GO T O C L O U .
F F LKU IS MJliiL Td IN? fid TO IL lN?.
F F L F L K IS F U U A L T n dT? 00 T u C L O T ? .
F F i.Kl- IS F u i i A i Id] N 3 Gd Td t l . lN*.

IF F L F L U IS F U d A L Id nlj Gn Id f L d f 3 .
0 I SPL A Y r> AOf M0 .
IF F l L C d u N l c , * t A U w I M A M i r,o Id PC"i>?.
GO Id P C * - D 1 . , ,.,<>| M t

C L I N 1 . - . ^ , ' , ^ t

C L U S E C f iM l If- . < r ̂
I F 1 M - S 1 A T = " 0 0 " ; t f j t

Miivl- / e w o Id s*I I C M I ; ,, ,^s

«nvF 7f - "0 T f) S l A l I N i ; , .,'} " *.
M l ' v F l N l T O C F L ' i A M ;

(» n i (i C L U ^ M S O . . , > . , _
MOvt INI 10 C F L N t w . ,-ji - ^ / ^ ^
MOVF I N l - S T A T Id C*MtK°. ;. ^ j

GO 10 C d P h w « » G . ~ j - i, jlfc
C L 0 T 1 . . ^ a *

C L O S E c d M i o i . >„ 1 ' ,,, f , ^
I F O T I - S I A I = - O O - ; 4 g^

w o y f - / t«0 Id S T A T f j T i ; ,- £ ij
^ O V t l l T j l O C F L N A X ; , ^

-- . G') 10 CLOP^SG.
MOVE '" I 1 Id C F L N f c » . t ̂
MOVE n i i - s iA l id C K f c r f f e w . t ̂
GO fd COPfW»(, . ; , O f_

CL1N2 . » , ?9u
CLUSE C O M ? I N . . ('
IF I N ? - S f A l = -00 ' ; ?">*

M O V E 7 E ^ o Id S»»MCH?; , %t,"
^ O V F Z t ^ o l O S l A i i N ? ; » y I*
MOvF IN? TO C F L N A « « ; ,j ' ^ "

MOVE IN? TO CFLNEP- . s j j
•*OVE I N ? - S T A l l l l C ^ F T ^ H H . ffff4

r,o TO c o P t w - G . ' ':.
CL012.

C L O S E C O M ? U T . ; • , ,„,",,
i

M O V E Z t w o id s i A i o l ? ; aCiS
HOVF 01? 10 C F L N A * ; -.^
G') 10 CLOPMSU. . ',

HOvfe ni? 10 CFLNEf i . t

» * O v F n i ? , - s i A l l o c ^ f c ' E M W . ^
G O T O C O P t w w k . < . ' < , • , p

CU1N3. « • - » . < , ',!,,
CLOSE COH j IN. , „ , _ . , ^ , ?
If f t. T C V A T ^ * A /» • •F IN^-S1 »1 - 00 , A , f

HOVE ?E»U 10 S-ITO3;
H O V f Z E » O T O S T A l l N 3 ; „ ' .
HOVE IN* 10 C F L N A M ; C j >
GO 10 CLOPHSG. f l t f

HOVE IN3 TO C F L N E Q . ', £ ,
HOVE I N 3 - S T A T T O C K E t E R H . <;x?

GO TO COPtM-G.

Figure B-10 (cont). COBOL TTY or VIP Application Example

B-35 CZ15-00

Si 00- | 2/0 1 / 1 <« I
souecf

465 C L O T J .
466 C L O S f c C l ' « « \ i i T .

467 IF UM-S T 4 f s "00" ;
t t 6 * woy f ' 7 F W O I n S T « 1 '

470 (i'l T u Cl
a71 »ovfc o M To

472
473 i«0
474 C

475
476

478 GO 1(1 Pf **M.

«79 COiJfW' l«f.. " ' \ -•• !*

4 8 0 o i s ^ c a r c u e w ^ s G .
48 1 IF F I L. COU* T (»Wt A I E >< T H A N 1 i,u [u f f «0^ .
482 un T U f(i-n i .
483 SF T H O O T f c 0

484 IF F I U F l O IS F l r f i jA i T U I-I 1 AMI S T A T I C = 1 GO III Sf- T l ,

485 IF F l L F t . 0 IS FuUAl T i l IN<> 4NO S f A T I N <; s 1 (,.) TO i f c l ,> ,
486 IF ^ S L F L l J IS F I J I J A L T f IN5 4 NO S T A T I N S : 1 I, I TO Sf- T ̂ ,

487 H t t £ W B e .

a8* n ' S P L A v b A i ' C ^ o . <

<i89 GO T O pr«o<? •- < i
4 9 0 S F T j .
491 IF F I L F L U ? IS fe'JUAC lu ill? 4N|i S ! A I 0 T ^ - \ ;

a92 ««n v f f> T u » T i >• L i,;
493 GO T O (JCM(V. - r - i. j u

494 IF MLF lO? IS E ' J U A U Tu nM A N O S T A Hi T } = t;
495 MfUt ^ T O ^ T 1 FUU;
496 '»n TO ^C^o^,, ' \ f .1

4 9 7 (»U T O W T t F ^ S .
498 S £ T ? . -i, - -

I? F I L F L U ^ is feut iAL T n o t i ANU M a t n n = i;

soo
501
502
SOS
504
SOS
506
sor
so*
509
S I O
SI 1
51?
SI I
5 1 «
SIS
S l fe

51 7
S t «
519
520
521
522

M O v f c t T u W T ^ t - L U ;
GO U) ^C«" l>20

IF F II H O<> IS 6 T u a i _ Tu U T ^ AND S T A f o M = l;

Sf- T J .
IF flLl-LU? IS fc 'J l jaL TU O t l aw> S T A I i l T l s i;

(»o TO (•T'*f>2.
IF f l i f - L U ? IS Fuuac To u r ^ a^^ s i a i n ! f - \ :

Miwe P ro # r JF L f. ;
r;n TCI CCMI)^ . ^n*.

G l l T d R T e f W k . :j „ •

ufc w n o T f c .

IF F I L F L O IS FU04L
MOv t / f e M l l TO »

GO T O ^C*T)<J .

IF F l u F L D is F UIJAL
«ovt- ; fewn TO w

GO t o ^O02o
IF F I L F L U IS F U U A L

MOvf / F t * O T o J

i>

T O I M 1 ;
T 1 F L G ;

t

l n i v? ; »,
T 2 F L G ;

TO I Hi ; •.
T 'it- L G ; ? <*S

Figure B-10 (con t) . COBOL TTY or VIP Application Example

B-36 CZ15-00

GCOS6 "UD«00-S100-1?/0!/1«I3 COMOL "?00
SOURCE PROGRAM

523 GO TO PCMO?. 't I'
52« DISPLAY BADCMO. " ,"
525 GO 10 PCMD2. . " ,.r
526 NO-ECHO.
5?7 If F I l F L D IS EUUAL TO IN! MOvF I TU tCHPL&i;
5?« l»n TO PCMO?.
S?9 IP F I L F L U IS EUUAL TU IN? MOVE 1 TU ECriFLf,?;
530 GO TO PCM02.
531 - IF FRFLD IS FOUAL TO JN3 MOV£ 1 TO tCHFi_G3;
53? l>n TO PCMD?.
533 DISPLAY bAOCMO. ,_v_
53« GO 10 PCMO^.
535 SFTFCWO.
5J6 IF F I L F L D 1 IS EUUAL 10 IN! MOVE ZE*0 TO tCnPLGU
517 UO TO PCMD2.
538 IP FRFLul IS EUUAL TO IN? MOVF 7f.Wd TO tC*FLG2:
539 GO TO PCMQ2.
5«0 IF F 1 L F L D 1 IS EQUAL 10 INJ MOVE lf»(J To ECnFL'i3;
5«1 GO TO PCMO?.
5«? D I S P L A Y tJADCMO. t ^, _
5«3 UO TO P C M O ? 0 ' ,' ,i v <;

' 0*4
IF F I L C O U N T = ^ E W O GO TO PCMD1. lfc

IF S«ITCHI s ?EWO un TO KEAO?. .̂*"
MOVE SPACFS TO iNl-wfcC. 4-*
«EAU C O M l J l v AT tNO GO TO DONE I T .
JF I N 1 - S T A T = "00" GO TO GOOOW1 . Jf*

550
55t
552
553
55«
555
556
557
558
559
560
561
562
56 i
561
565
566
567
56A
569
570
571
572
575
574
575
576
577
57*
579
560

IF im-STAT
&n TU f

MOVt T N J - S T
MOVE IN! TU
01SPLAY fant
ADD 1 TO FW
IF t WSUM J f N

PE AO^ <,
IF SwlTCH^
MOVE SPACES
WEAO COM^IN
IF IN?-STA1
IP I.W-STAT

Gri TO K
MOVF INP-ST
MOVE IN? TU

• B

F AIJ,;
*»!•
0

r

AT TO »OF*STAT
«OE

KMSt
SUMl

NOT

BF I
.
IN.
LE

= <fEwu
TO
AT
• •

s *
F A03
A! T

IN?
FNO
00"
01"

.

L.

SS

GO
-Wt
GU
r,u

f

J

THAN

^y" T- <

f' J «
* r !

' "*W S K«*

" r i i ft

u GO TO CLlN) .

TU Pf A03. -' +
c.
ro
TO

ft £ f
OONEIT. P ̂
GOOU»»2. .^'1

i ̂ <*
' 5 V«-

0 »UE*STAT . - ';:
wntnF 1 L . ut .

DISPLAY KOEHMSG. • *̂"
AOH i TO FWSUM?
IF EWSU M?IN
GO 10 HfcA03

WEA03.
IF S W I T C H ?
MOVE SPACES
W E A O CUM3IN
IF IN3-S1AT
IF IN3-STA1
MOVE IN} TO
DISPLAY ROE

NOT
c

= ZE
TO
A T
. •
. •

WOE
WMSG

ADCr 1 TO E*SU"3
IP EWSUM3JN

CHKSO.
NOT

IN.
Lfc

«0
I N ̂
END
00"
91"
WF I
•

IN.

LE

SS

GO
-Hfc
GO
GO
r.t

L .

SS

THAN
-

« GO TO CL I ̂?.

at*'
TO CHRSD.
C .
TO
TO
TO

THAN

OONt IT.
GOODP3.
CHKSO. ^"

?J>
1< J
'

U 1,0 TO CLi"'3.

Figure B-10 (cont). COBOL TTY or VIP Application Example

B-37 CZ15-00

GCOSfe
SOU8CI

581
582
583
58«
585

587
588
589
590
591
592
593
59«
595
596
597
59fl
599
600
601
602
603
60«
605
606
607
608
609
610
61!
61?
613
614
615
616
617
618
619
620
621
622
623
62«
625
626
627
628
629
630
631
632
633
63«
635
636
637
638

Mot>aoO-=St 00 = 1 ?/os / j a i J CUHUI n?f)n
PHUGKft"

IF S01~FLG IS feUUAL Tn 1 Puffin* SD1.
IF SI>?"=FLG is EQUAL TU i pfwFukM so/^0
IF SO^-PLG IS tUUAL 10 1 PMFO*1- SO*.
GO TU Ht AO I „

GOOD*! .

P|MPOw»9 PWT1M T^BU C « « 9 j P T i 0 *S:>
MOVE IM»«tC TO !NbPtCrr<, """
IP OOIMD IS EQUAL TO S » A W r,0 TO *AT(.'*u.
IP IftCMf* IS fcf^UAi, TO CCi^O^w ^o Td Ĉ""'*1.
IP H?lPLG IS FJwlitL TU ^j

Mnvi INI-WEC Tu f'T2~pFr;
(;n TO i«»l TF2. -»,' "

IF »T l f - L G IS EQUAL T U 3;
MOvF INS-RFC TO OT3-WFC;
1,0 Tu *HI Tfe S.

IP kC«FLl>l IS NUT FuuAL Td 7tw<) bO To KFA02.
MQVf I\i-fc£C Tt) OTl»t»FC.
GO TO »WI 16 | .

^"T I N 1 .
MOVE I N I To HO*2FIL. * •'' -,*<•'
f O v e ^ u W ^ I O P K t ^ W t C o - * * *
hHI it pkT-wFC. ' I J '
""OVE SPACES TO PkT-RFC. •»
w O V £ I ^ ! - B k C T u P w T - i « i E C .

C*K9iPT 1 „

IF P R f - S T A T s •qi" GO TO f M K « * I P T l . ' » -
BBIT6 1 . • ?•-

PEkFQ^M «B1| TH«U »M I T 1 o <•'"
GO TO »tA02. e -

Urn Q Y | r -•* J <**" ^ £ »A

W M I T E OUTCOMl"WfC.
IF UT 1 - S T A T = "00s;

Pfc R^dWM I»KT IUK ; •*•'
GO TO i«>eJ« I T t „ **

IF O T J « S T A T s •«*!• GO TO «* T 1 .
MOVk O T 1 - S T A T TO wHfWSTAT.
MOVE H T 1 TO »Rf QF tL .
0 1 SPL« V «P6 HMSGo
ADO i in Fwsu«tnT.
IF tRSu»«in| f«nT LtSS TNAOj u (,0 TO C L i ' T l .

»E X I T 1 .
E X I T . w ' - • ^f

wRTlOR.
MOVE /fWu TO EfcSUM10T.
PfWFOW(« P P T O T l THRU CHH9IPQI. * "

P R T OT1.
MOVE O T l TO MOH3»-IL. , > " > i
MOVE MOWS TO PRT-HEC. "'' "'
»»R I TE MHT-wFC . " ' -'
MOVE SPACES TO PWT-RtC. "
MOVE" OTl~s£C Tu KRT-MCC. ""?

CMK9IP01 . "' '
WRITE PRT-HEC. " ?
IP PRT^STAT s "QI" no TO CHK91P01. f ?

GOOOH2» " -
MOVE /ERO TO ewsuM2iN. " ° •*

{

it

\

<
!

i

1

1<

1

,

i
!

i

1

I

|

Figure B-10 (cont). COBOL TTY or VIP Application Example

B-38 CZ15-00

GCOS6 MQOaOO-Sl 00-12/01 /141 3 COHUL 0200
SOURCE

639 . PERFORM PRTIN2 TMPU CHH9IPI2.
640 * MOVE IM2-REC TU INSPFCTI.
641 , IF CMDINO IS EQUAL TO STAR GO TO *ATC"U.
642 IF lNC"«f> IS EUUAL TO CMMDNM GO TO PCMn2.
643 IF WT2FL& IS FUUAL Hi 1;
6«4 MOVF IN2-HEC TO UT1-REC;
645 GO TO ».RITE 1.
646 IF RT2FLG IS EUUAL TU 3;
647 MOVt IN2-RLC TO UT3-KI-C;
648 Gl) TO *WITE3.
64Q IK fcC*FlG? IS NOT EttUAL TO ZERO Un TO
650 MOVE IN2-H&C Tu OT2-WEC.

"> G0 TO «HIT^. ,xt! ,Ti^
652 PRTIN2. J '. * '
65* MOVE IN2 TO MOW2FIL. , , ^ l '
654 MOVE MUR2 TO PHT-REC. ' ' *:

655 WRI T E MPT-HKC. v M

656 MOVF SPACES TO PKT-wtC. ?f'f

657 MOVE IN2-WE.C TO PWt-wFC. ' fjt

658 CHKQIPI?. .v '£'
65<3 w8I IE PRT-HEC. '
660 IF PWT-STAT = •<»!" GU TO CHKWIPI2.
661 «RITt2o
662 PERFORM wPT2 TMWU w£XIT2. •"'>T

663 GO TO READ3. ... 'SV

664 - <"1'" ' ' '
665 wRUE OUTCOM2-WEC.
666 IF OT2-STAT = "Ou";
667 PFRFOWM H»T20K; / ,
668 G'l TO «*fcX!T?. ' "
669 IF OT2-STAT = "<»1" GO TO v»KT2
670 MOVE OT2-STAT TO WRERSTAT.
671 MOVE OT2 TO WRERF1L.
672 OISPLAr
673 ADD 1 TO
674 IF ERSUM20T NOT LESS THAN 4 GO TO CLUT2.
675 WEXIT2. _ , , , I
676 EXIT. '- •**" " - ' " *< !
677 WPT20H. " I
678 MOVE 7ERO TO ERSUM20T. S
679 PERFORM PPTOT2 TMHU CHK91P02. ^ " j
680 PRTOT2. ^*» i
681 MOVE OT2 TU MOR3FIL. ' ?*.
682 MOVE HDR3 TO PWT-REC. I 5**
683 ' , ", »»RITE PPT-REC. ;"J
684 " " MOVE SPACES Id PRT-RtfC. M'
665 MOVE OT2-REC TO PRT-ktC. . ^"1
686 ,. CMH9IP02. „ "i '
687 KRITE PRT-HEC.
688 " IF PRT-STAT = "91" GU TO CHK9IP02.
689 GOOOM3.
690 ' MOVE ZERO TO EKSUM3IN.
691 PERFORM PWTIN3 THRU CKK9IPT3. ! '\
692 MOVE IN'3-REC TU INSPECT!. ? :

693 IF CMOIND IS EQUAL TO STAR GO TO wATC«"D.
69« ' ' IF INCMD IS EQUAL TO COMQNM (,0 TO PCMD2.
695 ' IF RT3FLG IS EUUAL TO 1;
696 MOVE IN3-REC TO

Figure B-10 (cont) . COBOL TTY or VIP Application Example

B-39 CZ15-00

GCOS6
SOURCE

697
698
699
700
701
702
703
70a
705
706
707
708
709
710
71J
712
713
714
715
716
717
718
719
720
72t
722
723
72a
725
726
727
728
729
730
731
732
733
73U
735
736
737
738
739
740
741
742
743
74<i
745
746
747
748
749
750
751
752
753
754

MOD400°S100-12/01/14!3 CU80L 0200 ' • — •*-- • • ~
PROGRAM

GO TO wRITEl . •-"<- " . . j
IF RT3FLG IS EQUAL TU 2;

MOVE 1N3-BF.C TO OT2-RtC? "*"
GU TO WKITE2., 1

IF ECHFLG3 IS NOT fcQUAL TO 7ERO GO TO HEAOI. |
MOVE IN3-REC TO OT3-OFC.
GO TO «KiTE3o

PHTIN3, ^ '
MQV£ INS TO HQk2FIL.
MOVE HOR2 TO PRT-HtC.
«RITE PRT-kEC.
MOVE SPACES TO PRT-RfcCo - rt

MOVE IN3-REC TU PRT-frEC. "'*"* I
CHK9IPT3.

WHITE PRT-REC.
IF PRT-STAI s "91" GU TU CHK9IPT3.

4

PERFORM *HT3 THRU "FXIT3*
GO TO wEAOi. Jfl

w » T 3 . 5 ' x

hRITE OtJTCOMj-wEC. VJ '
IF OT3-STAT s °QQ»'C

 H *•"*
PF.wFURM wRTIOP. "'̂
GO TO wfexl f3c '' "t

I P O T 3 - S r A T s B 9 I R R U T O « R T 3 . f I
MOVE OT3-STAT TO wHEWSTAT,, ' wt' ;
MOVF OT3 TO WRfeRFIL. ' *° '
DISPLAY WPERMSG.
ADO 1 TO ERSUMSOT.
IF £RSU»*30r NOT LESS THAN 4 GO TO CLUT3.

»EXIT3e

E x i t . .« ,
*RT30K. ' fst

MQVE 7ERU TO EkSUMJOT. ir^
PERFORM PRTOT3 THRU CH*9IPOi.

PRTOT3. '"" j

MOVE OTJ TO HOR3FIL. ',
MQVfc HOK3 TO PNT»REC. , "
ciRITE PRT=RFCc " " ' *"
MOVE SPACES TO PkT-WEC. "l**
MOVE OT3-PEC TO HWT-«6Co ' ^

CHK91P03. '*
WRITE HRT-kEC. * ' e '
IF P R T » S T A T = "91" GU TO CHK9IPO3.

wATCMQ .
IF C«niYP IS Ffj'JAL TO SFMO-OATA uw CMiMvP

IS &UUAL TO SEND- Te XT GJ) TU l.FN-OATA. j
GO TO CF*H1 . ,

GEN-OATA. ;
IF LFNNUM IS NOT NUMfcHlC T,U TO reww^.

^ IF NUMSENOS IS NOT NU^tWIC GO TO Cf-HH?.
IF NUMSENOS NOT GWfcATF* THAN /Ekf) l,<i TO Ceww^.
IF LFNMIM is LESS THAM i OR LFNMJM ts

GWF.ATFH THAN 3 GO To C E R R l .
MOVE ZERO TO MSGCOUNT.

1 MOVE NUMSFNOS TO SOCOUNT 0

IF CMOTYP IS EUUAL TO SE NO- T E x T ;
GO TU ST1 ST2 ST3 OFPENOING ON LF"'NiiMo

Figure B-10 (cont). COBOL TTY or VIP Application Example

B-40 CZ15-00

GCOS6
SOURCE

755
756
757
75B
759
760
761
762
763

MQ0400-S100-12/01/1 413
PROGRAM

COHOL 0200

765
766
767
768
769
770
771
773
773
77«
775
776
777
778
779
780
761
782
783
78«
785
786
787
788
789
790
791
792
793
79<J
795
796
797
798
799
800
801
802
803
80"
805
806
807
808
809
810
81 1
812

IF LFNMJM IS EQUAL TO '01
MOVE i TO SOI-FLG;
MOVF SOCOUMT TO S01COUNT;
MOVF MSGCOUNT TO SD1MSG;
Gn TO kFAOl.

IF LFNNIIM IS fcliUAL Td "02" AND
MOVE 1 TO SD2~FLG;
WOVE SDCOUNT TO SD2COUNT;
MOvfe MSGCOUNT TO SD2MSG;
GO TO kfcADl.

IF LFNNUM IS EUUAL TO "03" AND
MOVF) TO S03~FLGJ
MOVE SDCUUNT TO SD3COUNT;
MOVE ^SGCOUNT TO S03MSG;
GO TO HEA01 .

CFRR1 . , ^
DISPLAY BADCMO.
GO TO wEADl „

CERR2.
DISPLAY BAOCMD.
GO TO READ1.

AND S01COUM IS EQUAL TO ZERO?

SU2COUNT IS EQUAL TO

SU3COUNT IS EUUAL TU

/ C

tO
- t

SOI
ADD 1 TO SD1MSG.
IF SD1MSG s S01CUUNT; -—-

xnvF Zt»U TO SD1~FLG;
MOVE ZtRO TO SOSCOUNT

WOVE SD1HSG TO MSGNUM.
MOVE OATAMSG TU OTl-kEC.

ThWU M E X I T 1 .
SD2.

ADD 1 TO SD2MSG.
IF SOPMSG = SD2COUNT;

MOVF ZERO TO SD?~FLG;
MOVF ZERO TO SD2COUNT,

MOVE SD<?MSG TO MSGMJM.
MOVE OATAMSG TO OT2-*EC.
PERFORM *RT2 THRU wE*IT2.

SD3o
ADD i TO S03MSG.
IF S03MSG = SOSCUUNT;

MOVE ZERO TO S03~FLC,;
MOVF ZERO TO SO?COUNI

MOVE SD3MSG TO MSGNDM.
MOVE OATAMSG TU UT3-REC.
PERFORM *RT3 THRU isEXIT3.

INCRMSG.
ADD i TO MSGCOUNT.
MOVE MSGCOUNT TO MSGNUM.

STl

ST2,

ST3.

MOVE TEXT-MSG 10 OTI-REC,
PERFORM »»RT1 THRU H E X I T I
GO TO READ2.

MOVE TEXT-MSG TO OTP-REC,
PERFORM «RT2 THRU WEXIT?
GO TO READ3.

MOVE TEXT-MSG TO OT^-REC.

SDCOUNT TlMtS.

SDCOUNT TIMES.

Figure B-10 (cont). COBOL TTY or VIP Application Example

B-41 CZ15-0-0

GCDS6
SOURCE PROGRAM

1 2 / 0 1 / i a t 3 COBUL

8 1 3

S I S

8 1 7
818

« R T 3
G O T O H P A D 1 .

O O M E I T .
D I S P L A Y S T O P C O B .
S T O P 9U*.

fcND COBOL

0200 * '

r i S O C U U N T

C * v

• g

F I L E
L I N E

1 1
16
21
£fe
11
36
41

03
04
05
06
07
08
01

OC-MSD C O * M I N
C O < * i f l T 02^2

OM»MSO Oi02

Si ih (O F . C .)

HO
ft (I
HO
ao
N O

120

Figure B-10 (cont). COBOL TTY or VIP Application Example

<*>*

< ; • - -

B-42

, ~~>'^

CZ15-00

ERROR MESSAGES IN COBOL EXAMPLE
- A _ _ *

When appropriate, the example program displays error messages
in the formats:

OPEN
CLOSE
READ
WRITE

/COM1IN\ ...»
ICOMIOTI

ERROR FILE JCOM2 IN I 22 - FILE STATUS
„ '--̂ -r-. \COM20T(

(COM3IN \ ^ FIl
\COM30T/

Program actions that would occur with these messages are:

OPEN or CLOSE message:

Returns control to the operator terminal. fii»,,-T^

READ or WRITE message: -iSV,. er-o-j;-, » » 3<* •« T \

—̂' Tries the I/O operation four times; then closes the file
and returns control to the operator terminal. r

STATUS CODES IN COBOL EXAMPLE - ~

The program CARCOM includes checks that verify operation of
COBOL error returns and information status returns. The check
codes ares

91 - For a read operation, indicates there is no data. For
a write operation, indicates that the device is busy.

95 - Record length error.

EXECUTION OF COBOL TTY or VIP PROGRAM EXAMPLE

When the program begins to execute, the operator terminal
displays the message:

-̂/ TYPE COMMANDS, THEN GO.

At least two files on the same device must be open to proceed
to the next level of command input. At this level, the program
displays the message:

COMMANDS? - ,r.'/ ' t •i^iJ^a Ji«- £^31 .

You may then enter commands to: (1) open files, (2) close
files, (3) route (message switch), (4) activate the read/write
loop, or (5) stop.

B-43 CZ15-00

. NOTE

Activating the read/write loop deactivates command
input from the console and causes the application to
check open terminals for input. ? ri

To return to command level, type COMND from an active
terminal.

A typein from a remote terminal is echoed back to that termi-
nal and displayed on the second terminal*

COBOL BSC APPLICATION EXAMPLE

The source program listing in Figure B-ll is an example of a
COBOL communications program to test BSC file transmission by:

1* Generating records ^"ir-CK: »r«.-* :•. .,-1--.->- -7j'**-.

2. Transmitting the records over one communication line

3„ Reading them back over another communication line for
comparison - -~

The program name is BSCTST. When executed, it displays the
following error messages, as appropriates

Error format X • -* '• '- "•' '}

BSC TEST FILE- INPUT PROBLEM- OPEN STATUS - zz
OUTPUT CLOSE

- • .*,...» READ
WRITE

zz-9I - Device busy
zz-OQ - Program may read or write ~̂ •• -* '^'JVrX*

Program actions Issues reads and writes four times; then
the file is closed and the program
terminated.

Error format 2;

BSC - TEST - NO MATCH RECORD nnnn • *

_ Program actions Reading application does not receive the
expected record; records out of sequence or
garbled.

' ' '•"" '-'''•- File is closed and the program terminated.

B-44 CZ15-00
,*>- i

sGCOSb
SOURCE

1
2
3
4
5
6
7

. a ~
9

10
11
12
13

MOU«00~S120-o9/H/1535 COMOLI 0210 -LO
PROGKAM

* i Hi

IDENTIF ICATION UlVlSIUN.
PtfQGK«"*-iO. ttSCTST.

* THIS IS A Pnn<,KA<* ,,nicn I f c S T S HSC t-iLt T * A J S i - l S S l ' i * -
* IT
s AI^U
* FU«

OiJtS SU bY C.tNfc.KttT Ii*i» fcpCuPOS , ht i« ' i l«f> T ^ E " uli i
DKINulNG T rt £ M H A C K I "< FUH Cu"PAhISu'<
A *1UP,£ O t l A l L E O OfcSCKlTK.^ h r t f ^ K T U 1 nt UCuS 6.1

* 1 £ S T S P f c C l F i C A T i U f t F H •< CuBOL CL l f c i M L< lC*» l IO i vS
EIWI
CONF
SUUK

ObJE

*
INPJ

Rux**t»n UIvISlUN.

Il»U«ATluN SECTION. j,^

Ct"CUMPU T f c R . HlS-SE^lt- S-bO LEvtL - t>. $t

C T - C U ^ P U T t K . nIS-SErtiES-bO LfcvhL-b. r ? j

- •> l » S. ' *
r - u u T P u T S f c . c r i o « . t , - ^ , , ? e *

14 FILE-CUI.1 rfuL. • » /i
IS
16
17
10
19
20 -
21
22
23
24
25
26
27
2*
29
30
31
32
33
34

35
3b
37
36
39
40
41

42
43
44

45

4*
47
49
49
SO
51
52
S3
54
55
56
57
58

*

*
OAT A

c

FILE.
Fu

01
«

Fu

01

*
ttUKK

*
77
77
77
77
77
77
77
77
77
01

01

, fr

StL tCr 1-l.uTPul -»
ASSIU1^ Tu 0 i »
l)KG4i>,l£ A T lu N JS SEJUt JT I 4L ^iln V L f »
A C C t S s IS S t r f U t i « T I A L » M-. , ^ t -l
HlLt S l A T ' J b IS UUT-SU1. } f , , 97
StLtCT T-I'MH.jr . , e§

A S S i b M TO Al), .^

iJHbMNlZ A T lOiJ IS S tUJE^I lA t .\11n V L K , ^^
A L > L j ^ d o ^ o d w M ^ Q i ^ i l A ^ ^ / %

FiLfc 3 T « T u a 16 I N - S T A f . » ^^

?6
D l V A S I U M . « <' f i t fft

' -Ji. •* t ft
StLduiM. 4_ ^ _,v! 5$

T«=0u1 P U T * " „ i -> ^ oj,
8LOC»* C H N l A l M a 1 K E C O w D S . • * » u»

* W T

LAatL K E C L H D S ASt S I A - O A H) . v j l _ j ,

L' u T • •» £ C f ' JC x (8 o) .

t^
T - T N P u T > , ^?

.* J « "

L«rtt-L KtLunOb A W t ST ALL' AKU. ^

1 v-KtU PIC X (« 0) . , . ,g
^

i - M t - s r o K A t t SEcr iuN. , i * ' , op
Ct J

I iv-SIaf P IC xx V A L U E S P A C t S .
O u T - S T A l HIC xx v M L 0 E S^'1Ct<?.
« A X - L » 1 PIC 9999 v A L u t 1 " i I .
^-I ivPjT PIC X (6) . , v A L U t "I.Ki. f ".
>.«=uuiPur PIC x (^) V A L U E "k.ui f -u i" .
«f - U P F i* P l C X (^ >) VhLur " l i H e j " .

•>-CLtSt PIC x (l s) V A L U t "CUbt" ,
*°Ht«0 PIC X (S) V A L U t ""tMli " .

-•-«*iTt H i C l (S) ,, V o L U t ' i ^ l I t " . » > - ,

T t S I - r < t C .

Ql f - l L L t w P1L x i l £ >) V A L U E " I E S 1 "ELnWu" " .
0<J 1^-C'^T PIC 999-9 V A L U t / tPU .
02 FILLtK PIC X (b 4 J V A L U f c S t - A C F S . r!'
0<f f - ILLE« PIC X (1 0) V A L U t •»•«*«*»*»*".

EuF-«tC.
02 FlLLt« P1L X (3) V A L U t " fUF". ,,
02 F iLLEW PIC X (7 7) v A L u t S P A C E S . .

Figure B-ll. COBOL BSC Application Example

B-45 CZ15-00

•ecoss
SOURCE

59
60
6S
61
ftj
64
feS
6fe
67
68

6<»

70
71
7?
73
7«
7^
76
77
78
7<?
eo
<*s
82
83
«4

as
86

87
88
8<»
90
91
9^
93
9<J
9S
96
97
96
<?<?

1UO
101
10^
103
104
105
106
107
108
109
110
S it
112
113
il<*
115
1 16

wooaeo^s i^o^w^/ i j/i'ji** C,U«ULI u«»tu -uu « s c ? s r
PRO^KAM

01 iw<=>M&Ul.
0^ FltLfet" M iC s (l 6 i v A L l - f 'asC T |s r - P iL fc - ".
0£ fe-flt,t MiC < (6) **uui ^*(.tJ».
0^ MUUfc'* PR « (1 0) » A L L t * ^hg^Lf"- e „

0«» t ^ f f p ' e f lC * (S) »«L ivb i ^ACt ts .
Orf P I L U C K PIC < i9) V A C u k • J»T4! i ib- ".
01 b » S T * T ^ IC *H »AuUt »*»»Cf!».

01 tw°*SG«».
0«» P f L U f e « ^1C M£h) «»LOt "Pht f l S T » <n *ftIO. rffeCuJ.J- •.

v^

s&eosfe
SOURCE

117
118
119
120
III
122
123
120
12S
126
127
126
129
130
131
132
133
134

is*
136

«OOaoo-Sl20-uV/ l l/i!33!5 Cur»ULl u?10 -Lf'
PHOUKAM

^UVfe *-UUlHUT Tl) t"»»»lLfe.

Hovt UU! -S I *T TO t-bui.
UH-^bl,.

L / 1 S H L A T £^-wSUl .
GU TU bJU^-HU.

*
CLOSt-uH1.

CLUbt 1- lNKUT.
IF i^-sr*? is *OT fc^oAL "i>o"; KI.VF .^-CLnst 10 t -TTPt;

l»0 TU H»-feh«.
UU lu STUP-PG.

CL0562.
CLOSk T - O O T P U T .
if ou r»s» i *T is -MM t feuAL "ooB : "I've ^-CLust fu t - ivp f :

Uc« TO unT-trtr i.
Uu TO M A b T t * .

•
STU^-r'G.

S T O H WON.
fe.\U C'JHUL.

Figure B-ll (cont). COBOL BSC Application Example

W

^
B-47 CZ15-00

; .rtj •» v,; <• ? ' i .; i »i- \ , " ' ' "1

• ' V ,

. "v-- 'C" V J J
? i '•***;- , jcf ?

•'*' c - A '
'.- ' *•

,j • - -j -J , t!

. 'v, J -f ' O

. * - w - -f j"l

c;l • * r •- . ' . • - • :
V «•

NV
 ! <.

• + - , • . - • - • -a ,.

c. ,• ;

0*. f

% .

•> *',
• f f , i

- !> i

. 'S?

^ i '

\

•if '

! > i

Mi

'-C!

- » j ;
<••$::
f*- ^

.J

'̂

-a

v^

*»

ci.f - '<. .r^sno.* 3 * * '

Appendix C
USING FORTRAN

This appendix describes procedures for using FORTRAN. The
following information is provided: <_,_

• An explanation of the compile, link, and execute pro-
• cedures for Advanced FORTRAN programs, including a sample
program illustrating these steps.

• Programming tips for communications via FORTRAN, including
a sample program.

~ *- s< •* a>0'.\, ' '-.»£j fc"fim*or. ~*><r
INTRODUCTION

FORTRAN programs are compiled with the Advanced FORTRAN com-
piler, linked with standard Linker directives, and executed by
optionally specifying the GET command and then specifying the
program name.

FORTRAN COMPILE. LINK. AND EXECUTE PROCEDURES

To compile a FORTRAN program, invoke the Advanced FORTRAN
(FORTRANA) compiler. Input to the FORTRAN compiler consists of a
source program written in FORTRAN and optional control
information. ~

i "i & t

Output is: " " ̂

• A FORTRAN object (.0) unit
• A FORTRAN listing and diagnostics. .-.,-,

C-l CZ15-00

To link a compiled FORTRAN program, invoke the Linker. Input
to the Linker consists of the relocatable object programe Output
is a:

« Bound unit
• Link map*

Figure C-l illustrates the compile and link operation, pro-
ducing an executable module.,

-«-• 1 4 A

Figure C-l. Compiling and Linking a FORTRAN Program

Invoking the Advanced FORTRAN Compiler *

The command used to invoke the Advanced FORTRAN compiler is:

FORTRANA path [ctl_args]
- - - — >»t i

where: ' * - '.

path

The pathname of the source file to be compiled. The file
must have the suffix .F; but this should be omitted from
the path.

[ctl_args]

None or any number of control arguments. (See the
Advanced FORTRAN Reference manual„)

For example, the source file might be TEST.F, shown in Figure
C-2. To compile TEST.F, enter: FORTRANA TEST

C-2 CZ15-00

^

_̂x

>̂

The terminal dialog is;

FORTRANA TEST Invoke the compiler

FORTRANA 2.0 11/21/0712
000/000 W/E COUNT TEST There are no errors

RDYs

••-*•, sar u -, i 6 v

PROGRAM TEST
CHARACTER WORD*10, GOOD*10,DONE*4,YES*3
DONE='DONE'
YES='YES!

50 WRITE (6,100)
100 FORMAT('AWHAT WORD?1)

READ(5,200)WORD
200 FORMAT(AIO)

IF(WORDcEQ.DONE) GOTO 600
WRITE (6,300)WORD

300 FORMAT('AYOUR WORDAWAS ',Al0,'ACORRECT?')
READ(5,400)GOOD

400 FORMAT(A4)
IF(GOODoEQ.YES) GOTO 50
IF{GOOD.EQ.DONE) GOTO 600
WRITE(6,500)

500 FORMAT('ATOO BAD1)
GOTO 50

600 STOP ' THAT IS ALL FOLKS'
END

OWO-..U. %£Vfii •nntWrA'

Figure C-2. FORTRAN Source Program TEST.F

Sample FORTRAN Listing Format
*H-

The compiler generates the following listings:

Source and diagnostic '"
Allocation
Cross reference
Object "' ' ~^ito

Called subprograms
Statement label
Line number listing
Summary. ' v ' "v

The source and diagnostic listing includes a sequential line
number, source image, and interspersed diagnostics.

The allocation listing includes the name, class, type, size,
and location of each variable. Allocation errors are listed.

C-3 CZ15-00

The cross reference listing includes all labels and symbolic
names in alphabetic order, and the line number of each refer-
ence. The line number is followed by an asterisk (*) if the
reference is a possible modification. The line number is fol-
lowed by a slash (/) if the reference appears on a specification
statement or the reference appears as the definition of a label.

The object listing is produced only for the verification of
object code by the developers and maintainerSc It includes the
location? symbolic opcode, and operands of each instruction., It
may not represent valid input to the assembler but is adequate
for analysis,,

The called subprogram listing includes the name, number, and
type of arguments, and class for each referenced subprogram,
intrinsic function, and runtime routine. Subprogram units are
classed as intrinsic, runtime, function, block data, and subrou-
tine. The function class is used to describe only user-defined
function subprograms «>

statement label listing includes the label, location, and
type of use of all statement labels.

The line number listing includes each line number and its
locationo

The summary listing includes the number of errors, the number
of warnings, the program size, and the data size.

STATEMENT ERROR DIAGNOSTICS) - . / . , > , ̂ -" v * ;

During compilation, statements which violates the syntactic
or semantic rules of the language are recognized, and error mes-
sages are printed.

There are two levels of statement diagnostics: warnings and
errorSc Warning messages are issued for minor errors where the
compiler can make an assumption as to what is to be done and com-
pile the statement* Error messages are issued indicating that
more serious source problems exist. In the case of errors, com-
pilation proceeds as if the statement was never encountered. The
statement label, if any, remains defined. If an error exists in
an executable statement and that statement is executed, program
execution terminates and you are notified that an attempt was
made to execute a statement with a source error. The line number
of the statement is displayed.

For each error or warning, one character of the statement is
marked with a currency symbol ($), output directly beneath the
erroneous character. For example;

ZATA = X + Y *
$

The * character is marked as an error.

C-4 CZ15-00
^J

In the case of a syntax error, the marked character itself is
\s y unacceptable, as in the example above. In the case of a semantic

error, an identifier or other construct is in error, the mark
indicates the last character of the construct. For example, in
the line

COMMON ALPHA, BETA, ALPHA, GAMMA "53T
i

$;
the mark indicates that the identifier ALPHA is misused.

The compiler attempts all interpretations of statement type
before discarding a statement. The marked position indicates the
greatest amount of correct information found under the most logi-
cal assumption of statement type.

«w ^.

A comment specifying the reason for the failure is printed
directly after the marked line. There may be more than one diag-
nostic per line and more than one diagnostic per mark. The marks

^ / are numbered from left to right with the number of a mark preced-
ing the associated comment for the diagnostic. Each diagnostic
is followed by a sequence of characters: *E*E*... or *W*W*W...
indicating error or warning, respectively. The last diagnostic
for a line is followed by the line number of the previous line
with a diagnostic, if any»

SAMPLE LISTING
>r,,»'
: ;}•

Figure C-3 shows the listing produced by compilation of
TESTcF.

TEST

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

.Oui
GCOS6 MOD400-12.1-09/24/1727 FORTRANA 2.0 11/21/07/12

1981/05/05 0919;17.500 SLJC PAGE 0001

PROGRAM TEST
CHARACTER WORD*10,GOOD*10,DONE*4,YES*3 fa

DONE='DONE'
YES='YES' - '"' '--' '*

50 WRITE(6,100) ^'•' *'
100 FORMAT(IX,'WHAT WORD?1) ""**'

READ(5,200)WORD
200 FORMAT(A10)

IF (WORD. EQ. DONE) GOTO 600 .'<A»"V '• JAW, "9
WRITE(6,300)WORD

300 FORMAT(IX,'YOUR WORD WAS'^1X,A10,IX,'correct?')
READ(5,400)GOOD

400 FORMAT(A4)
IF(GOOD.EQoYES) GOTO 500 °
IF(GOOD.EQ.DONE) GOTO 600
WRITE(6,500)

500 FORMAT(IX,'TOO BAD1)
GOTO 50

600 STOP 'THAT IS ALL FOLKS'
END

C-5 CZ15-00

- ̂ '̂ 5 T ̂ „
•* v̂ , , —

TEST GCOS6
1981/05/05

SCALAR ALLOCATION

LOCN WORDS

OOOC - - 2
OOOE 1 +
0010 , 5
0015 " 5

PROGRAM COMPILED

TEST GCOS6
1981/05/05

STATEMENT LABELS

LABEL LOCN
i \cL LOCN

50 0042
\c 0009
300 OOOC
\c 0023

-»' 3 • '

MOD400-
0919sl70

CLASS

SCALAR
SCALAR
SCALAR
SCALAR

'- " ̂ r> •' a * •''v a 53 IV

J ,-' ? -,

L2. 1-09/24/1727 FORTRANA
500 SLIC PAGE 0002

.

