
GNU Awk

GAWK: Effective AWK Programming
A User’s Guide for GNU Awk

Edition 5.1
March, 2020

Arnold D. Robbins

“To boldly go where no man has gone before” is a Registered Trademark of Paramount
Pictures Corporation.

Published by:

Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301 USA
Phone: +1-617-542-5942
Fax: +1-617-542-2652
Email: gnu@gnu.org
URL: https://www.gnu.org/

ISBN 1-882114-28-0

Copyright c© 1989, 1991, 1992, 1993, 1996–2005, 2007, 2009–2020
Free Software Foundation, Inc.

This is Edition 5.1 of GAWK: Effective AWK Programming: A User’s Guide for GNU Awk,
for the 5.1.0 (or later) version of the GNU implementation of AWK.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with the Invariant Sections being “GNU General Public
License”, with the Front-Cover Texts being “A GNU Manual”, and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

a. The FSF’s Back-Cover Text is: “You have the freedom to copy and modify this GNU
manual.”

mailto:gnu@gnu.org
https://www.gnu.org/

To my parents, for their love, and for the wonderful example they set for me.

To my wife, Miriam, for making me complete.Thank you for building your life together with me.

To our children, Chana, Rivka, Nachum, and Malka, for enrichening our lives in innumerable ways.

i

Short Contents

Foreword to the Third Edition . 1
Foreword to the Fourth Edition . 3

Preface . 5

Part I: The awk Language

1 Getting Started with awk . 17
2 Running awk and gawk . 31
3 Regular Expressions . 47

4 Reading Input Files . 61
5 Printing Output . 93
6 Expressions . 113

7 Patterns, Actions, and Variables . 141

8 Arrays in awk . 171
9 Functions . 187

Part II: Problem Solving with awk

10 A Library of awk Functions . 233
11 Practical awk Programs . 269

Part III: Moving Beyond Standard awk with gawk

12 Advanced Features of gawk . 317
13 Internationalization with gawk . 335

14 Debugging awk Programs . 345

15 Namespaces in gawk . 361

16 Arithmetic and Arbitrary-Precision Arithmetic with gawk . . . 367
17 Writing Extensions for gawk . 381

Part IV: Appendices

A The Evolution of the awk Language . 447
B Installing gawk . 465
C Implementation Notes . 483
D Basic Programming Concepts . 493

Glossary . 497
GNU General Public License . 509
GNU Free Documentation License . 521

ii GAWK: Effective AWK Programming

Index . 529

iii

Table of Contents

Foreword to the Third Edition . 1

Foreword to the Fourth Edition . 3

Preface . 5
History of awk and gawk . 6
A Rose by Any Other Name . 6
Using This Book . 7
Typographical Conventions . 9

Dark Corners . 10
The GNU Project and This Book . 10
How to Contribute . 11
Acknowledgments . 11

Part I: The awk Language

1 Getting Started with awk . 17
1.1 How to Run awk Programs . 17

1.1.1 One-Shot Throwaway awk Programs . 17
1.1.2 Running awk Without Input Files . 18
1.1.3 Running Long Programs . 18
1.1.4 Executable awk Programs . 19
1.1.5 Comments in awk Programs . 20
1.1.6 Shell Quoting Issues . 21

1.1.6.1 Quoting in MS-Windows Batch Files 23
1.2 Data files for the Examples . 23
1.3 Some Simple Examples . 24
1.4 An Example with Two Rules . 26
1.5 A More Complex Example . 27
1.6 awk Statements Versus Lines . 28
1.7 Other Features of awk . 29
1.8 When to Use awk . 30
1.9 Summary . 30

2 Running awk and gawk . 31
2.1 Invoking awk . 31
2.2 Command-Line Options . 31
2.3 Other Command-Line Arguments . 38
2.4 Naming Standard Input . 39
2.5 The Environment Variables gawk Uses . 39

2.5.1 The AWKPATH Environment Variable . 39

iv GAWK: Effective AWK Programming

2.5.2 The AWKLIBPATH Environment Variable 41
2.5.3 Other Environment Variables . 41

2.6 gawk’s Exit Status . 43
2.7 Including Other Files into Your Program . 43
2.8 Loading Dynamic Extensions into Your Program 44
2.9 Obsolete Options and/or Features . 45
2.10 Undocumented Options and Features . 45
2.11 Summary . 45

3 Regular Expressions . 47
3.1 How to Use Regular Expressions . 47
3.2 Escape Sequences . 48
3.3 Regular Expression Operators . 50

3.3.1 Regexp Operators in awk . 50
3.3.2 Some Notes On Interval Expressions . 52

3.4 Using Bracket Expressions . 53
3.5 How Much Text Matches? . 55
3.6 Using Dynamic Regexps . 55
3.7 gawk-Specific Regexp Operators . 56
3.8 Case Sensitivity in Matching . 58
3.9 Summary . 59

4 Reading Input Files . 61
4.1 How Input Is Split into Records . 61

4.1.1 Record Splitting with Standard awk . 61
4.1.2 Record Splitting with gawk . 63

4.2 Examining Fields . 65
4.3 Nonconstant Field Numbers . 66
4.4 Changing the Contents of a Field . 67
4.5 Specifying How Fields Are Separated . 69

4.5.1 Whitespace Normally Separates Fields . 70
4.5.2 Using Regular Expressions to Separate Fields 70
4.5.3 Making Each Character a Separate Field 71
4.5.4 Setting FS from the Command Line . 71
4.5.5 Making the Full Line Be a Single Field . 73
4.5.6 Field-Splitting Summary . 73

4.6 Reading Fixed-Width Data . 74
4.6.1 Processing Fixed-Width Data . 74
4.6.2 Skipping Intervening Fields . 76
4.6.3 Capturing Optional Trailing Data . 76
4.6.4 Field Values With Fixed-Width Data . 76

4.7 Defining Fields by Content . 77
4.7.1 More on CSV Files . 78

4.8 Checking How gawk Is Splitting Records . 79
4.9 Multiple-Line Records . 80
4.10 Explicit Input with getline . 82

4.10.1 Using getline with No Arguments . 83

v

4.10.2 Using getline into a Variable . 84
4.10.3 Using getline from a File . 84
4.10.4 Using getline into a Variable from a File 85
4.10.5 Using getline from a Pipe . 86
4.10.6 Using getline into a Variable from a Pipe 87
4.10.7 Using getline from a Coprocess . 87
4.10.8 Using getline into a Variable from a Coprocess 87
4.10.9 Points to Remember About getline . 87
4.10.10 Summary of getline Variants . 88

4.11 Reading Input with a Timeout . 89
4.12 Retrying Reads After Certain Input Errors 90
4.13 Directories on the Command Line . 91
4.14 Summary . 91
4.15 Exercises . 92

5 Printing Output . 93
5.1 The print Statement . 93
5.2 print Statement Examples . 93
5.3 Output Separators . 95
5.4 Controlling Numeric Output with print . 96
5.5 Using printf Statements for Fancier Printing 96

5.5.1 Introduction to the printf Statement . 96
5.5.2 Format-Control Letters . 97
5.5.3 Modifiers for printf Formats . 99
5.5.4 Examples Using printf . 101

5.6 Redirecting Output of print and printf . 102
5.7 Special Files for Standard Preopened Data Streams 104
5.8 Special File names in gawk . 105

5.8.1 Accessing Other Open Files with gawk 106
5.8.2 Special Files for Network Communications 106
5.8.3 Special File name Caveats . 106

5.9 Closing Input and Output Redirections . 106
5.10 Enabling Nonfatal Output . 109
5.11 Summary . 110
5.12 Exercises . 110

6 Expressions . 113
6.1 Constants, Variables, and Conversions . 113

6.1.1 Constant Expressions . 113
6.1.1.1 Numeric and String Constants . 113
6.1.1.2 Octal and Hexadecimal Numbers . 114
6.1.1.3 Regular Expression Constants . 115

6.1.2 Using Regular Expression Constants . 115
6.1.2.1 Standard Regular Expression Constants 116
6.1.2.2 Strongly Typed Regexp Constants 117

6.1.3 Variables . 118
6.1.3.1 Using Variables in a Program . 118

vi GAWK: Effective AWK Programming

6.1.3.2 Assigning Variables on the Command Line 118
6.1.4 Conversion of Strings and Numbers . 119

6.1.4.1 How awk Converts Between Strings and Numbers . . . 119
6.1.4.2 Locales Can Influence Conversion 120

6.2 Operators: Doing Something with Values . 122
6.2.1 Arithmetic Operators . 122
6.2.2 String Concatenation . 123
6.2.3 Assignment Expressions . 124
6.2.4 Increment and Decrement Operators . 127

6.3 Truth Values and Conditions . 128
6.3.1 True and False in awk . 128
6.3.2 Variable Typing and Comparison Expressions 128

6.3.2.1 String Type versus Numeric Type 129
6.3.2.2 Comparison Operators . 131
6.3.2.3 String Comparison Based on Locale Collating Order . . 133

6.3.3 Boolean Expressions . 133
6.3.4 Conditional Expressions . 135

6.4 Function Calls . 136
6.5 Operator Precedence (How Operators Nest) 137
6.6 Where You Are Makes a Difference . 138
6.7 Summary . 139

7 Patterns, Actions, and Variables 141
7.1 Pattern Elements . 141

7.1.1 Regular Expressions as Patterns . 141
7.1.2 Expressions as Patterns . 141
7.1.3 Specifying Record Ranges with Patterns 143
7.1.4 The BEGIN and END Special Patterns . 144

7.1.4.1 Startup and Cleanup Actions . 144
7.1.4.2 Input/Output from BEGIN and END Rules 145

7.1.5 The BEGINFILE and ENDFILE Special Patterns 145
7.1.6 The Empty Pattern . 146

7.2 Using Shell Variables in Programs . 146
7.3 Actions . 147
7.4 Control Statements in Actions . 148

7.4.1 The if-else Statement . 148
7.4.2 The while Statement . 149
7.4.3 The do-while Statement . 150
7.4.4 The for Statement . 150
7.4.5 The switch Statement . 151
7.4.6 The break Statement . 152
7.4.7 The continue Statement . 153
7.4.8 The next Statement . 154
7.4.9 The nextfile Statement . 155
7.4.10 The exit Statement . 156

7.5 Predefined Variables . 157
7.5.1 Built-in Variables That Control awk . 157
7.5.2 Built-in Variables That Convey Information 159

vii

7.5.3 Using ARGC and ARGV . 166
7.6 Summary . 168

8 Arrays in awk . 171
8.1 The Basics of Arrays . 171

8.1.1 Introduction to Arrays . 171
8.1.2 Referring to an Array Element . 173
8.1.3 Assigning Array Elements . 174
8.1.4 Basic Array Example . 174
8.1.5 Scanning All Elements of an Array . 175
8.1.6 Using Predefined Array Scanning Orders with gawk 176

8.2 Using Numbers to Subscript Arrays . 179
8.3 Using Uninitialized Variables as Subscripts . 180
8.4 The delete Statement . 180
8.5 Multidimensional Arrays . 182

8.5.1 Scanning Multidimensional Arrays . 183
8.6 Arrays of Arrays . 183
8.7 Summary . 185

9 Functions . 187
9.1 Built-in Functions . 187

9.1.1 Calling Built-in Functions . 187
9.1.2 Numeric Functions . 188
9.1.3 String-Manipulation Functions . 189

9.1.3.1 More about ‘\’ and ‘&’ with
sub(), gsub(), and gensub() . 198

9.1.4 Input/Output Functions . 201
9.1.5 Time Functions . 205
9.1.6 Bit-Manipulation Functions . 210
9.1.7 Getting Type Information . 213
9.1.8 String-Translation Functions . 214

9.2 User-Defined Functions . 214
9.2.1 Function Definition Syntax . 214
9.2.2 Function Definition Examples . 216
9.2.3 Calling User-Defined Functions . 218

9.2.3.1 Writing a Function Call . 218
9.2.3.2 Controlling Variable Scope . 218
9.2.3.3 Passing Function Arguments by Value Or by Reference . . 220
9.2.3.4 Other Points About Calling Functions 221

9.2.4 The return Statement . 222
9.2.5 Functions and Their Effects on Variable Typing 224

9.3 Indirect Function Calls . 224
9.4 Summary . 229

Part II: Problem Solving with awk

viii GAWK: Effective AWK Programming

10 A Library of awk Functions 233
10.1 Naming Library Function Global Variables 234
10.2 General Programming . 235

10.2.1 Converting Strings to Numbers . 235
10.2.2 Assertions . 236
10.2.3 Rounding Numbers . 238
10.2.4 The Cliff Random Number Generator 239
10.2.5 Translating Between Characters and Numbers 239
10.2.6 Merging an Array into a String . 241
10.2.7 Managing the Time of Day . 241
10.2.8 Reading a Whole File at Once . 243
10.2.9 Quoting Strings to Pass to the Shell . 244

10.3 Data file Management . 245
10.3.1 Noting Data file Boundaries . 245
10.3.2 Rereading the Current File . 246
10.3.3 Checking for Readable Data files . 248
10.3.4 Checking for Zero-Length Files . 248
10.3.5 Treating Assignments as File names . 249

10.4 Processing Command-Line Options . 250
10.5 Reading the User Database . 256
10.6 Reading the Group Database . 260
10.7 Traversing Arrays of Arrays . 264
10.8 Summary . 266
10.9 Exercises . 267

11 Practical awk Programs . 269
11.1 Running the Example Programs . 269
11.2 Reinventing Wheels for Fun and Profit . 269

11.2.1 Cutting Out Fields and Columns . 269
11.2.2 Searching for Regular Expressions in Files 274
11.2.3 Printing Out User Information . 278
11.2.4 Splitting a Large File into Pieces . 280
11.2.5 Duplicating Output into Multiple Files 281
11.2.6 Printing Nonduplicated Lines of Text 283
11.2.7 Counting Things . 287

11.3 A Grab Bag of awk Programs . 289
11.3.1 Finding Duplicated Words in a Document 289
11.3.2 An Alarm Clock Program . 290
11.3.3 Transliterating Characters . 292
11.3.4 Printing Mailing Labels . 295
11.3.5 Generating Word-Usage Counts . 296
11.3.6 Removing Duplicates from Unsorted Text 298
11.3.7 Extracting Programs from Texinfo Source Files 299
11.3.8 A Simple Stream Editor . 302
11.3.9 An Easy Way to Use Library Functions 304
11.3.10 Finding Anagrams from a Dictionary 310
11.3.11 And Now for Something Completely Different 312

11.4 Summary . 312

ix

11.5 Exercises . 313

Part III: Moving Beyond Standard awk with gawk

12 Advanced Features of gawk 317
12.1 Allowing Nondecimal Input Data . 317
12.2 Controlling Array Traversal and Array Sorting 318

12.2.1 Controlling Array Traversal . 318
12.2.2 Sorting Array Values and Indices with gawk 322

12.3 Two-Way Communications with Another Process 324
12.4 Using gawk for Network Programming . 327
12.5 Profiling Your awk Programs . 329
12.6 Summary . 333

13 Internationalization with gawk 335
13.1 Internationalization and Localization . 335
13.2 GNU gettext . 335
13.3 Internationalizing awk Programs . 337
13.4 Translating awk Programs . 339

13.4.1 Extracting Marked Strings . 339
13.4.2 Rearranging printf Arguments . 340
13.4.3 awk Portability Issues . 341

13.5 A Simple Internationalization Example . 342
13.6 gawk Can Speak Your Language . 343
13.7 Summary . 344

14 Debugging awk Programs . 345
14.1 Introduction to the gawk Debugger . 345

14.1.1 Debugging in General . 345
14.1.2 Debugging Concepts . 345
14.1.3 awk Debugging . 346

14.2 Sample gawk Debugging Session . 347
14.2.1 How to Start the Debugger . 347
14.2.2 Finding the Bug . 347

14.3 Main Debugger Commands . 350
14.3.1 Control of Breakpoints . 350
14.3.2 Control of Execution . 352
14.3.3 Viewing and Changing Data . 353
14.3.4 Working with the Stack . 354
14.3.5 Obtaining Information About the
Program and the Debugger State . 355

14.3.6 Miscellaneous Commands . 357
14.4 Readline Support . 358
14.5 Limitations . 359
14.6 Summary . 360

x GAWK: Effective AWK Programming

15 Namespaces in gawk . 361
15.1 Standard awk’s Single Namespace . 361
15.2 Qualified Names . 361
15.3 The Default Namespace . 361
15.4 Changing The Namespace . 362
15.5 Namespace and Component Naming Rules 362
15.6 Internal Name Management . 363
15.7 Namespace Example . 364
15.8 Namespaces and Other gawk Features . 365
15.9 Summary . 366

16 Arithmetic and Arbitrary-Precision
Arithmetic with gawk . 367
16.1 A General Description of Computer Arithmetic 367
16.2 Other Stuff to Know . 368
16.3 Arbitrary-Precision Arithmetic Features in gawk 370
16.4 Floating-Point Arithmetic: Caveat Emptor! 370

16.4.1 Floating-Point Arithmetic Is Not Exact 371
16.4.1.1 Many Numbers Cannot Be Represented Exactly 371
16.4.1.2 Be Careful Comparing Values . 371
16.4.1.3 Errors Accumulate . 372

16.4.2 Getting the Accuracy You Need . 373
16.4.3 Try a Few Extra Bits of Precision and Rounding 373
16.4.4 Setting the Precision . 374
16.4.5 Setting the Rounding Mode . 375

16.5 Arbitrary-Precision Integer Arithmetic with gawk 377
16.6 How To Check If MPFR Is Available . 378
16.7 Standards Versus Existing Practice . 378
16.8 Summary . 380

17 Writing Extensions for gawk 381
17.1 Introduction . 381
17.2 Extension Licensing . 381
17.3 How It Works at a High Level . 381
17.4 API Description . 383

17.4.1 Introduction . 383
17.4.2 General-Purpose Data Types . 385
17.4.3 Memory Allocation Functions and Convenience Macros . . 389
17.4.4 Constructor Functions . 390
17.4.5 Registration Functions . 392

17.4.5.1 Registering An Extension Function 392
17.4.5.2 Registering An Exit Callback Function 394
17.4.5.3 Registering An Extension Version String 394
17.4.5.4 Customized Input Parsers . 394
17.4.5.5 Customized Output Wrappers . 399
17.4.5.6 Customized Two-way Processors 401

17.4.6 Printing Messages . 401

xi

17.4.7 Updating ERRNO . 402
17.4.8 Requesting Values . 402
17.4.9 Accessing and Updating Parameters . 403
17.4.10 Symbol Table Access . 403

17.4.10.1 Variable Access and Update by Name 403
17.4.10.2 Variable Access and Update by Cookie 404
17.4.10.3 Creating and Using Cached Values 406

17.4.11 Array Manipulation . 408
17.4.11.1 Array Data Types . 408
17.4.11.2 Array Functions . 409
17.4.11.3 Working With All The Elements of an Array 411
17.4.11.4 How To Create and Populate Arrays 414

17.4.12 Accessing and Manipulating Redirections 416
17.4.13 API Variables . 417

17.4.13.1 API Version Constants and Variables 418
17.4.13.2 GMP and MPFR Version Information 418
17.4.13.3 Informational Variables . 419

17.4.14 Boilerplate Code . 419
17.4.15 Changes From Version 1 of the API 421

17.5 How gawk Finds Extensions . 422
17.6 Example: Some File Functions . 422

17.6.1 Using chdir() and stat() . 422
17.6.2 C Code for chdir() and stat() . 424
17.6.3 Integrating the Extensions . 430

17.7 The Sample Extensions in the gawk Distribution 432
17.7.1 File-Related Functions . 432
17.7.2 Interface to fnmatch() . 435
17.7.3 Interface to fork(), wait(), and waitpid() 435
17.7.4 Enabling In-Place File Editing . 436
17.7.5 Character and Numeric values: ord() and chr() 437
17.7.6 Reading Directories . 438
17.7.7 Reversing Output . 439
17.7.8 Two-Way I/O Example . 439
17.7.9 Dumping and Restoring an Array . 439
17.7.10 Reading an Entire File . 440
17.7.11 Extension Time Functions . 440
17.7.12 API Tests . 441

17.8 The gawkextlib Project . 441
17.9 Summary . 442
17.10 Exercises . 443

xii GAWK: Effective AWK Programming

Part IV: Appendices

Appendix A The Evolution of the awk Language . . 447
A.1 Major Changes Between V7 and SVR3.1 . 447
A.2 Changes Between SVR3.1 and SVR4 . 448
A.3 Changes Between SVR4 and POSIX awk . 448
A.4 Extensions in Brian Kernighan’s awk . 449
A.5 Extensions in gawk Not in POSIX awk . 449
A.6 History of gawk Features . 452
A.7 Common Extensions Summary . 459
A.8 Regexp Ranges and Locales: A Long Sad Story 459
A.9 Major Contributors to gawk . 460
A.10 Summary . 463

Appendix B Installing gawk . 465
B.1 The gawk Distribution . 465

B.1.1 Getting the gawk Distribution . 465
B.1.2 Extracting the Distribution . 465
B.1.3 Contents of the gawk Distribution . 466

B.2 Compiling and Installing gawk on Unix-Like Systems 469
B.2.1 Compiling gawk for Unix-Like Systems 469
B.2.2 Shell Startup Files . 470
B.2.3 Additional Configuration Options . 470
B.2.4 The Configuration Process . 471

B.3 Installation on Other Operating Systems . 471
B.3.1 Installation on MS-Windows . 472

B.3.1.1 Installing a Prepared
Distribution for MS-Windows Systems . 472

B.3.1.2 Compiling gawk for PC Operating Systems 472
B.3.1.3 Using gawk on PC Operating Systems 472
B.3.1.4 Using gawk In The Cygwin Environment 473
B.3.1.5 Using gawk In The MSYS Environment 474

B.3.2 Compiling and Installing gawk on Vax/VMS and OpenVMS . . 474
B.3.2.1 Compiling gawk on VMS . 474
B.3.2.2 Compiling gawk Dynamic Extensions on VMS 475
B.3.2.3 Installing gawk on VMS . 475
B.3.2.4 Running gawk on VMS . 476
B.3.2.5 The VMS GNV Project . 478
B.3.2.6 Some VMS Systems Have An Old Version of gawk . . 478

B.4 Reporting Problems and Bugs . 478
B.4.1 Submitting Bug Reports . 478
B.4.2 Please Don’t Post Bug Reports to USENET 479
B.4.3 Reporting Problems with Non-Unix Ports 479

B.5 Other Freely Available awk Implementations 480
B.6 Summary . 482

xiii

Appendix C Implementation Notes 483
C.1 Downward Compatibility and Debugging . 483
C.2 Making Additions to gawk . 483

C.2.1 Accessing The gawk Git Repository . 483
C.2.2 Adding New Features . 484
C.2.3 Porting gawk to a New Operating System 485
C.2.4 Why Generated Files Are Kept In Git 487

C.3 Probable Future Extensions . 489
C.4 Some Limitations of the Implementation . 489
C.5 Extension API Design . 489

C.5.1 Problems With The Old Mechanism . 490
C.5.2 Goals For A New Mechanism . 490
C.5.3 Other Design Decisions . 491
C.5.4 Room For Future Growth . 492

C.6 Summary . 492

Appendix D Basic Programming Concepts . . . 493
D.1 What a Program Does . 493
D.2 Data Values in a Computer . 494

Glossary . 497

GNU General Public License . 509

GNU Free Documentation License 521
ADDENDUM: How to use this License for your documents 527

Index . 529

Foreword to the Third Edition 1

Foreword to the Third Edition

Arnold Robbins and I are good friends. We were introduced in 1990 by circumstances—and
our favorite programming language, AWK. The circumstances started a couple of years
earlier. I was working at a new job and noticed an unplugged Unix computer sitting in the
corner. No one knew how to use it, and neither did I. However, a couple of days later, it
was running, and I was root and the one-and-only user. That day, I began the transition
from statistician to Unix programmer.

On one of many trips to the library or bookstore in search of books on Unix, I found
the gray AWK book, a.k.a. Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger’s
The AWK Programming Language (Addison-Wesley, 1988). awk’s simple programming
paradigm—find a pattern in the input and then perform an action—often reduced complex
or tedious data manipulations to a few lines of code. I was excited to try my hand at
programming in AWK.

Alas, the awk on my computer was a limited version of the language described in the
gray book. I discovered that my computer had “old awk” and the book described “new
awk.” I learned that this was typical; the old version refused to step aside or relinquish its
name. If a system had a new awk, it was invariably called nawk, and few systems had it.
The best way to get a new awk was to ftp the source code for gawk from prep.ai.mit.edu.
gawk was a version of new awk written by David Trueman and Arnold, and available under
the GNU General Public License.

(Incidentally, it’s no longer difficult to find a new awk. gawk ships with GNU/Linux, and
you can download binaries or source code for almost any system; my wife uses gawk on her
VMS box.)

My Unix system started out unplugged from the wall; it certainly was not plugged into
a network. So, oblivious to the existence of gawk and the Unix community in general, and
desiring a new awk, I wrote my own, called mawk. Before I was finished, I knew about gawk,
but it was too late to stop, so I eventually posted to a comp.sources newsgroup.

A few days after my posting, I got a friendly email from Arnold introducing himself. He
suggested we share design and algorithms and attached a draft of the POSIX standard so
that I could update mawk to support language extensions added after publication of The
AWK Programming Language.

Frankly, if our roles had been reversed, I would not have been so open and we probably
would have never met. I’m glad we did meet. He is an AWK expert’s AWK expert and a
genuinely nice person. Arnold contributes significant amounts of his expertise and time to
the Free Software Foundation.

This book is the gawk reference manual, but at its core it is a book about AWK program-
ming that will appeal to a wide audience. It is a definitive reference to the AWK language
as defined by the 1987 Bell Laboratories release and codified in the 1992 POSIX Utilities
standard.

On the other hand, the novice AWK programmer can study a wealth of practical pro-
grams that emphasize the power of AWK’s basic idioms: data-driven control flow, pattern
matching with regular expressions, and associative arrays. Those looking for something
new can try out gawk’s interface to network protocols via special /inet files.

2 GAWK: Effective AWK Programming

The programs in this book make clear that an AWK program is typically much smaller
and faster to develop than a counterpart written in C. Consequently, there is often a payoff
to prototyping an algorithm or design in AWK to get it running quickly and expose problems
early. Often, the interpreted performance is adequate and the AWK prototype becomes the
product.

The new pgawk (profiling gawk), produces program execution counts. I recently exper-
imented with an algorithm that for n lines of input, exhibited ∼Cn2 performance, while
theory predicted ∼ Cn log n behavior. A few minutes poring over the awkprof.out pro-
file pinpointed the problem to a single line of code. pgawk is a welcome addition to my
programmer’s toolbox.

Arnold has distilled over a decade of experience writing and using AWK programs, and
developing gawk, into this book. If you use AWK or want to learn how, then read this book.

Michael Brennan
Author of mawk
March 2001

Foreword to the Fourth Edition 3

Foreword to the Fourth Edition

Some things don’t change. Thirteen years ago I wrote: “If you use AWK or want to learn
how, then read this book.” True then, and still true today.

Learning to use a programming language is about more than mastering the syntax.
One needs to acquire an understanding of how to use the features of the language to solve
practical programming problems. A focus of this book is many examples that show how to
use AWK.

Some things do change. Our computers are much faster and have more memory. Con-
sequently, speed and storage inefficiencies of a high-level language matter less. Prototyping
in AWK and then rewriting in C for performance reasons happens less, because more often
the prototype is fast enough.

Of course, there are computing operations that are best done in C or C++. With gawk

4.1 and later, you do not have to choose between writing your program in AWK or in
C/C++. You can write most of your program in AWK and the aspects that require C/C++
capabilities can be written in C/C++, and then the pieces glued together when the gawk

module loads the C/C++ module as a dynamic plug-in. Chapter 17 [Writing Extensions for
gawk], page 381, has all the details, and, as expected, many examples to help you learn the
ins and outs.

I enjoy programming in AWK and had fun (re)reading this book. I think you will too.

Michael Brennan
Author of mawk
October 2014

Preface 5

Preface

Several kinds of tasks occur repeatedly when working with text files. You might want to
extract certain lines and discard the rest. Or you may need to make changes wherever
certain patterns appear, but leave the rest of the file alone. Such jobs are often easy with
awk. The awk utility interprets a special-purpose programming language that makes it easy
to handle simple data-reformatting jobs.

The GNU implementation of awk is called gawk; if you invoke it with the proper options
or environment variables, it is fully compatible with the POSIX1 specification of the awk

language and with the Unix version of awk maintained by Brian Kernighan. This means
that all properly written awk programs should work with gawk. So most of the time, we
don’t distinguish between gawk and other awk implementations.

Using awk you can:

• Manage small, personal databases

• Generate reports

• Validate data

• Produce indexes and perform other document-preparation tasks

• Experiment with algorithms that you can adapt later to other computer languages

In addition, gawk provides facilities that make it easy to:

• Extract bits and pieces of data for processing

• Sort data

• Perform simple network communications

• Profile and debug awk programs

• Extend the language with functions written in C or C++

This book teaches you about the awk language and how you can use it effectively. You
should already be familiar with basic system commands, such as cat and ls,2 as well as
basic shell facilities, such as input/output (I/O) redirection and pipes.

Implementations of the awk language are available for many different computing en-
vironments. This book, while describing the awk language in general, also describes the
particular implementation of awk called gawk (which stands for “GNU awk”). gawk runs
on a broad range of Unix systems, ranging from Intel-architecture PC-based computers up
through large-scale systems. gawk has also been ported to Mac OS X, Microsoft Windows
(all versions), and OpenVMS.3

1 The 2018 POSIX standard is accessible online at https://pubs.opengroup.org/onlinepubs/9699919799/.
2 These utilities are available on POSIX-compliant systems, as well as on traditional Unix-based systems.

If you are using some other operating system, you still need to be familiar with the ideas of I/O redirection
and pipes.

3 Some other, obsolete systems to which gawk was once ported are no longer supported and the code for
those systems has been removed.

https://pubs.opengroup.org/onlinepubs/9699919799/

6 GAWK: Effective AWK Programming

History of awk and gawk� �
Recipe for a Programming Language

1 part egrep 1 part snobol
2 parts ed 3 parts C

Blend all parts well using lex and yacc. Document minimally and release.

After eight years, add another part egrep and two more parts C. Document very well
and release.
 	

The name awk comes from the initials of its designers: Alfred V. Aho, Peter J. Wein-
berger, and Brian W. Kernighan. The original version of awk was written in 1977 at AT&T
Bell Laboratories. In 1985, a new version made the programming language more powerful,
introducing user-defined functions, multiple input streams, and computed regular expres-
sions. This new version became widely available with Unix System V Release 3.1 (1987).
The version in System V Release 4 (1989) added some new features and cleaned up the
behavior in some of the “dark corners” of the language. The specification for awk in the
POSIX Command Language and Utilities standard further clarified the language. Both the
gawk designers and the original awk designers at Bell Laboratories provided feedback for
the POSIX specification.

Paul Rubin wrote gawk in 1986. Jay Fenlason completed it, with advice from Richard
Stallman. John Woods contributed parts of the code as well. In 1988 and 1989, David
Trueman, with help from me, thoroughly reworked gawk for compatibility with the newer
awk. Circa 1994, I became the primary maintainer. Current development focuses on bug
fixes, performance improvements, standards compliance, and, occasionally, new features.

In May 1997, Jürgen Kahrs felt the need for network access from awk, and with a little
help from me, set about adding features to do this for gawk. At that time, he also wrote the
bulk of TCP/IP Internetworking with gawk (a separate document, available as part of the
gawk distribution). His code finally became part of the main gawk distribution with gawk

version 3.1.

John Haque rewrote the gawk internals, in the process providing an awk-level debugger.
This version became available as gawk version 4.0 in 2011.

See Section A.9 [Major Contributors to gawk], page 460, for a full list of those who have
made important contributions to gawk.

A Rose by Any Other Name

The awk language has evolved over the years. Full details are provided in Appendix A [The
Evolution of the awk Language], page 447. The language described in this book is often
referred to as “new awk.” By analogy, the original version of awk is referred to as “old awk.”

On most current systems, when you run the awk utility you get some version of new
awk.4 If your system’s standard awk is the old one, you will see something like this if you
try the following test program:

4 Only Solaris systems still use an old awk for the default awk utility. A more modern awk lives in
/usr/xpg6/bin on these systems.

Preface 7

$ awk 1 /dev/null

error awk: syntax error near line 1

error awk: bailing out near line 1

In this case, you should find a version of new awk, or just install gawk!

Throughout this book, whenever we refer to a language feature that should be available
in any complete implementation of POSIX awk, we simply use the term awk. When referring
to a feature that is specific to the GNU implementation, we use the term gawk.

Using This Book

The term awk refers to a particular program as well as to the language you use to tell this
program what to do. When we need to be careful, we call the language “the awk language,”
and the program “the awk utility.” This book explains both how to write programs in the
awk language and how to run the awk utility. The term “awk program” refers to a program
written by you in the awk programming language.

Primarily, this book explains the features of awk as defined in the POSIX standard. It
does so in the context of the gawk implementation. While doing so, it also attempts to
describe important differences between gawk and other awk implementations.5 Finally, it
notes any gawk features that are not in the POSIX standard for awk.

This book has the difficult task of being both a tutorial and a reference. If you are a
novice, feel free to skip over details that seem too complex. You should also ignore the
many cross-references; they are for the expert user and for the Info and HTML versions of
the book.

There are sidebars scattered throughout the book. They add a more complete explana-
tion of points that are relevant, but not likely to be of interest on first reading. All appear
in the index, under the heading “sidebar.”

Most of the time, the examples use complete awk programs. Some of the more advanced
sections show only the part of the awk program that illustrates the concept being described.

Although this book is aimed principally at people who have not been exposed to awk,
there is a lot of information here that even the awk expert should find useful. In particular,
the description of POSIX awk and the example programs in Chapter 10 [A Library of awk
Functions], page 233, and in Chapter 11 [Practical awk Programs], page 269, should be of
interest.

This book is split into several parts, as follows:

• Part I describes the awk language and the gawk program in detail. It starts with
the basics, and continues through all of the features of awk. It contains the following
chapters:

− Chapter 1 [Getting Started with awk], page 17, provides the essentials you need to
know to begin using awk.

− Chapter 2 [Running awk and gawk], page 31, describes how to run gawk, the
meaning of its command-line options, and how it finds awk program source files.

− Chapter 3 [Regular Expressions], page 47, introduces regular expressions in general,
and in particular the flavors supported by POSIX awk and gawk.

5 All such differences appear in the index under the entry “differences in awk and gawk.”

https://www.gnu.org/software/gawk/manual/

8 GAWK: Effective AWK Programming

− Chapter 4 [Reading Input Files], page 61, describes how awk reads your data. It
introduces the concepts of records and fields, as well as the getline command.
I/O redirection is first described here. Network I/O is also briefly introduced here.

− Chapter 5 [Printing Output], page 93, describes how awk programs can produce
output with print and printf.

− Chapter 6 [Expressions], page 113, describes expressions, which are the basic build-
ing blocks for getting most things done in a program.

− Chapter 7 [Patterns, Actions, and Variables], page 141, describes how to write pat-
terns for matching records, actions for doing something when a record is matched,
and the predefined variables awk and gawk use.

− Chapter 8 [Arrays in awk], page 171, covers awk’s one-and-only data structure: the
associative array. Deleting array elements and whole arrays is described, as well
as sorting arrays in gawk. The chapter also describes how gawk provides arrays of
arrays.

− Chapter 9 [Functions], page 187, describes the built-in functions awk and gawk

provide, as well as how to define your own functions. It also discusses how gawk

lets you call functions indirectly.

• Part II shows how to use awk and gawk for problem solving. There is lots of code here
for you to read and learn from. This part contains the following chapters:

− Chapter 10 [A Library of awk Functions], page 233, provides a number of functions
meant to be used from main awk programs.

− Chapter 11 [Practical awk Programs], page 269, provides many sample awk pro-
grams.

Reading these two chapters allows you to see awk solving real problems.

• Part III focuses on features specific to gawk. It contains the following chapters:

− Chapter 12 [Advanced Features of gawk], page 317, describes a number of advanced
features. Of particular note are the abilities to control the order of array traversal,
have two-way communications with another process, perform TCP/IP networking,
and profile your awk programs.

− Chapter 13 [Internationalization with gawk], page 335, describes special features
for translating program messages into different languages at runtime.

− Chapter 14 [Debugging awk Programs], page 345, describes the gawk debugger.

− Chapter 15 [Namespaces in gawk], page 361, describes how gawk allows variables
and/or functions of the same name to be in different namespaces.

− Chapter 16 [Arithmetic and Arbitrary-Precision Arithmetic with gawk], page 367,
describes advanced arithmetic facilities.

− Chapter 17 [Writing Extensions for gawk], page 381, describes how to add new
variables and functions to gawk by writing extensions in C or C++.

• Part IV provides the appendices, the Glossary, and two licenses that cover the gawk

source code and this book, respectively. It contains the following appendices:

− Appendix A [The Evolution of the awk Language], page 447, describes how the
awk language has evolved since its first release to the present. It also describes
how gawk has acquired features over time.

Preface 9

− Appendix B [Installing gawk], page 465, describes how to get gawk, how to compile
it on POSIX-compatible systems, and how to compile and use it on different non-
POSIX systems. It also describes how to report bugs in gawk and where to get
other freely available awk implementations.

− Appendix C [Implementation Notes], page 483, describes how to disable gawk’s
extensions, as well as how to contribute new code to gawk, and some possible
future directions for gawk development.

− Appendix D [Basic Programming Concepts], page 493, provides some very cur-
sory background material for those who are completely unfamiliar with computer
programming.

− The [Glossary], page 497, defines most, if not all, of the significant terms used
throughout the book. If you find terms that you aren’t familiar with, try looking
them up here.

− [GNU General Public License], page 509, and [GNU Free Documentation License],
page 521, present the licenses that cover the gawk source code and this book,
respectively.

Typographical Conventions

This book is written in Texinfo, the GNU documentation formatting language. A single
Texinfo source file is used to produce both the printed and online versions of the documen-
tation. Because of this, the typographical conventions are slightly different than in other
books you may have read.

Examples you would type at the command line are preceded by the common shell primary
and secondary prompts, ‘$’ and ‘>’, respectively. Input that you type is shown like this.
Output from the command is preceded by the glyph “ a ”. This typically represents the
command’s standard output. Error messages and other output on the command’s standard
error are preceded by the glyph “ error ”. For example:

$ echo hi on stdout

a hi on stdout

$ echo hello on stderr 1>&2

error hello on stderr

In the text, almost anything related to programming, such as command names, variable
and function names, and string, numeric and regexp constants appear in this font. Code
fragments appear in the same font and quoted, ‘like this’. Things that are replaced by the
user or programmer appear in this font. Options look like this: -f. File names are indicated
like this: /path/to/ourfile. Some things are emphasized like this, and if a point needs
to be made strongly, it is done like this. The first occurrence of a new term is usually its
definition and appears in the same font as the previous occurrence of “definition” in this
sentence.

Characters that you type at the keyboard look like this. In particular, there are special
characters called “control characters.” These are characters that you type by holding down
both the CONTROL key and another key, at the same time. For example, a Ctrl-d is typed
by first pressing and holding the CONTROL key, next pressing the d key, and finally releasing
both keys.

https://www.gnu.org/software/texinfo/

10 GAWK: Effective AWK Programming

For the sake of brevity, throughout this book, we refer to Brian Kernighan’s version
of awk as “BWK awk.” (See Section B.5 [Other Freely Available awk Implementations],
page 480, for information on his and other versions.)

Dark Corners

Dark corners are basically fractal—no matter how much you illuminate, there’s
always a smaller but darker one.

—Brian Kernighan

Until the POSIX standard (andGAWK: Effective AWK Programming), many features of
awk were either poorly documented or not documented at all. Descriptions of such features
(often called “dark corners”) are noted in this book with the picture of a flashlight in the
margin, as shown here. They also appear in the index under the heading “dark corner.”

But, as noted by the opening quote, any coverage of dark corners is by definition incom-
plete.

Extensions to the standard awk language that are supported by more than one awk

implementation are marked “(c.e.),” and listed in the index under “common extensions”
and “extensions, common.”

The GNU Project and This Book

The Free Software Foundation (FSF) is a nonprofit organization dedicated to the production
and distribution of freely distributable software. It was founded by Richard M. Stallman,
the author of the original Emacs editor. GNU Emacs is the most widely used version of
Emacs today.

The GNU6 Project is an ongoing effort on the part of the Free Software Foundation
to create a complete, freely distributable, POSIX-compliant computing environment. The
FSF uses the GNU General Public License (GPL) to ensure that its software’s source code
is always available to the end user. A copy of the GPL is included in this book for your
reference (see [GNU General Public License], page 509). The GPL applies to the C language
source code for gawk. To find out more about the FSF and the GNU Project online, see
the GNU Project’s home page. This book may also be read from GNU’s website.

A shell, an editor (Emacs), highly portable optimizing C, C++, and Objective-C com-
pilers, a symbolic debugger and dozens of large and small utilities (such as gawk), have all
been completed and are freely available. The GNU operating system kernel (the HURD),
has been released but remains in an early stage of development.

Until the GNU operating system is more fully developed, you should consider using
GNU/Linux, a freely distributable, Unix-like operating system for Intel, Power Architecture,
Sun SPARC, IBM S/390, and other systems.7 Many GNU/Linux distributions are available
for download from the Internet.

The book you are reading is actually free—at least, the information in it is free to anyone.
The machine-readable source code for the book comes with gawk. (Take a moment to check
the Free Documentation License in [GNU Free Documentation License], page 521.)

6 GNU stands for “GNU’s Not Unix.”
7 The terminology “GNU/Linux” is explained in the [Glossary], page 497.

https://www.gnu.org
https://www.gnu.org/software/gawk/manual/

Preface 11

The book itself has gone through multiple previous editions. Paul Rubin wrote the very
first draft of The GAWK Manual; it was around 40 pages long. Diane Close and Richard
Stallman improved it, yielding a version that was around 90 pages and barely described the
original, “old” version of awk.

I started working with that version in the fall of 1988. As work on it progressed, the FSF
published several preliminary versions (numbered 0.x). In 1996, edition 1.0 was released
with gawk 3.0.0. The FSF published the first two editions under the title The GNU Awk
User’s Guide.

This edition maintains the basic structure of the previous editions. For FSF edition 4.0,
the content was thoroughly reviewed and updated. All references to gawk versions prior
to 4.0 were removed. Of significant note for that edition was the addition of Chapter 14
[Debugging awk Programs], page 345.

For FSF edition 5.0, the content has been reorganized into parts, and the major new addi-
tions are Chapter 16 [Arithmetic and Arbitrary-Precision Arithmetic with gawk], page 367,
and Chapter 17 [Writing Extensions for gawk], page 381.

This book will undoubtedly continue to evolve. If you find an error in the book, please
report it! See Section B.4 [Reporting Problems and Bugs], page 478, for information on
submitting problem reports electronically.

How to Contribute

As the maintainer of GNU awk, I once thought that I would be able to manage a collection of
publicly available awk programs and I even solicited contributions. Making things available
on the Internet helps keep the gawk distribution down to manageable size.

The initial collection of material, such as it is, is still available at ftp://ftp.

freefriends.org/arnold/Awkstuff.

In the hopes of doing something more broad, I acquired the awklang.org domain. Late
in 2017, a volunteer took on the task of managing it.

If you have written an interesting awk program, that you would like to share with the
rest of the world, please see http://www.awklang.org and use the “Contact” link.

If you have written a gawk extension, please see Section 17.8 [The gawkextlib Project],
page 441.

Acknowledgments

The initial draft of The GAWK Manual had the following acknowledgments:

Many people need to be thanked for their assistance in producing this manual.
Jay Fenlason contributed many ideas and sample programs. Richard Mlynarik
and Robert Chassell gave helpful comments on drafts of this manual. The
paper A Supplemental Document for AWK by John W. Pierce of the Chemistry
Department at UC San Diego, pinpointed several issues relevant both to awk

implementation and to this manual, that would otherwise have escaped us.

I would like to acknowledge Richard M. Stallman, for his vision of a better world and
for his courage in founding the FSF and starting the GNU Project.

Earlier editions of this book had the following acknowledgements:

ftp://ftp.freefriends.org/arnold/Awkstuff
ftp://ftp.freefriends.org/arnold/Awkstuff
http://www.awklang.org

12 GAWK: Effective AWK Programming

The following people (in alphabetical order) provided helpful comments on var-
ious versions of this book: Rick Adams, Dr. Nelson H.F. Beebe, Karl Berry,
Dr. Michael Brennan, Rich Burridge, Claire Cloutier, Diane Close, Scott De-
ifik, Christopher (“Topher”) Eliot, Jeffrey Friedl, Dr. Darrel Hankerson, Michal
Jaegermann, Dr. Richard J. LeBlanc, Michael Lijewski, Pat Rankin, Miriam
Robbins, Mary Sheehan, and Chuck Toporek.

Robert J. Chassell provided much valuable advice on the use of Texinfo. He
also deserves special thanks for convincing me not to title this book How to
Gawk Politely. Karl Berry helped significantly with the TEX part of Texinfo.

I would like to thank Marshall and Elaine Hartholz of Seattle and Dr. Bert
and Rita Schreiber of Detroit for large amounts of quiet vacation time in their
homes, which allowed me to make significant progress on this book and on gawk

itself.

Phil Hughes of SSC contributed in a very important way by loaning me his
laptop GNU/Linux system, not once, but twice, which allowed me to do a lot
of work while away from home.

David Trueman deserves special credit; he has done a yeoman job of evolving
gawk so that it performs well and without bugs. Although he is no longer
involved with gawk, working with him on this project was a significant pleasure.

The intrepid members of the GNITS mailing list, and most notably Ulrich
Drepper, provided invaluable help and feedback for the design of the interna-
tionalization features.

Chuck Toporek, Mary Sheehan, and Claire Cloutier of O’Reilly & Associates
contributed significant editorial help for this book for the 3.1 release of gawk.

Dr. Nelson Beebe, Andreas Buening, Dr. Manuel Collado, Antonio Colombo, Stephen
Davies, Scott Deifik, Akim Demaille, Daniel Richard G., Juan Manuel Guerrero, Darrel
Hankerson, Michal Jaegermann, Jürgen Kahrs, Stepan Kasal, John Malmberg, Chet Ramey,
Pat Rankin, Andrew Schorr, Corinna Vinschen, and Eli Zaretskii (in alphabetical order)
make up the current gawk “crack portability team.” Without their hard work and help,
gawk would not be nearly the robust, portable program it is today. It has been and continues
to be a pleasure working with this team of fine people.

Notable code and documentation contributions were made by a number of people. See
Section A.9 [Major Contributors to gawk], page 460, for the full list.

Thanks to Michael Brennan for the Forewords.

Thanks to Patrice Dumas for the new makeinfo program. Thanks to Karl Berry for his
past work on Texinfo, and to Gavin Smith, who continues to work to improve the Texinfo
markup language.

Robert P.J. Day, Michael Brennan, and Brian Kernighan kindly acted as reviewers for
the 2015 edition of this book. Their feedback helped improve the final work.

I would also like to thank Brian Kernighan for his invaluable assistance during the testing
and debugging of gawk, and for his ongoing help and advice in clarifying numerous points
about the language. We could not have done nearly as good a job on either gawk or its
documentation without his help.

Preface 13

Brian is in a class by himself as a programmer and technical author. I have to thank him
(yet again) for his ongoing friendship and for being a role model to me for over 30 years!
Having him as a reviewer is an exciting privilege. It has also been extremely humbling. . .

I must thank my wonderful wife, Miriam, for her patience through the many versions of
this project, for her proofreading, and for sharing me with the computer. I would like to
thank my parents for their love, and for the grace with which they raised and educated me.
Finally, I also must acknowledge my gratitude to G-d, for the many opportunities He has
sent my way, as well as for the gifts He has given me with which to take advantage of those
opportunities.

Arnold Robbins
Nof Ayalon
Israel
March, 2020

Part I:

The awk Language

Chapter 1: Getting Started with awk 17

1 Getting Started with awk

The basic function of awk is to search files for lines (or other units of text) that contain
certain patterns. When a line matches one of the patterns, awk performs specified actions
on that line. awk continues to process input lines in this way until it reaches the end of the
input files.

Programs in awk are different from programs in most other languages, because awk

programs are data driven (i.e., you describe the data you want to work with and then what
to do when you find it). Most other languages are procedural; you have to describe, in great
detail, every step the program should take. When working with procedural languages, it is
usually much harder to clearly describe the data your program will process. For this reason,
awk programs are often refreshingly easy to read and write.

When you run awk, you specify an awk program that tells awk what to do. The program
consists of a series of rules (it may also contain function definitions, an advanced feature
that we will ignore for now; see Section 9.2 [User-Defined Functions], page 214). Each rule
specifies one pattern to search for and one action to perform upon finding the pattern.

Syntactically, a rule consists of a pattern followed by an action. The action is enclosed
in braces to separate it from the pattern. Newlines usually separate rules. Therefore, an
awk program looks like this:

pattern { action }

pattern { action }

...

1.1 How to Run awk Programs

There are several ways to run an awk program. If the program is short, it is easiest to
include it in the command that runs awk, like this:

awk 'program' input-file1 input-file2 ...

When the program is long, it is usually more convenient to put it in a file and run it
with a command like this:

awk -f program-file input-file1 input-file2 ...

This section discusses both mechanisms, along with several variations of each.

1.1.1 One-Shot Throwaway awk Programs

Once you are familiar with awk, you will often type in simple programs the moment you want
to use them. Then you can write the program as the first argument of the awk command,
like this:

awk 'program' input-file1 input-file2 ...

where program consists of a series of patterns and actions, as described earlier.

This command format instructs the shell, or command interpreter, to start awk and use
the program to process records in the input file(s). There are single quotes around program
so the shell won’t interpret any awk characters as special shell characters. The quotes also
cause the shell to treat all of program as a single argument for awk, and allow program to
be more than one line long.

18 GAWK: Effective AWK Programming

This format is also useful for running short or medium-sized awk programs from shell
scripts, because it avoids the need for a separate file for the awk program. A self-contained
shell script is more reliable because there are no other files to misplace.

Later in this chapter, in Section 1.3 [Some Simple Examples], page 24, we’ll see examples
of several short, self-contained programs.

1.1.2 Running awk Without Input Files

You can also run awk without any input files. If you type the following command line:

awk 'program'

awk applies the program to the standard input, which usually means whatever you type
on the keyboard. This continues until you indicate end-of-file by typing Ctrl-d. (On
non-POSIX operating systems, the end-of-file character may be different.)

As an example, the following program prints a friendly piece of advice (from Douglas
Adams’s The Hitchhiker’s Guide to the Galaxy), to keep you from worrying about the
complexities of computer programming:

$ awk 'BEGIN { print "Don\47t Panic!" }'

a Don't Panic!

awk executes statements associated with BEGIN before reading any input. If there are
no other statements in your program, as is the case here, awk just stops, instead of trying
to read input it doesn’t know how to process. The ‘\47’ is a magic way (explained later)
of getting a single quote into the program, without having to engage in ugly shell quoting
tricks.

NOTE: If you use Bash as your shell, you should execute the command ‘set +H’
before running this program interactively, to disable the C shell-style command
history, which treats ‘!’ as a special character. We recommend putting this
command into your personal startup file.

This next simple awk program emulates the cat utility; it copies whatever you type on
the keyboard to its standard output (why this works is explained shortly):

$ awk '{ print }'

Now is the time for all good men

a Now is the time for all good men

to come to the aid of their country.

a to come to the aid of their country.

Four score and seven years ago, ...

a Four score and seven years ago, ...

What, me worry?

a What, me worry?

Ctrl-d

1.1.3 Running Long Programs

Sometimes awk programs are very long. In these cases, it is more convenient to put the
program into a separate file. In order to tell awk to use that file for its program, you type:

awk -f source-file input-file1 input-file2 ...

Chapter 1: Getting Started with awk 19

The -f instructs the awk utility to get the awk program from the file source-file (see
Section 2.2 [Command-Line Options], page 31). Any file name can be used for source-file.
For example, you could put the program:

BEGIN { print "Don't Panic!" }

into the file advice. Then this command:

awk -f advice

does the same thing as this one:

awk 'BEGIN { print "Don\47t Panic!" }'

This was explained earlier (see Section 1.1.2 [Running awk Without Input Files], page 18).
Note that you don’t usually need single quotes around the file name that you specify with
-f, because most file names don’t contain any of the shell’s special characters. Notice that in
advice, the awk program did not have single quotes around it. The quotes are only needed
for programs that are provided on the awk command line. (Also, placing the program in a
file allows us to use a literal single quote in the program text, instead of the magic ‘\47’.)

If you want to clearly identify an awk program file as such, you can add the extension
.awk to the file name. This doesn’t affect the execution of the awk program but it does
make “housekeeping” easier.

1.1.4 Executable awk Programs

Once you have learned awk, you may want to write self-contained awk scripts, using the ‘#!’
script mechanism. You can do this on many systems.1 For example, you could update the
file advice to look like this:

#! /bin/awk -f

BEGIN { print "Don't Panic!" }

After making this file executable (with the chmod utility), simply type ‘advice’ at the shell
and the system arranges to run awk as if you had typed ‘awk -f advice’:

$ chmod +x advice

$./advice

a Don't Panic!

Self-contained awk scripts are useful when you want to write a program that users can
invoke without their having to know that the program is written in awk.

1 The ‘#!’ mechanism works on GNU/Linux systems, BSD-based systems, and commercial Unix systems.

20 GAWK: Effective AWK Programming

� �
Understanding ‘#!’

awk is an interpreted language. This means that the awk utility reads your program and
then processes your data according to the instructions in your program. (This is different
from a compiled language such as C, where your program is first compiled into machine
code that is executed directly by your system’s processor.) The awk utility is thus termed
an interpreter. Many modern languages are interpreted.

The line beginning with ‘#!’ lists the full file name of an interpreter to run and a single
optional initial command-line argument to pass to that interpreter. The operating system
then runs the interpreter with the given argument and the full argument list of the executed
program. The first argument in the list is the full file name of the awk program. The rest
of the argument list contains either options to awk, or data files, or both. (Note that on
many systems awk is found in /usr/bin instead of in /bin.)

Some systems limit the length of the interpreter name to 32 characters. Often, this can
be dealt with by using a symbolic link.

You should not put more than one argument on the ‘#!’ line after the path to awk. It
does not work. The operating system treats the rest of the line as a single argument and
passes it to awk. Doing this leads to confusing behavior—most likely a usage diagnostic of
some sort from awk.

Finally, the value of ARGV[0] (see Section 7.5 [Predefined Variables], page 157) varies
depending upon your operating system. Some systems put ‘awk’ there, some put the full
pathname of awk (such as /bin/awk), and some put the name of your script (‘advice’).
Don’t rely on the value of ARGV[0] to provide your script name.
 	
1.1.5 Comments in awk Programs

A comment is some text that is included in a program for the sake of human readers; it
is not really an executable part of the program. Comments can explain what the program
does and how it works. Nearly all programming languages have provisions for comments,
as programs are typically hard to understand without them.

In the awk language, a comment starts with the number sign character (‘#’) and continues
to the end of the line. The ‘#’ does not have to be the first character on the line. The awk
language ignores the rest of a line following a number sign. For example, we could have put
the following into advice:

This program prints a nice, friendly message. It helps

keep novice users from being afraid of the computer.

BEGIN { print "Don't Panic!" }

You can put comment lines into keyboard-composed throwaway awk programs, but this
usually isn’t very useful; the purpose of a comment is to help you or another person under-
stand the program when reading it at a later time.

CAUTION: As mentioned in Section 1.1.1 [One-Shot Throwaway awk Pro-
grams], page 17, you can enclose short to medium-sized programs in single
quotes, in order to keep your shell scripts self-contained. When doing so, don’t
put an apostrophe (i.e., a single quote) into a comment (or anywhere else in
your program). The shell interprets the quote as the closing quote for the en-
tire program. As a result, usually the shell prints a message about mismatched

Chapter 1: Getting Started with awk 21

quotes, and if awk actually runs, it will probably print strange messages about
syntax errors. For example, look at the following:

$ awk 'BEGIN { print "hello" } # let's be cute'

>

The shell sees that the first two quotes match, and that a new quoted object
begins at the end of the command line. It therefore prompts with the secondary
prompt, waiting for more input. With Unix awk, closing the quoted string
produces this result:

$ awk '{ print "hello" } # let's be cute'

> '

error awk: can't open file be

error source line number 1

Putting a backslash before the single quote in ‘let's’ wouldn’t help, because
backslashes are not special inside single quotes. The next subsection describes
the shell’s quoting rules.

1.1.6 Shell Quoting Issues

For short to medium-length awk programs, it is most convenient to enter the program on
the awk command line. This is best done by enclosing the entire program in single quotes.
This is true whether you are entering the program interactively at the shell prompt, or
writing it as part of a larger shell script:

awk 'program text' input-file1 input-file2 ...

Once you are working with the shell, it is helpful to have a basic knowledge of shell
quoting rules. The following rules apply only to POSIX-compliant, Bourne-style shells
(such as Bash, the GNU Bourne-Again Shell). If you use the C shell, you’re on your own.

Before diving into the rules, we introduce a concept that appears throughout this book,
which is that of the null, or empty, string.

The null string is character data that has no value. In other words, it is empty. It
is written in awk programs like this: "". In the shell, it can be written using single or
double quotes: "" or ''. Although the null string has no characters in it, it does exist. For
example, consider this command:

$ echo ""

Here, the echo utility receives a single argument, even though that argument has no char-
acters in it. In the rest of this book, we use the terms null string and empty string inter-
changeably. Now, on to the quoting rules:

• Quoted items can be concatenated with nonquoted items as well as with other quoted
items. The shell turns everything into one argument for the command.