TYPE -1 -"

CHARACTER* 4
CHARACTER* 3
CHARACTER* 10
CHARACTER*! 0

WITH FOLLOWING COMMAND

1 NAME

DONE
YES
WORD
GOOD

•* J •£ "*• •*,"-* - ~

1.0 11/21/0712

J-,--,

LINE PARAMETERS:

MOD400-L2. 1-09/24/1727 FORTRANA
09/19:17.500 SLIC PAGE 0003

USE
USE

FORMAT
FORMAT

FORMAT

LABEL
LABEL

100
600
400

STATEMENT LOCATIONS -'w>-;..i .̂: .. -. , , -

LINE LOCN
\Ĉ LINE

3 0030
\C 6
8 006A
\C 11
13 OOA3
\C 16
18 OOC7

FINAL SUMMARY

LINE LOCN
LOCN v ^ _ LINE

0052

008C

0086

r'

4 0039
7

9 - « 006A
12

14 OOA3
17

19 OOC9

-4-

PROGRAM SIZE =• Z'OOCP' WORDS
DATA SIZE = Z'006D' WORDS
COMPILATION COMPLETE
0 WARNINGS
0 ERRORS

LOCN
LOCN

0000
OOC9
0021

1 i** . >\t[

LOCN

0053

008C

OOC7

0«>,

*' - «•

1.0 11/21/0712

USE LABE
USE

FORMAT 200

FORMAT 500

-..-,' 3 *

LINE LOCN

5 0042

10 0075

15 OOAE

20 OOCF

»>

*». i
€.i
A
"* t

^

^

'•\

^

Figure C-3. Listing of TEST.F

C-6 CZ15-00

^

^x

TEST GCOS6 MOD400-L2 .1-09/24/1727 FORTRANA 1.0 11/21/0712
1981/05/05 0919S17.500 SLIC PAGE 0002 *

SCALAR ALLOCATION

LOCN WORDS CLASS

OOOC - 2 SCALAR
OOOE 1+ SCALAR
0010 5 SCALAR
0015 5 SCALAR

TYPE

CHARACTER* 4
•CHARACTER*3
CHARACTER* 10
CHARACTER*! 0

PROGRAM COMPILED WITH FOLLOWING COMMAND

NAME

DONE *'
YES
WORD
GOOD T^~

LINE PARAMETERS:

TEST GCOS6 MOD400-L2 .1-09/24/1727 FORTRANA 1.0 11/21/0712
1981/05/05 09/19;17o500 SLIC PAGE 0003

i
STATEMENT LABELS < *,,

*

LABEL LOCN USE , LABEL
\CL LOCN USE <i3lX" ~fw* LABEL

50 0042
\C 0009 FORMAT
300 OOOC FORMAT
\C 0023 FORMAT

STATEMENT LOCATIONS

LINE LOCN
\C LINE LOCN

3 0030
' ' \& 6 0052

8 006A
\»*i. 11 008C
13 OOA3
\C 16 0086
18 OOC7

FINAL SUMMARY

PROGRAM SIZE = Z'OOCF' WORDS
DATA SIZE = Z'006D' WORDS
COMPILATION COMPLETE
0 WARNINGS
0 ERRORS

100
600

400
' ' ~ • ~* f «

LINE LOCN
LINE

4 0039
7

9 006A
12

14 OOA3
17

19 OOC9

LOCN USE LABE
LOCN USE

0000 FORMAT 200
OOC9
0021 FORMAT 500
-• ̂ '.jn-w.i*. „ . ^ </vs'-i

LINE LOCN
LOCN

5 0042
0053

10 0075
008C

15 OOAE
OOC7

20 OOCF

...

Figure C-3 (cont). Listing of TEST.F

07 CZ15-00

TnVQk-i-ng <;he, LlnJiL&E. - -

Once the source program is compiled, it can be linkecL The
used to invoke the linker is:

LINKER progname ~PT [ctl_arg] -— — -

where s . .3w... • , ; - , -
j

progname '

The bound-unit-pathname (simple, relative, or absolute)
of the bound unit to be created (usually the program
name), may be up to 62 characters in length.

-PT !
t

Requests the Linker issue a prompt (L?) for input.

ctlmarg ?̂s:

Other valid control arguments for the Linker (see Section
5 above) . -"• • '"- :

For example, to invoke the Linker for TEST (compiled above),
enter:

(H !
LINKER TEST -PT ^ - • -

Figure O4 shows the Linker dialogs

i
!

1 < . 'RDYj -.- ^ - . ^
LINKER TEST -PT -MAP Invoke the Linker
LINKER 1982/06/18 0912s50c5

Linker responds with version and date
L? ' Linker prompts for input
E3B >L\DD>2F1RT " Give pathname to runtime library "
L? - Linker prompts for input \^J
LIN3T TEST" Link the object program "
L? Linker prompts for input 'l
QUIT Quit the Linker
ROOT TEST Linker responds with root name , ,
LINK DONE - *
RDY: -^

Figure C-4. Linking TEST

C-8 CZ15-00

Executing a Program .

To execute the compiled and linked FORTRAN program, type in
the program name. Figure C-5 illustrates a sample manual execu-
tion of TESTo

* " "T f, t •* n,» .
TEST ' ' -
WHAT WORD?

.c FORTRANA
YOUR WORD WAS FORTRANA CORRECT?
YES
WHAT WORD?
ADVANCED FORTRAN
YOUR WORD WAS ADVANCED F CORRECT?
NO
TOO BAD ,.
WHAT WORD? w £ a

- w . , DONE
STOP THAT IS ALL FOLKS
RDYs

\^s TEST
WHAT WORD?
VERSION
YOUR WORD WAS VERSION CORRECT? "'*

* YES
- " WHAT WORD?

DONE
STOP THAT IS ALL FOLKS
RDY:

Figure C-5. Sample Execution of TEST

If data files are used, they may be made available to the
program by using the GET command before typing the program name.
When execution terminates, use the REMOVE command to release the
data files. For more information on GET or REMOVE, see the
Commands manual.

<̂ "
' PROGRAMMING TIPS FOR USING COMMUNICATION DEVICES VIA FORTRAN

The File System interface provides the logical transfer of
data between the FORTRAN program and an external device (terminal
or another computer). The FORTRAN runtime routines issue File
System macro calls according to the corresponding input/output
statements in the compiled programs.

Interactive Devices and Files

The Executive defines communications devices and local TTY
terminals for processing as "interactive." Interactive devices
can be considered as sequential files in FORTRAN. Data is read
or written with the same FORTRAN read/write interface as for a
file on a noninteractive device.

C-9 CZ15-00

FPRTRftjfl p^QQEafP E%ecufc;.Qn with^ Communication Devices
* *̂*.-at 4<UV * .

ASSIGNING INTERACTIVE DEVICES AT EXECUTION

Before the compiled FORTRAN program can be executed, you may
specify the actual interactive device for the specified file,
using the command GET (get file). The logical file number (LFN)
specified in the command must be the same as the unit specifier
(ll) that was included in the control information list (cilist) in
the FORTRAN input/output statement READ, WRITE,, or PRINT for that
file0 You may also use an OPEN statement with a FILE=argument to
connect the actual device* See the Advanced FORTRAN Reference
manual for descriptions of FORTRAN statements and the unit speci-
fier c See the tyQD.400 Commands manual for description of the GET
and other commands.

'•ti
CHANGING TERMINAL'S FILE CHARACTERISTICS

Using the Set Terminal Characteristics (STTY) command or
$STTY macro call, you can reset the following terminal file char-
acteristics; line length or record size, detabbing, and device
typec

SYNCHRONOUS INPUT/OUTPUT
S't* T ',0s, O-

If the device is configured (see STTY directive) or modified
(see STTY command) for synchronous I/O, then an input order to
the device is only issued when the application issues a read, and
output is only performed when the application issues a write.
The application is placed in the wait state until the read or
write operation is complete,, Synchronous I/O is not useful for
an application which processes more than one device since each
read from or write to a device must be satisfied before the next
device can be processed.

ASYNCHRONOUS INPUT '- * ' "1 ' •• t ̂ -»

If the device is configured (see STTY directive) or modified
(see STTY command) for asynchronous input, then the File System
issues anticipatory reads into a system buffer. This is effec-
tively double buffering, since the application can be processing
one input record while the system is reading the next one. It
also allows the application to process multiple devices effi-
ciently, since it can test each device for input and thus not
have to wait for input from one device before being able to pro-
cess another device.

The FORTRAN subroutine Z1STIN allows the application program
to check the status of the input communications device (file)
before issuing a READ statement. Note that the device must have
been configured or modified for asynchronous input in order for
this check to be meaningful.

«* •" •.-„•-•., -, _ ,'-!•*

C-10 CZ15-00

ASYNCHRONOUS OUTPUT T :-

If the device is configured (see STTY directive) or modified
(see STTY command) for asynchronous output, then when an applica-
tion issues a write, the File System moves the application data
to a system buffer, queues it for writing, and returns immedi-
ately to the application. This is effectively double buffering,
since the application can be constructing one output record while
the system is writing the previous one. It also allows the
application to process multiple devices efficiently since it does
not wait for output to one device to finish before being able to
process another device. The application can test each device
before performing the write operation, to see if the previous
output is complete. - -

The FORTRAN subroutine Z1STOT allows the application program
to check the status of the output communications device (file)
before issuing a WRITE statement. Note that the device must be
configured or modified for asynchronous output in order for this
check to be meaningful.

^ FORTRAN File Status Check (ZFSTIN and 2FSTOT)

The FORTRAN OPEN statement must precede any other input/
output statement to a file that is a communications device.

When the program issues an I/O request statement (a READ or
WRITE), it waits until that request is completed.

The FORTRAN subroutines Z1STIN and Z1STOT, when called before
an I/O request is issued, check the availability of the communi-
cations device (file), and can prevent the problem of program
inactivation or program termination due to file or device
unavailability.

.-^1-?
The subroutine Z1STIN checks the status of the input file,

Z1STOT checks the output file. Their use monitors the status of
the files without loss of program control and prevents the
imposition of file system waits.

<S - - • — - -
A CALL statement to either subroutine should be issued before

the application issues any I/O requests to ascertain (1) whether
the file (device) is available, and (2) any device error status.

The subroutine Z1STIN or Z1STOT, when called, issues a
request to the file system, which in turn (without waiting for
any pending I/O request to be completed) returns status informa-
tion about the file's availability. When the file is not busy,
the File System will return status information about the previous
I/O request.

C-ll CZ15-00

CALL STATEMENT FOR ZlSTIN or Z1STOT ' -

The CALL statement for subroutine Z1STIN or Z1STOT is speci-
fied ass

CALL (ZlSTINl (lfnfarg)
UlSTOTj • " * -

Ifn

The logical file numberf in a GET commandt that identi-
fies the unit specifier (u) for the file to be checked.

The symbolic integer variable into which the File System
will return one of the following status values:

00010

File is available (READ or WRITE can be issued). The
last request, if a READ or WRITE, was successful.

51210

51610

Request rejected; undefined LFN was used/ or the file
system is not available. ,<

o-. -, - ̂

File is busy (READ or WRITE in progress). If Z1STIN,
then a READ is in progress and not yet complete. If
Z1STOT, the previous WRITE is not yet complete.

51910 "" "

File is not open? last request was not successful.
Another READ or WRITE will result in an error return.

A call to Z1STIN or ZlSTOT made to a noncommunications file ̂
always results in a 000 (not busy) status return. Such a call
allows you to debug the application program by first using non-
communications files, then write the program so that it can use
.either communications or noncommunications files.

:> "- . .L

C-12 CZ1S-00

The FORTRAN subroutine ZlSTIN, when called before issuing a
V, x READ request, checks for the availability of input. It prevents

the loss of program control until data is available in a file
system buffer. When Z1STIN indicates that the file is not busy,
then a READ can be issued to move the data just read from the
File System to the application program area.

The FORTRAN subroutine Z1STOT, when called before issuing a
WRITE request, checks to see if previous output is complete and
the terminal is free to accept more data. When Z1STOT indicates
that the file is not busy, then a WRITE can be issued to move
data from the application program area to a File System buffer
and schedule it to be written to the terminal. "

ZlSTIN and Z1STOT Programming__Examples

The following are examples of (1) coding that causes the pro-
gram to stall when input from a terminal is not completed before
a second READ is issued, and (2) a call to subroutine ZlSTIN to
check the file status before the second READ is issued. Note that

\—; in each case the first FORTRAN statement is OPEN.

Example 1: &
";~c' ~»ce T^vt •* > --•?£; jfer.? - ,J vt

OPEN(UNIT=8)
READ(8,100)IN
READ(8,100) IN

100 FORMAT(12)

Example 2:

OPEN(UNIT=8)
READ(8,200)IN

50 CALL ZlSTIN(8,ISTAT)
IF(ISTAT .EQ. 0) GO TO 100
IF(ISTAT .EQ. 512) GO TO 900
IF(ISTAT .EQ. 519) GO TO 900
GO TO 50

100 READ(8,200) IN
<̂

e

200 FORMAT(15)
900 WRITE(4,910)

-910 FORMAT(' ERROR FOUND1)

FORTRAN Application Example for TTY

The FORTRAN source program (program name FORCL4) listing
shown in Figure C-6 is an example of a FORTRAN application pro-
gram involving a TTY remote device.

C-13 CZ15-00

The program processes eight message groups before termi-
natingc It first issues four data messages to the remote ter-
minal and to the operator terminal. It issues the write requests
from alternate data buffers to ascertain the status of the inter-
faces among the File System? source program, and the communica-
tions subsystem. When the four initial message groups are com-
plete, the program requests input data from the operator
terminalc

• r "̂ T? «ij» v ii_"

After you enter a message, the operator terminal displays the
message and an acknowledgement message. When the fourth message
is received? the application program terminates.

Every input message, which is preceded by a blank or NUL ,a
character that is not displayed, may have up to 59 ASCII
characters,,

• The system continually monitors the status register, display-
ing error condition codes or status messages on the operator ter-
minal o For example, a condition indicating no data available
(buffer busy) at the remote device, lasting more than 20 seconds,
causes a status return code of 516. The program continues the
read attempt since that status is not an error condition. The
read statement is issued only after a status code 0 is returned
to indicate that data is available (buffer not busy).

!'_

,\ '. •> * ; - i s 'If;" ',•
.' -:AM«:

^J

., -Uj*—aĵ ir̂ A.i, „£

C-14 CZ15-00

w

1 C
2 C
3 C
4 C
5 C
6 C
7 C
8 C
9 C

10 C
11 C
12 C
13 C
14 C
15
16
17
18
19 C
20
21
22
23
24
25
26
27 15
28 C
29 C
30 C
31 C
32 20
33 25
34 30
35
36
37
38 40
39
40 50
41 60
42
43

FORTRAN COMMUNICATION PROGRAM - FORCL4

ILLUSTRATES USE OF Z1STIN AND ZlSTOT

r*f i
i?« c.? i* **• *- * 1

WRITES 4 MESSAGES TO THE OPERATOR'S TERMINAL (LFN 4)
AND SEND TO A REMOTE DEVICE (IF. TTY) ON LFN 9 VIA MLCP
FOLLOWED BY A READ OF 4 MESSAGES FROM THE SAME REMOTE
DEVICE (IF. TTY) ON LFN 8. ALL MESSAGES
ON THE OPERATOR'S CONSOLE, AND RECEIVED
ACKNOWLEDGED ON THE REMOTE DEVICE
DEVICE STATUS IS REPORTED USING,

CALL 7FSTIN(I,J) FOR INPUT, AND
CALL ZFSTOF(I,J) FOR OUTPUT.

PROGRAM FORCI 4 --
CHARACTER *48 CW3,CW4
CHARACTER CR1 (60) ,CR2 (60)
DATA CW3/'THIS IS COMM. OUTPUT TO THE TTY -

'
J = 0 " * K

N = 0
K = 9 - :-t ,
CW4 = CW3 ' r, , ,* jj- , K

OPEN(UNXT=8) ' ' "
OPEN(UNIT=9) -x ,
GO TO 20
K = 8

CHECK COMMUNICATION DEVICE STATUS
USING ZFSTIN OR ZFSTOT ROUTINE

N = N + 1
J = 0 j-.< j>< "•'?•) "•
IF(K.EQ.8)CALL ZFSTIN (K, ISTAT) • - -- ̂
IF(K.FQ.9)CALL ZFSTOT (K, ISTAT)
IF (ISTAT 0EQ, 0) GO TO (70,90,70,90,100,120
IF (ISTAT - 516)50,40,50
J = J + 1
IF(J .LT. 10000) GO TO 30
WRITE (4,60) N, ISTAT

ARE DISPLAYED
MESSAGES ARE

". fr£ '
*i - ?,. u

f, •* ^ -

MESSAGE NUMBER1/

-: '
t- f .••> • !
1 ' ',
* <"
,-\ >

r, i A -
if

r i- i. \ti "- v \
03 >

C . V s4

rj: i

3 U !
"• >>% \

•i r- I

,100,120) ,N
• •

,j, * o ;
t,t (

FORMAT (IX, 'STATUS RTN MESSAGE NO. ',12,' STATUS TYPE ',14)
IF (ISTAT .FQ. 516) GO TO 25
GO TO 140

- ,
s

Figure C-6. FORTRAN Application Example for TTY

015 CZ15-00

44 C
45 C
46 C
47 C
48 C
49 70
50 80
51
52
53 90
54
55
56
57 C
58 C
59 C
60 C
61 C
62 C
63 C
64 C
65 C
66 100
67 110
68
69 112
70
71
72 114
73 115
74
75
76 120
77
78 121
79
80
81 125
82
83 C
84 C
85 C
87 130
87
88
89 140
90
91
92
0

OUTPUT MESSAGES TO REMOTE DEVICE (LFN 9)
4 MESSAGES ESSUED TO DEVICE AND LFN4
FROM ALTERNATING BUFFERS

WRITE(9,80)CW3,N
FORMAT (IX, A48, 12) - ^ ~ ,„, ,
WRITE(4,80)CW3fN
GO TO 20
WRITE(9,,80)CW4,N
WRITE(4,80)CW4,N ' "*P:< '
IF(N .EQ. 4) GO TO 15
GO TO 20

INPUT FROM REMOTE DEVICE (LFN 8)
4 MESSAGES ALLOWED

SPACE 1 CHARACTER AND TYPE UP TO
FOLLOWED BY A CARRIAGE RETURN
TYPE SECOND MESSAGE WHEN DEVICE
"MESSAGE X RECD"

READ (R, 110) CR1 " " "' " "' "'*
FORMAT(1X,60A1)
WRITE (4 ,110) CR1
CALL ZlSTOT(9f ISTAT)

 i"" < '"- "'
IFUSTAT 0FQ« 0)GO TO 114
GO TO 112 '' *
WRITE(9,115) N
FORMAT (IX /MESSAGE ',T2,' RECD1)
IF(N 0NFC 8)GO TO 20
GO TO 130
READ(8,110)CR2
WRITE {4,1 10)CR2
CALL Z1STOT(9,ISTAT)
IF(TSTAT . EQ. 0)GO TO 125
GO TO 121
WRITE (9 ,115) N " "'-'"-I"'' •* ;
IF(N .NE. 8)GO TO 20

r

CLOSE UNITS AND EXIT

CALL Z1STOT(9,ISTAT)
IF(ISTAT .FQ. 0) GO TO 140
GO TO 130
CLOSE (UNITES)
CLOSE (UNIT=9) - ;
STOP
END - -" ''

DIAGNOSTICS ' ' '- -

""""̂ "rt*"***"̂ "*"̂ v**i

-
..
-

^
* '
.• -"

> 'j

59 CHARACTERS

TYPES
r r

** '*, ,

'
4 v' /

•>••

^
"

».c
?•'

1

'•
V r

J\

' -

3, f
* ̂ *•

«;, if
, A

j- ,-. ? - _

t '

^ & '* **.

*: • !
** * i
* ¥

-: ,

^J

*s

^

Figure C~6 (cont). FORTRAN Application Example for TTY

C-16 CZ15-00

w -,T

v ' *
~t* r\~

' J*

—-tr1

«i«.*fs»c«-«a. - > via »»i«.

' - - \ e |
*o •£ v ;

Appendix D
USING BASIC

This appendix describes procedures for using BASIC. The fol-
lowing information is provided: - --^ - - .ut, ••

• An explanation of the compile, link, and execute pro-
cedures for BASIC programs.

• A sample program illustrating 'the compile, link, and
execute procedures for BASIC programs.

-XT-* ,ir
INTRODUCTION

BASIC programs may be processed in two ways:

-̂̂ • Create and run interactively. These programs are not com-
piled or linked. They may be saved as source files, read
into BASIC, and run from within BASIC.

• Create and compile under BASIC, then link and execute.
These programs are created, normally tested and debugged,
and compiled under BASIC. They may be saved as source
files. Once compiled, an object unit exists. This object
unit must be linked using the BASIC Linker EC, LNKBPRG.
After successful linking, they are executed by specifying
the program name.

D-l CZ15-00

INVOKING THE BASIC INTERPRETER/COMPILER

To create a BASIC program, invoke BASIC. Figure D-l shows
the dialog used to invoke BASIC and create and save source pro-
gram PROGl.B.

BASIC
BASIC2.0-01/09/1400C

READY
100 INPUT "WHAT WORD", WORD?

IF WORD$ - "DONE" GOTO 900
PRINT "YOUR WORD WAS "; WORD$
INPUT "CORRECT", GOOD$
IF GOOD$ = "YES" GOTO 100
IF GOOD$ - "DONE" GOTO 900
PRINT "TOO BAD"
GOTO 100
PRINT "THAT'S ALL FOLKS"
END

200
300
400
500
600
700
800
900
1000

Invoke BASIC
BASIC responds with version

and date

BASIC prompt
Create a source program

SAVE PROG1
READY

Save the source program

Figure D-l. BASIC Source Program PROG1.B

If you leave BASIC using the QUIT command, reenter BASIC
using the BASIC command shown above and issue the OLD command to
bring your BASIC program into memory:

OLD PROG1 . - . . • - » -

If you have not left BASIC, skip this step. PROGl.B has been
saved in the File System, and is also still in memory.

At this point, you can run PROG1 interactively to find and
correct errors. This is done within BASIC.

EXECUTING BASIC INTERACTIVELY

You can execute a program within BASIC without compiling and
linking. In this case, no object unit or executable module is
produced.

In the example below, assume you have entered BASIC,
retrieved PROGl.B, and are ready to execute PROG1 interactively.
Figure D-2 shows the execution dialog:

^J

D-2 CZ15-00

^>

^
RUNNH
WHAT WORD

Execute the current program interactively
? BASIC

YOUR WORD WAS BASIC
CORRECT
WHAT WORD
YOUR WORD
CORRECT
TOO BAD
WHAT WORD
THAT'S ALL FOLKS
END AT 1000
READY

? YES
? COMPILER

WAS COMPILER
? NO

? DONE *'--"

X
t
»

^J

Figure D-2. Interactive Execution of PROG1

The Interactive Execution looks identical to a compile and
link execution. The only difference is the ready message. The
interactive execution issues the BASIC prompt, READY, while a
compile and link execution results in the system prompt, RDY:.

BASIC PROGRAMS ' ']

BASIC programs are created, debugged interactively, and com-
piled within BASIC. Programs with an interactive call can not be
debugged interactively; they are linked using the supplied BASIC
Linker EC, LNKBPRG. Input to the BASIC compiler consists of a
source program written in BASIC and resident in memory. Output
is: - .. .__. . _,. ̂ ., ,. ri,(i. .,„

• A BASIC object (.0) unit

• Diagnostic messages that appear at the terminal during
compilation.

Input to the Linker consists of the relocatable object pro-
gram. Output is:

• An executable module
• A link map. " ~ """ """" ~"

Figure D-3 illustrates the compile and link operation, pro-
ducing an executable module.

D-3 CZ15-00

LISTING

MAP

r SOURCE
PROGRAM

BASIC
COMPILER

/ OBJECT
PROGRAM

LINKER

- ~ si'

EXECUTABLE
MODULE

Figure D-3. Compiling and Linking a BASIC Program

Compiling a BASIC Program

After successful interactive execution? the program can be
compiled. Figure D-4 shows the BASIC session continuing to com-
pile the program, then quitting.

COMPILE PROG1
READY
QUIT
RDY:

Compile

Leave BASIC
System prompt

»
&

^J

Figure D-4. Compiling PROG1 and Quitting BASIC

D-4 CZ15-00

Programming Considerations . °

The following points are provided to aid programming in
BASIC.

Making Procedure Calls

Object units produced by other language processors may be
called from object units produced by the BASIC compiler. When
making procedure calls, the following programming considerations
should be reviewed.

1. The length of a string variable or element of a string
array is not constant throughout a BASIC program but is,
at any given point in the program, established by the
value last given to the string by an assignment or read
statement. A string variable or array element may have a
zero length if its last usage was in a CLEAR statement or
if the last assignment results in a null string.

2. The elements of a string array are not necessarily equal
in length.

3. Because string variables and string array elements are
not of constant length, they are not allocated to fixed
positions in memory; i.e., the addresses of such entities
are variable during the execution of a BASIC program.
Elements of string arrays are not necessarily allocated
in contiguous memory or in any specific order. For this

, - reason, it is not possible to use an entire string array
as an argument of a CALL statement.

Resequencing Line Numbers - , ""^ * '*''

For convenience in resequencing line numbers within a BASIC
source program, a free-standing Resequence utility program is
provided. All statements are renumbered using a constant incre-
ment; reference line numbers within the source program are
adjusted accordingly. The format of the Resequence utility is:

RESEQ pathname [options] '"li ' ', **!'"

where: . ., ,
* '. -A .T <r J 4 v •

pathname

. - The pathname of the BASIC source file to be resequenced.

D-5 CZ15-00

options
4 V s l~ ~ k~'*i!i *S*.

One or more of the following:
- ' • , - ^VCi ' - 2> ""

-START SSSS V3A2

Starts resequencing with the specified line number
ssss? otherwise, -the initial line number is set to 10

-INC iiii

Uses a resequencing increment of iiii; otherwise/ the
increment is 10

*
-RANGE LI L2

Resequences a range (LI through L2) of current line
numbers; otherwise, the entire program is resequenced

-NEW path - - -

Gives this pathname to the resequenced program and
leaves the original source unaltered. Otherwise, the
original source is replaced with the resequenced
version

-NO^LIST _ • "
*"- ' ' < - - . . & * .

-NL ' ' " -

Does not produce a listing of the resequenced program
— *- _ -f ^

-GOUT path

Directs any output to the specified pathname

-SIZE nn ' v"~

-SZ nn

Uses this size memory for line number table, default
is 4K

--LE lists errors only -

Controlling Screen Processing

GCOS 6 screen management utilities (forms processing) may be
used from BASIC compiled programs. When such programs are termi-
nated by execution of a STOP or END statement, the usual BASIC
End-of-Program message is displayed on the screen. To avoid
this, terminate your programs by chaining to the program ZBENDT.
For information on forms processing, see the Display Formatting
and Control manual.

D-6 CZ15-00

^

Controlling Common Areas „ , „ ,~~~*~~»~.~.,

The BASIC generated common area, BSCOMM, should not be shared
with other programming languages if the COMMON contains string
variables or string arrays.

Linking a BASIC Program '•

An EC (LNKBPRG.EC) is provided as a model to aid in linking
programs compiled by BASIC. In most cases, you can use it as
supplied, but for some applications, specialization may be
required. The format is:

EC >SYSLIB2>LNKBPRG pathname [s]

where:

pathname - The name of the program to be linked. The bound
unit produced also has this name.

-̂̂ s - Optional; specifies that BASIC run-time procedures in
the bound unit BRTNUC configured into the system, are
to be used at execution time.

The LINK EC assumes that the run-time library directories
ZBRT (containing the real run-time routines) and ZBRTS
(containing the dummy run-time modules necessary to prevent link
errors when using BRTNUC) exist on the directory LDD under the
root volume directory.

If you use the Linker directly to link your program, be aware
that you may have undetected symbol resolution errors during the
link which appear during execution of the program.

The following command is used to invoke the Linker for pre-
viously compiled BASIC program BPROG:

EC >SYSLIB2>LNKBPRG BPROG

^^ A link map is produced. If you only want to link and execute
your program, you may select to put the link map aside. The link
map and its extended uses are described in Section 6.

Executing a BASIC Program

To execute the compiled and linked BASIC program, type in the
program name. Figure D-5 illustrates a sample manual execution
of BPROG.

D-7 CZ15-00

BPROG
WHAT WORD ? BASIC
YOUR WORD WAS BASIC
CORRECT ? YES
WHAT WORD ? COMPILER
YOUR WORD WAS COMPILER
CORRECT 1 NO
TOO BAD
WHAT WORD ? DONE
THAT'S ALL FOLKS
END AT 1000
RDY:

Figure D-5. Execution of BPROG

>̂

^J

-*k>,. JL

- D* v, o

D-8 CZ15-00

>̂

v^x -'""«• * j. •* 0,;* s«*s>ij

^ Appendix E
USING THE

MULTI-USER DEBUGGER
(SYMBOLIC MODE)

^

This appendix guides you through a sample session using the
debugger in symbolic mode. You can follow along at a terminal

, step-by-step. Section 7 of this manual provides a detailed
description of the debugger.

The original source program could be written in either
Advanced FORTRAN or Advanced COBOL. Before you continue, create
an Advanced COBOL or Advanced FORTRAN program. For more
information on creating programs, refer to Section 4 on the
screen editor or Section 5 on the line editor and Appendix B
(COBOL) or Appendix C (FORTRAN) describing the compile, link, and
execute procedures.

V ̂ • *T£'•̂̂ COMPILING A PROGRAM FOR USE WITH THE DEBUGGER

Compile your program with either the Advanced FORTRAN or
Advanced COBOL compiler using the -SYMBOL argument. The -SYMBOL
argument creates a symbol table file, name.Z, where name is the
name of your source program. The compiler commands are described
next.

-•r ~ . . "tfr , •' *» ,\
FORMAT: _

(COBOLA \name -SYMBOL [ctl_argj
IFORTRANA)

\^ E-l CZ15-00

-N

ARGUMENTS s '

name Name of your source program. -̂̂ -N

ctl_arg Other control arguments you wish to use. See
the Commands manual for the complete command

If necessary, correct any compilation errors and recompile.
Precede with the next step when you have an error-free
compilation.

Sample Compilation Dialogs

To compile the Advanced FORTRAN program NFTYPM, the
compilation dialog might be:

/EORTRANAv NFTYpk -SYMBOL Invoke the Advanced
FORTRAN compiler specify-
ing that object code be
listed, a special symbol
table be created, and 4K
of memory be used.

FORTRANA 2.0 07/09/1302 The compiler is invoked.
000/000 W/E COUNT NFTYPM There are no warnings

or errors.
ROY; Control returns to com-

; • mand level.
"j O "*"

To compile the Advanced COBOL program COMPTV, the compilation
dialog might bes

"cOBOESvCORPTV'Jfŝ mBOE Invoke the Advanced
COBOL compiler speci-
fying that a special
symbol table be

„ , created.
COBOLA 3.4 07/15/0813 * * The compiler is

invoked.
NO FATAL ERRORS OR WARNINGS IN COMPTV There are no errors.
RDYs Control returns to

command level.

LINKING AN OBJECT UNIT WITH THE DEBUGGER f

Link the object unit .resulting from successful compilation
using the -SYMBOL option. -SYMBOL creates a separate link file
named buname.V, where buname is the name of the bound unit
created by the link.

E-2 CZ15-00

w

w

The Linker commands description follows: t,

FORMAT: : • f ,

LINK buname -SYMBOL [ctl_arg]

ARGUMENTS: , . . , , „ : ' ,

Name of the bound unit to be created.buname

ctl_arg Other control arguments. See the
Commands manual for the complete command
description.

For more information on the Linker, see Section 6. After you
have linked successfully, go on to the next step.

Samrjle Linker Dialoas

To link object unit NFTYPM, compiled by the Advanced FORTRAN
compiler above, the Linker dialog might be:

LINKER NFTYPM -SYMBOL -PT

LINKER 1982/06/18 0912:50.5
L? -r ".'•«•-

-LIB >LDD>ZF1RT

L?
XrNK NFTYPM

L?
DOIT
ROOT NFTYPM
LINK DONE
RDY:

Invoke the Linker specify-
ing creation of a special
debug link map and a
prompt for the user.
The Linker is invoked.
You are prompted for a
directive.
Include the standard
Advanced FORTRAN runtime
library, ZF1RT.

Link the object unit.

Terminate the Linker.
The bound unit is created.
The Linker is finished.
Control returns to command
level.

\^ E-3 CZ15-00

To link object unit COMPTV, compiled by the Advanced COBOL
compiler abover the Linker dialog might bes

~N
i

-i-r.i-i—»-«-•»
c£̂ KEK,,COWK̂ ŜSj!!BQEc.r!P̂ g Invoke the Linker, speci-

fying a special debug link
map be created and a
prompt be given.

LINKER 1982/06/18 0912:50.5 The Linker is invoked.
L? You are prompted for a

__ ^ .. . - ; '. directive.
.I&i&>I&fl>ZCKB3£ Include the standard

- • ' ' "; Advanced COBOL runtime
L library, ZCAJRT.

* j -^«rf

L?
&XNR.. COMETH ..•*,-._„ c,/ >„' ;i.-, Link the object unit.

.. ' • » * > . _ , ' ; - —. u '. -»^ «*•'£,

L?.
QJJXT; Terminate the Linker.
ROOT COMPTV The bound unit is

* •:"" created.
LINK DONE - The Linker is finished. ̂
RDYs Control returns to command

• - " r- .--. ••.-• level.

INVOKING THE DEBUGGER

To initiate the debugger and set breakpoints in the program to
be debugged, issue the Debug command.

FORMAT:

DEBUG buname

ARGUMENTS:

buname ' -
T ;«;;-•

Name of the bound unit to be debugged. -̂~

The debugger responds with a prompt (the greater-than sign, ^-<
». Set breakpoints using the At directive. You can set up to 32
breakpoints. They will be numbered from 31 to 0 in descending
order. During initialization you can also list the breakpoints
with the List directive and clear erroneously set breakpoints with
the Clear directive.

When you are satisfied with the breakpoints you have set,
issue the Sleep (SP) directive to temporarily suspend the
debugger and return to the command processor. Now you can begin
execution of your program with the debugger.

E-4 CZ15-00

Sample Initialization Dialog
Ŝ . . - .

The debugger initialization dialog for NFTYPM might look like
- this:

DEBUG NFTYPM .- , - Invoke the debugger for the bound
. ^ - unit named NFTYPM.

^ ' > - ;. The debugger responds with its
" - - ' . .. „. prompt, the greater-than sign.

AT 12 Set a breakpoint at line 12.
BP 31 SET The breakpoint id is given in

response.
>
XTST * List all breakpoints.
BP 31 BU=NFTYPM CU=NFTYPM LINENO-12

The debugger responds with a list of
all current breakpoints by ID.

>
AT 19 , Set a breakpoint at line 19.
BP 30 SET

—̂ - >
AT 24 - Set a breakpoint at line 24.
BP 29 SET - .
> »
CL 29 Clear breakpoint 29, at line 24.
BP 29 DELETED The debugger acknowledges the

deletion.
>
AT 25 Set a breakpoint at line 25.
BP 29 SET
>
I3ST *
BP 31 BU=NFTYPM CU=NFTYPM LINENO-12
BP 30 BU=NFTYPM CU=NFTYPM LINENO19
BP 29 BU=NFTYPM CU=NFTYPM LINENO25
>
SP,, Temporarily suspend the debugger and

return to the command processor.

Debugging Multiple Bound Units

.. -. The debugger can be invoked for one bound unit. After that,
the debugger must be turned off before other bound units can be
debugged. To turn off the debugger, issue the command sequence:

: - • DEBUG
QT - ^

Then another bound unit can be debugged by re-invoking the
debugger with DEBUG new_bound_unit_name.

E-5 CZ15-00

EXECUTING YOUR PROGRAM WITH THE DEBOGGER

Execute your program by entering the bound unit name. Execu-
tion is suspended at the first breakpoint set during debugger
initialization. The At directive allows you to specify a list of
debugger directives (a request list) to be executed when the
specified breakpoint is reached. If you included a request list
when you set the breakpoint, the request list executesc If not,
the debugger enters interactive mode and issues the greater-than
prompt (>). You can then enter any valid debugger directives to
check out the program.

?ae
SAMPLE EXECUTION DIALOG

Assume you initialized the debugger using the previous
example, your execution then might look like this:

NFTYfiBE •

*BRKPT 31 AT LINE 12

>

JWIH& TSl

re
>

81

"CH&HGH XXr*"* >38i'4S

Begin execution of the
program NFTYPM.
Execution stops at line
12, the first breakpoint
set.
The debugger prompts for a
directive.
Print the current value of
variable YY.
The value is printed.

Change the value of YY to
ASCII 84 (hexadecimal
3834) .

DOKP"23£

YY
>
~GSg

84 , i

O-f*

*BRKPT 30 AT LINE 19

»*i

Check that the change was
made.

Continue execution. If _̂
you found an error, you "~
could issue the Quit (QT)
directive to terminate the
debugger.

Execution resumes until
the next breakpoint is
encountered.
The debugger prompts for a
directive.

.... t'- -

E-6 CZ15-00

IF YY =81 Check the value of YY and
terminate if YY is not
equal to 81.
YY was not equal to 81, so
you return to the Command
Processor, which issues
the standard ready
message.

TRACE

>

GO

*TR AT LINE 52

>

RDY:

E-7 ' CZ15-00

-\

^y

U

^J

•ov_y
IU

^

5 *» '

Appendix F
USING EXECUTION

COMMAND (EC) FILES

The EC file is a user-created file that contains a sequence
of frequently used commands. For example, an EC file may contain
the commands used to compile, link, and execute a program.

EC FILE ADVANTAGES

The EC file provides the following advantages:

• Less time spent in interactive dialog } < - > ' '
• Fewer typing errors
• Less confusion over what to do next
• More control over the processing environment.

EC file capabilities and guidelines for generating and using
EC files in the applications programming environment are pre-
sented below.

EC FILE FEATURES : -
•» <-.

You can create an EC file using the screen editor or the line
editor. Each line within the file contains a command (or series
of commands) that instruct the command processor to perform
processing according to the arguments supplied in the command
line.

EC control directives (described later) are written into an
EC file to maintain control over file execution.

ŷ F-l • CZlD-00

Active functions (described later) can be included in the
command line to specify values in the argument string.

EC file names can be up to 12 characters long. The name must
include the suffix .EC (e.g., FILEA.EC).

EXECUTING AN EC FILE

Enter the Execute command (EC) and the name of your EC file
(without the .EC suffix) to process the EC file.

DEVELOPING A SIMPLE EC FILE;

Working in the application development environment, assume
that you are writing a FORTRAN program called AREA. The commands
that you will use most often are:

ED (to invoke the Editor)
FORTRANA (to invoke the FORTRAN compiler)
LINKER (to invoke the Linker)
AREA (to execute your program)

A simple EC file that can take you through the above program
development stages into program execution is shown in Figure F-l.

ED -PT
FORTRANA AREA -LE
LINKER AREA -IN LNKDR
DPRINT AREA.M
AREA

Figure F-l. Sample EC File; Command-Only ^

To perform the program development stages shown above, you
create the source code using the Editor. When you enter the ' j
Editor directive "Q", the command processor automatically reads ̂
the next command in the file; i.e., FORTRANA AREA, and begins
compiling your program.

When compilation is completed, the command processor invokes
the Linker that reads its directives from a file called LNKDR.
Upon a successful link, the program AREA executes.

The EC file used above contains only commands and is the
simplest form of EC file. More control over your applications
can be gained by using active strings within your EC file.

' - . - ' • ij -OD ": ;

F-2 CZ15-00

>̂

ACTIVE STRINGS

An active string is part of a command line that is evaluated
during command interpretation. Any MOD 400 command or any active
function (described later) can be used in an active string. The
command processor substitutes the resulting value(s) for the
active string(s) in the command line. The value(s) is then
interpreted as the control argument(s) for that command. For
example, if you are working under a directory other than your
home directory and you want to return to your home directory, you
could issue (or have included in your EC file) the command

CP [LHD] > ** ==
— -* - _ ̂ f

This command causes all files in the user's home directory to be
copied to the current working directory.

Note that all active strings are bound by left and right
brackets.

Active strings can be nested. For example:

LS -P [CWD [LHD]] -BF

" -'• > - J.^ . ".ft̂ ; -,
causes the command processor to: . -,,

*• * • »•' 5 •-' , i> >

1. Interpret the active string [LHD] and insert the correct
character string into the command line. At this point,
the command line reads:

LS -P [CWD ~ZSYS51>PROGS>JSMITH] -BF

2. Interpret the active string: ,. , *„ . „ ^,

[CWD ~ZSYS51>PROGS>JSMITH]

The command line now reads: ,
i

LS -P ~ZSYS51>PROGS>JSMITH -BF . ,.

3. Execute the LS command. A brief listing of the directory
will be written to the current user-out file.

Command-only EC files allow minimal control over command pro-
cessing. After practice with small command-only EC files (their
creation and execution), you can add active strings or active
strings in combination with EC control directives (described
later in this section) to increase control of your processing
environment.

>' ''"". .- ~ T̂-.',!r;"'c;

F-3 CZ15-00

ACTIVE FUNCTIONS

An active function is a command explicitly designed for use
within an active string. Just as single (or multiple) commands
are evaluated in command-only active strings/ each active func-
tion is evaluated and its resulting value is substituted in the
command line prior to execution. EC directives and active func-
tions within your EC file control the sequence of processing. EC
directives must begin with an ampersand (&) and must be followed
by a-space or a tab character., Active functions and their use in
EC files are defined below.

-*! •
Using EC Active Funcfci.QQS.

Active functions can have arguments of their own. For
example:

[MINUS a b]

Subtracts the value of b_£_roJE the value of a. The result is *
returned to the command Line and the command is processed.
±s^^ ̂ ™ ̂ ^^^^^ ^

Nested Active Functions

Active functions can be nested. For example, to find the
value of: - - - >

3 (2(5+1)-6) - • ' «v. • _ . • ju,-.:.-

the active string reads: ' -

[TIMES 3 [MINUS [TIMES 2 [PLUS 5 1]] 6]]

If active functions are nested, the innermost pair of brackets is
evaluated first, then the next pair of brackets out from those,
etc. In this example, the value 18 is returned.

M.uJ-tjAR̂ Ls.. Ac.t.Ji.y,fi.i, Fun.cfci.o, ns ""• ' • * -

Multiple active functions can be included in a single active j
string. In this case, each active function is separated from the ̂
next by a semicolon. Only one pair of brackets encloses the
entire string. The resulting value is the concatenation of the
separate values of each active function. For example, if the
active string:

- [SUBSTR EXECUTE 1 6]

returns the value EXECUTf and the active string:
™ "* * * '"T ' * ' f

[SUBSTR DRIVER 3 3]

F-4 CZ15-00

returns the value IVE, the active string:

^ [SUBSTR EXECUTE 1 6,-SUBSTR DRIVER 3 3]

returns the value EXECUTIVE

Using Active Functions as Commands

The following active functions can be used as commands:

• CVD • LWD
• EQUAL • LED
• NOW • VALIDCKPT
• USER » WH %.vH,.,

If an active function (or active string) is used as the only
entry on a command line, enter the active function withpuh the
enclosing brackets.

Groups of Active Functions *

x̂ Active functions are divided into eight groups:

1. Arithmetic
2. Checkpoint
3. Date/Time • •"
4o Directory
5« Logical »*'
6. Question
7. String
8. User

The following alphabetic list of MOD 400 active functions
indicates the group to which each active function belongs.
Active functions preceded by an asterisk (*) can be entered as
commands. - " - u

.!$,

> >4-nt̂ '""

, 5 - 1f**B
~ j ' ~ j*Z-

r^L*. ' - ;:*,*•-, p, ̂ ~ ,.'.
"- .'• ^r , -UJ«s snc*.

F-5 CZ15-00

Active «.
Function

AND
BDATE
*CVD
DATE
DIVIDE
*EQUAL
EXISTS
EXSW
GREATER
INDEX
LENGTH
LESS
*LHD
*LWD
MINUS
NOT
*NOW
OR
PLUS
*QUERY
RESPONSE
RETCODE
SUBSTR
TIME
TIMES
*USER
*VALIDCKPT
*WH

Group
r~,

Logical
Date/Time
Date/Time
Date/Time
Arithmetic
Logical
Logical
Logical
Logical
String
String
Logical
Directory
Directory
Arithmetic
Logical
Date/Time
Logical
Arithmetic
Question
Question
Logical
String
Date/Time
Arithmetic
User
Checkpoint
Directory

v ,t

t"3 "-

' \ ~°>~\

^ ,

c£'7{ *,t *"* v. »

>t * ^

Arithmetic Active Functions

The arithmetic active functions perform arithmetic operations
on their arguments. The arithmetic active functions are:

• PLUS
« MINUS
• TIMES
• DIVIDE

The values of the arguments can range from -32767 (decimal) to
+32767 (decimal). A character string is returned as the result.
If the operation produces an overflow result, the character
string OVFL is returned. Note that division by 0 produces an
overflow.

Example:

&IF [EQUAL[PLUS 3 2][MINUS 9 4]] &THEN &ELSE &G FINISH

In this example, the value returned for both arithmetic func-
tions (PLUS, MINUS) is 5.

^J

F-6 CZ15-00

CHECKPOINT ACTIVE FUNCTION ' 5

The checkpoint active function returns a character string
that specifies whether or not a valid restartable checkpoint was
found in a specified pair of checkpoint files. If a valid check-
point was found, the character string TRUE is returned; otherwise
FALSE is returned. The checkpoint active function is:

VALIDCKPT

When used in conjunction with the EC control directive &IF
(described later), if a valid restartable checkpoint is found,
the VALIDCKPT active function can activate a restart when a task
group invocation has abnormally terminated.

Example:

[VALIDCKPT CPOINT] l£l

If either the CPOINT.1 or CPOINT.2 checkpoint file contains a
valid checkpoint, TRUE is returned; otherwise FALSE is
returned. , . . ̂ „ r;M { >r ^

DATE/TIME ACTIVE FUNCTIONS

Date and time active functions return a character string that
represents the date and time. The date and time active functions
are: *

<vs->S *
> $

Xt .

- 'Jf *

•* *

•»

• BDATE
«• CVD
• DATE
• NOW
ft TIME

Example: 4-s < *•*% £, r- - •» /--
* •„ v NSC- */v

&IF [EQUAL [TIME] 09:05] &THEN &ELSE &G FINISH

If the time is 9:05, the value returned for the TIME active
function is 09:05.

DIRECTORY ACTIVE FUNCTIONS . *

A directory active function returns a character string that
represents information about an entry in the directory hier-
archy. Directory active functions are:

• LHD
• LWD
• WH >«?!fp "9fi .̂ ,•̂ 5 >;,'ov

£, *<•»

F-7 CZ15-00

Examples
Vs-. y*c- -VJ-JA

GET [WH DATA] 8

The value returned is the full pathname~PAYROLL>OVERTIME>DATA.

LOGICAL ACTIVE FUNCTIONS
'f i -

These active functions are used in conjunction with the
&IF,&THEN,&ELSE directives of the Execute command (EC). (These
directives are described later in this section.)

Logical active functions return character strings TRUE or
FALSE. The argument strings are compared character by character
according to their ASCII code value. The first instance of an
unequal ASCII code value returns FALSE. Thus, the sequence:

[EQUAL 4 04]

although arithmetically equal, returns FALSE because the first
ASCII comparison is between 4 and 0.

Unequal string lengths also return FALSE.

Logical active functions are: • >;" 3<Mi? 3*. 4>!

« EQUAL ia9^
• EXISTS - 1 -
« EXSW
« GREATER ' 'ifc *
• LESS k *
• NOT
• OR •*
f RETCODE *

QUESTION ACTIVE FUNCTIONS *:q"\>-\~

^Question active functions return a TRUE/FALSE representation
of user-supplied answer to a specified question. The question —s
active functions ares

t ̂ U '-si O

• QUERY
• RESPONSE

Example:

j I t:

SIP [EQUAL [QUERY "DO YOU WANT TO CONTINUE?"] TRUE]
&THEN &ELSE &G FINISH

•*»U T «.

If your response to the question "DO YOU WANT TO CONTINUE?"
is YES, the character string TRUE is returned to the active
string.

-D F-8 CZ15-00

STRING ACTIVE FUNCTIONS

^ String active functions return the results of operations per-
formed on a character string. String active functions are:

• INDEX
• LENGTH
• SUBSTR

Example:

LS [SUBSTR AB* 3 1;SUBSTR ABC.EC 43]

The first active function returns the string found beginning
at the third position of the character string AB*, and of
length 1. The result is *. This value is concatenated with
the string found beginning at character 4 of the string
ABC.EC and of length 3 (.EC). The returned value for the
entire active string is *.EC.

^ USER ACTIVE FUNCTION

The user active function returns information about the cur-
rent user of the system. The user active function is:

USER

Depending on the argument supplied, selected information can be
retrieved from system data base.

Example:

[USER NAME]

This example returns the name of the current system user.

CREATING A MORE COMPLEX EC FILE •, ,

^̂ With careful planning you can create EC files that control
"̂̂ the type of processing to be done; i.e., as specified in the com-

mand line. The simple EC file described earlier in this section
controls processing with a step-by-step procedure. The EC file
shown in Figure F-l, earlier, allows you to develop, compile and
link a FORTRAN program. This EC file assumes that there are no
errors in your source code and that the compilation of the source
code is error-free. If there are errors in your source code, how
can you check to make sure that your object code will enter the
Linker session with a "clean compile"? This can be accomplished
by using EC control directives explained below.

F-9 CZ15-00

EC Control Directives £*•*- - -*' *•'>• * JV,T"*^

You can control certain operational aspects of the command
processor to provide a degree of control over the logic of com-
mand execution by using EC control directives within your EC
files.

These directives begin with an ampersand (&) and are followed
by a space or a tab character. Each EC control directive is des-
cribed briefly below* (For more detailed information on each
directive, see the Commands manual.)

Specifies a comment line that is not processed. The line
is visible only on the listing of the EC file.

&IF,&THEN,&ELSE

Specifies a series of conditional execution directives of
the forms ^

*

&IF [active_function]
&THEN then_clause
&ELSE else_clause

The active function in an &IF control directive is evalu-
ated,, If the value of the active function is the string
TRUE, then_elause is executed, otherwise
else_clause is executed.

NOTES

1. The &IF, &THEN, and &ELSE directives cannot be used
independently of each other. - - i

2. The &ELSE else_clause directive is optional.

0
3»' Then^clause is optional. Without it the next command

is executed. An &ELSE else__clause if present, is
skipped as usual.

- — 1. ""* *

4. Then_clause and else_clause can be any command line
or control directive except &L, &IF, &THEN or &ELSE.

5. The EC processor terminates execution if any problem
is encountered in an &IF statement. This includes
improper syntax, an error from the active function,
or an error from the then_clause or else__clause.
Major commands, e.g., ASSEM, MACROP, and TRAN should
not be used as a then_clause or else_clause because
they have a higher likelihood of errors. The &G
directive is recommended instead.

F-10 CZ15-00

&A[pathname]
ŝ̂ x

Changes the current user-in file to the specified path-
name. If the pathname is not specified, the current
command-in, i.e., the EC file is used as the user-in
file.

&D

Restores the user-in file to what it was when the EC file
was first invoked.

NOTE

This directive should be used before each &Q in
your EC file to return the system to the state in
which you began your session. 0*

&N -y •- i+ J0 2-y

-̂̂ Turns on the printing of command lines to the user-out
file before the commands are passed to the command
processor.

&F

Turns off the printing of commands to the user-out file,
This is the default.

&G label

Provides a "go to" capability. This directive is used in
conjunction with the &L and &IF,&THEN,&ELSE directives,
or can be used alone. The next command that is processed
is the first command (or EC directive) after the first &L
directive that defines the label.

' •' "' - Example?

^
&IF [EQUAL A B] &THEN &ELSE &G END

&L END
&D
&Q

In this example, if A is not equal to B, the EC directive
routine goes to the label END. The next command read is
&D, the first command after the label END.

F-ll CZ15-00

~-\

&L label

Defines a label that may be the object of an &G direc- /̂ "\
tive. (See the &G example above.) ^^ :*;

&P

Prints a line. Any character string entered after &P is
printed on the current user-out.

Example: ., * • .;•-• o- -..ii3 r-j

&P LINKER SESSION BEGINS

In this example, the character string LINKER SESSION
BEGINS is written to user-out.

- - •••;,.-.- -• —.,.;•?_?.- ,.;0V
&Q • ?;-,_ -.- ,JO , J-; t ,*,,

Stops execution of the current EC file.

CREATING A GENERALIZED EC FILE , -, «,. . ,<* ._..,- -̂>

Every program you design may not be written in FORTRAN, and
it is unlikely to name all bound units AREA. A convenient way of
tailoring your program development EC file is by using substitut-
able parameters in argument lists.

'„:-)' •-. • 3 -> o
j3-U.bjs.t-itutab1e Paranneters

A substitutable parameter in the command-in file is an ASCII
character string whose first character is an ampersand (&), fol-
lowed by one or more digits. The value indicates the position in
the argument list of the data element to be substituted. For
example, the format of the EC command is: v ?

EC path arg1 arg2 ... -

where the substitutable parameter for path is &0f the substitut- -~x
able parameter for arg, is &1, etc. j

To further illustrate/ assume you want to create, compile,
and link a COBOL source program. You can still use the basic
outline of the EC file shown in Figure F-2, but with some minor
modifications.

L

J,,

4 Z , •> „ -ffj(^

'.-.Mr :, .'••'.,

F-12 CZ15-00
-• I-'l N /

>̂

^

&CREATE, COMPILE, AND LINK A PORTRANA PROGRAM
&P BEGIN EDITOR SESSION
ED -PT
&P COMPILATION BEGINS
&IF [EQUAL [RETCODE] 0000] &THEN &ELSE &G ERROR1
&P LINKER SESSION BEGINS
&A LINKDR
LINKER
&IF [EQUAL [-RETCODE] 0000] &THEN &ELSE &G ERROR1
&P LINK COMPLETE
&G FINISH
&L ERROR1 """ '
&P ERROR ENCOUNTERED IN DEVELOPMENT SEQUENCE
&P EC TERMINATED
&D
&Q
&L FINISH
&D
&Q

W

Figure F-2. Sample Complex EC

You can initially create (or subsequently modify) the EC file
to accommodate all programming languages. Figure F-3 shows a
generalized program development EC file. To execute the EC file
for a COBOL program development session, you invoke the EC file
by entering: ^ (

EC PROG_DEV COBOLA PAYROLL " " |
>

The path PROG_DEV is substituted for all occurrences of &0 (there
are none in this EC file); COBOLA is substituted for all occur-
rences of &1; and PAYROLL is substituted for all occurrences of
&2. The changed lines in the generalized EC file now read:

& CREATE, COMPILE, AND LINK A COBOLA PROGRAM

COBOLA PAYROLL

LINKER PAYROLL

Similar EC command formats can be used for each programming
language.

'-.l,
P-13 CZ15-00

If you are reading in system software directives (e.gc,
Linker directives) from the EC file, you must enter the &A direc-
tive before the command line that calls the component (see Figure
F-3). This attaches the user-in file to the command-in file
(i.e0, the EC file itself). It is recommended that you enter an
&D directive before e^ch &Q directive in your EC file. The &D
directive returns user-in to what it was before you entered the
EC command.,

/ " , „ ' ~V - """ ff\ " t\ *- * i .>~ ~ ' . -.Tsj '.)ut- ; i

^J

& CREATE, COMPILE, AND LINK A &1 PROGRAM
&P BEGIN EDITOR SESSION
ED -PT
&P COMPILATION BEGINS

&1 &2 '•"
&IF [EQUAL [RETCODE] 0000] &THEN &ELSE &G ERROR1
&P LINER SESSION BEGINS
&A vt-'-
LINKER &2 -'-

LINK &2 -_. ,,_,,, „
QT
&IF [EQUAL [RETCODE] 0000] &THEN &ELSE &G ERROR1
&P LINK COMPLETE
&G FINISH
&L ERROR1
&P ERROR ENCOUNTERED IN DEVELOPMENT SEQUENCE
&P EC TERMINATED
&D
&Q , • • - -
&L FINISH , ,..s , . . .-

** » * * ' i - ' t ^ - c * _ . - # i - « . - - ? » - ~ ; * - i f f

^J

Figure F-3. Sample Generalized EC File:
Application Development

/•

SO • .,' .. 'i .••"3O ' '• r>:"-,M'" •

F-14 CZ15-00

^
< .:• .r;. ••' : - 4 : - vat<t3

i ty -•; •>: <--"j

?t ^

.-<'< - ^
1A

Appendix G
BACKUP AND RECOVERY

MOD 400 supports facilities that enable you. to save and
restore disk files, preserve the execution environment during a
power failure, perform file recovery at the recovery level, and
restart a program from a previously established point.

The save/restore facility allows you to preserve selected
disk files and directories on magnetic tape or another disk
volume and, when later required for processing, to restore the
files, directories, and associated structures to disk.

The power resumption facility uses the memory save and auto-
restart unit to preserve the memory image through a power failure
lasting up to two hours. If power is restored during this time,

'^/ the power resumption facility reconnects the previously online
peripheral and communication devices and restarts the tasks that
were running when the power failure occurred. If the power fail-
ure lasts more than two hours, the memory image is destroyed and
the power resumption facility disabled. When power is restored,
the user can reinitialize the system and use the file recovery
and checkpoint facilities to restart the system from a previously
established restart point.

File recovery enables you to dynamically save record images
before they are updated and, if necessary, later write the images
back to the file, thereby returning the file to its unaltered
state. File recovery provides file integrity in the event of a
system failure.

G-l CZ15-00

File recovery is provided through three distinct functions:

• "Before image" recording, which preserves a record prior "̂
to its being updated,,

• "Cleanpoint" or "checkpoint" declarations, which are
issued in your program and define a point at which all
updates are complete* When the updates are complete, the
associated before images are destroyed*

• "Rollback" or "restart" functions, which return the files
to their unaltered state by applying all before images
that have been recorded since the last cleanpoint.

The cleanpoint and rollback functions should be used to pro-
vide file recovery in a transaction-oriented environment. They
are best suited for applications in which a single transaction
causes a number of record updates0 In a batch processing envi-
ronment, the checkpoint and restart procedures should be used for
file recovery and program restart.

x̂The checkpoint restart facility enables you to establish a
point in the program to which you can return at a later time and
continue processingo The return point (checkpoint) is used to
save the current status of the task group. You issue a check-
point call in the program when you reach a point in processing
where the program could be restarted. A restart can be performed
at the most recently completed checkpoint at any time during pro-
cessing., If the task group is abnormally terminated for any
reason, it can be restarted at the most recent valid checkpoint.

DISK FILE SAVE AND RESTORE ' s " "- -°

The Save and Restore programs allow you to save and restore
disk files and directories. Save is used to save disk files and
directories on a disk or magnetic tape volume for later restora-
tion by Restore.

The Restore program reconstructs the file structures copied
by the Save program. If a file being restored already exists on ->
the volume (or volumes), the Restore program replaces the current
file contents with the file data saved by the Save program. (The
access list is not altered.) If a file being restored does not
exist on the volume,' the Restore program creates the file and
loads the saved data. (Access is set as defined in the saved
file.)

PQWER RESqMPT.IQlfl

Power resumption is an optional facility that allows the
system execution environment to be automatically restarted after
a power interruption. The Level 6 central processor must have
the memory save and autorestart unit. This unit can preserve the
memory image through a power failure lasting up to two hours.

G-2 CZ15-00

i (It cannot, however, preserve the state of the I/O controllers
-̂̂ nor ensure that no operational changes have been made to the

mounted volumes.)

If fewer than two hours have elapsed when power is returned
to the central processor, the power resumption facility will per-
form the following functions:

o Reinitialize the system software.
I «*

o Reconnect peripheral devices.

o Reconnect communication devices serviced by the asynchro-
nous terminal device (ATD) line protocol handler or the
teleprinter (TTY) line protocol handler (see the System
Building and Administration manual and System Programmer's
Guide. Volume I for information on line protocol
handlers).

\^_^ o Restart application tasks that were active at the time of
the failure if these are display formatting and control
facility tasks or are tasks containing user-written code
to handle power failure/power resumption.

Implementing the Power Resumption Facility

The power resumption facility must be included in the MOD 400
Executive at system building. The Level 6 central processor must
contain a memory save and autorestart unit that has been acti-
vated by the operator (see the System User's Guide for activation
procedures).

When power resumption is specified in the system building
dialog, all peripheral devices and all communication devices
associated with the ATD and TTY line protocol handlers are desig-
nated as reconnectable and will be automatically reconnected when
power is restored. If any ATD/TTY-associated device is not to be
automatically reconnected, you must edit the CLM file to remove

ŝ / the -RECONNECT argument from the STTY directive generated for the
device.

Power Resumption Procedures^

The power resumption facility automatically performs the fol-
lowing functions:

o Restarts the device drivers, clock, communications subsys-
tem, and display formatting and control facility.

o Reconnects all peripheral devices that were online at the
time of the failure.

G-3 CZ15-00

• Reconnects ATD/TTY-associated communication devices that
were online at the time of the failure, except for those
devices designated as not reconnectable. -~> N

• Restarts the screen forms on reconnected terminals con-
trolled by the display formatting and control facility.

e Resets the system date and time if the date/time clock has
a separate battery backup unit.

- ' -»••:, o :
« Reloads the memory management unit (if any).

« Reestablishes the integrity of mounted volumes.

• Restarts application tasks that were active when the power
failure occurred if they are display formatting and con-
trol facility tasks or tasks containing user-written code
to handle power failure/power resumption.

In order for an application task to be notified when a power
resumption has occurredf it must connect its own trap handler and
enable trap 53. Trap 53 condition will be signaled when the task ~—
becomes active and is issuing its own instructions (not executing
Executive instructions) . See "Trap Handling" in the MOD 4QQ
Sjys£ejp CgncePts manual.

After a power resumption has occurred, peripheral devices and
reconnectable ATD/TTY-associated devices that were online at the
time of the failure are again brought online. The system opera-
tor may be required to initialize certain peripheral devices. A
terminal user may be required to reenter the input line if he had
jiot pressed the RETURN or XMIT key when the failure occurred.
See the System User's Guide for details*

FiELE RECOVERY

File recovery enables you to save record images from a file
before it is updated and to later write these images back to the
file, eliminating the alterations made during the updating. •-""-«
Every time a record is updated, a copy of the record, as it
exists before the update, is written to a system-created file.
The system-created file is called a recovery file; the records it
contains are called before images. The system uses the recovery
files to bring data files to a consistent state following a soft-
ware failure or a system failure such as that caused by a loss of
power. When the before images are applied in reverse chronologi-
cal order to the data files, the data files are rolled back to a
previously established state.

PssJign^ting Recpv^r.sb.l.e,, Fi.ile.s

File recovery is optional. You can designate a file as
recoverable through the -RECOVER argument of the create file (CR)
command. Files not created as recoverable can be made recover-
able by specification of the -RECOVER argument of the modify file
attribute (MFA) command.

G-4 CZ15-00

v ^ Recoverable files can be made non- recoverable through the
"̂̂ specification of the -NORECOVER argument in the MFA command.

Recovery File Creation

Each task (or task group in some cases) having a data file
designated as recoverable has associated with it a recovery
file. The recovery file is created by the system when the first
before image for a recoverable file is about to be written.

If the tasks in a task group have only sharable files, only
one recovery file exists for the group. If any task in a task
group has an exclusive file, one recovery file is created for
each task in the group.

All recovery files are created subordinate to your working
directory. The names of the files are recorded in the RECOVERY
directory, which is positioned under the root directory of the
system volume. This directory is maintained by the system. Each

\^_s recovery file is assigned a name of the form:

$$RECOV.ggtt

wheres

gg - Group identifier
tt - Task identifier

File Recoverv Process ^dl &,

The system recovers a data file (i.e., erases the updates
made to it) by writing the before images back to the file.

You can declare points in your processing (called clean-
points) at which all file updates are considered valid. When a
cleanpoint is declared, all before images taken up to that point
are invalidated. New before images are written when you begin to
update the file.

\-S
You can perform a rollback at any time during processing.

When a rollback is requested, the before images are written to
the file, wiping out updates made since the last cleanpoint.

Use of the cleanpoint and rollback functions is recommended
in a transaction-oriented environment.

TAKING CLEANPOINTS

When you consider the data in your file to be consistent and
valid, you declare a cleanpoint in your program. Cleanpoints are
established by CALL "ZCLEAN" statements in COBOL programs or
5CLPNT macro calls in assembly language programs.

G-5 CZ15-00

N̂

When a cleanpoint is declared, the system performs the following
actions:

• Writes all modified buffers to disk

« Updates all directory records

• Invalidates the recovery file before images that have been
taken for the data file

• Unlocks all records previously locked by the user (tasks
waiting for these records are activated).

•>

Note that the file system performs a cleanpoint when a
recoverable file is closed. .,15 :-u «.*e - - .

REQUESTING ROLLBACK ''~ ' - . - , . , - . , , .. ^ , _ . , ..

Rollback initiates the recovery of a file to the condition in
which it was at the last cleanpoint. If programming in COBOL,
you request a rollback by coding a CALL "ZCROLL" statement. If
programming in assembly language, you request a rollback by
coding a $ROLBK macro call. When a rollback is requested, the
system performs the following actions:

• Takes before images from the recovery file and writes them
to the data file, thereby wiping out updates made since
the last cleanpoint. -

• Invalidates the before images on the recovery file.

« Unlocks all records previously locked by the user. (Tasks
waiting for these records are activated.)

The file system performs a rollback when a task group termi-
nates abnormally.

RECOVERING AFTER SYSTEM FAILURE

When the system is reinitialized following a system failure,
it checks for the existence of recovery files. If recovery files
do not exist, files had not previously been declared as recover-
able or updates had not previously been made to recoverable
files. If recovery files do exist, the system failure occurred
while updates were being made to a file that had the recover
attribute. If recovery files exist, the operator should issue
the Recover command so that the system will perform a rollback of
all recoverable data files. See the System User's Guide for
details.

G-6 CZ15-00

1*Vft *t & * ' • '
^^ CHECKPOINT RESTART """ * * '

The checkpoint restart facility allows you to provide a file
recovery and program restart capability in a batch processing
environment. Through checkpoint restart you can establish a
point in your program to which you can return at any time and
continue processing. This return point (called a checkpoint) is
used to save the current status of the task group request. You
can perform a restart to the most recently completed checkpoint
after the abnormal termination of the task group request or at
any point during the processing of the task group request. A
restart cannot be performed from an earlier checkpoint, nor can
it be performed after the normal termination of a task group
request.

Checkpoint restart does not support the use of the listener
secondary login facility.

Checkpoint

^ When a task requests a checkpoint, the system records the
current contents of your memory and the current state of tasks,
files, and screen forms onto a checkpoint file previously
assigned. The system then takes a cleanpoint so that recoverable
•files are synchronized with that checkpoint. See "File Recovery"
earlier in this section for a description of recoverable files
and cleanpoints.

The system supports one checkpoint task and any number of
other tasks that are dormant or are waiting on requests placed
against other tasks in the task group. (Thus, a single active
command executing under the command processor and/or any number
of nested ECs can be checkpointed.)

Checkpoint File Assignment tr

You can enable the checkpoint restart facility for your task
group and designates where its checkpoint images are to be

*<-/' recorded by issuing the checkpoint file assignment (CKPTFILE)
command.

Checkpoints are written alternately to each of a pair of
checkpoint files. This technique ensures the availability of the
previous valid checkpoint if a failure occurs during the process
of taking a checkpoint. The system locates and uses only the
most recently completed successful checkpoint from the pair of
checkpoint files that you have specified.

When designating the checkpoint file, you specify a single
pathname (the last element of which can be a maximum of 10 char-
acters) . The system appends the suffixes .1 and .2 as appropri-
ate. If the system cannot find one or both of the specified
checkpoint files, it creates it/them.

G-7 CZ15-00

TAKING A CHECKPOINT

When a checkpoint is taken, the system writes a checkpoint
image and performs a cleanpoint for all recoverable files. If
programming in Advanced COBOL, you request a checkpoint by coding
a CALL "ZXCKPT" statement or using the RERUN clause in the
IHD-CONTROL paragrapho If programming in assembly language, you
request a checkpoint by coding a $CKPT macro call.

Your task group must be in a "checkpointable" state when it
requests a checkpoint A task group is in a checkpointable state
when each task that is part of the group has requested a check-
point, is waiting on a request issued to another task in the task
group, or is dormant (i.e., there are no current requests for the
task) . *<

Once a checkpoint is recorded by a task group, it remains
available as a restart point until the next checkpoint request is
completed, the current checkpoint file is disassigned (by the
-DISASSIGN argument of the CKPTFILE command), or the task group
request is terminated normally. _̂̂ /

The lead task of the group may be waiting on both another
task, which is a member of the group and a "break" request.

CHECKPOINT PROCESSING
- ;• •• *>-?? ••• .ot ci^.y-.-.-^ ^

When a task group takes a valid checkpoint, the system
records the following information on the checkpoint file estab-
lished for that groupc

1. Executive information, including data structures, user
pool memory blocks, data segments of bound units linked
with separate code and data, and floatable overlays. ^

2. Status and pathnames of the standard I/O files and of
nonsharable bound units.

3. Memory locations and pathnames of sharable bound units. '**''•
^~J

4. Current state of screen forms for terminals operating
under the display formatting and control facility.

5. Status and position of all active files (i.e., files that
have been associated, reserved, or opened).

When your file information has been recorded, the checkpoint
image is completed and a cleanpoint is taken. You must ensure
that files to be synchronized with the checkpoint restart process
have been designated as recoverable. Since the file system per-
forms a cleanpoint when a recoverable file is closed, you may
have to take a checkpoint prior to closing the file to keep
checkpoint restart synchronized with the state of the recoverable
file. (Temporary files cannot be designated as recoverable.)

G-8 CZ15-00

\^_s Checkpoints cannot be taken while an active local mail mes-
sage group exists (i.e., a checkpoint cannot be taken in the
period between message initiation or acceptance and message
termination).

Checkpoints are not made automatically obsolete by the normal
termination of the task under which they were issued. To invali-
date a previous checkpoint (taken during the execution of one
command) before processing a new command, you must take a check-
point immediately prior to the termination of that command.

Restart . j

You can perform a restart at the following times:

• During the processing of the task group request that
issued the checkpoint restart.

• During the processing of a task group request that was
—̂s scheduled after the abnormal termination of the task group

request in which the checkpoint was taken.

• When the system is reinitialized following a system
failure. - -- -

When a restart request is issued, the task group issuing the
request is terminated abnormally and the task group request
recorded on the checkpoint file is again put into effect.

The system locates the most recently completed checkpoint and
reads the checkpoint image from the file, rebuilding the Execu-
tive data structures and memory blocks, reloading bound units,
and repositioning active files.

Procedural code and workspace must occupy the same physical
memory locations that were used when the checkpoint was taken.
In general, task groups that are to be restarted must be the sole
users of exclusive memory pools. Sharable bound units referred

—̂̂ to by these groups must be permanently loaded (through the Load
command in the system startup EC file). The configuration under
which the restart is performed must be identical to that which
existed when the checkpoint was taken.

REQUESTING A RESTART " ̂ 7

To restart from the last completed checkpoint (and to abort
the current task group request if restarting during the session),
you issue the Restart command. The operator can restart an
existing task group that has a valid checkpoint by using the
-GROUP argument of the Restart command. If the memory blocks
required to effect the restart are not available, the restart
will be aborted. Specification of the -WTMEM argument of the
restart command will cause the system to wait until the specific
memory blocks required to perform the restart become available.

G-9 CZ15-00

^If this is a restart following a system 'failure, the Recover
command must have been issued by the operator or through an EC
file to perform a system-wide rollback of all recoverable files. "—' ̂

If a restart is performed during a session, the abort
(termination) of the group request will cause a rollback of all
recoverable files in your task group. The abnormal termination
of the group request causes the last completed checkpoint image
to be retained as a valid checkpoint. The Abort Group and Abort
Group Request commands force an abnormal termination,' the Bye
command causes a normal termination. The normal termination of
the command processor with a nonzero value in the $R2 register is
treated as an abnormal termination for checkpoint file purposes.

RESTART PROCESSING „ , - - , .- - .,, , ,_

When the Restart command is issued, the system performs the
following steps: „ _ • ; , *;,: ->,-, . ,-_, , A%-

1. Locates the most recently completed checkpoint.

2. Validates that the restart is being performed under the
same user id as that used when the checkpoint was taken.

, (I j - A - If.

3« Rebuilds Executive data structures. *,,- . 4,. f -.

4« Reads nonsharable bound units, data segments, floatable
overlays, and memory blocks that were obtained by
get-memory operations from the checkpoint image into the
same memory locations they occupied at the time the
checkpoint was taken.

5. Reloads sharable bound units in the system memory pool.
Only the code segment is reloaded if the bound unit was
linked with separate code and data. Unless it was linked
with the restart relocatable attribute (Linker RR direc-
tive) , the code segment is reloaded at the same system
pool memory locations occupied when the checkpoint was
taken. -"""̂

^J
6. Associates, gets, opens, and positions active user files

recorded on the checkpoint image. Rollback should have
been performed already; see "Requesting a Restart" above.

7. Restores the screen content of terminals that were oper-
ating under the display formatting and control facility
and were active at the time of the checkpoint.

8. Reissues the break request if such a request had been
issued by the lead task at the time of the checkpoint.

9. Turns on the task that issued the checkpoint request at
the next sequential instruction after the checkpoint.

G-10 CZ15-00

V̂ / The checkpointed state of the standard I/O files is reestab-
lished at restart time. Modifications made to files (e.g., EC
files) between the checkpoint and the restart must be restricted
to those that do not invalidate the repositioning of the files.
A command being restarted must remain in the same position in the
file; only those commands that follow the restarted command have
any effect on the restarted task group request.

Sharable bound units being used by a checkpointed task group
are reloaded and not restored from a checkpointed memory image
(except for the data segments of bound units linked with separate
code and data). Thusr all such bound units should contain only
code. All sharable bound units in use by a restarting task group
must be identical to the versions that existed at the check-
point. They cannot be relinked. If an overlay area table (OAT)
is in use for such a bound unit, no overlay area can be reserved
at the time the checkpoint is taken.

If the application programs that issue physical I/O orders
-̂̂ for communication devices, you must reissue connects to those

devices before issuing read and write orders to them.

G-ll CZ15-00

~ t-

\ «•»

^

^/

^>

^x

VJ -W .

fi*«<3

Appendix H
' • • „ x REQUESTING AND USING

^ . MEMORY DUMPS
fffr
i

This appendix provides procedures for requesting memory
dumps, as well as procedures for analyzing, interpreting, and
resolving errors using memory dumps. The following memory dump
utilities are described:

• MDUMP
• DPEDIT «•.*<»»• /, i<3'-7

MDUMP UTILITY •'>n •* -3

The MDUMP is a stand alone utility that allows you to obtain
a memory dump with no requirement for system functions. MDUMP
may be used when it is not possible or practical to use the debug
utility dump facility.

MDUMP Requirements

To use MDUMP, you need a disk that contains an MDUMP
bootstrap record on sector 0, and a file (DUMPFILE) large enough
to contain the complete memory image. The Create Volume command
is used to prepare this disk (see "Preparing to Execute MDUMP",
below).

To dump memory to the disk file, bootstrap the prepared disk
as described under "Procedure for Using MDUMP," below. This
procedure loads and executes MDUMP. When MDUMP terminates, an
image of memory is contained in DUMPFILE.

i " ' *"" tjŜ - - *-rf
H-l CZ15-00

This file can be edited and printed using the Dump Edit utility,
also described later in this section.

Preparing to Execute MDUMP

Before loading the program for which a memory dump is
required, enter the Create Volume command:

CV path /-MBUMP nrrt =BOOT X'hhhhi\ /-
-MD nnf [J-BT X'hhhh' f|

ARGUMENTS:

path

^ Designates the pathname to the disk volume being prepared
for MDUMP. The pathname may be Ssympd or !sympd>volid.
If >volid is specified, the volume label is checked. The
volume must have been previously formatted via a Create
Volume command,, (This command is described in detail in
the Commands manual.) The volume can contain other data. /̂

(-MDUMP nnl
(-MB nn f

Writes the MDUMP bootstrap record to the volume specified
in the path argument and allocates a file (DUMPFILE)
large enough to contain nn 4K word modules to be dumped.
The resulting dump volume may be used for any configura-
tion of memory less than or equal to the value nn x 4K
words.

(-BOOT X'hhhh'l
l-BT X'hhhh1 f * *

Creates bootstrap records and intermediate loader records
and writes them to disk sectors 0 through 6. The
optional X'hhhh' field defines certain available boot-
strap optionsc See the Commands manual for details. ^

-̂̂NOTE ^
. I- • ' iOfr c>v %

This argument can be used in conjunction with
the -MDUMP argument to obtain a combination
bootstrap/MDUMP (described below).

Procedure for Using MDUMP

Once an executing program encounters a problem or a halt
occurs, you can obtain a memory dump by taking the following
actions:

1. Bootstrap MDUMP, which then sends the memory dump to the
disk file DUMPFILE.

H-2 CZ15-00

L 2. Rebootstrap the system.
v—' '

3. Use the Dump Edit utility program (DPEDIT) to print all
or a portion of the memory dump from the disk volume that

;-~—-— contains MDUMP's output.

' Procedure for Bootstrapping MDUHP i • }

To bootstrap the MDUMP bootstrap record into memory, perform
the procedure shown below. MDUMP then transfers to the disk file
(DUMPFILE) the amount of memory image specified in the -MDUMP
argument of the Create Volume command.

1. Mount the disk containing, the MDUMP bootstrap routine on
the device to be used in bootstrapping. j

2o Press fitop and CJLear. , !

3. Set the P-register to 0004 . _., _„__ :

4. Enter the channel number of the bootstrap device (i.e.,
the disk mounted in step 1) in register Rl.

If -BT was specified when creating the MDUMP dump device/
bit 12 must be on in the Rl value (i.e., Rl is set to
CCC8, where CCC is the channel number). This causes the
MDUMP bootstrap record to be selected.

5. Enter the initial address of the memory area into which
MDUMP is to be held in register Bl. MDUMP requires one
sector of the disk device type on which it is stored.
The initial address of Bl should be greater than 100 to
ensure that hardware dedicated locations are not
overlayed.

6«, Press Load, then £xecute. MDUMP is read into the memory
location specified in step 5 above, and dumps the amount
of memory image that fills DUMPFILE. The dump is

. *t complete when an end-of-job halt occurs (see Table H-l).

NOTE

The size of DUMPFILE is limited by the capacity of
the storage device. A maximum of 120K of memory
can be stored on a diskette file.

MDUMP Halts , •.. j - - • • - 7

No messages are issued during execution of MDUMP. If a halt-
occurs during execution, the contents of the P-register and R6
register must be displayed to determine the significance of the
halt, as indicated in Table H-l.

H-3 CZ15-00

Table H-l. MDUMP Halts

Register Contents

P-Register R6 Register Condition Operator Action

003E

003E

03nn

'SQ

End of job

Disk error

Trap handler
error has
occurred.

No operator action
required. For information
onlyc

Reboot MDUMP. (R6 con-
tains the disk status
word.)

For a description of trap
messages, see the "Trap
Handling" section of the
System Programmer's Guide.
Volume I.

Address relative to the initial address of MDUMP as stored in
memory.

PPMP ED^? UTILITY (DPEDIT1 - ~ ,

Dumps produced by the Dump Edit utility are written to the
user out file/ which must be capable of receiving a 132-character
line.

There are two sources of dumps:

« Files created by the previous execution of the MDUMP util-
ity. (All or selected portions of the file can be
dumpedc)

j ~ ,*

• Main memory. (A dump of main memory allows you to deter-
mine the configuration under which Dump Edit is
executing.)

Dumps produced by Dump Edit may be logical (edited format)
dumps or physical (memory image format) dumps. Control arguments
in the DPEDIT command (described later in this section) allow you
to request either a logical or physical dump. If these control
arguments are omitted, execution of Dump Edit produces a full
logical dump followed by a full physical dump.

Logical and physical dumps are printed in both hexadecimal
and ASCII notation. Duplicate lines, if any, are suppressed.
Suppressed lines are designated as described under "Dump Edit t
Line Format".

^J

H-4 CZ15-00

Page Header

The page heading contains the following information:

• Indicates whether the dump is from main memory or a dump
file

• The date and time of the edit

• The version of DPEDIT used

• The version of the system DPEDIT is executing on

» Indicates the pool and group currently being dumped for
a logical dump

• The page number

Dump Edit Line Format

The format of a basic dump edit line for both logical and
physical dumps is as follows:

Columns Content
- - > . '-- , t - .

1-6 Six hexadecimal digits designating the starting physical
(real) address of the line of dump information. The
hexadecimal digit in print position 6 is always 0. This
forces the dump line to agree with the template printed
at the heading of each page.

7 Slash (/) '

8 ' Blanks ' - . - .

9-14 Six hexadecimal digits designating the starting virtual
address of the line of dump information.

18-98 Sixteen consecutive words. Each word is represented by
four hexadecimal digits and is followed by a space.

99-100 Blanks

101-132 ASCII representation of the previous group of 16 consec-
utive words. A byte that is not printable is designated

- - * by a period (.).

1-11 Blanks
: :•" j j. i j.

12-93 * * * * * * * * * * * (indicates one or more duplicate
lines)

94-132 Blanks

H-5 CZ15-00

Physical Dumps

In a, physical dump, the leftmost six columns of data -̂̂ ̂
designate real memory addresses0 When the Memory Management Unit
(MMO) is in use, there may be ranges of invalid virtual addresses
(columns 9-14; discontinuities) in a physical dump from main
memoryc When an invalid virtual address is encountered, a
message within the physical dump contains the physical address
for which no valid virtual address exists. „

The virtual address is displayed whenever possible. If it
does not appear, it means that the virtual and physical addresses
are the same (in low memory), or that DPEDIT could not discover
the virtual address corresponding to a given physical address.
When the physical dump resumes, the valid virtual address is
known and the left column continues to designate real memory
addresses as if the discontinuity did not existo

A physical dump from an external dump file does not display
invalid virtual address messages, and the left column of
addresses is an uninterrupted continuum of physical addresses. /̂

A physical memory dump in Figure H-l was produced by Dump
Edit in response to the commands

DPEDIT ~DMPVOL>DUMPFILE - NL - TO X'0731'
-V f

Logical, Dumps

A logical dump can be tailored by selecting (or suppressing)
task group information on a group identification basis. File
system information can also be suppressed. Logical dump
tailoring is specified using DPEDIT command control arguments.

The main addresses in a logical dump are virtual addresses
(columns 9-14). The leftmost six columns of data are physical
addresses, and will be displayed whenever they differ from the
virtual addresses. This applies to dumps of disk files as well
as to dumps of main memory. For disk files, Dump Edit calculates
the virtual address in the same way as the Memory Management Unit > '
would under the same conditions.