• Preceding any single character with a backslash (‘\’) quotes that character. The shell
removes the backslash and passes the quoted character on to the command.

• Single quotes protect everything between the opening and closing quotes. The shell
does no interpretation of the quoted text, passing it on verbatim to the command. It is
impossible to embed a single quote inside single-quoted text. Refer back to Section 1.1.5
[Comments in awk Programs], page 20, for an example of what happens if you try.

22 GAWK: Effective AWK Programming

• Double quotes protect most things between the opening and closing quotes. The shell
does at least variable and command substitution on the quoted text. Different shells
may do additional kinds of processing on double-quoted text.

Because certain characters within double-quoted text are processed by the shell, they
must be escaped within the text. Of note are the characters ‘$’, ‘`’, ‘\’, and ‘"’, all
of which must be preceded by a backslash within double-quoted text if they are to be
passed on literally to the program. (The leading backslash is stripped first.) Thus, the
example seen previously in Section 1.1.2 [Running awk Without Input Files], page 18:

awk 'BEGIN { print "Don\47t Panic!" }'

could instead be written this way:

$ awk "BEGIN { print \"Don't Panic!\" }"

a Don't Panic!

Note that the single quote is not special within double quotes.

• Null strings are removed when they occur as part of a non-null command-line argument,
while explicit null objects are kept. For example, to specify that the field separator FS
should be set to the null string, use:

awk -F "" 'program' files # correct

Don’t use this:

awk -F"" 'program' files # wrong!

In the second case, awk attempts to use the text of the program as the value of FS, and
the first file name as the text of the program! This results in syntax errors at best, and
confusing behavior at worst.

Mixing single and double quotes is difficult. You have to resort to shell quoting tricks,
like this:

$ awk 'BEGIN { print "Here is a single quote <'"'"'>" }'

a Here is a single quote <'>

This program consists of three concatenated quoted strings. The first and the third are
single-quoted, and the second is double-quoted.

This can be “simplified” to:

$ awk 'BEGIN { print "Here is a single quote <'\''>" }'

a Here is a single quote <'>

Judge for yourself which of these two is the more readable.

Another option is to use double quotes, escaping the embedded, awk-level double quotes:

$ awk "BEGIN { print \"Here is a single quote <'>\" }"

a Here is a single quote <'>

This option is also painful, because double quotes, backslashes, and dollar signs are very
common in more advanced awk programs.

A third option is to use the octal escape sequence equivalents (see Section 3.2 [Escape
Sequences], page 48) for the single- and double-quote characters, like so:

$ awk 'BEGIN { print "Here is a single quote <\47>" }'

a Here is a single quote <'>

$ awk 'BEGIN { print "Here is a double quote <\42>" }'

a Here is a double quote <">

Chapter 1: Getting Started with awk 23

This works nicely, but you should comment clearly what the escape sequences mean.

A fourth option is to use command-line variable assignment, like this:

$ awk -v sq="'" 'BEGIN { print "Here is a single quote <" sq ">" }'

a Here is a single quote <'>

(Here, the two string constants and the value of sq are concatenated into a single string
that is printed by print.)

If you really need both single and double quotes in your awk program, it is probably best
to move it into a separate file, where the shell won’t be part of the picture and you can say
what you mean.

1.1.6.1 Quoting in MS-Windows Batch Files

Although this book generally only worries about POSIX systems and the POSIX shell, the
following issue arises often enough for many users that it is worth addressing.

The “shells” on Microsoft Windows systems use the double-quote character for quot-
ing, and make it difficult or impossible to include an escaped double-quote character in
a command-line script. The following example, courtesy of Jeroen Brink, shows how to
escape the double quotes from this one liner script that prints all lines in a file surrounded
by double quotes:

{ print "\"" $0 "\"" }

In an MS-Windows command-line the one-liner script above may be passed as follows:

gawk "{ print \"\042\" $0 \"\042\" }" file

In this example the ‘\042’ is the octal code for a double-quote; gawk converts it into a
real double-quote for output by the print statement.

In MS-Windows escaping double-quotes is a little tricky because you use backslashes to
escape double-quotes, but backslashes themselves are not escaped in the usual way; indeed
they are either duplicated or not, depending upon whether there is a subsequent double-
quote. The MS-Windows rule for double-quoting a string is the following:

1. For each double quote in the original string, let N be the number of backslash(es)
before it, N might be zero. Replace these N backslash(es) by 2×N + 1 backslash(es)

2. Let N be the number of backslash(es) tailing the original string, N might be zero.
Replace these N backslash(es) by 2×N backslash(es)

3. Surround the resulting string by double-quotes.

So to double-quote the one-liner script ‘{ print "\"" $0 "\"" }’ from the previous ex-
ample you would do it this way:

gawk "{ print \"\\\"\" $0 \"\\\"\" }" file

However, the use of ‘\042’ instead of ‘\\\"’ is also possible and easier to read, because
backslashes that are not followed by a double-quote don’t need duplication.

1.2 Data files for the Examples

Many of the examples in this book take their input from two sample data files. The first,
mail-list, represents a list of peoples’ names together with their email addresses and
information about those people. The second data file, called inventory-shipped, contains
information about monthly shipments. In both files, each line is considered to be one record.

24 GAWK: Effective AWK Programming

In mail-list, each record contains the name of a person, his/her phone number, his/her
email address, and a code for his/her relationship with the author of the list. The columns
are aligned using spaces. An ‘A’ in the last column means that the person is an acquaintance.
An ‘F’ in the last column means that the person is a friend. An ‘R’ means that the person
is a relative:

Amelia 555-5553 amelia.zodiacusque@gmail.com F

Anthony 555-3412 anthony.asserturo@hotmail.com A

Becky 555-7685 becky.algebrarum@gmail.com A

Bill 555-1675 bill.drowning@hotmail.com A

Broderick 555-0542 broderick.aliquotiens@yahoo.com R

Camilla 555-2912 camilla.infusarum@skynet.be R

Fabius 555-1234 fabius.undevicesimus@ucb.edu F

Julie 555-6699 julie.perscrutabor@skeeve.com F

Martin 555-6480 martin.codicibus@hotmail.com A

Samuel 555-3430 samuel.lanceolis@shu.edu A

Jean-Paul 555-2127 jeanpaul.campanorum@nyu.edu R

The data file inventory-shipped represents information about shipments during the
year. Each record contains the month, the number of green crates shipped, the number of
red boxes shipped, the number of orange bags shipped, and the number of blue packages
shipped, respectively. There are 16 entries, covering the 12 months of last year and the first
four months of the current year. An empty line separates the data for the two years:

Jan 13 25 15 115

Feb 15 32 24 226

Mar 15 24 34 228

Apr 31 52 63 420

May 16 34 29 208

Jun 31 42 75 492

Jul 24 34 67 436

Aug 15 34 47 316

Sep 13 55 37 277

Oct 29 54 68 525

Nov 20 87 82 577

Dec 17 35 61 401

Jan 21 36 64 620

Feb 26 58 80 652

Mar 24 75 70 495

Apr 21 70 74 514

The sample files are included in the gawk distribution, in the directory awklib/eg/data.

1.3 Some Simple Examples

The following command runs a simple awk program that searches the input file mail-list
for the character string ‘li’ (a grouping of characters is usually called a string ; the term
string is based on similar usage in English, such as “a string of pearls” or “a string of cars
in a train”):

Chapter 1: Getting Started with awk 25

awk '/li/ { print $0 }' mail-list

When lines containing ‘li’ are found, they are printed because ‘print $0’ means print the
current line. (Just ‘print’ by itself means the same thing, so we could have written that
instead.)

You will notice that slashes (‘/’) surround the string ‘li’ in the awk program. The slashes
indicate that ‘li’ is the pattern to search for. This type of pattern is called a regular
expression, which is covered in more detail later (see Chapter 3 [Regular Expressions],
page 47). The pattern is allowed to match parts of words. There are single quotes around
the awk program so that the shell won’t interpret any of it as special shell characters.

Here is what this program prints:

$ awk '/li/ { print $0 }' mail-list

a Amelia 555-5553 amelia.zodiacusque@gmail.com F

a Broderick 555-0542 broderick.aliquotiens@yahoo.com R

a Julie 555-6699 julie.perscrutabor@skeeve.com F

a Samuel 555-3430 samuel.lanceolis@shu.edu A

In an awk rule, either the pattern or the action can be omitted, but not both. If the
pattern is omitted, then the action is performed for every input line. If the action is omitted,
the default action is to print all lines that match the pattern.

Thus, we could leave out the action (the print statement and the braces) in the previous
example and the result would be the same: awk prints all lines matching the pattern ‘li’.
By comparison, omitting the print statement but retaining the braces makes an empty
action that does nothing (i.e., no lines are printed).

Many practical awk programs are just a line or two long. Following is a collection of
useful, short programs to get you started. Some of these programs contain constructs that
haven’t been covered yet. (The description of the program will give you a good idea of what
is going on, but you’ll need to read the rest of the book to become an awk expert!) Most
of the examples use a data file named data. This is just a placeholder; if you use these
programs yourself, substitute your own file names for data. For future reference, note that
there is often more than one way to do things in awk. At some point, you may want to
look back at these examples and see if you can come up with different ways to do the same
things shown here:

• Print every line that is longer than 80 characters:

awk 'length($0) > 80' data

The sole rule has a relational expression as its pattern and has no action—so it uses
the default action, printing the record.

• Print the length of the longest input line:

awk '{ if (length($0) > max) max = length($0) }

END { print max }' data

The code associated with END executes after all input has been read; it’s the other side
of the coin to BEGIN.

• Print the length of the longest line in data:

expand data | awk '{ if (x < length($0)) x = length($0) }

END { print "maximum line length is " x }'

26 GAWK: Effective AWK Programming

This example differs slightly from the previous one: the input is processed by the
expand utility to change TABs into spaces, so the widths compared are actually the
right-margin columns, as opposed to the number of input characters on each line.

• Print every line that has at least one field:

awk 'NF > 0' data

This is an easy way to delete blank lines from a file (or rather, to create a new file
similar to the old file but from which the blank lines have been removed).

• Print seven random numbers from 0 to 100, inclusive:

awk 'BEGIN { for (i = 1; i <= 7; i++)

print int(101 * rand()) }'

• Print the total number of bytes used by files:

ls -l files | awk '{ x += $5 }

END { print "total bytes: " x }'

• Print the total number of kilobytes used by files:

ls -l files | awk '{ x += $5 }

END { print "total K-bytes:", x / 1024 }'

• Print a sorted list of the login names of all users:

awk -F: '{ print $1 }' /etc/passwd | sort

• Count the lines in a file:

awk 'END { print NR }' data

• Print the even-numbered lines in the data file:

awk 'NR % 2 == 0' data

If you used the expression ‘NR % 2 == 1’ instead, the program would print the odd-
numbered lines.

1.4 An Example with Two Rules

The awk utility reads the input files one line at a time. For each line, awk tries the patterns
of each rule. If several patterns match, then several actions execute in the order in which
they appear in the awk program. If no patterns match, then no actions run.

After processing all the rules that match the line (and perhaps there are none), awk
reads the next line. (However, see Section 7.4.8 [The next Statement], page 154, and also
see Section 7.4.9 [The nextfile Statement], page 155.) This continues until the program
reaches the end of the file. For example, the following awk program contains two rules:

/12/ { print $0 }

/21/ { print $0 }

The first rule has the string ‘12’ as the pattern and ‘print $0’ as the action. The second
rule has the string ‘21’ as the pattern and also has ‘print $0’ as the action. Each rule’s
action is enclosed in its own pair of braces.

This program prints every line that contains the string ‘12’ or the string ‘21’. If a line
contains both strings, it is printed twice, once by each rule.

Chapter 1: Getting Started with awk 27

This is what happens if we run this program on our two sample data files, mail-list
and inventory-shipped:

$ awk '/12/ { print $0 }

> /21/ { print $0 }' mail-list inventory-shipped

a Anthony 555-3412 anthony.asserturo@hotmail.com A

a Camilla 555-2912 camilla.infusarum@skynet.be R

a Fabius 555-1234 fabius.undevicesimus@ucb.edu F

a Jean-Paul 555-2127 jeanpaul.campanorum@nyu.edu R

a Jean-Paul 555-2127 jeanpaul.campanorum@nyu.edu R

a Jan 21 36 64 620

a Apr 21 70 74 514

Note how the line beginning with ‘Jean-Paul’ in mail-list was printed twice, once for
each rule.

1.5 A More Complex Example

Now that we’ve mastered some simple tasks, let’s look at what typical awk programs do.
This example shows how awk can be used to summarize, select, and rearrange the output of
another utility. It uses features that haven’t been covered yet, so don’t worry if you don’t
understand all the details:

ls -l | awk '$6 == "Nov" { sum += $5 }

END { print sum }'

This command prints the total number of bytes in all the files in the current directory
that were last modified in November (of any year). The ‘ls -l’ part of this example is a
system command that gives you a listing of the files in a directory, including each file’s size
and the date the file was last modified. Its output looks like this:

-rw-r--r-- 1 arnold user 1933 Nov 7 13:05 Makefile

-rw-r--r-- 1 arnold user 10809 Nov 7 13:03 awk.h

-rw-r--r-- 1 arnold user 983 Apr 13 12:14 awk.tab.h

-rw-r--r-- 1 arnold user 31869 Jun 15 12:20 awkgram.y

-rw-r--r-- 1 arnold user 22414 Nov 7 13:03 awk1.c

-rw-r--r-- 1 arnold user 37455 Nov 7 13:03 awk2.c

-rw-r--r-- 1 arnold user 27511 Dec 9 13:07 awk3.c

-rw-r--r-- 1 arnold user 7989 Nov 7 13:03 awk4.c

The first field contains read-write permissions, the second field contains the number of links
to the file, and the third field identifies the file’s owner. The fourth field identifies the file’s
group. The fifth field contains the file’s size in bytes. The sixth, seventh, and eighth fields
contain the month, day, and time, respectively, that the file was last modified. Finally, the
ninth field contains the file name.

The ‘$6 == "Nov"’ in our awk program is an expression that tests whether the sixth field
of the output from ‘ls -l’ matches the string ‘Nov’. Each time a line has the string ‘Nov’
for its sixth field, awk performs the action ‘sum += $5’. This adds the fifth field (the file’s
size) to the variable sum. As a result, when awk has finished reading all the input lines, sum
is the total of the sizes of the files whose lines matched the pattern. (This works because
awk variables are automatically initialized to zero.)

28 GAWK: Effective AWK Programming

After the last line of output from ls has been processed, the END rule executes and prints
the value of sum. In this example, the value of sum is 80600.

These more advanced awk techniques are covered in later sections (see Section 7.3 [Ac-
tions], page 147). Before you can move on to more advanced awk programming, you have to
know how awk interprets your input and displays your output. By manipulating fields and
using print statements, you can produce some very useful and impressive-looking reports.

1.6 awk Statements Versus Lines

Most often, each line in an awk program is a separate statement or separate rule, like this:

awk '/12/ { print $0 }

/21/ { print $0 }' mail-list inventory-shipped

However, gawk ignores newlines after any of the following symbols and keywords:

, { ? : || && do else

A newline at any other point is considered the end of the statement.2

If you would like to split a single statement into two lines at a point where a newline
would terminate it, you can continue it by ending the first line with a backslash character
(‘\’). The backslash must be the final character on the line in order to be recognized as
a continuation character. A backslash followed by a newline is allowed anywhere in the
statement, even in the middle of a string or regular expression. For example:

awk '/This regular expression is too long, so continue it\

on the next line/ { print $1 }'

We have generally not used backslash continuation in our sample programs. gawk places
no limit on the length of a line, so backslash continuation is never strictly necessary; it just
makes programs more readable. For this same reason, as well as for clarity, we have kept
most statements short in the programs presented throughout the book.

Backslash continuation is most useful when your awk program is in a separate source file
instead of entered from the command line. You should also note that many awk implemen-
tations are more particular about where you may use backslash continuation. For example,
they may not allow you to split a string constant using backslash continuation. Thus, for
maximum portability of your awk programs, it is best not to split your lines in the middle
of a regular expression or a string.

CAUTION: Backslash continuation does not work as described with the C shell.
It works for awk programs in files and for one-shot programs, provided you are
using a POSIX-compliant shell, such as the Unix Bourne shell or Bash. But
the C shell behaves differently! There you must use two backslashes in a row,
followed by a newline. Note also that when using the C shell, every newline in
your awk program must be escaped with a backslash. To illustrate:

% awk 'BEGIN { \

? print \\

? "hello, world" \

2 The ‘?’ and ‘:’ referred to here is the three-operand conditional expression described in Section 6.3.4
[Conditional Expressions], page 135. Splitting lines after ‘?’ and ‘:’ is a minor gawk extension; if --posix
is specified (see Section 2.2 [Command-Line Options], page 31), then this extension is disabled.

Chapter 1: Getting Started with awk 29

? }'

a hello, world

Here, the ‘%’ and ‘?’ are the C shell’s primary and secondary prompts, analogous
to the standard shell’s ‘$’ and ‘>’.

Compare the previous example to how it is done with a POSIX-compliant shell:

$ awk 'BEGIN {

> print \

> "hello, world"

> }'

a hello, world

awk is a line-oriented language. Each rule’s action has to begin on the same line as
the pattern. To have the pattern and action on separate lines, you must use backslash
continuation; there is no other option.

Another thing to keep in mind is that backslash continuation and comments do not mix.
As soon as awk sees the ‘#’ that starts a comment, it ignores everything on the rest of the
line. For example:

$ gawk 'BEGIN { print "dont panic" # a friendly \

> BEGIN rule

> }'

error gawk: cmd. line:2: BEGIN rule

error gawk: cmd. line:2: ^ syntax error

In this case, it looks like the backslash would continue the comment onto the next line.
However, the backslash-newline combination is never even noticed because it is “hidden”
inside the comment. Thus, the BEGIN is noted as a syntax error.

When awk statements within one rule are short, you might want to put more than one of
them on a line. This is accomplished by separating the statements with a semicolon (‘;’).
This also applies to the rules themselves. Thus, the program shown at the start of this
section could also be written this way:

/12/ { print $0 } ; /21/ { print $0 }

NOTE: The requirement that states that rules on the same line must be sepa-
rated with a semicolon was not in the original awk language; it was added for
consistency with the treatment of statements within an action.

1.7 Other Features of awk

The awk language provides a number of predefined, or built-in, variables that your programs
can use to get information from awk. There are other variables your program can set as
well to control how awk processes your data.

In addition, awk provides a number of built-in functions for doing common computa-
tional and string-related operations. gawk provides built-in functions for working with
timestamps, performing bit manipulation, for runtime string translation (internationaliza-
tion), determining the type of a variable, and array sorting.

As we develop our presentation of the awk language, we will introduce most of the
variables and many of the functions. They are described systematically in Section 7.5
[Predefined Variables], page 157, and in Section 9.1 [Built-in Functions], page 187.

30 GAWK: Effective AWK Programming

1.8 When to Use awk

Now that you’ve seen some of what awk can do, you might wonder how awk could be
useful for you. By using utility programs, advanced patterns, field separators, arithmetic
statements, and other selection criteria, you can produce much more complex output. The
awk language is very useful for producing reports from large amounts of raw data, such as
summarizing information from the output of other utility programs like ls. (See Section 1.5
[A More Complex Example], page 27.)

Programs written with awk are usually much smaller than they would be in other lan-
guages. This makes awk programs easy to compose and use. Often, awk programs can
be quickly composed at your keyboard, used once, and thrown away. Because awk pro-
grams are interpreted, you can avoid the (usually lengthy) compilation part of the typical
edit-compile-test-debug cycle of software development.

Complex programs have been written in awk, including a complete retargetable assem-
bler for eight-bit microprocessors (see [Glossary], page 497, for more information), and a
microcode assembler for a special-purpose Prolog computer. The original awk’s capabilities
were strained by tasks of such complexity, but modern versions are more capable.

If you find yourself writing awk scripts of more than, say, a few hundred lines, you might
consider using a different programming language. The shell is good at string and pattern
matching; in addition, it allows powerful use of the system utilities. Python offers a nice
balance between high-level ease of programming and access to system facilities.3

1.9 Summary

• Programs in awk consist of pattern–action pairs.

• An action without a pattern always runs. The default action for a pattern without one
is ‘{ print $0 }’.

• Use either ‘awk 'program' files’ or ‘awk -f program-file files’ to run awk.

• You may use the special ‘#!’ header line to create awk programs that are directly
executable.

• Comments in awk programs start with ‘#’ and continue to the end of the same line.

• Be aware of quoting issues when writing awk programs as part of a larger shell script
(or MS-Windows batch file).

• You may use backslash continuation to continue a source line. Lines are automatically
continued after a comma, open brace, question mark, colon, ‘||’, ‘&&’, do, and else.

3 Other popular scripting languages include Ruby and Perl.

Chapter 2: Running awk and gawk 31

2 Running awk and gawk

This chapter covers how to run awk, both POSIX-standard and gawk-specific command-line
options, and what awk and gawk do with nonoption arguments. It then proceeds to cover
how gawk searches for source files, reading standard input along with other files, gawk’s en-
vironment variables, gawk’s exit status, using include files, and obsolete and undocumented
options and/or features.

Many of the options and features described here are discussed in more detail later in the
book; feel free to skip over things in this chapter that don’t interest you right now.

2.1 Invoking awk

There are two ways to run awk—with an explicit program or with one or more program
files. Here are templates for both of them; items enclosed in [. . .] in these templates are
optional:

awk [options] -f progfile [--] file . . .
awk [options] [--] 'program' file . . .

In addition to traditional one-letter POSIX-style options, gawk also supports GNU long
options.

It is possible to invoke awk with an empty program:

awk '' datafile1 datafile2

Doing so makes little sense, though; awk exits silently when given an empty program. If
--lint has been specified on the command line, gawk issues a warning that the program is
empty.

2.2 Command-Line Options

Options begin with a dash and consist of a single character. GNU-style long options consist
of two dashes and a keyword. The keyword can be abbreviated, as long as the abbreviation
allows the option to be uniquely identified. If the option takes an argument, either the
keyword is immediately followed by an equals sign (‘=’) and the argument’s value, or the
keyword and the argument’s value are separated by whitespace (spaces or TABs). If a
particular option with a value is given more than once, it is the last value that counts.

Each long option for gawk has a corresponding POSIX-style short option. The long
and short options are interchangeable in all contexts. The following list describes options
mandated by the POSIX standard:

-F fs

--field-separator fs

Set the FS variable to fs (see Section 4.5 [Specifying How Fields Are Separated],
page 69).

-f source-file

--file source-file

Read the awk program source from source-file instead of in the first nonoption
argument. This option may be given multiple times; the awk program consists
of the concatenation of the contents of each specified source-file.

32 GAWK: Effective AWK Programming

Files named with -f are treated as if they had ‘@namespace "awk"’ at their
beginning. See Section 15.4 [Changing The Namespace], page 362, for more
information on this advanced feature.

-v var=val

--assign var=val

Set the variable var to the value val before execution of the program begins.
Such variable values are available inside the BEGIN rule (see Section 2.3 [Other
Command-Line Arguments], page 38).

The -v option can only set one variable, but it can be used more than once,
setting another variable each time, like this: ‘awk -v foo=1 -v bar=2 ...’.

CAUTION: Using -v to set the values of the built-in variables may
lead to surprising results. awk will reset the values of those variables
as it needs to, possibly ignoring any initial value you may have
given.

-W gawk-opt

Provide an implementation-specific option. This is the POSIX convention for
providing implementation-specific options. These options also have correspond-
ing GNU-style long options. Note that the long options may be abbreviated, as
long as the abbreviations remain unique. The full list of gawk-specific options
is provided next.

-- Signal the end of the command-line options. The following arguments are not
treated as options even if they begin with ‘-’. This interpretation of -- follows
the POSIX argument parsing conventions.

This is useful if you have file names that start with ‘-’, or in shell scripts, if
you have file names that will be specified by the user that could start with ‘-’.
It is also useful for passing options on to the awk program; see Section 10.4
[Processing Command-Line Options], page 250.

The following list describes gawk-specific options:

-b

--characters-as-bytes

Cause gawk to treat all input data as single-byte characters. In addition, all
output written with print or printf is treated as single-byte characters.

Normally, gawk follows the POSIX standard and attempts to process its input
data according to the current locale (see Section 6.6 [Where You Are Makes a
Difference], page 138). This can often involve converting multibyte characters
into wide characters (internally), and can lead to problems or confusion if the
input data does not contain valid multibyte characters. This option is an easy
way to tell gawk, “Hands off my data!”

-c

--traditional

Specify compatibility mode, in which the GNU extensions to the awk language
are disabled, so that gawk behaves just like BWK awk. See Section A.5 [Exten-
sions in gawk Not in POSIX awk], page 449, which summarizes the extensions.
Also see Section C.1 [Downward Compatibility and Debugging], page 483.

Chapter 2: Running awk and gawk 33

-C

--copyright

Print the short version of the General Public License and then exit.

-d[file]
--dump-variables[=file]

Print a sorted list of global variables, their types, and final values to file. If
no file is provided, print this list to a file named awkvars.out in the current
directory. No space is allowed between the -d and file, if file is supplied.

Having a list of all global variables is a good way to look for typographical
errors in your programs. You would also use this option if you have a large
program with a lot of functions, and you want to be sure that your functions
don’t inadvertently use global variables that you meant to be local. (This is a
particularly easy mistake to make with simple variable names like i, j, etc.)

-D[file]
--debug[=file]

Enable debugging of awk programs (see Section 14.1 [Introduction to the gawk
Debugger], page 345). By default, the debugger reads commands interactively
from the keyboard (standard input). The optional file argument allows you to
specify a file with a list of commands for the debugger to execute noninterac-
tively. No space is allowed between the -D and file, if file is supplied.

-e program-text
--source program-text

Provide program source code in the program-text. This option allows you to mix
source code in files with source code that you enter on the command line. This is
particularly useful when you have library functions that you want to use from
your command-line programs (see Section 2.5.1 [The AWKPATH Environment
Variable], page 39).

Note that gawk treats each string as if it ended with a newline character (even
if it doesn’t). This makes building the total program easier.

CAUTION: Prior to version 5.0, there was no requirement that each
program-text be a full syntactic unit. I.e., the following worked:

$ gawk -e 'BEGIN { a = 5 ;' -e 'print a }'

a 5

However, this is no longer true. If you have any scripts that rely
upon this feature, you should revise them.

This is because each program-text is treated as if it had
‘@namespace "awk"’ at its beginning. See Section 15.4 [Changing
The Namespace], page 362, for more information.

-E file
--exec file

Similar to -f, read awk program text from file. There are two differences from
-f:

• This option terminates option processing; anything else on the command
line is passed on directly to the awk program.

34 GAWK: Effective AWK Programming

• Command-line variable assignments of the form ‘var=value’ are disal-
lowed.

This option is particularly necessary for World Wide Web CGI applications
that pass arguments through the URL; using this option prevents a malicious
(or other) user from passing in options, assignments, or awk source code (via
-e) to the CGI application.1 This option should be used with ‘#!’ scripts (see
Section 1.1.4 [Executable awk Programs], page 19), like so:

#! /usr/local/bin/gawk -E

awk program here ...

-g

--gen-pot

Analyze the source program and generate a GNU gettext portable object
template file on standard output for all string constants that have been marked
for translation. See Chapter 13 [Internationalization with gawk], page 335, for
information about this option.

-h

--help Print a “usage” message summarizing the short- and long-style options that
gawk accepts and then exit.

-i source-file
--include source-file

Read an awk source library from source-file. This option is completely equivalent
to using the @include directive inside your program. It is very similar to the
-f option, but there are two important differences. First, when -i is used, the
program source is not loaded if it has been previously loaded, whereas with
-f, gawk always loads the file. Second, because this option is intended to be
used with code libraries, gawk does not recognize such files as constituting main
program input. Thus, after processing an -i argument, gawk still expects to
find the main source code via the -f option or on the command line.

Files named with -i are treated as if they had ‘@namespace "awk"’ at their
beginning. See Section 15.4 [Changing The Namespace], page 362, for more
information.

-l ext
--load ext

Load a dynamic extension named ext. Extensions are stored as system shared
libraries. This option searches for the library using the AWKLIBPATH environment
variable. The correct library suffix for your platform will be supplied by default,
so it need not be specified in the extension name. The extension initialization
routine should be named dl_load(). An alternative is to use the @load keyword
inside the program to load a shared library. This advanced feature is described
in detail in Chapter 17 [Writing Extensions for gawk], page 381.

1 For more detail, please see Section 4.4 of RFC 3875. Also see the explanatory note sent to the gawk bug
mailing list.

http://www.ietf.org/rfc/rfc3875
https://lists.gnu.org/archive/html/bug-gawk/2014-11/msg00022.html
https://lists.gnu.org/archive/html/bug-gawk/2014-11/msg00022.html

Chapter 2: Running awk and gawk 35

-L[value]
--lint[=value]

Warn about constructs that are dubious or nonportable to other awk imple-
mentations. No space is allowed between the -L and value, if value is supplied.
Some warnings are issued when gawk first reads your program. Others are is-
sued at runtime, as your program executes. The optional argument may be one
of the following:

fatal Cause lint warnings become fatal errors. This may be drastic, but
its use will certainly encourage the development of cleaner awk pro-
grams.

invalid Only issue warnings about things that are actually invalid are is-
sued. (This is not fully implemented yet.)

no-ext Disable warnings about gawk extensions.

Some warnings are only printed once, even if the dubious constructs they warn
about occur multiple times in your awk program. Thus, when eliminating prob-
lems pointed out by --lint, you should take care to search for all occurrences
of each inappropriate construct. As awk programs are usually short, doing so
is not burdensome.

-M

--bignum Select arbitrary-precision arithmetic on numbers. This option has no effect if
gawk is not compiled to use the GNU MPFR and MP libraries (see Chapter 16
[Arithmetic and Arbitrary-Precision Arithmetic with gawk], page 367).

-n

--non-decimal-data

Enable automatic interpretation of octal and hexadecimal values in input data
(see Section 12.1 [Allowing Nondecimal Input Data], page 317).

CAUTION: This option can severely break old programs. Use with
care. Also note that this option may disappear in a future version
of gawk.

-N

--use-lc-numeric

Force the use of the locale’s decimal point character when parsing numeric input
data (see Section 6.6 [Where You Are Makes a Difference], page 138).

-o[file]
--pretty-print[=file]

Enable pretty-printing of awk programs. Implies --no-optimize. By default,
the output program is created in a file named awkprof.out (see Section 12.5
[Profiling Your awk Programs], page 329). The optional file argument allows
you to specify a different file name for the output. No space is allowed between
the -o and file, if file is supplied.

NOTE: In the past, this option would also execute your program.
This is no longer the case.

36 GAWK: Effective AWK Programming

-O

--optimize

Enable gawk’s default optimizations on the internal representation of the pro-
gram. At the moment, this includes just simple constant folding.

Optimization is enabled by default. This option remains primarily for back-
wards compatibility. However, it may be used to cancel the effect of an earlier
-s option (see later in this list).

-p[file]
--profile[=file]

Enable profiling of awk programs (see Section 12.5 [Profiling Your awk Pro-
grams], page 329). Implies --no-optimize. By default, profiles are created in
a file named awkprof.out. The optional file argument allows you to specify a
different file name for the profile file. No space is allowed between the -p and
file, if file is supplied.

The profile contains execution counts for each statement in the program in the
left margin, and function call counts for each function.

-P

--posix Operate in strict POSIX mode. This disables all gawk extensions (just like
--traditional) and disables all extensions not allowed by POSIX. See
Section A.7 [Common Extensions Summary], page 459, for a summary of
the extensions in gawk that are disabled by this option. Also, the following
additional restrictions apply:

• Newlines are not allowed after ‘?’ or ‘:’ (see Section 6.3.4 [Conditional
Expressions], page 135).

• Specifying ‘-Ft’ on the command line does not set the value of FS to be
a single TAB character (see Section 4.5 [Specifying How Fields Are Sepa-
rated], page 69).

• The locale’s decimal point character is used for parsing input data (see
Section 6.6 [Where You Are Makes a Difference], page 138).

If you supply both --traditional and --posix on the command line, --posix
takes precedence. gawk issues a warning if both options are supplied.

-r

--re-interval

Allow interval expressions (see Section 3.3 [Regular Expression Operators],
page 50) in regexps. This is now gawk’s default behavior. Nevertheless, this
option remains (both for backward compatibility and for use in combination
with --traditional).

-s

--no-optimize

Disable gawk’s default optimizations on the internal representation of the pro-
gram.

Chapter 2: Running awk and gawk 37

-S

--sandbox

Disable the system() function, input redirections with getline, output redi-
rections with print and printf, and dynamic extensions. Also, disallow adding
filenames to ARGV that were not there when gawk started running. This is par-
ticularly useful when you want to run awk scripts from questionable sources and
need to make sure the scripts can’t access your system (other than the specified
input data files).

-t

--lint-old

Warn about constructs that are not available in the original version of awk from
Version 7 Unix (see Section A.1 [Major Changes Between V7 and SVR3.1],
page 447).

-V

--version

Print version information for this particular copy of gawk. This allows you to
determine if your copy of gawk is up to date with respect to whatever the Free
Software Foundation is currently distributing. It is also useful for bug reports
(see Section B.4 [Reporting Problems and Bugs], page 478).

-- Mark the end of all options. Any command-line arguments following -- are
placed in ARGV, even if they start with a minus sign.

As long as program text has been supplied, any other options are flagged as invalid with
a warning message but are otherwise ignored.

In compatibility mode, as a special case, if the value of fs supplied to the -F option is
‘t’, then FS is set to the TAB character ("\t"). This is true only for --traditional and
not for --posix (see Section 4.5 [Specifying How Fields Are Separated], page 69).

The -f option may be used more than once on the command line. If it is, awk reads
its program source from all of the named files, as if they had been concatenated together
into one big file. This is useful for creating libraries of awk functions. These functions can
be written once and then retrieved from a standard place, instead of having to be included
in each individual program. The -i option is similar in this regard. (As mentioned in
Section 9.2.1 [Function Definition Syntax], page 214, function names must be unique.)

With standard awk, library functions can still be used, even if the program is entered at
the keyboard, by specifying ‘-f /dev/tty’. After typing your program, type Ctrl-d (the
end-of-file character) to terminate it. (You may also use ‘-f -’ to read program source from
the standard input, but then you will not be able to also use the standard input as a source
of data.)

Because it is clumsy using the standard awkmechanisms to mix source file and command-
line awk programs, gawk provides the -e option. This does not require you to preempt the
standard input for your source code, and it allows you to easily mix command-line and
library source code (see Section 2.5.1 [The AWKPATH Environment Variable], page 39). As
with -f, the -e and -i options may also be used multiple times on the command line.

If no -f option (or -e option for gawk) is specified, then awk uses the first nonoption
command-line argument as the text of the program source code. Arguments on the com-

38 GAWK: Effective AWK Programming

mand line that follow the program text are entered into the ARGV array; awk does not
continue to parse the command line looking for options.

If the environment variable POSIXLY_CORRECT exists, then gawk behaves in strict POSIX
mode, exactly as if you had supplied --posix. Many GNU programs look for this environ-
ment variable to suppress extensions that conflict with POSIX, but gawk behaves differently:
it suppresses all extensions, even those that do not conflict with POSIX, and behaves in
strict POSIX mode. If --lint is supplied on the command line and gawk turns on POSIX
mode because of POSIXLY_CORRECT, then it issues a warning message indicating that POSIX
mode is in effect. You would typically set this variable in your shell’s startup file. For a
Bourne-compatible shell (such as Bash), you would add these lines to the .profile file in
your home directory:

POSIXLY_CORRECT=true

export POSIXLY_CORRECT

For a C shell-compatible shell,2 you would add this line to the .login file in your home
directory:

setenv POSIXLY_CORRECT true

Having POSIXLY_CORRECT set is not recommended for daily use, but it is good for testing
the portability of your programs to other environments.

2.3 Other Command-Line Arguments

Any additional arguments on the command line are normally treated as input files to be
processed in the order specified. However, an argument that has the form var=value, as-
signs the value value to the variable var—it does not specify a file at all. (See Section 6.1.3.2
[Assigning Variables on the Command Line], page 118.) In the following example, count=1
is a variable assignment, not a file name:

awk -f program.awk file1 count=1 file2

As a side point, should you really need to have awk process a file named count=1 (or any
file whose name looks like a variable assignment), precede the file name with ‘./’, like so:

awk -f program.awk file1 ./count=1 file2

All the command-line arguments are made available to your awk program in the ARGV

array (see Section 7.5 [Predefined Variables], page 157). Command-line options and the
program text (if present) are omitted from ARGV. All other arguments, including variable
assignments, are included. As each element of ARGV is processed, gawk sets ARGIND to the
index in ARGV of the current element. (gawkmakes the full command line, including program
text and options, available in PROCINFO["argv"]; see Section 7.5.2 [Built-in Variables That
Convey Information], page 159.)

Changing ARGC and ARGV in your awk program lets you control how awk processes the
input files; this is described in more detail in Section 7.5.3 [Using ARGC and ARGV], page 166.

The distinction between file name arguments and variable-assignment arguments is made
when awk is about to open the next input file. At that point in execution, it checks the file
name to see whether it is really a variable assignment; if so, awk sets the variable instead
of reading a file.

2 Not recommended.

Chapter 2: Running awk and gawk 39

Therefore, the variables actually receive the given values after all previously specified
files have been read. In particular, the values of variables assigned in this fashion are
not available inside a BEGIN rule (see Section 7.1.4 [The BEGIN and END Special Patterns],
page 144), because such rules are run before awk begins scanning the argument list.

The variable values given on the command line are processed for escape sequences (see
Section 3.2 [Escape Sequences], page 48).

In some very early implementations of awk, when a variable assignment occurred before
any file names, the assignment would happen before the BEGIN rule was executed. awk’s
behavior was thus inconsistent; some command-line assignments were available inside the
BEGIN rule, while others were not. Unfortunately, some applications came to depend upon
this “feature.” When awk was changed to be more consistent, the -v option was added to
accommodate applications that depended upon the old behavior.

The variable assignment feature is most useful for assigning to variables such as RS, OFS,
and ORS, which control input and output formats, before scanning the data files. It is also
useful for controlling state if multiple passes are needed over a data file. For example:

awk 'pass == 1 { pass 1 stuff }

pass == 2 { pass 2 stuff }' pass=1 mydata pass=2 mydata

Given the variable assignment feature, the -F option for setting the value of FS is not
strictly necessary. It remains for historical compatibility.

2.4 Naming Standard Input

Often, you may wish to read standard input together with other files. For example, you
may wish to read one file, read standard input coming from a pipe, and then read another
file.

The way to name the standard input, with all versions of awk, is to use a single, stand-
alone minus sign or dash, ‘-’. For example:

some_command | awk -f myprog.awk file1 - file2

Here, awk first reads file1, then it reads the output of some command, and finally it reads
file2.

You may also use "-" to name standard input when reading files with getline (see
Section 4.10.3 [Using getline from a File], page 84). And, you can even use "-" with the
-f option to read program source code from standard input (see Section 2.2 [Command-Line
Options], page 31).

In addition, gawk allows you to specify the special file name /dev/stdin, both on the
command line and with getline. Some other versions of awk also support this, but it is not
standard. (Some operating systems provide a /dev/stdin file in the filesystem; however,
gawk always processes this file name itself.)

2.5 The Environment Variables gawk Uses

A number of environment variables influence how gawk behaves.

2.5.1 The AWKPATH Environment Variable

In most awk implementations, you must supply a precise pathname for each program file,
unless the file is in the current directory. But with gawk, if the file name supplied to the

40 GAWK: Effective AWK Programming

-f or -i options does not contain a directory separator ‘/’, then gawk searches a list of
directories (called the search path) one by one, looking for a file with the specified name.

The search path is a string consisting of directory names separated by colons.3 gawk

gets its search path from the AWKPATH environment variable. If that variable does not exist,
or if it has an empty value, gawk uses a default path (described shortly).

The search path feature is particularly helpful for building libraries of useful awk func-
tions. The library files can be placed in a standard directory in the default path and then
specified on the command line with a short file name. Otherwise, you would have to type
the full file name for each file.

By using the -i or -f options, your command-line awk programs can use facilities in awk

library files (see Chapter 10 [A Library of awk Functions], page 233). Path searching is not
done if gawk is in compatibility mode. This is true for both --traditional and --posix.
See Section 2.2 [Command-Line Options], page 31.

If the source code file is not found after the initial search, the path is searched again
after adding the suffix ‘.awk’ to the file name.

gawk’s path search mechanism is similar to the shell’s. (See The Bourne-Again SHell
manual.) It treats a null entry in the path as indicating the current directory. (A null entry
is indicated by starting or ending the path with a colon or by placing two colons next to
each other [‘::’].)

NOTE: To include the current directory in the path, either place . as an entry
in the path or write a null entry in the path.

Different past versions of gawk would also look explicitly in the current direc-
tory, either before or after the path search. As of version 4.1.2, this no longer
happens; if you wish to look in the current directory, you must include . either
as a separate entry or as a null entry in the search path.

The default value for AWKPATH is ‘.:/usr/local/share/awk’.4 Since . is included at the
beginning, gawk searches first in the current directory and then in /usr/local/share/awk.
In practice, this means that you will rarely need to change the value of AWKPATH.

See Section B.2.2 [Shell Startup Files], page 470, for information on functions that help
to manipulate the AWKPATH variable.

gawk places the value of the search path that it used into ENVIRON["AWKPATH"]. This
provides access to the actual search path value from within an awk program.

Although you can change ENVIRON["AWKPATH"] within your awk program, this has no
effect on the running program’s behavior. This makes sense: the AWKPATH environment
variable is used to find the program source files. Once your program is running, all the files
have been found, and gawk no longer needs to use AWKPATH.

3 Semicolons on MS-Windows.
4 Your version of gawk may use a different directory; it will depend upon how gawk was built and installed.

The actual directory is the value of $(pkgdatadir) generated when gawk was configured. (For more
detail, see the INSTALL file in the source distribution, and see Section B.2.1 [Compiling gawk for Unix-
Like Systems], page 469. You probably don’t need to worry about this, though.)

https://www.gnu.org/software/bash/manual/
https://www.gnu.org/software/bash/manual/

Chapter 2: Running awk and gawk 41

2.5.2 The AWKLIBPATH Environment Variable

The AWKLIBPATH environment variable is similar to the AWKPATH variable, but it is used to
search for loadable extensions (stored as system shared libraries) specified with the -l option
rather than for source files. If the extension is not found, the path is searched again after
adding the appropriate shared library suffix for the platform. For example, on GNU/Linux
systems, the suffix ‘.so’ is used. The search path specified is also used for extensions loaded
via the @load keyword (see Section 2.8 [Loading Dynamic Extensions into Your Program],
page 44).

If AWKLIBPATH does not exist in the environment, or if it has an empty value, gawk uses
a default path; this is typically ‘/usr/local/lib/gawk’, although it can vary depending
upon how gawk was built.5

See Section B.2.2 [Shell Startup Files], page 470, for information on functions that help
to manipulate the AWKLIBPATH variable.

gawk places the value of the search path that it used into ENVIRON["AWKLIBPATH"]. This
provides access to the actual search path value from within an awk program.

Although you can change ENVIRON["AWKLIBPATH"] within your awk program, this has no
effect on the running program’s behavior. This makes sense: the AWKLIBPATH environment
variable is used to find any requested extensions, and they are loaded before the program
starts to run. Once your program is running, all the extensions have been found, and gawk

no longer needs to use AWKLIBPATH.

2.5.3 Other Environment Variables

A number of other environment variables affect gawk’s behavior, but they are more special-
ized. Those in the following list are meant to be used by regular users:

GAWK_MSEC_SLEEP

Specifies the interval between connection retries, in milliseconds. On systems
that do not support the usleep() system call, the value is rounded up to an
integral number of seconds.

GAWK_READ_TIMEOUT

Specifies the time, in milliseconds, for gawk to wait for input before returning
with an error. See Section 4.11 [Reading Input with a Timeout], page 89.

GAWK_SOCK_RETRIES

Controls the number of times gawk attempts to retry a two-way TCP/IP
(socket) connection before giving up. See Section 12.4 [Using gawk for
Network Programming], page 327. Note that when nonfatal I/O is enabled
(see Section 5.10 [Enabling Nonfatal Output], page 109), gawk only tries to
open a TCP/IP socket once.

POSIXLY_CORRECT

Causes gawk to switch to POSIX-compatibility mode, disabling all traditional
and GNU extensions. See Section 2.2 [Command-Line Options], page 31.

5 Your version of gawk may use a different directory; it will depend upon how gawk was built and installed.
The actual directory is the value of $(pkgextensiondir) generated when gawk was configured. (For
more detail, see the INSTALL file in the source distribution, and see Section B.2.1 [Compiling gawk for
Unix-Like Systems], page 469. You probably don’t need to worry about this, though.)

42 GAWK: Effective AWK Programming

The environment variables in the following list are meant for use by the gawk developers
for testing and tuning. They are subject to change. The variables are:

AWKBUFSIZE

This variable only affects gawk on POSIX-compliant systems. With a value of
‘exact’, gawk uses the size of each input file as the size of the memory buffer
to allocate for I/O. Otherwise, the value should be a number, and gawk uses
that number as the size of the buffer to allocate. (When this variable is not
set, gawk uses the smaller of the file’s size and the “default” blocksize, which is
usually the filesystem’s I/O blocksize.)

AWK_HASH If this variable exists with a value of ‘gst’, gawk switches to using the hash func-
tion from GNU Smalltalk for managing arrays. This function may be marginally
faster than the standard function.

AWKREADFUNC

If this variable exists, gawk switches to reading source files one line at a time,
instead of reading in blocks. This exists for debugging problems on filesystems
on non-POSIX operating systems where I/O is performed in records, not in
blocks.

GAWK_MSG_SRC

If this variable exists, gawk includes the file name and line number within the
gawk source code from which warning and/or fatal messages are generated. Its
purpose is to help isolate the source of a message, as there are multiple places
that produce the same warning or error message.

GAWK_LOCALE_DIR

Specifies the location of compiled message object files for gawk itself. This is
passed to the bindtextdomain() function when gawk starts up.

GAWK_NO_DFA

If this variable exists, gawk does not use the DFA regexp matcher for “does it
match” kinds of tests. This can cause gawk to be slower. Its purpose is to help
isolate differences between the two regexp matchers that gawk uses internally.
(There aren’t supposed to be differences, but occasionally theory and practice
don’t coordinate with each other.)

GAWK_STACKSIZE

This specifies the amount by which gawk should grow its internal evaluation
stack, when needed.

INT_CHAIN_MAX

This specifies intended maximum number of items gawk will maintain on a hash
chain for managing arrays indexed by integers.

STR_CHAIN_MAX

This specifies intended maximum number of items gawk will maintain on a hash
chain for managing arrays indexed by strings.

TIDYMEM If this variable exists, gawk uses the mtrace() library calls from the GNU C
library to help track down possible memory leaks.

Chapter 2: Running awk and gawk 43

2.6 gawk’s Exit Status

If the exit statement is used with a value (see Section 7.4.10 [The exit Statement],
page 156), then gawk exits with the numeric value given to it.

Otherwise, if there were no problems during execution, gawk exits with the value of the
C constant EXIT_SUCCESS. This is usually zero.

If an error occurs, gawk exits with the value of the C constant EXIT_FAILURE. This is
usually one.

If gawk exits because of a fatal error, the exit status is two. On non-POSIX systems,
this value may be mapped to EXIT_FAILURE.

2.7 Including Other Files into Your Program

This section describes a feature that is specific to gawk.

The @include keyword can be used to read external awk source files. This gives you the
ability to split large awk source files into smaller, more manageable pieces, and also lets you
reuse common awk code from various awk scripts. In other words, you can group together
awk functions used to carry out specific tasks into external files. These files can be used
just like function libraries, using the @include keyword in conjunction with the AWKPATH

environment variable. Note that source files may also be included using the -i option.

Let’s see an example. We’ll start with two (trivial) awk scripts, namely test1 and test2.
Here is the test1 script:

BEGIN {

print "This is script test1."

}

and here is test2:

@include "test1"

BEGIN {

print "This is script test2."

}

Running gawk with test2 produces the following result:

$ gawk -f test2

a This is script test1.

a This is script test2.

gawk runs the test2 script, which includes test1 using the @include keyword. So, to
include external awk source files, you just use @include followed by the name of the file to
be included, enclosed in double quotes.

NOTE: Keep in mind that this is a language construct and the file name cannot
be a string variable, but rather just a literal string constant in double quotes.

The files to be included may be nested; e.g., given a third script, namely test3:

@include "test2"

BEGIN {

print "This is script test3."

}

44 GAWK: Effective AWK Programming

Running gawk with the test3 script produces the following results:

$ gawk -f test3

a This is script test1.

a This is script test2.

a This is script test3.

The file name can, of course, be a pathname. For example:

@include "../io_funcs"

and:

@include "/usr/awklib/network"

are both valid. The AWKPATH environment variable can be of great value when using
@include. The same rules for the use of the AWKPATH variable in command-line file searches
(see Section 2.5.1 [The AWKPATH Environment Variable], page 39) apply to @include also.

This is very helpful in constructing gawk function libraries. If you have a large script
with useful, general-purpose awk functions, you can break it down into library files and put
those files in a special directory. You can then include those “libraries,” either by using the
full pathnames of the files, or by setting the AWKPATH environment variable accordingly and
then using @include with just the file part of the full pathname. Of course, you can keep
library files in more than one directory; the more complex the working environment is, the
more directories you may need to organize the files to be included.

Given the ability to specify multiple -f options, the @include mechanism is not strictly
necessary. However, the @include keyword can help you in constructing self-contained
gawk programs, thus reducing the need for writing complex and tedious command lines. In
particular, @include is very useful for writing CGI scripts to be run from web pages.

The rules for finding a source file described in Section 2.5.1 [The AWKPATH Environment
Variable], page 39, also apply to files loaded with @include.

Finally, files included with @include are treated as if they had ‘@namespace "awk"’ at
their beginning. See Section 15.4 [Changing The Namespace], page 362, for more informa-
tion.

2.8 Loading Dynamic Extensions into Your Program

This section describes a feature that is specific to gawk.

The @load keyword can be used to read external awk extensions (stored as system shared
libraries). This allows you to link in compiled code that may offer superior performance
and/or give you access to extended capabilities not supported by the awk language. The
AWKLIBPATH variable is used to search for the extension. Using @load is completely equiv-
alent to using the -l command-line option.

If the extension is not initially found in AWKLIBPATH, another search is conducted after
appending the platform’s default shared library suffix to the file name. For example, on
GNU/Linux systems, the suffix ‘.so’ is used:

$ gawk '@load "ordchr"; BEGIN {print chr(65)}'

a A

This is equivalent to the following example:

$ gawk -lordchr 'BEGIN {print chr(65)}'

a A

Chapter 2: Running awk and gawk 45

For command-line usage, the -l option is more convenient, but @load is useful for embedding
inside an awk source file that requires access to an extension.

Chapter 17 [Writing Extensions for gawk], page 381, describes how to write extensions
(in C or C++) that can be loaded with either @load or the -l option. It also describes the
ordchr extension.

2.9 Obsolete Options and/or Features

This section describes features and/or command-line options from previous releases of gawk
that either are not available in the current version or are still supported but deprecated
(meaning that they will not be in the next release).

The process-related special files /dev/pid, /dev/ppid, /dev/pgrpid, and /dev/user

were deprecated in gawk 3.1, but still worked. As of version 4.0, they are no longer inter-
preted specially by gawk. (Use PROCINFO instead; see Section 7.5.2 [Built-in Variables That
Convey Information], page 159.)

2.10 Undocumented Options and Features

Use the Source, Luke!
—Obi-Wan

This section intentionally left blank.

2.11 Summary

• gawk parses arguments on the command line, left to right, to determine if they should
be treated as options or as non-option arguments.

• gawk recognizes several options which control its operation, as described in Section 2.2
[Command-Line Options], page 31. All options begin with ‘-’.

• Any argument that is not recognized as an option is treated as a non-option argument,
even if it begins with ‘-’.

− However, when an option itself requires an argument, and the option is separated
from that argument on the command line by at least one space, the space is
ignored, and the argument is considered to be related to the option. Thus, in the
invocation, ‘gawk -F x’, the ‘x’ is treated as belonging to the -F option, not as a
separate non-option argument.

• Once gawk finds a non-option argument, it stops looking for options. Therefore, all
following arguments are also non-option arguments, even if they resemble recognized
options.

• If no -e or -f options are present, gawk expects the program text to be in the first
non-option argument.

• All non-option arguments, except program text provided in the first non-option ar-
gument, are placed in ARGV as explained in Section 7.5.3 [Using ARGC and ARGV],
page 166, and are processed as described in Section 2.3 [Other Command-Line Ar-
guments], page 38. Adjusting ARGC and ARGV affects how awk processes input.

• The three standard options for all versions of awk are -f, -F, and -v. gawk supplies
these and many others, as well as corresponding GNU-style long options.

46 GAWK: Effective AWK Programming

• Nonoption command-line arguments are usually treated as file names, unless they have
the form ‘var=value’, in which case they are taken as variable assignments to be
performed at that point in processing the input.

• You can use a single minus sign (‘-’) to refer to standard input on the command line.
gawk also lets you use the special file name /dev/stdin.

• gawk pays attention to a number of environment variables. AWKPATH, AWKLIBPATH, and
POSIXLY_CORRECT are the most important ones.

• gawk’s exit status conveys information to the program that invoked it. Use the exit

statement from within an awk program to set the exit status.

• gawk allows you to include other awk source files into your program using the @include
statement and/or the -i and -f command-line options.

• gawk allows you to load additional functions written in C or C++ using the @load state-
ment and/or the -l option. (This advanced feature is described later, in Chapter 17
[Writing Extensions for gawk], page 381.)

Chapter 3: Regular Expressions 47

3 Regular Expressions

A regular expression, or regexp, is a way of describing a set of strings. Because regular
expressions are such a fundamental part of awk programming, their format and use deserve
a separate chapter.

A regular expression enclosed in slashes (‘/’) is an awk pattern that matches every input
record whose text belongs to that set. The simplest regular expression is a sequence of
letters, numbers, or both. Such a regexp matches any string that contains that sequence.
Thus, the regexp ‘foo’ matches any string containing ‘foo’. Thus, the pattern /foo/

matches any input record containing the three adjacent characters ‘foo’ anywhere in the
record. Other kinds of regexps let you specify more complicated classes of strings.

Initially, the examples in this chapter are simple. As we explain more about how regular
expressions work, we present more complicated instances.

3.1 How to Use Regular Expressions

A regular expression can be used as a pattern by enclosing it in slashes. Then the regular
expression is tested against the entire text of each record. (Normally, it only needs to match
some part of the text in order to succeed.) For example, the following prints the second
field of each record where the string ‘li’ appears anywhere in the record:

$ awk '/li/ { print $2 }' mail-list

a 555-5553

a 555-0542

a 555-6699

a 555-3430

Regular expressions can also be used in matching expressions. These expressions allow
you to specify the string to match against; it need not be the entire current input record.
The two operators ‘~’ and ‘!~’ perform regular expression comparisons. Expressions using
these operators can be used as patterns, or in if, while, for, and do statements. (See
Section 7.4 [Control Statements in Actions], page 148.) For example, the following is true
if the expression exp (taken as a string) matches regexp:

exp ~ /regexp/

This example matches, or selects, all input records with the uppercase letter ‘J’ somewhere
in the first field:

$ awk '$1 ~ /J/' inventory-shipped

a Jan 13 25 15 115

a Jun 31 42 75 492

a Jul 24 34 67 436

a Jan 21 36 64 620

So does this:

awk '{ if ($1 ~ /J/) print }' inventory-shipped

This next example is true if the expression exp (taken as a character string) does not
match regexp:

exp !~ /regexp/

48 GAWK: Effective AWK Programming

The following example matches, or selects, all input records whose first field does not
contain the uppercase letter ‘J’:

$ awk '$1 !~ /J/' inventory-shipped

a Feb 15 32 24 226

a Mar 15 24 34 228

a Apr 31 52 63 420

a May 16 34 29 208

...

When a regexp is enclosed in slashes, such as /foo/, we call it a regexp constant, much
like 5.27 is a numeric constant and "foo" is a string constant.

3.2 Escape Sequences

Some characters cannot be included literally in string constants ("foo") or regexp constants
(/foo/). Instead, they should be represented with escape sequences, which are character
sequences beginning with a backslash (‘\’). One use of an escape sequence is to include a
double-quote character in a string constant. Because a plain double quote ends the string,
you must use ‘\"’ to represent an actual double-quote character as a part of the string. For
example:

$ awk 'BEGIN { print "He said \"hi!\" to her." }'

a He said "hi!" to her.

The backslash character itself is another character that cannot be included normally;
you must write ‘\\’ to put one backslash in the string or regexp. Thus, the string whose
contents are the two characters ‘"’ and ‘\’ must be written "\"\\".

Other escape sequences represent unprintable characters such as TAB or newline. There
is nothing to stop you from entering most unprintable characters directly in a string constant
or regexp constant, but they may look ugly.

The following list presents all the escape sequences used in awk and what they represent.
Unless noted otherwise, all these escape sequences apply to both string constants and regexp
constants:

\\ A literal backslash, ‘\’.

\a The “alert” character, Ctrl-g, ASCII code 7 (BEL). (This often makes some
sort of audible noise.)

\b Backspace, Ctrl-h, ASCII code 8 (BS).

\f Formfeed, Ctrl-l, ASCII code 12 (FF).

\n Newline, Ctrl-j, ASCII code 10 (LF).

\r Carriage return, Ctrl-m, ASCII code 13 (CR).

\t Horizontal TAB, Ctrl-i, ASCII code 9 (HT).

\v Vertical TAB, Ctrl-k, ASCII code 11 (VT).