The arrangement of information in a logical dump is described
in the following paragraph and illustrated in Figure H-l.

The information contained in a logical dump includes: . -o:

• Location and contents of hardware-dedicated main storage
• System time of dump
• Time of system boot 'i .*: , • -/"
• Time of power-fail restart (if it occurred)

- - ^ • - - - f«?-w

H-6 CZ15-00

y ^ • Hardware configuration
• Location and contents of System Control Block (SCB)

- Model number of central processor £

- Presence (or absence) of the Commercial Instruction
Processor/ the Scientific Instruction Processor, and the
Memory Management Unit

c-

- Value of the real-time clock scan cycle

- Presence (or absence) of an operator's terminal

- High address of virtual memory . -
»
•

- High address of physical memory ?
*»

« •* v
• Software Configuration

v ; - Name and version of operating system
- Presence (or absence) of the error message library
- Size of trap save area (TSA)
- Size of interrupt save area (ISA)
- Number of indirect request blocks (IRBs) in IRB pool
- Presence (or absence) of the batch task group.

w

l>
VI
s
»
f
I

t
Ve

* * - ^« fi •;
^ « r „

i »
i - >v

te
f

H-7 CZ15-00

! *

« o «* a* J£ 3 m £ • • « • &

o • otf** ̂ M ^> o '•t 0 0 c • •

£2<*M

HI O
<* »

HI
0
1«

o o »fc ^ t8 X • «» • * « e •

e » D o « f l « « e s o « « c
• • oaetnhO • • • • • • •
c « « « « e « « o e « c * e

• • o V P I U a o • * > * « • •

es«»o«t»<_
e«>»V ««

ooto»AQ • c o
m«s« • cat

• 4g V e * « » c « « « « c 0 V Q 9tt
ne O 9 • • • • • € • « * « * » © *» e
C> Ik D • * « * • • » « e c eX o « o
AXA • « « • « • » c«oitfe e ottti 5 • •
X » • «*C • • « «** o • « e • e«^ « •

• US • W*

o efi a « « « tf» e ««e e o o
ao o asrapx *m @ •« «ee> o o t»
eOoovaeo»aea«Olad6*eoo«lf l
otstR a rats a><v »» «* o « ® O

OU«t 01
nintavi

O O O O O O O O t f t
O ttf o ^ o G ^ ^ o ^ ^ c t o o o o e ^
O »«e ® e ® e e e o e e o> o o

eo«» w>» «» » e> f»« «e e e in
« o>o o =»iw« «tf)« *fe,cs oo a
•> A O G « = > « W W O a B c x J « 4 0 Q P * 9 Q O < 3 a

O O O O O ^ O O O O 9 > < O 9 O ^
u
<• @ o o o o o o o o o o e < % ^ ^"

O O O O O O O O O O O O O O !M
19 9 Q O O O 9 O O O O 9 O e b O « O

<M
ni

e ef» t» t» f«> *» ». <s «j « « e o o
a o a mngM «• m 9 na a n o o u
O O « a v o « « € » e c * i « « O i a } - O < « O Q < ! f f i
30OO39930<T>«<«39 2

Q a CS 3 <=• C» « C3! i, ̂ ru
oooooooooooooo u
99099^^09000^9 e ̂
o o e » e s ® e > o o e » o o < 3 > e s u

o ^ K i t f s v t ^ t f ^ i n ^ » w u « a « o e t f 4
0«9^'«p«(-S ' l / l '30-O'a3-3 «
O « 9 « 3 c a) a Q c « < - a « 4 | ^ a t n i V O O « It
• 9999999O^I7>« 'aO9 <

9 3 @ < 3 9 ^ 9 9 9 9 9 9 ' 2 3 <
O O O 9 9 9 9 O O 9 O 9 9 O ^>
3 O 9 9 9 9 9 - 9 ' > 3 o : » - 2 » 9 « 9
9 O O 9 O O O 9 O 9 O 9 O O 9

«l«««»,»«OO<Ii<y««O««>»»««

«<ii>«i^fcooooi«=»<»fnoo<«»o
»«««oooooooo»o«»*oc»o
i»tf>«<ka>o«oo«OM.u<a>am^»o
9VAOO^OMOVB^M9^OMOO^A

*«om«j<soo«o» —oee«i««*t
Vl^OO^OO>^tA9OOOO)^9m»O«
MMOOHtOAOVO)O^«O999O-«
(AMQiOMO^eAA^CJO^^a'AOOvO^^

9»«AK%U<O*n-«^^4)Gl^^f^^^
mmrt«oiL-<<i>o-<oamoikO»ao
Of««*%tt9ie»YootrtQ!OOor«>.a>ooo
m n m o o i k i k o o o o o r a o n c o o o o
b u w o o i k O o ^ m o m o o o o x o A i
««»^aor>oo«>oon<ooooaoo

U9>lfe»OI/«LUOroO^<««Otf>mo«A
<w«iv .0ona^on iooo» ik > i t>«ow«* i

rt ifl ̂ , ll««S f» O •> Ik

«)uoOCTOI^nj0009*-«=»0-s^l=e»
f ^ ^ ^ O l k T ^ ^ O O O - ^ O O O ^ O O O
O O U B O - A O V O O O O ^ O O O O O O O
«? 7<VO9 9 'VOO9 '9 f ^<3>OOO99O

«

1
(0

£

I
Q

>t

i
^^cy^-oo^oor ts^O)* *^ •si/acso'*«f*«
i ^ t f * M (r - o o o o o o ^ o c » n e A o o t & j f ^
V t ^ O a 9 0 O 0 9 - 9 9 O < O ^ O 9 U J >
m 9 * ^ o o o o o oooontA«*«o««rwtk

O
^

33«^ - ^ -A - * ^ " ^ (^ -«O» '<«3 ->
o o o « ^ r v « ^ 4 ' t /) < u , r « « » u o u
3 3 ^ - « - s - a - a - i a ^ - « - * O - » « Q
O O 9 O O O O O O 9 > « 1) O 9 <

J1 •O '39A^ 'a '«% '^O.3 t f c3£»9 tAJ t /% « *
M 9 I V O O O O U l A B O « (r O ^ O 9 O O O
'^ii3*-»O'^.O-»aiO » ^ O O O i / » O O O
U t 7 f * « O O t t O U J O O f < » f « t O (V O V O O O

a,
X
3
2

«
a

»

*

•v
(*»
J
*̂•

o
-\J
>.
0
3
X

«
O

X
V

J

J
-/
1̂

a.~
_>
X

•«

JS

9

•̂

-*

<^

-J
-t
o
—

•

-J
4

IAJ

« 3 ̂ O 3i 3 3 O 9 O ^ ' . 9 3

iS-r t^oaO-a-a^)-*!® j O O •»
o o o < B > r u F * i 3 > i f a . 4 i « 9 i S) < (e o

O O O O O O O 9 O 2) < 4 O O

o ^ o o o o o o o o o o c b

0 3 3 - 3 3 3 3 3 * ^ 3 3 3 3

O S - o ^ ^ l f c ^ ^ ^ J - ^ " ^ 3
o o o o « « (V f < t 7 U > « M t o a

0 O O O O O O O O ^ J 4 t O

(4 0 O O O O O O O O O 33 ->
T 3 " > ^ 3 3 3 O 3 3 ^ 3 3 3

- 4 f c - > 3 I i 3 ^ 3 M 3 \ J t 3

O
^ 3 9 O 3 O 3 3 3 O 3 3 3 3

J 3 3 3 3 3 3 3 3 " 3 3 " > 3

* f l O 3 O 3 3 3 3 3 3 3 3 3 3
••

O 3 — ' \ i ' ^ - » / » ^ j ' * . n j ' i t t _ j

3 C - - r - 2 r r i ~ r r 3 - ^ * =

r
X

i
3C

o

^
•a
o
o
o
3
O «
3

3
O

O

3

3

3
•y

3

'a

9
a
s
a
•v
o
->
rt
o
"M
jj
**

-^
3
-«
n

o
•?

3

3
3

3

V
-3
3
-«

a -a
* 0

—* «4-* «e
•• M

J- »•
A 3
0 3-
•« i^

•a -a
•S 3

>. >,
•« •«
0 0

c J
3 J
J t>

U H

— 1 — 1

« 0

^- -1.
3 J

U I L t lc r
•̂ --<

— "•

S ^ W O I V O O ^ i f i ^ - » * o < V O ® O L J « * * *
=r * > * ^ > - ^ » o a » o 3 ^ ' 3 < 3 < c » o ^ i ^ i - 3 t j
^ C J ^ O O O O O O 9 > O O < O O O « ^ r M
w T V ^ F f - S O O a s O O O r V O O V O O O.<3» ̂ «4>

JD (J O 9 « O O t k ^ 9 3 O ' 3 9 9 ' S > 9 » « 9
« 9 m o < 9 " O i ^ , o o o o o o o > o o o o

« ? r v 4 o u . o o ^ o o o o o o o o o a > o

O f > * > G r « ? 3) O * « U . O * 4 4 1 O f U O e o O (t > 9
O J S O ^ I ^ O < O O O O J O ^ O ^ O O l f c F * .
u ^ o a ^ o u o o o o o f o o v o o i k - o
3 J l ^ ^ < 3 O 3 O O ' ^ ^ r ^ O 9 < 3 3 r « 4 >

^ l A f i ^ J 1 - « 1 O ^ O O O - O -* O iTi -0 O 3 ̂
O » * S O - < / t * > O O O I > J O O O O O O O < 3 O
O i i 4 (T > 3 M l i . 3 T ' 3 L n O O O 3 3 < 3 O 3 i 3
o ? * ^ o o o o r \ i o r v o o o o o o o c » o.

SOli. — i C ' A j i o O O O 3 O " * D 4 > O O 9 U .

o

3 * M ^ T O 3 3 3 O O O * « O O O O O t A j O O

J
1

3 * ^ 4 U L J ^ A J ^ O — - \ * « n * ^ « - * 4 J > «

_>

,~
U
•B 1
»
»->
a

ft

*•
r
D
y>
^
LJ

UJ
JC
•u
J

LI
e
.u
r
D
u

^
tu

D*

E
'1
«
n

w*
1̂
T
X
•i.

»

^

î /l

J
CO

6
1

r
in

M
M

3

F_-

z
"̂

ûoJ»^»
u/
» ^e

z
^•c

^J -§
7) 4
O *»

r

«u
— oj

—) £r •"=
3 i*

Q
n>
» _,

jj U
r u
J -0 ji i
tf — 0* J

jr
O *J* c
!-
r -

ik *fc- ik.
Uo tfe U,
U,t f t , tk
tic, ic. Ik
U. U. Ik.
3-39

» «» >•
CO « ^->
J LU — «
« JE U

ul O O X
* « «* <

J

_j a: i «
4 3 O •
^ i. t jj
— ^J iJ J
£ i X —
£. -V >
-W -J X
- < J H

CO -I 3 3
6 l/> to

C «- TC J
^ I -« 4
— x » r
« T
r c c *j
^i O -3 —
X -« -« X
a z r u

S
«r^«
s»(^
o
*s»
9
0-
I
•

0 *J»

m 1
•X
o «
3 r
» o
3 -^
3 *>
« T

»
•»
«• t
44 .U

9» V>
to -K.
ff» »%

3 J

_— r „ _

4 4
TC TC
4J il

X X
3 O

a»
kl

CP

"N

H-8 CZ15-00

^y

*II
«
«

ttl O
(• M
« »

t
*&**'i^£«i3ti s

s*
* -»-.
,» ""
*J3ft Is

w«
£

* * «>v f-. V, j^^^rscj f t f* .

r^
»<E

^>

O HI
O

«

s e
u

m
«a
0-

•K
IV

H
I-
•<
O

£
&

w

*.
3
a

«
»

»
»
•B

V
n
J>

•<M
X
a
e
X.
ni

9-
•a

a,
1
3
2

d
^
^

X
T
3
3
X

«

*

*

•*

M

0

•̂<
3
v
•"
*

-J
<
4<
X

e
9
««
o

*^ ••
T n
o i
a -J

» 3
O — J
0 •+ O
a n

3 •-
TC n

— 3 «J
- 1 3
J> — J
-3 Jj
X < I

•n 3 a
u < r >•

*»
•• « a t
*• *t > ••
e x * ?
« « » <.
K ~
B U —
-• •*•*.•*
J « 3 i<

A C O
jj X 3
J>l.<iJ>*
« m « ̂
O X ?

il 3
I *. i.

3 3 r
x »>
3 a ii<O
•*.•*•**
X -•-« D
w-oi *•

31 ^
O O O 39
0 a 33
o e ox
90 03

s
•• «*

«> «D n
a a — a
i ̂ c *.
33 U 3
3 3 » 3
X X J i
19 J L>
* £. £ <
U U — U« * l«
a a -in

j
*. u. 3 i
3 3 r 3

•x x
» — Ifc.
2 3
-• > 31
i C J 1^
• J • J ^

— -10
J J J i
»J C — 1 J
0 — — ^J

J 3 X
*. ». 3 u 3
3 1 1— i.

n a jj
jj •> » ̂ j .̂
— n n j 1,1—

AJ .ftj ^ X
— e e 3 1 •» f> -* -^ i • .»•
•513 »
c J 3 a
J -J j —

t < f C »
r 3 r< n a x
Ui— •— e a 3
- x x r I x
«— — 3 3 a
s > > u-z z

0>
f-H
a
10
X
ca
a
§
a
>
M
O§
x

*>
§
CJ

a>
w
9
O»

» 2
»«
a*

- I
Ii*•- &
x
»°*•• i»-

4.V

* I

•e s
*

H-9 CZ15-00

ItC
o
«

«»
«•
^
<F
a>
g
«
e
«
J
I
«
9
•

i
u
IB

E

up
«»
«
0>
I

g
I

»
«

;3»»<a>c»«o«eeo»«»»»«««»o«<»««»«

*§'
«2

|X .UW««M*Wlt4 t t6<MMIUWmiUI>l iaMI»t t t3»3<a«f«
aeut» »«»««o oo o O9aao9«BO9«««a

>O)OO«»9a9.9A
>««a«c«««««>«
i«>«<» <si <»»<*a»««

;§if§§!tS?SII«*2IIigf2ff

UK
no

3 «e®«*»O»O<»®«e>®«&e«€S>«>©«««<
| ««o9oaaao<»«oeo»ao<aa>a>««u<
X3m...••.••••.•••.....«•<
3O<«iW«iin(ntivt<viMnt<w<<enintnenti«««v««<
z a a m m m i n o t M m m m m m M m M m m m m n -
« < » « « » « » » » o ~ ~ ~ ~ ~ ~ - _ _ _

« M «
3«l-
l» S £
« O

H
13

«* «MKt«9MI

^ c«g IM
•»«
3«<

is1%
W O U t W b i k l O t M I U I U W M W M

"tfSSKSSjJS
_, Z O-«t 90S

3K<« »»»
» ISO -•-«-•

« «umo12
UJO

««•«««•«<••«•««•••••
•»»•>» 01

<U
rH

I1
«•
>

'k'^

a,
3

1 Q

^ >,

-": S»> • - e

dg :. S
ptt.ooesodooooaaaoaooaaooovA- £a e a z z z x x x v x z z x z z x z x z z x Z x Z *

u>
»,
•.
•<

a»»......... i
Z U I U t t O U W I U B j W W M M I 2OO

X X

-U

§
U

a
»s.

3
a

i,
rw
X
«

IV
« -
»

< i » o o o o < i o « 3 e < s o e o e & o o s > o o e » » o
t a £ M > 9 ^ ^ 9 ^ O (3 9 < 9 ^ ^ O O O 9 9 9 O 9 O O O < 9
i » i a e m < o 0 0 « « « . « o f f i c & A o e o 0 « « o « e > o e
*=»»mintftiflmtf<ifltftifimtfitf9i»tw)minwtiinmtftuaiu
C« l fS<99O-99<999999e9O999<9999<9
O,

•^oeeaooaooeoeoeoooeoooea
0 » < « f t O Q > O O t » O A : 9 O Q 3 O 3 O O 3 9 9 9 < 9 9 9

w o < v « « ' » e « e e < > « a « « « a e « « a e e o o
F»4X'3UAUJU£UJ<4jUJU4l4luJa4UIUJUlu/u/UJUJU4UJ9<39
«QM«-a«-a4>««4>««-o -a4 i« -a«««-«>«^ iM
9» C < 9 9 9 3 O 9 3 9 9 O a i 9 < 3 9 < 3 9 9 O 9 9 3 O O

n i ^ l t , l £ ; l t , k f e l 4 > . k i A . « > l t . W l &

z a: f» i*. K. i*.
k f t > l & t ^ l & U i . t « i , t C k t £ > l £ > l k

I k i k k k l k l ^ ^ l k ^ . ^ l k l k t f c U . l k t f e l k . t k l k

O i ^ a A a s a - a a a i i D A A o a o x i a i s a ^ r ^ ^
« O O O O 9 9 9 O 9 O O 9 3 O O 3 9 O ^ 9 9 O 9

1.
&
3

-0 M
£ ^ » 3 O < 3 > 9 9 O 9 i i O 3 O 3 ' 9 O 3 9 O> O d

I 0) 4» V * O O Ol f c < K l 4 1 O C A O S O A O O 0 V A 0 I
44l«> ^ ^ • » « < 4 » < ' ^ * « - 4 < ^ * « ^ v « ^ « « a « « « ! ^ 9 -«««<i« •« O 9 t>

^o*'3***nji*ftft\fimj\\/*i/\in4\j*u*tf>irttftjv&w4r*&

u -«_) v

<
j
O
0

«,
a.

K
U<

<

X
3

— 33 «1

-3 J
•c -**
- O
< z

v >
e

•3
3

ojo^oooooooaoooooaooooa
£2££Z<ZXZZZZXZZZZZ-ZZZZr

I
a
4)
u
9
(

339933000xzzzzzzzz zzzzzzzzzzzzzz

if<na<nm3>Jt<nnat<n'n<nmat'nnat<n<n<na»
3 l 4 4 l A j U U / U U J I « J I A A U 4 l A j W I ^ U M U 4 U J I M < U i 4 4 U l t f W

n » » » n n » n ^ > n « i A n ^ > « » » n n > » > a « > a
4J * J ^ J ^ > A 4 tJ<Jj^LU<U'4jU«4jU4^UlVlJUdUJ^^UJ-Al

1

c
3
3

>•> J U
* 3 r
3 3 •«
s a. z

• / i j j j j j j j
p»« i^< inuO'«4 i ja&n««M<
-JU-lJ-lJ-i 'vi J.< />«— — a

x ^ i » c 9 » i M « > * i f i « i » « » 4 a u a ' x u i i > x i \ i - « «
3 3 < •• 1U -I -I -I ^ JJJJJJ-I^J"4 U>< 11 •" — a

H-10 C215-00
^>

^ i

kt O
U M

i
s 5 ::". :: .::: :::::: " ;.
^ ::«. :: :::: ::'.::: •" v

| «
* rH* cu• o o o o o o

= • B
v ' w u r « > o o o o i t , i b , i k O o o a « o * , w •• <t«
V V o u» it, r» o o o> « o fc, n, u. * o o o o o î MI xtm MM MM MM MM MM MM **•*•••* *•**•% M H*

>—-^ o e«o oe o b. it, b. ooaoob. x • X

. "• . M
« o o o o o o... s
o 6
Ul v A O O O O O K . O t e . O G t O O O f c i , U4 * 3

M «00«0<»0«<»«0000<»0»« 9 *<» 5 Q

s ^; u
o • O
« ^ M n m ̂ «n^ M i* »* «•*» M n» f^ *̂ »n «t* f» •*» M« €
W • fl)
ae w» ^

u 2fe
X O O O O O O O O l f t . O O O O O U . C i W
ni • « 9 O O O O O O t k O (H | t t 9 3 t k 9 » O
fV ff* t^OO O O « O O O U . « U (k i L (O O I k W O *
X » O O 03 O O O li. — "A, -5 O « U. 3 (A« 0 JO
<4> N O O ^ O O O ^ ^ O O O O O O ^ O O O O ^ O O A î ^
0 dO9> oo o o o u«, u^oaootb, »— »* rv 'V 'V fMn* fV<> j r t iA | fv r« (^ fM<vA4f«e>oo«- * * <o jj
1 00)9 00 OOOU. U. O -* O O U. Z •> O O O O O O o O O O O O O O O O f V A I A l — O O ^
9 « 9«0 i » 0 * 0 0 « U . « O y ^ O O O t * . ^J O M C

* " • o « o « > « o o o o t e . t e . o t e . y j o o t k Z O o
-» -> f -1u C)
I 3 A * * « l ' 9 O . » d s f c , U . 3 ^ Q d . » h k i a > 14 ,̂̂
^ o o o oo o o it, u. r- hL. o o o ik o o o e e o o«o o e e o o o o o o e e o o o

"•- •« »*=• 91^.3 9 O « O U . t k O . « 3 ^ . i ^ > d O a D U O O 9 O 9 O 9 O O O O O 3 O O ^ O O 9 O > o a O
O O O O OO O4&. tk4^ n j « 4 « O O t k CO _j
jj < > 9 - « < U ^ > 9 ! A O ^ > O I 9 > X a H > ^ U l A . l 9 3 O O O ^T*

3 ifi O O 9 O O * O O ^ U . * O f * « W O O ^ O *̂ *

^ - » " % l J O O 3 O U . ^ . O r « * 3 O - D l A . f^ "

0 - - m O O O M t y . O u e O O O U . ^ ° ^

« , o k t ^ m o o o o u . t a . o o o o o u . 2 t1 *— - —*
• -3 —> O O O O d l ^ i k 3 W "3 O O U. uJ 9 < M ' M r ^ 9 ^ A f « 4 > 9 < A U > ^ U J I k < » O 9 O 9 T O *̂

»> » o o o o o « o o ^ u . * « u ^ . o o o u . r « • • « • * » • « * • • « • • • • • • • • o &A
V a 3 •> -93 3 ^ 3 ^ f-» -̂ 3 O O ̂ . 3 3 < 3 O O 9 O O O O O O 9 O O < a 9 « ^ ^ P « f 9 m - O
•e Ul
M 3 » - « 3 O ^ > 3 ^ U . ' 3 O 5 » O A . J» O
m c * « L n o o o o « u . x i u . o c > o u . V
^ ^ D - o O 0 - > « - > O o . U . « O U . ^ 3 ^ ^ . ' " W * . s c . « t l 5 ^ 2 ^
M o — i o o o o o * . u . u _ ^ - o u o o f 4p£.

» O f * » z . o o o ^ r t u . * * o o a o o o

O * - r 3 3 ' 3 3 3 ' » 5 3 V A . * , J ^ 3 3 3 f f S » ^ O
O ^ v K , 0
X J - > « c J * - * ^ ^ ^ * . * . * . ^ ^ ^ ^ * s s- •< * f ~ '- J - » 9
/\i " ^ o ; - n « . J O o c . u . ^ . w . ^ 3 J O — ^ a •* •» O « o
O — ; - D J J J i * . > « . > - > : » ^ « - * . c ' > - « > j " D O O
9 J O " » O i t ' » = t ^ = A , * . J - J . ^ " V (" » O . O
-> T a:

^ J U U ^ 9 3 3 - A . ^ ? A . £ l C » l > >• O O
J » i . - » 0 0 3 » . * . J S * J O » X — O

j . - * O 3 O ^ « " * j » ^ > O O 3 , ~ J X O
. i . 3 3 3 J A . J i . ^ ^ ^ 3 . £ -^O

^ X
£ L>

— x x x x - x ^ x x x x x x «>x
o ^ ^ a ^ a ^ s ^ j a ^ j „ ^ *• ^ - r u a
* * ^ > I j j i j j - * > ^ / l O ^ - a j ^ — 7 * ^ D O r *

J > J j _ r - C J > 3 0 O O C . ^ i " > 3 J 3 3 A ^ 3 O
•* ' X C X

tk i. -
— - -I — >-

x -j w i •* (j a
« t -3 t J O
" 3 ^ 3 - 4 — X T
3 X — U -• f At
T <n i. » - en i

^^ ^^ H-ll CZ15-00

i
5

l» M

I8

^

• •

* •

9 •

<•«»

• •
• •

* •
• 0

• o
• o

* •
O 0

• o
• €•

•

•

•

•e
o

o
•

X

e
o

•

o
0

•

o

0

•
a

•
e

•

9

•

•

«

0

•

e

e

e
e
e

«

o
«

0

«
t>

0

o

•ft
*«

w

•
«
0

0

0

e5

0
•

e»

e
e
•

c

o
c
e

e

•
e

0
e
•

e
e
e

o

e
e
c

•

e
W

0

e
e

e
e
o

c

0

•
0

e e •

c » D
c «3)

c o*
• e •
6 • «

G O *

o e c

« « e

» 0 Q » • • •

• C * C • » •
• c*> 9 • • •

• o • «A • 3
• e » * e • •
» o » e • 9 fl

• c « U • • *

•

•

V
•

•

*Ik

*-

c

•»

V
«

«
•
e
•

•

c

•

c •
c V

• *
• •
» »
•a

• *

c •

« •

e

•
»
•«
•
•

V

«

*

•

••»

•

•
•
•»

»-

•

Q

O

9

• * ->
•< V

» 9

• •

• 4»
• *
• e
• •

<>
• •

& »

a -»
£ J>
c o

*.«:•?«
€ «*>

f » »
w»

•» B «
• •« »
tie »
• .« •
• t> «
J,« TS

v e

• & e
»3 c

« % e
c e *

1^?

» e «
« a c
e » T>

S I * 1

a m
I

s e
u
<•

nt
M
•X
•O
a
•3

J.
0.
C
a
^

»
3T

e
M
V Vaav-\j
o —>
>

o •»
o««
o o
9 0

UiO
«> e
« o• o
eo «
a •«
o«
« 9

Ut 9mo
<Va

e »» »«
<*3 VJ
aid
!fflO.

O O
a 0«e

*№ m
3 0
a -O
3 O

<« nt
IV 0

»̂ "U
Ik ffl

» 3
o o
7 3
0 0

o o
3 3
O 9
O «3

3 9
0 0
.3 3
9 C

0 ./>
9 9

ry O -O

Aa a -*
3/13

»• 0

3 O
a o
o o-

&
Q O O

H 3 -3

«8O
O»
o a
o o

K»0
o o
Ift O
e o
e e
a a
0 0
<9 a

9 O
<• 0
* O

e e
9 O

o a

Ut, 0
« a
7 0
« 0

O O
0 0
0 0

3 ̂

01 !•»

№ O
a ID

w» .3
in o
-a a
<P 0

a &
.» ̂
o o
O 3

3 -3
O 0
3 O
O O

9 O
3 3

« 0 3

./»
5" 3" 3

3 U. 3
UJ O

•3 O
3 3
C 0

C

C 3 <

C 3 0

090
a » «
o o o
® « <s
eo «
e — <ffl
oo a
efl »
«« e
r<» o o
•«« e
««•»
0 O c^

OOP.
ao «
9 O O^

o o e
0 O «

a a CT

a a =a
o a f«
a a a
e a o

^ a •<
c? o r*
jj 3 *

» » -̂
O «J O
3 O 0

>3 a -<v
0 O IU

0 ^ 3a < ik
01/49
•3 J> O
0 IM 0
330

3 3 O
3 9 0
3 •» 0
a o «
a o o
o -> o

u o 3 o
4
> 3 » 3

3 3 3 3
O O O

0 <l 0
3 9 3
3 -» O

<

C 3 3 O

a 3 3 o

a e
««
ct ̂
eo
«<s
«o
a «
e o
o e
a o
e e
«®
09 rt!)
< »
•a a
A W

e «
a a

« «

•« e
e a
a o
o a

a a
tr> o
O <3

3 3
O 0
9 3

T-3
•< 0
4P -3
O 0

0 0
•» 9
O 0
3 3

'». -3
7 O
t 3

*« O

ca o
3 3

•« O 3
_o

0 3 - ^

3 O /I
O O

3 0
J- -3
n o

e.
J O S

0 3 3

• «•9 09 O
O O O
«® »
*. »1U
«0 0
IkO-C
mom

« e e a
«a a
aoo
<»««

a o w
o a m
a a ««
a o o

e >» o
a o «•

a a a
« avn
« a a
•»a ̂
® a •»

o ««a
o *• o
a « 9

O TS -̂
o o n»
•3 ca jt

3 /« *
o in o
3 M 3
o a o
000
0 » 3
O — i O
3 3 3

0 3 3
O -* O
0-33
O .A O

O * O
333

O O O O

a
a * ""s a
3 o * n

<f u »
0 » 0
3 3 3
O O O

£
3 0 0 3
.J J 3 3
O O 3 3

a»em
a o w
O O Ik
e>e»
<x e£K*
000
aaa
oea
a o a
a a a
o a a
a a ««
•« a 4
« on

aaa
a aa
aaa
a "»!•»
a « u
a •« a
a a o

a a 3
o a o
300

» «•(«*
o a w
a a <

3«» a
0 O 0
3 jl a
000

o o a3 3 a
O O Ik
3 3 O

'M * Jj
e «« inn T o
0 C *

o o o
3 3 O

*, O -3 O

Ik
0 -U J. 3

3 » T 3

0 — 0
H O C
• ^ 3 3
9 O O

X
J rt 3 1
O O 9> ^
J 3 O J^
Q 3 3 O

aa •«
aau
a«o
» o oo a o
aaa
o o o

a o o
a our
a o a-
a a ui
»aa
teA A ̂•• ̂ ̂

« IVKt
a 40
a» a
a a w»
0 O -«
aaao < in
O \ft &
f3 IA a
o AJ a
aaa
a o »
o « in
O •< r^l

<3 JS 3
o o a
3 0 3

0 —> 0

<» x< in
3 3 O
0 3 -O
•93^

•» rt O
O O* rtj
3 Jl •>
0 Ik S

o a o
333

Ik 0 0 0

SI
O 3 3 3
3 O O O
3 3 3 3

000

O O 0
3 3 3
3 O O

f .
J 3 3 /I
O 3 J O
J 3 3 O
U O 3 -*

0«t
• 0

00

0«>
o<«a ik.
ow

ik a
V 0
»0

• Vo<«
a »
4 O

mo
w a
a a
a «
« »
-i U
a o

•« ̂
a aa a
» mo a
3 O
a o

*» vj
4 t^

*«J

*•3
9
3

3
O
O
O

O
•3

— 0 0
•*i
r* a a
O 9 ^
3 3 3

0 S

a 7
J 3

•O 0

«
J "3 3
3 0 3
J 3 3
O O 3

*00

•BOO

000
000
000
oo o

^ a o
•««0
o oo
^ a^ o
MOI»
a oul
o o ̂
ooa
a oa
a o a
a a «
a am
e a vt
a a f<4
a aa

a a <r
a a ••
aaa
« a a
1*9 O «*
» a a

m 3 »
000
033
000

0 —»•>
3 •« a
0 -O <
3 3 O

0 9 -T
O O O
3 O 3
O O O

0 IV 0
333

a o 3 o
-0
a a «i 3
3 O >3 O
3 O .« 3

« 0 Q

7 -3 O
0 3 3
0 0 0

£
J O f ^

— u •* t
^ O T ̂
O]> -3 O

OO
• 0

00

oo
••o
ao
• M

^ O
ouoo
^ u-«<J
<u.
U 4D

• u
ao
a v<
a a
a a
a a
a a
o a

a a
0 0
a a
a a
o ««
a a

o »
«* o
7 a
» 0

O 0
0 3
O 0
3 O

3 3
O O
O 3
O O

o o
3 3

•6 O O

0
O 3 3

3 ^ 3
Ml O

* 0
3 U
0 £

t
J 3 T
~ 0 13
J 3 ^
O O «<

OO
oo
00

00
oo
oo
oo

o o
oo
o o
o o
oo
o o
•»m< »
^ oout
0*
a o
aa
a a

a a
o a
a a
M«a
a a
in a

aa
a a
(3 3
0 0

9 0
< 0
7 0
3 a
3 3
3 O
3 3
O O

Ik 0
T 3

0 7 9

4
J> 3 3
O O O
9 3 3

0 0

0 I*
^ •»
a ,n

«
J 1 3
D J 0
J •* 3
0 0 0

*•««««J«
9 ̂ fe ^B
oSo
»*>*
iS2
«««
a«<
o ̂ u
a«a
o o o
000
OO 0
o o o
«»«•
ooo
o a o
IAO»ttjo «a
Ik atta
•» 9 HI

a<j a
o ua
a »o
a a*
a a 4a a »

3 ^* a
0 (it 0
a \« o
o e a
o o -a
37V

0 — U333

3 3 O
O »* O
0 3 3
o a o
o 9 in
3-3 D

a o 9 ,a
<
o e i <»
o a* 4 ik
3 O -< 3

— U »
>n 7 o
9 3 3
333

C
J ^ 3 3
O C 9 3
-1 J^ 3 3
Q 9 3 -3

0)
iH
CU
s«j
Xw
a
£
3
Q

X
u
O
g
(U
s:

c
o
o

<uw
3
№

•H
&i

.u 9 9 3 M 3 3 X(O .
3 u •
3

— i />
i o n
*J o "U

0 3 3
hi 9 9

— /< -5 3
/> XI 3 3
Aj J. 3 3

J 3 -» ~ O -• Z-

3
3
X

C
Ik

H-12 CZ15-00

^

HI O

5•

w

sg-*«•# «>*«
»A- -.
•» If
«. *,

O

s

Jt< V-
». •»
4« 1>

S^* »

ÎW
M
X
•O
0

*

»w
.* IT

*-1»««f *
•« r•a ft
* w»• • JJ

§
w

^ -.
z z
3 3

£ 2 Z < C Z Z < 2 Z £ Z Z Z Z J T Z Z Z Z Z Z Z r ? Z Z £ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Jt Z Z
• 3 3 O 3 3 3 3 O 3 J D 3 O ? 3 3 3 3 3 3 3 3 3 O 3 3 3 3 O a 3 3 O 3 3 3 3 O 3 a 3 O 3 3 O 3 a O O

M
M
in «>O OUfUUI^^UUtJCI 'J I^UULIOUUUUOUUiJUUL^L^LJUOOOOCJULIOb^CJOUUUUCJUfCJU

o o 0 0 0 0 0 0 0 3 0
j _i ^ - i j j j ^ - i ^ j ^ j j j j j j ^ j j j j ^ - i j ^ - i j ^ j j - i ^ - i

O»
•H
iSK

«
-o
X
ni

U4 tk«» 9 - « B < L l t 4 J O ' V 9 « B « « m 9 f \ i n « 9 t t « « ^ U I t U A f n ^ O * ' l y J « l / t a u 4 U . * « O f ^ O (J 9 O 9 U I 4 l - U 9 f » S » ^
3 A O •M*v '> iv i 'V 'V"«* i ' *> w v - t *n r»o f7 < J i .Aav*4 ju iA ju j i k9 ' * ' >3« i> i4 .> i j 9 tn -o i)9 'U 'V i^ '> jo r«»< .0 ik
^ f^p» I P J % (O ^ ^ ^ ^ r f % t f t ^ | / ^ ^ U 1 ^ I O ^ I 4 f ^ i * ^ < ^ c t O 9 ^ l k < L U b O O 9 > 4 O O v « O « « « « « « « « f W ' V ' V * M t n r M ' ^ ' V A | f W
-< »•» U J J J J J J J J J J J J J J J J O J 3 3 J J - > U ' J O - 3 3 - 3 3 - 3 O 3 3 - i 3 ^ i ^ U 3 a O O J 3 3 O

99 » 3 9 9 O 0 9 a a o o 9 0 ' 3 e o 3 o < » a o e 3 o a e o o 3 9 0 o e o o o e 9 a o o o o o 9 a a o o

a,
L
3
O

u J
-J 3
a a

«r» — a a ^ 3 3 ^ o a u — » o . i v x n i » > a ^ u 2 3 m K M 3 3 (a > - m a > - i - a a ^ a j i r > - — < — i » i . x u
i - > v j ~ ' * j > . o . j K j x % . 2 i r - « i « Y 3 o o 9 t j 4 J - * x x x a . 3 , r . 3 < » Z E u j 3 £ . » j > c ? x x e i : r 3 < . j ' 3
» - S U » l . J t J i J t J — « — ». — = 3 = 3-«« — O O ^ J X X O i . — — J1* IOJ:OI1 I1>_ IJ I I I>» .

3.* C J 3 . " 3 3 > J - - J J J J 3 3 J J - > ^ J j r > l 3 C J U 3 j a 3 J (3 3 J C » 3 C C > L > C i a i O O U 3 O 3 3 3 3 a

« _»
J A

_(
•3

- C >

I
» ^

3

» 3
» 3

u >
a 3
v a
tt —
•n 3)

j
u

c
c
X

H-13 CZ15-00

a

i
9

m
f

I *

o
u
(•

V
rw
««
•v,

t
a,

•*
»

Q
VI.

9>
»

<V
M
.A

->J
X
•O

ni
a «

x
k. _l
3 *
uS 3

•
 *•

•
•
**•

•
•
•
•

g

p
.

to
*
.

fl.
.
.
.
.

|
|

90

M

9
9

f
lf

f

0

t
e
g

tj|

3

kg

e
o

U

I9

t
,

0
f

|
,j

?3

J
9

o
f
t

ft,
o

c

?
3

U

y
O

O
Y

S
(
;

?
0

f
)

0
0

0

0
(
)
0<

,
/

O
J

?
;«

,0
•
•
•
•
•
•
•
•
•
•
•
•
•
•
.•
•
•

>*«»
t««.

 .•
•
•
•
•

f|

M
 t

m
 jtM

 ju
t

9
M
0

 3|09

g
f9

9

9009

9
0

e
e

s

?
?

3

S
o

fl()

sj

?
3

(o

o
o

Ofl

0«
nonr.

jo
o

o
/

<m
s

*o
f3

ll»
8

v
io

is

io
n

iu
m

in

o
^

IN

T
V

T
I

e
A
u
3
_)
M

X
a
u
•̂oc
L*a
aj
0

ui
-j
it,
3
e.
<

**
z
3

u
J/
z

3

J
I
3
1

3
»

.S
C

ft
if

M
O

H

tt
L

U
C

ft
J

L
U

C
A

li
O

N

O
Q

O
tt

A
ft

tE
S

O
u

K
C

e

N
U

H
W

E
K

0

0
0

5

3 0
_i

IAA 4
X. C U

3 — -»
-IX J
O ul D
* 3 J

• e « • e • e

G fib « 9**S> *

« A • • • •

• A «»« o

e • » «W *
* * 4 • o|ft» «

e e • o e «
• * • a o e

e e • * 9 »
o e Z « o » •
o »Ci o • e> 3
e o J o o • •
• ojr> e e e +
• «d> o o a «

««»«.««««
O <* O «« 0 »
«««©««>«
»«® «« « O

«>« «"® ® «O
o« « e eo
® o «• o « -» a
o «> 9 •» ««*«b

«7 ««» « <fi> taJ «
9 O « O O 9 Cb
u « o » oo «
® ® ««® ««

e ® OK» o ® «
«» O 0> *oO 0 O
<» 009 » « 0
e oo o o <s> «

©«»№«<*»<£
9 0 ® ̂ O rtS »
9 «© 0 00 0
& <B « ® » «a «•

® « « «> « « «
o tf» o e «w «
« v a> <s> o> « c*
® Ae ® o o TO o
te* o « @ o e <e
(B 0 <£, 0 O 0 Ct
9 O 9 O 9 (V <l

e o « o ® ® O)
o o o o e *v «
o « «-a o «« a> o
ffl e G> © O № O

0 OS 9«a-«*9«
o « <V 0> «• ̂ <
<3> a> « « « -a A
9 0 9 0 0 9 O

0 0 0 « O (̂ O
a o fv <^ o * <»
O O « O O 41 O

1 O O (V 9 O 9 « »

^> a> <3> <s «* « f*s
e o «e o e o <•
o a « ® « o 'V
G O «* O O O «

O O © O O © MTI
o ® na < o o «>
o « e o «» a> o
3 9 /%fl <3 O %3 O

<3 ** O Irt -« "3 41
O O M O O O (J
o o o o» « 3 a
O 9 (M O O 9 43

0 3 •« J -3 O U.
O O tU O O -O (_}

O O * O < O Jl
<J O O 3 O O "\J
O O * O 3 O O

3 0 > ̂ — 0 03 -3 /» Ut, 3 ̂ ̂
O O "** kfc O O 51

3 <3 * AB 3 -3 ~3

3 J ^> ^ O •» 5
* D J .3 A! rf. 0
j a a a o 3 ji

o r* o o o o 3

f>
0

3
0

e
O

^
O

U
V

D
O

"?

?
0

M

J
^
3

0
1

9

H
O

i^
?

«
5

S
^
O

3

-J Jt.
M W

o.
ae

.s
e.

oS
ie

Re
eu

ir

o
o

o
o

"
o

o
a

»
e

«
e

o
o

p
*

6

off& e •# o «
o «J o c o e «
», « • • « • «

« o e • • o e
« e « *^ e •

« ! > « • • «

3 s^ • • • •
• V ̂ • •> « •

«> •» • • • 6

•e« «•»«•«

«»«««»»

e>Ka«s«« oa

«><n«a a •»«
« <J7 » OOI O »

e«uik «««
<»«»» < «« a
o m ̂ « « « ®
« v »»« «»

® «a» »«o
Omife »«0 0 O
»«!*,»«»<»
emMb o o e »

e o e«« o o
o «« «» a o

9909099

9 C'ltS 99« ••
<£ O <S 0 0 0 0
« o 9 a ffl a> »
e e « o ® ffl «

e « e o e v»9
O <9 0 9 0 r»9
e o o o e =»e
9999099

9 o ® » » sne
0 O 0 0 <B e <n
9 9 9 9 ® <» O
O O 0 9 9 9 «

•A O ^» 9 9 9 9

-a 9 9 9 » -»o
a e o 9 9 9 9
O Ite «4 o O .£ O
O f^ "* & -0 ̂ 9
o w» o> o a « o
O V O 9 O O <»

*j o o o o>-a »

AC 9 9 9 O u» O
««s © 9 O O 9 ^

tfa o G o o rt ̂
99^0990
o o •* o -« o o
9 ^ 9 9 3 0 9

4 O 9 3 O 9 9

(O -^ ^« 9 ^ 99

4, a CO 9 O -W O
U O f^ O o O O

,/? O ^J 3 ̂ 3> 3
to o 9 o o a o
ft* o tn o o 33

» 0 -O 3 3 0 3
nt &-J* o 3 3 3
^ 3 9- O •» O O
•09 f 3 3 3 3

J 3 J » 3 J 3
3 —) -V -^ » ^» «
J ' J -> J » -» _> t J «

3 3 3 3 3 -3 O
3 0 0 3 3 3 0

V

M
« « (» % • •

• U> « o • •
• U c *c « •

• <«•«•«»

•««•••••

«<««««»•

»««•»— l«>

• •«C«»«9

• 9 »»»9
«IW««99

• ue» 99

999999

-=««« 99

m 9 99 99

« «
•• «
r««4A9ia««99

M
1C 9

o'
J £
e o

x
(C 1=
0 «
»=0
^» ̂
X
u
«>
IU
a

^ •*
X 0
3
u r

999999
O 0 -*O 0 O

« O •» ̂ 9 9
< O O> <» c» ̂
C O O O 9 9
<3 O O O 9 9

9 ••» « 9 9 O

9 M« 9 9 9
9 VO 999

IK 9 9 9 9 9

999999

Ut 9 a 9 9 3
O O O O ̂ O
13 O -^ 9 9 9

«
O
«•
•e
W
O

X
O

1CM
u»-
a«

S
C

S
IP

IO
M

•

9
2

LO

ul
O e
JO,

u» a

•T 3, 0 3 - W 3 3 9
MOtA j * O O O O O O
3 3 « 3 0 3 3 3 9

3 9 3 9 O 3
o o ni 3 o o
3 9 O 3 O O
0 9 IX 3 0 0

•** O O O •» 3
0 0 -W 0 0 3
9 O 9 O O O
3 0 "M 3 3 3

,
.O **• *> J- « 0
•y >* y y M >*

si a /> />/l n
3 O 3 O 3 3

S
9

O
O

»
9

t
»

«
«

»
 •
•
•
«

«
•

e
«
«
a
e
«
*
N

k
fl
t.
lb

lN
«

«
«

«
*
»

•
•
•
«

»
*
•
«

«
«

•
<

0
«

«
»

«
C

«
«

D
»

«
I
«

*
«

«

ie
«

9
i»

*«
o

«
«

»
9
 *
»

#
«

•
•

)«
»

«
<

<
•«

#
«

•«
<

«
••

•«
•

0 V V <» «
• « • « »
«O v e »
B « »A 0 »
» * « < « «
• « • « « •

e * » »K •

• • • D » •
» v9 w o <B

V • V V •*

• ••••«••«•*»•
• M*«><*'*
• »•««<•

««*<a««lt

• •*•*<•
•«*•«•»«•«««

• •«««•»•
:*•«••-«£•««••
• *«*«0«
• •>«oillB«
•«»**•r^^iis
• UAtf)**
• «lk*«*
• V^ 41 • •

• ««•>««•>

*,«>«^«*o*o>«>« *

• •>«««fe «
0>«fi««^«
« «*-rf**«
«e^ «) * i=3«i

& «e«) «>•&«<
0<»4» A OO
0 «.«• 9 « «
«9> Of <• « * «

.A**00«9

.0 9 0-0 O 0
0 O O OO O

'** o •« ra o o
« 9 MO «»

«0 O O O 9 ̂

tfa Mf*c& «• « o

0 « < 0 »0
O « G& O ® O

< O 9 « O O

«« o o o o o

tft o e o o o

O 9 «i O rt« O
9 O » G> O O

O « O O 9 O

1> 9 <%4A 3 9
O O <fi 0 O O
9 » «. O 0 O
O O 9 Q O O

rf(O°O O (M O
9 O M O O O

9 9 ^ 0 3 9

9 a O O 9 9
O -J <^J rt ^ Jl

A rt n ji /» ui
3 3 O 3 O 3

|

2

|

01
r-t
CU

<a
X&
a
3
Q

>i
u
O

(!)
S

«

ZT
co
u

-H1
s
(U
u
s
r
•i
6.

X -1r •*
3 ^
a z

H-14 CZ15-00

^

w

u c-i Mm •
< • o •

• K» •

0 •«• «

« • •. •

• « «X

•v •> •
f» • •

1
o

i "• *tS
0 0 <J 0

et at ooo
0 eoo

* » o o
« -.00

O ooo
u
u ti e o

000
<j ooo

e e o

«UM» o

m o t- o
040

•V 31 O
ic) moo
o> « 000
*. 000

X o r<> o

ni » — « »
•V 0 -S »
<o

o e moo

-• . •vat a
tm m o B
M M -»».0 M
o m o «
«j.a. » o o
3 « « 0 o
o moo

ru o o

« 0 0 0
«

« U «« 0
• •« O (M O

» 0 10 -V 3

ni -i « o

in -^ m 3 o <
« ni o o a

»

^ 7) 9 r^ o

a o> o j » -M a
0 U 0 3
X -3 •» 3 •> <»-«

» 1MM — ~ X O O U .
•• X J> •*» O uO 3

AJ »d 44 ^ « 3 O

B > i k • ^ — J L S C ' S

a - A a -" j
a, j i — »

3 < -^ < k . J 2 C C 9 O 3
9 J -1 i i. — 1J « C J

— • 3 3 Ai J Ji.Ji_>i

l i - « k 3 - 4 J •*!•><»

-. ^- i J J> 0
u. O r

X L X t J
O i ^ Z A J M l t A J ^ A .

3 j J « ^ . £ ^ C 3
3 I r 3-3 J 31 O
z u a z a z

eo««omMO«oou»omM e

oo«*ooo<voooo«*a>oo>no c

ooo«*40 iuoouoo««oowa.c
9 9 Q Q < e > O O O O > ' - * 0 O O Q O Q X C

(J

9> O 9 O * V 9 « O 9 (V O ^ O r ^ O « X C
o.

oe
w

09^9 ««99rV9 3 339 -»9OU.C

• « O U O O O O A « O O O L > 9 O O O C

Ul

U 9 O U J 9 P » O O C D (M 9 9 U J O r ' 1 O 9 C

p * \ o o f v o « o o o r w o o o r s i o o o o c
9

9 < V 9 9 9 9 9 9 9 9 « « O 9 9 9 9 C

^ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 C
<M

3 9 9 O 9 * » O O 9 U 9 9 9 9 o « O -

D 9 9 » » 9 9 9 3 ^ > 9 9 T 9 O 9 9 - •;

X - M O U » 9 * r J 3 ^ ^ 9 > 9 0 < n

0
C 9 9 9 ^ « n t f) 9 9 t) < ^ 9 9 9 - « » « > O -

O O O O O i O O O O ' ^ O O O O O O =

o

i U ^ A t ^ V — f U « * l * / l - O ' - O » ' < j O C
— ' J ' J r_) , JO i3 i O ̂ 3 > ^ 3 ^ ^ - -

X
a
.*.

3.
a

: : : :,• :::::: : : :*.-•

> e> oik u u »oh, o » uk. —o «o a

ft «^O90»9a»"oO— »t**09«(_» C

» k,m^.te.»oM^Mei>f»<«« m*o c

» ov»ouoow«r«oo««u>iouoott.c
» ««««ooo^u»oo**«9«iooxa

3

L»

0 0 9 0 0 O A J < T O > 9 « k . O O O n < > - C
» 90UJ-*«00«001>-<0«>-9U.r€

A

> 9 O 9 O ^ 9 O U > 9 O 9 m ^ ^ < f i ^ ^ ^ C

X
tftj

> 99f>^O^iOU»lA-O9<O'99>»-^i9ik.rC
» O O « t t ^ » « | k * « 9 9 O 9 » « W 4 9 O t U e

> OOOO»i fc .«> l t .O*«999»«OO C

> 9OO9 l f c .P« l4k .eh^O^ -OK>Y4>O C

> 9^TJOO9O^O9Or t^^»H j -O <
» O O < O « 9 9 U J 9 B 9 9 X 1 4 k 9 9 C

» 9 l fc . 'J9(JfM«A99'y^99^O-* «

J 9U.(D9,J99:39«««>9999 £

• m O V 9 O u i 9 O 9 9 9 - A 9 3 9 k n 3 C
Jj -

i m o o o o i b « n i o > » 4) ^ j 9 O O 2 < ^ :
> rV94>9-«< lk999(_> lk '99««-V9 4

> J 1 9 r « » K t ' M ' ^ 9 O 9 9 9 a ' D I 9 9 9 ^ . t J

</»
1 » > D O U 9 9 9 £ 9 9 A J 3 3 3 9 9 j

9 9 ? - £ A J « 9 M » 9 9 « l A . ^ i t ^ 9 3 3

J

^

2 j j j . 0— ^ - ^ j / i o - a > < « i i - » o j

A
X
ul
Ife

t

f

I
i

I

ii
*

: «
» fH
• a
f I» <8
• X

U
»

: I
r Q
J ^• M
• o

£
' (U: s
K

» •
»

> JJ

i C
' O

U
1 ^ .̂
»
»

> .H
> 1
» 3;

r 2
' §>
• ;H> Cu

>
»

>

>
>
»
»

r
a rv
^ •«
> in

»
j »•
»

u
s X
> <
J 2
>
i« •
1 J
> D

X

X

**
^
3
a

H-15 CZ15-00

w 5

X

*•t

•f *

-s a

•̂•»
o
I
o
«

•»

I
>-
A
Jl
&
X

<*

^
O

3

O

-I
S

0, <
I J U
3 < X
O O <

— cnr *ft

<
i _J D
E « 3
3 W -J «
a x i» «

:*• •» ••
•I
:s

•••
••
*«
o

*
*::• •• •• •• •• •• •• *

is
•«*
•»•

35
M«
• «W
• »•
••
•in
OIN
•«•
• «

MM
• •

SS
22
M4»
• »

<••
• «
o«
• •
ma
a o
U4 O
oo

«
U
s» * a
№ 0 0
1*5 O «
e e o

ca O
o o

Z O O
3 a e

N= =ao
a. o o
•< o o
c e o
u
• mot
mo*
ait. «

e u
->«>•»
Z O O
3 a o

0 0

z o o
3 0 0
O o o

9 9
O O
0 0
0 0

o o
«w O
o o
© O

X X
« 3
U O
O O

••» r"l
O 0

§::::::::::;::::?£:£:::::::::::

«4£9«3Otifta«0Ov«O9«*4»^«99O«ott«>««<ttt«9«A«««»«^

«> « «» «a«)9«aOiO «99eP^9Off*>99 «*«>«lt«)«l»4»««O4»^^

® ««« ©-aar- o A0^ *e>«tfeoMM«»»«>0'««o«>k««*K,«e«>«M»'

^^wo «•<»<*« «<«>«•«' «*<»<*> o--«««<a>«**««'«>«"*«>»»*

tfaife^aQt^tiS^^ae^^eCJ© ©««O OO<944B<bo<O^O'BeClO)««^^««a«
tf«ueo'oeoe-»oooeoeoo9«Gooa>«>««>^4»o*u
n0^«a<»^««^Oc«oa'«<i<Boi««oo««O4EaC94«c^^«<e4^^««i^
«««3G««oo«»<o<d«««€)«r««>9«*«««e««4C««'«««0««%B

»fs№<a>«*o«№«*Bfe,o«toiO«j*'0>»*o£»»^«.^«*«»o«'0

oeo«oe>o9eo«eoe>c»OGOo«io«ooo9«oeoo

®<90«a«>e«oe>^o«e)C9^e<E>o90O^«o«e«o«««e«oa>o

@6>&tafle^<B»@@>«GMtfle»ir9«<><s>« «-<£>«««uooiM*>eu.«>
ooto>nco^«i«)e>ui*oU'4o9(ao<tJOP^»a^wifece>iYt^o^nc
O > O O O O O O O O O O O O O O O O O O O * « O O O O O « - a 4 i O « « > « »
9O9OO€»O^®9O9CtOO9<»99O9OOO99QidO>O>^

a
o
OQ>F«><«9tk<«G'UlAOG>mQL»n«O-auJO«n00l4j«0»QO<a90
ttOfVA»eo>nef^«o-«iAo»r*>>«o0oAioo<feMOf^iLOO(M)o

6 > e o o « o > e e o ^ o o o « o o o e o o 9 9 e e e o o Q O « ^ o

O O O O O 4 9 O O O O C » O O O O O O C f e O O 9 9 O 9 9 Q > O O O O
€ » O c * O O « t t O O « « O O < > e Q O « « O O » e O Q « a O O « « Q O « Q O O « e O

t-°GI^«S«orVSi®t& I0«>U/IOQi<S99 t l^O'fi<9'V-«0!fiU%0<9'OU
3 o o o M ^ K ^ O f ^ r ^ o « v o r v « o o « o « V 9 0 O i M) o m i i B o » o o G « M
3» G> <» O O> G> O> c=c O> O O 0 9 >4 ^O««OO^OO««OO««OO*«««O9
• « ^) @ @ ^ o ^ o 0 @ o o) O o o o o < a o o o o o o e o 9 O O o e > o
OE
t ^ m ^ ^ Q o K Q O w O e - r t O O - M O O ^ O O M O O - v O O ^ O O - M G O
N f < 0 0 0 > d O O O O O O O < S > 9 0 9 9 0 O O 0 9 0 0 0 9 9 0 0 0 0
« p S « O O O * > « Q > O « 3 O O a 3 O O « « O O « « O O * « O O * « O O « c O O * « ' a > O

(e f i l tO@o«C»O>o«O9««9QtP«OO««9O««99 -«9O-«9O««OO

«e-^OIaDO0^9>dP«9>9iAF^9i»«U«0««F^O^<OO^aof>«««04>9
X909>n»o<aF*ot f««Of*y>ou*o»i»c»i *ao,«u«oaoof*««
• 3 O O O O O O C » O O O O « < 3 O 9 O O O 9 O O « « O 9 O O < » < 9 « « O - s . ^

o o o o o o e o o ^ o o o o o o o ^ o o o o o o o o o o e s o o o

^as«oi fe i r to i j^»o / *O '>T3OOf^t j '5»r t j i fc .ar * . o o 9 < o < o o
o«n joumo*»9o«>t f ioa^ooao«>uo«>u jo i t .h>o»oo
O 0 O > O O O O 9 O O O O O < 9 O O « « O O O O O O O O O O O O « « O

O O « - > O O « > O O - ^ O O < - c O O « * O O - « O O < i « O O € x O O a o O O « « O
O O r t S O O - o O O c ^ O O 1 — s < 3 i t 3 - « ' O O - * ^ < 3 » « « > O ' 3 r * = O O r e « = O O " « ^

% . V ' * i X N l V ^ X . V V ' S 1 ' V V ^ > t . V N l > 1 V X X N t ' * « i > 4 ' ^ V X ' ^ . ' N l
1 X X

Ol&Jfe. O * ^ (V m 9 ^ 4 S ^ t t 9 > 4 3 > U O U l * . O « * < M ' ^ 9 r i l - O ^ i » a O < < O

o o

H-16

» » • *^> » » » » « »•• .
» « OH » V » » •̂ '»

» • • e * V«> • •» *
• •• e <•% • • »<• »
• • • » e& » «B « t»
• « « » « « « « %
*. B « « »*l V«h •
V t t *> " « t) « J C C ^
» m v •«» « »^ S*- *,
^v « o « 9 « « » ^ d ^ r

V »»= <D VPC •»• »
•B »« » •» • ««•
V C O % * C C V V V

® • 8 e « e •to^h « « « m

• • > •» « • • • - » »
• » » « • • » » » » » «•
• « • * • • « *«». »»•» %

« e » e f > v e « « - » «K

0« ««<«<•««•«»>> A«
MCJM««*l««&*bM*tsssi^tlsHS
*. «•••••« K, ««•
t»*> Ik • *•»•*•!>»»
••1* «»••««•<*«*«*

«•»*»««•««« »•»*»•
•>•»«•» U U «b ••» • W «•.

»•««.«« •**c^«l«

« •«. Ml « « »*•*«««««• •»•*••>«=,«•»»••*•
» M. • •« • «k» •> •. •> • * •^ o • • « «^« • • «» ***
^>^ — o-< -• *«—•>••
•«•••« ̂ a •••••>• u
lkk.«ok.*»«»«SA
«««•••&«••«•«

k*b fflffl«»««C»«lU

*»«<ewik«i&«<«u<«o«
W-«-«<Jlfc«B«4«t*«!»«

uo<»CT»«fc,<»»e»»««»

r» •*-»«» «OMMMMI«*
UU««UOUk.OU ••«

owo«nu<»oH»oMo

1*1 9VJIK O-*«U*»<a*»M»*^

UOOC&OO««»«)OO«U

G*>OOOQIV9>Ul»OV*
O^f^OOO^f^O^ttA^

w
3««<(lfi<^^"»»»<Jt«K><<
a«ooouuoo«»»A,»»
mmo««jo<J*».».«<j«i
o«oo«u<moouMO

• •«o«»M«a>«a«r»«
mu<sr»i3in9«>ifc«ife»
woo«u<v»»»&,uo

— »QO<«w<3i«^a)»n«

»<i^oi^r«>n0<«««^f^^««>f<«

^•<OOU»9»O9»0«9k
tf)OOUO-4«O^<<WO

£o«-or*><vni*e'O««i«»<»«o
3oib(j<o<ax«tj-«<k>nnt
O^0n«ooo^ij»ui<oO

000<30IM»««UU<0

in-aniniMivi4,aFntf>r»b
9 U u J o u < o r v o 4 » r ~ Q
OUIkUC»(f iOOUta .«««
O U J I k ' V < « < m O « * O A ^

^ ^ ^ ^ V ^ X ' S i X V ^ X

« uuaiuu.o-»iMf>«7m
- ^ • * l ^ % - A f ^ ^ « - » » - S ' ^ »

0 0 0 0 0 0 0 0 0 0 0 0

V- f
**• '•>

"%

CZ15-OC

-̂

0)
iHcu§
X
w
&

a
>.
Ul
O

(U
£

4J
c
o
o

•H
I
a
(U
Ue
S
O"-

^
* =«« - , a

^

0
tf»
e
o

z
Ul O
a •»r

• * "
^

m
••9 J

x
Ms * *

A
01

Tf »
^Ô

I;
«
S °u
a

u

•

„ 19n
•» «
»••
•a
X
ni
M O>
x

e
I
a o
•^^ i

T i^>
*«3 *b

O
*t
a.
X
3 «
a

11
m

9
e

0- «
V

ff*
m xtx

•ai
V M
«
0
X.
M
• •»
o-
•e «

»•
«^

e J:
3

o. a
I J £
3 « 3
t> 3 * 3

— •» aff
i«J -* 4»
_> > _S _!
— 3 JO
Ik O «

a. u
0. _l tt
X t «
3 U Za oc « <n

• • • • a
• e • » •
• • • • •
• • • 0 •« • •

• • •
• • •

S ac « • •
« • • «.

« « • • •
e • A •
• • • •
• • • •€
c • «»
• • • •
. • X •
90* • •
• C • •
. • • ft.
C • • •
a • • • 1
• • ••«•
• • • V
• 0 • •
e • • •
• • • •
0 • » • |

• • • •
• Mt • •

• • • •
O • O •

C 0 • • •

ee oo wo
»» 00 0 f»
OO 00 0»
eo o o o<*

mo o«« MX

wo o— ••
« e e « « «

v e o o in u
ong ra o oo
O O o O ^ k
»<w nt o o o
«0 0 « O «
OKI MO » 0
uin< MO M. >•
« «n »»- o «•

9 r» i*» o Mo
o • • o o r»
O •* •« O ^ •
O V V O X ̂

40 o «v at «

Ul O o •« tt »•
« 0 0 « » 0

« o o e • M
00 00 « 0
oo oo mo
O 0 00 O «

•̂ O O O M ••
It. 0 00 0 »
« 0 00 O Ik
OO 00 * 0

U 0

«oo «oni «o»
«oo »oo lit • r>
ooe ooo <ca««

V
ooo o n> e o o
o o o 9 w ••

200 o o ik 0
3«o moo *. »
«a lu

o. o o ooo a IL »
•900 ttoai tfu>^
ac o e moo « « «
u z
UJOQ H>0O OP^
OOU ^UJ0 O0

o < < » » e» u
* , » - » .

Z O O 200 ^ C. 0 <
3OO T J O O 3301-

O O O O O O •
O 3 3
Z O O 200 Z O f o C
390 330 D 0 UP
O o o O o o o o w «
aoo aao -o o »• c

o a o » o jj -
o o o IM o o •
00 O 0 O 0 C
0 O O 0 0 0 C

MO O O M •« f
O O 9O O 0 u
O O O O O u. 4
O 9 O O O O P

V ^ X X V X *
9 O O 9 9 O C
U O tt U «> ̂ «
^j AI A! AI 4i ̂ j

» » a •» * » .
e e oo o o «

: .• .j
i §
i !
: j6
; |§
* x?
> §2
• U|y|

« *J

El. ||
i S•
•

>̂
«
>
9
»>

r
B
h
9

H
r»
r
n

^
>
R
J

1
>

«
»

I

V **• •*

n>
«

•9
«•

<*»•> c

** ig

««
» ••

jf

5
S
rt

•*

%

1
««
«f

»
C

a i ~-h
H-17

f
i
•

i<*»•
V*

i

CZ15-00

«
«
 rfn

O
a

1* "()•»
S

1
«

n
l3

"rtlS

«
1
0
H

9

x
e

*
i

W
0

8
A

V
iW

3
«

3
S

,»
3

»
m

«
V

J

S
i

B
3

9
«

i
i

»

£
«

*
fr

f
2

«

0

T
.iU

M

-w
in

*M
6

3

0
V

4

9
6

8
6

9
«
»
U

?
«
/»

»
"*

e«
>
ie

»
6
0
W

9
8
0
3
9

S
U

t/Z
Z

/M
-9

'f
-H

<
n
«
W

flO

g
'a

frs
m

t
8

?
/°0

/?
e

«
.!

A
-in

a

IT
U

d'-iodw

rf> *

^
?

*>

«•

o

M

4 •

^ •

«
«

•

»

e

•
c

•

• • ••• •

0 • • 1 •

Q, • • • •

•C • V • •

«• M • • •
09 e • « •

oCT 0 0 0

« « • « •

o o c • «•

o • • •
e • « • •

J» 0 0 • •

•
n •» .• o k. M

u o« oo « o

I
SU

M
 8

 u
P

tF
U

T
O

R
?1

0i
»8

a

Y
S

T
E

*
H

U
M

UP

S

o u o

li, A, 14,

^ ^ «r

^* ir
3 3
« a uj
c u o
ul U O
a. < z

UK
_Jltf ICJ

344
M«8 «
ISZ Z

so
uu

«8«
M i-c

a
<ltl U*

e«x x
eo« •<
oe 3E z
a 9

fc) toi
•=•»_!„•
e. e>&. a,
3 <a S X
O 1=4 IBS

« o » «
O Hi

53
S3
»» « w
« «p) tn

«•» » »
.rf •» «
X »»tn ui
•=»<Z 0 0

o
3»-
to u » «

Jjt" «
IU OS « ««E
3 ~0
« a o Q
e luj >u

O 1- N-
» 2 « •«
< w U (j
•g * o rs
^s-1-1
3 « •» «
3 |»»=

« OC 1-
K> iS £ JJUJ

Uj -i _!
» X «x

_ «»K Ik 15,
1 a t 3
3 O 1— o 1— *»
3 3 3 3
x m at Q a
J -«-o 1 |

«! « u. as oe
v)̂ UJ 3 41

0 « E 3 Jt « <O
3 _» T <J TC "I
0 C. «- UJ O UJ
CT Jj •-• Z -*

9> « 9 "K CE
^ at .3 3 O

— C OC 14, 14,

»O ^ .r
«2 a, i a
J -Jj —

J» f— </>
J 4: < —
X O IA* 3

X 2
•* J« i
r o •« -r

r -j
uj ui a
<rt I •- £
< « — J
co z a 2

i rj j

-.JO
e j -j,
U 43 OJ
y»
AJ -3 _J

i ̂ ?
3 3 J

>— u w
o
U4 UJ UJ
X J J

-3 Ik U.

i
O
J

X
J

1.
Jj
1—
>1
^
^>

O Bto O ̂ • O
OU «O 0 0

o» so o a «
« e>oi» ««o
0>O<9 <3 «0
•o« o o a o

«^ e>«s o e o
o t«. o o aio
a O o o eo
e« o eoo

o « a ooo
O •< 0 0 00
ao o o o o
o e o « o o
O «* G O O O
O ** O O.O <9
^ O O O O O
O •« © « O ̂

« ar f^ o o o
K» «fl 1*5 ̂ O O
O» » » 0 00
« WOO 0 0

» O (fl » O •«

^
o

a

o o e « o
90000

o **a o o o

o o «• o o o
0 0 — 0 0 0

o om o o <
o o o o o in
a o o a a o
o o o o o o

l*i O A O tfl o
in o •« o ̂ 9
9 o IKI o o o
•« o o o o o

3 O O S O -*
0 0 0 0 IU O>
& 0 0 0 0 —
o e o o o ft

O <a O O \g\ O
O G O O O 3

3

0
0
-3
0

9 O

0

3
O

e
f o

3 j
.4
Q

0 a

O 0
i_f

•X.
2
3
z
J

<3 ̂ 9 O O

O UJ O O 3

3 3 -3 O 3
0 4 0 0 0

I/I 0 O O O

O ~* 3 O -«
O O O O O

d* -« o o o
*A Lt -> O 0

O U -3 O O

• 0* •

« • 0

o « 3

o c a
• 0 0

« 0 •

C tt O

A « «

• o c

0 0 O
O O O

9 « O

K. 9>U«

«

i

O

Q

O

O

B

•

•a
o
9

o cX

• ̂ e

e o e
8 <**

V ®3

c « o>

€) C »

c e e

0 O G)
O O <£

O »«

0 C3 ««

9

•

•

e

•

e

•
•

•
•

O
fW

•
ta.

•e«,0*>OOU«O
lk»<<«OIUMI*»

eoooooeo
0000000«*
oooooooo
OOOOOOO0

l*»OO&f>%>lt»&lk
IVOWv^Otca «••
OOIk«»>lk,U«O
00»««eiUM

o o o o o o o o
oooooooo

oooooooo

U.OIAIk«-«OO
nor>n«<M«o
<ro«in<vuiwo
o o » « a o w o
o o o o o o o o

O O1 O O

« 0 IE «
^% O O 4
o o u< ar
0 0 » •«

r- 0 0 0
9 0 0 O

Ik O O

— 0 O

* O -*4

O ̂ 9>

u o o

O O 0
o o o

r«» o u
0 0 39
O 3 »

a o a

•» 0 0

ji r- 3 n
UA <a o 4

it

400
> 9 O

-1
U Xi 0 *»
< C. 0 J»

^ o O
^
J

} J 3 3

L
U

U
IC

A
L

h
-

O
il

0
3

)
O

il

o

I*,
<
o
•3
O

W
î
<

0

o

0
o

0
=3

U

^

3

O

4>

0 <9 0>

£*'**»(v u <v
-cOO

A O U*

090
O O O

o
o
o
o
o

0
o

o o o o

A tn t« o
-* -O tfD <_»

JZ O U«

o « o

o o o
o o o

< 0 Ik
Ul •* ^

UJ

o

o
o

u.
4
«

4 ̂ *iUJ

>3 O (9 O

3 O O o

O < ̂ -t,

a <a *o 9>

o o o
0 0 ̂

a- ** TJ
Q -« r^

-« ^ A*

O O - ^

0 O O

a

0
o
3

f*l
ja
a

o

o

•
•
•
•
•
•
*
*•
o
•
•
c
e
e
«

M

•c

*
•
*
•
•

•

*c

W« 0
99
00
OO

99
9 9
9 9
9 9

9 9
99
99
99

9 0
9 e
90
9 9

90
99
O 9
9 9

0 0
9 0
00
0 0

•* O
0 0
0 0
0 0

0 0
o o
o o
0 0

< 9
in
0
e

o
&
o
o

o
1*1 '
o
o
o
o

9
O
O
0

r\l O
0 3
i/» 0

0
3 -9

(M

O <

J O 0
0
-«

3 0

L
U

b
K

A
t »

•
i

C
O

'
0

0
)

(U
l-{
a
e
<a
x
u
&
3
Q

>!
u
Os<us

4J
C
o
u

I
33

<U
U
3
a>

x_>

x->

H-18 CZ15-00

<s

ui o
O M
< »-

• w
c

«« b.
I

a ue
I

o
uu

nt
ni »

K
<S

«* r* «>

3 « u
a —

«

V^/

n<
x
a

z
K
o

0. 3
» -< X

3 « —

° ^ ^w I»

-> -J
tk K

3
a. .j o
x « n
3 W ttl
a * x

o «
o a
o o
0 U

or (r
W JJ
r u

3 .3

jj J
U tM

3 £
3 4

*> J
K

^-4 &
4 «
u *.
-. o

3 <<
_* X

O O O
o o o
r\i rv o
UB O O

- 0
•• (« *r
? (A O

— » _<
« _>
J T -
«* O «

-* « «
•— ->

U _» J
o ^ -*
•* -4 »

UJ
tfj X O
w u
•4 » *->

UJ oe <
O O -J

•**
u,
a
o
O

7)

Aj
a
a

u
3
j

U

r

6
o
1C

<
^-

o
o
o
a
e
o
a
e

a
G
e

e
o
e

e

o
a

e
a
e
e

a
a

e
o
«3
e

3
G
0
e
G
a
G
a

c
G

e
G
c
a
S

e

e

*. G
•o s
a c
.3 S

•• O
O 0 =

ih) a
<T UJ C
0 J
a m c

*- c

U -J
J J
J a N

Z r»
D -a

J Ul C
3 U
-J (E

3
ft O
3 -0

x at
Ul

••
A

•
*W

^•
•
•
•
•

*•
•

•
••
»
••

A
••
••
•

4
O

e o
u
w
M

C 4k
0

e
9

« e

9
« O

«

c*

c u
a
««
«

C 44)
a

o
« e

o
Ik

« •*
•e

0
O

0 0
o
«

• <
« 9

» O

• 9
9

' 9

U
ft kt.

* «• J

» 9

» * 9
9

UJ
» *\

« O
> 3

» 0

» « O
9

O

« 9

X

Jj
3

» A
I 9

• • •» • • ««J

• V • • » • *O

V • • •» • e

• M • • • • •

• M • » • • •
• • • • I • *

: : • : : :

«W9«OA Mm
9 O tA 9C» 0 V
9 -o 09* OU
9 *• 9 e» «ik
t*. 9 O> 9Q «•
•• 9 9 91k • «C
0 9 9 9 9 Iff 0
9 9 9 O*» PI9

ir> w < 9m •»
A Ik C* 99 0**
«a O h. 9 9 O •«

m 9 9 9 9 99
999999 *» 9

0 A 0 « te. 9 k. -»
9 *«991k9 Iktk

9999*«9 9^9
o o o o m 9 *- o

O A 9 9 f t o t n 99
f>n 9 O O IV •> 99

<=e O 9 O 9 Al 9GT

9 J Y 9 A 9 9 ^ 99>
o ru o o o 9 c 9&.
9 9 9 9 9 O 9<V
099099 * 0 O

«^«90f lbfU 99
4> < O O O « 99

« a o o o « o o
«999099 ^ 99

999999 _ 99
990999 * O «

099000 9M

0 tt 0 0 tf* tt 90
9l/ l09tk9 90
O U. O O O *t O9
9-aoo<v-« ao
9 9 ^ 0 0 3 9O

* > 9 7 0 U b 9 9 9 9 — -*
« O O O < D O O « -* 99

90 Ik
o o * - o t f * o o o o o f- in o

o « > K i a o « * » » o O O O O O * * > M > O

•••• ••tuui ikooocno M M *eaji44 — ̂ *
oca. — o a : x u J «) o * - o o o a uc •• o cr a w u. u%
uJu i«* j ixu^^ t * j ^«*« 'x io_ i
D l > ^ J O C O l * a U . O O ^ - O X C Z t S O O O ' D O O

J J *^ J »• O 4> O O •• O J J -^ J N- O O

* ^3 LJ J J « 3 (J U -J
A i u o j c ^ - O J ? u jur — 3 D J
U l U ^ ^ O ^ ^ ^ Q C X X V N . K X L J t i l « - » O « J j a X X

z» 2 -* •* « ^c.uitkO««ni 2 ^ : w < « o zain

^ U U ^ C J X J O 3 ^ 3 » k lU^^UIC. 3 ̂
Z O e » * ^ C 3 * J O O O O > O O X O J ' — ^ - O l A J O O

•u* -^ -* -• r o o i i j *«^»?.Du
^ac »*i o j or «i a: uo^icr
« « U J X ^ U 3 •< •* uJ 1 O 0 O
u&u4u a o ocuit j cro
- .o-^->^-^o<o - ta-»» — * o c o

a « u i X 4 « K < x o < y j x < < a : ^
_l X O O -J »- U ^ X O O *J »- U

••

*
•
••

•
•
•«

•
•
•

•
•
•

•
•

•»

*
•
»
•

•
•

DO
99
90 «
99

9 O
0 O

9O

99
99
09*

DO

k. 9

9 0

Ik 9

9 9
IV 9
tk 9 «
Ik 9

9 9
Ik 9 «

0 O
e e
Ik 0 «
»- S

o o
o o
&. » «
fc, 0

o e
O 0
Ik 0 •
Ik 0

in a
IM 0

e o

U> 0
m o
a o «
a o

o a
9 O «
o o
•C 0

9 0 «
O O

^ O

o o «

X X.

•O r*>

3 A
0 0

m
•
•
«
•
•
•
«
•
«
•
•
•

••
•>
•
•
•
•
•
•
•
•
•
•
•

M
Ml
»
•m
Ik
a
o
o

V

•

e

o

••
e
o
o

o
0

o
o
o
o

m
cw
o
o
«
»
Ik
o
e

0

0
a
a
a

a
a
a

o

3

a
o

o

o

•x
^

3
a

o
9

X
*i
o

.AJ

U

2
r>

a
_j
«
Ul
•̂

a
_<

«
o

1C
UJ
a

o

-J
UJ

<̂

UJ
or
«

*a

<
X

Ct 9

'X* -•

~ O9
i 0

« -J

«

J C
M CJ

•N 4

— ' U»

o r

ul %
U UJ
»* *

Ui K
O O

!

{
Ji
1

1

4

*•

c

••

•»

9 a
« a
a a
a a »
o a rv

a •• «> a
» 10 » a

— UJ Ul
o cr a: uj
O£ O O _J
oo o u

^

o o u -J
M. O 3 O
•« _l _J X

<0 £

». o ,J,

*• >- (A UJ
> 2 J U
UJ O -J K
3 U 3

K O
•- * O J»

< < C OC
J >- U

1

**

I

m

Du

H-19 CZ15-00

~N

Ml O

I"

MA

e e e o e o o c e
W c « « e e » o »
e e o o e o o o e

<i) c o o a e e o e
e » e o e U V) 0 » e
• c • oft • » e «
o o c » « e c « e

o » * • «

I
J «fcI

a ui
o

9
U
c*

>.
ni
nt »

I
o a

&
E
3
J

»
w

if a
« e

II
II

aa
w u

uu
Q a

« M t o i » < i > < a < « o «
a o o « m a > m o <
9 O O U * ^ C 2 O 9 <
O O « < 3 « < « e 9 <

® a &««•*» ax
eih,oeGoe^<
oooo^oooc

tf««'@l«%ef^<9O4
^O94^O^f f i9O«
O O O M O O - » 0 0 <

<B<se«o«sooo

». o o .
« o o .

o
0

o
e
«

to.
e
«
»

e

«
•
«

e e

0 «

*»
no«*»
«k
«
«

«o
ae

<B

«

0
ac
O«
w
K

«J
*
<

p*
<
*>
<

o

e
•
s>

»>

c
«

e
«e

o

e

«*

^
c

«

e
«

s
e

c
o

a
d

«

•

•
*
e>
*

•
«

c
a

«

o

»

«
e
»
o

•
•v

e
«>
e

^>

•

•»
«
»

»»
«

o
<«
Cr*

O

•»

O
*
•
*

a
e
o
o
e

«

W

c

••
e

«»
«

* e
 e

 o
 o

 «

e

•
c
o

•
•

•«
o

e
e
•

•c

V

*>
•
•
e

V
•
»

e
e
c

a
e

e »O tf o • G e|ft e e •
• «*»M4MC « • o e « e V
ol0Q U e c ^ Q o e e o

• ZO

°ae us

c €><*» «

• « .

e • e «

• e o> • •
p O E I ^ c o c e *

rt u£ ̂ ̂ ̂ «c a> o
O <D0000I««00
•«i^<e^omo>^
e ac

« a>°»«nt « =•

omn««oaon(ooo«o
o«onto»oooo*aa
oMntwo«oi«.aani<«9

«OO«»O«I9O

O <«O O IU
o« nt em

OMwm «eoi
SO«nikM90«<

ae oo
u e>r> e

' O 1ft O » O O
O « <3 £» e O

J
o o o
o o o
9 O O

9 O O ^ « K ^ 9 9 (

•« «o« «• e>e>

> emMta. o
p O ̂ rf* V tk
> e ft ft Q m

t fc««Oa>^rnr^oc»
O l k O O O O O Q
On49OOACO9

• «
Ik O O 00 № O O

O O O Q F o t l B f t O Q O O
O ^ O O / V l f e , K) 9 O O
O 9 O O » i k . 9 > * k O O
<3>SOO<U,<«14 > 00

m o it,
o
O te. fW

o •« o>
(U Ik O

aifc »>«<=>
o «
-» o «
t- ~ o M

» oc
e ^
o o
•" «
u„, _
Vs, K

•«
* 2 .-
S Tl «
« w

» CJ -3
w a «
X -4U.

-• *
3 3

O - — 4= -t-o « <
£ £

«= s <a >= w
0» J U9 I I
a >- t= o OL

Ifc, l« •< « T UJ
Ik » <-> U * «
«. r -3 -3 r "3
U, 3 J _i I

«« « « u
TE 3, « >c
UJ « X IX

J» a x < < -3 -3
nj 3c »» u u i& u»
33 TC 3£
o £ a •« « x >:

i) U <J
u j >• >• o a

-• * j n •* -«r j j
-J <i < ,_J _j co -r
i> o - -r x
> a u* u u^ ̂ «j
i» /J •» » 3 -3
-j nj «. a z> a a

e 3 •- —
la* O £ A
Z J0.nl>- 3.T —
4 « 4 3 > ^ U * U ^
< (j ^ r j »*

O "* >A. I (ii uj i

« I
J

1̂ O ̂ Fte O
U <3IV O «J
« o •« «• o
< O '^SOS'W

» S f^fl O O
o o u^ o o
^ O f*» O o
00909

v « o < w m « « o o « « O i k < o
00 Httft «0«^00< O»0
O O « A I A O « O ® O A I M O ^
9«»ni}9Onfloo»^fa,oo0^

o^oncobo^-AoeAe^e^^
o«ni*«inoM(«inoooo
O^-AOU)^9 '<<AO^OO>
Off^X'AtvoOoeVoeOCfcOO

oMomoomoo^ntwo
omH*vaoooo-«oikO
O O M U O O O O O O O O O
onmvooooooioniio

ooonio<a>aM.««oo
or»m9ooo»M«moo
^oo««o-<««<o««o^o
ooni«o«t»r>|ooooo

UOf^O««OO^OU9<^
i t .oin^oooooptOf^o

I^OO-^««9<f^««O4(<^

OJ.Qf«Oi^OO
90090000
OOO ̂ Oi^oo
o o o t n o t k o o

O O 7 O O O O O
o«< ooooo
O « « 9 O O l k O O
o*«ooo^ ,oo

-* -̂ Jl
» A u >n
< IV. O "1

ft! rw o o
» J O
O U O -o O
in * oo

O » -»lfc <
O « 9 O »
o » -• *» o
O O « O ft*

O O IV fti O

O O O « " 4 O O O O O

o o o o o o o u > e o

> O O O - A 4 » M O O O O
9O 3 < ^ ^ U 9 O O O
O O O M t t S U b O I ^ O O
O O O O f O O ^ . O O

0 3 3 3 T - ^ J J 1 O O
: o o o o o o < o n t o o
s o o o o o o i n o o o

O £ « O O
< IX

UJ It, *
» >- o <
-* * o y

3 c. o
a -3

9or«.»«oi^oiAOf«V4rvo
O099OU^^^94tO^
a o v w o i A o o o - a a r o o

O > o o m 9 o o o o o n o u o
J
a o 9 > n m w « « n o r » o o o « m

9 O 9 * * O O O O I X k O O O ^ I k

O » (V «8 w»
O < •» O O
-3 ^> <3 «3 O
o o o o rv

oovi^^TOi^o-oistJOVir)
O O v ^ ^ - O l U O O U I W I k O O
ooo^miT 'p^o^ ro^ ro^
O O O U ^ ^ 9 * « O < O O O O

1000014 .00 (^00
0 0 3 3 ^ . 0 0 3 - 3 3

! O O O O I 4 . O O f 1 O O

UJ ct |n« o
at a, a, *, o
« « -^ 3

OE
ji H= r« 3
.* o «
•*. S -• !«• -«
*5 (J O -O O.