\nnn The octal value nnn, where nnn stands for 1 to 3 digits between ‘0’ and ‘7’. For
example, the code for the ASCII ESC (escape) character is ‘\033’.

Chapter 3: Regular Expressions 49

\xhh... The hexadecimal value hh, where hh stands for a sequence of hexadecimal digits
(‘0’–‘9’, and either ‘A’–‘F’ or ‘a’–‘f’). A maximum of two digts are allowed
after the ‘\x’. Any further hexadecimal digits are treated as simple letters or
numbers. (c.e.) (The ‘\x’ escape sequence is not allowed in POSIX awk.)

CAUTION: In ISO C, the escape sequence continues until the first
nonhexadecimal digit is seen. For many years, gawk would con-
tinue incorporating hexadecimal digits into the value until a non-
hexadecimal digit or the end of the string was encountered. How-
ever, using more than two hexadecimal digits produced undefined
results. As of version 4.2, only two digits are processed.

\/ A literal slash (should be used for regexp constants only). This sequence is
used when you want to write a regexp constant that contains a slash (such
as /.*:\/home\/[[:alnum:]]+:.*/; the ‘[[:alnum:]]’ notation is discussed
in Section 3.4 [Using Bracket Expressions], page 53). Because the regexp is
delimited by slashes, you need to escape any slash that is part of the pattern,
in order to tell awk to keep processing the rest of the regexp.

\" A literal double quote (should be used for string constants only). This sequence
is used when you want to write a string constant that contains a double quote
(such as "He said \"hi!\" to her."). Because the string is delimited by dou-
ble quotes, you need to escape any quote that is part of the string, in order to
tell awk to keep processing the rest of the string.

In gawk, a number of additional two-character sequences that begin with a backslash have
special meaning in regexps. See Section 3.7 [gawk-Specific Regexp Operators], page 56.

In a regexp, a backslash before any character that is not in the previous list and not listed
in Section 3.7 [gawk-Specific Regexp Operators], page 56, means that the next character
should be taken literally, even if it would normally be a regexp operator. For example,
/a\+b/ matches the three characters ‘a+b’.

For complete portability, do not use a backslash before any character not shown in the
previous list or that is not an operator.

50 GAWK: Effective AWK Programming

� �
Backslash Before Regular Characters

If you place a backslash in a string constant before something that is not one of the
characters previously listed, POSIX awk purposely leaves what happens as undefined. There
are two choices:

Strip the backslash out
This is what BWK awk and gawk both do. For example, "a\qc" is the same
as "aqc". (Because this is such an easy bug both to introduce and to miss,
gawk warns you about it.) Consider ‘FS = "[\t]+\|[\t]+"’ to use vertical
bars surrounded by whitespace as the field separator. There should be two
backslashes in the string: ‘FS = "[\t]+\\|[\t]+"’.)

Leave the backslash alone
Some other awk implementations do this. In such implementations, typing
"a\qc" is the same as typing "a\\qc".
 	

To summarize:

• The escape sequences in the preceding list are always processed first, for both string
constants and regexp constants. This happens very early, as soon as awk reads your
program.

• gawk processes both regexp constants and dynamic regexps (see Section 3.6 [Using
Dynamic Regexps], page 55), for the special operators listed in Section 3.7 [gawk-
Specific Regexp Operators], page 56.

• A backslash before any other character means to treat that character literally.� �
Escape Sequences for Metacharacters

Suppose you use an octal or hexadecimal escape to represent a regexp metacharacter.
(See Section 3.3 [Regular Expression Operators], page 50.) Does awk treat the character as
a literal character or as a regexp operator?

Historically, such characters were taken literally. However, the POSIX standard in-
dicates that they should be treated as real metacharacters, which is what gawk does. In
compatibility mode (see Section 2.2 [Command-Line Options], page 31), gawk treats the
characters represented by octal and hexadecimal escape sequences literally when used in
regexp constants. Thus, /a\52b/ is equivalent to /a*b/.
 	
3.3 Regular Expression Operators

You can combine regular expressions with special characters, called regular expression op-
erators or metacharacters, to increase the power and versatility of regular expressions.

3.3.1 Regexp Operators in awk

The escape sequences described earlier in Section 3.2 [Escape Sequences], page 48, are
valid inside a regexp. They are introduced by a ‘\’ and are recognized and converted into
corresponding real characters as the very first step in processing regexps.

Here is a list of metacharacters. All characters that are not escape sequences and that
are not listed here stand for themselves:

Chapter 3: Regular Expressions 51

\ This suppresses the special meaning of a character when matching. For exam-
ple, ‘\$’ matches the character ‘$’.

^ This matches the beginning of a string. ‘^@chapter’ matches ‘@chapter’ at
the beginning of a string, for example, and can be used to identify chapter
beginnings in Texinfo source files. The ‘^’ is known as an anchor, because it
anchors the pattern to match only at the beginning of the string.

It is important to realize that ‘^’ does not match the beginning of a line (the
point right after a ‘\n’ newline character) embedded in a string. The condition
is not true in the following example:

if ("line1\nLINE 2" ~ /^L/) ...

$ This is similar to ‘^’, but it matches only at the end of a string. For example,
‘p$’ matches a record that ends with a ‘p’. The ‘$’ is an anchor and does
not match the end of a line (the point right before a ‘\n’ newline character)
embedded in a string. The condition in the following example is not true:

if ("line1\nLINE 2" ~ /1$/) ...

. (period) This matches any single character, including the newline character. For ex-
ample, ‘.P’ matches any single character followed by a ‘P’ in a string. Using
concatenation, we can make a regular expression such as ‘U.A’, which matches
any three-character sequence that begins with ‘U’ and ends with ‘A’.

In strict POSIX mode (see Section 2.2 [Command-Line Options], page 31), ‘.’
does not match the nul character, which is a character with all bits equal to
zero. Otherwise, nul is just another character. Other versions of awk may not
be able to match the nul character.

[. . .] This is called a bracket expression.1 It matches any one of the characters that
are enclosed in the square brackets. For example, ‘[MVX]’ matches any one
of the characters ‘M’, ‘V’, or ‘X’ in a string. A full discussion of what can be
inside the square brackets of a bracket expression is given in Section 3.4 [Using
Bracket Expressions], page 53.

[^. . .] This is a complemented bracket expression. The first character after the ‘[’
must be a ‘^’. It matches any characters except those in the square brackets.
For example, ‘[^awk]’ matches any character that is not an ‘a’, ‘w’, or ‘k’.

| This is the alternation operator and it is used to specify alternatives. The ‘|’
has the lowest precedence of all the regular expression operators. For example,
‘^P|[aeiouy]’ matches any string that matches either ‘^P’ or ‘[aeiouy]’. This
means it matches any string that starts with ‘P’ or contains (anywhere within
it) a lowercase English vowel.

The alternation applies to the largest possible regexps on either side.

(. . .) Parentheses are used for grouping in regular expressions, as in arithmetic. They
can be used to concatenate regular expressions containing the alternation oper-
ator, ‘|’. For example, ‘@(samp|code)\{[^}]+\}’ matches both ‘@code{foo}’

1 In other literature, you may see a bracket expression referred to as either a character set, a character
class, or a character list.

52 GAWK: Effective AWK Programming

and ‘@samp{bar}’. (These are Texinfo formatting control sequences. The ‘+’ is
explained further on in this list.)

The left or opening parenthesis is always a metacharacter; to match one literally,
precede it with a backslash. However, the right or closing parenthesis is only
special when paired with a left parenthesis; an unpaired right parenthesis is
(silently) treated as a regular character.

* This symbol means that the preceding regular expression should be repeated
as many times as necessary to find a match. For example, ‘ph*’ applies the ‘*’
symbol to the preceding ‘h’ and looks for matches of one ‘p’ followed by any
number of ‘h’s. This also matches just ‘p’ if no ‘h’s are present.

There are two subtle points to understand about how ‘*’ works. First, the ‘*’
applies only to the single preceding regular expression component (e.g., in ‘ph*’,
it applies just to the ‘h’). To cause ‘*’ to apply to a larger subexpression, use
parentheses: ‘(ph)*’ matches ‘ph’, ‘phph’, ‘phphph’, and so on.

Second, ‘*’ finds as many repetitions as possible. If the text to be matched is
‘phhhhhhhhhhhhhhooey’, ‘ph*’ matches all of the ‘h’s.

+ This symbol is similar to ‘*’, except that the preceding expression must be
matched at least once. This means that ‘wh+y’ would match ‘why’ and ‘whhy’,
but not ‘wy’, whereas ‘wh*y’ would match all three.

? This symbol is similar to ‘*’, except that the preceding expression can be
matched either once or not at all. For example, ‘fe?d’ matches ‘fed’ and
‘fd’, but nothing else.

{n}
{n,}
{n,m} One or two numbers inside braces denote an interval expression. If there is one

number in the braces, the preceding regexp is repeated n times. If there are
two numbers separated by a comma, the preceding regexp is repeated n to m
times. If there is one number followed by a comma, then the preceding regexp
is repeated at least n times:

wh{3}y Matches ‘whhhy’, but not ‘why’ or ‘whhhhy’.

wh{3,5}y Matches ‘whhhy’, ‘whhhhy’, or ‘whhhhhy’ only.

wh{2,}y Matches ‘whhy’, ‘whhhy’, and so on.

In regular expressions, the ‘*’, ‘+’, and ‘?’ operators, as well as the braces ‘{’ and ‘}’,
have the highest precedence, followed by concatenation, and finally by ‘|’. As in arithmetic,
parentheses can change how operators are grouped.

In POSIX awk and gawk, the ‘*’, ‘+’, and ‘?’ operators stand for themselves when there
is nothing in the regexp that precedes them. For example, /+/ matches a literal plus sign.
However, many other versions of awk treat such a usage as a syntax error.

3.3.2 Some Notes On Interval Expressions

Interval expressions were not traditionally available in awk. They were added as part of the
POSIX standard to make awk and egrep consistent with each other.

Chapter 3: Regular Expressions 53

Initially, because old programs may use ‘{’ and ‘}’ in regexp constants, gawk did not
match interval expressions in regexps.

However, beginning with version 4.0, gawk does match interval expressions by default.
This is because compatibility with POSIX has become more important to most gawk users
than compatibility with old programs.

For programs that use ‘{’ and ‘}’ in regexp constants, it is good practice to always escape
them with a backslash. Then the regexp constants are valid and work the way you want
them to, using any version of awk.2

Finally, when ‘{’ and ‘}’ appear in regexp constants in a way that cannot be interpreted
as an interval expression (such as /q{a}/), then they stand for themselves.

As mentioned, interval expressions were not traditionally available in awk. In March of
2019, BWK awk (finally) acquired them.

Nonetheless, because they were not available for so many decades, gawk continues to
not supply them when in compatibility mode (see Section 2.2 [Command-Line Options],
page 31).

3.4 Using Bracket Expressions

As mentioned earlier, a bracket expression matches any character among those listed be-
tween the opening and closing square brackets.

Within a bracket expression, a range expression consists of two characters separated by a
hyphen. It matches any single character that sorts between the two characters, based upon
the system’s native character set. For example, ‘[0-9]’ is equivalent to ‘[0123456789]’.
(See Section A.8 [Regexp Ranges and Locales: A Long Sad Story], page 459, for an expla-
nation of how the POSIX standard and gawk have changed over time. This is mainly of
historical interest.)

With the increasing popularity of the Unicode character standard, there is an additional
wrinkle to consider. Octal and hexadecimal escape sequences inside bracket expressions are
taken to represent only single-byte characters (characters whose values fit within the range
0–256). To match a range of characters where the endpoints of the range are larger than
256, enter the multibyte encodings of the characters directly.

To include one of the characters ‘\’, ‘]’, ‘-’, or ‘^’ in a bracket expression, put a ‘\’ in
front of it. For example:

[d\]]

matches either ‘d’ or ‘]’. Additionally, if you place ‘]’ right after the opening ‘[’, the closing
bracket is treated as one of the characters to be matched.

The treatment of ‘\’ in bracket expressions is compatible with other awk implementations
and is also mandated by POSIX. The regular expressions in awk are a superset of the POSIX
specification for Extended Regular Expressions (EREs). POSIX EREs are based on the
regular expressions accepted by the traditional egrep utility.

Character classes are a feature introduced in the POSIX standard. A character class is
a special notation for describing lists of characters that have a specific attribute, but the
actual characters can vary from country to country and/or from character set to character

2 Use two backslashes if you’re using a string constant with a regexp operator or function.

http://www.unicode.org

54 GAWK: Effective AWK Programming

set. For example, the notion of what is an alphabetic character differs between the United
States and France.

A character class is only valid in a regexp inside the brackets of a bracket expression.
Character classes consist of ‘[:’, a keyword denoting the class, and ‘:]’. Table 3.1 lists the
character classes defined by the POSIX standard.

Class Meaning
[:alnum:] Alphanumeric characters
[:alpha:] Alphabetic characters
[:blank:] Space and TAB characters
[:cntrl:] Control characters
[:digit:] Numeric characters
[:graph:] Characters that are both printable and visible (a space is printable but not

visible, whereas an ‘a’ is both)

[:lower:] Lowercase alphabetic characters
[:print:] Printable characters (characters that are not control characters)
[:punct:] Punctuation characters (characters that are not letters, digits, control char-

acters, or space characters)

[:space:] Space characters (these are: space, TAB, newline, carriage return, formfeed
and vertical tab)

[:upper:] Uppercase alphabetic characters
[:xdigit:] Characters that are hexadecimal digits

Table 3.1: POSIX character classes

For example, before the POSIX standard, you had to write /[A-Za-z0-9]/ to match
alphanumeric characters. If your character set had other alphabetic characters in it, this
would not match them. With the POSIX character classes, you can write /[[:alnum:]]/

to match the alphabetic and numeric characters in your character set.

Some utilities that match regular expressions provide a nonstandard ‘[:ascii:]’ char-
acter class; awk does not. However, you can simulate such a construct using ‘[\x00-\x7F]’.
This matches all values numerically between zero and 127, which is the defined range of the
ASCII character set. Use a complemented character list (‘[^\x00-\x7F]’) to match any
single-byte characters that are not in the ASCII range.

NOTE: Some older versions of Unix awk treat [:blank:] like [:space:], in-
correctly matching more characters than they should. Caveat Emptor.

Two additional special sequences can appear in bracket expressions. These apply to
non-ASCII character sets, which can have single symbols (called collating elements) that
are represented with more than one character. They can also have several characters that
are equivalent for collating, or sorting, purposes. (For example, in French, a plain “e” and
a grave-accented “è” are equivalent.) These sequences are:

Collating symbols
Multicharacter collating elements enclosed between ‘[.’ and ‘.]’. For example,
if ‘ch’ is a collating element, then ‘[[.ch.]]’ is a regexp that matches this
collating element, whereas ‘[ch]’ is a regexp that matches either ‘c’ or ‘h’.

Chapter 3: Regular Expressions 55

Equivalence classes
Locale-specific names for a list of characters that are equal. The name is en-
closed between ‘[=’ and ‘=]’. For example, the name ‘e’ might be used to
represent all of “e,” “ê,” “è,” and “é.” In this case, ‘[[=e=]]’ is a regexp that
matches any of ‘e’, ‘ê’, ‘é’, or ‘è’.

These features are very valuable in non-English-speaking locales.

CAUTION: The library functions that gawk uses for regular expression match-
ing currently recognize only POSIX character classes; they do not recognize
collating symbols or equivalence classes.

Inside a bracket expression, an opening bracket (‘[’) that does not start a character
class, collating element or equivalence class is taken literally. This is also true of ‘.’ and ‘*’.

3.5 How Much Text Matches?

Consider the following:

echo aaaabcd | awk '{ sub(/a+/, "<A>"); print }'

This example uses the sub() function to make a change to the input record. (sub()
replaces the first instance of any text matched by the first argument with the string provided
as the second argument; see Section 9.1.3 [String-Manipulation Functions], page 189.) Here,
the regexp /a+/ indicates “one or more ‘a’ characters,” and the replacement text is ‘<A>’.

The input contains four ‘a’ characters. awk (and POSIX) regular expressions always
match the leftmost, longest sequence of input characters that can match. Thus, all four ‘a’
characters are replaced with ‘<A>’ in this example:

$ echo aaaabcd | awk '{ sub(/a+/, "<A>"); print }'

a <A>bcd

For simple match/no-match tests, this is not so important. But when doing text match-
ing and substitutions with the match(), sub(), gsub(), and gensub() functions, it is very
important. Understanding this principle is also important for regexp-based record and field
splitting (see Section 4.1 [How Input Is Split into Records], page 61, and also see Section 4.5
[Specifying How Fields Are Separated], page 69).

3.6 Using Dynamic Regexps

The righthand side of a ‘~’ or ‘!~’ operator need not be a regexp constant (i.e., a string
of characters between slashes). It may be any expression. The expression is evaluated and
converted to a string if necessary; the contents of the string are then used as the regexp. A
regexp computed in this way is called a dynamic regexp or a computed regexp:

BEGIN { digits_regexp = "[[:digit:]]+" }

$0 ~ digits_regexp { print }

This sets digits_regexp to a regexp that describes one or more digits, and tests whether
the input record matches this regexp.

NOTE:When using the ‘~’ and ‘!~’ operators, be aware that there is a difference
between a regexp constant enclosed in slashes and a string constant enclosed in
double quotes. If you are going to use a string constant, you have to understand
that the string is, in essence, scanned twice: the first time when awk reads your

56 GAWK: Effective AWK Programming

program, and the second time when it goes to match the string on the lefthand
side of the operator with the pattern on the right. This is true of any string-
valued expression (such as digits_regexp, shown in the previous example),
not just string constants.

What difference does it make if the string is scanned twice? The answer has to do
with escape sequences, and particularly with backslashes. To get a backslash into a regular
expression inside a string, you have to type two backslashes.

For example, /*/ is a regexp constant for a literal ‘*’. Only one backslash is needed.
To do the same thing with a string, you have to type "*". The first backslash escapes
the second one so that the string actually contains the two characters ‘\’ and ‘*’.

Given that you can use both regexp and string constants to describe regular expressions,
which should you use? The answer is “regexp constants,” for several reasons:

• String constants are more complicated to write and more difficult to read. Using regexp
constants makes your programs less error-prone. Not understanding the difference
between the two kinds of constants is a common source of errors.

• It is more efficient to use regexp constants. awk can note that you have supplied a
regexp and store it internally in a form that makes pattern matching more efficient.
When using a string constant, awk must first convert the string into this internal form
and then perform the pattern matching.

• Using regexp constants is better form; it shows clearly that you intend a regexp match.� �
Using \n in Bracket Expressions of Dynamic Regexps

Some older versions of awk do not allow the newline character to be used inside a bracket
expression for a dynamic regexp:

$ awk '$0 ~ "[\t\n]"'

error awk: newline in character class [

error]...

error source line number 1

error context is

error $0 ~ "[>>> \t\n]" <<<

But a newline in a regexp constant works with no problem:

$ awk '$0 ~ /[\t\n]/'

here is a sample line

a here is a sample line

Ctrl-d

gawk does not have this problem, and it isn’t likely to occur often in practice, but it’s
worth noting for future reference.
 	
3.7 gawk-Specific Regexp Operators

GNU software that deals with regular expressions provides a number of additional regexp
operators. These operators are described in this section and are specific to gawk; they are
not available in other awk implementations. Most of the additional operators deal with

Chapter 3: Regular Expressions 57

word matching. For our purposes, a word is a sequence of one or more letters, digits, or
underscores (‘_’):

\s Matches any space character as defined by the current locale. Think of it as
shorthand for ‘[[:space:]]’.

\S Matches any character that is not a space, as defined by the current locale.
Think of it as shorthand for ‘[^[:space:]]’.

\w Matches any word-constituent character—that is, it matches any letter, digit,
or underscore. Think of it as shorthand for ‘[[:alnum:]_]’.

\W Matches any character that is not word-constituent. Think of it as shorthand
for ‘[^[:alnum:]_]’.

\< Matches the empty string at the beginning of a word. For example, /\<away/
matches ‘away’ but not ‘stowaway’.

\> Matches the empty string at the end of a word. For example, /stow\>/ matches
‘stow’ but not ‘stowaway’.

\y Matches the empty string at either the beginning or the end of a word (i.e., the
word boundary). For example, ‘\yballs?\y’ matches either ‘ball’ or ‘balls’,
as a separate word.

\B Matches the empty string that occurs between two word-constituent characters.
For example, /\Brat\B/ matches ‘crate’, but it does not match ‘dirty rat’.
‘\B’ is essentially the opposite of ‘\y’.

There are two other operators that work on buffers. In Emacs, a buffer is, naturally, an
Emacs buffer. Other GNU programs, including gawk, consider the entire string to match
as the buffer. The operators are:

\` Matches the empty string at the beginning of a buffer (string)

\' Matches the empty string at the end of a buffer (string)

Because ‘^’ and ‘$’ always work in terms of the beginning and end of strings, these
operators don’t add any new capabilities for awk. They are provided for compatibility with
other GNU software.

In other GNU software, the word-boundary operator is ‘\b’. However, that conflicts
with the awk language’s definition of ‘\b’ as backspace, so gawk uses a different letter. An
alternative method would have been to require two backslashes in the GNU operators, but
this was deemed too confusing. The current method of using ‘\y’ for the GNU ‘\b’ appears
to be the lesser of two evils.

The various command-line options (see Section 2.2 [Command-Line Options], page 31)
control how gawk interprets characters in regexps:

No options
In the default case, gawk provides all the facilities of POSIX regexps and the
previously described GNU regexp operators.

--posix Match only POSIX regexps; the GNU operators are not special (e.g., ‘\w’
matches a literal ‘w’). Interval expressions are allowed.

58 GAWK: Effective AWK Programming

--traditional

Match traditional Unix awk regexps. The GNU operators are not special, and
interval expressions are not available. Because BWK awk supports them, the
POSIX character classes (‘[[:alnum:]]’, etc.) are available. Characters de-
scribed by octal and hexadecimal escape sequences are treated literally, even if
they represent regexp metacharacters.

--re-interval

Allow interval expressions in regexps, if --traditional has been provided.
Otherwise, interval expressions are available by default.

3.8 Case Sensitivity in Matching

Case is normally significant in regular expressions, both when matching ordinary characters
(i.e., not metacharacters) and inside bracket expressions. Thus, a ‘w’ in a regular expression
matches only a lowercase ‘w’ and not an uppercase ‘W’.

The simplest way to do a case-independent match is to use a bracket expression—for
example, ‘[Ww]’. However, this can be cumbersome if you need to use it often, and it can
make the regular expressions harder to read. There are two alternatives that you might
prefer.

One way to perform a case-insensitive match at a particular point in the program is
to convert the data to a single case, using the tolower() or toupper() built-in string
functions (which we haven’t discussed yet; see Section 9.1.3 [String-Manipulation Functions],
page 189). For example:

tolower($1) ~ /foo/ { ... }

converts the first field to lowercase before matching against it. This works in any POSIX-
compliant awk.

Another method, specific to gawk, is to set the variable IGNORECASE to a nonzero value
(see Section 7.5 [Predefined Variables], page 157). When IGNORECASE is not zero, all regexp
and string operations ignore case.

Changing the value of IGNORECASE dynamically controls the case sensitivity of the pro-
gram as it runs. Case is significant by default because IGNORECASE (like most variables) is
initialized to zero:

x = "aB"

if (x ~ /ab/) ... # this test will fail

IGNORECASE = 1

if (x ~ /ab/) ... # now it will succeed

In general, you cannot use IGNORECASE to make certain rules case insensitive and other
rules case sensitive, as there is no straightforward way to set IGNORECASE just for the pattern
of a particular rule.3 To do this, use either bracket expressions or tolower(). However,
one thing you can do with IGNORECASE only is dynamically turn case sensitivity on or off
for all the rules at once.

3 Experienced C and C++ programmers will note that it is possible, using something like ‘IGNORECASE =

1 && /foObAr/ { ... }’ and ‘IGNORECASE = 0 || /foobar/ { ... }’. However, this is somewhat obscure
and we don’t recommend it.

Chapter 3: Regular Expressions 59

IGNORECASE can be set on the command line or in a BEGIN rule (see Section 2.3 [Other
Command-Line Arguments], page 38; also see Section 7.1.4.1 [Startup and Cleanup Actions],
page 144). Setting IGNORECASE from the command line is a way to make a program case
insensitive without having to edit it.

In multibyte locales, the equivalences between upper- and lowercase characters are tested
based on the wide-character values of the locale’s character set. Prior to version 5.0, single-
byte characters were tested based on the ISO-8859-1 (ISO Latin-1) character set. However,
as of version 5.0, single-byte characters are also tested based on the values of the locale’s
character set.4

The value of IGNORECASE has no effect if gawk is in compatibility mode (see Section 2.2
[Command-Line Options], page 31). Case is always significant in compatibility mode.

3.9 Summary

• Regular expressions describe sets of strings to be matched. In awk, regular expression
constants are written enclosed between slashes: /. . ./.

• Regexp constants may be used standalone in patterns and in conditional expressions,
or as part of matching expressions using the ‘~’ and ‘!~’ operators.

• Escape sequences let you represent nonprintable characters and also let you represent
regexp metacharacters as literal characters to be matched.

• Regexp operators provide grouping, alternation, and repetition.

• Bracket expressions give you a shorthand for specifying sets of characters that can
match at a particular point in a regexp. Within bracket expressions, POSIX character
classes let you specify certain groups of characters in a locale-independent fashion.

• Regular expressions match the leftmost longest text in the string being matched. This
matters for cases where you need to know the extent of the match, such as for text
substitution and when the record separator is a regexp.

• Matching expressions may use dynamic regexps (i.e., string values treated as regular
expressions).

• gawk’s IGNORECASE variable lets you control the case sensitivity of regexp matching. In
other awk versions, use tolower() or toupper().

4 If you don’t understand this, don’t worry about it; it just means that gawk does the right thing.

Chapter 4: Reading Input Files 61

4 Reading Input Files

In the typical awk program, awk reads all input either from the standard input (by default,
this is the keyboard, but often it is a pipe from another command) or from files whose names
you specify on the awk command line. If you specify input files, awk reads them in order,
processing all the data from one before going on to the next. The name of the current input
file can be found in the predefined variable FILENAME (see Section 7.5 [Predefined Variables],
page 157).

The input is read in units called records, and is processed by the rules of your program
one record at a time. By default, each record is one line. Each record is automatically split
into chunks called fields. This makes it more convenient for programs to work on the parts
of a record.

On rare occasions, you may need to use the getline command. The getline command
is valuable both because it can do explicit input from any number of files, and because
the files used with it do not have to be named on the awk command line (see Section 4.10
[Explicit Input with getline], page 82).

4.1 How Input Is Split into Records

awk divides the input for your program into records and fields. It keeps track of the number
of records that have been read so far from the current input file. This value is stored in
a predefined variable called FNR, which is reset to zero every time a new file is started.
Another predefined variable, NR, records the total number of input records read so far from
all data files. It starts at zero, but is never automatically reset to zero.

Normally, records are separated by newline characters. You can control how records are
separated by assigning values to the built-in variable RS. If RS is any single character, that
character separates records. Otherwise (in gawk), RS is treated as a regular expression. This
mechanism is explained in greater detail shortly.

4.1.1 Record Splitting with Standard awk

Records are separated by a character called the record separator. By default, the record
separator is the newline character. This is why records are, by default, single lines. To use
a different character for the record separator, simply assign that character to the predefined
variable RS.

Like any other variable, the value of RS can be changed in the awk program with the
assignment operator, ‘=’ (see Section 6.2.3 [Assignment Expressions], page 124). The new
record-separator character should be enclosed in quotation marks, which indicate a string
constant. Often, the right time to do this is at the beginning of execution, before any
input is processed, so that the very first record is read with the proper separator. To do
this, use the special BEGIN pattern (see Section 7.1.4 [The BEGIN and END Special Patterns],
page 144). For example:

awk 'BEGIN { RS = "u" }

{ print $0 }' mail-list

changes the value of RS to ‘u’, before reading any input. The new value is a string whose
first character is the letter “u”; as a result, records are separated by the letter “u”. Then
the input file is read, and the second rule in the awk program (the action with no pattern)

62 GAWK: Effective AWK Programming

prints each record. Because each print statement adds a newline at the end of its output,
this awk program copies the input with each ‘u’ changed to a newline. Here are the results
of running the program on mail-list:

$ awk 'BEGIN { RS = "u" }

> { print $0 }' mail-list

a Amelia 555-5553 amelia.zodiac

a sq

a e@gmail.com F

a Anthony 555-3412 anthony.assert

a ro@hotmail.com A

a Becky 555-7685 becky.algebrar

a m@gmail.com A

a Bill 555-1675 bill.drowning@hotmail.com A

a Broderick 555-0542 broderick.aliq

a otiens@yahoo.com R

a Camilla 555-2912 camilla.inf

a sar

a m@skynet.be R

a Fabi

a s 555-1234 fabi

a s.

a ndevicesim

a s@

a cb.ed

a F

a J

a lie 555-6699 j

a lie.perscr

a tabor@skeeve.com F

a Martin 555-6480 martin.codicib

a s@hotmail.com A

a Sam

a el 555-3430 sam

a el.lanceolis@sh

a .ed

a A

a Jean-Pa

a l 555-2127 jeanpa

a l.campanor

a m@ny

a .ed

a R

a
Note that the entry for the name ‘Bill’ is not split. In the original data file (see Section 1.2
[Data files for the Examples], page 23), the line looks like this:

Bill 555-1675 bill.drowning@hotmail.com A

Chapter 4: Reading Input Files 63

It contains no ‘u’, so there is no reason to split the record, unlike the others, which each
have one or more occurrences of the ‘u’. In fact, this record is treated as part of the previous
record; the newline separating them in the output is the original newline in the data file,
not the one added by awk when it printed the record!

Another way to change the record separator is on the command line, using the variable-
assignment feature (see Section 2.3 [Other Command-Line Arguments], page 38):

awk '{ print $0 }' RS="u" mail-list

This sets RS to ‘u’ before processing mail-list.

Using an alphabetic character such as ‘u’ for the record separator is highly likely to
produce strange results. Using an unusual character such as ‘/’ is more likely to produce
correct behavior in the majority of cases, but there are no guarantees. The moral is: Know
Your Data.

gawk allows RS to be a full regular expression (discussed shortly; see Section 4.1.2 [Record
Splitting with gawk], page 63). Even so, using a regular expression metacharacter, such as
‘.’ as the single character in the value of RS has no special effect: it is treated literally. This
is required for backwards compatibility with both Unix awk and with POSIX.

When using regular characters as the record separator, there is one unusual case that
occurs when gawk is being fully POSIX-compliant (see Section 2.2 [Command-Line Options],
page 31). Then, the following (extreme) pipeline prints a surprising ‘1’:

$ echo | gawk --posix 'BEGIN { RS = "a" } ; { print NF }'

a 1

There is one field, consisting of a newline. The value of the built-in variable NF is the
number of fields in the current record. (In the normal case, gawk treats the newline as
whitespace, printing ‘0’ as the result. Most other versions of awk also act this way.)

Reaching the end of an input file terminates the current input record, even if the last
character in the file is not the character in RS.

The empty string "" (a string without any characters) has a special meaning as the value
of RS. It means that records are separated by one or more blank lines and nothing else. See
Section 4.9 [Multiple-Line Records], page 80, for more details.

If you change the value of RS in the middle of an awk run, the new value is used to
delimit subsequent records, but the record currently being processed, as well as records
already processed, are not affected.

After the end of the record has been determined, gawk sets the variable RT to the text
in the input that matched RS.

4.1.2 Record Splitting with gawk

When using gawk, the value of RS is not limited to a one-character string. If it contains more
than one character, it is treated as a regular expression (see Chapter 3 [Regular Expressions],
page 47). (c.e.) In general, each record ends at the next string that matches the regular
expression; the next record starts at the end of the matching string. This general rule is
actually at work in the usual case, where RS contains just a newline: a record ends at the
beginning of the next matching string (the next newline in the input), and the following
record starts just after the end of this string (at the first character of the following line).
The newline, because it matches RS, is not part of either record.

64 GAWK: Effective AWK Programming

When RS is a single character, RT contains the same single character. However, when RS is
a regular expression, RT contains the actual input text that matched the regular expression.

If the input file ends without any text matching RS, gawk sets RT to the null string.

The following example illustrates both of these features. It sets RS equal to a regular
expression that matches either a newline or a series of one or more uppercase letters with
optional leading and/or trailing whitespace:

$ echo record 1 AAAA record 2 BBBB record 3 |

> gawk 'BEGIN { RS = "\n|(*[[:upper:]]+ *)" }

> { print "Record =", $0,"and RT = [" RT "]" }'

a Record = record 1 and RT = [AAAA]

a Record = record 2 and RT = [BBBB]

a Record = record 3 and RT = [

a]

The square brackets delineate the contents of RT, letting you see the leading and trailing
whitespace. The final value of RT is a newline. See Section 11.3.8 [A Simple Stream Editor],
page 302, for a more useful example of RS as a regexp and RT.

If you set RS to a regular expression that allows optional trailing text, such as ‘RS =

"abc(XYZ)?"’, it is possible, due to implementation constraints, that gawk may match the
leading part of the regular expression, but not the trailing part, particularly if the input
text that could match the trailing part is fairly long. gawk attempts to avoid this problem,
but currently, there’s no guarantee that this will never happen.

NOTE: Remember that in awk, the ‘^’ and ‘$’ anchor metacharacters match the
beginning and end of a string, and not the beginning and end of a line. As a
result, something like ‘RS = "^[[:upper:]]"’ can only match at the beginning
of a file. This is because gawk views the input file as one long string that happens
to contain newline characters. It is thus best to avoid anchor metacharacters
in the value of RS.

The use of RS as a regular expression and the RT variable are gawk extensions; they are
not available in compatibility mode (see Section 2.2 [Command-Line Options], page 31). In
compatibility mode, only the first character of the value of RS determines the end of the
record.

mawk has allowed RS to be a regexp for decades. As of October, 2019, BWK awk also
supports it. Neither version supplies RT, however.

Chapter 4: Reading Input Files 65

� �
RS = "\0" Is Not Portable

There are times when you might want to treat an entire data file as a single record. The
only way to make this happen is to give RS a value that you know doesn’t occur in the input
file. This is hard to do in a general way, such that a program always works for arbitrary
input files.

You might think that for text files, the nul character, which consists of a character with
all bits equal to zero, is a good value to use for RS in this case:

BEGIN { RS = "\0" } # whole file becomes one record?

gawk in fact accepts this, and uses the nul character for the record separator. This
works for certain special files, such as /proc/environ on GNU/Linux systems, where the
nul character is in fact the record separator. However, this usage is not portable to most
other awk implementations.

Almost all other awk implementations1 store strings internally as C-style strings. C
strings use the nul character as the string terminator. In effect, this means that ‘RS =

"\0"’ is the same as ‘RS = ""’.

It happens that recent versions of mawk can use the nul character as a record separator.
However, this is a special case: mawk does not allow embedded nul characters in strings.
(This may change in a future version of mawk.)

See Section 10.2.8 [Reading a Whole File at Once], page 243, for an interesting way
to read whole files. If you are using gawk, see Section 17.7.10 [Reading an Entire File],
page 440, for another option.
 	
4.2 Examining Fields

When awk reads an input record, the record is automatically parsed or separated by the awk
utility into chunks called fields. By default, fields are separated by whitespace, like words in
a line. Whitespace in awk means any string of one or more spaces, TABs, or newlines; other
characters that are considered whitespace by other languages (such as formfeed, vertical
tab, etc.) are not considered whitespace by awk.

The purpose of fields is to make it more convenient for you to refer to these pieces of the
record. You don’t have to use them—you can operate on the whole record if you want—but
fields are what make simple awk programs so powerful.

You use a dollar sign (‘$’) to refer to a field in an awk program, followed by the number
of the field you want. Thus, $1 refers to the first field, $2 to the second, and so on. (Unlike
in the Unix shells, the field numbers are not limited to single digits. $127 is the 127th field
in the record.) For example, suppose the following is a line of input:

This seems like a pretty nice example.

Here the first field, or $1, is ‘This’, the second field, or $2, is ‘seems’, and so on. Note that
the last field, $7, is ‘example.’. Because there is no space between the ‘e’ and the ‘.’, the
period is considered part of the seventh field.

NF is a predefined variable whose value is the number of fields in the current record. awk
automatically updates the value of NF each time it reads a record. No matter how many
fields there are, the last field in a record can be represented by $NF. So, $NF is the same as

1 At least that we know about.

66 GAWK: Effective AWK Programming

$7, which is ‘example.’. If you try to reference a field beyond the last one (such as $8 when
the record has only seven fields), you get the empty string. (If used in a numeric operation,
you get zero.)

The use of $0, which looks like a reference to the “zeroth” field, is a special case: it
represents the whole input record. Use it when you are not interested in specific fields.
Here are some more examples:

$ awk '$1 ~ /li/ { print $0 }' mail-list

a Amelia 555-5553 amelia.zodiacusque@gmail.com F

a Julie 555-6699 julie.perscrutabor@skeeve.com F

This example prints each record in the file mail-list whose first field contains the string
‘li’.

By contrast, the following example looks for ‘li’ in the entire record and prints the first
and last fields for each matching input record:

$ awk '/li/ { print $1, $NF }' mail-list

a Amelia F

a Broderick R

a Julie F

a Samuel A

4.3 Nonconstant Field Numbers

A field number need not be a constant. Any expression in the awk language can be used
after a ‘$’ to refer to a field. The value of the expression specifies the field number. If the
value is a string, rather than a number, it is converted to a number. Consider this example:

awk '{ print $NR }'

Recall that NR is the number of records read so far: one in the first record, two in the second,
and so on. So this example prints the first field of the first record, the second field of the
second record, and so on. For the twentieth record, field number 20 is printed; most likely,
the record has fewer than 20 fields, so this prints a blank line. Here is another example of
using expressions as field numbers:

awk '{ print $(2*2) }' mail-list

awk evaluates the expression ‘(2*2)’ and uses its value as the number of the field to print.
The ‘*’ represents multiplication, so the expression ‘2*2’ evaluates to four. The parentheses
are used so that the multiplication is done before the ‘$’ operation; they are necessary
whenever there is a binary operator2 in the field-number expression. This example, then,
prints the type of relationship (the fourth field) for every line of the file mail-list. (All
of the awk operators are listed, in order of decreasing precedence, in Section 6.5 [Operator
Precedence (How Operators Nest)], page 137.)

If the field number you compute is zero, you get the entire record. Thus, ‘$(2-2)’ has the
same value as $0. Negative field numbers are not allowed; trying to reference one usually
terminates the program. (The POSIX standard does not define what happens when you
reference a negative field number. gawk notices this and terminates your program. Other
awk implementations may behave differently.)

2 A binary operator, such as ‘*’ for multiplication, is one that takes two operands. The distinction is
required because awk also has unary (one-operand) and ternary (three-operand) operators.

Chapter 4: Reading Input Files 67

As mentioned in Section 4.2 [Examining Fields], page 65, awk stores the current record’s
number of fields in the built-in variable NF (also see Section 7.5 [Predefined Variables],
page 157). Thus, the expression $NF is not a special feature—it is the direct consequence
of evaluating NF and using its value as a field number.

4.4 Changing the Contents of a Field

The contents of a field, as seen by awk, can be changed within an awk program; this changes
what awk perceives as the current input record. (The actual input is untouched; awk never
modifies the input file.) Consider the following example and its output:

$ awk '{ nboxes = $3 ; $3 = $3 - 10

> print nboxes, $3 }' inventory-shipped

a 25 15

a 32 22

a 24 14

...

The program first saves the original value of field three in the variable nboxes. The ‘-’
sign represents subtraction, so this program reassigns field three, $3, as the original value
of field three minus ten: ‘$3 - 10’. (See Section 6.2.1 [Arithmetic Operators], page 122.)
Then it prints the original and new values for field three. (Someone in the warehouse made
a consistent mistake while inventorying the red boxes.)

For this to work, the text in $3 must make sense as a number; the string of characters
must be converted to a number for the computer to do arithmetic on it. The number
resulting from the subtraction is converted back to a string of characters that then becomes
field three. See Section 6.1.4 [Conversion of Strings and Numbers], page 119.

When the value of a field is changed (as perceived by awk), the text of the input record
is recalculated to contain the new field where the old one was. In other words, $0 changes
to reflect the altered field. Thus, this program prints a copy of the input file, with 10
subtracted from the second field of each line:

$ awk '{ $2 = $2 - 10; print $0 }' inventory-shipped

a Jan 3 25 15 115

a Feb 5 32 24 226

a Mar 5 24 34 228

...

It is also possible to assign contents to fields that are out of range. For example:

$ awk '{ $6 = ($5 + $4 + $3 + $2)
> print $6 }' inventory-shipped

a 168

a 297

a 301

...

We’ve just created $6, whose value is the sum of fields $2, $3, $4, and $5. The ‘+’ sign
represents addition. For the file inventory-shipped, $6 represents the total number of
parcels shipped for a particular month.

Creating a new field changes awk’s internal copy of the current input record, which is
the value of $0. Thus, if you do ‘print $0’ after adding a field, the record printed includes

68 GAWK: Effective AWK Programming

the new field, with the appropriate number of field separators between it and the previously
existing fields.

This recomputation affects and is affected by NF (the number of fields; see Section 4.2
[Examining Fields], page 65). For example, the value of NF is set to the number of the
highest field you create. The exact format of $0 is also affected by a feature that has
not been discussed yet: the output field separator, OFS, used to separate the fields (see
Section 5.3 [Output Separators], page 95).

Note, however, that merely referencing an out-of-range field does not change the value
of either $0 or NF. Referencing an out-of-range field only produces an empty string. For
example:

if ($(NF+1) != "")

print "can't happen"

else

print "everything is normal"

should print ‘everything is normal’, because NF+1 is certain to be out of range. (See
Section 7.4.1 [The if-else Statement], page 148, for more information about awk’s if-else
statements. See Section 6.3.2 [Variable Typing and Comparison Expressions], page 128, for
more information about the ‘!=’ operator.)

It is important to note that making an assignment to an existing field changes the value
of $0 but does not change the value of NF, even when you assign the empty string to a field.
For example:

$ echo a b c d | awk '{ OFS = ":"; $2 = ""

> print $0; print NF }'

a a::c:d

a 4

The field is still there; it just has an empty value, delimited by the two colons between ‘a’
and ‘c’. This example shows what happens if you create a new field:

$ echo a b c d | awk '{ OFS = ":"; $2 = ""; $6 = "new"

> print $0; print NF }'

a a::c:d::new

a 6

The intervening field, $5, is created with an empty value (indicated by the second pair of
adjacent colons), and NF is updated with the value six.

Decrementing NF throws away the values of the fields after the new value of NF and
recomputes $0. Here is an example:

$ echo a b c d e f | awk '{ print "NF =", NF;

> NF = 3; print $0 }'

a NF = 6

a a b c

CAUTION: Some versions of awk don’t rebuild $0 when NF is decremented.
Until August, 2018, this included BWK awk; fortunately his version now handles
this correctly.

Finally, there are times when it is convenient to force awk to rebuild the entire record,
using the current values of the fields and OFS. To do this, use the seemingly innocuous
assignment:

Chapter 4: Reading Input Files 69

$1 = $1 # force record to be reconstituted

print $0 # or whatever else with $0

This forces awk to rebuild the record. It does help to add a comment, as we’ve shown here.

There is a flip side to the relationship between $0 and the fields. Any assignment to $0

causes the record to be reparsed into fields using the current value of FS. This also applies
to any built-in function that updates $0, such as sub() and gsub() (see Section 9.1.3
[String-Manipulation Functions], page 189).� �

Understanding $0

It is important to remember that $0 is the full record, exactly as it was read from the
input. This includes any leading or trailing whitespace, and the exact whitespace (or other
characters) that separates the fields.

It is a common error to try to change the field separators in a record simply by setting
FS and OFS, and then expecting a plain ‘print’ or ‘print $0’ to print the modified record.

But this does not work, because nothing was done to change the record itself. Instead,
you must force the record to be rebuilt, typically with a statement such as ‘$1 = $1’, as
described earlier.
 	
4.5 Specifying How Fields Are Separated

The field separator, which is either a single character or a regular expression, controls the
way awk splits an input record into fields. awk scans the input record for character sequences
that match the separator; the fields themselves are the text between the matches.

In the examples that follow, we use the bullet symbol (•) to represent spaces in the
output. If the field separator is ‘oo’, then the following line:

moo goo gai pan

is split into three fields: ‘m’, ‘•g’, and ‘•gai•pan’. Note the leading spaces in the values of
the second and third fields.

The field separator is represented by the predefined variable FS. Shell programmers take
note: awk does not use the name IFS that is used by the POSIX-compliant shells (such as
the Unix Bourne shell, sh, or Bash).

The value of FS can be changed in the awk program with the assignment operator, ‘=’
(see Section 6.2.3 [Assignment Expressions], page 124). Often, the right time to do this is
at the beginning of execution before any input has been processed, so that the very first
record is read with the proper separator. To do this, use the special BEGIN pattern (see
Section 7.1.4 [The BEGIN and END Special Patterns], page 144). For example, here we set
the value of FS to the string ",":

awk 'BEGIN { FS = "," } ; { print $2 }'

Given the input line:

John Q. Smith, 29 Oak St., Walamazoo, MI 42139

this awk program extracts and prints the string ‘•29•Oak•St.’.
Sometimes the input data contains separator characters that don’t separate fields the

way you thought they would. For instance, the person’s name in the example we just used
might have a title or suffix attached, such as:

70 GAWK: Effective AWK Programming

John Q. Smith, LXIX, 29 Oak St., Walamazoo, MI 42139

The same program would extract ‘•LXIX’ instead of ‘•29•Oak•St.’. If you were expecting
the program to print the address, you would be surprised. The moral is to choose your data
layout and separator characters carefully to prevent such problems. (If the data is not in a
form that is easy to process, perhaps you can massage it first with a separate awk program.)

4.5.1 Whitespace Normally Separates Fields

Fields are normally separated by whitespace sequences (spaces, TABs, and newlines), not
by single spaces. Two spaces in a row do not delimit an empty field. The default value of
the field separator FS is a string containing a single space, " ". If awk interpreted this value
in the usual way, each space character would separate fields, so two spaces in a row would
make an empty field between them. The reason this does not happen is that a single space
as the value of FS is a special case—it is taken to specify the default manner of delimiting
fields.

If FS is any other single character, such as ",", then each occurrence of that character
separates two fields. Two consecutive occurrences delimit an empty field. If the character
occurs at the beginning or the end of the line, that too delimits an empty field. The space
character is the only single character that does not follow these rules.

4.5.2 Using Regular Expressions to Separate Fields

The previous subsection discussed the use of single characters or simple strings as the value
of FS. More generally, the value of FS may be a string containing any regular expression. In
this case, each match in the record for the regular expression separates fields. For example,
the assignment:

FS = ", \t"

makes every area of an input line that consists of a comma followed by a space and a TAB
into a field separator.

For a less trivial example of a regular expression, try using single spaces to separate
fields the way single commas are used. FS can be set to "[]" (left bracket, space, right
bracket). This regular expression matches a single space and nothing else (see Chapter 3
[Regular Expressions], page 47).

There is an important difference between the two cases of ‘FS = " "’ (a single space) and
‘FS = "[\t\n]+"’ (a regular expression matching one or more spaces, TABs, or newlines).
For both values of FS, fields are separated by runs (multiple adjacent occurrences) of spaces,
TABs, and/or newlines. However, when the value of FS is " ", awk first strips leading and
trailing whitespace from the record and then decides where the fields are. For example, the
following pipeline prints ‘b’:

$ echo ' a b c d ' | awk '{ print $2 }'

a b

However, this pipeline prints ‘a’ (note the extra spaces around each letter):

$ echo ' a b c d ' | awk 'BEGIN { FS = "[\t\n]+" }

> { print $2 }'

a a

In this case, the first field is null, or empty.

Chapter 4: Reading Input Files 71

The stripping of leading and trailing whitespace also comes into play whenever $0 is
recomputed. For instance, study this pipeline:

$ echo ' a b c d' | awk '{ print; $2 = $2; print }'

a a b c d

a a b c d

The first print statement prints the record as it was read, with leading whitespace intact.
The assignment to $2 rebuilds $0 by concatenating $1 through $NF together, separated by
the value of OFS (which is a space by default). Because the leading whitespace was ignored
when finding $1, it is not part of the new $0. Finally, the last print statement prints the
new $0.

There is an additional subtlety to be aware of when using regular expressions for field
splitting. It is not well specified in the POSIX standard, or anywhere else, what ‘^’ means
when splitting fields. Does the ‘^’ match only at the beginning of the entire record? Or
is each field separator a new string? It turns out that different awk versions answer this
question differently, and you should not rely on any specific behavior in your programs.

As a point of information, BWK awk allows ‘^’ to match only at the beginning of the
record. gawk also works this way. For example:

$ echo 'xxAA xxBxx C' |

> gawk -F '(^x+)|(+)' '{ for (i = 1; i <= NF; i++)

> printf "-->%s<--\n", $i }'

a --><--

a -->AA<--

a -->xxBxx<--

a -->C<--

4.5.3 Making Each Character a Separate Field

There are times when you may want to examine each character of a record separately. This
can be done in gawk by simply assigning the null string ("") to FS. (c.e.) In this case, each
individual character in the record becomes a separate field. For example:

$ echo a b | gawk 'BEGIN { FS = "" }

> {

> for (i = 1; i <= NF; i = i + 1)

> print "Field", i, "is", $i
> }'

a Field 1 is a

a Field 2 is

a Field 3 is b

Traditionally, the behavior of FS equal to "" was not defined. In this case, most versions
of Unix awk simply treat the entire record as only having one field. In compatibility mode
(see Section 2.2 [Command-Line Options], page 31), if FS is the null string, then gawk also
behaves this way.

4.5.4 Setting FS from the Command Line

FS can be set on the command line. Use the -F option to do so. For example:

awk -F, 'program' input-files

72 GAWK: Effective AWK Programming

sets FS to the ‘,’ character. Notice that the option uses an uppercase ‘F’ instead of a
lowercase ‘f’. The latter option (-f) specifies a file containing an awk program.

The value used for the argument to -F is processed in exactly the same way as assign-
ments to the predefined variable FS. Any special characters in the field separator must be
escaped appropriately. For example, to use a ‘\’ as the field separator on the command
line, you would have to type:

same as FS = "\\"

awk -F\\\\ '...' files ...

Because ‘\’ is used for quoting in the shell, awk sees ‘-F\\’. Then awk processes the ‘\\’ for
escape characters (see Section 3.2 [Escape Sequences], page 48), finally yielding a single ‘\’
to use for the field separator.

As a special case, in compatibility mode (see Section 2.2 [Command-Line Options],
page 31), if the argument to -F is ‘t’, then FS is set to the TAB character. If you type
‘-F\t’ at the shell, without any quotes, the ‘\’ gets deleted, so awk figures that you really
want your fields to be separated with TABs and not ‘t’s. Use ‘-v FS="t"’ or ‘-F"[t]"’
on the command line if you really do want to separate your fields with ‘t’s. Use ‘-F '\t'’
when not in compatibility mode to specify that TABs separate fields.

As an example, let’s use an awk program file called edu.awk that contains the pattern
/edu/ and the action ‘print $1’:

/edu/ { print $1 }

Let’s also set FS to be the ‘-’ character and run the program on the file mail-list.
The following command prints a list of the names of the people that work at or attend a
university, and the first three digits of their phone numbers:

$ awk -F- -f edu.awk mail-list

a Fabius 555

a Samuel 555

a Jean

Note the third line of output. The third line in the original file looked like this:

Jean-Paul 555-2127 jeanpaul.campanorum@nyu.edu R

The ‘-’ as part of the person’s name was used as the field separator, instead of the ‘-’
in the phone number that was originally intended. This demonstrates why you have to be
careful in choosing your field and record separators.

Perhaps the most common use of a single character as the field separator occurs when
processing the Unix system password file. On many Unix systems, each user has a separate
entry in the system password file, with one line per user. The information in these lines
is separated by colons. The first field is the user’s login name and the second is the user’s
encrypted or shadow password. (A shadow password is indicated by the presence of a single
‘x’ in the second field.) A password file entry might look like this:

arnold:x:2076:10:Arnold Robbins:/home/arnold:/bin/bash

The following program searches the system password file and prints the entries for users
whose full name is not indicated:

awk -F: '$5 == ""' /etc/passwd

Chapter 4: Reading Input Files 73

4.5.5 Making the Full Line Be a Single Field

Occasionally, it’s useful to treat the whole input line as a single field. This can be done
easily and portably simply by setting FS to "\n" (a newline):3

awk -F'\n' 'program' files ...

When you do this, $1 is the same as $0.� �
Changing FS Does Not Affect the Fields

According to the POSIX standard, awk is supposed to behave as if each record is split
into fields at the time it is read. In particular, this means that if you change the value of
FS after a record is read, the values of the fields (i.e., how they were split) should reflect
the old value of FS, not the new one.

However, many older implementations of awk do not work this way. Instead, they defer
splitting the fields until a field is actually referenced. The fields are split using the current
value of FS! This behavior can be difficult to diagnose. The following example illustrates
the difference between the two methods:

sed 1q /etc/passwd | awk '{ FS = ":" ; print $1 }'

which usually prints:

root

on an incorrect implementation of awk, while gawk prints the full first line of the file,
something like:

root:x:0:0:Root:/:

(The sed4 command prints just the first line of /etc/passwd.)
 	
4.5.6 Field-Splitting Summary

It is important to remember that when you assign a string constant as the value of FS,
it undergoes normal awk string processing. For example, with Unix awk and gawk, the
assignment ‘FS = "\.."’ assigns the character string ".." to FS (the backslash is stripped).
This creates a regexp meaning “fields are separated by occurrences of any two characters.”
If instead you want fields to be separated by a literal period followed by any single character,
use ‘FS = "\\.."’.

The following list summarizes how fields are split, based on the value of FS (‘==’ means
“is equal to”):

FS == " " Fields are separated by runs of whitespace. Leading and trailing whitespace
are ignored. This is the default.

FS == any other single character

Fields are separated by each occurrence of the character. Multiple successive
occurrences delimit empty fields, as do leading and trailing occurrences. The
character can even be a regexp metacharacter; it does not need to be escaped.

3 Thanks to Andrew Schorr for this tip.
4 The sed utility is a “stream editor.” Its behavior is also defined by the POSIX standard.

74 GAWK: Effective AWK Programming

FS == regexp

Fields are separated by occurrences of characters that match regexp. Leading
and trailing matches of regexp delimit empty fields.

FS == "" Each individual character in the record becomes a separate field. (This is a
common extension; it is not specified by the POSIX standard.)� �

FS and IGNORECASE

The IGNORECASE variable (see Section 7.5.1 [Built-in Variables That Control awk],
page 157) affects field splitting only when the value of FS is a regexp. It has no effect when
FS is a single character, even if that character is a letter. Thus, in the following code:

FS = "c"

IGNORECASE = 1

$0 = "aCa"

print $1

The output is ‘aCa’. If you really want to split fields on an alphabetic character while ignor-
ing case, use a regexp that will do it for you (e.g., ‘FS = "[c]"’). In this case, IGNORECASE
will take effect.
 	
4.6 Reading Fixed-Width Data

This section discusses an advanced feature of gawk. If you are a novice awk user, you might
want to skip it on the first reading.

gawk provides a facility for dealing with fixed-width fields with no distinctive field sep-
arator. We discuss this feature in the following subsections.

4.6.1 Processing Fixed-Width Data

An example of fixed-width data would be the input for old Fortran programs where numbers
are run together, or the output of programs that did not anticipate the use of their output
as input for other programs.

An example of the latter is a table where all the columns are lined up by the use of
a variable number of spaces and empty fields are just spaces. Clearly, awk’s normal field
splitting based on FS does not work well in this case. Although a portable awk program
can use a series of substr() calls on $0 (see Section 9.1.3 [String-Manipulation Functions],
page 189), this is awkward and inefficient for a large number of fields.

The splitting of an input record into fixed-width fields is specified by assigning a string
containing space-separated numbers to the built-in variable FIELDWIDTHS. Each number
specifies the width of the field, including columns between fields. If you want to ignore the
columns between fields, you can specify the width as a separate field that is subsequently
ignored. It is a fatal error to supply a field width that has a negative value.

The following data is the output of the Unix w utility. It is useful to illustrate the use of
FIELDWIDTHS:

Chapter 4: Reading Input Files 75

10:06pm up 21 days, 14:04, 23 users

User tty login idle JCPU PCPU what

hzuo ttyV0 8:58pm 9 5 vi p24.tex

hzang ttyV3 6:37pm 50 -csh

eklye ttyV5 9:53pm 7 1 em thes.tex

dportein ttyV6 8:17pm 1:47 -csh

gierd ttyD3 10:00pm 1 elm

dave ttyD4 9:47pm 4 4 w

brent ttyp0 26Jun91 4:46 26:46 4:41 bash

dave ttyq4 26Jun9115days 46 46 wnewmail

The following program takes this input, converts the idle time to number of seconds,
and prints out the first two fields and the calculated idle time:

BEGIN { FIELDWIDTHS = "9 6 10 6 7 7 35" }

NR > 2 {

idle = $4

sub(/^ +/, "", idle) # strip leading spaces

if (idle == "")

idle = 0

if (idle ~ /:/) { # hh:mm

split(idle, t, ":")

idle = t[1] * 60 + t[2]

}

if (idle ~ /days/)

idle *= 24 * 60 * 60

print $1, $2, idle

}

NOTE: The preceding program uses a number of awk features that haven’t been
introduced yet.

Running the program on the data produces the following results:

hzuo ttyV0 0

hzang ttyV3 50

eklye ttyV5 0

dportein ttyV6 107

gierd ttyD3 1

dave ttyD4 0

brent ttyp0 286

dave ttyq4 1296000

Another (possibly more practical) example of fixed-width input data is the input from
a deck of balloting cards. In some parts of the United States, voters mark their choices by
punching holes in computer cards. These cards are then processed to count the votes for
any particular candidate or on any particular issue. Because a voter may choose not to vote
on some issue, any column on the card may be empty. An awk program for processing such
data could use the FIELDWIDTHS feature to simplify reading the data. (Of course, getting
gawk to run on a system with card readers is another story!)

76 GAWK: Effective AWK Programming

4.6.2 Skipping Intervening Fields

Starting in version 4.2, each field width may optionally be preceded by a colon-separated
value specifying the number of characters to skip before the field starts. Thus, the preceding
program could be rewritten to specify FIELDWIDTHS like so:

BEGIN { FIELDWIDTHS = "8 1:5 4:7 6 1:6 1:6 2:33" }

This strips away some of the white space separating the fields. With such a change, the
program produces the following results:

hzang ttyV3 50

eklye ttyV5 0

dportein ttyV6 107

gierd ttyD3 1

dave ttyD4 0

brent ttyp0 286

dave ttyq4 1296000

4.6.3 Capturing Optional Trailing Data

There are times when fixed-width data may be followed by additional data that has no fixed
length. Such data may or may not be present, but if it is, it should be possible to get at it
from an awk program.

Starting with version 4.2, in order to provide a way to say “anything else in the record
after the defined fields,” gawk allows you to add a final ‘*’ character to the value of
FIELDWIDTHS. There can only be one such character, and it must be the final non-whitespace
character in FIELDWIDTHS. For example:

$ cat fw.awk Show the program
a BEGIN { FIELDWIDTHS = "2 2 *" }

a { print NF, $1, $2, $3 }

$ cat fw.in Show sample input
a 1234abcdefghi

$ gawk -f fw.awk fw.in Run the program
a 3 12 34 abcdefghi

4.6.4 Field Values With Fixed-Width Data

So far, so good. But what happens if there isn’t as much data as there should be based on
the contents of FIELDWIDTHS? Or, what happens if there is more data than expected?

For many years, what happens in these cases was not well defined. Starting with version
4.2, the rules are as follows:

Enough data for some fields
For example, if FIELDWIDTHS is set to "2 3 4" and the input record is ‘aabbb’.
In this case, NF is set to two.

Not enough data for a field
For example, if FIELDWIDTHS is set to "2 3 4" and the input record is ‘aab’.
In this case, NF is set to two and $2 has the value "b". The idea is that even
though there aren’t as many characters as were expected, there are some, so
the data should be made available to the program.

Chapter 4: Reading Input Files 77

Too much data
For example, if FIELDWIDTHS is set to "2 3 4" and the input record is
‘aabbbccccddd’. In this case, NF is set to three and the extra characters
(‘ddd’) are ignored. If you want gawk to capture the extra characters, supply a
final ‘*’ in the value of FIELDWIDTHS.

Too much data, but with ‘*’ supplied
For example, if FIELDWIDTHS is set to "2 3 4 *" and the input record is
‘aabbbccccddd’. In this case, NF is set to four, and $4 has the value "ddd".

4.7 Defining Fields by Content

This section discusses an advanced feature of gawk. If you are a novice awk user, you might
want to skip it on the first reading.

Normally, when using FS, gawk defines the fields as the parts of the record that occur in
between each field separator. In other words, FS defines what a field is not, instead of what
a field is. However, there are times when you really want to define the fields by what they
are, and not by what they are not.

The most notorious such case is so-called comma-separated values (CSV) data. Many
spreadsheet programs, for example, can export their data into text files, where each record
is terminated with a newline, and fields are separated by commas. If commas only separated
the data, there wouldn’t be an issue. The problem comes when one of the fields contains
an embedded comma. In such cases, most programs embed the field in double quotes.5 So,
we might have data like this:

Robbins,Arnold,"1234 A Pretty Street, NE",MyTown,MyState,12345-6789,USA

The FPAT variable offers a solution for cases like this. The value of FPAT should be a
string that provides a regular expression. This regular expression describes the contents of
each field.

In the case of CSV data as presented here, each field is either “anything that is not
a comma,” or “a double quote, anything that is not a double quote, and a closing double
quote.” (There are more complicated definitions of CSV data, treated shortly.) If written as
a regular expression constant (see Chapter 3 [Regular Expressions], page 47), we would have
/([^,]+)|("[^"]+")/. Writing this as a string requires us to escape the double quotes,
leading to:

FPAT = "([^,]+)|(\"[^\"]+\")"

Putting this to use, here is a simple program to parse the data:

BEGIN {

FPAT = "([^,]+)|(\"[^\"]+\")"

}

5 The CSV format lacked a formal standard definition for many years. RFC 4180 standardizes the most
common practices.

http://www.ietf.org/rfc/rfc4180.txt

78 GAWK: Effective AWK Programming

{

print "NF = ", NF

for (i = 1; i <= NF; i++) {

printf("$%d = <%s>\n", i, $i)

}

}

When run, we get the following:

$ gawk -f simple-csv.awk addresses.csv

NF = 7

$1 = <Robbins>

$2 = <Arnold>

$3 = <"1234 A Pretty Street, NE">

$4 = <MyTown>

$5 = <MyState>

$6 = <12345-6789>

$7 = <USA>

Note the embedded comma in the value of $3.

A straightforward improvement when processing CSV data of this sort would be to
remove the quotes when they occur, with something like this:

if (substr($i, 1, 1) == "\"") {

len = length($i)

$i = substr($i, 2, len - 2) # Get text within the two quotes

}

NOTE: Some programs export CSV data that contains embedded newlines
between the double quotes. gawk provides no way to deal with this. Even
though a formal specification for CSV data exists, there isn’t much more to
be done; the FPAT mechanism provides an elegant solution for the majority of
cases, and the gawk developers are satisfied with that.

As written, the regexp used for FPAT requires that each field contain at least one charac-
ter. A straightforward modification (changing the first ‘+’ to ‘*’) allows fields to be empty:

FPAT = "([^,]*)|(\"[^\"]+\")"

As with FS, the IGNORECASE variable (see Section 7.5.1 [Built-in Variables That Control
awk], page 157) affects field splitting with FPAT.

Assigning a value to FPAT overrides field splitting with FS and with FIELDWIDTHS.

Finally, the patsplit() function makes the same functionality available for splitting
regular strings (see Section 9.1.3 [String-Manipulation Functions], page 189).

4.7.1 More on CSV Files

Manuel Collado notes that in addition to commas, a CSV field can also contains quotes,
that have to be escaped by doubling them. The previously described regexps fail to accept
quoted fields with both commas and quotes inside. He suggests that the simplest FPAT

expression that recognizes this kind of fields is /([^,]*)|("([^"]|"")+")/. He provides
the following input data to test these variants:

p,"q,r",s

Chapter 4: Reading Input Files 79

p,"q""r",s

p,"q,""r",s

p,"",s

p,,s

And here is his test program:

BEGIN {

fp[0] = "([^,]+)|(\"[^\"]+\")"

fp[1] = "([^,]*)|(\"[^\"]+\")"

fp[2] = "([^,]*)|(\"([^\"]|\"\")+\")"

FPAT = fp[fpat+0]

}

{

print "<" $0 ">"

printf("NF = %s ", NF)

for (i = 1; i <= NF; i++) {

printf("<%s>", $i)

}

print ""

}

When run on the third variant, it produces:

$ gawk -v fpat=2 -f test-csv.awk sample.csv

a <p,"q,r",s>

a NF = 3 <p><"q,r"><s>

a <p,"q""r",s>

a NF = 3 <p><"q""r"><s>

a <p,"q,""r",s>

a NF = 3 <p><"q,""r"><s>

a <p,"",s>

a NF = 3 <p><""><s>

a <p,,s>

a NF = 3 <p><><s>

4.8 Checking How gawk Is Splitting Records

As we’ve seen, gawk provides three independent methods to split input records into fields.
The mechanism used is based on which of the three variables—FS, FIELDWIDTHS, or FPAT—
was last assigned to. In addition, an API input parser may choose to override the record
parsing mechanism; please refer to Section 17.4.5.4 [Customized Input Parsers], page 394,
for further information about this feature.

To restore normal field splitting after using FIELDWIDTHS and/or FPAT, simply assign a
value to FS. You can use ‘FS = FS’ to do this, without having to know the current value of
FS.

In order to tell which kind of field splitting is in effect, use PROCINFO["FS"] (see
Section 7.5.2 [Built-in Variables That Convey Information], page 159). The value is "FS"

80 GAWK: Effective AWK Programming

if regular field splitting is being used, "FIELDWIDTHS" if fixed-width field splitting is being
used, or "FPAT" if content-based field splitting is being used:

if (PROCINFO["FS"] == "FS")

regular field splitting ...

else if (PROCINFO["FS"] == "FIELDWIDTHS")

fixed-width field splitting ...

else if (PROCINFO["FS"] == "FPAT")

content-based field splitting ...

else

API input parser field splitting ... (advanced feature)

This information is useful when writing a function that needs to temporarily change FS
or FIELDWIDTHS, read some records, and then restore the original settings (see Section 10.5
[Reading the User Database], page 256, for an example of such a function).

4.9 Multiple-Line Records

In some databases, a single line cannot conveniently hold all the information in one entry.
In such cases, you can use multiline records. The first step in doing this is to choose your
data format.

One technique is to use an unusual character or string to separate records. For example,
you could use the formfeed character (written ‘\f’ in awk, as in C) to separate them, making
each record a page of the file. To do this, just set the variable RS to "\f" (a string containing
the formfeed character). Any other character could equally well be used, as long as it won’t
be part of the data in a record.

Another technique is to have blank lines separate records. By a special dispensation, an
empty string as the value of RS indicates that records are separated by one or more blank
lines. When RS is set to the empty string, each record always ends at the first blank line
encountered. The next record doesn’t start until the first nonblank line that follows. No
matter how many blank lines appear in a row, they all act as one record separator. (Blank
lines must be completely empty; lines that contain only whitespace do not count.)

You can achieve the same effect as ‘RS = ""’ by assigning the string "\n\n+" to RS. This
regexp matches the newline at the end of the record and one or more blank lines after the
record. In addition, a regular expression always matches the longest possible sequence when
there is a choice (see Section 3.5 [How Much Text Matches?], page 55). So, the next record
doesn’t start until the first nonblank line that follows—no matter how many blank lines
appear in a row, they are considered one record separator.

However, there is an important difference between ‘RS = ""’ and ‘RS = "\n\n+"’. In the
first case, leading newlines in the input data file are ignored, and if a file ends without extra
blank lines after the last record, the final newline is removed from the record. In the second
case, this special processing is not done.

Now that the input is separated into records, the second step is to separate the fields
in the records. One way to do this is to divide each of the lines into fields in the normal
manner. This happens by default as the result of a special feature. When RS is set to the
empty string and FS is set to a single character, the newline character always acts as a field
separator. This is in addition to whatever field separations result from FS.

Chapter 4: Reading Input Files 81

NOTE: When FS is the null string ("") or a regexp, this special feature of RS
does not apply. It does apply to the default field separator of a single space:
‘FS = " "’.

Note that language in the POSIX specification implies that this special feature
should apply when FS is a regexp. However, Unix awk has never behaved that
way, nor has gawk. This is essentially a bug in POSIX.

The original motivation for this special exception was probably to provide useful behavior
in the default case (i.e., FS is equal to " "). This feature can be a problem if you really
don’t want the newline character to separate fields, because there is no way to prevent
it. However, you can work around this by using the split() function to break up the
record manually (see Section 9.1.3 [String-Manipulation Functions], page 189). If you have
a single-character field separator, you can work around the special feature in a different way,
by making FS into a regexp for that single character. For example, if the field separator is
a percent character, instead of ‘FS = "%"’, use ‘FS = "[%]"’.

Another way to separate fields is to put each field on a separate line: to do this, just
set the variable FS to the string "\n". (This single-character separator matches a single
newline.) A practical example of a data file organized this way might be a mailing list,
where blank lines separate the entries. Consider a mailing list in a file named addresses,
which looks like this:

Jane Doe

123 Main Street

Anywhere, SE 12345-6789

John Smith

456 Tree-lined Avenue

Smallville, MW 98765-4321

...

A simple program to process this file is as follows:

addrs.awk --- simple mailing list program

Records are separated by blank lines.

Each line is one field.

BEGIN { RS = "" ; FS = "\n" }

{

print "Name is:", $1

print "Address is:", $2

print "City and State are:", $3

print ""

}

Running the program produces the following output:

$ awk -f addrs.awk addresses

a Name is: Jane Doe

a Address is: 123 Main Street

a City and State are: Anywhere, SE 12345-6789

82 GAWK: Effective AWK Programming

a
a Name is: John Smith

a Address is: 456 Tree-lined Avenue

a City and State are: Smallville, MW 98765-4321

a
...

See Section 11.3.4 [Printing Mailing Labels], page 295, for a more realistic program
dealing with address lists. The following list summarizes how records are split, based on
the value of RS:

RS == "\n"

Records are separated by the newline character (‘\n’). In effect, every line in
the data file is a separate record, including blank lines. This is the default.

RS == any single character

Records are separated by each occurrence of the character. Multiple successive
occurrences delimit empty records.

RS == "" Records are separated by runs of blank lines. When FS is a single character, then
the newline character always serves as a field separator, in addition to whatever
value FS may have. Leading and trailing newlines in a file are ignored.

RS == regexp

Records are separated by occurrences of characters that match regexp. Leading
and trailing matches of regexp delimit empty records. (This is a gawk extension;
it is not specified by the POSIX standard.)

If not in compatibility mode (see Section 2.2 [Command-Line Options], page 31), gawk
sets RT to the input text that matched the value specified by RS. But if the input file ended
without any text that matches RS, then gawk sets RT to the null string.

4.10 Explicit Input with getline

So far we have been getting our input data from awk’s main input stream—either the
standard input (usually your keyboard, sometimes the output from another program) or
the files specified on the command line. The awk language has a special built-in command
called getline that can be used to read input under your explicit control.

The getline command is used in several different ways and should not be used by
beginners. The examples that follow the explanation of the getline command include
material that has not been covered yet. Therefore, come back and study the getline

command after you have reviewed the rest of Parts I and II and have a good knowledge of
how awk works.

The getline command returns 1 if it finds a record and 0 if it encounters the end of the
file. If there is some error in getting a record, such as a file that cannot be opened, then
getline returns −1. In this case, gawk sets the variable ERRNO to a string describing the
error that occurred.

If ERRNO indicates that the I/O operation may be retried, and PROCINFO["input",

"RETRY"] is set, then getline returns −2 instead of −1, and further calls to getline may

Chapter 4: Reading Input Files 83

be attempted. See Section 4.12 [Retrying Reads After Certain Input Errors], page 90, for
further information about this feature.

In the following examples, command stands for a string value that represents a shell
command.

NOTE: When --sandbox is specified (see Section 2.2 [Command-Line Options],
page 31), reading lines from files, pipes, and coprocesses is disabled.

4.10.1 Using getline with No Arguments

The getline command can be used without arguments to read input from the current
input file. All it does in this case is read the next input record and split it up into fields.
This is useful if you’ve finished processing the current record, but want to do some special
processing on the next record right now. For example:

Remove text between /* and */, inclusive

{

while ((start = index($0, "/*")) != 0) {

out = substr($0, 1, start - 1) # leading part of the string

rest = substr($0, start + 2) # ... */ ...

while ((end = index(rest, "*/")) == 0) { # is */ in trailing part?

get more text

if (getline <= 0) {

print("unexpected EOF or error:", ERRNO) > "/dev/stderr"

exit

}

build up the line using string concatenation

rest = rest $0

}

rest = substr(rest, end + 2) # remove comment

build up the output line using string concatenation

$0 = out rest

}

print $0

}

This awk program deletes C-style comments (‘/* ... */’) from the input. It uses a
number of features we haven’t covered yet, including string concatenation (see Section 6.2.2
[String Concatenation], page 123) and the index() and substr() built-in functions (see
Section 9.1.3 [String-Manipulation Functions], page 189). By replacing the ‘print $0’ with
other statements, you could perform more complicated processing on the decommented
input, such as searching for matches of a regular expression.

Here is some sample input:

mon/*comment*/key

rab/*commen

t*/bit

horse /*comment*/more text

part 1 /*comment*/part 2 /*comment*/part 3

no comment

84 GAWK: Effective AWK Programming

When run, the output is:

$ awk -f strip_comments.awk example_text

a monkey

a rabbit

a horse more text

a part 1 part 2 part 3

a no comment

This form of the getline command sets NF, NR, FNR, RT, and the value of $0.

NOTE: The new value of $0 is used to test the patterns of any subsequent
rules. The original value of $0 that triggered the rule that executed getline

is lost. By contrast, the next statement reads a new record but immediately
begins processing it normally, starting with the first rule in the program. See
Section 7.4.8 [The next Statement], page 154.

4.10.2 Using getline into a Variable

You can use ‘getline var’ to read the next record from awk’s input into the variable var.
No other processing is done. For example, suppose the next line is a comment or a special
string, and you want to read it without triggering any rules. This form of getline allows you
to read that line and store it in a variable so that the main read-a-line-and-check-each-rule
loop of awk never sees it. The following example swaps every two lines of input:

{

if ((getline tmp) > 0) {

print tmp

print $0

} else

print $0

}

It takes the following list:

wan

tew

free

phore

and produces these results:

tew

wan

phore

free

The getline command used in this way sets only the variables NR, FNR, and RT (and,
of course, var). The record is not split into fields, so the values of the fields (including $0)
and the value of NF do not change.

4.10.3 Using getline from a File

Use ‘getline < file’ to read the next record from file. Here, file is a string-valued expres-
sion that specifies the file name. ‘< file’ is called a redirection because it directs input
to come from a different place. For example, the following program reads its input record

Chapter 4: Reading Input Files 85

from the file secondary.input when it encounters a first field with a value equal to 10 in
the current input file:

{

if ($1 == 10) {

getline < "secondary.input"

print

} else

print

}

Because the main input stream is not used, the values of NR and FNR are not changed.
However, the record it reads is split into fields in the normal manner, so the values of $0
and the other fields are changed, resulting in a new value of NF. RT is also set.

According to POSIX, ‘getline < expression’ is ambiguous if expression contains un-
parenthesized operators other than ‘$’; for example, ‘getline < dir "/" file’ is ambiguous
because the concatenation operator (not discussed yet; see Section 6.2.2 [String Concatena-
tion], page 123) is not parenthesized. You should write it as ‘getline < (dir "/" file)’ if
you want your program to be portable to all awk implementations.

4.10.4 Using getline into a Variable from a File

Use ‘getline var < file’ to read input from the file file, and put it in the variable var. As
earlier, file is a string-valued expression that specifies the file from which to read.

In this version of getline, none of the predefined variables are changed and the record is
not split into fields. The only variable changed is var.6 For example, the following program
copies all the input files to the output, except for records that say ‘@include filename’.
Such a record is replaced by the contents of the file filename:

{

if (NF == 2 && $1 == "@include") {

while ((getline line < $2) > 0)

print line

close($2)

} else

print

}

Note here how the name of the extra input file is not built into the program; it is taken
directly from the data, specifically from the second field on the @include line.

The close() function is called to ensure that if two identical @include lines appear
in the input, the entire specified file is included twice. See Section 5.9 [Closing Input and
Output Redirections], page 106.

One deficiency of this program is that it does not process nested @include statements
(i.e., @include statements in included files) the way a true macro preprocessor would. See
Section 11.3.9 [An Easy Way to Use Library Functions], page 304, for a program that does
handle nested @include statements.

6 This is not quite true. RT could be changed if RS is a regular expression.

86 GAWK: Effective AWK Programming

4.10.5 Using getline from a Pipe

Omniscience has much to recommend it. Failing that, attention to details would
be useful.

—Brian Kernighan

The output of a command can also be piped into getline, using ‘command | getline’.
In this case, the string command is run as a shell command and its output is piped into awk

to be used as input. This form of getline reads one record at a time from the pipe. For
example, the following program copies its input to its output, except for lines that begin
with ‘@execute’, which are replaced by the output produced by running the rest of the line
as a shell command:

{

if ($1 == "@execute") {

tmp = substr($0, 10) # Remove "@execute"

while ((tmp | getline) > 0)

print

close(tmp)

} else

print

}

The close() function is called to ensure that if two identical ‘@execute’ lines appear in
the input, the command is run for each one. Given the input:

foo

bar

baz

@execute who

bletch

the program might produce:

foo

bar

baz

arnold ttyv0 Jul 13 14:22

miriam ttyp0 Jul 13 14:23 (murphy:0)

bill ttyp1 Jul 13 14:23 (murphy:0)

bletch

Notice that this program ran the command who and printed the result. (If you try this
program yourself, you will of course get different results, depending upon who is logged in
on your system.)

This variation of getline splits the record into fields, sets the value of NF, and recom-
putes the value of $0. The values of NR and FNR are not changed. RT is set.

According to POSIX, ‘expression | getline’ is ambiguous if expression contains un-
parenthesized operators other than ‘$’—for example, ‘"echo " "date" | getline’ is am-
biguous because the concatenation operator is not parenthesized. You should write it as
‘("echo " "date") | getline’ if you want your program to be portable to all awk imple-
mentations.

Chapter 4: Reading Input Files 87

NOTE: Unfortunately, gawk has not been consistent in its treatment of a con-
struct like ‘"echo " "date" | getline’. Most versions, including the current
version, treat it as ‘("echo " "date") | getline’. (This is also how BWK
awk behaves.) Some versions instead treat it as ‘"echo " ("date" | getline)’.
(This is how mawk behaves.) In short, always use explicit parentheses, and then
you won’t have to worry.

4.10.6 Using getline into a Variable from a Pipe

When you use ‘command | getline var’, the output of command is sent through a pipe to
getline and into the variable var. For example, the following program reads the current
date and time into the variable current_time, using the date utility, and then prints it:

BEGIN {

"date" | getline current_time

close("date")

print "Report printed on " current_time

}

In this version of getline, none of the predefined variables are changed and the record
is not split into fields. However, RT is set.

4.10.7 Using getline from a Coprocess

Reading input into getline from a pipe is a one-way operation. The command that is
started with ‘command | getline’ only sends data to your awk program.

On occasion, you might want to send data to another program for processing and then
read the results back. gawk allows you to start a coprocess, with which two-way communi-
cations are possible. This is done with the ‘|&’ operator. Typically, you write data to the
coprocess first and then read the results back, as shown in the following:

print "some query" |& "db_server"

"db_server" |& getline

which sends a query to db_server and then reads the results.

The values of NR and FNR are not changed, because the main input stream is not used.
However, the record is split into fields in the normal manner, thus changing the values of
$0, of the other fields, and of NF and RT.

Coprocesses are an advanced feature. They are discussed here only because this is the
section on getline. See Section 12.3 [Two-Way Communications with Another Process],
page 324, where coprocesses are discussed in more detail.

4.10.8 Using getline into a Variable from a Coprocess

When you use ‘command |& getline var’, the output from the coprocess command is sent
through a two-way pipe to getline and into the variable var.

In this version of getline, none of the predefined variables are changed and the record
is not split into fields. The only variable changed is var. However, RT is set.

4.10.9 Points to Remember About getline

Here are some miscellaneous points about getline that you should bear in mind:

88 GAWK: Effective AWK Programming

• When getline changes the value of $0 and NF, awk does not automatically jump to the
start of the program and start testing the new record against every pattern. However,
the new record is tested against any subsequent rules.

• Some very old awk implementations limit the number of pipelines that an awk program
may have open to just one. In gawk, there is no such limit. You can open as many
pipelines (and coprocesses) as the underlying operating system permits.

• An interesting side effect occurs if you use getline without a redirection inside a BEGIN
rule. Because an unredirected getline reads from the command-line data files, the
first getline command causes awk to set the value of FILENAME. Normally, FILENAME
does not have a value inside BEGIN rules, because you have not yet started to process
the command-line data files. (See Section 7.1.4 [The BEGIN and END Special Pat-
terns], page 144; also see Section 7.5.2 [Built-in Variables That Convey Information],
page 159.)

• Using FILENAME with getline (‘getline < FILENAME’) is likely to be a source of con-
fusion. awk opens a separate input stream from the current input file. However, by
not using a variable, $0 and NF are still updated. If you’re doing this, it’s probably by
accident, and you should reconsider what it is you’re trying to accomplish.

• Section 4.10.10 [Summary of getline Variants], page 88, presents a table summarizing
the getline variants and which variables they can affect. It is worth noting that those
variants that do not use redirection can cause FILENAME to be updated if they cause
awk to start reading a new input file.

• If the variable being assigned is an expression with side effects, different versions of
awk behave differently upon encountering end-of-file. Some versions don’t evaluate the
expression; many versions (including gawk) do. Here is an example, courtesy of Duncan
Moore:

BEGIN {

system("echo 1 > f")

while ((getline a[++c] < "f") > 0) { }

print c

}

Here, the side effect is the ‘++c’. Is c incremented if end-of-file is encountered before
the element in a is assigned?

gawk treats getline like a function call, and evaluates the expression ‘a[++c]’ before
attempting to read from f. However, some versions of awk only evaluate the expression
once they know that there is a string value to be assigned.

4.10.10 Summary of getline Variants

Table 4.1 summarizes the eight variants of getline, listing which predefined variables are
set by each one, and whether the variant is standard or a gawk extension. Note: for each
variant, gawk sets the RT predefined variable.

Chapter 4: Reading Input Files 89

Variant Effect awk / gawk

getline Sets $0, NF, FNR, NR, and RT awk

getline var Sets var, FNR, NR, and RT awk

getline < file Sets $0, NF, and RT awk

getline var < file Sets var and RT awk

command | getline Sets $0, NF, and RT awk

command | getline var Sets var and RT awk

command |& getline Sets $0, NF, and RT gawk

command |& getline var Sets var and RT gawk

Table 4.1: getline variants and what they set

4.11 Reading Input with a Timeout

This section describes a feature that is specific to gawk.

You may specify a timeout in milliseconds for reading input from the keyboard, a pipe,
or two-way communication, including TCP/IP sockets. This can be done on a per-input,
per-command, or per-connection basis, by setting a special element in the PROCINFO array
(see Section 7.5.2 [Built-in Variables That Convey Information], page 159):

PROCINFO["input_name", "READ_TIMEOUT"] = timeout in milliseconds

When set, this causes gawk to time out and return failure if no data is available to read
within the specified timeout period. For example, a TCP client can decide to give up on
receiving any response from the server after a certain amount of time:

Service = "/inet/tcp/0/localhost/daytime"

PROCINFO[Service, "READ_TIMEOUT"] = 100

if ((Service |& getline) > 0)

print $0

else if (ERRNO != "")

print ERRNO

Here is how to read interactively from the user7 without waiting for more than five
seconds:

PROCINFO["/dev/stdin", "READ_TIMEOUT"] = 5000

while ((getline < "/dev/stdin") > 0)

print $0

gawk terminates the read operation if input does not arrive after waiting for the timeout
period, returns failure, and sets ERRNO to an appropriate string value. A negative or zero
value for the timeout is the same as specifying no timeout at all.

A timeout can also be set for reading from the keyboard in the implicit loop that reads
input records and matches them against patterns, like so:

$ gawk 'BEGIN { PROCINFO["-", "READ_TIMEOUT"] = 5000 }

> { print "You entered: " $0 }'

gawk

7 This assumes that standard input is the keyboard.

90 GAWK: Effective AWK Programming

a You entered: gawk

In this case, failure to respond within five seconds results in the following error message:

error gawk: cmd. line:2: (FILENAME=- FNR=1) fatal: error reading input file `-

': Connection timed out

The timeout can be set or changed at any time, and will take effect on the next attempt
to read from the input device. In the following example, we start with a timeout value of
one second, and progressively reduce it by one-tenth of a second until we wait indefinitely
for the input to arrive:

PROCINFO[Service, "READ_TIMEOUT"] = 1000

while ((Service |& getline) > 0) {

print $0

PROCINFO[Service, "READ_TIMEOUT"] -= 100

}

NOTE: You should not assume that the read operation will block exactly after
the tenth record has been printed. It is possible that gawk will read and buffer
more than one record’s worth of data the first time. Because of this, changing
the value of timeout like in the preceding example is not very useful.

If the PROCINFO element is not present and the GAWK_READ_TIMEOUT environment vari-
able exists, gawk uses its value to initialize the timeout value. The exclusive use of the
environment variable to specify timeout has the disadvantage of not being able to control
it on a per-command or per-connection basis.

gawk considers a timeout event to be an error even though the attempt to read from the
underlying device may succeed in a later attempt. This is a limitation, and it also means
that you cannot use this to multiplex input from two or more sources. See Section 4.12
[Retrying Reads After Certain Input Errors], page 90, for a way to enable later I/O attempts
to succeed.

Assigning a timeout value prevents read operations from blocking indefinitely. But bear
in mind that there are other ways gawk can stall waiting for an input device to be ready.
A network client can sometimes take a long time to establish a connection before it can
start reading any data, or the attempt to open a FIFO special file for reading can block
indefinitely until some other process opens it for writing.

4.12 Retrying Reads After Certain Input Errors

This section describes a feature that is specific to gawk.

When gawk encounters an error while reading input, by default getline returns −1, and
subsequent attempts to read from that file result in an end-of-file indication. However, you
may optionally instruct gawk to allow I/O to be retried when certain errors are encountered
by setting a special element in the PROCINFO array (see Section 7.5.2 [Built-in Variables
That Convey Information], page 159):

PROCINFO["input_name", "RETRY"] = 1

When this element exists, gawk checks the value of the system (C language) errno

variable when an I/O error occurs. If errno indicates a subsequent I/O attempt may
succeed, getline instead returns −2 and further calls to getline may succeed. This
applies to the errno values EAGAIN, EWOULDBLOCK, EINTR, or ETIMEDOUT.

Chapter 4: Reading Input Files 91

This feature is useful in conjunction with PROCINFO["input_name", "READ_TIMEOUT"]

or situations where a file descriptor has been configured to behave in a non-blocking fashion.

4.13 Directories on the Command Line

According to the POSIX standard, files named on the awk command line must be text files;
it is a fatal error if they are not. Most versions of awk treat a directory on the command
line as a fatal error.

By default, gawk produces a warning for a directory on the command line, but otherwise
ignores it. This makes it easier to use shell wildcards with your awk program:

$ gawk -f whizprog.awk * Directories could kill this program

If either of the --posix or --traditional options is given, then gawk reverts to treating
a directory on the command line as a fatal error.

See Section 17.7.6 [Reading Directories], page 438, for a way to treat directories as usable
data from an awk program.

4.14 Summary

• Input is split into records based on the value of RS. The possibilities are as follows:

Value of RS Records are split on . . . awk / gawk

Any single character That character awk

The empty string ("") Runs of two or more newlines awk

A regexp Text that matches the regexp gawk

• FNR indicates how many records have been read from the current input file; NR indicates
how many records have been read in total.

• gawk sets RT to the text matched by RS.

• After splitting the input into records, awk further splits the records into individual
fields, named $1, $2, and so on. $0 is the whole record, and NF indicates how many
fields there are. The default way to split fields is between whitespace characters.

• Fields may be referenced using a variable, as in $NF. Fields may also be assigned values,
which causes the value of $0 to be recomputed when it is later referenced. Assigning to
a field with a number greater than NF creates the field and rebuilds the record, using
OFS to separate the fields. Incrementing NF does the same thing. Decrementing NF

throws away fields and rebuilds the record.

• Field splitting is more complicated than record splitting:

Field separator value Fields are split . . . awk / gawk

FS == " " On runs of whitespace awk

FS == any single character On that character awk

FS == regexp On text matching the regexp awk

FS == "" Such that each individual charac-
ter is a separate field

gawk

FIELDWIDTHS == list of columns Based on character position gawk

FPAT == regexp On the text surrounding text
matching the regexp

gawk

92 GAWK: Effective AWK Programming

• Using ‘FS = "\n"’ causes the entire record to be a single field (assuming that newlines
separate records).

• FS may be set from the command line using the -F option. This can also be done using
command-line variable assignment.

• Use PROCINFO["FS"] to see how fields are being split.

• Use getline in its various forms to read additional records from the default input
stream, from a file, or from a pipe or coprocess.

• Use PROCINFO[file, "READ_TIMEOUT"] to cause reads to time out for file.

• Directories on the command line are fatal for standard awk; gawk ignores them if not
in POSIX mode.

4.15 Exercises

1. Using the FIELDWIDTHS variable (see Section 4.6 [Reading Fixed-Width Data], page 74),
write a program to read election data, where each record represents one voter’s votes.
Come up with a way to define which columns are associated with each ballot item, and
print the total votes, including abstentions, for each item.

Chapter 5: Printing Output 93

5 Printing Output

One of the most common programming actions is to print, or output, some or all of the
input. Use the print statement for simple output, and the printf statement for fancier
formatting. The print statement is not limited when computing which values to print.
However, with two exceptions, you cannot specify how to print them—how many columns,
whether to use exponential notation or not, and so on. (For the exceptions, see Section 5.3
[Output Separators], page 95, and Section 5.4 [Controlling Numeric Output with print],
page 96.) For printing with specifications, you need the printf statement (see Section 5.5
[Using printf Statements for Fancier Printing], page 96).

Besides basic and formatted printing, this chapter also covers I/O redirections to files
and pipes, introduces the special file names that gawk processes internally, and discusses
the close() built-in function.

5.1 The print Statement

Use the print statement to produce output with simple, standardized formatting. You
specify only the strings or numbers to print, in a list separated by commas. They are
output, separated by single spaces, followed by a newline. The statement looks like this:

print item1, item2, ...

The entire list of items may be optionally enclosed in parentheses. The parentheses are
necessary if any of the item expressions uses the ‘>’ relational operator; otherwise it could
be confused with an output redirection (see Section 5.6 [Redirecting Output of print and
printf], page 102).

The items to print can be constant strings or numbers, fields of the current record (such
as $1), variables, or any awk expression. Numeric values are converted to strings and then
printed.

The simple statement ‘print’ with no items is equivalent to ‘print $0’: it prints the
entire current record. To print a blank line, use ‘print ""’. To print a fixed piece of text,
use a string constant, such as "Don't Panic", as one item. If you forget to use the double-
quote characters, your text is taken as an awk expression, and you will probably get an
error. Keep in mind that a space is printed between any two items.

Note that the print statement is a statement and not an expression—you can’t use it
in the pattern part of a pattern–action statement, for example.

5.2 print Statement Examples

Each print statement makes at least one line of output. However, it isn’t limited to only
one line. If an item value is a string containing a newline, the newline is output along with
the rest of the string. A single print statement can make any number of lines this way.

The following is an example of printing a string that contains embedded newlines:

$ awk 'BEGIN { print "line one\nline two\nline three" }'

a line one

a line two

a line three

94 GAWK: Effective AWK Programming

The next example, which is run on the inventory-shipped file, prints the first two fields
of each input record, with a space between them:

$ awk '{ print $1, $2 }' inventory-shipped

a Jan 13

a Feb 15

a Mar 15

...

A common mistake in using the print statement is to omit the comma between two
items. This often has the effect of making the items run together in the output, with
no space. The reason for this is that juxtaposing two string expressions in awk means to
concatenate them. Here is the same program, without the comma:

$ awk '{ print $1 $2 }' inventory-shipped

a Jan13

a Feb15

a Mar15

...

To someone unfamiliar with the inventory-shipped file, neither example’s output
makes much sense. A heading line at the beginning would make it clearer. Let’s add
some headings to our table of months ($1) and green crates shipped ($2). We do this using
a BEGIN rule (see Section 7.1.4 [The BEGIN and END Special Patterns], page 144) so that the
headings are only printed once:

awk 'BEGIN { print "Month Crates"

print "----- ------" }

{ print $1, $2 }' inventory-shipped

When run, the program prints the following:

Month Crates

----- ------

Jan 13

Feb 15

Mar 15

...

The only problem, however, is that the headings and the table data don’t line up! We can
fix this by printing some spaces between the two fields:

awk 'BEGIN { print "Month Crates"

print "----- ------" }

{ print $1, " ", $2 }' inventory-shipped

Lining up columns this way can get pretty complicated when there are many columns
to fix. Counting spaces for two or three columns is simple, but any more than this can take
up a lot of time. This is why the printf statement was created (see Section 5.5 [Using
printf Statements for Fancier Printing], page 96); one of its specialties is lining up columns
of data.

NOTE: You can continue either a print or printf statement simply by putting
a newline after any comma (see Section 1.6 [awk Statements Versus Lines],
page 28).

Chapter 5: Printing Output 95

5.3 Output Separators

As mentioned previously, a print statement contains a list of items separated by commas.
In the output, the items are normally separated by single spaces. However, this doesn’t
need to be the case; a single space is simply the default. Any string of characters may be
used as the output field separator by setting the predefined variable OFS. The initial value
of this variable is the string " " (i.e., a single space).

The output from an entire print statement is called an output record. Each print

statement outputs one output record, and then outputs a string called the output record
separator (or ORS). The initial value of ORS is the string "\n" (i.e., a newline character).
Thus, each print statement normally makes a separate line.

In order to change how output fields and records are separated, assign new values to the
variables OFS and ORS. The usual place to do this is in the BEGIN rule (see Section 7.1.4
[The BEGIN and END Special Patterns], page 144), so that it happens before any input is
processed. It can also be done with assignments on the command line, before the names
of the input files, or using the -v command-line option (see Section 2.2 [Command-Line
Options], page 31). The following example prints the first and second fields of each input
record, separated by a semicolon, with a blank line added after each newline:

$ awk 'BEGIN { OFS = ";"; ORS = "\n\n" }

> { print $1, $2 }' mail-list

a Amelia;555-5553

a
a Anthony;555-3412

a
a Becky;555-7685

a
a Bill;555-1675

a
a Broderick;555-0542

a
a Camilla;555-2912

a
a Fabius;555-1234

a
a Julie;555-6699

a
a Martin;555-6480

a
a Samuel;555-3430

a
a Jean-Paul;555-2127

a

If the value of ORS does not contain a newline, the program’s output runs together on a
single line.

96 GAWK: Effective AWK Programming

5.4 Controlling Numeric Output with print

When printing numeric values with the print statement, awk internally converts each num-
ber to a string of characters and prints that string. awk uses the sprintf() function to
do this conversion (see Section 9.1.3 [String-Manipulation Functions], page 189). For now,
it suffices to say that the sprintf() function accepts a format specification that tells it
how to format numbers (or strings), and that there are a number of different ways in which
numbers can be formatted. The different format specifications are discussed more fully in
Section 5.5.2 [Format-Control Letters], page 97.

The predefined variable OFMT contains the format specification that print uses with
sprintf() when it wants to convert a number to a string for printing. The default value
of OFMT is "%.6g". The way print prints numbers can be changed by supplying a different
format specification for the value of OFMT, as shown in the following example:

$ awk 'BEGIN {

> OFMT = "%.0f" # print numbers as integers (rounds)

> print 17.23, 17.54 }'

a 17 18

According to the POSIX standard, awk’s behavior is undefined if OFMT contains anything
but a floating-point conversion specification.

5.5 Using printf Statements for Fancier Printing

For more precise control over the output format than what is provided by print, use printf.
With printf you can specify the width to use for each item, as well as various formatting
choices for numbers (such as what output base to use, whether to print an exponent, whether
to print a sign, and how many digits to print after the decimal point).

5.5.1 Introduction to the printf Statement

A simple printf statement looks like this:

printf format, item1, item2, ...

As for print, the entire list of arguments may optionally be enclosed in parentheses. Here
too, the parentheses are necessary if any of the item expressions uses the ‘>’ relational oper-
ator; otherwise, it can be confused with an output redirection (see Section 5.6 [Redirecting
Output of print and printf], page 102).

The difference between printf and print is the format argument. This is an expression
whose value is taken as a string; it specifies how to output each of the other arguments. It
is called the format string.

The format string is very similar to that in the ISO C library function printf(). Most
of format is text to output verbatim. Scattered among this text are format specifiers—one
per item. Each format specifier says to output the next item in the argument list at that
place in the format.

The printf statement does not automatically append a newline to its output. It outputs
only what the format string specifies. So if a newline is needed, you must include one in
the format string. The output separator variables OFS and ORS have no effect on printf

statements. For example:

Chapter 5: Printing Output 97

$ awk 'BEGIN {

> ORS = "\nOUCH!\n"; OFS = "+"

> msg = "Don\47t Panic!"

> printf "%s\n", msg

> }'

a Don't Panic!

Here, neither the ‘+’ nor the ‘OUCH!’ appears in the output message.

5.5.2 Format-Control Letters

A format specifier starts with the character ‘%’ and ends with a format-control letter—it
tells the printf statement how to output one item. The format-control letter specifies what
kind of value to print. The rest of the format specifier is made up of optional modifiers that
control how to print the value, such as the field width. Here is a list of the format-control
letters:

%a, %A A floating point number of the form [-]0xh.hhhhp+-dd (C99 hexadecimal float-
ing point format). For %A, uppercase letters are used instead of lowercase ones.

NOTE: The current POSIX standard requires support for %a and
%A in awk. As far as we know, besides gawk, the only other version
of awk that actually implements it is BWK awk. It’s use is thus
highly nonportable!

Furthermore, these formats are not available on any system where
the underlying C library printf() function does not support them.
As of this writing, among current systems, only OpenVMS is known
to not support them.

%c Print a number as a character; thus, ‘printf "%c", 65’ outputs the letter ‘A’.
The output for a string value is the first character of the string.

NOTE: The POSIX standard says the first character of a string
is printed. In locales with multibyte characters, gawk attempts to
convert the leading bytes of the string into a valid wide character
and then to print the multibyte encoding of that character. Sim-
ilarly, when printing a numeric value, gawk allows the value to be
within the numeric range of values that can be held in a wide char-
acter. If the conversion to multibyte encoding fails, gawk uses the
low eight bits of the value as the character to print.

Other awk versions generally restrict themselves to printing the first
byte of a string or to numeric values within the range of a single
byte (0–255).

%d, %i Print a decimal integer. The two control letters are equivalent. (The ‘%i’
specification is for compatibility with ISO C.)

%e, %E Print a number in scientific (exponential) notation. For example:

printf "%4.3e\n", 1950

prints ‘1.950e+03’, with a total of four significant figures, three of which follow
the decimal point. (The ‘4.3’ represents two modifiers, discussed in the next
subsection.) ‘%E’ uses ‘E’ instead of ‘e’ in the output.

98 GAWK: Effective AWK Programming

%f Print a number in floating-point notation. For example:

printf "%4.3f", 1950

prints ‘1950.000’, with a minimum of four significant figures, three of which
follow the decimal point. (The ‘4.3’ represents two modifiers, discussed in the
next subsection.)

On systems supporting IEEE 754 floating-point format, values representing
negative infinity are formatted as ‘-inf’ or ‘-infinity’, and positive infinity
as ‘inf’ or ‘infinity’. The special “not a number” value formats as ‘-nan’ or
‘nan’ (see Section 16.2 [Other Stuff to Know], page 368).

%F Like ‘%f’, but the infinity and “not a number” values are spelled using uppercase
letters.

The ‘%F’ format is a POSIX extension to ISO C; not all systems support it. On
those that don’t, gawk uses ‘%f’ instead.

%g, %G Print a number in either scientific notation or in floating-point notation, which-
ever uses fewer characters; if the result is printed in scientific notation, ‘%G’ uses
‘E’ instead of ‘e’.

%o Print an unsigned octal integer (see Section 6.1.1.2 [Octal and Hexadecimal
Numbers], page 114).

%s Print a string.

%u Print an unsigned decimal integer. (This format is of marginal use, because
all numbers in awk are floating point; it is provided primarily for compatibility
with C.)

%x, %X Print an unsigned hexadecimal integer; ‘%X’ uses the letters ‘A’ through ‘F’
instead of ‘a’ through ‘f’ (see Section 6.1.1.2 [Octal and Hexadecimal Numbers],
page 114).

%% Print a single ‘%’. This does not consume an argument and it ignores any
modifiers.

NOTE: When using the integer format-control letters for values that are outside
the range of the widest C integer type, gawk switches to the ‘%g’ format specifier.
If --lint is provided on the command line (see Section 2.2 [Command-Line
Options], page 31), gawk warns about this. Other versions of awk may print
invalid values or do something else entirely.

NOTE: The IEEE 754 standard for floating-point arithmetic allows for special
values that represent “infinity” (positive and negative) and values that are “not
a number” (NaN).

Input and output of these values occurs as text strings. This is somewhat
problematic for the awk language, which predates the IEEE standard. Fur-
ther details are provided in Section 16.7 [Standards Versus Existing Practice],
page 378; please see there.

Chapter 5: Printing Output 99

5.5.3 Modifiers for printf Formats

A format specification can also include modifiers that can control how much of the item’s
value is printed, as well as how much space it gets. The modifiers come between the ‘%’
and the format-control letter. We use the bullet symbol “•” in the following examples to
represent spaces in the output. Here are the possible modifiers, in the order in which they
may appear:

N$ An integer constant followed by a ‘$’ is a positional specifier. Normally, format
specifications are applied to arguments in the order given in the format string.
With a positional specifier, the format specification is applied to a specific
argument, instead of what would be the next argument in the list. Positional
specifiers begin counting with one. Thus:

printf "%s %s\n", "don't", "panic"

printf "%2$s %1$s\n", "panic", "don't"

prints the famous friendly message twice.

At first glance, this feature doesn’t seem to be of much use. It is in fact
a gawk extension, intended for use in translating messages at runtime. See
Section 13.4.2 [Rearranging printf Arguments], page 340, which describes how
and why to use positional specifiers. For now, we ignore them.

- (Minus) The minus sign, used before the width modifier (see later on in this list), says
to left-justify the argument within its specified width. Normally, the argument
is printed right-justified in the specified width. Thus:

printf "%-4s", "foo"

prints ‘foo•’.

space For numeric conversions, prefix positive values with a space and negative values
with a minus sign.

+ The plus sign, used before the width modifier (see later on in this list), says
to always supply a sign for numeric conversions, even if the data to format is
positive. The ‘+’ overrides the space modifier.

Use an “alternative form” for certain control letters. For ‘%o’, supply a leading
zero. For ‘%x’ and ‘%X’, supply a leading ‘0x’ or ‘0X’ for a nonzero result. For
‘%e’, ‘%E’, ‘%f’, and ‘%F’, the result always contains a decimal point. For ‘%g’
and ‘%G’, trailing zeros are not removed from the result.

0 A leading ‘0’ (zero) acts as a flag indicating that output should be padded with
zeros instead of spaces. This applies only to the numeric output formats. This
flag only has an effect when the field width is wider than the value to print.

' A single quote or apostrophe character is a POSIX extension to ISO C. It
indicates that the integer part of a floating-point value, or the entire part of an
integer decimal value, should have a thousands-separator character in it. This
only works in locales that support such characters. For example:

$ cat thousands.awk Show source program
a BEGIN { printf "%'d\n", 1234567 }

$ LC_ALL=C gawk -f thousands.awk

100 GAWK: Effective AWK Programming

a 1234567 Results in "C" locale
$ LC_ALL=en_US.UTF-8 gawk -f thousands.awk

a 1,234,567 Results in US English UTF locale

For more information about locales and internationalization issues, see
Section 6.6 [Where You Are Makes a Difference], page 138.

NOTE: The ‘'’ flag is a nice feature, but its use complicates things:
it becomes difficult to use it in command-line programs. For in-
formation on appropriate quoting tricks, see Section 1.1.6 [Shell
Quoting Issues], page 21.

width This is a number specifying the desired minimum width of a field. Inserting
any number between the ‘%’ sign and the format-control character forces the
field to expand to this width. The default way to do this is to pad with spaces
on the left. For example:

printf "%4s", "foo"

prints ‘•foo’.
The value of width is a minimum width, not a maximum. If the item value
requires more than width characters, it can be as wide as necessary. Thus, the
following:

printf "%4s", "foobar"

prints ‘foobar’.

Preceding the width with a minus sign causes the output to be padded with
spaces on the right, instead of on the left.

.prec A period followed by an integer constant specifies the precision to use when
printing. The meaning of the precision varies by control letter:

%d, %i, %o, %u, %x, %X
Minimum number of digits to print.

%e, %E, %f, %F
Number of digits to the right of the decimal point.

%g, %G Maximum number of significant digits.

%s Maximum number of characters from the string that should print.

Thus, the following:

printf "%.4s", "foobar"

prints ‘foob’.

The C library printf’s dynamic width and prec capability (e.g., "%*.*s") is supported.
Instead of supplying explicit width and/or prec values in the format string, they are passed
in the argument list. For example:

w = 5

p = 3

s = "abcdefg"

printf "%*.*s\n", w, p, s

Chapter 5: Printing Output 101

is exactly equivalent to:

s = "abcdefg"

printf "%5.3s\n", s

Both programs output ‘••abc’. Earlier versions of awk did not support this capability. If
you must use such a version, you may simulate this feature by using concatenation to build
up the format string, like so:

w = 5

p = 3

s = "abcdefg"

printf "%" w "." p "s\n", s

This is not particularly easy to read, but it does work.

C programmers may be used to supplying additional modifiers (‘h’, ‘j’, ‘l’, ‘L’, ‘t’, and
‘z’) in printf format strings. These are not valid in awk. Most awk implementations silently
ignore them. If --lint is provided on the command line (see Section 2.2 [Command-Line
Options], page 31), gawk warns about their use. If --posix is supplied, their use is a fatal
error.

5.5.4 Examples Using printf

The following simple example shows how to use printf to make an aligned table:

awk '{ printf "%-10s %s\n", $1, $2 }' mail-list

This command prints the names of the people ($1) in the file mail-list as a string of 10
characters that are left-justified. It also prints the phone numbers ($2) next on the line.
This produces an aligned two-column table of names and phone numbers, as shown here:

$ awk '{ printf "%-10s %s\n", $1, $2 }' mail-list

a Amelia 555-5553

a Anthony 555-3412

a Becky 555-7685

a Bill 555-1675

a Broderick 555-0542

a Camilla 555-2912

a Fabius 555-1234

a Julie 555-6699

a Martin 555-6480

a Samuel 555-3430

a Jean-Paul 555-2127

In this case, the phone numbers had to be printed as strings because the numbers are
separated by dashes. Printing the phone numbers as numbers would have produced just
the first three digits: ‘555’. This would have been pretty confusing.

It wasn’t necessary to specify a width for the phone numbers because they are last on
their lines. They don’t need to have spaces after them.

The table could be made to look even nicer by adding headings to the tops of the columns.
This is done using a BEGIN rule (see Section 7.1.4 [The BEGIN and END Special Patterns],
page 144) so that the headers are only printed once, at the beginning of the awk program:

awk 'BEGIN { print "Name Number"

102 GAWK: Effective AWK Programming

print "---- ------" }

{ printf "%-10s %s\n", $1, $2 }' mail-list

The preceding example mixes print and printf statements in the same program. Using
just printf statements can produce the same results:

awk 'BEGIN { printf "%-10s %s\n", "Name", "Number"

printf "%-10s %s\n", "----", "------" }

{ printf "%-10s %s\n", $1, $2 }' mail-list

Printing each column heading with the same format specification used for the column ele-
ments ensures that the headings are aligned just like the columns.

The fact that the same format specification is used three times can be emphasized by
storing it in a variable, like this:

awk 'BEGIN { format = "%-10s %s\n"

printf format, "Name", "Number"

printf format, "----", "------" }

{ printf format, $1, $2 }' mail-list

5.6 Redirecting Output of print and printf

So far, the output from print and printf has gone to the standard output, usually the
screen. Both print and printf can also send their output to other places. This is called
redirection.

NOTE: When --sandbox is specified (see Section 2.2 [Command-Line Options],
page 31), redirecting output to files, pipes, and coprocesses is disabled.

A redirection appears after the print or printf statement. Redirections in awk are
written just like redirections in shell commands, except that they are written inside the awk
program.

There are four forms of output redirection: output to a file, output appended to a file,
output through a pipe to another command, and output to a coprocess. We show them all
for the print statement, but they work identically for printf:

print items > output-file

This redirection prints the items into the output file named output-file. The
file name output-file can be any expression. Its value is changed to a string and
then used as a file name (see Chapter 6 [Expressions], page 113).

When this type of redirection is used, the output-file is erased before the first
output is written to it. Subsequent writes to the same output-file do not erase
output-file, but append to it. (This is different from how you use redirections
in shell scripts.) If output-file does not exist, it is created. For example, here
is how an awk program can write a list of peoples’ names to one file named
name-list, and a list of phone numbers to another file named phone-list:

$ awk '{ print $2 > "phone-list"

> print $1 > "name-list" }' mail-list

$ cat phone-list

a 555-5553

a 555-3412

Chapter 5: Printing Output 103

...

$ cat name-list

a Amelia

a Anthony

...

Each output file contains one name or number per line.

print items >> output-file

This redirection prints the items into the preexisting output file named output-
file. The difference between this and the single-‘>’ redirection is that the old
contents (if any) of output-file are not erased. Instead, the awk output is ap-
pended to the file. If output-file does not exist, then it is created.

print items | command

It is possible to send output to another program through a pipe instead of into
a file. This redirection opens a pipe to command, and writes the values of items
through this pipe to another process created to execute command.

The redirection argument command is actually an awk expression. Its value is
converted to a string whose contents give the shell command to be run. For
example, the following produces two files, one unsorted list of peoples’ names,
and one list sorted in reverse alphabetical order:

awk '{ print $1 > "names.unsorted"

command = "sort -r > names.sorted"

print $1 | command }' mail-list

The unsorted list is written with an ordinary redirection, while the sorted list
is written by piping through the sort utility.

The next example uses redirection to mail a message to the mailing list
bug-system. This might be useful when trouble is encountered in an awk

script run periodically for system maintenance:

report = "mail bug-system"

print("Awk script failed:", $0) | report

print("at record number", FNR, "of", FILENAME) | report

close(report)

The close() function is called here because it’s a good idea to close the pipe
as soon as all the intended output has been sent to it. See Section 5.9 [Closing
Input and Output Redirections], page 106, for more information.

This example also illustrates the use of a variable to represent a file or com-
mand—it is not necessary to always use a string constant. Using a variable
is generally a good idea, because (if you mean to refer to that same file or
command) awk requires that the string value be written identically every time.

print items |& command

This redirection prints the items to the input of command. The difference
between this and the single-‘|’ redirection is that the output from command
can be read with getline. Thus, command is a coprocess, which works together
with but is subsidiary to the awk program.

104 GAWK: Effective AWK Programming

This feature is a gawk extension, and is not available in POSIX awk. See
Section 4.10.7 [Using getline from a Coprocess], page 87, for a brief discussion.
See Section 12.3 [Two-Way Communications with Another Process], page 324,
for a more complete discussion.

Redirecting output using ‘>’, ‘>>’, ‘|’, or ‘|&’ asks the system to open a file, pipe, or
coprocess only if the particular file or command you specify has not already been written
to by your program or if it has been closed since it was last written to.

It is a common error to use ‘>’ redirection for the first print to a file, and then to use
‘>>’ for subsequent output:

clear the file

print "Don't panic" > "guide.txt"

...

append

print "Avoid improbability generators" >> "guide.txt"

This is indeed how redirections must be used from the shell. But in awk, it isn’t necessary.
In this kind of case, a program should use ‘>’ for all the print statements, because the
output file is only opened once. (It happens that if you mix ‘>’ and ‘>>’ output is produced
in the expected order. However, mixing the operators for the same file is definitely poor
style, and is confusing to readers of your program.)

As mentioned earlier (see Section 4.10.9 [Points to Remember About getline], page 87),
many older awk implementations limit the number of pipelines that an awk program may
have open to just one! In gawk, there is no such limit. gawk allows a program to open as
many pipelines as the underlying operating system permits.� �

Piping into sh

A particularly powerful way to use redirection is to build command lines and pipe them
into the shell, sh. For example, suppose you have a list of files brought over from a system
where all the file names are stored in uppercase, and you wish to rename them to have
names in all lowercase. The following program is both simple and efficient:

{ printf("mv %s %s\n", $0, tolower($0)) | "sh" }

END { close("sh") }

The tolower() function returns its argument string with all uppercase characters con-
verted to lowercase (see Section 9.1.3 [String-Manipulation Functions], page 189). The
program builds up a list of command lines, using the mv utility to rename the files. It then
sends the list to the shell for execution.

See Section 10.2.9 [Quoting Strings to Pass to the Shell], page 244, for a function that
can help in generating command lines to be fed to the shell.
 	
5.7 Special Files for Standard Preopened Data Streams

Running programs conventionally have three input and output streams already available to
them for reading and writing. These are known as the standard input, standard output,
and standard error output. These open streams (and any other open files or pipes) are
often referred to by the technical term file descriptors.

Chapter 5: Printing Output 105

These streams are, by default, connected to your keyboard and screen, but they are
often redirected with the shell, via the ‘<’, ‘<<’, ‘>’, ‘>>’, ‘>&’, and ‘|’ operators. Standard
error is typically used for writing error messages; the reason there are two separate streams,
standard output and standard error, is so that they can be redirected separately.

In traditional implementations of awk, the only way to write an error message to standard
error in an awk program is as follows:

print "Serious error detected!" | "cat 1>&2"

This works by opening a pipeline to a shell command that can access the standard error
stream that it inherits from the awk process. This is far from elegant, and it also requires
a separate process. So people writing awk programs often don’t do this. Instead, they send
the error messages to the screen, like this:

print "Serious error detected!" > "/dev/tty"

(/dev/tty is a special file supplied by the operating system that is connected to your
keyboard and screen. It represents the “terminal,”1 which on modern systems is a keyboard
and screen, not a serial console.) This generally has the same effect, but not always:
although the standard error stream is usually the screen, it can be redirected; when that
happens, writing to the screen is not correct. In fact, if awk is run from a background job,
it may not have a terminal at all. Then opening /dev/tty fails.

gawk, BWK awk, and mawk provide special file names for accessing the three standard
streams. If the file name matches one of these special names when gawk (or one of the
others) redirects input or output, then it directly uses the descriptor that the file name
stands for. These special file names work for all operating systems that gawk has been
ported to, not just those that are POSIX-compliant:

/dev/stdin

The standard input (file descriptor 0).