»* O
Ik Z O O O
< e oo

• 3 ^ 3 3 ^ , 3 - 3 3 3 - 3
o o o o i ^ o a o o o

I O 3 O ^ l A . ^ ^ « « 3 < 3 O
) O 3 O O I « . O O O O O

f t ^ f * ^ < 3 « . ^ l C f V O O
! 3 3 i J 3 t A , - U 3 ^ J O O

n o ^ c j Q i w .

o a
-« -« .rt •»
K» i- o .o
u ^J » ^*
3 ~ <M -O
X 1

— — 0 0•/J J> «J 3
4 £ O O

O O O f** O
00000
o o o o o

o a o y <
o o o o w
0 0 0 0 0
o o o u o

O O o * <4
O -3 (̂ Q O
O O O — *—
O 3 -̂ -Q (3

u o
< o
3, O

* OX O
O o

J o
u o

< rt nt V o
» o in (M o
O O 7 U% O

Ml ̂ 9 7 ST 7 <
9 ̂ O < O < '
O O O 7 O 9 <
o o o o o o <

<u
rH
a
10
Xw
a
s
3
Q

>i
u
O

(U
s

c
o
CJ

I
X

01
w
3
CT>

•H
tu

oor^<rtf^'^tA «o-ao^
O O 9 U > U O O U O 4 O O
O 9 U U . D V O V O Q O O
O O 9 9 O « « O < O I M O O

o a k S I I * « i n i / Y Q 9 O O 4 » O
00 T y> O O O O-rj -3 U_ O
O O (M (A O O O O 9 O 4 0

o c. m « o
O f-^ O T i>
o o ** o u
O W O O 1C
o :> -^ 3 -c
o o o a ^

o o m ^ 9 \ n o o ? L > O O O O
O O O - O O O — ^ > t / l O O O O
O O i * > - » r t J O - * - » F H O O O O

3
a - u i ^ c » » « M ^ ^ ^ - ^ r ^

o o ^ J t J * > > r* r f &•
3 lA -O ^ 4> O 4
i 1 J . J J J

^ 0 - 3 3 0 - 3 3 ^ 3 0 ^ 0 0
^ ^ o - ^ ^ o ^ s n ^ f ^ q o ^ ^

C CI O O O O O o o o c - o o o o o o

3
i

H~20 CZ15-00

v^

V

~4
_» kt

i

a
<u
X

a.
r

»
w
M
«O
in

x
<\i o

x n
IM x
o -• ->
0 3
— _)

*

3 ^
O «
z

•

1

e
0
o
e

a

y
*

«
*
*
$

*
»

,

-
t

i>
d
*

^

<

T

t.
»

C
e
c
c

c

«

•>
X

i•••
•
•••
•»
••
*••••••
*••

»0
tr*
>M
»Cfl

* 9

•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
*
•

*
•
•
•
•
•

*»

*

e a
0 ft)
o e
0 *

O 0

•

f

e
i a

a
1 G

t «

•
•
*
•
•
•
•o

•
•
•
•
•
•
•
•
•
•
•

ffe

•
•
•
•

•
•
••

•

O
t> O
o

» a>

» o

•
•
• •
• •
* •»
• •

* *0 •

• •

• •

• •
« •

• •

• •

• »

• •

• •

• »

• »

• V
• •
• •
e •
• •
• •
• •
* •
• •
• •
• •
• •
• •

o e
0 Al
O O
on*

o o

<• • • 1
m • • <
M • • i
• » • • * <

O>- M * * <nj»o • • «

» •
» •
» •
» •
» •
1 •
» •

• 9 • •
» » »
• • »•

* * »-
• • •
» * *
• • •

• M* *>» • • v *

<• aMV * «

MX* • • t

• M* •• «• c •
• m « •
• OB • •
• ^» • •

at *m • o
MO C 6 •

a « » •
M • •

< e • •
• • *> •
• « e •
• OM » •
*A0 o • «

• • *e e • •

0 « OwO«

«vm «*oo«

one o **o —

» « •

» • •

» »w
• •
•* •
• •
• •
• •
• •
• •
• •
• •
• •

• *• •
• •
• •
• •• •

o *
» OM
i OO
> OM

B O O

• » *
• * •• » •
• * »
• » V
• * »
• •» v
• •• •
• •* •• c • »• «• «
• ••- *
» •*• »
• • « »
• • » *
» * V »
• « €• »
• €> • •

• * * *• » • »
• e • *

O»*«
•>*••*«•>«
oo«o

oo«o

OO 00 OKI OO 00 00 OM1WOOO 00 ••••
eo oo em ora oo oo ntminooo OM ••••

00 00
00 00
oo e o

» «• • «
«»kk M «
w a v o
0 O OB

IP o • ,in o
O •"! O O
o o o ««
oe a a

ao a o
ni o <* o
« o tn o
(JO u O

« 0 90
O O O O
o o o o
00 00

00 f^ *0 1*1

O M 0 «
o < o a
0 U O UJ

.0 » l/« »
U 0 u 0
a o 39
0 O 00

o* o o m
U U A O
t/i <a in <
№ •** 9> tk

w o o u o o
o o
0 0
tfl
O fe.

u
0
0

/»
o
»

X 0
(J
O 0
J -J
a* -o

^UJ

u n

X 9
n o

o o o 9
o o o o

J»
o o u. o
o u o
o 4) o
3 90

»̂ /* o
o o o
0 50
0 * 0 0

J
A* O 0 IN,
0 J U 0
Uf A O UJ
u. o u.

tfc)
-* .»./»«•*

0 U. O O
o m o o

K 3 O L 9 3
J* *=• J ' I C O
: o 9 .00

V -V >. •».
9 9 O 9
iti Ik U -3
•9 •» a or* *̂ ^̂ <-»
j> iA j» n
o o e w

S«>
o m
o i/>
o •
« •
v ni
o m
m ik
0 V
o r-
0 I/I

O 0
m o
O> 0
U 0

« e
0 0
0 0
0 0

0 (M
o go
e w

1/1 a
0 0
o o
o o

•o tn
it. 0
Ik I/I
o «

u o o
o o o
o o o
Jl
e u. e

U 3
o o
3 3

Jl 9
o o
9 9

U
O O IM
J >4 9
X -O 141

3 U.
uj
J .0 —

•k <9 O
to o o

L
r>

u
a

O
 >

C
b

/
0

0
0

«
o

3
ji

l/
 f

c
n
O

(

OM O O
o e e o
o TO e o

* 0 « 0
MM MO
» o » o
e M o o

mo VtO
o M o o
o o e o
o ni o o

o o a o
teio o o
» o IB o
u e < o
90 » 0
o o o o
o e o o
09 00

<*»*» «0f*

0 W 00
0 0* 0 CO
O U 04

*A « *»«•
u o u o
O O O 9
e o oo

«" *** *> O»
-> U vj —
f*. F*. 4) P*

(̂ O* * rt

ftj O O CJ O O
a o o < o o

tn 9
O I*. O O It. O

IV O LJ O
•e o * o
A 3 U. 0

trt -̂ T O
o o o o
o o 0-3

(J J
O o nt o o ni
j j o J a o
(U * «U <C < it*

4k. U. ^ U«
lu UJ
J » — J Jl -*
X O O iX O O

t/> od O tf> ^ O

c a o £ & a
w O O C O O
. O O . O 7

X >* V ̂
3 i 3 >
A» K* U O
9 O < i
.̂ /-» u *
n ji ^ a
do o o

0 0
0 O
00

• M
mo
* i*0 IU

tf«0
o o
o •*
o o

0 0
n*o
m o
O 0

in o
0 0
o o
O 0

•Of*
0 <M
o m
0 0

iA*»
U 0
o o

mtfi900O 0 rti 0«OO
M M V O O O OO MOO*
P*3lft » OO 0 OAJ M«O>O

a>Ma«on»m • o o<»«>o

O *•« M « O »

0 M

mo oooo

o o o o o o oo oooo
ivoouoo om oooo

o*«o«-oo a o ^>oo>o
mooooo vo MOOO-
oorwo««o mo oooo
rvo o o o o oo m««o

4> -cAC W O 0 » 0 0 *««>O
Momitoo oo ooneo
tflOOOOO 00 0000
r^OOUOO 00 OOA60

«w«n«voo —«** oo>«o

o o f>i v o a

0 0 — Q 0 O

o o

tn w-
It 0
o o

OOMO

0000
OOMO
O O O O

h. * 0 0 № 9 *» 0 tftU —«.«CO
o«c <vor<nooo 0« •* o » o

« "1

<o o o
« o o

us
0 Ik 0

•e o
< o
o o

in o
o o
o o

L»
O 0 Al
J 0 3
a» c, u>

(J U.
U4
J T •*

i 0 0
IO O O

A
P

f
*"

O
b

)M
fr

u
/

0
0

0
O

b
5

«
7

u
/

U
0

0
<

niotnooo »«

f u o m o o o u o o
O 'V 9 *̂ 9 O O P*. O O
uinomooo ^,00
9 V

t_>
O
J
03

U
J

X
CO

A
O

v m o o o a
» 0 0 0 0 0
» OS 0 9 0 0

o o rti * o a
rw rw **i .. o o
-* o o o o o

u •« o o o o
f» O — — » O O
tk *v o 9 o a

T O nt 9 O 0

o s* o o o «4
O **1 0 O O O

» M f\l >* 3 0
o o o ~* o o

3 3 3 3 » J
3 M f\| ff\ & tf,
11^1}^

l » l « l * (* 4 * 4 1
* J -» J 5 V
O O O C* O O

o o
r* o
U. 0

9 0
O O
o o

* 0 0
(_»
O o n*
_l U/ =>
CO o iU

U. Ik
UJ
J * —
i O 3
m o o

* — 0X O 3
O O O

X X
=> o
u o
•̂ ffc
** *.
J- 4
o o

0« MO

o -« o ta o
tel • O M O
O O ««fo O
U. 0 0 « 0
V

< o-«n o
ni o « o
« OIVO

oooo
Q O O O
oooo

3C 0 0 0 0
<_*
O o o o o
J 4 O O O
m « o o o

» 0 0 0
M
J ̂ O O O

a. o o o o
at o o o o

K (M O O O
X O O O O
O o o o o

Ni V X V
*» 0 0 0
î l Ik O —
O ' J -> -i
»!•»»»

» ^ J »0 0 0 0

0)
>H
a
E
(0
X
u
&
E
3
Q

O

01
£

4J
C
o
o

I
E

a>
u

I §.

Jt
u
o

1C
z
o

&

H-21 CZ15-00

« I
<» «-•
< ^

*u
K

•te, • » • • • • •.» • a
• ««* c^jf 9 *4lfe • *h

•a c * e It, •> A. • * Ik • •
e> e * ̂ « « o » « « » »
& • It • o *> o* • • • 9 4

e e « e|̂ , * e Jf 0 • Q,fe,

« •
••» •
• 0

o e » o « * 3 t t . « « f t A f c f c « » e « K
»U » o e e c o « » « € > » «V o »

.x

ofe, • A <• Ik. ••» • »

a> e « C »*, fc « « • • • ft, ft* Ife O

o c e o o « c &4V *

«» o* efe,

•<»

• «.

W £

«
e

Ik

•»-»tt.t#*.*-s««.e««-»«.«a»<»

a
u
a

W

&
c
o «
o

1.
i «J
J -«

3. J
Z i
3 *)
3 X.
X.

® 0
e ®

ea>
aa
s e
^ «
am
»»
ant
» If*
tn<v
u «
« nt
9 «

a «
e a
e a
m a
u a
« a
a a
a o
a a
*e o
* a

r*>
»
lA » 0
w a o
» 3 -»
a a a

°a 0>
3 •*

Z O O
3 « *<

fc» •« ¥

— s a o

u
09 w a
4l.li 3
a ru a

«« 3
b»
-«J» •«
2 a a
3 3 0

O 0
3
2 O O
3 J .3
C O O

-3 3
0 C.

O 3

^ .3
^ O

^ X
3 ^
tAI ^
/» rt
I t I i
J J
C 0

a o
a e

a e
a o
e> @
<»o
inu
» o
f« a
tfl O
ru «
9 e

•VPa
* a
» «*
a «
a e
a «t
a «
a a
a a
a a
a o
a o
a a

•a
o>
iA a •«
u o fi
» 3 -W
© a Q

t*l 0
-« -a
o o

(» u o
w
f f -a

a o o
JC
i» a -o
»= a 3
« a o

3 <
№

-< * 3
Z O O
3 3 0

O O
3
i 0 0
J •» 3
C O O

3 .}
c. u

0 0

3 J

^ 0

X X
3 J

J> u
n o

1 » 1 •
J J
0 0

» o m » « • <=» a a k u Q « a ̂ »» nt
« a r»a ik •* «««<« w iv u a o«o m

•am e -« ueift -xi « »t~ M •• •• oo « f-

aou>«Daa»a>aaiA^«u««a m
e « « fes e«c«« a o o«« »» « « M

•»4b,te> «»e «><•••'-••«•• r»«-« —
«» uu tt= » ««• «• an, » «u » «
au^-^^OveoA^acvao)^® nt

a to -a » » * « a s> •*» •> »«> a -»»» -o ik
F ^ a v a c o A i a ^ w v e - o v v i f c a c r o
««uaaaantwikaaa««a«w
<<«««aae>aa«aaaaw-«a « f»
6> <« «V, P5 -fi <(Hi « f« « 0 O « IU « »• O
Q aui a » u r« •« •• ar-*1 a •« a u< f-
<s«»«»v»aaaac29<aaaaxr«.

3
««ie«rap:>«-a-a-«»»tnt-«o-«a<a
« -« w ifc IUQ u u » a a o u u a« r-
»c»uf=.-=-s«<v«»o(j»tw<a— io»_j<
«o««>ec«tj«e»<s»nro »t»«s««i«n

u
*=>^tajtu<^«3«r»«« 9«o<atf«(B«9
auifcrn^^rviAi^-^^^I^A^^^niA
<A9U»9>ow,ikanai&^tta>>o
anja^oi^waifcaai^at^auta £u*

a,
«*^£^us^^<o««u%aiA0-« |A'<a«« P»
a-««^9kaaikUti/iA^a(joi^»>tt<-«

ae
w

^-«^i^ac«««ui-«a9 •o^tn'totktkU^
oou4uf^aorua iv««oao^«^*«taAin
a a 4 > r > « ^ a a a a a u a o t A » - * < ' v Q e Y
a a o ^ ^ o a a a o a w o t v a a a j a m
«
oosoi t , i^a4)^a3ab««et f)««nt^a r*

n><Oui>Ka-3i^:r-o-a<* i9>xa-«i*i^«ij t
a i po i vo -« i f cOo iDuooaa» c m

2 > 4 C c < « a ^ a a ^ a a u - a s a a > ^ Q 9 > e i / i
lu
£u, , -« i9a«<«^«o-o^-««(7>u.a(^ •«
O 3 ' « o u i a 9 > a a > ' u a a i a a a u a a

a e o c p r t f e j t a j o - a f t - e - a i n a o a a ^ î
«au-e»m7r«a<j ik»F>r»iM9 T
v > a < o » o « 9 i / < i e u a « m a o \u

•o-«a<»>ot*"«t> '3O(j -«o^^a« ^
No
- « 3 ^ i ! a ^ ~ « J - » 0 - « V O J ' ' * = > - M .3
2 0 o n « u o « u o 9 ^ « a o « u o 9
o<ao-f l '>Jo««iAouj i / icoooAa u}

o o < * c e o Q o o o « > o o m a < o 9
3
^ c » o 9 O o u < * « (\ i (U « « o - d 9 - o a « « a A
3 O I « * O 3 r * ' \ a f l O O O T O O ' 7 6 ^ . 3 - > »
^ O 4 9 O U 9 » O a > O O O - n i U l U A « > 9 O 4

M - ^ 3 - ^ 3 O 2 ^ O r t n j J > - « 3 •>

00^« -U>JO« -0 0 0 C. -r. 3

v J O I ^ / l a ' V ^ T o a L J O ' ^ f ^ O O V
C > : 7 « . O O * « < V . S t l / > ' V O O r«*o ^

> 3 3 ^ > _ . i j 3 > - . i > j j j n

C O C O O ^ O U O O . C / O O C . 0 0

in^A^yiyi^i(Aji>/i inj>ji^nj>tniA v/i

aa
aa

aa
aa
• o
<o
ant
a ne
«a
k ne
na «
om
MO
a w
a »
a a
— a« a
-00

m a
^ ̂
a o
a a

« a

ut a

fn
u
nti« a
»* a o^
tA a a
e e a

=»m
a «

£ « -•
oi<o —
^.»»i/»
•* a a

u
« m a
u< -o a
a« a

i*- a

-c » <
2 a o
•3 a a

o o
3
z o o
3 0 0»
J 0 0

? 3
O O

O 0

o 0
O 0

X X
3 3

\J VJ

/» n
O O

a aa
a aa

« <so
a, a a
• 00

• ••«e»o
re«o>
« « «
MtoXB
«««
mo e
eKa«
« o>a
• aw
a <-«o
e«K»
aa a
a »o
e a e
a a> ««
o e a
a <3i«
a a a
a a a

a
K,
m a » a
»a u a
i/t a a a
e e a a

m a a
« a a
*» o o

« -sa o
IU
^o US) «* ̂

a a a a
ae
•= a —a
>* a a a
< a tt a

a <A a
K>
•< « a a
z o o a
3 o a a

o o o
3
Z 0 O O
3 0 O O
O O O O

3 J> 3
O kU O

o o o

O O 0
o o o

X X X
•D 3 0

V -S -«!

ji •/* n
O O 0

w wo
UMO.««»
««t«

««_
Ode
«ts«o
•sow
u« o

W «s>«
• ou
W0«
eo u

U a M
a U •
antte
Ik «»
H.O •
•. ua

a M«U«I«
o • -a a

a *» a

•»« it.
>-<»€» to,
X a o» <k

-« o >»» o
Z » O O
3 O » u.

» « O
a
z « » —
3 -* « O
O o » O
a o o o

3 ̂ 3
o o o
3 3 O
o o o

o o o
• *» p*
U O «J
41 O 44

V V X
3 3 CJ
O — (*
0^30

N V >»
3 3 o
O — ni
u» ik u.
in <n in
y> ji in

0>
iH
a
e
r

fcs-

a
3
Q

>.
w
O

a>
£

4J
C
o
u

•H
I
K

(U
U
f

(
•^•~
fa

H-22 CZ15-00

^

¥

i•t

o(J
l»

nt
nt •>

I
o «

f
3 «
a

x
M
tn

nt
v
«

IV
a
9

a,
1
3

01
_*

a,
3
3
01

o•k.
j)
c

u
J
c

w

1*

J<
e
o

*•
0
«

- * -- J :>

' > ?

» •,
; <

' ."

1 - 3

" " - t t

' * « *

> .

- ~, I
M
J

»«»'*• f l»
«

X•*
.» i. »

• f<t ->
l&i
_!
a,
Z M «
nee
» >=• >=

c- »»
•=> »e

o e
« KS

B»
hU Ud U4

<M -ax X
o a •» «
0 « X Z
O 0

fel kj
« — _» J
e. *- a, a.
3«X X
O MM
K a «s »
O u

x «
UJ U
to. o

>- mm

4J » O
z >- «-•«
« JC 3 0

a£
fr» U •> «

a •»
< 0 0 0

Q»»- »-
09 2 < <
«ft M O U

E tf 3 0
or .J .j

Oo 3
3 * W «
31"* - *

iv a. »=
j -j ^ *t **

W -J -I
J» X ~» -^

~ O ** (K Ifr, b,

J a. » T 0

o« 3 9 3 3
03 at « x o o
^ . j « te. 3 | i
Ml 00 40 U, « K

- ^ c - ^ i r i j i x ^ ^ a s o

o c* t- u> o *i
••••••O^jxi^ j
^ r z to t x, a a
303 3 J» 3 O 3

— — — -1 -1 J »* D

^ u > u » 3 ? / a u > u

•^MMM >• *- W U Jl 3'

— *•— u c x — j>
^ ' - r C> i** O ** J J
U * l * t < \ . 3 J T 3

t O X ^ ?•
— » j. 1. 3 3 3

<.'<f i C1 -» a ̂ - u u
3 3 >. jJ >J
«> O UJ tfcl UJ (X^UUJiU
xu^^i i. >— r j: _j j
^j L> O « «»«OM».«M
a. < x D r B ̂ o u." A.

tt • •
« • •
C • •

• • •
CM • •
U • •

O • «V •
• • »^ «

H • •• •

Vt • » • «^ •

•* • » • • •

a>o> oo o o o>«

30 « 0 0 O 0 C

*«0«00 0 OC

Vi f^O^OO O C
eeoooo oc
Olfc.0090 OC
e^oooo o c
t fHUMOOO OC
i_»moooo oc
« U «-e O O O OC
<-«oooo oc

<>^r^-«ooo oc
0 < 00 00 0 C
oooooo oc
o«oooo oc
irtfv fto o o oc

OU*«000 OC
4. 9 O O O O OC

000000 00

o o o o v o oc

9O«n9(J<3 OC

0 0 -« 0 9 0 O C
O O O O f W O O C

v a o o v o oc
O O O O P*» ** OC

r*U O r*» 9 « O OS

Q O < f i O O O O C

pf| O 9 O- O « OC
(M O O ^ O ^ I O C
t O O O 9 P « 9 O C
S99l^9-« O C

? - « A 9 A 9 U» I

0 0 0 0 = » 3 O C

m o ru o o o »« 9 o c
LJ O O •>. -3 3 X) « O C
u o c r* o o u. o o c
4 -O

& / V O O O O O C
3 * - O 3 O S O S
O O O O O O ttJOC

J
»: o j o o -s u^ is-:

S D O O S ^ S ^ c
-1 4J
n j

J 3 3 7 t > 3 J 3 2 =
O u :̂ jj u. D — 3 « c c
£ J U U 3 U ^> V> ^ -

J. J
a x s

1. sj 3 •

^ ^- •* a
3 O * J
x 3 ^- *
j -t -r» tf

0 C

• •
• •
• •

» •
• •
• •
• •
• •
• •

• •• •
• •
• •• •
• •
• •
• ^*
• •

• •
• •
• •
• •

• •
• •
• •
• •

• •

o c*

» * 0 0
ft O O

ft *• ••
I O O
» « O 0

o m

o o
ft O O
> « 0 0
ft 0 0

C O 0
0 O

ft « 0 O
I 0 O

1 0 O
ft 0 O

« 0 0
» 0 O

» o o
o o

1 « 0 0
o o

I O O

« 0 0
ft 0 0

o o

» 0 0

ft C* 0

k « O O
> 0 0

> 0 0 *V
» • o o o

ft 0 00
o o o

ft « 0 00
> o o o

0 00
> 0 00

* o o o
> O 3> O

ft t> -> 3
> 0 00
> « O 99

» O f* O O
ft 3 M 9 9

« 0 — 0 0

•0

» -0 oo
> « 3 O O
» o o o

> 9 3 3

> 9 J 9 9
D
<

> •> 5 3
— *J — f*

) 0 A. O -0
) O 0 O

-J
k X « N. V
> 3 <_J 3 O
, . -> — r\,
* 4 J *t •<
• f» 3 f*. N*

1 l/» ^ ,/» J\
ft O O O

a>
iHa
axu
a
3
Q

>i

1
0)
£

JJ
C
O
u

I
s
0)
hi

*•H&4

XV

*

t .
c2

H-23 CZ15-00

M O
a M
« «-
*, •»»

te
X
XI

« •

«
«J ^

o
u

biiu
If
sx
UOUJ

i'i
nSKS
net

•«»«
e v

ne »
v

**J

X
3
a

»
•e
V
r«4
J»

r>e
v ni
a
9
^
m
B -«
a>

3
i

3
3
Z

«> as
f 3
o e&= «
u

» « »
* Bk X
n <
»z *->-o •»
«M

w O «r jit, o
< \Af> U Ai
S J6 3 3

* X *
71 /> 99 ••
« <0 « .,!
—•!— 1— Jj

i i * U<
3 J J X

<
•3 J t. -
Z ^ i J
5 3 3 6
J O - •»
a > i E

a < «*
9 U U
e O O
» « ffi J«^
o o o
a a o « »

a e & iaiu
9 J J
.0 » co »« p«
O «•> — Uc ».
a <3 «

2 £
•= (3 O «»«•«
»u* >*) I I
s •= I- o at wit i«^ •« < :r uj •»

ife a u u < n »
u, I 3 o s 3 —
*, 3 _! J T u

s a <
CO « « U «

« a, -«>a -n
tu « a « f
S X « « 3 J 2
1 >» M at to, It, »
•3 f f
2 O < « K tf 0%

*! J U -c
w _l fc- » O C
J O •« < J J i«
x < J j « in j
3 • T r -«
O Ui 1*A ̂ J «J Us,

•» » •• 3 3
U U> O 3 * 1C C
e ^ — » -»

o c -, I
-JO. »! « 3 O 3»=
• « * & > ^ c j o < e < c
•j • r ^ « <
"« ^J X M4 4^ A ^
s t— **» -E _A j .. i:
^™J14^ jMlN^3 w t

^O £01^4.^^

s

«
a

uw
K

ttS
(e

« sximet
oe
c

4
m

us o o e o
M «•««<«
_i a oiMtiw
ra e o e e

O 00 «

m » « « iv
« r«. * a rt
A № •« trt f*»

£
U4 c% o 9 <
X ...
J « « « .

№
o
ut

w
<j
IU
u
»
9

J
o
«

~J
a
K

2-
3
W

»>
X
o
w
X
O

e

O

N»

•*d

C9
<A*
»5

» •
« •

«

•e

•
•
•«

•
•« •

e c
a e
o «

• *o •
0 0

«4>
o o
e »
e «
c c
o o
o e

•e «
• e

• •
* •« c
• «

«>««£
i*>oa
Bt o e
«««a
«e«tfi
« ««
.000

OO 0

«>«€!
Oa
oo «
«<»«

0tt«i
oo «s
a- » o
«>«>«

«»««4
ooa
004;
o o ««
Ok o<*

oo<
o e ©

0 0 f^

o o w
0 0 iM
0 0 L4

01*9 ̂
O O O
o o> o
o o o

O «>* *">
O O O
3 9 O

o a 9

O « f«%
o « o

* o o
0 0 O
900
0 0 O

9 O C
900
9 S> ^

O 3 -3
O O O
993
rw o o
9 o •*
300
o o o
•993

^ •=» O

o a o
3 3 O
O 9 O

f** « O
3 O O
O O O
-3 •*» O

x -v x
3 J 3

<J -* 41
U J .J

1 • f » C »
.r r »

T> O O

w
X
t»

№
•«
«
u
flT
9

J
O
<c

*<£

3£
3
w
>*
£
3
C

T

9

••o

**
Ud

" <5
u
/J

'O'

• C
• C
• C
• c
e c
• c
• «
• <
• C
• «
• c
• e
g> «
e c
c c
C €.

e «
o c
e c
0 C
• c
* e
« a
e c
c c

«
• <£

a a
e e
• c
• «
e «

MO
««
*«<r. «

flO«
OO

* 0eo

0 O
00
oo
«O7

o e
o o
ab o
e o
-c e
oo
O 0
0 0

a «

0 0
e o
e. o
0 0
0 0

« O

0«
43 O
o o
o o

t^ «*
o o
o o

O 1*6

O I«S

0 *

* 0
0 0
0 9
0 0

9 9
9 9
9 9

a o
O 9
9 9
rv 9

0 9
9 9
O O
•3 9

-3 —*
9 O
•j ̂

O 9

rf «£

9 —9 9
J O

S> X
•3 3
.0 P*
0 3

(v f *

y F
? &

•> »
*
*«
•
•
•
•
•
•
4

0
«
O
o
0
a
«
(9
e

•
*
*
•
•
*
*
*«
«
«

<*9
O>
O

aft
o
«k
o

o
o>
e>
&

<»
o
o
o

•«
9
4t

^

^

0
O

Afi
«
«
tJ

V
O
o
o

o
o

«r

o
0

0
0
9
O

o
0
3

9

o
o
a«

9
o
o

^rf

o

<c
o
o
3

X
-9
f!

o
(1
r

o

3
OB

PK)
V
«
O
un
0

SC

ô
J
»

-J
o
<c
fc«
2
-3
u

ĴE
a
r
f
9

•
<

»»

^

(3
al

9*

"

• «
• C

• e
• «
• •
c e
« e
* a
* c
e c
• •

e a
o n
o c
0 <G
O C
0 C
•» Q

e a
e e
* •« a
• •
• •
• a

«

* •e •
• 0

• •• 6b
t> •

«*«a>
«»o
«•«>
«o>
e o
< 0
«o

o«
oo
oo
«0

oo
oo
oo
oo

00
oo
0 0
0 0

«0

o o
0 O

0 0
oo
o o
& o

o -»
0 0
0 0
0 0

o •*
0 0
9 0
o o

0 tt

0 AJ
0 O

-0 O
o o
o o
9 O

9 0
9 O
9 9

3 9

9 3
fV 0

O 9
3 9
O 9
d J

O 0

0 9

_• h»

-D **>
O O
O> 3

X X
3 •>
T rf>
O ^

j> n
*3 C"

*
•

*
•
•

*
*
•

•
•

«
«
C

•e
V
t>
V
•

*
•
•
•

*•
•

•
•
•

•t
ro
9

O
O
«o
o
o
o
«
o
o
o
o
0
o
o
o

o
o

o
o
o
o

o
0
9
0

Q

0
9

°
o

o
9

9
<3
O

9
9
9

O

9

A*

9
9
9
•3

O

O

—

9
0
9

X
3
^>
O
r
n
0

- s
» r
-f *r
*• *~

«
«

«
a
<

•«
«

•4

c
«
c
c
c
<
•*
c
c
c
<

•-«

«
«

•
•
••

«G
MT
•*

o

m
o
o
o
0
0

«
o
o>
o

o
o
o
o
•«

4|0
• 0
3

e
o
o
o

m
-ao
«eo
0 0
m o
o

o
9

sj
Oo•j ̂
a o

o
_l

ae o
>» o
Z 0
3
U ̂

9
^ O
X <S
O
C o

r 9
fM

9
« O
n o

9
9

t—

UJ 9

^ 3
13 O
*1
n -•
j
o
3

>,
3
•O
g
r^
/»
0

t

**

«
e
«

*<
c
i
«
«
<
<
«
a
«
c
c
•
•
«
a
c
a
c
«
•
<
«
«
*•

c

a

«
o

o
«
o

a
o
e

o
o
0
0
o

o

o
o

o
9
O
0

«•
0
0
0

o
o

<

A
49

O
9
9
O

O
9
9

O

9
9

O
9
9
9

9

O

9
•\t
U
O

X
9
"••>

o
r*
A
9

*

«
•»

••

§
S*.
•
•
•9
e

fc^»
•
•

•
•c

••»

••»
»
•»
»

*
•

*
*

O
Oo
<»
9
m
M
«•

«̂
»*
«r
«.
»
o
*<
»
m
<»
«»
o
o

IA
O
0

•«
o
o
o

o
o

»
A
<«
O*

IA
0
9

0

9
O
9
9

9

9
9

9
9
O
•3

O

O

*u
o
o
o

X
9
r
0

n
o

oi
r

«8
Se

 j
o

ir
 •

««
•
ii
jr

..
.,
..
.,
«
.

,»
«
„»

,,
,§

..
 •

..»
»
. .
M

.
e*

r
«
m

 j
«

jr
 m

»
 i
n
r

,N
«,

»«
.,»

9«
 «

.»
.«

. «
..
. 1

.4
. •

»
.*

•.
if
f

1
4
1
*

8
8

1
?

1
1
8
6

1
8
1
9

,.
•.

«
.•

«
..
§
.«

«
,&

«
«
.
»
..
.»

.
«
•
!.
«
.!
.

C
2«

IM

S

II
I*

II
I!

II
I!

,y

|.
.«

«
it

f«
«

*.
i<

>
«

<
>

«
«

«
f«

<
M

«

<
*.

«
.«

•

f^f^P««O

0 OO fit
M ̂ O %0

0 0 *-*•*.• ««*
(k^^F-
•0 «**fcj *^
00^0
MfC$RQ9

0«® 9

— =^ •» «O O rtfiMt
« « 9 0

•* tfc *fc tfc O
•< -««Hfc, 0
*>0 0 t«0

>•
iB O 9 O O

9 0 O O
9 9 «* 0
« <0 « 0

in .oik it <
0 <V •* «« *«
o ̂ o o o>
< O M F^ 9
rt
9 (A O O it

9 1** Ife <
a o o -o
< « <e <o
i*l Ut it O

(J O O O O
Q O ̂ K1 O
J

(O 9 O 9 O
9 O UJ 3

_J O O O O
•3 O t3 -O -3)
tr.

<: o — — o

(_> 9 ^ I*S K»

^ O* "O O ̂
y» o Ji ^ r»
«« O O O i/l
— O O O O

X X X X
J O 3 ->
y j\ O r*
J J J _>

A **» 1 1
-> o o o

a>
F-<agQ

e
3
Q

>1
w
O
e
4S

j=«
c
o
U

I
s
0)
w
3
r^

H-24 CZ15-00

v-. '-^^n <*

^

o

o

UJ
u
<
•,

Ml
-t

«B
_!

O
«

*

ng
X

•o
i
o•
n
?
o
0
V

;̂

«
«
r»
u
tv

«•»
•e
*>

V
M
W
V,
41
0
1
0
•

TC

1
K
G
e
&
X
a
a

•

k.
X
~t
»

W
«l

5

?

0
M

«

>-
Z
Ul
m
M
oc
a.
M
ac
a*
M
o
•»
«

k,

ut

0

u

•

«

*>

•

r»

«

•>

V

«•»

At

••

o

_i

3̂

>

_l
«

OC

* *oooo<Kk .oooooo

o o o o o o fe, o o « o o o

o O O O O O * * * « Q O O O

0* oo*i<»o«ooooo
« oo rvoowooooo

o ooooooooooo

Wt OA*00«ni>P*.000
e 000000*0000
o o o o o o o o o o o o

^ oou^ooooooo
o oouooooo^oo
ooa» t t<oooooooo

O O «• •* f*» f^ rt O rt ̂ OOO

•»»O^^O4^O«O^<»O

OOOh.09»O^.Ote.OOO
O O O O O « « O L > O U O O O
000 -<000 -«O^OOO

ooo^o«o^m*^eoo

O O O O O O O O A O l k O O

ooooo«»ao«L.i>ikOo

m o o w o ^ V f ^ O f n o o o

veoooor>»e»<OMoo

O O t t O O O 9 > O O O | k . O O

o o> « o o o o 4>bjou»oo
oa>««ooooo<ou.oo

X N . ^ X X . X X ' V X X X ' X ' X
0 0 0 0 0 0 0 ^ 0 0 9 0 0 0
«»«a>cjo iu«LO«»fwm9
U»4J«_»AJ-;^1>*-»>OO '-i 3 3-O

• « « * O « U V

9 o t? * » O U • •

• e f x * e • • •

e
0

co««tteetfx« «
>*i UOOOUfV»9-

•«m« e>oo«(W<«
o ac

«a» O Of**O O 0

400000000
Ui tk
OIXIb.l^OOOt^tf\<M
O O O O O O O O U . 9
u o o 0 e o o < o o o

O O O O O V A I O

Z —O««W<3>0000«

^ tfc, 0 0 0 0 0 0 0

Z
3 « o o e o » h» v
t^^ i fM^OOOUO*

CJV««k .OOOO-c
o«ou»ooooo

*•>
tk OOIkOOO<<
< — O O t e ^ O f ^ O - ^ 0

r t i O O I k O f ^ O 9 O

o unjoikooonj

om
MI »o«^oa»»t/*«
t— (•ooooitvnoo

u»«ooGomrxi« °
0
aJ

-*»uoooo»**-«

o o o o o o o a o

< ac
UjUO9O<O<9lk

M^^nOO9*«Olk
Mt £ « » O O O •*» O *t

3ik«oo*^«e^
e 3

< w u v ovonoino

K
UJ*K> o««^«ofn^o

muo4>'vo i \ ioooo
•< o

(K M O O U . O O O « O

O O
•-e— jH^i^o^o^-a a

3 3 O « M o - « o « o o r u
K ac
(— *- lO O **• • O O-JI O
« » o o o o o o o o

^ -) - * O O O O O O - * O

O O O O O - > O D
O«f> jK19 t /> -4>^
^ > - > J k > > >>

*ar

«

«
a
e
a

«
u<
a:
«

al
»
«
•J

a.

cc

'30

a>
o
0
9
O
««

O

_i
«
>
s

«9

(A
av
Ul
z
•a
o
4

J

*•3
»=
T

x.

«
«

*

«

O
o
o
••

M

•

•O
O
O

ft
at

•
u
!•»

O-

8
•»«

IV

i
$ i**w^

«
e
«M

M

«
»•

<t
»
Ik
ru
o

••
a
'K
t

,1
** (a*
» 1
-O &
o
o

^> p*
< «

Ck.
« «

* •"
» T
m O
u —
a ̂
3 <j
a 3
< 1C

Wl

J •»
« ^
3 —
^

E
•̂

-i
«
•n

^j
X

«
«

..

¥i7-

ast

X
0
0
o
a-
u

c.

-«
<
>
»

«

n
93
u
X
J
c
(

J
•̂
3

r
»

«
«

• • * « 9 > • « •
e * « * t 4 ^ l e ' O *

• O • • • ••» •

ni t tooovov
ouooooom

00000-004

ooooot r too
Ou.oo»ovr*o^o
0«>OOVO«»OO

*^
aoiAoo«ooui
O O V O O U O O t f c .

o««oo-«ooo

a - o o o o o o o o
*«>««ooooooo
O K t O O O O O O O

O A
••ooBooo-^^in
o oooo»norM«

S00ik«9-9«0
IT

A S 9 O A O ; O O a « O <
0«*004>00f^00
0<000004>00

OOOta.-OO»*»*\
r«.oocoou.(Moai«
OUOf001i .OOO»0
O ^ O O O i k . O 9 O O
0 0

ODU.a»0900iH<
O | k . O O O O O O O

o t ^ o o o o o o o
O fe.OOOOOOO
0 0
o o

oo*^j f*- 'yot/>»-*

,̂ 4̂ ! O O O - * O O O O f U «

O O O m » * G Q O * «
n o ^ o o o L j a 9

« e

• 4 O O O O O O C V I
(M «• —
9 f ^ f > » o o v o (r A O f ^
9 X - f i 3 - « O O O O O - «

3 « « 3 7 9 O ' X > O 3 ' ^
e * -o

x r n n - o n o ^ o 39
(J » - O O — (^ O O

>- * * « * » l k . O O O = > ^ 3

x -r u
O9U O « O > o n j « « 9 C

< £ 9 9 O O O O f ^ * ^ 7 &
ffSO r D O O O O O T - S -3
CO U
il ^ ^ O T O r ^ O M O ?
au i ^ (M« \ tuoooooo
^ _ I X t » U . ^ O - < O C J 3 0
O CD (C O O — O O 3 0
< p* » %
• #) * * « < * 7 S O C O C » O O

*>X » f > O O O - 3 t : 3
^
r

^ j ^ a j ^ ^ f * * ^

a O 3 ' 5 ' 3 O ^ 3 J
o o o o o o o c -

AJ

X

«
«

c
<
«
c

c
€
c
c
4

<
<
c

1
N

4

4
1
c
c

4

f
pi
<

>4
e
4

c

c
c
<
1

It
o
**1 *

o c

Z •
3
•

cr <
J
m -
^J .
a ^
»•>

Z. i
3 <:

<

i. <
3 '
C- <
O c

<
c
e

e

1.

J
(

c «o
>tft
> *•
> •

) Mt
» v\
•» m
> m

D»
> tn
> M
>in
C 0
u o
* 0» o

»0
> o
> o
> o

> o
> o
> o
» o

> o

» o
• f^
» 4
•« *>
U 0

» o

> 0
3 O

> <
» o
» 3
^ o

> o
» o
9 O
3 O

9 3
- a
» 0
» 0

w o
9 O
D O
3 0

> —

3 0
r o

a o

J U

n />
9 e

1
11

§
k
M
Al
E
3
IK

1
0

j

0)
«H
04

JO
X
Cd

a
E

Q

>l

o
V
£

•
»*m»

JJ
c
o
o

-^^^

rH
1
K

Q)

M
3
№

b

H-25 CZ15-00

e Bateh Group Data (shown if batch group is present)

° Virtual address of beginning of background ^-s ̂
- Virtual address of the end of background
- Rollout status (currently rolled out or not)
•= Number of completed rollout/rollin events *
- Sige of background memory given to foreground - *"

« Memory Pool Data* . '. .
t,?>- Pool identification .,,':

- Starting address of pool
=• End address of pool
- Total size of pool . -*- . -, :'
- Physical start address : , . ' ; ; - * : , ' i
- Total available space ' ' * • * - *
- Maximum contiguous available space * 1
~ Number of available fragments (pieces) of pool space
- Number of users
- Table of attributes for each pool

<

^ • Additional pool information " *

- Memory pool descriptor "
- Bit map (unless it is a queue managed pool)
- Segment descriptors

»

1 ' • System Symbol Table

The names and values of all symbols that have an entry in
the system symbol table are displayed. Symbols are
grouped according to the bound unit(s) in which they *
occur. c - " -

File System Structures - ~

9
The logical dump displays the location and content of the |

following file system structuress

« Record locking pool control block
• Volume descriptor blocks (VDBs)
• Directory descriptor blocks (DDEs)
» File descriptor blocks (FDBs) ;

*Supplied for each memory.

"X" appears beside a pool name that can cause the batch group
to be rolled out* -

The pool name for the batch group is BATCH.

S I

H-26 CZ15-00

,. , ,_, •**»***:»** ' ~ -, Currency control blocks
—̂/ Remote extent blocks

Wait control blocks
User control blocks
Semaphore control blocks
Record locking control blocks

• Device descriptor blocks (DDEs)
- Buffer control blocks

• Public buffer pool headers (BPHs)
» Buffer control blocks (BCBs)
• Buffers.

—f , -

The hierarchy of these structures is indicated by the dump as
shown in Figure H-2, which is an abridged section of a logical
dump. Each block is assigned an integer that corresponds to the
level of the block in the hierarchy. The headings of all blocks
are indented according to the depth of the block. This makes it
easy to see which files belong to volume major directories and

^ , which belong to subordinate directories.