/dev/stdout

The standard output (file descriptor 1).

/dev/stderr

The standard error output (file descriptor 2).

With these facilities, the proper way to write an error message then becomes:

print "Serious error detected!" > "/dev/stderr"

Note the use of quotes around the file name. Like with any other redirection, the value
must be a string. It is a common error to omit the quotes, which leads to confusing results.

gawk does not treat these file names as special when in POSIX-compatibility mode.
However, because BWK awk supports them, gawk does support them even when invoked
with the --traditional option (see Section 2.2 [Command-Line Options], page 31).

5.8 Special File names in gawk

Besides access to standard input, standard output, and standard error, gawk provides access
to any open file descriptor. Additionally, there are special file names reserved for TCP/IP
networking.

1 The “tty” in /dev/tty stands for “Teletype,” a serial terminal.

106 GAWK: Effective AWK Programming

5.8.1 Accessing Other Open Files with gawk

Besides the /dev/stdin, /dev/stdout, and /dev/stderr special file names mentioned
earlier, gawk provides syntax for accessing any other inherited open file:

/dev/fd/N

The file associated with file descriptor N. Such a file must be opened by the
program initiating the awk execution (typically the shell). Unless special pains
are taken in the shell from which gawk is invoked, only descriptors 0, 1, and 2
are available.

The file names /dev/stdin, /dev/stdout, and /dev/stderr are essentially aliases for
/dev/fd/0, /dev/fd/1, and /dev/fd/2, respectively. However, those names are more self-
explanatory.

Note that using close() on a file name of the form "/dev/fd/N", for file descriptor
numbers above two, does actually close the given file descriptor.

5.8.2 Special Files for Network Communications

gawk programs can open a two-way TCP/IP connection, acting as either a client or a server.
This is done using a special file name of the form:

/net-type/protocol/local-port/remote-host/remote-port

The net-type is one of ‘inet’, ‘inet4’, or ‘inet6’. The protocol is one of ‘tcp’ or ‘udp’,
and the other fields represent the other essential pieces of information for making a network-
ing connection. These file names are used with the ‘|&’ operator for communicating with
a coprocess (see Section 12.3 [Two-Way Communications with Another Process], page 324).
This is an advanced feature, mentioned here only for completeness. Full discussion is delayed
until Section 12.4 [Using gawk for Network Programming], page 327.

5.8.3 Special File name Caveats

Here are some things to bear in mind when using the special file names that gawk provides:

• Recognition of the file names for the three standard preopened files is disabled only in
POSIX mode.

• Recognition of the other special file names is disabled if gawk is in compatibility mode
(either --traditional or --posix; see Section 2.2 [Command-Line Options], page 31).

• gawk always interprets these special file names. For example, using ‘/dev/fd/4’ for
output actually writes on file descriptor 4, and not on a new file descriptor that is
dup()ed from file descriptor 4. Most of the time this does not matter; however, it is
important to not close any of the files related to file descriptors 0, 1, and 2. Doing so
results in unpredictable behavior.

5.9 Closing Input and Output Redirections

If the same file name or the same shell command is used with getline more than once
during the execution of an awk program (see Section 4.10 [Explicit Input with getline],
page 82), the file is opened (or the command is executed) the first time only. At that time,
the first record of input is read from that file or command. The next time the same file or
command is used with getline, another record is read from it, and so on.

Chapter 5: Printing Output 107

Similarly, when a file or pipe is opened for output, awk remembers the file name or com-
mand associated with it, and subsequent writes to the same file or command are appended
to the previous writes. The file or pipe stays open until awk exits.

This implies that special steps are necessary in order to read the same file again from the
beginning, or to rerun a shell command (rather than reading more output from the same
command). The close() function makes these things possible:

close(filename)

or:

close(command)

The argument filename or command can be any expression. Its value must exactly match
the string that was used to open the file or start the command (spaces and other “irrelevant”
characters included). For example, if you open a pipe with this:

"sort -r names" | getline foo

then you must close it with this:

close("sort -r names")

Once this function call is executed, the next getline from that file or command, or the
next print or printf to that file or command, reopens the file or reruns the command.
Because the expression that you use to close a file or pipeline must exactly match the
expression used to open the file or run the command, it is good practice to use a variable
to store the file name or command. The previous example becomes the following:

sortcom = "sort -r names"

sortcom | getline foo

...

close(sortcom)

This helps avoid hard-to-find typographical errors in your awk programs. Here are some of
the reasons for closing an output file:

• To write a file and read it back later on in the same awk program. Close the file after
writing it, then begin reading it with getline.

• To write numerous files, successively, in the same awk program. If the files aren’t closed,
eventually awk may exceed a system limit on the number of open files in one process.
It is best to close each one when the program has finished writing it.

• To make a command finish. When output is redirected through a pipe, the command
reading the pipe normally continues to try to read input as long as the pipe is open.
Often this means the command cannot really do its work until the pipe is closed. For
example, if output is redirected to the mail program, the message is not actually sent
until the pipe is closed.

• To run the same program a second time, with the same arguments. This is not the
same thing as giving more input to the first run!

For example, suppose a program pipes output to the mail program. If it outputs
several lines redirected to this pipe without closing it, they make a single message of
several lines. By contrast, if the program closes the pipe after each line of output, then
each line makes a separate message.

108 GAWK: Effective AWK Programming

If you use more files than the system allows you to have open, gawk attempts to multiplex
the available open files among your data files. gawk’s ability to do this depends upon the
facilities of your operating system, so it may not always work. It is therefore both good
practice and good portability advice to always use close() on your files when you are done
with them. In fact, if you are using a lot of pipes, it is essential that you close commands
when done. For example, consider something like this:

{

...

command = ("grep " $1 " /some/file | my_prog -q " $3)

while ((command | getline) > 0) {

process output of command

}

need close(command) here

}

This example creates a new pipeline based on data in each record. Without the call to
close() indicated in the comment, awk creates child processes to run the commands, until
it eventually runs out of file descriptors for more pipelines.

Even though each command has finished (as indicated by the end-of-file return status
from getline), the child process is not terminated;2 more importantly, the file descriptor
for the pipe is not closed and released until close() is called or awk exits.

close() silently does nothing if given an argument that does not represent a file, pipe,
or coprocess that was opened with a redirection. In such a case, it returns a negative value,
indicating an error. In addition, gawk sets ERRNO to a string indicating the error.

Note also that ‘close(FILENAME)’ has no “magic” effects on the implicit loop that reads
through the files named on the command line. It is, more likely, a close of a file that was
never opened with a redirection, so awk silently does nothing, except return a negative
value.

When using the ‘|&’ operator to communicate with a coprocess, it is occasionally useful
to be able to close one end of the two-way pipe without closing the other. This is done
by supplying a second argument to close(). As in any other call to close(), the first
argument is the name of the command or special file used to start the coprocess. The
second argument should be a string, with either of the values "to" or "from". Case does
not matter. As this is an advanced feature, discussion is delayed until Section 12.3 [Two-
Way Communications with Another Process], page 324, which describes it in more detail
and gives an example.

2 The technical terminology is rather morbid. The finished child is called a “zombie,” and cleaning up
after it is referred to as “reaping.”

Chapter 5: Printing Output 109

� �
Using close()’s Return Value

In many older versions of Unix awk, the close() function is actually a statement. It is
a syntax error to try and use the return value from close():

command = "..."

command | getline info

retval = close(command) # syntax error in many Unix awks

gawk treats close() as a function. The return value is −1 if the argument names
something that was never opened with a redirection, or if there is a system problem closing
the file or process. In these cases, gawk sets the predefined variable ERRNO to a string
describing the problem.

In gawk, starting with version 4.2, when closing a pipe or coprocess (input or output),
the return value is the exit status of the command, as described in Table 5.1.3 Otherwise, it
is the return value from the system’s close() or fclose() C functions when closing input
or output files, respectively. This value is zero if the close succeeds, or −1 if it fails.

Situation Return value from close()

Normal exit of command Command’s exit status
Death by signal of command 256 + number of murderous signal
Death by signal of command with core dump 512 + number of murderous signal
Some kind of error −1

Table 5.1: Return values from close() of a pipe

The POSIX standard is very vague; it says that close() returns zero on success and
a nonzero value otherwise. In general, different implementations vary in what they report
when closing pipes; thus, the return value cannot be used portably. In POSIX mode (see
Section 2.2 [Command-Line Options], page 31), gawk just returns zero when closing a pipe.
 	
5.10 Enabling Nonfatal Output

This section describes a gawk-specific feature.

In standard awk, output with print or printf to a nonexistent file, or some other I/O
error (such as filling up the disk) is a fatal error.

$ gawk 'BEGIN { print "hi" > "/no/such/file" }'

error gawk: cmd. line:1: fatal: can't redirect to `/no/such/file' (No

error such file or directory)

gawk makes it possible to detect that an error has occurred, allowing you to possibly
recover from the error, or at least print an error message of your choosing before exiting.
You can do this in one of two ways:

• For all output files, by assigning any value to PROCINFO["NONFATAL"].

• On a per-file basis, by assigning any value to PROCINFO[filename, "NONFATAL"]. Here,
filename is the name of the file to which you wish output to be nonfatal.

3 Prior to version 4.2, the return value from closing a pipe or co-process was the full 16-bit exit value as
defined by the wait() system call.

110 GAWK: Effective AWK Programming

Once you have enabled nonfatal output, you must check ERRNO after every relevant print
or printf statement to see if something went wrong. It is also a good idea to initialize
ERRNO to zero before attempting the output. For example:

$ gawk '

> BEGIN {

> PROCINFO["NONFATAL"] = 1

> ERRNO = 0

> print "hi" > "/no/such/file"

> if (ERRNO) {

> print("Output failed:", ERRNO) > "/dev/stderr"

> exit 1

> }

> }'

error Output failed: No such file or directory

Here, gawk did not produce a fatal error; instead it let the awk program code detect the
problem and handle it.

This mechanism works also for standard output and standard error. For standard output,
you may use PROCINFO["-", "NONFATAL"] or PROCINFO["/dev/stdout", "NONFATAL"].
For standard error, use PROCINFO["/dev/stderr", "NONFATAL"].

When attempting to open a TCP/IP socket (see Section 12.4 [Using gawk for Network
Programming], page 327), gawk tries multiple times. The GAWK_SOCK_RETRIES environment
variable (see Section 2.5.3 [Other Environment Variables], page 41) allows you to override
gawk’s builtin default number of attempts. However, once nonfatal I/O is enabled for a
given socket, gawk only retries once, relying on awk-level code to notice that there was a
problem.

5.11 Summary

• The print statement prints comma-separated expressions. Each expression is sepa-
rated by the value of OFS and terminated by the value of ORS. OFMT provides the
conversion format for numeric values for the print statement.

• The printf statement provides finer-grained control over output, with format-control
letters for different data types and various flags that modify the behavior of the format-
control letters.

• Output from both print and printf may be redirected to files, pipes, and coprocesses.

• gawk provides special file names for access to standard input, output, and error, and
for network communications.

• Use close() to close open file, pipe, and coprocess redirections. For coprocesses, it is
possible to close only one direction of the communications.

• Normally errors with print or printf are fatal. gawk lets you make output errors be
nonfatal either for all files or on a per-file basis. You must then check for errors after
every relevant output statement.

5.12 Exercises

1. Rewrite the program:

Chapter 5: Printing Output 111

awk 'BEGIN { print "Month Crates"

print "----- ------" }

{ print $1, " ", $2 }' inventory-shipped

from Section 5.3 [Output Separators], page 95, by using a new value of OFS.

2. Use the printf statement to line up the headings and table data for the
inventory-shipped example that was covered in Section 5.1 [The print Statement],
page 93.

3. What happens if you forget the double quotes when redirecting output, as follows:

BEGIN { print "Serious error detected!" > /dev/stderr }

Chapter 6: Expressions 113

6 Expressions

Expressions are the basic building blocks of awk patterns and actions. An expression eval-
uates to a value that you can print, test, or pass to a function. Additionally, an expression
can assign a new value to a variable or a field by using an assignment operator.

An expression can serve as a pattern or action statement on its own. Most other kinds
of statements contain one or more expressions that specify the data on which to operate.
As in other languages, expressions in awk can include variables, array references, constants,
and function calls, as well as combinations of these with various operators.

6.1 Constants, Variables, and Conversions

Expressions are built up from values and the operations performed upon them. This section
describes the elementary objects that provide the values used in expressions.

6.1.1 Constant Expressions

The simplest type of expression is the constant, which always has the same value. There
are three types of constants: numeric, string, and regular expression.

Each is used in the appropriate context when you need a data value that isn’t going to
change. Numeric constants can have different forms, but are internally stored in an identical
manner.

6.1.1.1 Numeric and String Constants

A numeric constant stands for a number. This number can be an integer, a decimal fraction,
or a number in scientific (exponential) notation.1 Here are some examples of numeric
constants that all have the same value:

105

1.05e+2

1050e-1

A string constant consists of a sequence of characters enclosed in double quotation marks.
For example:

"parrot"

represents the string whose contents are ‘parrot’. Strings in gawk can be of any length,
and they can contain any of the possible eight-bit ASCII characters, including ASCII nul
(character code zero). Other awk implementations may have difficulty with some character
codes.

Some languages allow you to continue long strings across multiple lines by ending the
line with a backslash. For example in C:

#include <stdio.h>

int main()

{

1 The internal representation of all numbers, including integers, uses double-precision floating-point num-
bers. On most modern systems, these are in IEEE 754 standard format. See Chapter 16 [Arithmetic
and Arbitrary-Precision Arithmetic with gawk], page 367, for much more information.

114 GAWK: Effective AWK Programming

printf("hello, \

world\n");

return 0;

}

In such a case, the C compiler removes both the backslash and the newline, producing a
string as if it had been typed ‘"hello, world\n"’. This is useful when a single string needs
to contain a large amount of text.

The POSIX standard says explicitly that newlines are not allowed inside string constants.
And indeed, all awk implementations report an error if you try to do so. For example:

$ gawk 'BEGIN { print "hello,

> world" }'

a gawk: cmd. line:1: BEGIN { print "hello,

a gawk: cmd. line:1: ^ unterminated string

a gawk: cmd. line:1: BEGIN { print "hello,

a gawk: cmd. line:1: ^ syntax error

Although POSIX doesn’t define what happens if you use an escaped newline, as in the
previous C example, all known versions of awk allow you to do so. Unfortunately, what
each one does with such a string varies. gawk, mawk, and the OpenSolaris POSIX awk (see
Section B.5 [Other Freely Available awk Implementations], page 480) elide the backslash
and newline, as in C:

$ gawk 'BEGIN { print "hello, \

> world" }'

a hello, world

In POSIX mode (see Section 2.2 [Command-Line Options], page 31), gawk does not allow
escaped newlines. Otherwise, it behaves as just described.

Brian Kernighan’s awk and BusyBox awk remove the backslash but leave the newline
intact, as part of the string:

$ nawk 'BEGIN { print "hello, \

> world" }'

a hello,

a world

6.1.1.2 Octal and Hexadecimal Numbers

In awk, all numbers are in decimal (i.e., base 10). Many other programming languages
allow you to specify numbers in other bases, often octal (base 8) and hexadecimal (base
16). In octal, the numbers go 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, and so on. Just as ‘11’ in
decimal is 1 times 10 plus 1, so ‘11’ in octal is 1 times 8 plus 1. This equals 9 in decimal.
In hexadecimal, there are 16 digits. Because the everyday decimal number system only
has ten digits (‘0’–‘9’), the letters ‘a’ through ‘f’ represent the rest. (Case in the letters is
usually irrelevant; hexadecimal ‘a’ and ‘A’ have the same value.) Thus, ‘11’ in hexadecimal
is 1 times 16 plus 1, which equals 17 in decimal.

Just by looking at plain ‘11’, you can’t tell what base it’s in. So, in C, C++, and other
languages derived from C, there is a special notation to signify the base. Octal numbers
start with a leading ‘0’, and hexadecimal numbers start with a leading ‘0x’ or ‘0X’:

11 Decimal value 11

Chapter 6: Expressions 115

011 Octal 11, decimal value 9

0x11 Hexadecimal 11, decimal value 17

This example shows the difference:

$ gawk 'BEGIN { printf "%d, %d, %d\n", 011, 11, 0x11 }'

a 9, 11, 17

Being able to use octal and hexadecimal constants in your programs is most useful
when working with data that cannot be represented conveniently as characters or as regular
numbers, such as binary data of various sorts.

gawk allows the use of octal and hexadecimal constants in your program text. However,
such numbers in the input data are not treated differently; doing so by default would break
old programs. (If you really need to do this, use the --non-decimal-data command-
line option; see Section 12.1 [Allowing Nondecimal Input Data], page 317.) If you have
octal or hexadecimal data, you can use the strtonum() function (see Section 9.1.3 [String-
Manipulation Functions], page 189) to convert the data into a number. Most of the time,
you will want to use octal or hexadecimal constants when working with the built-in bit-
manipulation functions; see Section 9.1.6 [Bit-Manipulation Functions], page 210, for more
information.

Unlike in some early C implementations, ‘8’ and ‘9’ are not valid in octal constants. For
example, gawk treats ‘018’ as decimal 18:

$ gawk 'BEGIN { print "021 is", 021 ; print 018 }'

a 021 is 17

a 18

Octal and hexadecimal source code constants are a gawk extension. If gawk is in com-
patibility mode (see Section 2.2 [Command-Line Options], page 31), they are not available.� �

A Constant’s Base Does Not Affect Its Value

Once a numeric constant has been converted internally into a number, gawk no longer
remembers what the original form of the constant was; the internal value is always used.
This has particular consequences for conversion of numbers to strings:

$ gawk 'BEGIN { printf "0x11 is <%s>\n", 0x11 }'

a 0x11 is <17>
 	
6.1.1.3 Regular Expression Constants

A regexp constant is a regular expression description enclosed in slashes, such as
/^beginning and end$/. Most regexps used in awk programs are constant, but the ‘~’ and
‘!~’ matching operators can also match computed or dynamic regexps (which are typically
just ordinary strings or variables that contain a regexp, but could be more complex
expressions).

6.1.2 Using Regular Expression Constants

Regular expression constants consist of text describing a regular expression enclosed in
slashes (such as /the +answer/). This section describes how such constants work in POSIX
awk and gawk, and then goes on to describe strongly typed regexp constants, which are a
gawk extension.

116 GAWK: Effective AWK Programming

6.1.2.1 Standard Regular Expression Constants

When used on the righthand side of the ‘~’ or ‘!~’ operators, a regexp constant merely
stands for the regexp that is to be matched. However, regexp constants (such as /foo/)
may be used like simple expressions. When a regexp constant appears by itself, it has
the same meaning as if it appeared in a pattern (i.e., ‘($0 ~ /foo/)’). See Section 7.1.2
[Expressions as Patterns], page 141. This means that the following two code segments:

if ($0 ~ /barfly/ || $0 ~ /camelot/)

print "found"

and:

if (/barfly/ || /camelot/)

print "found"

are exactly equivalent. One rather bizarre consequence of this rule is that the following
Boolean expression is valid, but does not do what its author probably intended:

Note that /foo/ is on the left of the ~

if (/foo/ ~ $1) print "found foo"

This code is “obviously” testing $1 for a match against the regexp /foo/. But in fact, the
expression ‘/foo/ ~ $1’ really means ‘($0 ~ /foo/) ~ $1’. In other words, first match the
input record against the regexp /foo/. The result is either zero or one, depending upon
the success or failure of the match. That result is then matched against the first field in
the record. Because it is unlikely that you would ever really want to make this kind of test,
gawk issues a warning when it sees this construct in a program. Another consequence of
this rule is that the assignment statement:

matches = /foo/

assigns either zero or one to the variable matches, depending upon the contents of the
current input record.

Constant regular expressions are also used as the first argument for the gensub(), sub(),
and gsub() functions, as the second argument of the match() function, and as the third
argument of the split() and patsplit() functions (see Section 9.1.3 [String-Manipulation
Functions], page 189). Modern implementations of awk, including gawk, allow the third
argument of split() to be a regexp constant, but some older implementations do not.
Because some built-in functions accept regexp constants as arguments, confusion can

arise when attempting to use regexp constants as arguments to user-defined functions (see
Section 9.2 [User-Defined Functions], page 214). For example:

function mysub(pat, repl, str, global)

{

if (global)

gsub(pat, repl, str)

else

sub(pat, repl, str)

return str

}

Chapter 6: Expressions 117

{

...

text = "hi! hi yourself!"

mysub(/hi/, "howdy", text, 1)

...

}

In this example, the programmer wants to pass a regexp constant to the user-defined
function mysub(), which in turn passes it on to either sub() or gsub(). However, what
really happens is that the pat parameter is assigned a value of either one or zero, depending
upon whether or not $0 matches /hi/. gawk issues a warning when it sees a regexp constant
used as a parameter to a user-defined function, because passing a truth value in this way is
probably not what was intended.

6.1.2.2 Strongly Typed Regexp Constants

This section describes a gawk-specific feature.

As we saw in the previous section, regexp constants (/.../) hold a strange position in
the awk language. In most contexts, they act like an expression: ‘$0 ~ /.../’. In other
contexts, they denote only a regexp to be matched. In no case are they really a “first class
citizen” of the language. That is, you cannot define a scalar variable whose type is “regexp”
in the same sense that you can define a variable to be a number or a string:

num = 42 Numeric variable
str = "hi" String variable
re = /foo/ Wrong! re is the result of $0 ~ /foo/

For a number of more advanced use cases, it would be nice to have regexp constants that
are strongly typed; in other words, that denote a regexp useful for matching, and not an
expression.

gawk provides this feature. A strongly typed regexp constant looks almost like a regular
regexp constant, except that it is preceded by an ‘@’ sign:

re = @/foo/ Regexp variable

Strongly typed regexp constants cannot be used everywhere that a regular regexp con-
stant can, because this would make the language even more confusing. Instead, you may
use them only in certain contexts:

• On the righthand side of the ‘~’ and ‘!~’ operators: ‘some_var ~ @/foo/’ (see
Section 3.1 [How to Use Regular Expressions], page 47).

• In the case part of a switch statement (see Section 7.4.5 [The switch Statement],
page 151).

• As an argument to one of the built-in functions that accept regexp constants:
gensub(), gsub(), match(), patsplit(), split(), and sub() (see Section 9.1.3
[String-Manipulation Functions], page 189).

• As a parameter in a call to a user-defined function (see Section 9.2 [User-Defined
Functions], page 214).

• On the righthand side of an assignment to a variable: ‘some_var = @/foo/’. In this
case, the type of some_var is regexp. Additionally, some_var can be used with ‘~’ and
‘!~’, passed to one of the built-in functions listed above, or passed as a parameter to a
user-defined function.

118 GAWK: Effective AWK Programming

You may use the typeof() built-in function (see Section 9.1.7 [Getting Type Informa-
tion], page 213) to determine if a variable or function parameter is a regexp variable.

The true power of this feature comes from the ability to create variables that have regexp
type. Such variables can be passed on to user-defined functions, without the confusing
aspects of computed regular expressions created from strings or string constants. They
may also be passed through indirect function calls (see Section 9.3 [Indirect Function Calls],
page 224) and on to the built-in functions that accept regexp constants.

When used in numeric conversions, strongly typed regexp variables convert to zero.
When used in string conversions, they convert to the string value of the original regexp
text.

6.1.3 Variables

Variables are ways of storing values at one point in your program for use later in another
part of your program. They can be manipulated entirely within the program text, and they
can also be assigned values on the awk command line.

6.1.3.1 Using Variables in a Program

Variables let you give names to values and refer to them later. Variables have already been
used in many of the examples. The name of a variable must be a sequence of letters, digits,
or underscores, and it may not begin with a digit. Here, a letter is any one of the 52
upper- and lowercase English letters. Other characters that may be defined as letters in
non-English locales are not valid in variable names. Case is significant in variable names; a
and A are distinct variables.

A variable name is a valid expression by itself; it represents the variable’s current value.
Variables are given new values with assignment operators, increment operators, and decre-
ment operators (see Section 6.2.3 [Assignment Expressions], page 124). In addition, the
sub() and gsub() functions can change a variable’s value, and the match(), split(), and
patsplit() functions can change the contents of their array parameters (see Section 9.1.3
[String-Manipulation Functions], page 189).

A few variables have special built-in meanings, such as FS (the field separator) and NF

(the number of fields in the current input record). See Section 7.5 [Predefined Variables],
page 157, for a list of the predefined variables. These predefined variables can be used and
assigned just like all other variables, but their values are also used or changed automatically
by awk. All predefined variables’ names are entirely uppercase.

Variables in awk can be assigned either numeric or string values. The kind of value a
variable holds can change over the life of a program. By default, variables are initialized
to the empty string, which is zero if converted to a number. There is no need to explicitly
initialize a variable in awk, which is what you would do in C and in most other traditional
languages.

6.1.3.2 Assigning Variables on the Command Line

Any awk variable can be set by including a variable assignment among the arguments on
the command line when awk is invoked (see Section 2.3 [Other Command-Line Arguments],
page 38). Such an assignment has the following form:

variable=text

Chapter 6: Expressions 119

With it, a variable is set either at the beginning of the awk run or in between input files.
When the assignment is preceded with the -v option, as in the following:

-v variable=text

the variable is set at the very beginning, even before the BEGIN rules execute. The -v

option and its assignment must precede all the file name arguments, as well as the program
text. (See Section 2.2 [Command-Line Options], page 31, for more information about the
-v option.) Otherwise, the variable assignment is performed at a time determined by its
position among the input file arguments—after the processing of the preceding input file
argument. For example:

awk '{ print $n }' n=4 inventory-shipped n=2 mail-list

prints the value of field number n for all input records. Before the first file is read, the
command line sets the variable n equal to four. This causes the fourth field to be printed in
lines from inventory-shipped. After the first file has finished, but before the second file
is started, n is set to two, so that the second field is printed in lines from mail-list:

$ awk '{ print $n }' n=4 inventory-shipped n=2 mail-list

a 15

a 24

...

a 555-5553

a 555-3412

...

Command-line arguments are made available for explicit examination by the awk pro-
gram in the ARGV array (see Section 7.5.3 [Using ARGC and ARGV], page 166). awk processes
the values of command-line assignments for escape sequences (see Section 3.2 [Escape Se-
quences], page 48).

Normally, variables assigned on the command line (with or without the -v option) are
treated as strings. When such variables are used as numbers, awk’s normal automatic
conversion of strings to numbers takes place, and everything “just works.”

However, gawk supports variables whose types are “regexp”. You can assign variables of
this type using the following syntax:

gawk -v 're1=@/foo|bar/' '...' /path/to/file1 're2=@/baz|quux/' /path/to/file2

Strongly typed regexps are an advanced feature (see Section 6.1.2.2 [Strongly Typed Regexp
Constants], page 117). We mention them here only for completeness.

6.1.4 Conversion of Strings and Numbers

Number-to-string and string-to-number conversion are generally straightforward. There can
be subtleties to be aware of; this section discusses this important facet of awk.

6.1.4.1 How awk Converts Between Strings and Numbers

Strings are converted to numbers and numbers are converted to strings, if the context of the
awk program demands it. For example, if the value of either foo or bar in the expression
‘foo + bar’ happens to be a string, it is converted to a number before the addition is
performed. If numeric values appear in string concatenation, they are converted to strings.
Consider the following:

120 GAWK: Effective AWK Programming

two = 2; three = 3

print (two three) + 4

This prints the (numeric) value 27. The numeric values of the variables two and three are
converted to strings and concatenated together. The resulting string is converted back to
the number 23, to which 4 is then added.

If, for some reason, you need to force a number to be converted to a string, concatenate
that number with the empty string, "". To force a string to be converted to a number, add
zero to that string. A string is converted to a number by interpreting any numeric prefix
of the string as numerals: "2.5" converts to 2.5, "1e3" converts to 1,000, and "25fix" has
a numeric value of 25. Strings that can’t be interpreted as valid numbers convert to zero.

The exact manner in which numbers are converted into strings is controlled by the
awk predefined variable CONVFMT (see Section 7.5 [Predefined Variables], page 157). Num-
bers are converted using the sprintf() function with CONVFMT as the format specifier (see
Section 9.1.3 [String-Manipulation Functions], page 189).

CONVFMT’s default value is "%.6g", which creates a value with at most six significant
digits. For some applications, you might want to change it to specify more precision. On
most modern machines, 17 digits is usually enough to capture a floating-point number’s
value exactly.2

Strange results can occur if you set CONVFMT to a string that doesn’t tell sprintf() how
to format floating-point numbers in a useful way. For example, if you forget the ‘%’ in the
format, awk converts all numbers to the same constant string.

As a special case, if a number is an integer, then the result of converting it to a string is
always an integer, no matter what the value of CONVFMT may be. Given the following code
fragment:

CONVFMT = "%2.2f"

a = 12

b = a ""

b has the value "12", not "12.00".� �
Pre-POSIX awk Used OFMT for String Conversion

Prior to the POSIX standard, awk used the value of OFMT for converting numbers to
strings. OFMT specifies the output format to use when printing numbers with print. CONVFMT
was introduced in order to separate the semantics of conversion from the semantics of
printing. Both CONVFMT and OFMT have the same default value: "%.6g". In the vast majority
of cases, old awk programs do not change their behavior. See Section 5.1 [The print

Statement], page 93, for more information on the print statement.
 	
6.1.4.2 Locales Can Influence Conversion

Where you are can matter when it comes to converting between numbers and strings. The
local character set and language—the locale—can affect numeric formats. In particular, for
awk programs, it affects the decimal point character and the thousands-separator character.
The "C" locale, and most English-language locales, use the period character (‘.’) as the

2 Pathological cases can require up to 752 digits (!), but we doubt that you need to worry about this.

Chapter 6: Expressions 121

decimal point and don’t have a thousands separator. However, many (if not most) European
and non-English locales use the comma (‘,’) as the decimal point character. European
locales often use either a space or a period as the thousands separator, if they have one.

The POSIX standard says that awk always uses the period as the decimal point when
reading the awk program source code, and for command-line variable assignments (see
Section 2.3 [Other Command-Line Arguments], page 38). However, when interpreting input
data, for print and printf output, and for number-to-string conversion, the local decimal
point character is used. In all cases, numbers in source code and in input data cannot
have a thousands separator. Here are some examples indicating the difference in behavior,
on a GNU/Linux system:

$ export POSIXLY_CORRECT=1 Force POSIX behavior
$ gawk 'BEGIN { printf "%g\n", 3.1415927 }'

a 3.14159

$ LC_ALL=en_DK.utf-8 gawk 'BEGIN { printf "%g\n", 3.1415927 }'

a 3,14159

$ echo 4,321 | gawk '{ print $1 + 1 }'

a 5

$ echo 4,321 | LC_ALL=en_DK.utf-8 gawk '{ print $1 + 1 }'

a 5,321

The en_DK.utf-8 locale is for English in Denmark, where the comma acts as the decimal
point separator. In the normal "C" locale, gawk treats ‘4,321’ as 4, while in the Danish
locale, it’s treated as the full number including the fractional part, 4.321.

Some earlier versions of gawk fully complied with this aspect of the standard. How-
ever, many users in non-English locales complained about this behavior, because their data
used a period as the decimal point, so the default behavior was restored to use a period as
the decimal point character. You can use the --use-lc-numeric option (see Section 2.2
[Command-Line Options], page 31) to force gawk to use the locale’s decimal point charac-
ter. (gawk also uses the locale’s decimal point character when in POSIX mode, either via
--posix or the POSIXLY_CORRECT environment variable, as shown previously.)

Table 6.1 describes the cases in which the locale’s decimal point character is used and
when a period is used. Some of these features have not been described yet.

Feature Default --posix or --use-lc-numeric
%'g Use locale Use locale
%g Use period Use locale
Input Use period Use locale
strtonum() Use period Use locale

Table 6.1: Locale decimal point versus a period

Finally, modern-day formal standards and the IEEE standard floating-point representa-
tion can have an unusual but important effect on the way gawk converts some special string
values to numbers. The details are presented in Section 16.7 [Standards Versus Existing
Practice], page 378.

122 GAWK: Effective AWK Programming

6.2 Operators: Doing Something with Values

This section introduces the operators that make use of the values provided by constants
and variables.

6.2.1 Arithmetic Operators

The awk language uses the common arithmetic operators when evaluating expressions. All
of these arithmetic operators follow normal precedence rules and work as you would expect
them to.

The following example uses a file named grades, which contains a list of student names
as well as three test scores per student (it’s a small class):

Pat 100 97 58

Sandy 84 72 93

Chris 72 92 89

This program takes the file grades and prints the average of the scores:

$ awk '{ sum = $2 + $3 + $4 ; avg = sum / 3

> print $1, avg }' grades

a Pat 85

a Sandy 83

a Chris 84.3333

The following list provides the arithmetic operators in awk, in order from the highest
precedence to the lowest:

x ^ y

x ** y Exponentiation; x raised to the y power. ‘2 ^ 3’ has the value eight; the char-
acter sequence ‘**’ is equivalent to ‘^’. (c.e.)

- x Negation.

+ x Unary plus; the expression is converted to a number.

x * y Multiplication.

x / y Division; because all numbers in awk are floating-point numbers, the result is
not rounded to an integer—‘3 / 4’ has the value 0.75. (It is a common mistake,
especially for C programmers, to forget that all numbers in awk are floating
point, and that division of integer-looking constants produces a real number,
not an integer.)

x % y Remainder; further discussion is provided in the text, just after this list.

x + y Addition.

x - y Subtraction.

Unary plus and minus have the same precedence, the multiplication operators all have
the same precedence, and addition and subtraction have the same precedence.

When computing the remainder of ‘x % y’, the quotient is rounded toward zero to an
integer and multiplied by y. This result is subtracted from x; this operation is sometimes
known as “trunc-mod.” The following relation always holds:

b * int(a / b) + (a % b) == a

Chapter 6: Expressions 123

One possibly undesirable effect of this definition of remainder is that ‘x % y’ is negative
if x is negative. Thus:

-17 % 8 = -1

In other awk implementations, the signedness of the remainder may be machine-
dependent.

NOTE: The POSIX standard only specifies the use of ‘^’ for exponentiation.
For maximum portability, do not use the ‘**’ operator.

6.2.2 String Concatenation

It seemed like a good idea at the time.
—Brian Kernighan

There is only one string operation: concatenation. It does not have a specific operator
to represent it. Instead, concatenation is performed by writing expressions next to one
another, with no operator. For example:

$ awk '{ print "Field number one: " $1 }' mail-list

a Field number one: Amelia

a Field number one: Anthony

...

Without the space in the string constant after the ‘:’, the line runs together. For
example:

$ awk '{ print "Field number one:" $1 }' mail-list

a Field number one:Amelia

a Field number one:Anthony

...

Because string concatenation does not have an explicit operator, it is often necessary
to ensure that it happens at the right time by using parentheses to enclose the items to
concatenate. For example, you might expect that the following code fragment concatenates
file and name:

file = "file"

name = "name"

print "something meaningful" > file name

This produces a syntax error with some versions of Unix awk.3 It is necessary to use the
following:

print "something meaningful" > (file name)

Parentheses should be used around concatenation in all but the most common contexts,
such as on the righthand side of ‘=’. Be careful about the kinds of expressions used in string
concatenation. In particular, the order of evaluation of expressions used for concatenation
is undefined in the awk language. Consider this example:

BEGIN {

a = "don't"

print (a " " (a = "panic"))

}

3 It happens that BWK awk, gawk, and mawk all “get it right,” but you should not rely on this.

124 GAWK: Effective AWK Programming

It is not defined whether the second assignment to a happens before or after the value of a
is retrieved for producing the concatenated value. The result could be either ‘don't panic’,
or ‘panic panic’.

The precedence of concatenation, when mixed with other operators, is often counter-
intuitive. Consider this example:

$ awk 'BEGIN { print -12 " " -24 }'

a -12-24

This “obviously” is concatenating −12, a space, and −24. But where did the space dis-
appear to? The answer lies in the combination of operator precedences and awk’s automatic
conversion rules. To get the desired result, write the program this way:

$ awk 'BEGIN { print -12 " " (-24) }'

a -12 -24

This forces awk to treat the ‘-’ on the ‘-24’ as unary. Otherwise, it’s parsed as follows:

−12 (" " − 24)
⇒ −12 (0 − 24)
⇒ −12 (−24)
⇒ −12−24

As mentioned earlier, when mixing concatenation with other operators, parenthesize.
Otherwise, you’re never quite sure what you’ll get.

6.2.3 Assignment Expressions

An assignment is an expression that stores a (usually different) value into a variable. For
example, let’s assign the value one to the variable z:

z = 1

After this expression is executed, the variable z has the value one. Whatever old value
z had before the assignment is forgotten.

Assignments can also store string values. For example, the following stores the value
"this food is good" in the variable message:

thing = "food"

predicate = "good"

message = "this " thing " is " predicate

This also illustrates string concatenation. The ‘=’ sign is called an assignment operator. It
is the simplest assignment operator because the value of the righthand operand is stored
unchanged. Most operators (addition, concatenation, and so on) have no effect except
to compute a value. If the value isn’t used, there’s no reason to use the operator. An
assignment operator is different; it does produce a value, but even if you ignore it, the
assignment still makes itself felt through the alteration of the variable. We call this a side
effect.

The lefthand operand of an assignment need not be a variable (see Section 6.1.3 [Vari-
ables], page 118); it can also be a field (see Section 4.4 [Changing the Contents of a Field],
page 67) or an array element (see Chapter 8 [Arrays in awk], page 171). These are all called
lvalues, which means they can appear on the lefthand side of an assignment operator. The
righthand operand may be any expression; it produces the new value that the assignment
stores in the specified variable, field, or array element. (Such values are called rvalues.)

Chapter 6: Expressions 125

It is important to note that variables do not have permanent types. A variable’s type
is simply the type of whatever value was last assigned to it. In the following program
fragment, the variable foo has a numeric value at first, and a string value later on:

foo = 1

print foo

foo = "bar"

print foo

When the second assignment gives foo a string value, the fact that it previously had a
numeric value is forgotten.

String values that do not begin with a digit have a numeric value of zero. After executing
the following code, the value of foo is five:

foo = "a string"

foo = foo + 5

NOTE: Using a variable as a number and then later as a string can be confusing
and is poor programming style. The previous two examples illustrate how awk

works, not how you should write your programs!

An assignment is an expression, so it has a value—the same value that is assigned. Thus,
‘z = 1’ is an expression with the value one. One consequence of this is that you can write
multiple assignments together, such as:

x = y = z = 5

This example stores the value five in all three variables (x, y, and z). It does so because
the value of ‘z = 5’, which is five, is stored into y and then the value of ‘y = z = 5’, which is
five, is stored into x.

Assignments may be used anywhere an expression is called for. For example, it is valid
to write ‘x != (y = 1)’ to set y to one, and then test whether x equals one. But this style
tends to make programs hard to read; such nesting of assignments should be avoided, except
perhaps in a one-shot program.

Aside from ‘=’, there are several other assignment operators that do arithmetic with the
old value of the variable. For example, the operator ‘+=’ computes a new value by adding
the righthand value to the old value of the variable. Thus, the following assignment adds
five to the value of foo:

foo += 5

This is equivalent to the following:

foo = foo + 5

Use whichever makes the meaning of your program clearer.

There are situations where using ‘+=’ (or any assignment operator) is not the same as
simply repeating the lefthand operand in the righthand expression. For example:

Thanks to Pat Rankin for this example

BEGIN {

foo[rand()] += 5

for (x in foo)

print x, foo[x]

126 GAWK: Effective AWK Programming

bar[rand()] = bar[rand()] + 5

for (x in bar)

print x, bar[x]

}

The indices of bar are practically guaranteed to be different, because rand() returns dif-
ferent values each time it is called. (Arrays and the rand() function haven’t been covered
yet. See Chapter 8 [Arrays in awk], page 171, and see Section 9.1.2 [Numeric Functions],
page 188, for more information.) This example illustrates an important fact about assign-
ment operators: the lefthand expression is only evaluated once.

It is up to the implementation as to which expression is evaluated first, the lefthand or
the righthand. Consider this example:

i = 1

a[i += 2] = i + 1

The value of a[3] could be either two or four.

Table 6.2 lists the arithmetic assignment operators. In each case, the righthand operand
is an expression whose value is converted to a number.

Operator Effect
lvalue += increment Add increment to the value of lvalue.
lvalue -= decrement Subtract decrement from the value of lvalue.
lvalue *= coefficient Multiply the value of lvalue by coefficient.
lvalue /= divisor Divide the value of lvalue by divisor.
lvalue %= modulus Set lvalue to its remainder by modulus.
lvalue ^= power Raise lvalue to the power power.
lvalue **= power Raise lvalue to the power power. (c.e.)

Table 6.2: Arithmetic assignment operators

NOTE: Only the ‘^=’ operator is specified by POSIX. For maximum portability,
do not use the ‘**=’ operator.� �

Syntactic Ambiguities Between ‘/=’ and Regular Expressions

There is a syntactic ambiguity between the /= assignment operator and regexp constants
whose first character is an ‘=’. This is most notable in some commercial awk versions. For
example:

$ awk /==/ /dev/null

error awk: syntax error at source line 1

error context is

error >>> /= <<<

error awk: bailing out at source line 1

A workaround is:

awk '/[=]=/' /dev/null

gawk does not have this problem; BWK awk and mawk also do not.
 	

Chapter 6: Expressions 127

6.2.4 Increment and Decrement Operators

Increment and decrement operators increase or decrease the value of a variable by one. An
assignment operator can do the same thing, so the increment operators add no power to
the awk language; however, they are convenient abbreviations for very common operations.

The operator used for adding one is written ‘++’. It can be used to increment a variable
either before or after taking its value. To pre-increment a variable v, write ‘++v’. This adds
one to the value of v—that new value is also the value of the expression. (The assignment
expression ‘v += 1’ is completely equivalent.) Writing the ‘++’ after the variable specifies
post-increment. This increments the variable value just the same; the difference is that the
value of the increment expression itself is the variable’s old value. Thus, if foo has the value
four, then the expression ‘foo++’ has the value four, but it changes the value of foo to five.
In other words, the operator returns the old value of the variable, but with the side effect
of incrementing it.

The post-increment ‘foo++’ is nearly the same as writing ‘(foo += 1) - 1’. It is not
perfectly equivalent because all numbers in awk are floating point—in floating point, ‘foo
+ 1 - 1’ does not necessarily equal foo. But the difference is minute as long as you stick to
numbers that are fairly small (less than 1012).

Fields and array elements are incremented just like variables. (Use ‘$(i++)’ when you
want to do a field reference and a variable increment at the same time. The parentheses
are necessary because of the precedence of the field reference operator ‘$’.)

The decrement operator ‘--’ works just like ‘++’, except that it subtracts one instead
of adding it. As with ‘++’, it can be used before the lvalue to pre-decrement or after it to
post-decrement. Following is a summary of increment and decrement expressions:

++lvalue Increment lvalue, returning the new value as the value of the expression.

lvalue++ Increment lvalue, returning the old value of lvalue as the value of the expression.

--lvalue Decrement lvalue, returning the new value as the value of the expression. (This
expression is like ‘++lvalue’, but instead of adding, it subtracts.)

lvalue-- Decrement lvalue, returning the old value of lvalue as the value of the expres-
sion. (This expression is like ‘lvalue++’, but instead of adding, it subtracts.)

128 GAWK: Effective AWK Programming

� �
Operator Evaluation Order

Doctor, it hurts when I do this!
Then don’t do that!

—Groucho Marx

What happens for something like the following?

b = 6

print b += b++

Or something even stranger?

b = 6

b += ++b + b++

print b

In other words, when do the various side effects prescribed by the postfix operators
(‘b++’) take effect? When side effects happen is implementation-defined. In other words, it
is up to the particular version of awk. The result for the first example may be 12 or 13, and
for the second, it may be 22 or 23.

In short, doing things like this is not recommended and definitely not anything that you
can rely upon for portability. You should avoid such things in your own programs.
 	
6.3 Truth Values and Conditions

In certain contexts, expression values also serve as “truth values”; i.e., they determine what
should happen next as the program runs. This section describes how awk defines “true”
and “false” and how values are compared.

6.3.1 True and False in awk

Many programming languages have a special representation for the concepts of “true” and
“false.” Such languages usually use the special constants true and false, or perhaps their
uppercase equivalents. However, awk is different. It borrows a very simple concept of true
and false from C. In awk, any nonzero numeric value or any nonempty string value is true.
Any other value (zero or the null string, "") is false. The following program prints ‘A
strange truth value’ three times:

BEGIN {

if (3.1415927)

print "A strange truth value"

if ("Four Score And Seven Years Ago")

print "A strange truth value"

if (j = 57)

print "A strange truth value"

}

There is a surprising consequence of the “nonzero or non-null” rule: the string constant
"0" is actually true, because it is non-null.

6.3.2 Variable Typing and Comparison Expressions

The Guide is definitive. Reality is frequently inaccurate.
—Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Chapter 6: Expressions 129

Unlike in other programming languages, in awk variables do not have a fixed type.
Instead, they can be either a number or a string, depending upon the value that is assigned
to them. We look now at how variables are typed, and how awk compares variables.

6.3.2.1 String Type versus Numeric Type

Scalar objects in awk (variables, array elements, and fields) are dynamically typed. This
means their type can change as the program runs, from untyped before any use,4 to string
or number, and then from string to number or number to string, as the program progresses.
(gawk also provides regexp-typed scalars, but let’s ignore that for now; see Section 6.1.2.2
[Strongly Typed Regexp Constants], page 117.)

You can’t do much with untyped variables, other than tell that they are untyped. The
following program tests a against "" and 0; the test succeeds when a has never been assigned
a value. It also uses the built-in typeof() function (not presented yet; see Section 9.1.7
[Getting Type Information], page 213) to show a’s type:

$ gawk 'BEGIN { print (a == "" && a == 0 ?

> "a is untyped" : "a has a type!") ; print typeof(a) }'

a a is untyped

a unassigned

A scalar has numeric type when assigned a numeric value, such as from a numeric
constant, or from another scalar with numeric type:

$ gawk 'BEGIN { a = 42 ; print typeof(a)

> b = a ; print typeof(b) }'

number

number

Similarly, a scalar has string type when assigned a string value, such as from a string
constant, or from another scalar with string type:

$ gawk 'BEGIN { a = "forty two" ; print typeof(a)

> b = a ; print typeof(b) }'

string

string

So far, this is all simple and straightforward. What happens, though, when awk has to
process data from a user? Let’s start with field data. What should the following command
produce as output?

echo hello | awk '{ printf("%s %s < 42\n", $1,

($1 < 42 ? "is" : "is not")) }'

Since ‘hello’ is alphabetic data, awk can only do a string comparison. Internally, it converts
42 into "42" and compares the two string values "hello" and "42". Here’s the result:

$ echo hello | awk '{ printf("%s %s < 42\n", $1,
> ($1 < 42 ? "is" : "is not")) }'

a hello is not < 42

However, what happens when data from a user looks like a number? On the one hand,
in reality, the input data consists of characters, not binary numeric values. But, on the

4 gawk calls this unassigned, as the following example shows.

130 GAWK: Effective AWK Programming

other hand, the data looks numeric, and awk really ought to treat it as such. And indeed,
it does:

$ echo 37 | awk '{ printf("%s %s < 42\n", $1,
> ($1 < 42 ? "is" : "is not")) }'

a 37 is < 42

Here are the rules for when awk treats data as a number, and for when it treats data as
a string.

The POSIX standard uses the term numeric string for input data that looks numeric.
The ‘37’ in the previous example is a numeric string. So what is the type of a numeric
string? Answer: numeric.

The type of a variable is important because the types of two variables determine how
they are compared. Variable typing follows these definitions and rules:

• A numeric constant or the result of a numeric operation has the numeric attribute.

• A string constant or the result of a string operation has the string attribute.

• Fields, getline input, FILENAME, ARGV elements, ENVIRON elements, and the elements
of an array created by match(), split(), and patsplit() that are numeric strings
have the strnum attribute.5 Otherwise, they have the string attribute. Uninitialized
variables also have the strnum attribute.

• Attributes propagate across assignments but are not changed by any use.

The last rule is particularly important. In the following program, a has numeric type,
even though it is later used in a string operation:

BEGIN {

a = 12.345

b = a " is a cute number"

print b

}

When two operands are compared, either string comparison or numeric comparison may
be used. This depends upon the attributes of the operands, according to the following
symmetric matrix:

STRING NUMERIC STRNUM

STRING string string string
NUMERIC string numeric numeric
STRNUM string numeric numeric

The basic idea is that user input that looks numeric—and only user input—should be
treated as numeric, even though it is actually made of characters and is therefore also a
string. Thus, for example, the string constant " +3.14", when it appears in program source
code, is a string—even though it looks numeric—and is never treated as a number for
comparison purposes.

In short, when one operand is a “pure” string, such as a string constant, then a string
comparison is performed. Otherwise, a numeric comparison is performed. (The primary

5 Thus, a POSIX numeric string and gawk’s strnum are the same thing.

Chapter 6: Expressions 131

difference between a number and a strnum is that for strnums gawk preserves the original
string value that the scalar had when it came in.)

This point bears additional emphasis: Input that looks numeric is numeric. All other
input is treated as strings.

Thus, the six-character input string ‘ +3.14’ receives the strnum attribute. In contrast,
the eight characters " +3.14" appearing in program text comprise a string constant. The
following examples print ‘1’ when the comparison between the two different constants is
true, and ‘0’ otherwise:

$ echo ' +3.14' | awk '{ print($0 == " +3.14") }' True
a 1

$ echo ' +3.14' | awk '{ print($0 == "+3.14") }' False
a 0

$ echo ' +3.14' | awk '{ print($0 == "3.14") }' False
a 0

$ echo ' +3.14' | awk '{ print($0 == 3.14) }' True
a 1

$ echo ' +3.14' | awk '{ print($1 == " +3.14") }' False
a 0

$ echo ' +3.14' | awk '{ print($1 == "+3.14") }' True
a 1

$ echo ' +3.14' | awk '{ print($1 == "3.14") }' False
a 0

$ echo ' +3.14' | awk '{ print($1 == 3.14) }' True
a 1

You can see the type of an input field (or other user input) using typeof():

$ echo hello 37 | gawk '{ print typeof($1), typeof($2) }'

a string strnum

6.3.2.2 Comparison Operators

Comparison expressions compare strings or numbers for relationships such as equality. They
are written using relational operators, which are a superset of those in C. Table 6.3 describes
them.

Expression Result
x < y True if x is less than y
x <= y True if x is less than or equal to y
x > y True if x is greater than y
x >= y True if x is greater than or equal to y
x == y True if x is equal to y
x != y True if x is not equal to y
x ~ y True if the string x matches the regexp denoted by y
x !~ y True if the string x does not match the regexp denoted by y
subscript in array True if the array array has an element with the subscript subscript

Table 6.3: Relational operators

132 GAWK: Effective AWK Programming

Comparison expressions have the value one if true and zero if false. When comparing
operands of mixed types, numeric operands are converted to strings using the value of
CONVFMT (see Section 6.1.4 [Conversion of Strings and Numbers], page 119).

Strings are compared by comparing the first character of each, then the second character
of each, and so on. Thus, "10" is less than "9". If there are two strings where one is a
prefix of the other, the shorter string is less than the longer one. Thus, "abc" is less than
"abcd".

It is very easy to accidentally mistype the ‘==’ operator and leave off one of the ‘=’
characters. The result is still valid awk code, but the program does not do what is intended:

if (a = b) # oops! should be a == b

...

else

...

Unless b happens to be zero or the null string, the if part of the test always succeeds.
Because the operators are so similar, this kind of error is very difficult to spot when scanning
the source code.

The following list of expressions illustrates the kinds of comparisons awk performs, as
well as what the result of each comparison is:

1.5 <= 2.0

Numeric comparison (true)

"abc" >= "xyz"

String comparison (false)

1.5 != " +2"

String comparison (true)

"1e2" < "3"

String comparison (true)

a = 2; b = "2"

a == b String comparison (true)

a = 2; b = " +2"

a == b String comparison (false)

In this example:

$ echo 1e2 3 | awk '{ print ($1 < $2) ? "true" : "false" }'

a false

the result is ‘false’ because both $1 and $2 are user input. They are numeric strings—
therefore both have the strnum attribute, dictating a numeric comparison. The purpose of
the comparison rules and the use of numeric strings is to attempt to produce the behavior
that is “least surprising,” while still “doing the right thing.”

String comparisons and regular expression comparisons are very different. For example:

x == "foo"

has the value one, or is true if the variable x is precisely ‘foo’. By contrast:

x ~ /foo/

Chapter 6: Expressions 133

has the value one if x contains ‘foo’, such as "Oh, what a fool am I!".

The righthand operand of the ‘~’ and ‘!~’ operators may be either a regexp constant
(/. . ./) or an ordinary expression. In the latter case, the value of the expression as a string
is used as a dynamic regexp (see Section 3.1 [How to Use Regular Expressions], page 47;
also see Section 3.6 [Using Dynamic Regexps], page 55).

A constant regular expression in slashes by itself is also an expression. /regexp/ is an
abbreviation for the following comparison expression:

$0 ~ /regexp/

One special place where /foo/ is not an abbreviation for ‘$0 ~ /foo/’ is when it is the
righthand operand of ‘~’ or ‘!~’. See Section 6.1.2 [Using Regular Expression Constants],
page 115, where this is discussed in more detail.

6.3.2.3 String Comparison Based on Locale Collating Order

The POSIX standard used to say that all string comparisons are performed based on the
locale’s collating order. This is the order in which characters sort, as defined by the locale
(for more discussion, see Section 6.6 [Where You Are Makes a Difference], page 138). This
order is usually very different from the results obtained when doing straight byte-by-byte
comparison.6

Because this behavior differs considerably from existing practice, gawk only implemented
it when in POSIX mode (see Section 2.2 [Command-Line Options], page 31). Here is an
example to illustrate the difference, in an en_US.UTF-8 locale:

$ gawk 'BEGIN { printf("ABC < abc = %s\n",

> ("ABC" < "abc" ? "TRUE" : "FALSE")) }'

a ABC < abc = TRUE

$ gawk --posix 'BEGIN { printf("ABC < abc = %s\n",

> ("ABC" < "abc" ? "TRUE" : "FALSE")) }'

a ABC < abc = FALSE

Fortunately, as of August 2016, comparison based on locale collating order is no longer
required for the == and != operators.7 However, comparison based on locales is still required
for <, <=, >, and >=. POSIX thus recommends as follows:

Since the == operator checks whether strings are identical, not whether they
collate equally, applications needing to check whether strings collate equally
can use:

a <= b && a >= b

As of version 4.2, gawk continues to use locale collating order for <, <=, >, and >= only
in POSIX mode.

6.3.3 Boolean Expressions

A Boolean expression is a combination of comparison expressions or matching expressions,
using the Boolean operators “or” (‘||’), “and” (‘&&’), and “not” (‘!’), along with parentheses
to control nesting. The truth value of the Boolean expression is computed by combining

6 Technically, string comparison is supposed to behave the same way as if the strings were compared with
the C strcoll() function.

7 See the Austin Group website.

http://austingroupbugs.net/view.php?id=1070

134 GAWK: Effective AWK Programming

the truth values of the component expressions. Boolean expressions are also referred to as
logical expressions. The terms are equivalent.

Boolean expressions can be used wherever comparison and matching expressions can be
used. They can be used in if, while, do, and for statements (see Section 7.4 [Control
Statements in Actions], page 148). They have numeric values (one if true, zero if false)
that come into play if the result of the Boolean expression is stored in a variable or used in
arithmetic.

In addition, every Boolean expression is also a valid pattern, so you can use one as a
pattern to control the execution of rules. The Boolean operators are:

boolean1 && boolean2

True if both boolean1 and boolean2 are true. For example, the following state-
ment prints the current input record if it contains both ‘edu’ and ‘li’:

if ($0 ~ /edu/ && $0 ~ /li/) print

The subexpression boolean2 is evaluated only if boolean1 is true. This can
make a difference when boolean2 contains expressions that have side effects. In
the case of ‘$0 ~ /foo/ && ($2 == bar++)’, the variable bar is not incremented
if there is no substring ‘foo’ in the record.

boolean1 || boolean2

True if at least one of boolean1 or boolean2 is true. For example, the following
statement prints all records in the input that contain either ‘edu’ or ‘li’:

if ($0 ~ /edu/ || $0 ~ /li/) print

The subexpression boolean2 is evaluated only if boolean1 is false. This can
make a difference when boolean2 contains expressions that have side effects.
(Thus, this test never really distinguishes records that contain both ‘edu’ and
‘li’—as soon as ‘edu’ is matched, the full test succeeds.)

! boolean True if boolean is false. For example, the following program prints ‘no home!’
in the unusual event that the HOME environment variable is not defined:

BEGIN { if (! ("HOME" in ENVIRON))

print "no home!" }

(The in operator is described in Section 8.1.2 [Referring to an Array Element],
page 173.)

The ‘&&’ and ‘||’ operators are called short-circuit operators because of the way they
work. Evaluation of the full expression is “short-circuited” if the result can be determined
partway through its evaluation.

Statements that end with ‘&&’ or ‘||’ can be continued simply by putting a newline after
them. But you cannot put a newline in front of either of these operators without using
backslash continuation (see Section 1.6 [awk Statements Versus Lines], page 28).