The display of the tree of file system structures may be sup-
pressed by the -NF argument. A

• Free indirect request block queue (only when editing a ' -
dump file)

&• Globally sharable bound units

- Bound unit description
i - Bound unit attributes

** - Bound unit

The preceding logical dump information is obtained from the
operating system area of memory and occurs once within a logical
dump. The following information can be repeated more than once
depending on the number of active pools, task groups, and tasks.
This information is presented in the following order:

1. Memory pools (as allocated at CLM time) if there are task
groups assigned to them.

2 Task groups within a memory pool. ^nl ̂ &^ 5^*j-b3 ^

3 Tasks within a task group.)(4

MEMORY POOL STRUCTURES

The following information is repeated for each pool with
assigned task groups:

• Sharable Bound Units

- Bound unit description

H-27 CZ15-00

•= Bound unit attributes
- Bound unit. * _̂y

TASK GROUP gTRUC,TUR.E,S

The following information is repeated for each task group in
a pool.

• Edited Task Group Information *

- User name*, account id, and mode ; *
- Assigned memory pool - - *
- Bit map switches . *
- Outstanding requests to system group
- Address and name of control block for current working
directory, error-out, and user-out

• Group control block

© Logical resource table
s'. .3

® Logical file table j* ~" — '„" i c.
» Task structures (detailed below) i~ "/ »«•* '

« File control blocks (if there are active files)

« Work space blocks.
• • - I '*•* .

NOTES

For the system task group, IRBs (and hence also RBs) are dis-
played only when DPEDIT is processing a dump file; i.e., the
display is suppressed when the input is from current main memory.

Work space blocks and FCBs for the batch task group are not
displayed when the batch group is rolled out.

TASK STRUCTURES - ' 1 *«i r . .. '•i*--, j*-.' - •- -, '""S,

The following information is repeated for each task in a
group;

« Edited Task Information : ' •'-•!' 'I ' J-r-'~

- Bound unit name, location, and start address £
- Hardware level
- Logical resource number
= Enabled trap bit map
- Reserved and current overlay area locations
- Control block name and address for user-in and
command-in

"̂ .''' ' ,Oc vC»-:Sx? *

n ..--/j ?t> i-,*: ,,...,

H-=28 CZ15-00

^ / • Segment descriptor table (swap pool only)

• Memory control block for each segment (swap pool only)

• Task control block

• Trap save area

- MCL word space (for an MCL trap)

• Bound unit description

• Bound unit attributes K i
«. i««"'

• Bound unit

• Overlay areas (if an overlay area table was used).

The firmware-defined fields (instruction, P-counter, I 1, Z,
V_ Af R3, and B3) for each trap save area (TSA) are displayed. If

the instruction is a monitor call, the function code is also
displayed.

In addition, a possible context of the remaining data and
address registers (Rl, R2, R4, R5, R6, R7, Bl, B2, B4, B5, B6,
and B7) is displayed for each trap save area. This context,
which is extracted from the work space area of the trap save
area, may not be valid in all cases but in general, is correct
due to internal conventions of the Executive.

DPEDIT Command • • - £*«*.

The DPEDIT command loads the Dump Edit utility program.
Immediately after Dump Edit begins executing, a message is issued
to the error-out file giving the unique version number in the
following formats DPEDIT-nnnn-mm/dd/hhmm. The message "DUMP
COMPLETE" is issued to the error-out file immediately before the
execution of Dump Edit terminates. The format for the DPEDIT

"^s command is; -. »•

DPEDIT [path] [ctl_arg] »
\ «a.p5<-f

ARGUMENTSi

path .

Pathname of the memory dump file to be printed. Either
•: -• the path argument or the -MEMORY control argument must be

specified.

H-29 CZ15-00

etl^arg

Control arguments; zero, one/ or more of the following
control arguments may be entered, in any order:

(-NÔ LOGXCAL) ~,~̂ , *
l-NL J

fcisiS S -ft

No logical dump of system control structures

Defaults Logical dump produced, o s;t&.

•NÔ PHYSICAL) - . « . - . .rij> ^.^
=NP f

*., bflL ')
No physical dump of memory produced.

*. Vfii-»t „'•"

Defaults Physical dump produced.

/-PROM X8 address'I
l-PM X'address8 f

Low°memory address of area that will appear in physi-
cal dump; must be specified in hexadecimal. The
specified address must be a virtual address if
processing memory, and a physical address if
processing a dump file.

Defaults Absolute 0*

-TO X1address8

High-memory address (up to five hexadecimal digits)
of area that will appear in physical dump; must be '
specified in hexadecimal. The specified address must
be a virtual address if processing memory, and a
physical address if processing a dump file. ^̂

j
Defaults High memory address of the dump file.

(-MEMORY) :&'-'• !, • r.~ - : .
\-MEM /

Produces a dump of main memory. If both the path
argument and this argument are specified, an error
message appears at the terminal. If the -FROM
(and/or -TO) control argument is used in conjunction

'" with the -MEMORY control argument, then the address
that is specified must be a virtual address.

Default: A dump is produced of the file specified in
the path argument.

H-30 CZ15-00

v (GROUP\ group id [group-id]
^ !~GP J ,,..-*

Requests the logical dump to contain task
group-related information for the specified group(s)
only.

Default: Task group information for all groups is
included in the logical dump.

<-NO_FILES\
S-NF f

No tree of file management structures is produced.

Default: A tree of file management structures is
produced.

<. •> -ME
^ *' -

> ; Dump only the group in which DPEDIT is running in the
logical dump. Suppress all system information. This
is equivalent to: DPEDIT -MEM -NO_SYS -NP -GP
myragroup-id ^ ,

-NS

* • ' "~ Do not dump the sharable or globally sharable bound
'- units in the logical dump.

5 - - jw
-NO_SYS

Do not dump the system area in the logical dump.
(T

-PSYS

Limit the physical dump to the system area. .
•* 4

"\^ -FORCE
t *-

If the error "DUMPFILE IS INCOMPLETE" (defined below)
appears, this argument causes DPEDIT to ignore this

M»-i condition and to try to process the file anyway.
Note that since part of the memory image is missing,
it may not be possible to get a logical dump.

NOTE

Either the path argument or the -MEMORY control
argument must be specified.

H-31 CZ15-00

DPEDIT ~DMPVOL>DUMPFILE -NL -TO X'30001 ,«, ,

This command loads the Dump Edit utility and requests only a
physical dump of the first 12K locations of the specified
dump file.

Example 2s C

DPEDIT -MEM

This command loads the Dump Edit utility and requests a
logical and physical dump of current main memory.

•'--'"- » I > - - • ' _ v? V OR

Example 3;
. t a . " . <*t* . - ;\ '; ~ ;*s£

DPEDIT -MEM -GROUP $S $D -NP -NF -

This command loads the Dump Edit utility and requests a
logical dump of only the System and Debugger groups from
current main storage. This command suppresses display of the
file management structures.

-- ' U
Example 4s -t - ;^~$.

DPEDIT -MEM -GROUP XX -NP -NF E,:-

By specifying a group that does not exist (i.e., XX) this
command requests an abbreviated logical dump consisting of
only the System Summary of the currently executing system.

Qper Biting Procedure for Dump Edit

The following steps must be performed before the Dump Edit
program can be executed.

1. Mount the disk volume containing Dump Edit.

2o If Dump Edit is being used to print MDUMP output, mount ^~J
the disk volume that contains the memory image obtained
from the MDUMP memory dump.

3. Execute Dump Edit by specifying the DPEDIT command
described previously.

DPEDIT processing can be stopped at any time by pressing the
"BREAK" key. A **BREAK** message appears on the user's terminal
display when processing stops. A GCOS 6 command may be specified
at this point. If the Unwind (UW) command is specified, the
end-of-processing details are automatically handled and control
returns to the command processor with a successful subtask
completion status. If the Start (SR) command is specified,
DPEDIT resumes processing.

H-32 CZ15-00

_̂y If DPEDIT appears to be looping, the loop can usually be
broken and DPEDIT can be made to recover by forcing a **BREAK**
and entering the Program Interrupt (PI) command. Note, however,
that it is normal for DPEDIT to run for five or ten minutes while
dumping a large memory or dump file.

* ~

DPEDIT Error Messages

Fatal errors terminate DPEDIT processing, return control to
the command processor, and post an unsuccessful subtask comple-
tion status. Fatal errors include logical I/O errors and physi-
cal I/O errors as well as DPEDIT-specific errors. Fatal error
messages are written to the error-out file. Error messages
specific to DPEDIT are listed below. Additional information on
error messages can be obtained in the System Messages manual.

Immediately after execution of DPEDIT begins, and immediately
before execution terminates, a message is written to the error-
out file. These messages are explained in the description of the

—̂/ DPEDIT command.

Informational messages that generally reflect some condition
peculiar to the data within the dump file may be interspersed
with the dump information in the user-out file. These messages
are provided to facilitate analysis of the dump and are listed
below. A brief explanation of each message is provided. """ in
a message indicates that a parameter is supplied.

-MEM AND PATHNAME NOT ALLOWED ON SAME INVOCATION

Memory and dump file can not both be processed during a single
invocation of DPEDIT,,

ARGUMENT NOT RECOGNIZED

An invalid argument was given in the DPEDIT command line.

ATTEMPT TO INCREMENT A VIRTUAL ADDRESS BEYOND FFFFF
•^^

An internal error has occurred; the memory block dump routine has
incremented beyond the largest virtual address.

DPEDIT CONTINUES AFTER A PI OR TRAP. P: * I: * LOAD ADR: *

DPEDIT has trapped or a break, program interrupt has been
executed. The P-register, I-register and load address at the
time of the interruption are displayed and DPEDIT recovers.

DPEDIT MUST EXECUTE IN THIS POOL TO DUMP THIS STRUCTURE FROM
MEMORY

Because DPEDIT is executing in a different memory pool, it does
not have visability to the structure. Either execute DPEDIT from
the current pool or take an MDUMP.

H-33 CZ15-00

DDMPPILE IS INCOMPLETE

Either MDUMP did not complete properly or the dump file was too
small to hold the complete memory image (see the -FORCE
argument) * •

DUMPFILE IS INCORRECT FILE TYPE ' v> •'Of'~ni **«- £ *

The dump file must be a non-UFAS relative file i

ILLEGAL NUMBER OF ARGUMENTS

Too many group names follow the -GROUP argument.

LAST VALID DUMP LOCATION REFERENCED: *

Indicates the last valid dump address processed before an invalid
address was found.

NEED MOD400 REL2.1 DPEDIT TO PROCESS THIS DUMPFILE

A release 3oO version of DPEDIT has accessed a release 2.1 (or
earlier) MDUMP file.

NULL BUD POINTER IN THE TCB *l<-

The pointer to the bound unit description in the task control
block is null.

t
NOLL LINK IN THE *QUEUÊ

A null link was found in the specified hardware queue.

PHYSICAL ADDRESS IS NOT IN PHYSICAL MEMORY? *

DPEDIT has encountered a physical address which is higher than
the highest physical address of the system being dumped.

REQUIRED ARGUMENT MISSING „ , Yf. .,

The address has not been specified for the -TO or -FROM argument.

THE BAD VIRTUAL ADDRESS IS AT ~

An invalid virtual pointer was encountered by DPEDIT at the r<?'J
specified address.

THE SEGMENT IS * IN MEMORY

DPEDIT has found an invalid segment descriptor and the segment is
or is not currently in memory, as indicated.

„:,' t ~> "« • T u"- -5T, -t

H-34 CZ15-00

•--• - *••;- $
^ THERE WERE ERRORS DURING THE EDIT

If the output of DPEDIT was directed to a file, errors that tend
to appear frequently are only written on the file. If the
errors occurred during the dump, this error is issued to the
user's terminal.

THIS ADDRESS DOES NOT FALL WITHIN THE DUMP FILE: *

The specified address is not within the scope of the dump file.

THIS BOUND UNIT WAS PREVIOUSLY DUMPED IN *

The bound unit was previously dumped in the specified group or
pool,

THIS SWAP POOL STRUCTURE CANNOT BE DUMPED FROM MEMORY

DPEDIT does not have visability to the current structure. An
\^/ MDUMP is required. .~.-.~-~_̂ -««̂ .̂_._̂ __WM,,,.

VIRTUAL ADDRESS EXCEEDS PHYSICAL MEMORY: * !

The specified virtual address represents a physical address which
exceeds the highest physical address in the system being dumped.

VIRTUAL ADDRESS IS INVALID: *

The specified virtual address exceeds FFFFF. f

VIRTUAL ADDRESS NOT FOUND FOR *. DUMP FILE IS SUGGESTED.

During a physical dump of memory, the specified physical address
could not be translated into a valid virtual address for DPEDIT.
An MDUMP is needed. '•

VIRTUAL ADDRESS OFFSET EXCEEDS SEGMENT SIZE: * .
i

X-x' The specified virtual address exceeds the segment size in the j
corresponding segment descriptor. I

VIRTUAL ADDRESS REFERENCES INVALID SEGMENT: * j
i

The segment descriptor for this specified virtual address is j
invalid. j

j
INTERPRETING AND USING MEMORY DUMPS r i j

i
This subsection describes significant locations in memory '

dumps, how to interpret the contents of locations on memory
dumps, and how to use memory dumps to perform the following j -
procedures: 1

' :i " I
• Finding the location in memory of your code
• Determining where a trap occurred

•*w

-- H-35 CZ15-00

• Determining the state of execution of your code.

A trap is a special software- or hardware-related condition
that may occur during the execution of a task. Many traps are
caused by an error, but a fewf such as the Monitor Call, are
not. The above procedures may have to be performed if a trap
message is issued. Traps and trap messages are described in
detail in the System Programmer's Guide. Volume I.

SIGNIFICANT LOCATIONS ON MEMORY DUMPS

Table H-2 describes memory locations on the dump that may be
useful to refer to during debugging. It is assumed that you are
familiar with the data structures referenced. Brief definitions
of these data structures are contained in the glossary of the
System Concepts manual. Figure H-2 illustrates a map of systems
data structures.

Table H-2e Significant Locations on Memory Dump

Memory Address Meaning

0010/0011

0018/0019

0020-0023

0024-007F

0080-OOFF

Head of queue of available trap save areas
(TSAs).

Pointer to system control block (SCB). This is
the key to locating all system data structures.

Level activity flags for levels 0 through 63.
Bits ON indicate which levels are ready to exe-
cute; the lowest (numerically) of these levels
is the level currently executing (i.e./ the
active level) . The level 63 bit always is on.
The clock level bit (4) may be on, and the
debug level bit is on if the dump resulted from
a Multiuser Debugger or a $D DEBUG DP
directive.

Trap vectors. Each trap vector is associated
with a specific trap condition and points to
that trap handler's entry address. The trap
vector for trap number 1 is in location 007F
(7E/7F). The trap vectors for subsequent trap
numbers are in descending, contiguous loca-
tions; i.e., the trap vector for trap number 2
is in location 007.

Pointers to interrupt save areas (ISAs) for
levels 0 through 63, respectively. A null
value means there is no dedicated task (i.e.,
driver) or nondedicated task ready to execute
on the specified level.

H-36 CZ15-00

^/

see

1

TCB

,,,,'ISA

(
'CE

1
/

•6 1*8 -91

,T
p

COUNTER

OED

Figure H-2. Data Structure Map

H-37 CZ15-00

."£<-i '-*
> l~? f * -

" -I " 3

-^\

^/

x̂
Locations Relative to the System Control ^lock or Group Control
Block

SCB+6/7

GCB+0/1

GCB+2/3

GCB+D/E

GCB+B/C

, • ?1>S
. /- 3*fU

b^^'j

Pointer to the group control
block (GCB) queue

37r>K Pointer to next GCB in linked
list of GCBs

- i C
. r . y.u i£ ai -< f ti sj

«~AiUA K»^

- - ?

^ 1

i *n o<t
roe

GCB+5/6

LRT-1

i1 *- c "- * , <;

Task group identification ($S
is the system group; $B is the
batch group). The system will
convert your user
identification to non-ASCII
representation.

Pointer to LFN 0 of logical
file table (LFT).

Pointer to LRN 0 of task
group's logical resource table
(LRT).

Pointer to first task control
block (TCB) of the group.

Number of entries in the LRT.

H-39 CZ15-00

LRT+0/1

Pointer to LRN O's resource
control table (RCT); the RCTs
for subsequent LRNs are in
contiguous, ascending loca-
tions (LRT+1 points to LRN 1's

•""-' ' RCT). A null entry indicates
that the associated LRN is not
used.

NOTE

Within an RCT, location 0 is the channel number of
the resource if it is an input/output device.

RCT-2/-1 :

Pointer to task control block
(TCB) for that resource.

Locatjgns Relatjjy_e.__ t.Q. ..the Task.iii-C.Qntirol Block fTCB) Pointer of the
Desired Priority Level

TCB-8

TCB-1C/-1B

TCB-10/-F

- t J ••'•' Hardware-assigned priority
level of the task.

Pointer to current bound unit
BUD.

-^ Pointer to top of queue of
r " requests for the task.

~N
TCB-E/-D ^J

Pointer to end of queue of
requests for the task (e.g.,
I/O requests for a driver).

H-40 CZ15-00

^
TCB-13/-12

TCB-D -15/-14
-s*o

TCB-A/-9

TCB-C/-B

'%> *

W

TCB-2/-1
>i

.1 *a r>*»

TCB+0 -. yr
' t "> ,

. jV

;*; »

TCB+1

Pointer to the group control
block (GCB) for the group to
which this task belongs.

Pointer to next TCB in this
group.

Pointer to last TCB on this
priority level.

Link to other task control
blocks (TCBs) of the same or
different task groups assigned
to the same level.

Pointer to the queue of trap
save areas (TSAs) for the
task. (Trap save areas are
described in detail in the
System Programmer's Guide.) If
a TSA is present, the task is
executing system code or a user
trap; if no TSA is present,
check the program counter in
the interrupt save area (ISA)
portion of the TCB to determine
the task's progress.

Device word, including channel
number and level number. This
entry is null if the task does
not drive a device.

Hardware interrupt save area.

^
H-41 CZ15-00

INTERPRETING THE CONTENTS OF A DPEDIT LOGICAL POMP

This subsection describes memory dump interpretation when the s '
DPEDIT logical dump format is used.

{pending the Location in Memory of Your Code

Locate your group°id and the TCB for your bound unit (BU).
The first' six characters of the BU filename are printed beside
each TCB of the group in a logical dump.

The address at TCB-1A/-19 is the address of the bound unit
(BD) description. The load address of the bound unit is found at
this address «=A. Calculate relative zero of the BU by
subtracting the relative start address on its link map from this
addresso

P.e.fce.CffliflJn.g the State of Execution of Your Code at the Time of
the Dump* ' - - - - - j - . .̂ • « , . , -

Dump analysis begins with gathering all relevant informa- N /
tions the dump itself, the console hard-copy (if any) of the
activity of a particular group (or groups), copies of the
CLM_USER and >START_UPeEC files, plus any link maps.

These materials are required to understand the environment of
the system represented in the dump.

Three conditions are discussed below:

1. Halt at level 2
2. User level active at the time of dump
3. No level active at the time of dump, except level 63.

HALT AT LEVEL 2

Examination of the level activity indicators at locations
20-23 confirms that level 2 is active. The system will force r^~
this condition to occur if either TSA or IRB resources are '' ;
exhausted (see CLM SYS directive). Note that once level 2 ^~s
becomes active, other lesser priority levels may activate but
will not receive CPU time.

The Dl register contains an ASCII "IR" (4952) when IRB
exhaustion has occurred. Location 10/11 is zero when TSA exhaus-
tion has occurred.

If this symptom persists after augmenting the number of TSA/
IRBs available to the system, it is possible that either your
code or the system is improperly altering the TSA/IRB chains.

H-42 CZ15-00

\s y To verify this, take a memory dump immediately after system
startup. This allows easy location of the TSA chains from
location 10/11 and the IRB chains from the first location of the
SCB. Compare this dump to one taken after all TSA/IRBs are
supposedly exhausted to verify that they really are. If the
system is suspect, supply both dumps to Honeywell. TSAs can also
be exhausted by a recursive trap. A recursive trap uses up all
available TSAs. Adding TSAs simply allows for greater
recursion. In this instance, the system is suspect and dumps
should be supplied to Honeywell.

The optionally configured defective-memory trap handler may
also force a level 2 halt if a defective memory trap indicates
the operating system's trap save area is exhausted. In this
case, $R1 will contain X'DEFA'; $B1, the physical address of the
defective memory; and $B2, the logical address of the defective
memory. * * - - - ^

USER LEVEL ACTIVE AT THE TIME OF DUMP
\^

This often indicates a halt or software loop condition on the
active level. When a level is active, the pointer to the TCB
associated with the code running is in the interrupt vector for
that level. Match the TCB pointer with the TCBs listed for the
groups present in the system. When a level is active, use the
P-counter in the ISA portion of the TCB to locate the software
running at the last time this level's context was saved. Since
the system clock is active on level 4, the P-counter in the ISA
for this level is usually helpful. It is also helpful to record
the contents of R/B registers and EO when entering STEP mode at
the control panel prior to taking the dump.

NO LEVEL ACTIVE AT THE TIME OF DUMP

This condition usually indicates a system failure in that all
tasks have been suspended and none are being reactivated. In
this situation it is helpful to determine the conditions existing
at this time. To do this, examine all TCBs in groups other than

"»̂ _ the $S group. If the TCB under examination has not experienced a
default trap condition, it may or may not have an associated
TSA. If a TSA is shown, DPEDIT will display the monitor call
function code if the trapped instruction is 0001 (monitor call
generic)-.

When the system is called for a monitor function, only those
registers that must be preserved by the system are saved in the
TSA workspace. The saved registers are: B7, B6, B5, Bl, R5, R4,
Ml, beginning at TSA location E/F.

H-43 CZ15-00

BfffegLCWinii-fliSL Wher.ff a Trap Processed by the System Default Handler.
Qceurĝ LJjQ youg. CQ^g

If a trap message occurs on the operator terminal from the
system default trap handler, i.e., (id) BUnarae (0303zz) level,
the TCB of the referenced task group may be located using the
bound unit name" (BUname) . In this situation, unless the TCB is
subsequently requested, the last two areas associated with the
TCB are related to the system handling of the trap,, The first
TSA following the TCB was used by the system to forcibly termi-
nate the task request in progress when the trap occurred. Your
information is found in the next TSA associated with the TCB0 It
contains the hardware information described in the previous sec-
tion of this appendix, followed by a complete set of registers .
current when the trap occurred* The order of the registers,
beginning at location E/P of the TSA, is: B7, B6, B5, B4, B2,
Bl, I, R7, R6, R5, R4, R2, Rl, Ml (B3, R3, I are already in the
TSA) «, When the TCB has been rerequested, only this second TSA
remains attached to the TCB0

FSNPINQ THE LOCATION IN flEMQRY OF YOUR CODE j

The three activities above may be performed from the DPEDIT
physical dump presentation* The examination of TCB contents is
the same once the TCB is located. Use the following procedure to
find the TCBs for your group*

1. Go to location 0018/19; this location contains a pointer
to the system control block (SCB)„

2. Go to location SCB+6/7; this location contains a pointer
to the group control block (GCB) queue; GCB+0/1 links to
the next GCB 'in the queue. Determine the group id at
GCB+2/3 is your group id.

3o Go to location GCB+4 (+5/+6) to determine the location
of the task control block (TCB) queue of the task group.

4. Go to location TCB-1C/-1B to determine the location of
your current bound unit descriptor (BUD). ' ^J

5. Go to location BUD+A/B). This location is the relo-
cation factor of the bound unit; your code should start
at this location.

H-44 CZ15-00

V , 6. Go to location BUD+8/9; this location points to the
location of the bound unit attribute section (BAS).

7. Go to location BAS+0 to determine the bound unit's root
name; this name should be the same as the bound unit's
file name.

8. If you did not find the root name for which you were
looking, go to location TCB-15/-14; this location points
to the next TCB of the task group. Follow through the
chain of TCBs until you find your task's task control
block.

PRINTING AN INCOMPLETE MEMORY DUMP

By specifying the DPEDIT command with the -FORCE argument an
incomplete memory dump may be printed. See the DPEDIT command
definition earlier for information on requesting the incomplete
memory dump.

H-45 CZ15-00

•",z: ~, ' *-• j -
1 v . . ̂ ?£UC

,11- s ^niji An.t,

u

• * p ^J

INDEX
ABSENTEE

ABSENTEE PROCESSING, 3-27

ACCEPT i
ACCEPT SINGLE LINE FROM A
TERMINAL (1R), 5-68

>

ACTIVE
ACTIVE FUNCTIONS, F-4
ACTIVE STRINGS, F-3
ARITHMETIC ACTIVE ,
FUNCTIONS, F-6 !

CHECKPOINT ACTIVE
FUNCTIONS, F-7

DATE/TIME ACTIVE FUNCTIONS,
F-7

DIRECTORY ACTIVE FUNCTIONS,
F-7

GROUPS OF ACTIVE FUNCTIONS,
F-5

LOGICAL ACTIVE FUNCTIONS,
F-8

MULTIPLE ACTIVE FUNCTIONS
F-4

NESTED ACTIVE FUNCTIONS,
F-4

NO LEVEL ACTIVE AT THE TIME
OF DUMP, H-43

- QUESTION ACTIVE FUNCTIONS,
F-8
STRING ACTIVE FUNCTIONS,
F~9

USER ACTIVE FUNCTION, F-9
USER LEVEL ACTIVE AT THE
TIME OF DUMP, H-43
USING ACTIVE FUNCTIONS AS
COMMANDS, F-5

USING EC ACTIVE FUNCTIONS,
F-4 ,

ADDING i
ADDING AND DELETING LINES,
A-14
ADDING LINES TO THE CURRENT

.I'' BUFFER, A-17

ADDRESS
ADDRESS PREFIX (?), 5-94
COMPOUND ADDRESSES, 5-11
DESIGNATING A LINE NUMBER
AS AN ADDRESS, 5-6
DESIGNATING CONTENTS OF
LINE AS AN ADDRESS, 5-7
DESIGNATING THE POSITION
OF A LINE RELATIVE TO THE
"CURRENT" LINE AS AN
ADDRESS, 5-6

METHODS OF SPECIFYING
ADDRESSES, 5-5

ADDRESSING
ADDRESSING A SINGLE LINE,
A-5
ADDRESSING MULTIPLE LINES,
A-6
ADDRESSING TECHNIQUES, A-5
CHARACTER STRING ADDRESSES,
A-7

APPEND
APPEND (A), 5-24
APPEND LINE, 4-49

-\
APPENDING

APPENDING A NEW STRING TO
AN EXISTING STRING, A-17
APPENDING LINES, A-18

APPLICATION
COBOL BSC APPLICATION
EXAMPLE, B-44

COBOL BSC APPLICATION
EXAMPLE (FIG), B-45

COBOL TTY OR VIP APPLICA-
TION EXAMPLE, B-27
COBOL TTY OR VIP APPLICA-
TION EXAMPLE (FIG), B-28
FORTRAN APPLICATION EXAMPLE
FOR TTY, C-13
FORTRAN APPLICATION EXAMPLE
FOR TTY (FIG), C-15

ARITHMETIC
ARITHMETIC ACTIVE
FUNCTIONS, F-6

i-1 CZ15-00

INDEX

ASSIGN
COBOL SELECT AND ASSIGN
EXAMPLES (PIG), B-ll
SELECT AND ASSIGN EXAMPLES,
B-ll « |

>

ASYNCHRONOUS
ASYNCHRONOUS INPUT, C-10
ASYNCHRONOUS OUTPUT, C-ll
ASYNCHRONOUS READ AND WRITE
OPERATION (CALL "ZCASYN"),
B-13
SCREEN EDITOR TEMPLATE FOR
7300 GENERAL PURPOSE
ASYNCHRONOUS KEYBOARD
(FIG), 4-47

SCREEN EDITOR TEMPLATE FOR
780X GENERAL PURPOSE
ASYNCHRONOUS KEYBOARD
(FIG), 4-46

SPECIFYING ASYNCHRONOUS OR
SYNCHRONOUS READ AND WRITE
EXECUTION, B-12

WAIT FOR COMPLETION FOR
ASYNCHRONOUS INPUT AND
OUTPUT, B-13

AUTOMATIC
AUTOMATIC LOGIN TERMINAL,
2-4

AUTOMATIC TAPE VOLUME
RECOGNITION, 3-11

AUXILIARY
AUXILIARY BUFFER DIRECTIVES
AND ESCAPE SEQUENCES, 5-66
CURRENT AND AUXILIARY
BUFFERS, A-20

BACKSPACE
BACKSPACE, 4-62

BACKUP
BACKUP AND RECOVERY, G-l

BACKWARD
BACKWARD WORD, 4-50
SEARCH BACKWARD (SEARCH
BACKWARD OR SB), 4=33

BASIC
BASIC PROGRAMS, D-3
BASIC SOURCE PROGRAM
PROG1.B (FIG), D-2

BSC 2780 IN BASIC TRANS-
MISSION MODE, B-21
COMPILING A BASIC PROGRAM,
D-4
COMPILING AND LINKING A
BASIC PROGRAM (FIG), D-4
EXECUTING A BASIC PROGRAM,
D-7
EXECUTING BASIC INTER-
ACTIVELY, D-2
INVOKING THE BASIC
INTERPRETER/COMPILER, D-2

LINKING A BASIC PROGRAM,
D-7
USING BASIC, D-l

BATCH
BATCH MODE, 9-1

BINARY
BINARY SYNCHRONOUS COM-
MUNICATION (BSC) WITH
COBOL, B-19

BIT
« CLEAR SYSTEM BIT, 9-8

SET GLOBAL SHARE BIT OFF,
9-31
SET GLOBAL SHARE BIT ON,
9-32
SET SHARE BIT OFF, 9-33
SET SHARE BIT ON, 9-34
SET SYSTEM BIT ON, 9-35

BLANKS
TRAILING BLANKS (TRAILING
BLANKS OR TB), 4-38

BLOCK
BLOCK, 4-51
BLOCK DESCRIPTION, 4-10
CHANGE BLOCK (CHANGE BLOCK
OR CB), 4-21
COBOL SESSION CONTROL I/O
REQUEST BLOCK CALLS, 8-3

COPY BLOCK, 4-52
DELETE BLOCK, 4-53
ERASE BLOCK, 4-54

-N
/̂

i-2 CZ15-00

x̂ INDEX

^

BLOCK (CONT)
LOCATIONS RELATIVE TO THE
SYSTEM CONTROL BLOCK OR
GROUP CONTROL BLOCK, H-39
LOCATIONS RELATIVE TO THE
TASK CONTROL BLOCK (TCB)
POINTER OP THE DESIRED
PRIOR, H-40

MOVE BLOCK, 4-56
WRITE BLOCK (WRITE BLOCK OR
WB), 4-44

• i

BOOTSTRAPPING
PROCEDURE FOR BOOTSTRAPPING
MDUMP, H-3

I

BPROG
EXECUTION OF BPROG (FIG),
D-8

BREAK
DEBUGGER AND BREAK KEY
FUNCTIONALITY, 7-6 .

BREAKPOINTS :

SETTING BREAKPOINTS, 7-7

BSC
BSC 2780 AND BSC 3780, B-20
BSC 2780 IN ADVANCED DATA
TRANSMISSION MODE, B-22
BSC 3780 IN BASIC TRANS-
MISSION MODE, B-21
BSC 3780 IN ADVANCED DATA
TRANSMISSION MODE, B-22
BSC DATA TRANSMISSION
CONVENTIONS, B-1S

BSC DATA TRANSMISSION
MODES, B-20
BSC MULTI-BLOCK TRANS-
MISSION, B-20
COBOL BSC APPLICATION
EXAMPLE, B-44
COBOL BSC APPLICATION
EXAMPLE (FIG), B-45

SIMPLIFIED PROGRAM LOGIC
FOR BSC 2780 (FIG), B-23
SIMPLIFIED PROGRAM LOGIC
FOR BSC 3780 (FIG), B-25

BUFFER
ADDING LINES TO THE CURRENT
BUFFER, A-17
AUXILIARY BUFFER DIRECTIVES
AND ESCAPE SEQUENCES, 5-66
BUFFER STATUS, A-24
BUFFER STATUS, (X), 5-69
CHANGE BUFFER (BX), 5-71
DELETING ALL LINES IN
CURRENT BUFFER, A-12
DELETING LINES IN CURRENT
BUFFER, A-12
SAVING MODIFIED BUFFER
CONTENTS, A-25

BUFFERS
CURRENT AND AUXILIARY
BUFFERS, A-20

CALL
CALL STATEMENT FOR Z1STIN
OR Z1STOT, C-12

CALLS
COBOL SESSION CALLS, 8-3
COBOL SESSION CONTROL I/O
REQUEST BLOCK CALLS, 8-3

MAKING PROCEDURE CALLS, D-5

CHECKPOINT
CHECKPOINT ACTIVE FUNCTION,
F-7
CHECKPOINT FILE ASSIGNMENT,
G-7
CHECKPOINT PROCESSING, G-8
CHECKPOINT RESTART, G-7
TAKING A CHECKPOINT, G-8

CLEANPOINTS
TAKING CLEANPOINTS, G-5

CLEAR
CLEAR, 7-12
CLEAR SYSTEM BIT, 9-8

CLEAR/RESET
CLEAR/RESET, 4-64

CLR
TAB CLR, 4-79

i-3 CZ15-00

INDEX

CLR/TAB/SET
CTL CLR/TAB/SET, 4-65 ,

COBOL
- BINARY SYNCHRONOUS COMMUNI-

CATION (BSC) WITH COBOL,
B-19
COBOL BSC APPLICATION
EXAMPLE, B-44, (FIG),
B—45 i
COBOL COMPILE, LINK, AND
EXECUTIVE PROCEDURES, B-l

COBOL LIST FILE, B-5
COBOL PROGRAM EXAMPLES,
B-27
COBOL SELECT AND ASSIGN
EXAMPLES (FIG)t B-ll

COBOL SESSION CALLS, 8-3
COBOL SESSION CONTROL I/O
REQUEST BLOCK CALLS, 8-3
COBOL SOURCE PROGRAM
PROG1.C (FIG), B-4

COBOL TTY OR VIP APPLICA-
TION EXAMPLE, B-27, (FIG),
B-28
COMMANDS IN THE COBOL
EXAMPLE, B-27
COMPILING AND LINKING A
COBOL PROGRAM (FIG), B-2

ERROR MESSAGES IN COBOL
EXAMPLE, B-43

<• EXECUTING A COBOL PROGRAM,
B-9
EXECUTION OF COBOL TTY OR
VIP PROGRAM EXAMPLE, B-43
FILE ASSIGNMENTS IN COBOL
EXAMPLE, B-27

, INVOKING THE COBOL
COMPILER, B-3
PROGRAMMING TIPS FOR
COMMUNICATIONS VIA COBOL,
B-9
SIMPLIFIED COBOL PROGRAM
LOGIC FOR MULTIPLE INTER-
ACTIVE TERMINALS
(ASYNCHRONOUS) (FIG), B-15

STATUS CODES IN COBOL
EXAMPLE, B-43

USING COBOL, B-l

CODES
STATUS CODES IN COBOL
EXAMPLE, B-43

COMMUNICATIONS
BINARY SYNCHRONOUS COMMUNI-
CATION (BSC) WITH COBOL,
B-19
COMMUNICATING WITH OTHER
USERS, 3-26
FORTRAN PROGRAM EXECUTION
WITH COMMUNICATION
DEVICES, C-10
PROGRAMMING TIPS FOR
COMMUNICATIONS VIA COBOL,
B-9
PROGRAMMING TIPS FOR USING
COMMUNICATION DEVICES VIA
FORTRAN, C-9
SOURCE PROGRAM ENTRIES IN
COMMUNICATIONS, B-10

COMPILER
INVOKING THE ADVANCED
FORTRAN COMPILER, C-2
INVOKING THE COBOL
COMPILER, B-3

COMPILING
COMPILING A BASIC PROGRAM,
D-4
COMPILING A PROGRAM FOR
USE WITH THE DEBUGGER, E-l
COMPILING AND LINKING A
BASIC PROGRAM (FIG), D-4
COMPILING AND LINKING A
COBOL PROGRAM, B-l, (FIG)
B-2
COMPILING AND LINKING A
FORTRAN PROGRAM (FIG), C-2

COMPILING' PROG1 AND QUIT-
TING BASIC (FIG), D-4
SAMPLE CONFIGURATION
DIALOGS, E-2

_ "i.