The actual value of an expression using the ‘!’ operator is either one or zero, depending
upon the truth value of the expression it is applied to. The ‘!’ operator is often useful for
changing the sense of a flag variable from false to true and back again. For example, the
following program is one way to print lines in between special bracketing lines:

$1 == "START" { interested = ! interested; next }

interested { print }

Chapter 6: Expressions 135

$1 == "END" { interested = ! interested; next }

The variable interested, as with all awk variables, starts out initialized to zero, which is
also false. When a line is seen whose first field is ‘START’, the value of interested is toggled
to true, using ‘!’. The next rule prints lines as long as interested is true. When a line is
seen whose first field is ‘END’, interested is toggled back to false.8

Most commonly, the ‘!’ operator is used in the conditions of if and while statements,
where it often makes more sense to phrase the logic in the negative:

if (! some condition || some other condition) {

... do whatever processing ...

}

NOTE: The next statement is discussed in Section 7.4.8 [The next Statement],
page 154. next tells awk to skip the rest of the rules, get the next record, and
start processing the rules over again at the top. The reason it’s there is to avoid
printing the bracketing ‘START’ and ‘END’ lines.

6.3.4 Conditional Expressions

A conditional expression is a special kind of expression that has three operands. It allows
you to use one expression’s value to select one of two other expressions. The conditional
expression in awk is the same as in the C language, as shown here:

selector ? if-true-exp : if-false-exp

There are three subexpressions. The first, selector, is always computed first. If it is “true”
(not zero or not null), then if-true-exp is computed next, and its value becomes the value of
the whole expression. Otherwise, if-false-exp is computed next, and its value becomes the
value of the whole expression. For example, the following expression produces the absolute
value of x:

x >= 0 ? x : -x

Each time the conditional expression is computed, only one of if-true-exp and if-false-exp
is used; the other is ignored. This is important when the expressions have side effects. For
example, this conditional expression examines element i of either array a or array b, and
increments i:

x == y ? a[i++] : b[i++]

This is guaranteed to increment i exactly once, because each time only one of the two
increment expressions is executed and the other is not. See Chapter 8 [Arrays in awk],
page 171, for more information about arrays.

As a minor gawk extension, a statement that uses ‘?:’ can be continued simply by putting
a newline after either character. However, putting a newline in front of either character
does not work without using backslash continuation (see Section 1.6 [awk Statements Versus
Lines], page 28). If --posix is specified (see Section 2.2 [Command-Line Options], page 31),
this extension is disabled.

8 This program has a bug; it prints lines starting with ‘END’. How would you fix it?

136 GAWK: Effective AWK Programming

6.4 Function Calls

A function is a name for a particular calculation. This enables you to ask for it by name at
any point in the program. For example, the function sqrt() computes the square root of
a number.

A fixed set of functions are built in, which means they are available in every awk program.
The sqrt() function is one of these. See Section 9.1 [Built-in Functions], page 187, for a
list of built-in functions and their descriptions. In addition, you can define functions for
use in your program. See Section 9.2 [User-Defined Functions], page 214, for instructions
on how to do this. Finally, gawk lets you write functions in C or C++ that may be called
from your program (see Chapter 17 [Writing Extensions for gawk], page 381).

The way to use a function is with a function call expression, which consists of the
function name followed immediately by a list of arguments in parentheses. The arguments
are expressions that provide the raw materials for the function’s calculations. When there
is more than one argument, they are separated by commas. If there are no arguments, just
write ‘()’ after the function name. The following examples show function calls with and
without arguments:

sqrt(x^2 + y^2) one argument
atan2(y, x) two arguments
rand() no arguments

CAUTION: Do not put any space between the function name and the open-
ing parenthesis! A user-defined function name looks just like the name of a
variable—a space would make the expression look like concatenation of a vari-
able with an expression inside parentheses. With built-in functions, space before
the parenthesis is harmless, but it is best not to get into the habit of using space
to avoid mistakes with user-defined functions.

Each function expects a particular number of arguments. For example, the sqrt()

function must be called with a single argument, the number of which to take the square
root:

sqrt(argument)

Some of the built-in functions have one or more optional arguments. If those arguments
are not supplied, the functions use a reasonable default value. See Section 9.1 [Built-in
Functions], page 187, for full details. If arguments are omitted in calls to user-defined
functions, then those arguments are treated as local variables. Such local variables act like
the empty string if referenced where a string value is required, and like zero if referenced
where a numeric value is required (see Section 9.2 [User-Defined Functions], page 214).

As an advanced feature, gawk provides indirect function calls, which is a way to choose
the function to call at runtime, instead of when you write the source code to your program.
We defer discussion of this feature until later; see Section 9.3 [Indirect Function Calls],
page 224.

Like every other expression, the function call has a value, often called the return value,
which is computed by the function based on the arguments you give it. In this example, the
return value of ‘sqrt(argument)’ is the square root of argument. The following program
reads numbers, one number per line, and prints the square root of each one:

$ awk '{ print "The square root of", $1, "is", sqrt($1) }'

Chapter 6: Expressions 137

1

a The square root of 1 is 1

3

a The square root of 3 is 1.73205

5

a The square root of 5 is 2.23607

Ctrl-d

A function can also have side effects, such as assigning values to certain variables or doing
I/O. This program shows how the match() function (see Section 9.1.3 [String-Manipulation
Functions], page 189) changes the variables RSTART and RLENGTH:

{

if (match($1, $2))

print RSTART, RLENGTH

else

print "no match"

}

Here is a sample run:

$ awk -f matchit.awk

aaccdd c+

a 3 2

foo bar

a no match

abcdefg e

a 5 1

6.5 Operator Precedence (How Operators Nest)

Operator precedence determines how operators are grouped when different operators appear
close by in one expression. For example, ‘*’ has higher precedence than ‘+’; thus, ‘a + b *

c’ means to multiply b and c, and then add a to the product (i.e., ‘a + (b * c)’).

The normal precedence of the operators can be overruled by using parentheses. Think of
the precedence rules as saying where the parentheses are assumed to be. In fact, it is wise
to always use parentheses whenever there is an unusual combination of operators, because
other people who read the program may not remember what the precedence is in this case.
Even experienced programmers occasionally forget the exact rules, which leads to mistakes.
Explicit parentheses help prevent any such mistakes.

When operators of equal precedence are used together, the leftmost operator groups
first, except for the assignment, conditional, and exponentiation operators, which group in
the opposite order. Thus, ‘a - b + c’ groups as ‘(a - b) + c’ and ‘a = b = c’ groups as ‘a =

(b = c)’.

Normally the precedence of prefix unary operators does not matter, because there is only
one way to interpret them: innermost first. Thus, ‘$++i’ means ‘$(++i)’ and ‘++$x’ means
‘++($x)’. However, when another operator follows the operand, then the precedence of the
unary operators can matter. ‘$x^2’ means ‘($x)^2’, but ‘-x^2’ means ‘-(x^2)’, because ‘-’
has lower precedence than ‘^’, whereas ‘$’ has higher precedence. Also, operators cannot be
combined in a way that violates the precedence rules; for example, ‘$$0++--’ is not a valid

138 GAWK: Effective AWK Programming

expression because the first ‘$’ has higher precedence than the ‘++’; to avoid the problem
the expression can be rewritten as ‘$($0++)--’.

This list presents awk’s operators, in order of highest to lowest precedence:

(. . .) Grouping.

$ Field reference.

++ -- Increment, decrement.

^ ** Exponentiation. These operators group right to left.

+ - ! Unary plus, minus, logical “not.”

* / % Multiplication, division, remainder.

+ - Addition, subtraction.

String concatenation
There is no special symbol for concatenation. The operands are simply written
side by side (see Section 6.2.2 [String Concatenation], page 123).

< <= == != > >= >> | |&

Relational and redirection. The relational operators and the redirections have
the same precedence level. Characters such as ‘>’ serve both as relationals and
as redirections; the context distinguishes between the two meanings.

Note that the I/O redirection operators in print and printf statements belong
to the statement level, not to expressions. The redirection does not produce an
expression that could be the operand of another operator. As a result, it does
not make sense to use a redirection operator near another operator of lower
precedence without parentheses. Such combinations (e.g., ‘print foo > a ? b

: c’) result in syntax errors. The correct way to write this statement is ‘print
foo > (a ? b : c)’.

~ !~ Matching, nonmatching.

in Array membership.

&& Logical “and.”

|| Logical “or.”

?: Conditional. This operator groups right to left.

= += -= *= /= %= ^= **=

Assignment. These operators group right to left.

NOTE: The ‘|&’, ‘**’, and ‘**=’ operators are not specified by POSIX. For
maximum portability, do not use them.

6.6 Where You Are Makes a Difference

Modern systems support the notion of locales: a way to tell the system about the local
character set and language. The ISO C standard defines a default "C" locale, which is an
environment that is typical of what many C programmers are used to.

Chapter 6: Expressions 139

Once upon a time, the locale setting used to affect regexp matching, but this is no longer
true (see Section A.8 [Regexp Ranges and Locales: A Long Sad Story], page 459).

Locales can affect record splitting. For the normal case of ‘RS = "\n"’, the locale is
largely irrelevant. For other single-character record separators, setting ‘LC_ALL=C’ in the
environment will give you much better performance when reading records. Otherwise, gawk
has to make several function calls, per input character, to find the record terminator.

Locales can affect how dates and times are formatted (see Section 9.1.5 [Time Functions],
page 205). For example, a common way to abbreviate the date September 4, 2015, in the
United States is “9/4/15.” In many countries in Europe, however, it is abbreviated “4.9.15.”
Thus, the ‘%x’ specification in a "US" locale might produce ‘9/4/15’, while in a "EUROPE"

locale, it might produce ‘4.9.15’.

According to POSIX, string comparison is also affected by locales (similar to regular
expressions). The details are presented in Section 6.3.2.3 [String Comparison Based on
Locale Collating Order], page 133.

Finally, the locale affects the value of the decimal point character used when gawk parses
input data. This is discussed in detail in Section 6.1.4 [Conversion of Strings and Numbers],
page 119.

6.7 Summary

• Expressions are the basic elements of computation in programs. They are built from
constants, variables, function calls, and combinations of the various kinds of values
with operators.

• awk supplies three kinds of constants: numeric, string, and regexp. gawk lets you
specify numeric constants in octal and hexadecimal (bases 8 and 16) as well as decimal
(base 10). In certain contexts, a standalone regexp constant such as /foo/ has the
same meaning as ‘$0 ~ /foo/’.

• Variables hold values between uses in computations. A number of built-in variables
provide information to your awk program, and a number of others let you control how
awk behaves.

• Numbers are automatically converted to strings, and strings to numbers, as needed by
awk. Numeric values are converted as if they were formatted with sprintf() using the
format in CONVFMT. Locales can influence the conversions.

• awk provides the usual arithmetic operators (addition, subtraction, multiplication, di-
vision, modulus), and unary plus and minus. It also provides comparison operators,
Boolean operators, an array membership testing operator, and regexp matching oper-
ators. String concatenation is accomplished by placing two expressions next to each
other; there is no explicit operator. The three-operand ‘?:’ operator provides an “if-
else” test within expressions.

• Assignment operators provide convenient shorthands for common arithmetic opera-
tions.

• In awk, a value is considered to be true if it is nonzero or non-null. Otherwise, the
value is false.

• A variable’s type is set upon each assignment and may change over its lifetime. The
type determines how it behaves in comparisons (string or numeric).

140 GAWK: Effective AWK Programming

• Function calls return a value that may be used as part of a larger expression. Expres-
sions used to pass parameter values are fully evaluated before the function is called. awk
provides built-in and user-defined functions; this is described in Chapter 9 [Functions],
page 187.

• Operator precedence specifies the order in which operations are performed, unless ex-
plicitly overridden by parentheses. awk’s operator precedence is compatible with that
of C.

• Locales can affect the format of data as output by an awk program, and occasionally
the format for data read as input.

Chapter 7: Patterns, Actions, and Variables 141

7 Patterns, Actions, and Variables

As you have already seen, each awk statement consists of a pattern with an associated
action. This chapter describes how you build patterns and actions, what kinds of things
you can do within actions, and awk’s predefined variables.

The pattern–action rules and the statements available for use within actions form the
core of awk programming. In a sense, everything covered up to here has been the foundation
that programs are built on top of. Now it’s time to start building something useful.

7.1 Pattern Elements

Patterns in awk control the execution of rules—a rule is executed when its pattern matches
the current input record. The following is a summary of the types of awk patterns:

/regular expression/

A regular expression. It matches when the text of the input record fits the
regular expression. (See Chapter 3 [Regular Expressions], page 47.)

expression

A single expression. It matches when its value is nonzero (if a number) or
non-null (if a string). (See Section 7.1.2 [Expressions as Patterns], page 141.)

begpat, endpat

A pair of patterns separated by a comma, specifying a range of records. The
range includes both the initial record that matches begpat and the final record
that matches endpat. (See Section 7.1.3 [Specifying Record Ranges with Pat-
terns], page 143.)

BEGIN

END Special patterns for you to supply startup or cleanup actions for your awk

program. (See Section 7.1.4 [The BEGIN and END Special Patterns], page 144.)

BEGINFILE

ENDFILE Special patterns for you to supply startup or cleanup actions to be done on a
per-file basis. (See Section 7.1.5 [The BEGINFILE and ENDFILE Special Patterns],
page 145.)

empty The empty pattern matches every input record. (See Section 7.1.6 [The Empty
Pattern], page 146.)

7.1.1 Regular Expressions as Patterns

Regular expressions are one of the first kinds of patterns presented in this book. This kind
of pattern is simply a regexp constant in the pattern part of a rule. Its meaning is ‘$0 ~

/pattern/’. The pattern matches when the input record matches the regexp. For example:

/foo|bar|baz/ { buzzwords++ }

END { print buzzwords, "buzzwords seen" }

7.1.2 Expressions as Patterns

Any awk expression is valid as an awk pattern. The pattern matches if the expression’s
value is nonzero (if a number) or non-null (if a string). The expression is reevaluated each

142 GAWK: Effective AWK Programming

time the rule is tested against a new input record. If the expression uses fields such as $1,
the value depends directly on the new input record’s text; otherwise, it depends on only
what has happened so far in the execution of the awk program.

Comparison expressions, using the comparison operators described in Section 6.3.2 [Vari-
able Typing and Comparison Expressions], page 128, are a very common kind of pattern.
Regexp matching and nonmatching are also very common expressions. The left operand
of the ‘~’ and ‘!~’ operators is a string. The right operand is either a constant regular
expression enclosed in slashes (/regexp/), or any expression whose string value is used as
a dynamic regular expression (see Section 3.6 [Using Dynamic Regexps], page 55). The
following example prints the second field of each input record whose first field is precisely
‘li’:

$ awk '$1 == "li" { print $2 }' mail-list

(There is no output, because there is no person with the exact name ‘li’.) Contrast this
with the following regular expression match, which accepts any record with a first field that
contains ‘li’:

$ awk '$1 ~ /li/ { print $2 }' mail-list

a 555-5553

a 555-6699

A regexp constant as a pattern is also a special case of an expression pattern. The
expression /li/ has the value one if ‘li’ appears in the current input record. Thus, as a
pattern, /li/ matches any record containing ‘li’.

Boolean expressions are also commonly used as patterns. Whether the pattern matches
an input record depends on whether its subexpressions match. For example, the following
command prints all the records in mail-list that contain both ‘edu’ and ‘li’:

$ awk '/edu/ && /li/' mail-list

a Samuel 555-3430 samuel.lanceolis@shu.edu A

The following command prints all records in mail-list that contain either ‘edu’ or ‘li’
(or both, of course):

$ awk '/edu/ || /li/' mail-list

a Amelia 555-5553 amelia.zodiacusque@gmail.com F

a Broderick 555-0542 broderick.aliquotiens@yahoo.com R

a Fabius 555-1234 fabius.undevicesimus@ucb.edu F

a Julie 555-6699 julie.perscrutabor@skeeve.com F

a Samuel 555-3430 samuel.lanceolis@shu.edu A

a Jean-Paul 555-2127 jeanpaul.campanorum@nyu.edu R

The following command prints all records in mail-list that do not contain the string
‘li’:

$ awk '! /li/' mail-list

a Anthony 555-3412 anthony.asserturo@hotmail.com A

a Becky 555-7685 becky.algebrarum@gmail.com A

a Bill 555-1675 bill.drowning@hotmail.com A

a Camilla 555-2912 camilla.infusarum@skynet.be R

a Fabius 555-1234 fabius.undevicesimus@ucb.edu F

a Martin 555-6480 martin.codicibus@hotmail.com A

a Jean-Paul 555-2127 jeanpaul.campanorum@nyu.edu R

Chapter 7: Patterns, Actions, and Variables 143

The subexpressions of a Boolean operator in a pattern can be constant regular expres-
sions, comparisons, or any other awk expressions. Range patterns are not expressions, so
they cannot appear inside Boolean patterns. Likewise, the special patterns BEGIN, END,
BEGINFILE, and ENDFILE, which never match any input record, are not expressions and
cannot appear inside Boolean patterns.

The precedence of the different operators that can appear in patterns is described in
Section 6.5 [Operator Precedence (How Operators Nest)], page 137.

7.1.3 Specifying Record Ranges with Patterns

A range pattern is made of two patterns separated by a comma, in the form ‘begpat,
endpat’. It is used to match ranges of consecutive input records. The first pattern, begpat,
controls where the range begins, while endpat controls where the pattern ends. For example,
the following:

awk '$1 == "on", $1 == "off"' myfile

prints every record in myfile between ‘on’/‘off’ pairs, inclusive.

A range pattern starts out by matching begpat against every input record. When a
record matches begpat, the range pattern is turned on, and the range pattern matches this
record as well. As long as the range pattern stays turned on, it automatically matches every
input record read. The range pattern also matches endpat against every input record; when
this succeeds, the range pattern is turned off again for the following record. Then the range
pattern goes back to checking begpat against each record.

The record that turns on the range pattern and the one that turns it off both match the
range pattern. If you don’t want to operate on these records, you can write if statements
in the rule’s action to distinguish them from the records you are interested in.

It is possible for a pattern to be turned on and off by the same record. If the record
satisfies both conditions, then the action is executed for just that record. For example,
suppose there is text between two identical markers (e.g., the ‘%’ symbol), each on its own
line, that should be ignored. A first attempt would be to combine a range pattern that
describes the delimited text with the next statement (not discussed yet, see Section 7.4.8
[The next Statement], page 154). This causes awk to skip any further processing of the
current record and start over again with the next input record. Such a program looks like
this:

/^%$/,/^%$/ { next }

{ print }

This program fails because the range pattern is both turned on and turned off by the first
line, which just has a ‘%’ on it. To accomplish this task, write the program in the following
manner, using a flag:

/^%$/ { skip = ! skip; next }

skip == 1 { next } # skip lines with `skip' set

In a range pattern, the comma (‘,’) has the lowest precedence of all the operators (i.e.,
it is evaluated last). Thus, the following program attempts to combine a range pattern with
another, simpler test:

echo Yes | awk '/1/,/2/ || /Yes/'

144 GAWK: Effective AWK Programming

The intent of this program is ‘(/1/,/2/) || /Yes/’. However, awk interprets this as
‘/1/, (/2/ || /Yes/)’. This cannot be changed or worked around; range patterns do not
combine with other patterns:

$ echo Yes | gawk '(/1/,/2/) || /Yes/'

error gawk: cmd. line:1: (/1/,/2/) || /Yes/

error gawk: cmd. line:1: ^ syntax error

As a minor point of interest, although it is poor style, POSIX allows you to put a newline
after the comma in a range pattern.

7.1.4 The BEGIN and END Special Patterns

All the patterns described so far are for matching input records. The BEGIN and END special
patterns are different. They supply startup and cleanup actions for awk programs. BEGIN

and END rules must have actions; there is no default action for these rules because there is
no current record when they run. BEGIN and END rules are often referred to as “BEGIN and
END blocks” by longtime awk programmers.

7.1.4.1 Startup and Cleanup Actions

A BEGIN rule is executed once only, before the first input record is read. Likewise, an END

rule is executed once only, after all the input is read. For example:

$ awk '

> BEGIN { print "Analysis of \"li\"" }

> /li/ { ++n }

> END { print "\"li\" appears in", n, "records." }' mail-list

a Analysis of "li"

a "li" appears in 4 records.

This program finds the number of records in the input file mail-list that contain the
string ‘li’. The BEGIN rule prints a title for the report. There is no need to use the BEGIN
rule to initialize the counter n to zero, as awk does this automatically (see Section 6.1.3
[Variables], page 118). The second rule increments the variable n every time a record
containing the pattern ‘li’ is read. The END rule prints the value of n at the end of the run.

The special patterns BEGIN and END cannot be used in ranges or with Boolean operators
(indeed, they cannot be used with any operators). An awk program may have multiple
BEGIN and/or END rules. They are executed in the order in which they appear: all the
BEGIN rules at startup and all the END rules at termination. BEGIN and END rules may
be intermixed with other rules. This feature was added in the 1987 version of awk and is
included in the POSIX standard. The original (1978) version of awk required the BEGIN

rule to be placed at the beginning of the program, the END rule to be placed at the end,
and only allowed one of each. This is no longer required, but it is a good idea to follow this
template in terms of program organization and readability.

Multiple BEGIN and END rules are useful for writing library functions, because each library
file can have its own BEGIN and/or END rule to do its own initialization and/or cleanup. The
order in which library functions are named on the command line controls the order in which
their BEGIN and END rules are executed. Therefore, you have to be careful when writing
such rules in library files so that the order in which they are executed doesn’t matter.
See Section 2.2 [Command-Line Options], page 31, for more information on using library

Chapter 7: Patterns, Actions, and Variables 145

functions. See Chapter 10 [A Library of awk Functions], page 233, for a number of useful
library functions.

If an awk program has only BEGIN rules and no other rules, then the program exits after
the BEGIN rules are run.1 However, if an END rule exists, then the input is read, even if
there are no other rules in the program. This is necessary in case the END rule checks the
FNR and NR variables.

7.1.4.2 Input/Output from BEGIN and END Rules

There are several (sometimes subtle) points to be aware of when doing I/O from a BEGIN

or END rule. The first has to do with the value of $0 in a BEGIN rule. Because BEGIN rules
are executed before any input is read, there simply is no input record, and therefore no
fields, when executing BEGIN rules. References to $0 and the fields yield a null string or
zero, depending upon the context. One way to give $0 a real value is to execute a getline

command without a variable (see Section 4.10 [Explicit Input with getline], page 82).
Another way is simply to assign a value to $0.

The second point is similar to the first, but from the other direction. Traditionally, due
largely to implementation issues, $0 and NF were undefined inside an END rule. The POSIX
standard specifies that NF is available in an END rule. It contains the number of fields from
the last input record. Most probably due to an oversight, the standard does not say that $0
is also preserved, although logically one would think that it should be. In fact, all of BWK
awk, mawk, and gawk preserve the value of $0 for use in END rules. Be aware, however, that
some other implementations and many older versions of Unix awk do not.

The third point follows from the first two. The meaning of ‘print’ inside a BEGIN or END
rule is the same as always: ‘print $0’. If $0 is the null string, then this prints an empty
record. Many longtime awk programmers use an unadorned ‘print’ in BEGIN and END rules,
to mean ‘print ""’, relying on $0 being null. Although one might generally get away with
this in BEGIN rules, it is a very bad idea in END rules, at least in gawk. It is also poor style,
because if an empty line is needed in the output, the program should print one explicitly.

Finally, the next and nextfile statements are not allowed in a BEGIN rule, because
the implicit read-a-record-and-match-against-the-rules loop has not started yet. Similarly,
those statements are not valid in an END rule, because all the input has been read. (See
Section 7.4.8 [The next Statement], page 154, and see Section 7.4.9 [The nextfile State-
ment], page 155.)

7.1.5 The BEGINFILE and ENDFILE Special Patterns

This section describes a gawk-specific feature.

Two special kinds of rule, BEGINFILE and ENDFILE, give you “hooks” into gawk’s
command-line file processing loop. As with the BEGIN and END rules (see the previous
section), all BEGINFILE rules in a program are merged, in the order they are read by gawk,
and all ENDFILE rules are merged as well.

The body of the BEGINFILE rules is executed just before gawk reads the first record from
a file. FILENAME is set to the name of the current file, and FNR is set to zero.

1 The original version of awk kept reading and ignoring input until the end of the file was seen.

146 GAWK: Effective AWK Programming

The BEGINFILE rule provides you the opportunity to accomplish two tasks that would
otherwise be difficult or impossible to perform:

• You can test if the file is readable. Normally, it is a fatal error if a file named on the
command line cannot be opened for reading. However, you can bypass the fatal error
and move on to the next file on the command line.

You do this by checking if the ERRNO variable is not the empty string; if so, then gawk

was not able to open the file. In this case, your program can execute the nextfile

statement (see Section 7.4.9 [The nextfile Statement], page 155). This causes gawk
to skip the file entirely. Otherwise, gawk exits with the usual fatal error.

• If you have written extensions that modify the record handling (by inserting an “input
parser”; see Section 17.4.5.4 [Customized Input Parsers], page 394), you can invoke
them at this point, before gawk has started processing the file. (This is a very advanced
feature, currently used only by the gawkextlib project.)

The ENDFILE rule is called when gawk has finished processing the last record in an input
file. For the last input file, it will be called before any END rules. The ENDFILE rule is
executed even for empty input files.

Normally, when an error occurs when reading input in the normal input-processing loop,
the error is fatal. However, if an ENDFILE rule is present, the error becomes non-fatal, and
instead ERRNO is set. This makes it possible to catch and process I/O errors at the level of
the awk program.

The next statement (see Section 7.4.8 [The next Statement], page 154) is not allowed
inside either a BEGINFILE or an ENDFILE rule. The nextfile statement is allowed only
inside a BEGINFILE rule, not inside an ENDFILE rule.

The getline statement (see Section 4.10 [Explicit Input with getline], page 82) is re-
stricted inside both BEGINFILE and ENDFILE: only redirected forms of getline are allowed.

BEGINFILE and ENDFILE are gawk extensions. In most other awk implementations, or if
gawk is in compatibility mode (see Section 2.2 [Command-Line Options], page 31), they are
not special.

7.1.6 The Empty Pattern

An empty (i.e., nonexistent) pattern is considered to match every input record. For example,
the program:

awk '{ print $1 }' mail-list

prints the first field of every record.

7.2 Using Shell Variables in Programs

awk programs are often used as components in larger programs written in shell. For example,
it is very common to use a shell variable to hold a pattern that the awk program searches
for. There are two ways to get the value of the shell variable into the body of the awk

program.

A common method is to use shell quoting to substitute the variable’s value into the
program inside the script. For example, consider the following program:

https://sourceforge.net/projects/gawkextlib

Chapter 7: Patterns, Actions, and Variables 147

printf "Enter search pattern: "

read pattern

awk "/$pattern/ "'{ nmatches++ }

END { print nmatches, "found" }' /path/to/data

The awk program consists of two pieces of quoted text that are concatenated together to
form the program. The first part is double-quoted, which allows substitution of the pattern
shell variable inside the quotes. The second part is single-quoted.

Variable substitution via quoting works, but can potentially be messy. It requires a good
understanding of the shell’s quoting rules (see Section 1.1.6 [Shell Quoting Issues], page 21),
and it’s often difficult to correctly match up the quotes when reading the program.

A better method is to use awk’s variable assignment feature (see Section 6.1.3.2 [Assigning
Variables on the Command Line], page 118) to assign the shell variable’s value to an awk

variable. Then use dynamic regexps to match the pattern (see Section 3.6 [Using Dynamic
Regexps], page 55). The following shows how to redo the previous example using this
technique:

printf "Enter search pattern: "

read pattern

awk -v pat="$pattern" '$0 ~ pat { nmatches++ }

END { print nmatches, "found" }' /path/to/data

Now, the awk program is just one single-quoted string. The assignment ‘-v
pat="$pattern"’ still requires double quotes, in case there is whitespace in the value
of $pattern. The awk variable pat could be named pattern too, but that would be
more confusing. Using a variable also provides more flexibility, as the variable can be
used anywhere inside the program—for printing, as an array subscript, or for any other
use—without requiring the quoting tricks at every point in the program.

7.3 Actions

An awk program or script consists of a series of rules and function definitions interspersed.
(Functions are described later. See Section 9.2 [User-Defined Functions], page 214.) A rule
contains a pattern and an action, either of which (but not both) may be omitted. The
purpose of the action is to tell awk what to do once a match for the pattern is found. Thus,
in outline, an awk program generally looks like this:

[pattern] { action }

pattern [{ action }]
. . .
function name(args) { ... }

. . .

An action consists of one or more awk statements, enclosed in braces (‘{. . .}’). Each
statement specifies one thing to do. The statements are separated by newlines or semicolons.
The braces around an action must be used even if the action contains only one statement,
or if it contains no statements at all. However, if you omit the action entirely, omit the
braces as well. An omitted action is equivalent to ‘{ print $0 }’:

/foo/ { } match foo, do nothing — empty action
/foo/ match foo, print the record — omitted action

148 GAWK: Effective AWK Programming

The following types of statements are supported in awk:

Expressions
Call functions or assign values to variables (see Chapter 6 [Expressions],
page 113). Executing this kind of statement simply computes the value
of the expression. This is useful when the expression has side effects (see
Section 6.2.3 [Assignment Expressions], page 124).

Control statements
Specify the control flow of awk programs. The awk language gives you C-like
constructs (if, for, while, and do) as well as a few special ones (see Section 7.4
[Control Statements in Actions], page 148).

Compound statements
Enclose one or more statements in braces. A compound statement is used in
order to put several statements together in the body of an if, while, do, or
for statement.

Input statements
Use the getline command (see Section 4.10 [Explicit Input with getline],
page 82). Also supplied in awk are the next statement (see Section 7.4.8 [The
next Statement], page 154) and the nextfile statement (see Section 7.4.9 [The
nextfile Statement], page 155).

Output statements
Such as print and printf. See Chapter 5 [Printing Output], page 93.

Deletion statements
For deleting array elements. See Section 8.4 [The delete Statement], page 180.

7.4 Control Statements in Actions

Control statements, such as if, while, and so on, control the flow of execution in awk

programs. Most of awk’s control statements are patterned after similar statements in C.

All the control statements start with special keywords, such as if and while, to dis-
tinguish them from simple expressions. Many control statements contain other statements.
For example, the if statement contains another statement that may or may not be exe-
cuted. The contained statement is called the body. To include more than one statement in
the body, group them into a single compound statement with braces, separating them with
newlines or semicolons.

7.4.1 The if-else Statement

The if-else statement is awk’s decision-making statement. It looks like this:

if (condition) then-body [else else-body]

The condition is an expression that controls what the rest of the statement does. If the
condition is true, then-body is executed; otherwise, else-body is executed. The else part
of the statement is optional. The condition is considered false if its value is zero or the null
string; otherwise, the condition is true. Refer to the following:

Chapter 7: Patterns, Actions, and Variables 149

if (x % 2 == 0)

print "x is even"

else

print "x is odd"

In this example, if the expression ‘x % 2 == 0’ is true (i.e., if the value of x is evenly
divisible by two), then the first print statement is executed; otherwise, the second print

statement is executed. If the else keyword appears on the same line as then-body and
then-body is not a compound statement (i.e., not surrounded by braces), then a semicolon
must separate then-body from the else. To illustrate this, the previous example can be
rewritten as:

if (x % 2 == 0) print "x is even"; else

print "x is odd"

If the ‘;’ is left out, awk can’t interpret the statement and it produces a syntax error. Don’t
actually write programs this way, because a human reader might fail to see the else if it is
not the first thing on its line.

7.4.2 The while Statement

In programming, a loop is a part of a program that can be executed two or more times in
succession. The while statement is the simplest looping statement in awk. It repeatedly
executes a statement as long as a condition is true. For example:

while (condition)

body

body is a statement called the body of the loop, and condition is an expression that controls
how long the loop keeps running. The first thing the while statement does is test the
condition. If the condition is true, it executes the statement body. After body has been
executed, condition is tested again, and if it is still true, body executes again. This process
repeats until the condition is no longer true. If the condition is initially false, the body
of the loop never executes and awk continues with the statement following the loop. This
example prints the first three fields of each record, one per line:

awk '

{

i = 1

while (i <= 3) {

print $i

i++

}

}' inventory-shipped

The body of this loop is a compound statement enclosed in braces, containing two state-
ments. The loop works in the following manner: first, the value of i is set to one. Then,
the while statement tests whether i is less than or equal to three. This is true when i

equals one, so the ith field is printed. Then the ‘i++’ increments the value of i and the
loop repeats. The loop terminates when i reaches four.

A newline is not required between the condition and the body; however, using one makes
the program clearer unless the body is a compound statement or else is very simple. The

150 GAWK: Effective AWK Programming

newline after the open brace that begins the compound statement is not required either,
but the program is harder to read without it.

7.4.3 The do-while Statement

The do loop is a variation of the while looping statement. The do loop executes the body
once and then repeats the body as long as the condition is true. It looks like this:

do

body

while (condition)

Even if the condition is false at the start, the body executes at least once (and only
once, unless executing body makes condition true). Contrast this with the corresponding
while statement:

while (condition)

body

This statement does not execute the body even once if the condition is false to begin with.
The following is an example of a do statement:

{

i = 1

do {

print $0

i++

} while (i <= 10)

}

This program prints each input record 10 times. However, it isn’t a very realistic example,
because in this case an ordinary while would do just as well. This situation reflects actual
experience; only occasionally is there a real use for a do statement.

7.4.4 The for Statement

The for statement makes it more convenient to count iterations of a loop. The general
form of the for statement looks like this:

for (initialization; condition; increment)

body

The initialization, condition, and increment parts are arbitrary awk expressions, and body
stands for any awk statement.

The for statement starts by executing initialization. Then, as long as the condition
is true, it repeatedly executes body and then increment. Typically, initialization sets a
variable to either zero or one, increment adds one to it, and condition compares it against
the desired number of iterations. For example:

awk '

{

for (i = 1; i <= 3; i++)

print $i

}' inventory-shipped

This prints the first three fields of each input record, with one input field per output line.

Chapter 7: Patterns, Actions, and Variables 151

It isn’t possible to set more than one variable in the initialization part without using
a multiple assignment statement such as ‘x = y = 0’. This makes sense only if all the ini-
tial values are equal. (But it is possible to initialize additional variables by writing their
assignments as separate statements preceding the for loop.)

The same is true of the increment part. Incrementing additional variables requires
separate statements at the end of the loop. The C compound expression, using C’s comma
operator, is useful in this context, but it is not supported in awk.

Most often, increment is an increment expression, as in the previous example. But this
is not required; it can be any expression whatsoever. For example, the following statement
prints all the powers of two between 1 and 100:

for (i = 1; i <= 100; i *= 2)

print i

If there is nothing to be done, any of the three expressions in the parentheses following
the for keyword may be omitted. Thus, ‘for (; x > 0;)’ is equivalent to ‘while (x > 0)’.
If the condition is omitted, it is treated as true, effectively yielding an infinite loop (i.e., a
loop that never terminates).

In most cases, a for loop is an abbreviation for a while loop, as shown here:

initialization

while (condition) {

body

increment

}

The only exception is when the continue statement (see Section 7.4.7 [The continue

Statement], page 153) is used inside the loop. Changing a for statement to a while

statement in this way can change the effect of the continue statement inside the loop.

The awk language has a for statement in addition to a while statement because a for

loop is often both less work to type and more natural to think of. Counting the number
of iterations is very common in loops. It can be easier to think of this counting as part of
looping rather than as something to do inside the loop.

There is an alternative version of the for loop, for iterating over all the indices of an
array:

for (i in array)

do something with array[i]

See Section 8.1.5 [Scanning All Elements of an Array], page 175, for more information on
this version of the for loop.

7.4.5 The switch Statement

This section describes a gawk-specific feature. If gawk is in compatibility mode (see
Section 2.2 [Command-Line Options], page 31), it is not available.

The switch statement allows the evaluation of an expression and the execution of state-
ments based on a case match. Case statements are checked for a match in the order they
are defined. If no suitable case is found, the default section is executed, if supplied.

Each case contains a single constant, be it numeric, string, or regexp. The switch

expression is evaluated, and then each case’s constant is compared against the result in

152 GAWK: Effective AWK Programming

turn. The type of constant determines the comparison: numeric or string do the usual
comparisons. A regexp constant does a regular expression match against the string value
of the original expression. The general form of the switch statement looks like this:

switch (expression) {

case value or regular expression:

case-body

default:

default-body

}

Control flow in the switch statement works as it does in C. Once a match to a given
case is made, the case statement bodies execute until a break, continue, next, nextfile,
or exit is encountered, or the end of the switch statement itself. For example:

while ((c = getopt(ARGC, ARGV, "aksx")) != -1) {

switch (c) {

case "a":

report size of all files

all_files = TRUE;

break

case "k":

BLOCK_SIZE = 1024 # 1K block size

break

case "s":

do sums only

sum_only = TRUE

break

case "x":

don't cross filesystems

fts_flags = or(fts_flags, FTS_XDEV)

break

case "?":

default:

usage()

break

}

}

Note that if none of the statements specified here halt execution of a matched case

statement, execution falls through to the next case until execution halts. In this example,
the case for "?" falls through to the default case, which is to call a function named
usage(). (The getopt() function being called here is described in Section 10.4 [Processing
Command-Line Options], page 250.)

7.4.6 The break Statement

The break statement jumps out of the innermost for, while, or do loop that encloses it.
The following example finds the smallest divisor of any integer, and also identifies prime
numbers:

Chapter 7: Patterns, Actions, and Variables 153

find smallest divisor of num

{

num = $1

for (divisor = 2; divisor * divisor <= num; divisor++) {

if (num % divisor == 0)

break

}

if (num % divisor == 0)

printf "Smallest divisor of %d is %d\n", num, divisor

else

printf "%d is prime\n", num

}

When the remainder is zero in the first if statement, awk immediately breaks out of the
containing for loop. This means that awk proceeds immediately to the statement following
the loop and continues processing. (This is very different from the exit statement, which
stops the entire awk program. See Section 7.4.10 [The exit Statement], page 156.)

The following program illustrates how the condition of a for or while statement could
be replaced with a break inside an if:

find smallest divisor of num

{

num = $1

for (divisor = 2; ; divisor++) {

if (num % divisor == 0) {

printf "Smallest divisor of %d is %d\n", num, divisor

break

}

if (divisor * divisor > num) {

printf "%d is prime\n", num

break

}

}

}

The break statement is also used to break out of the switch statement. This is discussed
in Section 7.4.5 [The switch Statement], page 151.

The break statement has no meaning when used outside the body of a loop or switch.
However, although it was never documented, historical implementations of awk treated the
break statement outside of a loop as if it were a next statement (see Section 7.4.8 [The
next Statement], page 154). Recent versions of BWK awk no longer allow this usage, nor
does gawk.

7.4.7 The continue Statement

Similar to break, the continue statement is used only inside for, while, and do loops.
It skips over the rest of the loop body, causing the next cycle around the loop to begin
immediately. Contrast this with break, which jumps out of the loop altogether.

154 GAWK: Effective AWK Programming

The continue statement in a for loop directs awk to skip the rest of the body of the loop
and resume execution with the increment-expression of the for statement. The following
program illustrates this fact:

BEGIN {

for (x = 0; x <= 20; x++) {

if (x == 5)

continue

printf "%d ", x

}

print ""

}

This program prints all the numbers from 0 to 20—except for 5, for which the printf is
skipped. Because the increment ‘x++’ is not skipped, x does not remain stuck at 5. Contrast
the for loop from the previous example with the following while loop:

BEGIN {

x = 0

while (x <= 20) {

if (x == 5)

continue

printf "%d ", x

x++

}

print ""

}

This program loops forever once x reaches 5, because the increment (‘x++’) is never reached.

The continue statement has no special meaning with respect to the switch statement,
nor does it have any meaning when used outside the body of a loop. Historical versions
of awk treated a continue statement outside a loop the same way they treated a break

statement outside a loop: as if it were a next statement (see Section 7.4.8 [The next

Statement], page 154). Recent versions of BWK awk no longer work this way, nor does
gawk.

7.4.8 The next Statement

The next statement forces awk to immediately stop processing the current record and go
on to the next record. This means that no further rules are executed for the current record,
and the rest of the current rule’s action isn’t executed.

Contrast this with the effect of the getline function (see Section 4.10 [Explicit Input
with getline], page 82). That also causes awk to read the next record immediately, but it
does not alter the flow of control in any way (i.e., the rest of the current action executes
with a new input record).

At the highest level, awk program execution is a loop that reads an input record and
then tests each rule’s pattern against it. If you think of this loop as a for statement whose
body contains the rules, then the next statement is analogous to a continue statement. It
skips to the end of the body of this implicit loop and executes the increment (which reads
another record).

Chapter 7: Patterns, Actions, and Variables 155

For example, suppose an awk program works only on records with four fields, and it
shouldn’t fail when given bad input. To avoid complicating the rest of the program, write
a “weed out” rule near the beginning, in the following manner:

NF != 4 {

printf("%s:%d: skipped: NF != 4\n", FILENAME, FNR) > "/dev/stderr"

next

}

Because of the next statement, the program’s subsequent rules won’t see the bad record.
The error message is redirected to the standard error output stream, as error messages
should be. For more detail, see Section 5.8 [Special File names in gawk], page 105.

If the next statement causes the end of the input to be reached, then the code in any
END rules is executed. See Section 7.1.4 [The BEGIN and END Special Patterns], page 144.

The next statement is not allowed inside BEGINFILE and ENDFILE rules. See Section 7.1.5
[The BEGINFILE and ENDFILE Special Patterns], page 145.

According to the POSIX standard, the behavior is undefined if the next statement is used
in a BEGIN or END rule. gawk treats it as a syntax error. Although POSIX does not disallow
it, most other awk implementations don’t allow the next statement inside function bodies
(see Section 9.2 [User-Defined Functions], page 214). Just as with any other next statement,
a next statement inside a function body reads the next record and starts processing it with
the first rule in the program.

7.4.9 The nextfile Statement

The nextfile statement is similar to the next statement. However, instead of abandoning
processing of the current record, the nextfile statement instructs awk to stop processing
the current data file.

Upon execution of the nextfile statement, FILENAME is updated to the name of the
next data file listed on the command line, FNR is reset to one, and processing starts over
with the first rule in the program. If the nextfile statement causes the end of the input
to be reached, then the code in any END rules is executed. An exception to this is when
nextfile is invoked during execution of any statement in an END rule; in this case, it causes
the program to stop immediately. See Section 7.1.4 [The BEGIN and END Special Patterns],
page 144.

The nextfile statement is useful when there are many data files to process but it isn’t
necessary to process every record in every file. Without nextfile, in order to move on to
the next data file, a program would have to continue scanning the unwanted records. The
nextfile statement accomplishes this much more efficiently.

In gawk, execution of nextfile causes additional things to happen: any ENDFILE rules
are executed if gawk is not currently in an END or BEGINFILE rule, ARGIND is incremented,
and any BEGINFILE rules are executed. (ARGIND hasn’t been introduced yet. See Section 7.5
[Predefined Variables], page 157.)

With gawk, nextfile is useful inside a BEGINFILE rule to skip over a file that would
otherwise cause gawk to exit with a fatal error. In this case, ENDFILE rules are not executed.
See Section 7.1.5 [The BEGINFILE and ENDFILE Special Patterns], page 145.

Although it might seem that ‘close(FILENAME)’ would accomplish the same as
nextfile, this isn’t true. close() is reserved for closing files, pipes, and coprocesses that

156 GAWK: Effective AWK Programming

are opened with redirections. It is not related to the main processing that awk does with
the files listed in ARGV.

NOTE: For many years, nextfile was a common extension. In September
2012, it was accepted for inclusion into the POSIX standard. See the Austin
Group website.

The current version of BWK awk and mawk also support nextfile. However, they
don’t allow the nextfile statement inside function bodies (see Section 9.2 [User-Defined
Functions], page 214). gawk does; a nextfile inside a function body reads the first record
from the next file and starts processing it with the first rule in the program, just as any
other nextfile statement.

7.4.10 The exit Statement

The exit statement causes awk to immediately stop executing the current rule and to stop
processing input; any remaining input is ignored. The exit statement is written as follows:

exit [return code]

When an exit statement is executed from a BEGIN rule, the program stops processing
everything immediately. No input records are read. However, if an END rule is present, as
part of executing the exit statement, the END rule is executed (see Section 7.1.4 [The BEGIN
and END Special Patterns], page 144). If exit is used in the body of an END rule, it causes
the program to stop immediately.

An exit statement that is not part of a BEGIN or END rule stops the execution of any
further automatic rules for the current record, skips reading any remaining input records,
and executes the END rule if there is one. gawk also skips any ENDFILE rules; they do not
execute.

In such a case, if you don’t want the END rule to do its job, set a variable to a nonzero
value before the exit statement and check that variable in the END rule. See Section 10.2.2
[Assertions], page 236, for an example that does this.

If an argument is supplied to exit, its value is used as the exit status code for the awk

process. If no argument is supplied, exit causes awk to return a “success” status. In the
case where an argument is supplied to a first exit statement, and then exit is called a
second time from an END rule with no argument, awk uses the previously supplied exit value.
See Section 2.6 [gawk’s Exit Status], page 43, for more information.

For example, suppose an error condition occurs that is difficult or impossible to handle.
Conventionally, programs report this by exiting with a nonzero status. An awk program
can do this using an exit statement with a nonzero argument, as shown in the following
example:

BEGIN {

if (("date" | getline date_now) <= 0) {

print "Can't get system date" > "/dev/stderr"

exit 1

}

print "current date is", date_now

close("date")

}

http://austingroupbugs.net/view.php?id=607
http://austingroupbugs.net/view.php?id=607

Chapter 7: Patterns, Actions, and Variables 157

NOTE: For full portability, exit values should be between zero and 126, inclu-
sive. Negative values, and values of 127 or greater, may not produce consistent
results across different operating systems.

7.5 Predefined Variables

Most awk variables are available to use for your own purposes; they never change unless
your program assigns values to them, and they never affect anything unless your program
examines them. However, a few variables in awk have special built-in meanings. awk

examines some of these automatically, so that they enable you to tell awk how to do certain
things. Others are set automatically by awk, so that they carry information from the internal
workings of awk to your program.

This section documents all of gawk’s predefined variables, most of which are also docu-
mented in the chapters describing their areas of activity.

7.5.1 Built-in Variables That Control awk

The following is an alphabetical list of variables that you can change to control how awk

does certain things.

The variables that are specific to gawk are marked with a pound sign (‘#’). These
variables are gawk extensions. In other awk implementations or if gawk is in compatibility
mode (see Section 2.2 [Command-Line Options], page 31), they are not special. (Any
exceptions are noted in the description of each variable.)

BINMODE # On non-POSIX systems, this variable specifies use of binary mode for all I/O.
Numeric values of one, two, or three specify that input files, output files, or
all files, respectively, should use binary I/O. A numeric value less than zero
is treated as zero, and a numeric value greater than three is treated as three.
Alternatively, string values of "r" or "w" specify that input files and output files,
respectively, should use binary I/O. A string value of "rw" or "wr" indicates
that all files should use binary I/O. Any other string value is treated the same as
"rw", but causes gawk to generate a warning message. BINMODE is described in
more detail in Section B.3.1.3 [Using gawk on PC Operating Systems], page 472.
mawk (see Section B.5 [Other Freely Available awk Implementations], page 480)
also supports this variable, but only using numeric values.

CONVFMT A string that controls the conversion of numbers to strings (see Section 6.1.4
[Conversion of Strings and Numbers], page 119). It works by being passed, in
effect, as the first argument to the sprintf() function (see Section 9.1.3 [String-
Manipulation Functions], page 189). Its default value is "%.6g". CONVFMT was
introduced by the POSIX standard.

FIELDWIDTHS #

A space-separated list of columns that tells gawk how to split input with fixed
columnar boundaries. Starting in version 4.2, each field width may optionally
be preceded by a colon-separated value specifying the number of characters to
skip before the field starts. Assigning a value to FIELDWIDTHS overrides the use
of FS and FPAT for field splitting. See Section 4.6 [Reading Fixed-Width Data],
page 74, for more information.

158 GAWK: Effective AWK Programming

FPAT # A regular expression (as a string) that tells gawk to create the fields based on
text that matches the regular expression. Assigning a value to FPAT overrides
the use of FS and FIELDWIDTHS for field splitting. See Section 4.7 [Defining
Fields by Content], page 77, for more information.

FS The input field separator (see Section 4.5 [Specifying How Fields Are Separated],
page 69). The value is a single-character string or a multicharacter regular
expression that matches the separations between fields in an input record. If
the value is the null string (""), then each character in the record becomes a
separate field. (This behavior is a gawk extension. POSIX awk does not specify
the behavior when FS is the null string. Nonetheless, some other versions of
awk also treat "" specially.)

The default value is " ", a string consisting of a single space. As a special
exception, this value means that any sequence of spaces, TABs, and/or newlines
is a single separator. It also causes spaces, TABs, and newlines at the beginning
and end of a record to be ignored.

You can set the value of FS on the command line using the -F option:

awk -F, 'program' input-files

If gawk is using FIELDWIDTHS or FPAT for field splitting, assigning a value to FS

causes gawk to return to the normal, FS-based field splitting. An easy way to
do this is to simply say ‘FS = FS’, perhaps with an explanatory comment.

IGNORECASE #

If IGNORECASE is nonzero or non-null, then all string comparisons and all reg-
ular expression matching are case-independent. This applies to regexp match-
ing with ‘~’ and ‘!~’, the gensub(), gsub(), index(), match(), patsplit(),
split(), and sub() functions, record termination with RS, and field splitting
with FS and FPAT. However, the value of IGNORECASE does not affect array
subscripting and it does not affect field splitting when using a single-character
field separator. See Section 3.8 [Case Sensitivity in Matching], page 58.

LINT # When this variable is true (nonzero or non-null), gawk behaves as if the --lint
command-line option is in effect (see Section 2.2 [Command-Line Options],
page 31). With a value of "fatal", lint warnings become fatal errors. With
a value of "invalid", only warnings about things that are actually invalid are
issued. (This is not fully implemented yet.) Any other true value prints nonfatal
warnings. Assigning a false value to LINT turns off the lint warnings.

This variable is a gawk extension. It is not special in other awk implementations.
Unlike with the other special variables, changing LINT does affect the production
of lint warnings, even if gawk is in compatibility mode. Much as the --lint

and --traditional options independently control different aspects of gawk’s
behavior, the control of lint warnings during program execution is independent
of the flavor of awk being executed.

OFMT A string that controls conversion of numbers to strings (see Section 6.1.4 [Con-
version of Strings and Numbers], page 119) for printing with the print state-
ment. It works by being passed as the first argument to the sprintf() function
(see Section 9.1.3 [String-Manipulation Functions], page 189). Its default value

Chapter 7: Patterns, Actions, and Variables 159

is "%.6g". Earlier versions of awk used OFMT to specify the format for converting
numbers to strings in general expressions; this is now done by CONVFMT.

OFS The output field separator (see Section 5.3 [Output Separators], page 95). It
is output between the fields printed by a print statement. Its default value is
" ", a string consisting of a single space.

ORS The output record separator. It is output at the end of every print statement.
Its default value is "\n", the newline character. (See Section 5.3 [Output Sep-
arators], page 95.)

PREC # The working precision of arbitrary-precision floating-point numbers, 53 bits by
default (see Section 16.4.4 [Setting the Precision], page 374).

ROUNDMODE #

The rounding mode to use for arbitrary-precision arithmetic on numbers, by
default "N" (roundTiesToEven in the IEEE 754 standard; see Section 16.4.5
[Setting the Rounding Mode], page 375).

RS The input record separator. Its default value is a string containing a single
newline character, which means that an input record consists of a single line of
text. It can also be the null string, in which case records are separated by runs
of blank lines. If it is a regexp, records are separated by matches of the regexp
in the input text. (See Section 4.1 [How Input Is Split into Records], page 61.)

The ability for RS to be a regular expression is a gawk extension. In most
other awk implementations, or if gawk is in compatibility mode (see Section 2.2
[Command-Line Options], page 31), just the first character of RS’s value is used.

SUBSEP The subscript separator. It has the default value of "\034" and is used to sep-
arate the parts of the indices of a multidimensional array. Thus, the expression
‘foo["A", "B"]’ really accesses foo["A\034B"] (see Section 8.5 [Multidimen-
sional Arrays], page 182).

TEXTDOMAIN #

Used for internationalization of programs at the awk level. It sets the default
text domain for specially marked string constants in the source text, as well
as for the dcgettext(), dcngettext(), and bindtextdomain() functions (see
Chapter 13 [Internationalization with gawk], page 335). The default value of
TEXTDOMAIN is "messages".

7.5.2 Built-in Variables That Convey Information

The following is an alphabetical list of variables that awk sets automatically on certain
occasions in order to provide information to your program.

The variables that are specific to gawk are marked with a pound sign (‘#’). These
variables are gawk extensions. In other awk implementations or if gawk is in compatibility
mode (see Section 2.2 [Command-Line Options], page 31), they are not special:

ARGC, ARGV
The command-line arguments available to awk programs are stored in an ar-
ray called ARGV. ARGC is the number of command-line arguments present. See

160 GAWK: Effective AWK Programming

Section 2.3 [Other Command-Line Arguments], page 38. Unlike most awk ar-
rays, ARGV is indexed from 0 to ARGC − 1. In the following example:

$ awk 'BEGIN {

> for (i = 0; i < ARGC; i++)

> print ARGV[i]

> }' inventory-shipped mail-list

a awk

a inventory-shipped

a mail-list

ARGV[0] contains ‘awk’, ARGV[1] contains ‘inventory-shipped’, and ARGV[2]

contains ‘mail-list’. The value of ARGC is three, one more than the index of
the last element in ARGV, because the elements are numbered from zero.

The names ARGC and ARGV, as well as the convention of indexing the array
from 0 to ARGC − 1, are derived from the C language’s method of accessing
command-line arguments.

The value of ARGV[0] can vary from system to system. Also, you should note
that the program text is not included in ARGV, nor are any of awk’s command-
line options. See Section 7.5.3 [Using ARGC and ARGV], page 166, for information
about how awk uses these variables.

ARGIND # The index in ARGV of the current file being processed. Every time gawk opens
a new data file for processing, it sets ARGIND to the index in ARGV of the file
name. When gawk is processing the input files, ‘FILENAME == ARGV[ARGIND]’
is always true.

This variable is useful in file processing; it allows you to tell how far along you
are in the list of data files as well as to distinguish between successive instances
of the same file name on the command line.

While you can change the value of ARGIND within your awk program, gawk

automatically sets it to a new value when it opens the next file.

ENVIRON An associative array containing the values of the environment. The array in-
dices are the environment variable names; the elements are the values of the
particular environment variables. For example, ENVIRON["HOME"] might be
/home/arnold.

For POSIX awk, changing this array does not affect the environment passed on
to any programs that awk may spawn via redirection or the system() function.

However, beginning with version 4.2, if not in POSIX compatibility mode, gawk
does update its own environment when ENVIRON is changed, thus changing
the environment seen by programs that it creates. You should therefore be
especially careful if you modify ENVIRON["PATH"], which is the search path for
finding executable programs.

This can also affect the running gawk program, since some of the built-in func-
tions may pay attention to certain environment variables. The most notable
instance of this is mktime() (see Section 9.1.5 [Time Functions], page 205),
which pays attention the value of the TZ environment variable on many sys-
tems.

Chapter 7: Patterns, Actions, and Variables 161

Some operating systems may not have environment variables. On such
systems, the ENVIRON array is empty (except for ENVIRON["AWKPATH"] and
ENVIRON["AWKLIBPATH"]; see Section 2.5.1 [The AWKPATH Environment
Variable], page 39, and see Section 2.5.2 [The AWKLIBPATH Environment
Variable], page 41).

ERRNO # If a system error occurs during a redirection for getline, during a read for
getline, or during a close() operation, then ERRNO contains a string describ-
ing the error.

In addition, gawk clears ERRNO before opening each command-line input file.
This enables checking if the file is readable inside a BEGINFILE pattern (see
Section 7.1.5 [The BEGINFILE and ENDFILE Special Patterns], page 145).

Otherwise, ERRNO works similarly to the C variable errno. Except for the case
just mentioned, gawk never clears it (sets it to zero or ""). Thus, you should
only expect its value to be meaningful when an I/O operation returns a failure
value, such as getline returning −1. You are, of course, free to clear it yourself
before doing an I/O operation.

If the value of ERRNO corresponds to a system error in the C errno variable,
then PROCINFO["errno"] will be set to the value of errno. For non-system
errors, PROCINFO["errno"] will be zero.

FILENAME The name of the current input file. When no data files are listed on the com-
mand line, awk reads from the standard input and FILENAME is set to "-".
FILENAME changes each time a new file is read (see Chapter 4 [Reading Input
Files], page 61). Inside a BEGIN rule, the value of FILENAME is "", because there
are no input files being processed yet.2 Note, though, that using getline (see
Section 4.10 [Explicit Input with getline], page 82) inside a BEGIN rule can
give FILENAME a value.

FNR The current record number in the current file. awk increments FNR each time it
reads a new record (see Section 4.1 [How Input Is Split into Records], page 61).
awk resets FNR to zero each time it starts a new input file.

NF The number of fields in the current input record. NF is set each time a new
record is read, when a new field is created, or when $0 changes (see Section 4.2
[Examining Fields], page 65).

Unlike most of the variables described in this subsection, assigning a value to NF
has the potential to affect awk’s internal workings. In particular, assignments
to NF can be used to create fields in or remove fields from the current record.
See Section 4.4 [Changing the Contents of a Field], page 67.

FUNCTAB # An array whose indices and corresponding values are the names of all the built-
in, user-defined, and extension functions in the program.

NOTE: Attempting to use the delete statement with the FUNCTAB
array causes a fatal error. Any attempt to assign to an element of
FUNCTAB also causes a fatal error.

2 Some early implementations of Unix awk initialized FILENAME to "-", even if there were data files to be
processed. This behavior was incorrect and should not be relied upon in your programs.

162 GAWK: Effective AWK Programming

NR The number of input records awk has processed since the beginning of the
program’s execution (see Section 4.1 [How Input Is Split into Records], page 61).
awk increments NR each time it reads a new record.

PROCINFO #

The elements of this array provide access to information about the running awk

program. The following elements (listed alphabetically) are guaranteed to be
available:

PROCINFO["argv"]

The PROCINFO["argv"] array contains all of the command-line
arguments (after glob expansion and redirection processing on
platforms where that must be done manually by the program)
with subscripts ranging from 0 through argc − 1. For example,
PROCINFO["argv"][0] will contain the name by which gawk was
invoked. Here is an example of how this feature may be used:

gawk '

BEGIN {

for (i = 0; i < length(PROCINFO["argv"]); i++)

print i, PROCINFO["argv"][i]

}'

Please note that this differs from the standard ARGV array which
does not include command-line arguments that have already been
processed by gawk (see Section 7.5.3 [Using ARGC and ARGV],
page 166).

PROCINFO["egid"]

The value of the getegid() system call.

PROCINFO["errno"]

The value of the C errno variable when ERRNO is set to the associ-
ated error message.

PROCINFO["euid"]

The value of the geteuid() system call.

PROCINFO["FS"]

This is "FS" if field splitting with FS is in effect, "FIELDWIDTHS" if
field splitting with FIELDWIDTHS is in effect, "FPAT" if field match-
ing with FPAT is in effect, or "API" if field splitting is controlled by
an API input parser.

PROCINFO["gid"]

The value of the getgid() system call.

PROCINFO["identifiers"]

A subarray, indexed by the names of all identifiers used in the text
of the awk program. An identifier is simply the name of a variable
(be it scalar or array), built-in function, user-defined function, or
extension function. For each identifier, the value of the element is
one of the following:

Chapter 7: Patterns, Actions, and Variables 163

"array" The identifier is an array.

"builtin"

The identifier is a built-in function.

"extension"

The identifier is an extension function loaded via @load
or -l.

"scalar" The identifier is a scalar.

"untyped"

The identifier is untyped (could be used as a scalar or
an array; gawk doesn’t know yet).

"user" The identifier is a user-defined function.

The values indicate what gawk knows about the identifiers after it
has finished parsing the program; they are not updated while the
program runs.

PROCINFO["platform"]

This element gives a string indicating the platform for which gawk

was compiled. The value will be one of the following:

"djgpp"

"mingw" Microsoft Windows, using either DJGPP or MinGW,
respectively.

"os2" OS/2.

"os390" OS/390.

"posix" GNU/Linux, Cygwin, Mac OS X, and legacy Unix sys-
tems.

"vms" OpenVMS or Vax/VMS.

PROCINFO["pgrpid"]

The process group ID of the current process.

PROCINFO["pid"]

The process ID of the current process.

PROCINFO["ppid"]

The parent process ID of the current process.

PROCINFO["strftime"]

The default time format string for strftime(). Assigning a new
value to this element changes the default. See Section 9.1.5 [Time
Functions], page 205.

PROCINFO["uid"]

The value of the getuid() system call.

PROCINFO["version"]

The version of gawk.

164 GAWK: Effective AWK Programming

The following additional elements in the array are available to provide in-
formation about the MPFR and GMP libraries if your version of gawk sup-
ports arbitrary-precision arithmetic (see Chapter 16 [Arithmetic and Arbitrary-
Precision Arithmetic with gawk], page 367):

PROCINFO["gmp_version"]

The version of the GNU MP library.

PROCINFO["mpfr_version"]

The version of the GNU MPFR library.

PROCINFO["prec_max"]

The maximum precision supported by MPFR.

PROCINFO["prec_min"]

The minimum precision required by MPFR.

The following additional elements in the array are available to provide informa-
tion about the version of the extension API, if your version of gawk supports
dynamic loading of extension functions (see Chapter 17 [Writing Extensions for
gawk], page 381):

PROCINFO["api_major"]

The major version of the extension API.

PROCINFO["api_minor"]

The minor version of the extension API.

On some systems, there may be elements in the array, "group1" through
"groupN" for some N. N is the number of supplementary groups that the
process has. Use the in operator to test for these elements (see Section 8.1.2
[Referring to an Array Element], page 173).

The following elements allow you to change gawk’s behavior:

PROCINFO["NONFATAL"]

If this element exists, then I/O errors for all redirections become
nonfatal. See Section 5.10 [Enabling Nonfatal Output], page 109.

PROCINFO["name", "NONFATAL"]

Make I/O errors for name be nonfatal. See Section 5.10 [Enabling
Nonfatal Output], page 109.

PROCINFO["command", "pty"]

For two-way communication to command, use a pseudo-tty instead
of setting up a two-way pipe. See Section 12.3 [Two-Way Commu-
nications with Another Process], page 324, for more information.

PROCINFO["input_name", "READ_TIMEOUT"]

Set a timeout for reading from input redirection input name. See
Section 4.11 [Reading Input with a Timeout], page 89, for more
information.

PROCINFO["input_name", "RETRY"]

If an I/O error that may be retried occurs when reading data from
input name, and this array entry exists, then getline returns −2

Chapter 7: Patterns, Actions, and Variables 165

instead of following the default behavior of returning −1 and config-
uring input name to return no further data. An I/O error that may
be retried is one where errno has the value EAGAIN, EWOULDBLOCK,
EINTR, or ETIMEDOUT. This may be useful in conjunction with
PROCINFO["input_name", "READ_TIMEOUT"] or situations where a
file descriptor has been configured to behave in a non-blocking fash-
ion. See Section 4.12 [Retrying Reads After Certain Input Errors],
page 90, for more information.

PROCINFO["sorted_in"]

If this element exists in PROCINFO, its value controls the order in
which array indices will be processed by ‘for (indx in array)’
loops. This is an advanced feature, so we defer the full descrip-
tion until later; see Section 8.1.6 [Using Predefined Array Scanning
Orders with gawk], page 176.

RLENGTH The length of the substring matched by the match() function (see Section 9.1.3
[String-Manipulation Functions], page 189). RLENGTH is set by invoking the
match() function. Its value is the length of the matched string, or −1 if no
match is found.

RSTART The start index in characters of the substring that is matched by the match()

function (see Section 9.1.3 [String-Manipulation Functions], page 189). RSTART
is set by invoking the match() function. Its value is the position of the string
where the matched substring starts, or zero if no match was found.

RT # The input text that matched the text denoted by RS, the record separator. It
is set every time a record is read.

SYMTAB # An array whose indices are the names of all defined global variables and arrays in
the program. SYMTABmakes gawk’s symbol table visible to the awk programmer.
It is built as gawk parses the program and is complete before the program starts
to run.

The array may be used for indirect access to read or write the value of a variable:

foo = 5

SYMTAB["foo"] = 4

print foo # prints 4

The isarray() function (see Section 9.1.7 [Getting Type Information],
page 213) may be used to test if an element in SYMTAB is an array. Also, you
may not use the delete statement with the SYMTAB array.

Prior to version 5.0 of gawk, you could use an index for SYMTAB that was not a
predefined identifier:

SYMTAB["xxx"] = 5

print SYMTAB["xxx"]

This no longer works, instead producing a fatal error, as it led to rampant
confusion.

The SYMTAB array is more interesting than it looks. Andrew Schorr points out
that it effectively gives awk data pointers. Consider his example:

166 GAWK: Effective AWK Programming

Indirect multiply of any variable by amount, return result

function multiply(variable, amount)

{

return SYMTAB[variable] *= amount

}

You would use it like this:

BEGIN {

answer = 10.5

multiply("answer", 4)

print "The answer is", answer

}

When run, this produces:

$ gawk -f answer.awk

a The answer is 42

NOTE: In order to avoid severe time-travel paradoxes,3 neither
FUNCTAB nor SYMTAB is available as an element within the SYMTAB

array.� �
Changing NR and FNR

awk increments NR and FNR each time it reads a record, instead of setting them to the
absolute value of the number of records read. This means that a program can change these
variables and their new values are incremented for each record. The following example
shows this:

$ echo '1

> 2

> 3

> 4' | awk 'NR == 2 { NR = 17 }

> { print NR }'

a 1

a 17

a 18

a 19

Before FNR was added to the awk language (see Section A.1 [Major Changes Between V7 and
SVR3.1], page 447), many awk programs used this feature to track the number of records
in a file by resetting NR to zero when FILENAME changed.
 	
7.5.3 Using ARGC and ARGV

Section 7.5.2 [Built-in Variables That Convey Information], page 159, presented the follow-
ing program describing the information contained in ARGC and ARGV:

3 Not to mention difficult implementation issues.

Chapter 7: Patterns, Actions, and Variables 167

$ awk 'BEGIN {

> for (i = 0; i < ARGC; i++)

> print ARGV[i]

> }' inventory-shipped mail-list

a awk

a inventory-shipped

a mail-list

In this example, ARGV[0] contains ‘awk’, ARGV[1] contains ‘inventory-shipped’, and
ARGV[2] contains ‘mail-list’. Notice that the awk program is not entered in ARGV. The
other command-line options, with their arguments, are also not entered. This includes
variable assignments done with the -v option (see Section 2.2 [Command-Line Options],
page 31). Normal variable assignments on the command line are treated as arguments and
do show up in the ARGV array. Given the following program in a file named showargs.awk:

BEGIN {

printf "A=%d, B=%d\n", A, B

for (i = 0; i < ARGC; i++)

printf "\tARGV[%d] = %s\n", i, ARGV[i]

}

END { printf "A=%d, B=%d\n", A, B }

Running it produces the following:

$ awk -v A=1 -f showargs.awk B=2 /dev/null

a A=1, B=0

a ARGV[0] = awk

a ARGV[1] = B=2

a ARGV[2] = /dev/null

a A=1, B=2

A program can alter ARGC and the elements of ARGV. Each time awk reaches the end of
an input file, it uses the next element of ARGV as the name of the next input file. By storing
a different string there, a program can change which files are read. Use "-" to represent
the standard input. Storing additional elements and incrementing ARGC causes additional
files to be read.

If the value of ARGC is decreased, that eliminates input files from the end of the list. By
recording the old value of ARGC elsewhere, a program can treat the eliminated arguments
as something other than file names.

To eliminate a file from the middle of the list, store the null string ("") into ARGV in
place of the file’s name. As a special feature, awk ignores file names that have been replaced
with the null string. Another option is to use the delete statement to remove elements
from ARGV (see Section 8.4 [The delete Statement], page 180).

All of these actions are typically done in the BEGIN rule, before actual processing of
the input begins. See Section 11.2.4 [Splitting a Large File into Pieces], page 280, and see
Section 11.2.5 [Duplicating Output into Multiple Files], page 281, for examples of each way
of removing elements from ARGV.

To actually get options into an awk program, end the awk options with -- and then
supply the awk program’s options, in the following manner:

awk -f myprog.awk -- -v -q file1 file2 ...

168 GAWK: Effective AWK Programming

The following fragment processes ARGV in order to examine, and then remove, the pre-
viously mentioned command-line options:

BEGIN {

for (i = 1; i < ARGC; i++) {

if (ARGV[i] == "-v")

verbose = 1

else if (ARGV[i] == "-q")

debug = 1

else if (ARGV[i] ~ /^-./) {

e = sprintf("%s: unrecognized option -- %c",

ARGV[0], substr(ARGV[i], 2, 1))

print e > "/dev/stderr"

} else

break

delete ARGV[i]

}

}

Ending the awk options with -- isn’t necessary in gawk. Unless --posix has been
specified, gawk silently puts any unrecognized options into ARGV for the awk program to
deal with. As soon as it sees an unknown option, gawk stops looking for other options that
it might otherwise recognize. The previous command line with gawk would be:

gawk -f myprog.awk -q -v file1 file2 ...

Because -q is not a valid gawk option, it and the following -v are passed on to the awk

program. (See Section 10.4 [Processing Command-Line Options], page 250, for an awk

library function that parses command-line options.)

When designing your program, you should choose options that don’t conflict with gawk’s,
because it will process any options that it accepts before passing the rest of the command line
on to your program. Using ‘#!’ with the -E option may help (see Section 1.1.4 [Executable
awk Programs], page 19, and see Section 2.2 [Command-Line Options], page 31).

7.6 Summary

• Pattern–action pairs make up the basic elements of an awk program. Patterns are
either normal expressions, range expressions, or regexp constants; one of the special
keywords BEGIN, END, BEGINFILE, or ENDFILE; or empty. The action executes if the
current record matches the pattern. Empty (missing) patterns match all records.

• I/O from BEGIN and END rules has certain constraints. This is also true, only more
so, for BEGINFILE and ENDFILE rules. The latter two give you “hooks” into gawk’s file
processing, allowing you to recover from a file that otherwise would cause a fatal error
(such as a file that cannot be opened).

• Shell variables can be used in awk programs by careful use of shell quoting. It is easier
to pass a shell variable into awk by using the -v option and an awk variable.

• Actions consist of statements enclosed in curly braces. Statements are built up from
expressions, control statements, compound statements, input and output statements,
and deletion statements.

Chapter 7: Patterns, Actions, and Variables 169

• The control statements in awk are if-else, while, for, and do-while. gawk adds the
switch statement. There are two flavors of for statement: one for performing general
looping, and the other for iterating through an array.

• break and continue let you exit early or start the next iteration of a loop (or get out
of a switch).

• next and nextfile let you read the next record and start over at the top of your
program or skip to the next input file and start over, respectively.

• The exit statement terminates your program. When executed from an action (or
function body), it transfers control to the END statements. From an END statement
body, it exits immediately. You may pass an optional numeric value to be used as
awk’s exit status.

• Some predefined variables provide control over awk, mainly for I/O. Other variables
convey information from awk to your program.

• ARGC and ARGV make the command-line arguments available to your program. Manip-
ulating them from a BEGIN rule lets you control how awk will process the provided data
files.

Chapter 8: Arrays in awk 171

8 Arrays in awk

An array is a table of values called elements. The elements of an array are distinguished
by their indices. Indices may be either numbers or strings.

This chapter describes how arrays work in awk, how to use array elements, how to scan
through every element in an array, and how to remove array elements. It also describes
how awk simulates multidimensional arrays, as well as some of the less obvious points about
array usage. The chapter moves on to discuss gawk’s facility for sorting arrays, and ends
with a brief description of gawk’s ability to support true arrays of arrays.

8.1 The Basics of Arrays

This section presents the basics: working with elements in arrays one at a time, and travers-
ing all of the elements in an array.

8.1.1 Introduction to Arrays

Doing linear scans over an associative array is like trying to club someone to
death with a loaded Uzi.

—Larry Wall

The awk language provides one-dimensional arrays for storing groups of related strings
or numbers. Every awk array must have a name. Array names have the same syntax as
variable names; any valid variable name would also be a valid array name. But one name
cannot be used in both ways (as an array and as a variable) in the same awk program.

Arrays in awk superficially resemble arrays in other programming languages, but there
are fundamental differences. In awk, it isn’t necessary to specify the size of an array before
starting to use it. Additionally, any number or string, not just consecutive integers, may
be used as an array index.

In most other languages, arrays must be declared before use, including a specification of
how many elements or components they contain. In such languages, the declaration causes
a contiguous block of memory to be allocated for that many elements. Usually, an index
in the array must be a nonnegative integer. For example, the index zero specifies the first
element in the array, which is actually stored at the beginning of the block of memory. Index
one specifies the second element, which is stored in memory right after the first element,
and so on. It is impossible to add more elements to the array, because it has room only
for as many elements as given in the declaration. (Some languages allow arbitrary starting
and ending indices—e.g., ‘15 .. 27’—but the size of the array is still fixed when the array
is declared.)

A contiguous array of four elements might look like Figure 8.1, conceptually, if the
element values are eight, "foo", "", and 30.

172 GAWK: Effective AWK Programming

8 "foo" "" 30

0 1 2 3

Value

Index

Figure 8.1: A contiguous array

Only the values are stored; the indices are implicit from the order of the values. Here, eight
is the value at index zero, because eight appears in the position with zero elements before
it.

Arrays in awk are different—they are associative. This means that each array is a
collection of pairs—an index and its corresponding array element value:

Index Value
3 30

1 "foo"

0 8

2 ""

The pairs are shown in jumbled order because their order is irrelevant.1

One advantage of associative arrays is that new pairs can be added at any time. For
example, suppose a tenth element is added to the array whose value is "number ten". The
result is:

Index Value
10 "number ten"

3 30

1 "foo"

0 8

2 ""

Now the array is sparse, which just means some indices are missing. It has elements 0–3
and 10, but doesn’t have elements 4, 5, 6, 7, 8, or 9.

Another consequence of associative arrays is that the indices don’t have to be nonnegative
integers. Any number, or even a string, can be an index. For example, the following is an
array that translates words from English to French:

Index Value
"dog" "chien"

"cat" "chat"

"one" "un"

1 "un"

1 The ordering will vary among awk implementations, which typically use hash tables to store array
elements and values.

Chapter 8: Arrays in awk 173

Here we decided to translate the number one in both spelled-out and numeric form—thus
illustrating that a single array can have both numbers and strings as indices. (In fact, array
subscripts are always strings. There are some subtleties to how numbers work when used as
array subscripts; this is discussed in more detail in Section 8.2 [Using Numbers to Subscript
Arrays], page 179.) Here, the number 1 isn’t double-quoted, because awk automatically
converts it to a string.

The value of IGNORECASE has no effect upon array subscripting. The identical string value
used to store an array element must be used to retrieve it. When awk creates an array (e.g.,
with the split() built-in function), that array’s indices are consecutive integers starting
at one. (See Section 9.1.3 [String-Manipulation Functions], page 189.)

awk’s arrays are efficient—the time to access an element is independent of the number
of elements in the array.

8.1.2 Referring to an Array Element

The principal way to use an array is to refer to one of its elements. An array reference is
an expression as follows:

array[index-expression]

Here, array is the name of an array. The expression index-expression is the index of the
desired element of the array.

The value of the array reference is the current value of that array element. For example,
foo[4.3] is an expression referencing the element of array foo at index ‘4.3’.

A reference to an array element that has no recorded value yields a value of "", the null
string. This includes elements that have not been assigned any value as well as elements
that have been deleted (see Section 8.4 [The delete Statement], page 180).

NOTE: A reference to an element that does not exist automatically creates
that array element, with the null string as its value. (In some cases, this is
unfortunate, because it might waste memory inside awk.)

Novice awk programmers often make the mistake of checking if an element exists
by checking if the value is empty:

Check if "foo" exists in a: Incorrect!
if (a["foo"] != "") ...

This is incorrect for two reasons. First, it creates a["foo"] if it didn’t exist
before! Second, it is valid (if a bit unusual) to set an array element equal to
the empty string.

To determine whether an element exists in an array at a certain index, use the following
expression:

indx in array

This expression tests whether the particular index indx exists, without the side effect
of creating that element if it is not present. The expression has the value one (true) if
array[indx] exists and zero (false) if it does not exist. (We use indx here, because ‘index’
is the name of a built-in function.) For example, this statement tests whether the array
frequencies contains the index ‘2’:

if (2 in frequencies)

print "Subscript 2 is present."

174 GAWK: Effective AWK Programming

Note that this is not a test of whether the array frequencies contains an element whose
value is two. There is no way to do that except to scan all the elements. Also, this does
not create frequencies[2], while the following (incorrect) alternative does:

if (frequencies[2] != "")

print "Subscript 2 is present."

8.1.3 Assigning Array Elements

Array elements can be assigned values just like awk variables:

array[index-expression] = value

array is the name of an array. The expression index-expression is the index of the element
of the array that is assigned a value. The expression value is the value to assign to that
element of the array.

8.1.4 Basic Array Example

The following program takes a list of lines, each beginning with a line number, and prints
them out in order of line number. The line numbers are not in order when they are first
read—instead, they are scrambled. This program sorts the lines by making an array using
the line numbers as subscripts. The program then prints out the lines in sorted order of
their numbers. It is a very simple program and gets confused upon encountering repeated
numbers, gaps, or lines that don’t begin with a number:

{

if ($1 > max)

max = $1

arr[$1] = $0

}

END {

for (x = 1; x <= max; x++)

print arr[x]

}

The first rule keeps track of the largest line number seen so far; it also stores each line
into the array arr, at an index that is the line’s number. The second rule runs after all the
input has been read, to print out all the lines. When this program is run with the following
input:

5 I am the Five man

2 Who are you? The new number two!

4 . . . And four on the floor

1 Who is number one?

3 I three you.

Its output is:

1 Who is number one?

2 Who are you? The new number two!

3 I three you.

4 . . . And four on the floor

5 I am the Five man

Chapter 8: Arrays in awk 175

If a line number is repeated, the last line with a given number overrides the others. Gaps
in the line numbers can be handled with an easy improvement to the program’s END rule,
as follows:

END {

for (x = 1; x <= max; x++)

if (x in arr)

print arr[x]

}

8.1.5 Scanning All Elements of an Array

In programs that use arrays, it is often necessary to use a loop that executes once for each
element of an array. In other languages, where arrays are contiguous and indices are limited
to nonnegative integers, this is easy: all the valid indices can be found by counting from
the lowest index up to the highest. This technique won’t do the job in awk, because any
number or string can be an array index. So awk has a special kind of for statement for
scanning an array:

for (var in array)

body

This loop executes body once for each index in array that the program has previously used,
with the variable var set to that index.

The following program uses this form of the for statement. The first rule scans the
input records and notes which words appear (at least once) in the input, by storing a one
into the array used with the word as the index. The second rule scans the elements of
used to find all the distinct words that appear in the input. It prints each word that is
more than 10 characters long and also prints the number of such words. See Section 9.1.3
[String-Manipulation Functions], page 189, for more information on the built-in function
length().

Record a 1 for each word that is used at least once

{

for (i = 1; i <= NF; i++)

used[$i] = 1

}

Find number of distinct words more than 10 characters long

END {

for (x in used) {

if (length(x) > 10) {

++num_long_words

print x

}

}

print num_long_words, "words longer than 10 characters"

}

See Section 11.3.5 [Generating Word-Usage Counts], page 296, for a more detailed example
of this type.

176 GAWK: Effective AWK Programming

The order in which elements of the array are accessed by this statement is determined
by the internal arrangement of the array elements within awk and in standard awk cannot
be controlled or changed. This can lead to problems if new elements are added to array by
statements in the loop body; it is not predictable whether the for loop will reach them.
Similarly, changing var inside the loop may produce strange results. It is best to avoid such
things.

As a point of information, gawk sets up the list of elements to be iterated over before the
loop starts, and does not change it. But not all awk versions do so. Consider this program,
named loopcheck.awk:

BEGIN {

a["here"] = "here"

a["is"] = "is"

a["a"] = "a"

a["loop"] = "loop"

for (i in a) {

j++

a[j] = j

print i

}

}

Here is what happens when run with gawk (and mawk):

$ gawk -f loopcheck.awk

a here

a loop

a a

a is

Contrast this to BWK awk:

$ nawk -f loopcheck.awk

a loop

a here

a is

a a

a 1

8.1.6 Using Predefined Array Scanning Orders with gawk

This subsection describes a feature that is specific to gawk.

By default, when a for loop traverses an array, the order is undefined, meaning that
the awk implementation determines the order in which the array is traversed. This order
is usually based on the internal implementation of arrays and will vary from one version of
awk to the next.

Often, though, you may wish to do something simple, such as “traverse the array by
comparing the indices in ascending order,” or “traverse the array by comparing the values
in descending order.” gawk provides two mechanisms that give you this control:

• Set PROCINFO["sorted_in"] to one of a set of predefined values. We describe this
now.

Chapter 8: Arrays in awk 177

• Set PROCINFO["sorted_in"] to the name of a user-defined function to use for com-
parison of array elements. This advanced feature is described later in Section 12.2
[Controlling Array Traversal and Array Sorting], page 318.

The following special values for PROCINFO["sorted_in"] are available:

"@unsorted"

Array elements are processed in arbitrary order, which is the default awk be-
havior.

"@ind_str_asc"

Order by indices in ascending order compared as strings; this is the most basic
sort. (Internally, array indices are always strings, so with ‘a[2*5] = 1’ the index
is "10" rather than numeric 10.)

"@ind_num_asc"

Order by indices in ascending order but force them to be treated as numbers
in the process. Any index with a non-numeric value will end up positioned as
if it were zero.

"@val_type_asc"

Order by element values in ascending order (rather than by indices). Ordering
is by the type assigned to the element (see Section 6.3.2 [Variable Typing and
Comparison Expressions], page 128). All numeric values come before all string
values, which in turn come before all subarrays. (Subarrays have not been
described yet; see Section 8.6 [Arrays of Arrays], page 183.)

If you choose to use this feature in traversing FUNCTAB (see Section 7.5.2 [Built-
in Variables That Convey Information], page 159), then the order is built-in
functions first (see Section 9.1 [Built-in Functions], page 187), then user-defined
functions (see Section 9.2 [User-Defined Functions], page 214) next, and finally
functions loaded from an extension (see Chapter 17 [Writing Extensions for
gawk], page 381).

"@val_str_asc"

Order by element values in ascending order (rather than by indices). Scalar
values are compared as strings. If the string values are identical, the index
string values are compared instead. When comparing non-scalar values, "@val_
type_asc" sort ordering is used, so subarrays, if present, come out last.

"@val_num_asc"

Order by element values in ascending order (rather than by indices). Scalar
values are compared as numbers. Non-scalar values are compared using "@val_
type_asc" sort ordering, so subarrays, if present, come out last. When numeric
values are equal, the string values are used to provide an ordering: this guar-
antees consistent results across different versions of the C qsort() function,2

which gawk uses internally to perform the sorting. If the string values are also
identical, the index string values are compared instead.

2 When two elements compare as equal, the C qsort() function does not guarantee that they will maintain
their original relative order after sorting. Using the string value to provide a unique ordering when the
numeric values are equal ensures that gawk behaves consistently across different environments.

178 GAWK: Effective AWK Programming

"@ind_str_desc"

Like "@ind_str_asc", but the string indices are ordered from high to low.

"@ind_num_desc"

Like "@ind_num_asc", but the numeric indices are ordered from high to low.

"@val_type_desc"

Like "@val_type_asc", but the element values, based on type, are ordered from
high to low. Subarrays, if present, come out first.

"@val_str_desc"

Like "@val_str_asc", but the element values, treated as strings, are ordered
from high to low. If the string values are identical, the index string values are
compared instead. When comparing non-scalar values, "@val_type_desc" sort
ordering is used, so subarrays, if present, come out first.

"@val_num_desc"

Like "@val_num_asc", but the element values, treated as numbers, are ordered
from high to low. If the numeric values are equal, the string values are com-
pared instead. If they are also identical, the index string values are compared
instead. Non-scalar values are compared using "@val_type_desc" sort order-
ing, so subarrays, if present, come out first.

The array traversal order is determined before the for loop starts to run. Changing
PROCINFO["sorted_in"] in the loop body does not affect the loop. For example:

$ gawk '

> BEGIN {

> a[4] = 4

> a[3] = 3

> for (i in a)

> print i, a[i]

> }'

a 4 4

a 3 3

$ gawk '

> BEGIN {

> PROCINFO["sorted_in"] = "@ind_str_asc"

> a[4] = 4

> a[3] = 3

> for (i in a)

> print i, a[i]

> }'

a 3 3

a 4 4

When sorting an array by element values, if a value happens to be a subarray then it is
considered to be greater than any string or numeric value, regardless of what the subarray
itself contains, and all subarrays are treated as being equal to each other. Their order
relative to each other is determined by their index strings.

Here are some additional things to bear in mind about sorted array traversal:

Chapter 8: Arrays in awk 179

• The value of PROCINFO["sorted_in"] is global. That is, it affects all array traversal
for loops. If you need to change it within your own code, you should see if it’s defined
and save and restore the value:

...

if ("sorted_in" in PROCINFO) {

save_sorted = PROCINFO["sorted_in"]

PROCINFO["sorted_in"] = "@val_str_desc" # or whatever

}

...

if (save_sorted)

PROCINFO["sorted_in"] = save_sorted

• As already mentioned, the default array traversal order is represented by
"@unsorted". You can also get the default behavior by assigning the null string
to PROCINFO["sorted_in"] or by just deleting the "sorted_in" element from the
PROCINFO array with the delete statement. (The delete statement hasn’t been
described yet; see Section 8.4 [The delete Statement], page 180.)

In addition, gawk provides built-in functions for sorting arrays; see Section 12.2.2 [Sorting
Array Values and Indices with gawk], page 322.

8.2 Using Numbers to Subscript Arrays

An important aspect to remember about arrays is that array subscripts are always strings.
When a numeric value is used as a subscript, it is converted to a string value before being
used for subscripting (see Section 6.1.4 [Conversion of Strings and Numbers], page 119).
This means that the value of the predefined variable CONVFMT can affect how your program
accesses elements of an array. For example:

xyz = 12.153

data[xyz] = 1

CONVFMT = "%2.2f"

if (xyz in data)

printf "%s is in data\n", xyz

else

printf "%s is not in data\n", xyz

This prints ‘12.15 is not in data’. The first statement gives xyz a numeric value. As-
signing to data[xyz] subscripts data with the string value "12.153" (using the default
conversion value of CONVFMT, "%.6g"). Thus, the array element data["12.153"] is as-
signed the value one. The program then changes the value of CONVFMT. The test ‘(xyz in

data)’ generates a new string value from xyz—this time "12.15"—because the value of
CONVFMT only allows two significant digits. This test fails, because "12.15" is different from
"12.153".

According to the rules for conversions (see Section 6.1.4 [Conversion of Strings and
Numbers], page 119), integer values always convert to strings as integers, no matter what
the value of CONVFMT may happen to be. So the usual case of the following works:

for (i = 1; i <= maxsub; i++)

do something with array[i]

180 GAWK: Effective AWK Programming

The “integer values always convert to strings as integers” rule has an additional con-
sequence for array indexing. Octal and hexadecimal constants (see Section 6.1.1.2 [Octal
and Hexadecimal Numbers], page 114) are converted internally into numbers, and their
original form is forgotten. This means, for example, that array[17], array[021], and
array[0x11] all refer to the same element!

As with many things in awk, the majority of the time things work as you would expect
them to. But it is useful to have a precise knowledge of the actual rules, as they can
sometimes have a subtle effect on your programs.

8.3 Using Uninitialized Variables as Subscripts

Suppose it’s necessary to write a program to print the input data in reverse order. A
reasonable attempt to do so (with some test data) might look like this:

$ echo 'line 1

> line 2

> line 3' | awk '{ l[lines] = $0; ++lines }

> END {

> for (i = lines - 1; i >= 0; i--)

> print l[i]

> }'

a line 3

a line 2

Unfortunately, the very first line of input data did not appear in the output!

Upon first glance, we would think that this program should have worked. The variable
lines is uninitialized, and uninitialized variables have the numeric value zero. So, awk
should have printed the value of l[0].

The issue here is that subscripts for awk arrays are always strings. Uninitialized variables,
when used as strings, have the value "", not zero. Thus, ‘line 1’ ends up stored in l[""].
The following version of the program works correctly:

{ l[lines++] = $0 }

END {

for (i = lines - 1; i >= 0; i--)

print l[i]

}

Here, the ‘++’ forces lines to be numeric, thus making the “old value” numeric zero.
This is then converted to "0" as the array subscript.

Even though it is somewhat unusual, the null string ("") is a valid array subscript.
gawk warns about the use of the null string as a subscript if --lint is provided on the
command line (see Section 2.2 [Command-Line Options], page 31).

8.4 The delete Statement

To remove an individual element of an array, use the delete statement:

delete array[index-expression]

Chapter 8: Arrays in awk 181

Once an array element has been deleted, any value the element once had is no longer
available. It is as if the element had never been referred to or been given a value. The
following is an example of deleting elements in an array:

for (i in frequencies)

delete frequencies[i]

This example removes all the elements from the array frequencies. Once an element is
deleted, a subsequent for statement to scan the array does not report that element and
using the in operator to check for the presence of that element returns zero (i.e., false):

delete foo[4]

if (4 in foo)

print "This will never be printed"

It is important to note that deleting an element is not the same as assigning it a null
value (the empty string, ""). For example:

foo[4] = ""

if (4 in foo)

print "This is printed, even though foo[4] is empty"

It is not an error to delete an element that does not exist. However, if --lint is
provided on the command line (see Section 2.2 [Command-Line Options], page 31), gawk
issues a warning message when an element that is not in the array is deleted.

All the elements of an array may be deleted with a single statement by leaving off the
subscript in the delete statement, as follows:

delete array

Using this version of the delete statement is about three times more efficient than the
equivalent loop that deletes each element one at a time.

This form of the delete statement is also supported by BWK awk and mawk, as well as
by a number of other implementations.

NOTE: For many years, using delete without a subscript was a common exten-
sion. In September 2012, it was accepted for inclusion into the POSIX standard.
See the Austin Group website.

The following statement provides a portable but nonobvious way to clear out an array:3

split("", array)

The split() function (see Section 9.1.3 [String-Manipulation Functions], page 189)
clears out the target array first. This call asks it to split apart the null string. Because
there is no data to split out, the function simply clears the array and then returns.

CAUTION: Deleting all the elements from an array does not change its type;
you cannot clear an array and then use the array’s name as a scalar (i.e., a
regular variable). For example, the following does not work:

a[1] = 3

delete a

a = 3

3 Thanks to Michael Brennan for pointing this out.

http://austingroupbugs.net/view.php?id=544

182 GAWK: Effective AWK Programming

8.5 Multidimensional Arrays

A multidimensional array is an array in which an element is identified by a sequence of
indices instead of a single index. For example, a two-dimensional array requires two in-
dices. The usual way (in many languages, including awk) to refer to an element of a
two-dimensional array named grid is with grid[x,y].

Multidimensional arrays are supported in awk through concatenation of indices into one
string. awk converts the indices into strings (see Section 6.1.4 [Conversion of Strings and
Numbers], page 119) and concatenates them together, with a separator between them. This
creates a single string that describes the values of the separate indices. The combined string
is used as a single index into an ordinary, one-dimensional array. The separator used is the
value of the built-in variable SUBSEP.

For example, suppose we evaluate the expression ‘foo[5,12] = "value"’ when the value
of SUBSEP is "@". The numbers 5 and 12 are converted to strings and concatenated with an
‘@’ between them, yielding "5@12"; thus, the array element foo["5@12"] is set to "value".

Once the element’s value is stored, awk has no record of whether it was stored with a sin-
gle index or a sequence of indices. The two expressions ‘foo[5,12]’ and ‘foo[5 SUBSEP 12]’
are always equivalent.

The default value of SUBSEP is the string "\034", which contains a nonprinting character
that is unlikely to appear in an awk program or in most input data. The usefulness of
choosing an unlikely character comes from the fact that index values that contain a string
matching SUBSEP can lead to combined strings that are ambiguous. Suppose that SUBSEP
is "@"; then ‘foo["a@b", "c"]’ and ‘foo["a", "b@c"]’ are indistinguishable because both
are actually stored as ‘foo["a@b@c"]’.

To test whether a particular index sequence exists in a multidimensional array, use the
same operator (in) that is used for single-dimensional arrays. Write the whole sequence of
indices in parentheses, separated by commas, as the left operand:

if ((subscript1, subscript2, ...) in array)

...

Here is an example that treats its input as a two-dimensional array of fields; it rotates
this array 90 degrees clockwise and prints the result. It assumes that all lines have the same
number of elements:

{

if (max_nf < NF)

max_nf = NF

max_nr = NR

for (x = 1; x <= NF; x++)

vector[x, NR] = $x

}

END {

for (x = 1; x <= max_nf; x++) {

for (y = max_nr; y >= 1; --y)

printf("%s ", vector[x, y])

printf("\n")

}

Chapter 8: Arrays in awk 183

}

When given the input:

1 2 3 4 5 6

2 3 4 5 6 1

3 4 5 6 1 2

4 5 6 1 2 3

the program produces the following output:

4 3 2 1

5 4 3 2

6 5 4 3

1 6 5 4

2 1 6 5

3 2 1 6

8.5.1 Scanning Multidimensional Arrays

There is no special for statement for scanning a “multidimensional” array. There cannot
be one, because, in truth, awk does not have multidimensional arrays or elements—there is
only a multidimensional way of accessing an array.

However, if your program has an array that is always accessed as multidimensional, you
can get the effect of scanning it by combining the scanning for statement (see Section 8.1.5
[Scanning All Elements of an Array], page 175) with the built-in split() function (see
Section 9.1.3 [String-Manipulation Functions], page 189). It works in the following manner:

for (combined in array) {

split(combined, separate, SUBSEP)

...

}

This sets the variable combined to each concatenated combined index in the array, and
splits it into the individual indices by breaking it apart where the value of SUBSEP appears.
The individual indices then become the elements of the array separate.

Thus, if a value is previously stored in array[1, "foo"], then an element with index
"1\034foo" exists in array. (Recall that the default value of SUBSEP is the character with
code 034.) Sooner or later, the for statement finds that index and does an iteration with
the variable combined set to "1\034foo". Then the split() function is called as follows:

split("1\034foo", separate, "\034")

The result is to set separate[1] to "1" and separate[2] to "foo". Presto! The original
sequence of separate indices is recovered.

8.6 Arrays of Arrays

gawk goes beyond standard awk’s multidimensional array access and provides true arrays
of arrays. Elements of a subarray are referred to by their own indices enclosed in square
brackets, just like the elements of the main array. For example, the following creates a
two-element subarray at index 1 of the main array a:

a[1][1] = 1

a[1][2] = 2

184 GAWK: Effective AWK Programming

This simulates a true two-dimensional array. Each subarray element can contain another
subarray as a value, which in turn can hold other arrays as well. In this way, you can create
arrays of three or more dimensions. The indices can be any awk expressions, including
scalars separated by commas (i.e., a regular awk simulated multidimensional subscript). So
the following is valid in gawk:

a[1][3][1, "name"] = "barney"

Each subarray and the main array can be of different length. In fact, the elements of an
array or its subarray do not all have to have the same type. This means that the main array
and any of its subarrays can be nonrectangular, or jagged in structure. You can assign a
scalar value to the index 4 of the main array a, even though a[1] is itself an array and not
a scalar:

a[4] = "An element in a jagged array"

The terms dimension, row, and column are meaningless when applied to such an array,
but we will use “dimension” henceforth to imply the maximum number of indices needed
to refer to an existing element. The type of any element that has already been assigned
cannot be changed by assigning a value of a different type. You have to first delete the
current element, which effectively makes gawk forget about the element at that index:

delete a[4]

a[4][5][6][7] = "An element in a four-dimensional array"

This removes the scalar value from index 4 and then inserts a three-level nested subarray
containing a scalar. You can also delete an entire subarray or subarray of subarrays:

delete a[4][5]

a[4][5] = "An element in subarray a[4]"

But recall that you can not delete the main array a and then use it as a scalar.

The built-in functions that take array arguments can also be used with subarrays. For
example, the following code fragment uses length() (see Section 9.1.3 [String-Manipulation
Functions], page 189) to determine the number of elements in the main array a and its
subarrays:

print length(a), length(a[1]), length(a[1][3])

This results in the following output for our main array a:

2, 3, 1

The ‘subscript in array’ expression (see Section 8.1.2 [Referring to an Array Element],
page 173) works similarly for both regular awk-style arrays and arrays of arrays. For exam-
ple, the tests ‘1 in a’, ‘3 in a[1]’, and ‘(1, "name") in a[1][3]’ all evaluate to one (true)
for our array a.

The ‘for (item in array)’ statement (see Section 8.1.5 [Scanning All Elements of an
Array], page 175) can be nested to scan all the elements of an array of arrays if it is
rectangular in structure. In order to print the contents (scalar values) of a two-dimensional
array of arrays (i.e., in which each first-level element is itself an array, not necessarily of the
same length), you could use the following code:

for (i in array)

for (j in array[i])

print array[i][j]

Chapter 8: Arrays in awk 185

The isarray() function (see Section 9.1.7 [Getting Type Information], page 213) lets
you test if an array element is itself an array:

for (i in array) {

if (isarray(array[i])) {

for (j in array[i]) {

print array[i][j]

}

}

else

print array[i]

}

If the structure of a jagged array of arrays is known in advance, you can often devise
workarounds using control statements. For example, the following code prints the elements
of our main array a:

for (i in a) {

for (j in a[i]) {

if (j == 3) {

for (k in a[i][j])

print a[i][j][k]

} else

print a[i][j]

}

}

See Section 10.7 [Traversing Arrays of Arrays], page 264, for a user-defined function that
“walks” an arbitrarily dimensioned array of arrays.

Recall that a reference to an uninitialized array element yields a value of "", the null
string. This has one important implication when you intend to use a subarray as an argu-
ment to a function, as illustrated by the following example:

$ gawk 'BEGIN { split("a b c d", b[1]); print b[1][1] }'

error gawk: cmd. line:1: fatal: split: second argument is not an array

The way to work around this is to first force b[1] to be an array by creating an arbitrary
index:

$ gawk 'BEGIN { b[1][1] = ""; split("a b c d", b[1]); print b[1][1] }'

a a

8.7 Summary

• Standard awk provides one-dimensional associative arrays (arrays indexed by string
values). All arrays are associative; numeric indices are converted automatically to
strings.

• Array elements are referenced as array[indx]. Referencing an element creates it if it
did not exist previously.

• The proper way to see if an array has an element with a given index is to use the in

operator: ‘indx in array’.

186 GAWK: Effective AWK Programming

• Use ‘for (indx in array) ...’ to scan through all the individual elements of an array.
In the body of the loop, indx takes on the value of each element’s index in turn.

• The order in which a ‘for (indx in array)’ loop traverses an array is undefined in
POSIX awk and varies among implementations. gawk lets you control the order by
assigning special predefined values to PROCINFO["sorted_in"].

• Use ‘delete array[indx]’ to delete an individual element. To delete all of the elements
in an array, use ‘delete array’. This latter feature has been a common extension for
many years and is now standard, but may not be supported by all commercial versions
of awk.

• Standard awk simulates multidimensional arrays by separating subscript values with
commas. The values are concatenated into a single string, separated by the value of
SUBSEP. The fact that such a subscript was created in this way is not retained; thus,
changing SUBSEP may have unexpected consequences. You can use ‘(sub1, sub2, ...)

in array’ to see if such a multidimensional subscript exists in array.

• gawk provides true arrays of arrays. You use a separate set of square brackets for each
dimension in such an array: data[row][col], for example. Array elements may thus
be either scalar values (number or string) or other arrays.

• Use the isarray() built-in function to determine if an array element is itself a subarray.

Chapter 9: Functions 187

9 Functions

This chapter describes awk’s built-in functions, which fall into three categories: numeric,
string, and I/O. gawk provides additional groups of functions to work with values that rep-
resent time, do bit manipulation, sort arrays, provide type information, and internationalize
and localize programs.

Besides the built-in functions, awk has provisions for writing new functions that the rest
of a program can use. The second half of this chapter describes these user-defined functions.
Finally, we explore indirect function calls, a gawk-specific extension that lets you determine
at runtime what function is to be called.

9.1 Built-in Functions

Built-in functions are always available for your awk program to call. This section defines
all the built-in functions in awk; some of these are mentioned in other sections but are
summarized here for your convenience.

9.1.1 Calling Built-in Functions

To call one of awk’s built-in functions, write the name of the function followed by arguments
in parentheses. For example, ‘atan2(y + z, 1)’ is a call to the function atan2() and has
two arguments.

Whitespace is ignored between the built-in function name and the opening parenthesis,
but nonetheless it is good practice to avoid using whitespace there. User-defined functions
do not permit whitespace in this way, and it is easier to avoid mistakes by following a simple
convention that always works—no whitespace after a function name.

Each built-in function accepts a certain number of arguments. In some cases, arguments
can be omitted. The defaults for omitted arguments vary from function to function and are
described under the individual functions. In some awk implementations, extra arguments
given to built-in functions are ignored. However, in gawk, it is a fatal error to give extra
arguments to a built-in function.

When a function is called, expressions that create the function’s actual parameters are
evaluated completely before the call is performed. For example, in the following code
fragment:

i = 4

j = sqrt(i++)

the variable i is incremented to the value five before sqrt() is called with a value of four
for its actual parameter. The order of evaluation of the expressions used for the function’s
parameters is undefined. Thus, avoid writing programs that assume that parameters are
evaluated from left to right or from right to left. For example:

i = 5

j = atan2(++i, i *= 2)

If the order of evaluation is left to right, then i first becomes six, and then 12, and
atan2() is called with the two arguments six and 12. But if the order of evaluation is right
to left, i first becomes 10, then 11, and atan2() is called with the two arguments 11 and
10.

188 GAWK: Effective AWK Programming

9.1.2 Numeric Functions

The following list describes all of the built-in functions that work with numbers. Optional
parameters are enclosed in square brackets ([]):

atan2(y, x)

Return the arctangent of y / x in radians. You can use ‘pi = atan2(0, -1)’ to
retrieve the value of π.

cos(x) Return the cosine of x, with x in radians.

exp(x) Return the exponential of x (e ^ x) or report an error if x is out of range. The
range of values x can have depends on your machine’s floating-point represen-
tation.

int(x) Return the nearest integer to x, located between x and zero and truncated
toward zero. For example, int(3) is 3, int(3.9) is 3, int(-3.9) is −3, and
int(-3) is −3 as well.

log(x) Return the natural logarithm of x, if x is positive; otherwise, return NaN (“not
a number”) on IEEE 754 systems. Additionally, gawk prints a warning message
when x is negative.

rand() Return a random number. The values of rand() are uniformly distributed
between zero and one. The value could be zero but is never one.1

Often random integers are needed instead. Following is a user-defined function
that can be used to obtain a random nonnegative integer less than n:

function randint(n)

{

return int(n * rand())

}

The multiplication produces a random number greater than or equal to zero
and less than n. Using int(), this result is made into an integer between zero
and n − 1, inclusive.

The following example uses a similar function to produce random integers be-
tween one and n. This program prints a new random number for each input
record:

Function to roll a simulated die.

function roll(n) { return 1 + int(rand() * n) }

Roll 3 six-sided dice and

print total number of points.

{

1 The C version of rand() on many Unix systems is known to produce fairly poor sequences of random
numbers. However, nothing requires that an awk implementation use the C rand() to implement the awk
version of rand(). In fact, for many years, gawk used the BSD random() function, which is considerably
better than rand(), to produce random numbers. From version 4.1.4, courtesy of Nelson H.F. Beebe,
gawk uses the Bayes-Durham shuffle buffer algorithm which considerably extends the period of the
random number generator, and eliminates short-range and long-range correlations that might exist in
the original generator.

Chapter 9: Functions 189

printf("%d points\n", roll(6) + roll(6) + roll(6))

}

CAUTION: In most awk implementations, including gawk, rand()
starts generating numbers from the same starting number, or seed,
each time you run awk.2 Thus, a program generates the same results
each time you run it. The numbers are random within one awk run
but predictable from run to run. This is convenient for debugging,
but if you want a program to do different things each time it is
used, you must change the seed to a value that is different in each
run. To do this, use srand().

sin(x) Return the sine of x, with x in radians.

sqrt(x) Return the positive square root of x. gawk prints a warning message if x is
negative. Thus, sqrt(4) is 2.

srand([x])
Set the starting point, or seed, for generating random numbers to the value x.

Each seed value leads to a particular sequence of random numbers.3 Thus, if
the seed is set to the same value a second time, the same sequence of random
numbers is produced again.

CAUTION: Different awk implementations use different random-
number generators internally. Don’t expect the same awk program
to produce the same series of random numbers when executed by
different versions of awk.

If the argument x is omitted, as in ‘srand()’, then the current date and time
of day are used for a seed. This is the way to get random numbers that are
truly unpredictable.

The return value of srand() is the previous seed. This makes it easy to keep
track of the seeds in case you need to consistently reproduce sequences of ran-
dom numbers.

POSIX does not specify the initial seed; it differs among awk implementations.

9.1.3 String-Manipulation Functions

The functions in this section look at or change the text of one or more strings.

gawk understands locales (see Section 6.6 [Where You Are Makes a Difference], page 138)
and does all string processing in terms of characters, not bytes. This distinction is partic-
ularly important to understand for locales where one character may be represented by
multiple bytes. Thus, for example, length() returns the number of characters in a string,
and not the number of bytes used to represent those characters. Similarly, index() works
with character indices, and not byte indices.

CAUTION: A number of functions deal with indices into strings. For these
functions, the first character of a string is at position (index) one. This is

2 mawk uses a different seed each time.
3 Computer-generated random numbers really are not truly random. They are technically known as

pseudorandom. This means that although the numbers in a sequence appear to be random, you can in
fact generate the same sequence of random numbers over and over again.

190 GAWK: Effective AWK Programming

different from C and the languages descended from it, where the first character
is at position zero. You need to remember this when doing index calculations,
particularly if you are used to C.

In the following list, optional parameters are enclosed in square brackets ([]). Several
functions perform string substitution; the full discussion is provided in the description of the
sub() function, which comes toward the end, because the list is presented alphabetically.

Those functions that are specific to gawk are marked with a pound sign (‘#’). They are
not available in compatibility mode (see Section 2.2 [Command-Line Options], page 31):

asort(source [, dest [, how]]) #

asorti(source [, dest [, how]]) #

These two functions are similar in behavior, so they are described together.

NOTE: The following description ignores the third argument, how,
as it requires understanding features that we have not discussed
yet. Thus, the discussion here is a deliberate simplification. (We
do provide all the details later on; see Section 12.2.2 [Sorting Array
Values and Indices with gawk], page 322, for the full story.)

Both functions return the number of elements in the array source. For asort(),
gawk sorts the values of source and replaces the indices of the sorted values of
source with sequential integers starting with one. If the optional array dest is
specified, then source is duplicated into dest. dest is then sorted, leaving the
indices of source unchanged.

When comparing strings, IGNORECASE affects the sorting (see Section 12.2.2
[Sorting Array Values and Indices with gawk], page 322). If the source array
contains subarrays as values (see Section 8.6 [Arrays of Arrays], page 183), they
will come last, after all scalar values. Subarrays are not recursively sorted.

For example, if the contents of a are as follows:

a["last"] = "de"

a["first"] = "sac"

a["middle"] = "cul"

A call to asort():

asort(a)

results in the following contents of a:

a[1] = "cul"

a[2] = "de"

a[3] = "sac"

The asorti() function works similarly to asort(); however, the indices are
sorted, instead of the values. Thus, in the previous example, starting with the
same initial set of indices and values in a, calling ‘asorti(a)’ would yield:

a[1] = "first"

a[2] = "last"

a[3] = "middle"

NOTE: Due to implementation limitations, you may not use either
SYMTAB or FUNCTAB as arguments to these functions, even if pro-
viding a second array to use for the actual sorting. Attempting to

Chapter 9: Functions 191

do so produces a fatal error. This restriction may be lifted in the
future.

gensub(regexp, replacement, how [, target]) #

Search the target string target for matches of the regular expression regexp.
If how is a string beginning with ‘g’ or ‘G’ (short for “global”), then replace
all matches of regexp with replacement. Otherwise, treat how as a number
indicating which match of regexp to replace. Treat numeric values less than
one as if they were one. If no target is supplied, use $0. Return the modified
string as the result of the function. The original target string is not changed.

gensub() is a general substitution function. Its purpose is to provide more
features than the standard sub() and gsub() functions.

gensub() provides an additional feature that is not available in sub() or
gsub(): the ability to specify components of a regexp in the replacement text.
This is done by using parentheses in the regexp to mark the components and
then specifying ‘\N’ in the replacement text, where N is a digit from 1 to 9. For
example:

$ gawk '

> BEGIN {

> a = "abc def"

> b = gensub(/(.+) (.+)/, "\\2 \\1", "g", a)

> print b

> }'

a def abc

As with sub(), you must type two backslashes in order to get one into the string.
In the replacement text, the sequence ‘\0’ represents the entire matched text,
as does the character ‘&’.

The following example shows how you can use the third argument to control
which match of the regexp should be changed:

$ echo a b c a b c |

> gawk '{ print gensub(/a/, "AA", 2) }'

a a b c AA b c

In this case, $0 is the default target string. gensub() returns the new string as
its result, which is passed directly to print for printing.

If the how argument is a string that does not begin with ‘g’ or ‘G’, or if it is a
number that is less than or equal to zero, only one substitution is performed.
If how is zero, gawk issues a warning message.

If regexp does not match target, gensub()’s return value is the original un-
changed value of target.

gsub(regexp, replacement [, target])
Search target for all of the longest, leftmost, nonoverlapping matching sub-
strings it can find and replace them with replacement. The ‘g’ in gsub() stands
for “global,” which means replace everywhere. For example:

{ gsub(/Britain/, "United Kingdom"); print }

192 GAWK: Effective AWK Programming

replaces all occurrences of the string ‘Britain’ with ‘United Kingdom’ for all
input records.

The gsub() function returns the number of substitutions made. If the variable
to search and alter (target) is omitted, then the entire input record ($0) is used.
As in sub(), the characters ‘&’ and ‘\’ are special, and the third argument must
be assignable.

index(in, find)

Search the string in for the first occurrence of the string find, and return the
position in characters where that occurrence begins in the string in. Consider
the following example:

$ awk 'BEGIN { print index("peanut", "an") }'

a 3

If find is not found, index() returns zero.

With BWK awk and gawk, it is a fatal error to use a regexp constant for
find. Other implementations allow it, simply treating the regexp constant as
an expression meaning ‘$0 ~ /regexp/’.

length([string])
Return the number of characters in string. If string is a number, the length
of the digit string representing that number is returned. For example,
length("abcde") is five. By contrast, length(15 * 35) works out to three.
In this example, 15 · 35 = 525, and 525 is then converted to the string "525",
which has three characters.

If no argument is supplied, length() returns the length of $0.

NOTE: In older versions of awk, the length() function could be
called without any parentheses. Doing so is considered poor prac-
tice, although the 2008 POSIX standard explicitly allows it, to sup-
port historical practice. For programs to be maximally portable,
always supply the parentheses.

If length() is called with a variable that has not been used, gawk forces the
variable to be a scalar. Other implementations of awk leave the variable without
a type. Consider:

$ gawk 'BEGIN { print length(x) ; x[1] = 1 }'

a 0

error gawk: fatal: attempt to use scalar `x' as array

$ nawk 'BEGIN { print length(x) ; x[1] = 1 }'

a 0

If --lint has been specified on the command line, gawk issues a warning about
this.

With gawk and several other awk implementations, when given an array argu-
ment, the length() function returns the number of elements in the array. (c.e.)
This is less useful than it might seem at first, as the array is not guaranteed to be
indexed from one to the number of elements in it. If --lint is provided on the
command line (see Section 2.2 [Command-Line Options], page 31), gawk warns

Chapter 9: Functions 193

that passing an array argument is not portable. If --posix is supplied, using
an array argument is a fatal error (see Chapter 8 [Arrays in awk], page 171).

match(string, regexp [, array])
Search string for the longest, leftmost substring matched by the regular expres-
sion regexp and return the character position (index) at which that substring
begins (one, if it starts at the beginning of string). If no match is found, return
zero.

The regexp argument may be either a regexp constant (/. . ./) or a string
constant (". . ."). In the latter case, the string is treated as a regexp to be
matched. See Section 3.6 [Using Dynamic Regexps], page 55, for a discussion
of the difference between the two forms, and the implications for writing your
program correctly.

The order of the first two arguments is the opposite of most other string func-
tions that work with regular expressions, such as sub() and gsub(). It might
help to remember that for match(), the order is the same as for the ‘~’ operator:
‘string ~ regexp’.

The match() function sets the predefined variable RSTART to the index. It also
sets the predefined variable RLENGTH to the length in characters of the matched
substring. If no match is found, RSTART is set to zero, and RLENGTH to −1.
For example:

{

if ($1 == "FIND")

regex = $2

else {

where = match($0, regex)

if (where != 0)

print "Match of", regex, "found at", where, "in", $0

}

}

This program looks for lines that match the regular expression stored in the
variable regex. This regular expression can be changed. If the first word on a
line is ‘FIND’, regex is changed to be the second word on that line. Therefore,
if given:

FIND ru+n

My program runs

but not very quickly

FIND Melvin

JF+KM

This line is property of Reality Engineering Co.

Melvin was here.

awk prints:

Match of ru+n found at 12 in My program runs

Match of Melvin found at 1 in Melvin was here.

If array is present, it is cleared, and then the zeroth element of array is set to
the entire portion of string matched by regexp. If regexp contains parentheses,

194 GAWK: Effective AWK Programming

the integer-indexed elements of array are set to contain the portion of string
matching the corresponding parenthesized subexpression. For example:

$ echo foooobazbarrrrr |

> gawk '{ match($0, /(fo+).+(bar*)/, arr)

> print arr[1], arr[2] }'

a foooo barrrrr

In addition, multidimensional subscripts are available providing the start index
and length of each matched subexpression:

$ echo foooobazbarrrrr |

> gawk '{ match($0, /(fo+).+(bar*)/, arr)

> print arr[1], arr[2]

> print arr[1, "start"], arr[1, "length"]

> print arr[2, "start"], arr[2, "length"]

> }'

a foooo barrrrr

a 1 5

a 9 7

There may not be subscripts for the start and index for every parenthesized
subexpression, because they may not all have matched text; thus, they should
be tested for with the in operator (see Section 8.1.2 [Referring to an Array
Element], page 173).

The array argument to match() is a gawk extension. In compatibility mode
(see Section 2.2 [Command-Line Options], page 31), using a third argument is
a fatal error.

patsplit(string, array [, fieldpat [, seps]]) #

Divide string into pieces (or “fields”) defined by fieldpat and store the pieces
in array and the separator strings in the seps array. The first piece is stored
in array[1], the second piece in array[2], and so forth. The third argument,
fieldpat, is a regexp describing the fields in string (just as FPAT is a regexp
describing the fields in input records). It may be either a regexp constant or
a string. If fieldpat is omitted, the value of FPAT is used. patsplit() returns
the number of elements created. seps[i] is the possibly null separator string
after array[i]. The possibly null leading separator will be in seps[0]. So a
non-null string with n fields will have n+1 separators. A null string will not
have neither fields nor separators.