~r

i-4 CZ15-00

>̂ INDEX

COPY
COPY (K), 5-77 ,
COPY BLOCK, 4-52]
COPYING FILES, 3-20 I

COPY-APPEND
COPY-APPEND (IK), 5-79

CURSOR !
CURSOR DOWN U) , 4-67 {
CURSOR LEFT (<-) , 4-68
CURSOR RIGHT (-*) , 4-69
CURSOR UP (T), 4-70

DEBUGGER
COMPILING A PROGRAM FOR USE

v , - WITH THE DEBUGGER, E-l
DEBUGGER AND BREAK KEY
FUNCTIONALITY, 7-6 I

DEBUGGER CAPABILITIES, 7-2
DEBUGGER DIRECTIVES, 7-8
DEBUGGER OVERVIEW, 7-1
DEBUGGER RESERVED KEYWORDS
(TBL), 7-5

DEBUGGER SPECIAL SYMBOLS
(TBL), 7-5

EXECUTING YOUR PROGRAM WITH
THE DEBUGGER, E-6

- INVOKING THE DEBUGGER, 7-2
INVOKING THE DEBUGGER, E-4
LINKING AN OBJECT UNIT WITH
THE DEBUGGER, E-2
MULTI-USER DEBUGGER
(SYMBOLIC MODE), 7-1

SUMMARY OF DEBUGGER \
%̂ > DIRECTIVES (TBL), 7-3

TERMS USED IN DEBUGGER
DIRECTIVES (TBL), 7-4
USING THE MULTI-USER
DEBUGGER (SYMBOLIC MODE),
E-l

DEBUGGING]

DEBUGGING MULTIPLE BOUND
UNITS, E-5
LINE EDITOR DEBUGGING
DIRECTIVES, 5-86

DEFERRED
DEFERRED PRINTING, 3-24

I DELETE
DELETE (D), 5-35
DELETE BLOCK, 4-53
GLOBAL DELETE, A-19

DELETING
ADDING AND DELETING LINES,
A-14
DELETING ALL LINES IN
CURRENT BUFFER, A-12

DELETING CHARACTER STRINGS,
A-17
DELETING DIRECTORIES, 3-18
DELETING FILES, 3-20
DELETING LINES IN CURRENT
BUFFER, A-12
DELETING MULTIPLE LINES,
A-12

DESIGNATING
DESIGNATING A LINE NUMBER
AS AN ADDRESS, 5-6
DESIGNATING CONTENTS OF
LINE AS AN ADDRESS, 5-7
DESIGNATING LINES, 4-10
DESIGNATING RECOVERABLE
FILES, G-4

DESIGNATING THE POSITION
OF A LINE RELATIVE TO THE
"CURRENT" LINE AS AN
ADDRESS, 5-6

DEVICE/TERMINAL
ASSIGNING A FILE TO A
DEVICE/TERMINAL, B-10

DEVICES
ASSIGNING INTERACTIVE
DEVICES AT EXECUTION, C-10
FORTRAN PROGRAM EXECUTION
WITH COMMUNICATION
DEVICES, C-10
INTERACTIVE DEVICES AND
FILES, B-9
INTERACTIVE DEVICES AND
FILES, C-9

MAGNETIC TAPE DEVICE PATH-
NAME CONSTRUCTION, 3-11
PROGRAMMING TIPS FOR USING
COMMUNICATION DEVICES VIA
FORTRAN, C-9

i-5 CZ15-00

INDEX

DEVICES (CONT)

RESERVING FILES OR DEVICES,
3-26

UNIT-RECORD DEVICE FILE
CONVENTIONS, 3-=11

DIAGNOSTICS
STATEMENT ERROR
DIAGNOSTICS, C-4

DIALOGS
SAMPLE COMPILATION DIALOGS,
E-2

SAMPLE INITIALISATION
DIALOGS, E-5
SAMPLE LINKER DIALOGS, E-3

DIALUP
DIALDP TERMINAL, 2-2

DIRECT-CONNECT
DIRECT-CONNECT TERMINAL,
2-2

DIRECTIVES
AUXILIARY BUFFER DIRECTIVES
AND ESCAPE SEQUENCES, 5-66

DEBUGGER DIRECTIVES, 7-8
EC CONTROL DIRECTIVES, F-10
EDIT MODE DESCRIPTION AND
DIRECTIVES, 5-33
ENTERING LINKER DIRECTIVES,
6-9
ENTERING SCREEN EDITOR
DIRECTIVES, 4-9

GENERAL ADVANCED EDITOR
DIRECTIVES, 5-51
GLOBAL DIRECTIVES, A-19
INPUT MODE DESCRIPTION AND
DIRECTIVES, 5-22
LINE EDITOR DEBUGGING
DIRECTIVES, 5-86
LINE EDITOR PROGRAMMING
DIRECTIVES, 5-91
LINKER DIRECTIVES SET, 6-10
PATCH DIRECTIVES, 9-7
SCREEN EDITOR DIRECTIVES,
4-13

SUBMITTING PATCH
DIRECTIVES, 9-5

DIRECTIVES (CONT)
SUMMARY OF DEBUGGER DIREC-
TIVES (TBL), 7-3
SUMMARY OF LINE EDITOR
DIRECTIVES AND ESCAPE
SEQUENCES, 5-16
SUMMARY OF LINE EDITOR
DIRECTIVES AND ESCAPE
SEQUENCES (TBL), 5-16
SUMMARY OF SCREEN EDITOR
DIRECTIVES, 4-13

SUMMARY OF SCREEN EDITOR
DIRECTIVES (TBL), 4-14
TERMS USED IN DEBUGGER
DIRECTIVES (TBL), 7-4

DIRECTORIES
CREATING DIRECTORIES, 3-16
DELETING DIRECTORIES, 3-18
DIRECTORIES, 3-2
INTERMEDIATE DIRECTORIES,
3-3
LISTING FILES AND
DIRECTORIES, 3-21
LOCATION OF DIRECTORIES
SHEPARD AND COOK (FIG),
3-17

LOCATIONS OF DISK DIREC-
TORIES AND FILES, 3-5
RENAMING DIRECTORIES, 3-17
USER ROOT DIRECTORIES, 3-3

DIRECTORY
CHANGING YOUR WORKING
DIRECTORY, 3-15
DIRECTORY ACTIVE
FUNCTIONS, F-7
DIRECTORY CONTROL, 3-15
DIRECTORY LISTING (FIG),
2-6
EXAMPLE OF DISK FILE
DIRECTORY STRUCTURE
(FIG), 3-2 -

ROOT DIRECTORY, 3-3
SAMPLE DIRECTORY STRUCTURE
(FIG), 3-4

SYSTEM ROOT DIRECTORY, 3-3
WORKING DIRECTORY, 3-4

/̂

**J

i-6 CZ15-00

^ INDEX

^

DISK
DISK FILE CONVENTIONS, 3-2
DISK FILE SAVE AND RESTORE,
G-2
EXAMPLE OF DISK FILE DIREC-
TORY STRUCTURE (FIG), 3-2
LOCATIONS OF DISK DIREC-
TORIES AND FILES, 3-5

RENAMING DISK VOLUMES, 3-15

DPEDIT
DPEDIT COMMAND, H-29
DPEDIT ERROR MESSAGES, H-33
INTERPRETING THE CONTENTS
OF A DPEDIT LOGICAL DUMP,
H-42

DUMPS
DETERMINING THE STATE OF
EXECUTION OF YOUR CODE AT
THE TIME OF THE DUMP, H-42
DUMP, 7-13
DUMP EDIT LINE FORMAT, H-5
DUMP EDIT UTILITY (DPEDIT),
H-4

HEXADECIMAL DUMP (ZDUMP),
5-87
INTERPRETING AND USING
MEMORY DUMPS, H-35
INTERPRETING THE CONTENTS
OF A DPEDIT LOGICAL DUMP,
H-42

LOGICAL DUMPS, H-6
PHYSICAL DUMPS, H-6
MEMORY DUMP EXAMPLE (FIG),
H-8

NO LEVEL ACTIVE AT THE TIME
OF DUMP, H-43
OPERATING PROCEDURE FOR
DUMP EDIT, H-32
PHYSICAL DUMPS, H-6
PRINTING AN INCOMPLETE
MEMORY DUMP, H-45

REQUESTING AND USING MEMORY
DUMPS, H-l
SIGNIFICANT LOCATIONS ON
MEMORY DUMP, H-36, (TBL),
H-36

USER LEVEL ACTIVE AT THE
TIME OF DUMP, H-43

f~t

EC FILE
CREATING A GENERALIZED
FILE, P-12

CREATING A MORE COMPLEX
FILE, E-9

DEVELOPING A SIMPLE EC
FILE, F-2
EC CONTROL DIRECTIVES, F-10
EC FILE ADVANTAGES, F-l
EC FILE FEATURES, F-l
EXECUTING AN EC FILE, F-2
SAMPLE COMPLEX EC (FIG),
P-13

SAMPLE EC FILE: COMMAND-
ONLY (FIG), F-2
SAMPLE GENERALIZED EC
FILE: APPLICATION DEVELOP-
MENT (FIG), F-14
USING EC ACTIVE FUNCTIONS,
F-4

EDEF
EDEF, 6-21

EDIT
CHANGE ORIGIN OF TEXT DUR-
ING EDIT MODE (IB), 5-72

DUMP EDIT LINE FORMAT, H-5
DUMP EDIT^UTILITY (DPEDIT),
H-4
EDIT MODE DESCRIPTION AND
DIRECTIVES, 5-33
OPERATING PROCEDURE FOR
DUMP EDIT, H-32

EDITOR
ADVANCED FUNCTIONS OF THE
LINE EDITOR, 5-51
ENTERING SCREEN EDITOR
DIRECTIVES, 4-9

GENERAL ADVANCED LINE
EDITOR DIRECTIVES, 5-51
INITIATING A LINE EDITOR
SESSION, A-l
INTERRUPTING SCREEN EDITOR
PROCESSING, 4-8

LINE EDITOR, 5-1
LINE EDITOR DEBUGGING
DIRECTIVES, 5-86

LINE EDITOR DIRECTIVE
FORMAT CONVENTIONS, 5-3
LINE EDITOR MODES, A-3

i-7 CZ15-00

^

INDEX

EDITOR (CONT)
LINE EDITOR PROGRAMMING
DIRECTIVES, 5-91

LINE EDITOR SUFFIX
CONVENTIONS, 5-3
LOADING THE LINE EDITORr
5-14

LOADING THE SCREEN EDITOR,
4-4

QUITTING THE LINE EDITOR,
A-3
SCREEN EDITOR, 4-1
SCREEN EDITOR DIRECTIVE
FORMAT CONVENTIONS, 4-9

SCREEN EDITOR DIRECTIVES,
4-13

SCREEN EDITOR PROCESSING,
• 4-2
SCREEN EDITOR SUFFIX
CONVENTIONS, 4-3

SCREEN EDITOR TEMPLATE FOR
7300 GENERAL PURPOSE
ASYNCHRONOUS KEYBOARD
(FIG), 4-47

SCREEN EDITOR TEMPLATE FOR
7300 WORD PROCESSING KEY-
BOARD (FIG), 4-47

SCREEN EDITOR TEMPLATE FOR
780X GENERAL PURPOSE
ASYNCHRONOUS KEYBOARD
(FIG), 4-46

' SUMMARY OF LINE EDITOR
DIRECTIVES AND ESCAPE
SEQUENCES, 5-16
SUMMARY OF LINE EDITOR
DIRECTIVES AND ESCAPE
SEQUENCES (TBL), 5-16

-' SUMMARY OF SCREEN EDITOR
DIRECTIVES, 4-13
SUMMARY OF SCREEN EDITOR
DIRECTIVES (TBL), 4-14
USING EDITOR SYSTEM
COMMANDS, A-25

USING THE LINE EDITOR, A-l

ERASE
ERASE BLOCK, 4-54
ERASE EOL, 4-73

ERROR
DPEDIT ERROR MESSAGES,
H-33
ERROR MESSAGES IN COBOL
EXAMPLE, B-43

STATEMENT ERROR
DIAGNOSTICS, C-4

EXECUTING
EXECUTING A BASIC PROGRAM,
D-7
EXECUTING A COBOL PROGRAM,
B-9
EXECUTING A PROGRAM, C-9
EXECUTING AN EC FILE, F-2
EXECUTING BASIC
INTERACTIVELY, D-2

EXECUTING YOUR PROGRAM WITH
THE DEBUGGER, E-6

EXECUTION
ASSIGNING INTERACTIVE
DEVICES AT EXECUTION, C-10
CONTROLLING EXECUTION OF
THE USER'S PROGRAM, 7-7

DETERMINING THE STATE OF
EXECUTION OF YOUR CODE AT
THE TIME OF THE DUMP, H-42
EXECUTION OF BPROG (FIG),
D-8 .
EXECUTION OF COBOL TTY OR
VIP PROGRAM EXAMPLE, B-43
EXECUTION OF PROG1 (FIG) f
8-9

FORTRAN PROGRAM EXECUTION
WITH COMMUNICATION
DEVICES, C-10
INTERACTIVE EXECUTION OF
PROG1 (FIG), D-3
INTERRUPTING EXECUTION,
3-22
INTERRUPTING LINKER
EXECUTION, 6-82
PROGRAM EXECUTION, 3-25
SAMPLE EXECUTION DIALOG,
E-6

SAMPLE EXECUTION OF TEST
(FIG), C-9

SPECIFYING ASYNCHRONOUS OR
SYNCHRONOUS READ AND
WRITE EXECUTION, B-12
USING EXECUTION COMMAND
(EC) FILES, F-l

>

i-8 CZ15-00

v^
INDEX

FAILURE
RECOVERING AFTER SYSTEM
FAILURE, G-6

RELOADING AFTER SYSTEM
FAILURE, 6-6

FILE * " *
ASSIGNING A FILE TO A
DEVICE/TERMINAL, B-10
CHANGING TERMINAL'S FILE
CHARACTERISTICS, C-10

CHECKPOINT FILE ASSIGNMENT,
G«7
COBOL LIST FILE, B-5 j
CREATING A FILE, A-4
CREATING A GENERALIZED EC
FILE, F-12
CREATING A MORE COMPLEX EC
FILE, F-9

DEVELOPING A SIMPLE EC
FILE, F-2

DIRECTING OUTPUT TO A FILE,
3-23

DISK FILE CONVENTIONS, 3-2
DISK FILE SAVE AND RESTORE,
G-2
EC FILE ADVANTAGES, F-l
EC FILE FEATURES, F-l
EXAMPLE OF DISK FILE DIREC-
TORY STRUCTURE (FIG), 3-2
EXECUTING AN EC FILE, F-2
FILE ASSIGNMENTS IN COBOL
EXAMPLE, B-27
FILE CONTROL, 3-18
FILE CONVENTIONS, 3-1
FILE RECOVERY, G-4
FILE RECOVERY PROCESS, G-5
FILE SYSTEM CONSIDERATIONS,
B-10
FILE SYSTEM STRUCTURES,
H-26
FORTRAN FILE STATUS CHECK
(ZFSTIN AND ZFSTOT), C-ll

LOCATION OF SUBORDINATE
FILE REPORTS (FIG), 3-19

LOCATION OF SUBORINDATE
FILE WORDLIST (FIG) , 3-19

MAGNETIC TAPE FILE
CONVENTIONS, 3-8

MOVING LINES IN A FILE,
A-21

FILE (CONT)
READING FILE CONTENTS, A-ll
RECOVERY FILE CREATION, G-5
REPEATING LINES IN A FILE,
A-20
SAMPLE SCREEN FOR CREATING
A FILE (FIG), 4-5

1 SAMPLE SCREEN FOR MODIFYING
A FILE (FIG), 4-5
SAVING FILE CONTENTS, A-10
TAPE FILE ORGANIZATION,
3-10

UNIT-RECORD DEVICE FILE
CONVENTIONS, 3-11

FILES
COPYING FILES, 3-20
CREATING FILES, 3-18
CREATING WORK FILES, A-2
DELETING FILES, 3-20
DESIGNATING RECOVERABLE
FILES, G-4
INTERACTIVE DEVICES AND
FILES, B-9
INTERACTIVE DEVICES AND
FILES, C-9

LISTING FILES AND
DIRECTORIES, 3-21
LOCATING FILES, 3-21
LOCATIONS OF DISK DIREC-
TORIES AND FILES, 3-5
PRINTING FILES AT YOUR

8" TERMINAL, 3-24
RENAMING FILES, 3-20
RESERVING FILES OR
DEVICES, 3-26
SAMPLE EC FILE: COMMAND-
ONLY (FIG), F-2
SAMPLE GENERALIZED EC FILE:

, ' APPLICATION DEVELOPMENT
(FIG), F-14

SPECIFYING FILES IN THE
SOURCE PROGRAM, B-10
STANDARD I/O FILES, 3-12
USING EXECUTION COMMAND
(EC) FILES, E-l

USING EXISTING FILES, A-23
WORKING WITH FILES, 3-12

i-9 CZ15-00

INDEX

FORTRAN
COMPILING AND LINKING A
FORTRAN PROGRAM (FIG) , O2

FORTRAN APPLICATION EXAMPLE
-•••• FOR TTY, C-13, (FIG), C-15

FORTRAN COMPILE, LINK, AND
EXECUTE PROCEDURES, C-l
FORTRAN FILE STATUS CHECK

(ZFSTiN AND ZFSTOT) , oil
FORTRAN PROGRAM EXECUTION
WITH COMMUNICATION
DEVICES, C-10
FORTRAN SOURCE PROGRAM
TEST9F (FIG), C-3
INVOKING THE ADVANCED
FORTRAN COMPILER, C-2

PROGRAMMING TIPS FOR USING
COMMUNICATION DEVICES VIA
FORTRAN, C-9

SAMPLE FORTRAN LISTING
FORMAT, C-3

USING FORTRAN, C-l

FUNCTIONS
ACTIVE FUNCTIONS, P-4
ADVANCED FUNCTIONS OF THE
LINE EDITOR, 5-51
ARITHMETIC ACTIVE
FUNCTIONS, P-6

DATE/TIME ACTIVE FUNCTIONS,
P-7

DIRECTORY ACTIVE FUNCTIONS,
P-7

GROUPS OF ACTIVE FUNCTIONS,
F-5

LINKER FUNCTIONS, 6-1
LOGICAL ACTIVE FUNCTIONS,

1 P-8
MULTIPLE ACTIVE FUNCTIONS,
F-4

NESTED ACTIVE FUNCTIONS,
F-4

NETWORK PROCESSING
FUNCTIONS, 8-1

QUESTION ACTIVE FUNCTIONS,
P-8
STRING ACTIVE FUNCTIONS,

'• P-9
USING ACTIVE FUNCITONS AS
COMMANDS, F-5

USING EC ACTIVE FUNCTIONS,
F-4

GET
USE OF GET COMMAND, B-10

GSHARE
GSHARE, 6-28

HALTS
MDUMP HALTS, H-3, (TBL),
B>4

HEXADECIMAL
HEXADECIMAL DUMP (ZDUMP),
5-87

HEXADECIMAL PATCH, 9-17
."':•

IF
IF, 7-15
IF DATA (#), 5-98
IF EMPTY (~#) , 5-99
IF LINE (ADRf), 5-100
IF NOT LINE (ADR "f), 5-101
IF NOT RANGE (ADRS "#),
5-103
IF RANGE (ADR(S) t), 5-102

INCLUDE
INCLUDE, 6-32 f ,}

INPUT/OUTPUT
COBOL SESSION CONTROL I/O
REQUEST BLOCK CALLS, 8-3
STANDARD I/O FILES, 3-12
SYNCHRONOUS INPUT/OUTPUT,
C-10

INSERT
INSERT (I), 5-30

INSERTING
INSERTING LINES, A-18

INTERACTIVE
ASSIGNING INTERACTIVE
DEVICES AT EXECUTION, C-10
INTERACTIVE DEVICES AND
FILES, B-9, C-9
INTERACTIVE EXECUTION OF
PROG1 (FIG), D-3
INTERACTIVE MODE, 9-2

J

i-10 CZ15-00

man
>̂ INDEX

"*~S

INTERACTIVE (CONT.)
SIMPLIFIED COBOL PROGRAM
LOGIC FOR MULTIPLE
INTERACTIVE TERMINALS
(ASYNCHRONOUS) (FIG), B-15

INTERPRETER/COMPILER
INVOKING THE BASIC
INTERPRETER/COMPILER, D-2

KEYBOARD
SCREEN EDITOR TEMPLATE FOR
7300 GENERAL PURPOSE

. ASYNCHRONOUS KEYBOARD ,
(FIG), 4-47

SCREEN EDITOR TEMPLATE FOR
7300 WORD PROCESSING KEY-
BOARD (FIG), 4-47
SCREEN EDITOR TEMPLATE FOR
78OX GENERAL PURPOSE
ASYNCHRONOUS KEYBOARD ,
(FIG), 4-46

TERMINAL AND KEYBOARD)
REQUIREMENTS, 4-3

KEYS
FUNCTION KEYS, 4-46
LABELED KEYS, 4-61

KEYWORDS *
DEBUGGER RESERVED KEY-
WORDS (TBL), 7-5 l

LABEL
LABEL (:), 5-106

LABELED ' '
LABELED KEYS, 4-61 '

LEFT
CURSOR LEFT («-) , 4-68
LEFT MARGIN (LEFT MAR- t
GIN OR LM), 4-25

WINDOW LEFT, 4-58

LINES
ACCEPT SINGLE LINE FROM A
TERMINAL (!R), 5-68

ADDING LINES TO THE CURRENT
BUFFER, A-17

ADDING AND DELETING LINES,
A-14

ADDRESSING A SINGLE LINE,
A-5

' ADDRESSING MULTIPLE LINES,
A-6
APPENDING LINES, A-18
ADVANCED FUNCTIONS OF THE
LINE EDITOR, 5-51

APPEND LINE, 4-49
BOTTOM LINE (BOTTOM LINE OR
BL), 4-16
CHANGING CHARACTER STRINGS
WITHIN A LINE, A-15
CHANGING LINE CONTENTS,
A-14

DELETING ALL LINES IN
CURRENT BUFFER, A-12
DELETING LINES IN CURRENT
BUFFER, A-12
DELETING MULTIPLE LINES,
A-12
DEL LINE, 4-72
DESIGNATING LINES, 4-10
INSERTING LINES, A-18
DESIGNATING A LINE NUMBER
AS AN ADDRESS, 5-6

'•" DESIGNATING CONTENTS OF
LINE AS AN ADDRESS, 5-7

DESIGNATING THE POSITION
OF A LINE RELATIVE TO THE
"CURRENT" LINE AS AN
ADDRESS, 5-6
DUMP EDIT LINE FORMAT, H-5
GENERAL ADVANCED LINE
EDITOR DIRECTIVES, 5-51

' IF LINE (ADR*), 5-100
IF NOT LINE (ADR "I), 5-101
(INITIATING A LINE EDITOR
SESSION, A-l

LINE EDITOR, 5-1
LINE EDITOR DEBUGGING
DIRECTIVES, 5-86
LINE EDITOR DIRECTIVE FOR-
MAT CONVENTIONS, 5-3
LINE EDITOR MODES, A-3

i-11 CZ15-00

>
INDEX

LINE EDITOR PROGRAMMING
DIRECTIVES, 5-91

LINE EDITOR SUFFIX
CONVENTIONS, 5-3

LINE FEED, 4-77
LINE FEED, (L OR IL), 5-57
LOADING THE LINE EDITOR,
5-14

MOVING LINES IN A FILE,
A-21

NEW CURRENT LINE (N), 5-59
PRINT LINE NUMBER (=/iP),
5-60

PRINT WITH LINE NUMBER
(IP) , 5-62

PRINTING LINE NUMBERS, A-6
QUITTING THE LINE EDITOR,
A-3

REFERENCING A SERIES OF
LINES, 5-12

REPEATING LINES IN A
FILE, A-20

RESEQUENCING LINE NUMBERS,
D-5
SPECIFYING A CHARACTER
STRING ENDING A LINE, A-8
SUMMARY OF LINE EDITOR
DIRECTIVES AND ESCAPE
SEQUENCES, 5-16, (TBL),
5-16

TOP LINE (TOP LINE OR TL),
4-37

USE OF PERIOD (.) FOR
CURRENT LINE, A-7

USING THE LINE EDITOR, A-l
WRITING TO LINE PRINTER,
A-25

LINKER
ENTERING LINKER DIRECTIVES,
6-9
INTERRUPTING LINKER EXECU-
TION, 6-82
INVOKING THE LINKER, B-8,
C-8

LINKER, 6-1 - . .
LINKER DIRECTIVE
CATEGORIES, 6-3

LINKER DIRECTIVES SET, 6-10
LINKER FUNCTIONS, 6-1
LINKER PROCEDURES, 6-81
LOADING THE LINKER, 6-7

LINKER (CONT)
SAMPLE LINKER DIALOGS, E-3
TERMINATING THE LINKER, 6-6

LINKING
COMPILING AND LINKING A
BASIC PROGRAM (FIG), D-4
COMPILING AND LINKING A
COBOL PROGRAM (FIG), B-2

COMPILING AND LINKING A
FORTRAN PROGRAM (FIG),

*" C-2
LINKING A BASIC PROGRAM,
D-7
LINKING AN OBJECT UNIT WITH
THE DEBUGGER, E-2

LINKING PROG1 (FIG), B-8
LINKING TEST (FIG), C-8

LIST
COBOL LIST FILE, B-5
LIST, 7-17
LIST HEADER, B-5
LIST PATCHES, 9-25
LIST PATCH NAMES, 9-28
LIST PATCH NOW, 9-27
LIST SPECIFIED PATCH, 9-29

LISTING
DIRECTORY LISTING (FIG),
2-6

LISTING FILES AND
DIRECTORIES, 3-21

LISTING OF PROG1.L (FIG),
B-6
LISTING OF TEST.F (FIG),
06
SAMPLE FORTRAN LISTING
FORMAT, O3

SAMPLE LISTING, B-5, C-5
SOURCE LISTING, B-5
SOURCE LISTING OF FIRST
OVERLAY SEGMENT PART2

. (FIG), 6-94
SOURCE LISTING OF ROOT
SEGMENT COBPRG (FIG), 6-93

SOURCE LISTING OF SECOND
OVERLAY SEGMENT PART3
(FIG), 6-94

i-12 CZ15-00

w INDEX

LKDIR
CONTENTS OF LKDIR (FIG),
6-87

LOGIN
ABBREVIATED LOGIN
TERMINAL, 2-3

AUTOMATIC LOGIC TERMINAL,
2-3

LOGIN TERMINAL, 2-2
MANUAL LOGIN TERMINAL, 2-3

MAP
DATA STRUCTURE MAP (FIG),
H-37

LINK MAP FORMATS (FIG),
^ 6-52

MAP AND MAPU, 6-50
SAMPLE LINK MAP (CARDIN.M),
(FIG), 6-85

MDUMP ""-~
MDUMP HALTS, H-3
MDUMP HALTS (TBL), H-4
MDUMP REQUIREMENTS, H-l
MDUMP UTILITY, H-l
PREPARING TO EXECUTE MDUMP,
H-2
PROCEDURE FOR BOOTSTRAPPING
MDUMP, H-3
PROCEDURE FOR USING MDUMP,
H-2

MEMORY
FINDING THE LOCATION IN

^^ MEMORY OF YOUR CODE, H-42
H-44
INTERPRETING AND USING
MEMORY DUMPS, H-35

MEMORY DUMP EXAMPLE (FIG),
H-8

MEMORY POOL STRUCTURES,
H-27
OVERLAYS IN MEMORY POOL AA
(FIG), 6-16

PRINTING AN INCOMPLETE
MEMORY DUMP, H-45
RELATIVE LOCATION OF
MEMORY IN MEMORY POOL AA
(FIG), 6-16

MEMORY (CONT)
REQUESTING AND USING MEMORY
DUMPS, H-l
SIGNIFICANT LOCATIONS ON
MEMORY DUMP, H-36, (FIG),
H-36

MESSAGES
DPEDIT ERROR MESSAGES, H-33
ERROR MESSAGES IN COBOL
EXAMPLE, B-43

SENDING MESSAGES TO THE
OPERATOR, 2-5

METHODS
METHODS OF SPECIFYING
ADDRESSES, 5-5

MODE
BATCH MODE, 9-1
BSC 2780 IN ADVANCED DATA
TRANSMISSION MODE, B-22
BSC 2780 IN BASIC TRANS-
MISSION MODE, B-21
BSC 3780 IN ADVANCED DATA
TRANSMISSION MODE, B-22
CHANGE ORIGIN OF TEXT DUR-
ING EDIT MODE (!B), 5-72

CHANGE ORIGIN OF TEXT DUR-
ING INPUT MODE (IB), 5-75

EDIT MODE DESCRIPTION AND
DIRECTIVES, 5-33
INPUT MODE DESCRIPTION AND
DIRECTIVES, 5-22
INTERACTIVE MODE, 9-2
MODE, 7-18

MODES
BSC DATA TRANSMISSION
MODES, B-20

LINE EDITOR MODES, A-3

MOVE
MOVE (M), 5-82
MOVE BLOCK, 4-56

MOVE-APPEND
MOVE-APPEND (!M), 5-84

'. • -̂

i-13 CZ15-00

INDEX

MOVING
MOVING LINES IN A FILE,
A-21

MULTI-USER
MULTIBUSER DEBUGGER
(SYMBOLIC MODE), 7-1

USING THE MULTI-USER
DEBUGGER (SYMBOLIC MODE),
E-l

MULTIPLE
ADDRESSING MULTIPLE LINES,
A-6
DEBUGGING MULTIPLE BOUND
UNITS, E-5
DELETING MULTIPLE LINES,
A-12
MULTIPLE ACTIVE FUNCTIONS,
P-4
SIMPLIFIED COBOL PROGRAM
LOGIC FOR MULTIPLE INTER-
ACTIVE TERMINALS (FIG),
B-15

NAMES
LIST PATCHES NAMES, 9-28
MAGNETIC TAPE FILE AND
VOLUME NAMES, 3-10
UNIQUENESS OF NAMES, 3-5

NAMING
NAMING CONVENTIONS, 3-5
NAMING THE PATCH, 9-6

NESTED
NESTED ACTIVE FUNCTIONS,
F-4

NETWORK
NETWORK CONTROL CENTER, 8-1
NETWORK ENVIRONMENT OF A
PROCESS, 8-2

NETWORK PROCESSING ~^-
FUNCTIONS, 8-1

NON-LOGIN
NON-LOGIN TERMINAL, 2-4

OPERATOR
SENDING MESSAGES TO THE
OPERATOR, 2-5

OUTPUT
ASYNCHRONOUS OUTPUT, C-ll
CONTROLLING OUTPUT, 3-22,
7-8
DIRECTING OUTPUT TO A FILE,
3-23

DIRECTING OUTPUT TO A
PRINTER, 3-23

REDIRECTING OUTPUT TO YOUR
TERMINAL, 3-23
WAIT FOR COMPLETION FOR
ASYNCHRONOUS INPUT AND
OUTPUT, B-13

OVERLAYS
OVERLAYS IN MEMORY POOL AA
(FIG), 6-16

SOURCE LISTING OF FIRST
OVERLAY SEGMENT PART2
(FIG), 6-94

SOURCE LISTING OF SECOND
OVERLAY SEGMENT PART3
(FIG), 6-94

USING OVERLAYS, 6-82

OVERLAYTABLE
OVERLAYTABLE, 6-62

PATCH
APPLYING THE PATCH, 9-6
DATA PATCH, 9-10
ELIMINATE PATCH, 9-15
HEXADECIMAL PATCH, 9-17
LIST SPECIFIED PATCH, 9-29
LOADING PATCH, 9-3
NAMING THE PATCH, 9-6
PATCH DIRECTIVES, 9-7
PATCH UTILITY, 9-1
SUBMITTING PATCH
DIRECTIVES, 9-5
SYMBOLIC DATA PATCH, 9-36
SYMBOLIC PATCH, 9-39
USING THE PATH UTILITY, 9-1
VERIFY/SET PATCH REVISION
NUMBER, 9-43

PATCHES
LIST PATCHES, 9-25
LIST PATCH NAMES, 9-28
LIST PATCH NOW, 9-27

I .1 *

^>

i-14 CZ15-00

^ INDEX

^

PATCHING '
PATCHING TECHNIQUES, 9-6

PATHNAMES
ABSOLUTE AND RELATIVE
PATHNAMES, 3-7

MAGNETIC TAPE DEVICE PATH-
NAME CONSTRUCTION, 3-11
PATHNAME, 3-6
SAMPLE PATHNAMES (FIG),
3-9
SYMBOLS USED IN PATHNAMES,
3-6

< j.
PRINT

GLOBAL PRINT, A-19
PRINT (P), 5-37
PRINT LINE NUMBER (=/lP),
5-60

PRINT WITH LINE NUMBER
(IP) , 5-62

PRINTER
DIRECTING OUTPUT TO A
PRINTER, 3-23

PRINTER EMULATION, B-12
WRITING TO LINE PRINTER,
A-25

PRINTING
DEFERRED PRINTING, 3-24
PRINTING AN INCOMPLETE *
MEMORY DUMP, H-45
PRINTING CONTROL, 3-23
PRINTING FILES AT YOUR
TERMINAL, 3-24
PRINTING LINE NUMBERS, A-6

PROGRAM
BASIC SOURCE PROGRAM
PROG1.B (FIG), D-2, D-3
COBOL PROGRAM EXAMPLES,
B-27
COBOL SOURCE PROGRAM
PROG1.C (FIG), B-4

COMPILING A BASIC
PROGRAM, D-4
COMPILING A PROGRAM FOR
USE WITH THE DEBUGGER,
E-l

PROGRAM (CONT)
COMPILING AND LINKING A
BASIC PROGRAM (FIG), D-4
COMPILING AND LINKING A
COBOL PROGRAM (FIG), B-2
COMPILING AND LINKING A
FORTRAN PROGRAM (FIG), C-2
CONTROLLING EXECUTION OF
THE USER'S PROGRAM, 7-7
EXECUTING A BASIC PROGRAM,
D-7
EXECUTING A COBOL PROGRAM,
B-9
EXECUTING A PROGRAM, C-9
EXECUTING YOUR PROGRAM WITH
THE DEBUGGER, E-6
EXECUTION OF COBOL TTY OR
VIP PROGRAM EXAMPLE, B-43
FORTRAN PROGRAM EXECUTION

o <j WITH COMMUNICATION
DEVICES, C-10
FORTRAN SOURCE PROGRAM
TEST.F (FIG), C-3
LINKING A BASIC PROGRAM,
D-7
PROGRAM EXECUTION, 3-25
SIMPLIFIED COBOL PROGRAM
LOGIC FOR MULTIPLE INTER-
ACTIVE TERMINALS
(FIG), B-15

SIMPLIFIED PROGRAM LOGIC
FOR BSC 2780 (FIG), B-23

SIMPLIFIED PROGRAM LOGIC
FOR BSC 3780 (FIG), B-25
SOURCE PROGRAM ENTRIES IN
COMMUNICATIONS, B-10
SPECIFYING FILES IN THE
SOURCE PROGRAM, B-10

PROGRAMMING
LINE EDITOR PROGRAMMING
DIRECTIVES, 5-91
PROGRAMMING CONSIDERATIONS,
5-108
PROGRAMMING CONSIDERATIONS,
D-5
PROGRAMMING TIPS FOR COM-
MUNICATIONS VIA COBOL, B-9
PROGRAMMING TIPS FOR USING
COMMUNICATION DEVICES VIA
FORTRAN, C-9
Z1STIN AND Z1STOT PROGRAM-
MING EXAMPLES, C-13

i-15 CZ15-00

INDEX

READ
ASYNCHRONOUS READ AND WRITE
OPERATION (CALL "ZCASYN"),
B-13
READ (R), 5-42
READ (READ OR R), 4=28
SPECIFYING ASYNCHRONOUS OR
SYNCHRONOUS READ AND WRITE
EXECUTION, B-12

SYNCHRONOUS READ AND WRITE
OPERATION (CALL "ZCSYNC"),
B-13 - «

READING
READING FILE CONTENTS, A-ll

RECOVERY
BACKUP AND RECOVERY, G-l
FILE RECOVERY, G-4
FILE RECOVERY PROCESS, G-5
RECOVERY FILE CREATION, G-5

RENAMING
RENAMING DIRECTORIES, 3-17
RENAMING DISK VOLUMES, 3-15
RENAMING FILES, 3-20

REPEATING
REPEATING LINES IN A FILE,
A-20

RESTORE
DISK FILE SAVE AND RESTORE,
G-2

ROLLBACK
REQUESTING ROLLBACK, G-6

SAVING
SAVING FILE CONTENTS, A-10
SAVING MODIFIED BUFFER
CONTENTS, A-25

SCREEN
CONTROLLING SCREEN
PROCESSING, D-6

DESCRIPTION OF THE SCREEN,
4-4
ENTERING SCREEN EDITOR
DIRECTIVES, 4-9
INTERRUPTING SCREEN EDITOR
PROCESSING, 4-8

SCREEN (cont.)
LOADING THE SCREEN EDITOR,
4-4

. SAMPLE SCREEN FOR CREATING
A FILE (FIG), 4-5
SAMPLE SCREEN FOR MODIFYING
A FILE (FIG), 4-5
SCREEN EDITOR, 4-1
SCREEN EDITOR DIRECTIVE
FORMAT CONVENTIONS, 4-9
SCREEN EDITOR DIRECTIVES,
4-13

SCREEN EDITOR PROCESSING,
4-2
SCREEN EDITOR SUFFIX
CONVENTIONS, 4-3
SCREEN EDITOR TEMPLATE FOR
7300 GENERAL PURPOSE
ASYNCHRONOUS KEYBOARD
(FIG), 4-47

SCREEN EDITOR TEMPLATE FOR
7300 WORD PROCESSING KEY-
BOARD (FIG), 4-47
SCREEN EDITOR TEMPLATE FOR
7SOX GENERAL PURPOSE
ASYNCHRONOUS KEYBOARD
(FIG), 4-46

SUMMARY OF SCREEN EDITOR
DIRECTIVES, 4-13, (TBL),
4-14

SCROLL
SCROLL CHANGE (SCROLL
CHANGE OR SC), 4-30

SEARCH
SEARCH (*), 5-104
SEARCH (SEARCH OR S), 4-31
SEARCH BACKWARD (SEARCH
BACKWARD OR SB), 4-33
SEARCH FORWARD (SEARCH
FORWARD OR SF), 4-35
SEARCH NOT (**), 5-105
SPECIFYING A SINGLE
CHARACTER SUBSTITUTION
IN SEARCH STRINGS, A-9

r~>.

i-16 CZ15-00

^ INDEX

SELECT
COBOL SELECT AND ASSIGN
EXAMPLES (FIG), B-ll
SELECT AND ASSIGN EXAMPLES,
B-ll

SENDING
SENDING MESSAGES TO THE
OPERATOR, 2-5

SESSION
COBOL SESSION CALLS, 8-3
COBOL SESSION CONTROL I/O
REQUEST BLOCK CALLS, 8-3
INITIATING A LINE EDITOR
SESSION, A-l

SESSIONS
SAMPLE LINK SESSIONS, 6-

SET

•82

LINKER DIRECTIVES SET, 6-10
SET, 7-22
SET GLOBAL SHARE BIT OFF,
9-31

SET GLOBAL SHARE BIT ON,
9-32

SET SHARE BIT OFF, 9-33
SET SHARE BIT ON, 9-34
SET SYSTEM BIT ON, 9-35
TAB SET, 4-80

• ,*E(H
STATUS

BUFFER STATUS, A-24
BUFFER STATUS (X), 5-69
FORTRAN FILE STATUS CHECK
(ZFSTIN AND ZFSTOT), C-ll

STATUS CODES IN COBOL
EXAMPLE, B-43

* STATUS REGION, 4-6

SUFFIX
LINE EDITOR SUFFIX *o"
CONVENTIONS, 5-3

SCREEN EDITOR SUFFIX
CONVENTIONS, 4-3

SYMBOLIC
SYMBOLIC DATA PATCH, 9-36
SYMBOLIC PATCH, 9-39

SYMBOLS
DEBUGGER SPECIAL SYMBOLS
(TBL), 7-5

DEFINING EXTERNAL SYMBOLS,
6-5
SYMBOLS USED IN PATHNAMES,
3-6

SYNCHRONOUS
BINARY SYNCHRONOUS COMMUNI-
CATION (BSC) WITH COBOL,
B-19
SPECIFYING ASYNCHRONOUS OR
SYNCHRONOUS READ AND WRITE
EXECUTION, B-12

SYNCHRONOUS INPUT/OUTPUT,
C-10
SYNCHRONOUS READ AND WRITE
OPERATION (CALL "ZCSYNC"),
B-13

TAB
CTRL TAB, 4-66
TAB, 4-78
TAB CLR, 4-79
TAB SET, 4-80

TASK
INTERRUPTING (BREAKING) A
TASK, 2-5

LOCATIONS RELATIVE TO THE
TASK CONTROL BLOCK (TCB)
POINTER OF THE DESIRED
PRIORITY LEVEL, H-40
TASK GROUP STRUCTURES, H-28
TASK STRUCTURES, H-28

TERMINALS
ABBREVIATED LOGIN TERMINAL,
2-3

ACCEPT SINGLE LINE FROM A
TERMINAL (1R), 5-68
AUTOMATIC LOGIC TERMINAL,
2-4

CHANGING TERMINAL'S FILE
CHARACTERISTICS, C-10
CONNECTING THE TERMINAL ON
THE CENTRAL PROCESSOR, 2-1

DIALUP TERMINAL, 2-2
DIRECT-CONNECT TERMINAL,
2-2
LOGIN TERMINAL, 2-2
MANUAL LOGIN TERMINAL, 2-3

i-17 CZ15-00

N̂

INDEX

TERMINALS (CONT)
NON-LOGIN TERMINAL, 2-4 c
PRINTING FILES AT YOUR
TERMINAL, 3-24
REDIRECTING OUTPUT TO 1
YOUR TERMINAL, 3=23
SIMPLIFIED COBOL PROGRAM
LOGIC FOR MULTIPLE INTER-
ACTIVE TERMINALS
(FIG), B-15

TERMINAL AND KEYBOARD
REQUIREMENTS, 4-3

TOP LINE (TOP LINE OR TL),
4-37

TRACE
MAINTAINING A TRACE
HISTORY, 7-8
TRACE, 7-24 ---

TRANSMISSION
BSC 2780 IN ADVANCED DATA
TRANSMISSION MODE, B-22

BSC 2780 IN BASIC TRANS-
MISSION MODE, B-21

BSC 3780 IN ADVANCED DATA
TRANSMISSION MODE, B-22

' BSC DATA TRANSMISSION
CONVENTIONS, B-19
BSC DATA TRANSMISSION
MODES, B-20
BSC MULTI-BLOCK
TRANSMISSION, B-20

TRAP
DETERMINING WHERE A TRAP
PROCESSED BY THE SYSTEM

-:- DEFAULT HANDLER OCCURRED
IN YOUR CODE, H-44

TTY
COBOL TTY OR VIP APPLICA-
TION EXAMPLE, B-27
COBOL TTY OR VIP APPLICA-
TION EXAMPLE (FIG), B-28
EXECUTION OF COBOL TTY OR
VIP PROGRAM EXAMPLE, B-43
FORTRAN APPLICATION EXAMPLE
FOR TTY, C-13
FORTRAN APPLICATION EXAMPLE
FOR TTY (FIG), C-15

UP
CURSOR UP (), 4-70
WINDOW UP, 4-60

.UPPER
UPPER CASE (UPPER CASE OR
UC), 4-39

*' i"»s

UPPERCASE
UPPERCASE (1U), 5-64 '33

UTILITY
DUMP EDIT UTILITY
(DPEDIT), H-4

MDUMP UTILITY, H-l
PATCH UTILITY, 9-1
USING THE PATCH UTILITY,
9-1

VDEF -
VDEF, 6-79
VDEF, 9-42

VIP
COBOL TTY OR VIP APPLICA-
TION EXAMPLE, B-27
COBOL TTY OR VIP APPLICA-
TION EXAMPLE (FIG), B-28
EXECUTION OF COBOL TTY OR
VIP PROGRAM EXAMPLE, B-43

VOLUMES
AUTOMATIC TAPE VOLUME
RECOGNITION, 3-11
CREATING VOLUMES, 3-13
MAGNETIC TAPE FILE AND
VOLUME NAMES, 3-=10
RENAMING DISK VOLUMES, 3-15
VOLUME CONTROL, 3-13

".

J'

i-18 CZ15-00

?rf*~* ^>» •*• fitV^S rf**'. «-*H » c. * v*

^IJ.H-

ao /tDoj-

?*-A

J

Ot)r-01

/"

n

i) v. ff •

s^/

'-,

18

•> TWH; j*w
-* e <r •"* it

_, .?'£«#

p:~ <• -

•^SiVcjr: v- ,

>.s~ d̂ u.

<l
31*

3

r

^

SiA.

PLEASE FOLD AND TAPE-
NOTS U S Postal Service will not deliver stapled forms

*tMfr- >U

I

I c
I 5
Ti
I Q

FiRST CLASS "6RM1T l"0 39531 VWALTHAM MAQ2154

POST AGE WILL 8E PAID BY AOORESSgfe

HONEYWELL INFORMATION SYSTEMS
200 SM5TH STREET
WALTHAM. MA 02154

ATTN PUBLICATIONS, WS486

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

'0

Honeywell v

•U7T

<
Q

\~s INDEX

VPURGE ^
VPURGE, 6-80

' . *

WINDOW •-,"'•'
WINDOW DOWN, 4-57
WINDOW LEFT, 4-58
WINDOW RIGHT, 4-59
WINDOW UP, 4-60
WINDOW WIDTH (WINDOW WIDTH
OR WW) , 4-41 •

WORKSTATION i
WORKSTATION ADMINISTRATION !
COMMANDS, 8-2 j

WRITE !
ASYNCHRONOUS READ AND WRITE!

^ OPERATION (CALL "ZCASYN"),j
B-13 I
SPECIFYING ASYNCHRONOUS OR i
SYNCHRONOUS READ AND WRITE
EXECUTION, B-12

SYNCHRONOUS READ AND WRITE
OPERATION (CALL "ZCSYNC"),
B—13

(W), 5-49 '
(WRITE OR W), 4-42

WRITE BLOCK (WRITE BLOCK OR
WB) , 4-44 . :.

WRITING I
WRITING TO LINE PRINTER, •
A-25

'* •*.-

x Z1STIN
CALL STATEMENT FOR Z1STIN

-̂̂ OR Z1STOT, C-12
Z1STIN AND Z1STOT PRO-
GRAMMING EXAMPLES, C-13

Z1STOT
CALL STATEMENT FOR Z1STIN
OR Z1STOT, C-12
Z1STIN AND Z1STOT PRO-
GRAMMING EXAMPLES, C-13

ZREGEXP
ZREGEXP, 5-89

ZTRACE
ZTRACE, 5-90

WRITE
WRITE

K
'*•

'. r

i-19 CZ15-00

?.Wb >7 V'T j j /I .
.:»»'

•^*~- »«. •\.

O

o

3
CJ

PLEASf FOLD AND TAPE-
NOTc. U. S. Postal Service will not deliver stapled forms

riSST CLASS PERMIT NO 39531 WAlTHAM MAQ2154

POSTAGE WILL 86 PAID 3Y AOOR6SS€g t.5* t

HONEYWELL INFORMATION SYSTEMS
200 SW3TH STREET
WALTHAM. MA 02154

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

ATTN: PUBLICATIONS, MS486

Hi r,

,, 5,^ ft

Honeywell
3TAQ

o «v i./fiY

- ; . >,r

•X,#i *K

» • 1*^^