The patsplit() function splits strings into pieces in a manner similar to the
way input lines are split into fields using FPAT (see Section 4.7 [Defining Fields
by Content], page 77).

Before splitting the string, patsplit() deletes any previously existing elements
in the arrays array and seps.

split(string, array [, fieldsep [, seps]])
Divide string into pieces separated by fieldsep and store the pieces in array and
the separator strings in the seps array. The first piece is stored in array[1],
the second piece in array[2], and so forth. The string value of the third
argument, fieldsep, is a regexp describing where to split string (much as FS can

Chapter 9: Functions 195

be a regexp describing where to split input records). If fieldsep is omitted, the
value of FS is used. split() returns the number of elements created. seps is
a gawk extension, with seps[i] being the separator string between array[i]

and array[i+1]. If fieldsep is a single space, then any leading whitespace goes
into seps[0] and any trailing whitespace goes into seps[n], where n is the
return value of split() (i.e., the number of elements in array).

The split() function splits strings into pieces in the same way that input lines
are split into fields. For example:

split("cul-de-sac", a, "-", seps)

splits the string "cul-de-sac" into three fields using ‘-’ as the separator. It
sets the contents of the array a as follows:

a[1] = "cul"

a[2] = "de"

a[3] = "sac"

and sets the contents of the array seps as follows:

seps[1] = "-"

seps[2] = "-"

The value returned by this call to split() is three.

As with input field-splitting, when the value of fieldsep is " ", leading and
trailing whitespace is ignored in values assigned to the elements of array but
not in seps, and the elements are separated by runs of whitespace. Also, as
with input field splitting, if fieldsep is the null string, each individual character
in the string is split into its own array element. (c.e.) Additionally, if fieldsep
is a single-character string, that string acts as the separator, even if its value is
a regular expression metacharacter.

Note, however, that RS has no effect on the way split() works. Even though
‘RS = ""’ causes the newline character to also be an input field separator, this
does not affect how split() splits strings.

Modern implementations of awk, including gawk, allow the third argument to
be a regexp constant (/. . ./) as well as a string. The POSIX standard allows
this as well. See Section 3.6 [Using Dynamic Regexps], page 55, for a discussion
of the difference between using a string constant or a regexp constant, and the
implications for writing your program correctly.

Before splitting the string, split() deletes any previously existing elements in
the arrays array and seps.

If string is null, the array has no elements. (So this is a portable way to delete
an entire array with one statement. See Section 8.4 [The delete Statement],
page 180.)

If string does not match fieldsep at all (but is not null), array has one element
only. The value of that element is the original string.

In POSIX mode (see Section 2.2 [Command-Line Options], page 31), the fourth
argument is not allowed.

196 GAWK: Effective AWK Programming

sprintf(format, expression1, ...)

Return (without printing) the string that printf would have printed out with
the same arguments (see Section 5.5 [Using printf Statements for Fancier
Printing], page 96). For example:

pival = sprintf("pi = %.2f (approx.)", 22/7)

assigns the string ‘pi = 3.14 (approx.)’ to the variable pival.

strtonum(str) #

Examine str and return its numeric value. If str begins with a leading ‘0’,
strtonum() assumes that str is an octal number. If str begins with a lead-
ing ‘0x’ or ‘0X’, strtonum() assumes that str is a hexadecimal number. For
example:

$ echo 0x11 |

> gawk '{ printf "%d\n", strtonum($1) }'

a 17

Using the strtonum() function is not the same as adding zero to a string value;
the automatic coercion of strings to numbers works only for decimal data, not
for octal or hexadecimal.4

Note also that strtonum() uses the current locale’s decimal point for recogniz-
ing numbers (see Section 6.6 [Where You Are Makes a Difference], page 138).

sub(regexp, replacement [, target])
Search target, which is treated as a string, for the leftmost, longest substring
matched by the regular expression regexp. Modify the entire string by replacing
the matched text with replacement. The modified string becomes the new value
of target. Return the number of substitutions made (zero or one).

The regexp argument may be either a regexp constant (/. . ./) or a string
constant (". . ."). In the latter case, the string is treated as a regexp to be
matched. See Section 3.6 [Using Dynamic Regexps], page 55, for a discussion
of the difference between the two forms, and the implications for writing your
program correctly.

This function is peculiar because target is not simply used to compute a value,
and not just any expression will do—it must be a variable, field, or array element
so that sub() can store a modified value there. If this argument is omitted,
then the default is to use and alter $0.5 For example:

str = "water, water, everywhere"

sub(/at/, "ith", str)

sets str to ‘wither, water, everywhere’, by replacing the leftmost longest
occurrence of ‘at’ with ‘ith’.

If the special character ‘&’ appears in replacement, it stands for the precise
substring that was matched by regexp. (If the regexp can match more than one
string, then this precise substring may vary.) For example:

4 Unless you use the --non-decimal-data option, which isn’t recommended. See Section 12.1 [Allowing
Nondecimal Input Data], page 317, for more information.

5 Note that this means that the record will first be regenerated using the value of OFS if any fields have
been changed, and that the fields will be updated after the substitution, even if the operation is a “no-op”
such as ‘sub(/^/, "")’.

Chapter 9: Functions 197

{ sub(/candidate/, "& and his wife"); print }

changes the first occurrence of ‘candidate’ to ‘candidate and his wife’ on
each input line. Here is another example:

$ awk 'BEGIN {

> str = "daabaaa"

> sub(/a+/, "C&C", str)

> print str

> }'

a dCaaCbaaa

This shows how ‘&’ can represent a nonconstant string and also illustrates the
“leftmost, longest” rule in regexp matching (see Section 3.5 [How Much Text
Matches?], page 55).

The effect of this special character (‘&’) can be turned off by putting a backslash
before it in the string. As usual, to insert one backslash in the string, you must
write two backslashes. Therefore, write ‘\\&’ in a string constant to include a
literal ‘&’ in the replacement. For example, the following shows how to replace
the first ‘|’ on each line with an ‘&’:

{ sub(/\|/, "\\&"); print }

As mentioned, the third argument to sub() must be a variable, field, or array
element. Some versions of awk allow the third argument to be an expression
that is not an lvalue. In such a case, sub() still searches for the pattern and
returns zero or one, but the result of the substitution (if any) is thrown away
because there is no place to put it. Such versions of awk accept expressions like
the following:

sub(/USA/, "United States", "the USA and Canada")

For historical compatibility, gawk accepts such erroneous code. However, using
any other nonchangeable object as the third parameter causes a fatal error and
your program will not run.

Finally, if the regexp is not a regexp constant, it is converted into a string, and
then the value of that string is treated as the regexp to match.

substr(string, start [, length])
Return a length-character-long substring of string, starting at character number
start. The first character of a string is character number one.6 For example,
substr("washington", 5, 3) returns "ing".

If length is not present, substr() returns the whole suffix of string that begins
at character number start. For example, substr("washington", 5) returns
"ington". The whole suffix is also returned if length is greater than the number
of characters remaining in the string, counting from character start.

If start is less than one, substr() treats it as if it was one. (POSIX doesn’t
specify what to do in this case: BWK awk acts this way, and therefore gawk does
too.) If start is greater than the number of characters in the string, substr()
returns the null string. Similarly, if length is present but less than or equal to
zero, the null string is returned.

6 This is different from C and C++, in which the first character is number zero.

198 GAWK: Effective AWK Programming

The string returned by substr() cannot be assigned. Thus, it is a mistake to
attempt to change a portion of a string, as shown in the following example:

string = "abcdef"

try to get "abCDEf", won't work

substr(string, 3, 3) = "CDE"

It is also a mistake to use substr() as the third argument of sub() or gsub():

gsub(/xyz/, "pdq", substr($0, 5, 20)) # WRONG

(Some commercial versions of awk treat substr() as assignable, but doing so
is not portable.)

If you need to replace bits and pieces of a string, combine substr() with string
concatenation, in the following manner:

string = "abcdef"

...

string = substr(string, 1, 2) "CDE" substr(string, 6)

tolower(string)

Return a copy of string, with each uppercase character in the string replaced
with its corresponding lowercase character. Nonalphabetic characters are left
unchanged. For example, tolower("MiXeD cAsE 123") returns "mixed case

123".

toupper(string)

Return a copy of string, with each lowercase character in the string replaced
with its corresponding uppercase character. Nonalphabetic characters are left
unchanged. For example, toupper("MiXeD cAsE 123") returns "MIXED CASE

123".� �
Matching the Null String

In awk, the ‘*’ operator can match the null string. This is particularly important for the
sub(), gsub(), and gensub() functions. For example:

$ echo abc | awk '{ gsub(/m*/, "X"); print }'

a XaXbXcX

Although this makes a certain amount of sense, it can be surprising.
 	
9.1.3.1 More about ‘\’ and ‘&’ with sub(), gsub(), and gensub()

CAUTION: This subsubsection has been reported to cause headaches. You
might want to skip it upon first reading.

When using sub(), gsub(), or gensub(), and trying to get literal backslashes and
ampersands into the replacement text, you need to remember that there are several levels
of escape processing going on.

First, there is the lexical level, which is when awk reads your program and builds an
internal copy of it to execute. Then there is the runtime level, which is when awk actually
scans the replacement string to determine what to generate.

At both levels, awk looks for a defined set of characters that can come after a backslash.
At the lexical level, it looks for the escape sequences listed in Section 3.2 [Escape Sequences],

Chapter 9: Functions 199

page 48. Thus, for every ‘\’ that awk processes at the runtime level, you must type two
backslashes at the lexical level. When a character that is not valid for an escape sequence
follows the ‘\’, BWK awk and gawk both simply remove the initial ‘\’ and put the next
character into the string. Thus, for example, "a\qb" is treated as "aqb".

At the runtime level, the various functions handle sequences of ‘\’ and ‘&’ differently. The
situation is (sadly) somewhat complex. Historically, the sub() and gsub() functions treated
the two-character sequence ‘\&’ specially; this sequence was replaced in the generated text
with a single ‘&’. Any other ‘\’ within the replacement string that did not precede an ‘&’
was passed through unchanged. This is illustrated in Table 9.1.

You type sub() sees sub() generates

\& & The matched text
\\& \& A literal ‘&’

\\\& \& A literal ‘&’
\\\\& \\& A literal ‘\&’
\\\\\& \\& A literal ‘\&’
\\\\\\& \\\& A literal ‘\\&’

\\q \q A literal ‘\q’

Table 9.1: Historical escape sequence processing for sub() and gsub()

This table shows the lexical-level processing, where an odd number of backslashes becomes
an even number at the runtime level, as well as the runtime processing done by sub(). (For
the sake of simplicity, the rest of the following tables only show the case of even numbers
of backslashes entered at the lexical level.)

The problem with the historical approach is that there is no way to get a literal ‘\’
followed by the matched text.

Several editions of the POSIX standard attempted to fix this problem but weren’t suc-
cessful. The details are irrelevant at this point in time.

At one point, the gawk maintainer submitted proposed text for a revised standard that
reverts to rules that correspond more closely to the original existing practice. The proposed
rules have special cases that make it possible to produce a ‘\’ preceding the matched text.
This is shown in Table 9.2.

You type sub() sees sub() generates

\\\\\\& \\\& A literal ‘\&’
\\\\& \\& A literal ‘\’, followed by the matched text

\\& \& A literal ‘&’
\\q \q A literal ‘\q’

\\\\ \\ \\

Table 9.2: gawk rules for sub() and backslash

200 GAWK: Effective AWK Programming

In a nutshell, at the runtime level, there are now three special sequences of characters
(‘\\\&’, ‘\\&’, and ‘\&’) whereas historically there was only one. However, as in the historical
case, any ‘\’ that is not part of one of these three sequences is not special and appears in
the output literally.

gawk 3.0 and 3.1 follow these rules for sub() and gsub(). The POSIX standard took
much longer to be revised than was expected. In addition, the gawk maintainer’s proposal
was lost during the standardization process. The final rules are somewhat simpler. The
results are similar except for one case.

The POSIX rules state that ‘\&’ in the replacement string produces a literal ‘&’, ‘\\’
produces a literal ‘\’, and ‘\’ followed by anything else is not special; the ‘\’ is placed
straight into the output. These rules are presented in Table 9.3.

You type sub() sees sub() generates

\\\\\\& \\\& A literal ‘\&’
\\\\& \\& A literal ‘\’, followed by the matched text

\\& \& A literal ‘&’
\\q \q A literal ‘\q’

\\\\ \\ \

Table 9.3: POSIX rules for sub() and gsub()

The only case where the difference is noticeable is the last one: ‘\\\\’ is seen as ‘\\’ and
produces ‘\’ instead of ‘\\’.

Starting with version 3.1.4, gawk followed the POSIX rules when --posix was specified
(see Section 2.2 [Command-Line Options], page 31). Otherwise, it continued to follow the
proposed rules, as that had been its behavior for many years.

When version 4.0.0 was released, the gawk maintainer made the POSIX rules the default,
breaking well over a decade’s worth of backward compatibility.7 Needless to say, this was
a bad idea, and as of version 4.0.1, gawk resumed its historical behavior, and only follows
the POSIX rules when --posix is given.

The rules for gensub() are considerably simpler. At the runtime level, whenever gawk
sees a ‘\’, if the following character is a digit, then the text that matched the corresponding
parenthesized subexpression is placed in the generated output. Otherwise, no matter what
character follows the ‘\’, it appears in the generated text and the ‘\’ does not, as shown in
Table 9.4.

7 This was rather naive of him, despite there being a note in this section indicating that the next major
version would move to the POSIX rules.

Chapter 9: Functions 201

You type gensub() sees gensub() generates

& & The matched text
\\& \& A literal ‘&’
\\\\ \\ A literal ‘\’

\\\\& \\& A literal ‘\’, then the matched text
\\\\\\& \\\& A literal ‘\&’

\\q \q A literal ‘q’

Table 9.4: Escape sequence processing for gensub()

Because of the complexity of the lexical- and runtime-level processing and the special
cases for sub() and gsub(), we recommend the use of gawk and gensub() when you have
to do substitutions.

9.1.4 Input/Output Functions

The following functions relate to input/output (I/O). Optional parameters are enclosed in
square brackets ([]):

close(filename [, how])
Close the file filename for input or output. Alternatively, the argument may be
a shell command that was used for creating a coprocess, or for redirecting to
or from a pipe; then the coprocess or pipe is closed. See Section 5.9 [Closing
Input and Output Redirections], page 106, for more information.

When closing a coprocess, it is occasionally useful to first close one end of the
two-way pipe and then to close the other. This is done by providing a second
argument to close(). This second argument (how) should be one of the two
string values "to" or "from", indicating which end of the pipe to close. Case in
the string does not matter. See Section 12.3 [Two-Way Communications with
Another Process], page 324, which discusses this feature in more detail and
gives an example.

Note that the second argument to close() is a gawk extension; it is not available
in compatibility mode (see Section 2.2 [Command-Line Options], page 31).

fflush([filename])
Flush any buffered output associated with filename, which is either a file opened
for writing or a shell command for redirecting output to a pipe or coprocess.

Many utility programs buffer their output (i.e., they save information to write
to a disk file or the screen in memory until there is enough for it to be worthwhile
to send the data to the output device). This is often more efficient than writing
every little bit of information as soon as it is ready. However, sometimes it is
necessary to force a program to flush its buffers (i.e., write the information to
its destination, even if a buffer is not full). This is the purpose of the fflush()
function—gawk also buffers its output, and the fflush() function forces gawk
to flush its buffers.

202 GAWK: Effective AWK Programming

Brian Kernighan added fflush() to his awk in April 1992. For two decades, it
was a common extension. In December 2012, it was accepted for inclusion into
the POSIX standard. See the Austin Group website.

POSIX standardizes fflush() as follows: if there is no argument, or if the
argument is the null string (""), then awk flushes the buffers for all open output
files and pipes.

NOTE: Prior to version 4.0.2, gawk would flush only the standard
output if there was no argument, and flush all output files and pipes
if the argument was the null string. This was changed in order
to be compatible with Brian Kernighan’s awk, in the hope that
standardizing this feature in POSIX would then be easier (which
indeed proved to be the case).

With gawk, you can use ‘fflush("/dev/stdout")’ if you wish to
flush only the standard output.

fflush() returns zero if the buffer is successfully flushed; otherwise, it returns
a nonzero value. (gawk returns −1.) In the case where all buffers are flushed,
the return value is zero only if all buffers were flushed successfully. Otherwise,
it is −1, and gawk warns about the problem filename.

gawk also issues a warning message if you attempt to flush a file or pipe that
was opened for reading (such as with getline), or if filename is not an open
file, pipe, or coprocess. In such a case, fflush() returns −1, as well.

http://austingroupbugs.net/view.php?id=634

Chapter 9: Functions 203

� �
Interactive Versus Noninteractive Buffering

As a side point, buffering issues can be even more confusing if your program is interactive
(i.e., communicating with a user sitting at a keyboard).8

Interactive programs generally line buffer their output (i.e., they write out every line).
Noninteractive programs wait until they have a full buffer, which may be many lines of
output. Here is an example of the difference:

$ awk '{ print $1 + $2 }'

1 1

a 2

2 3

a 5

Ctrl-d

Each line of output is printed immediately. Compare that behavior with this example:

$ awk '{ print $1 + $2 }' | cat

1 1

2 3

Ctrl-d

a 2

a 5

Here, no output is printed until after the Ctrl-d is typed, because it is all buffered and
sent down the pipe to cat in one shot.
 	
system(command)

Execute the operating system command command and then return to the awk
program. Return command’s exit status (see further on).

For example, if the following fragment of code is put in your awk program:

END {

system("date | mail -s 'awk run done' root")

}

the system administrator is sent mail when the awk program finishes processing
input and begins its end-of-input processing.

Note that redirecting print or printf into a pipe is often enough to accomplish
your task. If you need to run many commands, it is more efficient to simply
print them down a pipeline to the shell:

while (more stuff to do)

print command | "/bin/sh"

close("/bin/sh")

However, if your awk program is interactive, system() is useful for running large
self-contained programs, such as a shell or an editor. Some operating systems
cannot implement the system() function. system() causes a fatal error if it is
not supported.

NOTE: When --sandbox is specified, the system() function is dis-
abled (see Section 2.2 [Command-Line Options], page 31).

8 A program is interactive if the standard output is connected to a terminal device. On modern systems,
this means your keyboard and screen.

204 GAWK: Effective AWK Programming

On POSIX systems, a command’s exit status is a 16-bit number. The exit
value passed to the C exit() function is held in the high-order eight bits. The
low-order bits indicate if the process was killed by a signal (bit 7) and if so, the
guilty signal number (bits 0–6).

Traditionally, awk’s system() function has simply returned the exit status value
divided by 256. In the normal case this gives the exit status but in the case of
death-by-signal it yields a fractional floating-point value.9 POSIX states that
awk’s system() should return the full 16-bit value.

gawk steers a middle ground. The return values are summarized in Table 9.5.

Situation Return value from system()

--traditional C system()’s value divided by 256
--posix C system()’s value
Normal exit of command Command’s exit status
Death by signal of command 256 + number of murderous signal
Death by signal of command with
core dump

512 + number of murderous signal

Some kind of error −1
Table 9.5: Return values from system()

As of August, 2018, BWK awk now follows gawk’s behavior for the return value of
system().

9 In private correspondence, Dr. Kernighan has indicated to me that the way this was done was probably
a mistake.

Chapter 9: Functions 205

� �
Controlling Output Buffering with system()

The fflush() function provides explicit control over output buffering for individual
files and pipes. However, its use is not portable to many older awk implementations. An
alternative method to flush output buffers is to call system() with a null string as its
argument:

system("") # flush output

gawk treats this use of the system() function as a special case and is smart enough not
to run a shell (or other command interpreter) with the empty command. Therefore, with
gawk, this idiom is not only useful, it is also efficient. Although this method should work
with other awk implementations, it does not necessarily avoid starting an unnecessary shell.
(Other implementations may only flush the buffer associated with the standard output and
not necessarily all buffered output.)

If you think about what a programmer expects, it makes sense that system() should
flush any pending output. The following program:

BEGIN {

print "first print"

system("echo system echo")

print "second print"

}

must print:

first print

system echo

second print

and not:

system echo

first print

second print

If awk did not flush its buffers before calling system(), you would see the latter (unde-
sirable) output.
 	
9.1.5 Time Functions

awk programs are commonly used to process log files containing timestamp information,
indicating when a particular log record was written. Many programs log their timestamps
in the form returned by the time() system call, which is the number of seconds since a
particular epoch. On POSIX-compliant systems, it is the number of seconds since 1970-
01-01 00:00:00 UTC, not counting leap seconds.10 All known POSIX-compliant systems
support timestamps from 0 through 231 − 1, which is sufficient to represent times through
2038-01-19 03:14:07 UTC. Many systems support a wider range of timestamps, including
negative timestamps that represent times before the epoch.

In order to make it easier to process such log files and to produce useful reports, gawk
provides the following functions for working with timestamps. They are gawk extensions;

10 See [Glossary], page 497, especially the entries “Epoch” and “UTC.”

206 GAWK: Effective AWK Programming

they are not specified in the POSIX standard.11 However, recent versions of mawk (see
Section B.5 [Other Freely Available awk Implementations], page 480) also support these
functions. Optional parameters are enclosed in square brackets ([]):

mktime(datespec [, utc-flag])
Turn datespec into a timestamp in the same form as is returned by systime().
It is similar to the function of the same name in ISO C. The argument, datespec,
is a string of the form "YYYY MM DD HH MM SS [DST]". The string consists of six
or seven numbers representing, respectively, the full year including century, the
month from 1 to 12, the day of the month from 1 to 31, the hour of the day from
0 to 23, the minute from 0 to 59, the second from 0 to 60,12 and an optional
daylight-savings flag.

The values of these numbers need not be within the ranges specified; for exam-
ple, an hour of −1 means 1 hour before midnight. The origin-zero Gregorian
calendar is assumed, with year 0 preceding year 1 and year −1 preceding year
0. If utc-flag is present and is either nonzero or non-null, the time is assumed
to be in the UTC time zone; otherwise, the time is assumed to be in the local
time zone. If the DST daylight-savings flag is positive, the time is assumed
to be daylight savings time; if zero, the time is assumed to be standard time;
and if negative (the default), mktime() attempts to determine whether daylight
savings time is in effect for the specified time.

If datespec does not contain enough elements or if the resulting time is out of
range, mktime() returns −1.

strftime([format [, timestamp [, utc-flag]]])
Format the time specified by timestamp based on the contents of the format
string and return the result. It is similar to the function of the same name
in ISO C. If utc-flag is present and is either nonzero or non-null, the value is
formatted as UTC (Coordinated Universal Time, formerly GMT or Greenwich
Mean Time). Otherwise, the value is formatted for the local time zone. The
timestamp is in the same format as the value returned by the systime() func-
tion. If no timestamp argument is supplied, gawk uses the current time of day
as the timestamp. Without a format argument, strftime() uses the value of
PROCINFO["strftime"] as the format string (see Section 7.5 [Predefined Vari-
ables], page 157). The default string value is "%a %b %e %H:%M:%S %Z %Y". This
format string produces output that is equivalent to that of the date utility.
You can assign a new value to PROCINFO["strftime"] to change the default
format; see the following list for the various format directives.

systime()

Return the current time as the number of seconds since the system epoch. On
POSIX systems, this is the number of seconds since 1970-01-01 00:00:00 UTC,
not counting leap seconds. It may be a different number on other systems.

The systime() function allows you to compare a timestamp from a log file with the
current time of day. In particular, it is easy to determine how long ago a particular record

11 The GNU date utility can also do many of the things described here. Its use may be preferable for
simple time-related operations in shell scripts.

12 Occasionally there are minutes in a year with a leap second, which is why the seconds can go up to 60.

Chapter 9: Functions 207

was logged. It also allows you to produce log records using the “seconds since the epoch”
format.

The mktime() function allows you to convert a textual representation of a date and time
into a timestamp. This makes it easy to do before/after comparisons of dates and times,
particularly when dealing with date and time data coming from an external source, such as
a log file.

The strftime() function allows you to easily turn a timestamp into human-readable
information. It is similar in nature to the sprintf() function (see Section 9.1.3 [String-
Manipulation Functions], page 189), in that it copies nonformat specification characters
verbatim to the returned string, while substituting date and time values for format specifi-
cations in the format string.

strftime() is guaranteed by the 1999 ISO C standard13 to support the following date
format specifications:

%a The locale’s abbreviated weekday name.

%A The locale’s full weekday name.

%b The locale’s abbreviated month name.

%B The locale’s full month name.

%c The locale’s “appropriate” date and time representation. (This is ‘%A %B %d %T

%Y’ in the "C" locale.)

%C The century part of the current year. This is the year divided by 100 and
truncated to the next lower integer.

%d The day of the month as a decimal number (01–31).

%D Equivalent to specifying ‘%m/%d/%y’.

%e The day of the month, padded with a space if it is only one digit.

%F Equivalent to specifying ‘%Y-%m-%d’. This is the ISO 8601 date format.

%g The year modulo 100 of the ISO 8601 week number, as a decimal number (00–
99). For example, January 1, 2012, is in week 53 of 2011. Thus, the year
of its ISO 8601 week number is 2011, even though its year is 2012. Similarly,
December 31, 2012, is in week 1 of 2013. Thus, the year of its ISO week number
is 2013, even though its year is 2012.

%G The full year of the ISO week number, as a decimal number.

%h Equivalent to ‘%b’.

%H The hour (24-hour clock) as a decimal number (00–23).

%I The hour (12-hour clock) as a decimal number (01–12).

%j The day of the year as a decimal number (001–366).

%m The month as a decimal number (01–12).

%M The minute as a decimal number (00–59).

13 Unfortunately, not every system’s strftime() necessarily supports all of the conversions listed here.

208 GAWK: Effective AWK Programming

%n A newline character (ASCII LF).

%p The locale’s equivalent of the AM/PM designations associated with a 12-hour
clock.

%r The locale’s 12-hour clock time. (This is ‘%I:%M:%S %p’ in the "C" locale.)

%R Equivalent to specifying ‘%H:%M’.

%S The second as a decimal number (00–60).

%t A TAB character.

%T Equivalent to specifying ‘%H:%M:%S’.

%u The weekday as a decimal number (1–7). Monday is day one.

%U The week number of the year (with the first Sunday as the first day of week
one) as a decimal number (00–53).

%V The week number of the year (with the first Monday as the first day of week one)
as a decimal number (01–53). The method for determining the week number is
as specified by ISO 8601. (To wit: if the week containing January 1 has four
or more days in the new year, then it is week one; otherwise it is the last week
[52 or 53] of the previous year and the next week is week one.)

%w The weekday as a decimal number (0–6). Sunday is day zero.

%W The week number of the year (with the first Monday as the first day of week
one) as a decimal number (00–53).

%x The locale’s “appropriate” date representation. (This is ‘%A %B %d %Y’ in the
"C" locale.)

%X The locale’s “appropriate” time representation. (This is ‘%T’ in the "C" locale.)

%y The year modulo 100 as a decimal number (00–99).

%Y The full year as a decimal number (e.g., 2015).

%z The time zone offset in a ‘+HHMM’ format (e.g., the format necessary to produce
RFC 822/RFC 1036 date headers).

%Z The time zone name or abbreviation; no characters if no time zone is deter-
minable.

%Ec %EC %Ex %EX %Ey %EY %Od %Oe %OH

%OI %Om %OM %OS %Ou %OU %OV %Ow %OW %Oy

“Alternative representations” for the specifications that use only the second
letter (‘%c’, ‘%C’, and so on).14 (These facilitate compliance with the POSIX
date utility.)

%% A literal ‘%’.

14 If you don’t understand any of this, don’t worry about it; these facilities are meant to make it easier to
“internationalize” programs. Other internationalization features are described in Chapter 13 [Interna-
tionalization with gawk], page 335.

Chapter 9: Functions 209

If a conversion specifier is not one of those just listed, the behavior is undefined.15

For systems that are not yet fully standards-compliant, gawk supplies a copy
of strftime() from the GNU C Library. It supports all of the just-listed format
specifications. If that version is used to compile gawk (see Appendix B [Installing gawk],
page 465), then the following additional format specifications are available:

%k The hour (24-hour clock) as a decimal number (0–23). Single-digit numbers are
padded with a space.

%l The hour (12-hour clock) as a decimal number (1–12). Single-digit numbers are
padded with a space.

%s The time as a decimal timestamp in seconds since the epoch.

Additionally, the alternative representations are recognized but their normal represen-
tations are used.

The following example is an awk implementation of the POSIX date utility. Normally,
the date utility prints the current date and time of day in a well-known format. However,
if you provide an argument to it that begins with a ‘+’, date copies nonformat specifier
characters to the standard output and interprets the current time according to the format
specifiers in the string. For example:

$ date '+Today is %A, %B %d, %Y.'

a Today is Monday, September 22, 2014.

Here is the gawk version of the date utility. It has a shell “wrapper” to handle the -u

option, which requires that date run as if the time zone is set to UTC:

#! /bin/sh

#

date --- approximate the POSIX 'date' command

case $1 in

-u) TZ=UTC0 # use UTC

export TZ

shift ;;

esac

gawk 'BEGIN {

format = PROCINFO["strftime"]

exitval = 0

if (ARGC > 2)

exitval = 1

else if (ARGC == 2) {

format = ARGV[1]

if (format ~ /^\+/)

format = substr(format, 2) # remove leading +

15 This is because ISO C leaves the behavior of the C version of strftime() undefined and gawk uses the
system’s version of strftime() if it’s there. Typically, the conversion specifier either does not appear in
the returned string or appears literally.

210 GAWK: Effective AWK Programming

}

print strftime(format)

exit exitval

}' "$@"

9.1.6 Bit-Manipulation Functions

I can explain it for you, but I can’t understand it for you.
—Anonymous

Many languages provide the ability to perform bitwise operations on two integer num-
bers. In other words, the operation is performed on each successive pair of bits in the
operands. Three common operations are bitwise AND, OR, and XOR. The operations are
described in Table 9.6.

Bit operator

AND OR XOR
Operands 0 1 0 1 0 1

0 0 0 0 1 0 1
1 0 1 1 1 1 0

Table 9.6: Bitwise operations

As you can see, the result of an AND operation is 1 only when both bits are 1. The
result of an OR operation is 1 if either bit is 1. The result of an XOR operation is 1 if
either bit is 1, but not both. The next operation is the complement; the complement of 1
is 0 and the complement of 0 is 1. Thus, this operation “flips” all the bits of a given value.

Finally, two other common operations are to shift the bits left or right. For example,
if you have a bit string ‘10111001’ and you shift it right by three bits, you end up with
‘00010111’.16 If you start over again with ‘10111001’ and shift it left by three bits, you end
up with ‘11001000’. The following list describes gawk’s built-in functions that implement
the bitwise operations. Optional parameters are enclosed in square brackets ([]):

and(v1, v2 [, . . .])
Return the bitwise AND of the arguments. There must be at least two.

compl(val)

Return the bitwise complement of val.

lshift(val, count)

Return the value of val, shifted left by count bits.

or(v1, v2 [, . . .])
Return the bitwise OR of the arguments. There must be at least two.

rshift(val, count)

Return the value of val, shifted right by count bits.

xor(v1, v2 [, . . .])
Return the bitwise XOR of the arguments. There must be at least two.

16 This example shows that zeros come in on the left side. For gawk, this is always true, but in some
languages, it’s possible to have the left side fill with ones.

Chapter 9: Functions 211

CAUTION: Beginning with gawk version 4.2, negative operands are not allowed
for any of these functions. A negative operand produces a fatal error. See the
sidebar “Beware The Smoke and Mirrors!” for more information as to why.

Here is a user-defined function (see Section 9.2 [User-Defined Functions], page 214) that
illustrates the use of these functions:

bits2str --- turn an integer into readable ones and zeros

function bits2str(bits, data, mask)

{

if (bits == 0)

return "0"

mask = 1

for (; bits != 0; bits = rshift(bits, 1))

data = (and(bits, mask) ? "1" : "0") data

while ((length(data) % 8) != 0)

data = "0" data

return data

}

BEGIN {

printf "123 = %s\n", bits2str(123)

printf "0123 = %s\n", bits2str(0123)

printf "0x99 = %s\n", bits2str(0x99)

comp = compl(0x99)

printf "compl(0x99) = %#x = %s\n", comp, bits2str(comp)

shift = lshift(0x99, 2)

printf "lshift(0x99, 2) = %#x = %s\n", shift, bits2str(shift)

shift = rshift(0x99, 2)

printf "rshift(0x99, 2) = %#x = %s\n", shift, bits2str(shift)

}

This program produces the following output when run:

$ gawk -f testbits.awk

a 123 = 01111011

a 0123 = 01010011

a 0x99 = 10011001

a compl(0x99) = 0x3fffffffffff66 =

a 001101100110

a lshift(0x99, 2) = 0x264 = 0000001001100100

a rshift(0x99, 2) = 0x26 = 00100110

The bits2str() function turns a binary number into a string. Initializing mask to one
creates a binary value where the rightmost bit is set to one. Using this mask, the function
repeatedly checks the rightmost bit. ANDing the mask with the value indicates whether
the rightmost bit is one or not. If so, a "1" is concatenated onto the front of the string.

212 GAWK: Effective AWK Programming

Otherwise, a "0" is added. The value is then shifted right by one bit and the loop continues
until there are no more one bits.

If the initial value is zero, it returns a simple "0". Otherwise, at the end, it pads the value
with zeros to represent multiples of 8-bit quantities. This is typical in modern computers.

The main code in the BEGIN rule shows the difference between the decimal and octal val-
ues for the same numbers (see Section 6.1.1.2 [Octal and Hexadecimal Numbers], page 114),
and then demonstrates the results of the compl(), lshift(), and rshift() functions.� �

Beware The Smoke and Mirrors!

It other languages, bitwise operations are performed on integer values, not floating-point
values. As a general statement, such operations work best when performed on unsigned
integers.

gawk attempts to treat the arguments to the bitwise functions as unsigned integers. For
this reason, negative arguments produce a fatal error.

In normal operation, for all of these functions, first the double-precision floating-point
value is converted to the widest C unsigned integer type, then the bitwise operation is
performed. If the result cannot be represented exactly as a C double, leading nonzero bits
are removed one by one until it can be represented exactly. The result is then converted
back into a C double.17

However, when using arbitrary precision arithmetic with the -M option (see Chapter 16
[Arithmetic and Arbitrary-Precision Arithmetic with gawk], page 367), the results may
differ. This is particularly noticeable with the compl() function:

$ gawk 'BEGIN { print compl(42) }'

a 9007199254740949

$ gawk -M 'BEGIN { print compl(42) }'

a -43

What’s going on becomes clear when printing the results in hexadecimal:

$ gawk 'BEGIN { printf "%#x\n", compl(42) }'

a 0x1fffffffffffd5

$ gawk -M 'BEGIN { printf "%#x\n", compl(42) }'

a 0xffffffffffffffd5

When using the -M option, under the hood, gawk uses GNU MP arbitrary precision
integers which have at least 64 bits of precision. When not using -M, gawk stores integral
values in regular double-precision floating point, which only maintain 53 bits of precision.
Furthermore, the GNU MP library treats (or at least seems to treat) the leading bit as a
sign bit; thus the result with -M in this case is a negative number.

In short, using gawk for any but the simplest kind of bitwise operations is probably a
bad idea; caveat emptor!
 	
17 If you don’t understand this paragraph, the upshot is that gawk can only store a particular range of

integer values; numbers outside that range are reduced to fit within the range.

Chapter 9: Functions 213

9.1.7 Getting Type Information

gawk provides two functions that let you distinguish the type of a variable. This is necessary
for writing code that traverses every element of an array of arrays (see Section 8.6 [Arrays
of Arrays], page 183), and in other contexts.

isarray(x)

Return a true value if x is an array. Otherwise, return false.

typeof(x)

Return one of the following strings, depending upon the type of x:

"array" x is an array.

"regexp" x is a strongly typed regexp (see Section 6.1.2.2 [Strongly Typed
Regexp Constants], page 117).

"number" x is a number.

"string" x is a string.

"strnum" x is a number that started life as user input, such as a field or the
result of calling split(). (I.e., x has the strnum attribute; see
Section 6.3.2.1 [String Type versus Numeric Type], page 129.)

"unassigned"

x is a scalar variable that has not been assigned a value yet. For
example:

BEGIN {

creates a[1] but it has no assigned value

a[1]

print typeof(a[1]) # unassigned

}

"untyped"

x has not yet been used yet at all; it can become a scalar or an
array. The typing could even conceivably differ from run to run of
the same program! For example:

BEGIN {

print "initially, typeof(v) = ", typeof(v)

if ("FOO" in ENVIRON)

make_scalar(v)

else

make_array(v)

print "typeof(v) =", typeof(v)

}

function make_scalar(p, l) { l = p }

function make_array(p) { p[1] = 1 }

214 GAWK: Effective AWK Programming

isarray() is meant for use in two circumstances. The first is when traversing a mul-
tidimensional array: you can test if an element is itself an array or not. The second is
inside the body of a user-defined function (not discussed yet; see Section 9.2 [User-Defined
Functions], page 214), to test if a parameter is an array or not.

NOTE: While you can use isarray() at the global level to test variables,
doing so makes no sense. Because you are the one writing the program, you
are supposed to know if your variables are arrays or not.

The typeof() function is general; it allows you to determine if a variable or function
parameter is a scalar (number, string, or strongly typed regexp) or an array.

Normally, passing a variable that has never been used to a built-in function causes it
to become a scalar variable (unassigned). However, isarray() and typeof() are different;
they do not change their arguments from untyped to unassigned.

9.1.8 String-Translation Functions

gawk provides facilities for internationalizing awk programs. These include the functions
described in the following list. The descriptions here are purposely brief. See Chapter 13
[Internationalization with gawk], page 335, for the full story. Optional parameters are
enclosed in square brackets ([]):

bindtextdomain(directory [, domain])
Set the directory in which gawk will look for message translation files, in case
they will not or cannot be placed in the “standard” locations (e.g., during
testing). It returns the directory in which domain is “bound.”

The default domain is the value of TEXTDOMAIN. If directory is the null string
(""), then bindtextdomain() returns the current binding for the given domain.

dcgettext(string [, domain [, category]])
Return the translation of string in text domain domain for locale category
category. The default value for domain is the current value of TEXTDOMAIN.
The default value for category is "LC_MESSAGES".

dcngettext(string1, string2, number [, domain [, category]])
Return the plural form used for number of the translation of string1 and string2
in text domain domain for locale category category. string1 is the English
singular variant of a message, and string2 is the English plural variant of the
same message. The default value for domain is the current value of TEXTDOMAIN.
The default value for category is "LC_MESSAGES".

9.2 User-Defined Functions

Complicated awk programs can often be simplified by defining your own functions. User-
defined functions can be called just like built-in ones (see Section 6.4 [Function Calls],
page 136), but it is up to you to define them (i.e., to tell awk what they should do).

9.2.1 Function Definition Syntax

It’s entirely fair to say that the awk syntax for local variable definitions is ap-
pallingly awful.

—Brian Kernighan

Chapter 9: Functions 215

Definitions of functions can appear anywhere between the rules of an awk program.
Thus, the general form of an awk program is extended to include sequences of rules and
user-defined function definitions. There is no need to put the definition of a function before
all uses of the function. This is because awk reads the entire program before starting to
execute any of it.

The definition of a function named name looks like this:

function name([parameter-list])
{

body-of-function
}

Here, name is the name of the function to define. A valid function name is like a valid
variable name: a sequence of letters, digits, and underscores that doesn’t start with a digit.
Here too, only the 52 upper- and lowercase English letters may be used in a function name.
Within a single awk program, any particular name can only be used as a variable, array, or
function.

parameter-list is an optional list of the function’s arguments and local variable names,
separated by commas. When the function is called, the argument names are used to hold
the argument values given in the call.

A function cannot have two parameters with the same name, nor may it have a parameter
with the same name as the function itself.

CAUTION: According to the POSIX standard, function parameters cannot
have the same name as one of the special predefined variables (see Section 7.5
[Predefined Variables], page 157), nor may a function parameter have the same
name as another function.

Not all versions of awk enforce these restrictions. gawk always enforces the first
restriction. With --posix (see Section 2.2 [Command-Line Options], page 31),
it also enforces the second restriction.

Local variables act like the empty string if referenced where a string value is required, and
like zero if referenced where a numeric value is required. This is the same as the behavior
of regular variables that have never been assigned a value. (There is more to understand
about local variables; see Section 9.2.5 [Functions and Their Effects on Variable Typing],
page 224.)

The body-of-function consists of awk statements. It is the most important part of the
definition, because it says what the function should actually do. The argument names exist
to give the body a way to talk about the arguments; local variables exist to give the body
places to keep temporary values.

Argument names are not distinguished syntactically from local variable names. Instead,
the number of arguments supplied when the function is called determines how many argu-
ment variables there are. Thus, if three argument values are given, the first three names in
parameter-list are arguments and the rest are local variables.

It follows that if the number of arguments is not the same in all calls to the function,
some of the names in parameter-list may be arguments on some occasions and local variables
on others. Another way to think of this is that omitted arguments default to the null string.

Usually when you write a function, you know how many names you intend to use for
arguments and how many you intend to use as local variables. It is conventional to place

216 GAWK: Effective AWK Programming

some extra space between the arguments and the local variables, in order to document how
your function is supposed to be used.

During execution of the function body, the arguments and local variable values hide, or
shadow, any variables of the same names used in the rest of the program. The shadowed
variables are not accessible in the function definition, because there is no way to name them
while their names have been taken away for the arguments and local variables. All other
variables used in the awk program can be referenced or set normally in the function’s body.

The arguments and local variables last only as long as the function body is executing.
Once the body finishes, you can once again access the variables that were shadowed while
the function was running.

The function body can contain expressions that call functions. They can even call this
function, either directly or by way of another function. When this happens, we say the
function is recursive. The act of a function calling itself is called recursion.

All the built-in functions return a value to their caller. User-defined functions can do so
also, using the return statement, which is described in detail in Section 9.2.4 [The return
Statement], page 222. Many of the subsequent examples in this section use the return

statement.

In many awk implementations, including gawk, the keyword function may be abbre-
viated func. (c.e.) However, POSIX only specifies the use of the keyword function.
This actually has some practical implications. If gawk is in POSIX-compatibility mode
(see Section 2.2 [Command-Line Options], page 31), then the following statement does not
define a function:

func foo() { a = sqrt($1) ; print a }

Instead, it defines a rule that, for each record, concatenates the value of the variable ‘func’
with the return value of the function ‘foo’. If the resulting string is non-null, the action
is executed. This is probably not what is desired. (awk accepts this input as syntactically
valid, because functions may be used before they are defined in awk programs.18)

To ensure that your awk programs are portable, always use the keyword function when
defining a function.

9.2.2 Function Definition Examples

Here is an example of a user-defined function, called myprint(), that takes a number and
prints it in a specific format:

function myprint(num)

{

printf "%6.3g\n", num

}

To illustrate, here is an awk rule that uses our myprint() function:

$3 > 0 { myprint($3) }

This program prints, in our special format, all the third fields that contain a positive number
in our input. Therefore, when given the following input:

1.2 3.4 5.6 7.8

18 This program won’t actually run, because foo() is undefined.

Chapter 9: Functions 217

9.10 11.12 -13.14 15.16

17.18 19.20 21.22 23.24

this program, using our function to format the results, prints:

5.6

21.2

This function deletes all the elements in an array (recall that the extra whitespace
signifies the start of the local variable list):

function delarray(a, i)

{

for (i in a)

delete a[i]

}

When working with arrays, it is often necessary to delete all the elements in an array and
start over with a new list of elements (see Section 8.4 [The delete Statement], page 180).
Instead of having to repeat this loop everywhere that you need to clear out an array,
your program can just call delarray(). (This guarantees portability. The use of ‘delete
array’ to delete the contents of an entire array is a relatively recent19 addition to the POSIX
standard.)

The following is an example of a recursive function. It takes a string as an input pa-
rameter and returns the string in reverse order. Recursive functions must always have a
test that stops the recursion. In this case, the recursion terminates when the input string
is already empty:

function rev(str)

{

if (str == "")

return ""

return (rev(substr(str, 2)) substr(str, 1, 1))

}

If this function is in a file named rev.awk, it can be tested this way:

$ echo "Don't Panic!" |

> gawk -e '{ print rev($0) }' -f rev.awk

a !cinaP t'noD

The C ctime() function takes a timestamp and returns it as a string, formatted in
a well-known fashion. The following example uses the built-in strftime() function (see
Section 9.1.5 [Time Functions], page 205) to create an awk version of ctime():

ctime.awk

#

awk version of C ctime(3) function

function ctime(ts, format)

{

format = "%a %b %e %H:%M:%S %Z %Y"

19 Late in 2012.

218 GAWK: Effective AWK Programming

if (ts == 0)

ts = systime() # use current time as default

return strftime(format, ts)

}

You might think that ctime() could use PROCINFO["strftime"] for its format string.
That would be a mistake, because ctime() is supposed to return the time formatted in a
standard fashion, and user-level code could have changed PROCINFO["strftime"].

9.2.3 Calling User-Defined Functions

Calling a function means causing the function to run and do its job. A function call is an
expression and its value is the value returned by the function.

9.2.3.1 Writing a Function Call

A function call consists of the function name followed by the arguments in parentheses. awk
expressions are what you write in the call for the arguments. Each time the call is executed,
these expressions are evaluated, and the values become the actual arguments. For example,
here is a call to foo() with three arguments (the first being a string concatenation):

foo(x y, "lose", 4 * z)

CAUTION: Whitespace characters (spaces and TABs) are not allowed between
the function name and the opening parenthesis of the argument list. If you
write whitespace by mistake, awk might think that you mean to concatenate a
variable with an expression in parentheses. However, it notices that you used
a function name and not a variable name, and reports an error.

9.2.3.2 Controlling Variable Scope

Unlike in many languages, there is no way to make a variable local to a { . . . } block in
awk, but you can make a variable local to a function. It is good practice to do so whenever
a variable is needed only in that function.

To make a variable local to a function, simply declare the variable as an argument after
the actual function arguments (see Section 9.2.1 [Function Definition Syntax], page 214).
Look at the following example, where variable i is a global variable used by both functions
foo() and bar():

function bar()

{

for (i = 0; i < 3; i++)

print "bar's i=" i

}

function foo(j)

{

i = j + 1

print "foo's i=" i

bar()

print "foo's i=" i

Chapter 9: Functions 219

}

BEGIN {

i = 10

print "top's i=" i

foo(0)

print "top's i=" i

}

Running this script produces the following, because the i in functions foo() and bar()

and at the top level refer to the same variable instance:

top's i=10

foo's i=1

bar's i=0

bar's i=1

bar's i=2

foo's i=3

top's i=3

If you want i to be local to both foo() and bar(), do as follows (the extra space before
i is a coding convention to indicate that i is a local variable, not an argument):

function bar(i)

{

for (i = 0; i < 3; i++)

print "bar's i=" i

}

function foo(j, i)

{

i = j + 1

print "foo's i=" i

bar()

print "foo's i=" i

}

BEGIN {

i = 10

print "top's i=" i

foo(0)

print "top's i=" i

}

Running the corrected script produces the following:

top's i=10

foo's i=1

bar's i=0

bar's i=1

bar's i=2

220 GAWK: Effective AWK Programming

foo's i=1

top's i=10

Besides scalar values (strings and numbers), you may also have local arrays. By using
a parameter name as an array, awk treats it as an array, and it is local to the function. In
addition, recursive calls create new arrays. Consider this example:

function some_func(p1, a)

{

if (p1++ > 3)

return

a[p1] = p1

some_func(p1)

printf("At level %d, index %d %s found in a\n",

p1, (p1 - 1), (p1 - 1) in a ? "is" : "is not")

printf("At level %d, index %d %s found in a\n",

p1, p1, p1 in a ? "is" : "is not")

print ""

}

BEGIN {

some_func(1)

}

When run, this program produces the following output:

At level 4, index 3 is not found in a

At level 4, index 4 is found in a

At level 3, index 2 is not found in a

At level 3, index 3 is found in a

At level 2, index 1 is not found in a

At level 2, index 2 is found in a

9.2.3.3 Passing Function Arguments by Value Or by Reference

In awk, when you declare a function, there is no way to declare explicitly whether the
arguments are passed by value or by reference.

Instead, the passing convention is determined at runtime when the function is called,
according to the following rule: if the argument is an array variable, then it is passed by
reference. Otherwise, the argument is passed by value.

Passing an argument by value means that when a function is called, it is given a copy of
the value of this argument. The caller may use a variable as the expression for the argument,
but the called function does not know this—it only knows what value the argument had.
For example, if you write the following code:

foo = "bar"

Chapter 9: Functions 221

z = myfunc(foo)

then you should not think of the argument to myfunc() as being “the variable foo.” Instead,
think of the argument as the string value "bar". If the function myfunc() alters the values
of its local variables, this has no effect on any other variables. Thus, if myfunc() does this:

function myfunc(str)

{

print str

str = "zzz"

print str

}

to change its first argument variable str, it does not change the value of foo in the caller.
The role of foo in calling myfunc() ended when its value ("bar") was computed. If str
also exists outside of myfunc(), the function body cannot alter this outer value, because it
is shadowed during the execution of myfunc() and cannot be seen or changed from there.

However, when arrays are the parameters to functions, they are not copied. Instead, the
array itself is made available for direct manipulation by the function. This is usually termed
call by reference. Changes made to an array parameter inside the body of a function are
visible outside that function.

NOTE: Changing an array parameter inside a function can be very dangerous
if you do not watch what you are doing. For example:

function changeit(array, ind, nvalue)

{

array[ind] = nvalue

}

BEGIN {

a[1] = 1; a[2] = 2; a[3] = 3

changeit(a, 2, "two")

printf "a[1] = %s, a[2] = %s, a[3] = %s\n",

a[1], a[2], a[3]

}

prints ‘a[1] = 1, a[2] = two, a[3] = 3’, because changeit() stores "two" in
the second element of a.

9.2.3.4 Other Points About Calling Functions

Some awk implementations allow you to call a function that has not been defined. They
only report a problem at runtime, when the program actually tries to call the function. For
example:

BEGIN {

if (0)

foo()

else

bar()

}

function bar() { ... }

222 GAWK: Effective AWK Programming

note that `foo' is not defined

Because the ‘if’ statement will never be true, it is not really a problem that foo() has not
been defined. Usually, though, it is a problem if a program calls an undefined function.

If --lint is specified (see Section 2.2 [Command-Line Options], page 31), gawk reports
calls to undefined functions.

Some awk implementations generate a runtime error if you use either the next statement
or the nextfile statement (see Section 7.4.8 [The next Statement], page 154, and see
Section 7.4.9 [The nextfile Statement], page 155) inside a user-defined function. gawk

does not have this limitation.

You can call a function and pass it more parameters than it was declared with, like so:

function foo(p1, p2)

{

...

}

BEGIN {

foo(1, 2, 3, 4)

}

Doing so is bad practice, however. The called function cannot do anything with the
additional values being passed to it, so awk evaluates the expressions but then just throws
them away.

More importantly, such a call is confusing for whoever will next read your program.20

Function parameters generally are input items that influence the computation performed
by the function. Calling a function with more parameters than it accepts gives the false
impression that those values are important to the function, when in fact they are not.

Because this is such a bad practice, gawk unconditionally issues a warning whenever it
executes such a function call. (If you don’t like the warning, fix your code! It’s incorrect,
after all.)

9.2.4 The return Statement

As seen in several earlier examples, the body of a user-defined function can contain a return
statement. This statement returns control to the calling part of the awk program. It can
also be used to return a value for use in the rest of the awk program. It looks like this:

return [expression]

The expression part is optional. Due most likely to an oversight, POSIX does not define
what the return value is if you omit the expression. Technically speaking, this makes the
returned value undefined, and therefore, unpredictable. In practice, though, all versions of
awk simply return the null string, which acts like zero if used in a numeric context.

A return statement without an expression is assumed at the end of every function
definition. So, if control reaches the end of the function body, then technically the function
returns an unpredictable value. In practice, it returns the empty string. awk does not warn
you if you use the return value of such a function.

20 Said person might even be you, sometime in the future, at which point you will wonder, “what was I
thinking?!?”

Chapter 9: Functions 223

Sometimes, you want to write a function for what it does, not for what it returns. Such
a function corresponds to a void function in C, C++, or Java, or to a procedure in Ada.
Thus, it may be appropriate to not return any value; simply bear in mind that you should
not be using the return value of such a function.

The following is an example of a user-defined function that returns a value for the largest
number among the elements of an array:

function maxelt(vec, i, ret)

{

for (i in vec) {

if (ret == "" || vec[i] > ret)

ret = vec[i]

}

return ret

}

You call maxelt() with one argument, which is an array name. The local variables i and
ret are not intended to be arguments; there is nothing to stop you from passing more than
one argument to maxelt() but the results would be strange. The extra space before i in
the function parameter list indicates that i and ret are local variables. You should follow
this convention when defining functions.

The following program uses the maxelt() function. It loads an array, calls maxelt(),
and then reports the maximum number in that array:

function maxelt(vec, i, ret)

{

for (i in vec) {

if (ret == "" || vec[i] > ret)

ret = vec[i]

}

return ret

}

Load all fields of each record into nums.

{

for(i = 1; i <= NF; i++)

nums[NR, i] = $i

}

END {

print maxelt(nums)

}

Given the following input:

1 5 23 8 16

44 3 5 2 8 26

256 291 1396 2962 100

-6 467 998 1101

99385 11 0 225

224 GAWK: Effective AWK Programming

the program reports (predictably) that 99,385 is the largest value in the array.

9.2.5 Functions and Their Effects on Variable Typing

awk is a very fluid language. It is possible that awk can’t tell if an identifier represents a
scalar variable or an array until runtime. Here is an annotated sample program:

function foo(a)

{

a[1] = 1 # parameter is an array

}

BEGIN {

b = 1

foo(b) # invalid: fatal type mismatch

foo(x) # x uninitialized, becomes an array dynamically

x = 1 # now not allowed, runtime error

}

In this example, the first call to foo() generates a fatal error, so awk will not report the
second error. If you comment out that call, though, then awk does report the second error.

Usually, such things aren’t a big issue, but it’s worth being aware of them.

9.3 Indirect Function Calls

This section describes an advanced, gawk-specific extension.

Often, you may wish to defer the choice of function to call until runtime. For example,
you may have different kinds of records, each of which should be processed differently.

Normally, you would have to use a series of if-else statements to decide which function
to call. By using indirect function calls, you can specify the name of the function to call as
a string variable, and then call the function. Let’s look at an example.

Suppose you have a file with your test scores for the classes you are taking, and you wish
to get the sum and the average of your test scores. The first field is the class name. The
following fields are the functions to call to process the data, up to a “marker” field ‘data:’.
Following the marker, to the end of the record, are the various numeric test scores.

Here is the initial file:

Biology_101 sum average data: 87.0 92.4 78.5 94.9

Chemistry_305 sum average data: 75.2 98.3 94.7 88.2

English_401 sum average data: 100.0 95.6 87.1 93.4

To process the data, you might write initially:

{

class = $1

for (i = 2; $i != "data:"; i++) {

if ($i == "sum")

sum() # processes the whole record

else if ($i == "average")

average()

Chapter 9: Functions 225

... # and so on

}

}

This style of programming works, but can be awkward. With indirect function calls, you
tell gawk to use the value of a variable as the name of the function to call.

The syntax is similar to that of a regular function call: an identifier immediately followed
by an opening parenthesis, any arguments, and then a closing parenthesis, with the addition
of a leading ‘@’ character:

the_func = "sum"

result = @the_func() # calls the sum() function

Here is a full program that processes the previously shown data, using indirect function
calls:

indirectcall.awk --- Demonstrate indirect function calls

average --- return the average of the values in fields $first - $last

function average(first, last, sum, i)

{

sum = 0;

for (i = first; i <= last; i++)

sum += $i

return sum / (last - first + 1)

}

sum --- return the sum of the values in fields $first - $last

function sum(first, last, ret, i)

{

ret = 0;

for (i = first; i <= last; i++)

ret += $i

return ret

}

These two functions expect to work on fields; thus, the parameters first and last

indicate where in the fields to start and end. Otherwise, they perform the expected com-
putations and are not unusual:

For each record, print the class name and the requested statistics

{

class_name = $1

gsub(/_/, " ", class_name) # Replace _ with spaces

find start

for (i = 1; i <= NF; i++) {

226 GAWK: Effective AWK Programming

if ($i == "data:") {

start = i + 1

break

}

}

printf("%s:\n", class_name)

for (i = 2; $i != "data:"; i++) {

the_function = $i

printf("\t%s: <%s>\n", $i, @the_function(start, NF) "")

}

print ""

}

This is the main processing for each record. It prints the class name (with underscores
replaced with spaces). It then finds the start of the actual data, saving it in start. The
last part of the code loops through each function name (from $2 up to the marker, ‘data:’),
calling the function named by the field. The indirect function call itself occurs as a param-
eter in the call to printf. (The printf format string uses ‘%s’ as the format specifier so
that we can use functions that return strings, as well as numbers. Note that the result from
the indirect call is concatenated with the empty string, in order to force it to be a string
value.)

Here is the result of running the program:

$ gawk -f indirectcall.awk class_data1

a Biology 101:

a sum: <352.8>

a average: <88.2>

a
a Chemistry 305:

a sum: <356.4>

a average: <89.1>

a
a English 401:

a sum: <376.1>

a average: <94.025>

The ability to use indirect function calls is more powerful than you may think at first.
The C and C++ languages provide “function pointers,” which are a mechanism for calling a
function chosen at runtime. One of the most well-known uses of this ability is the C qsort()

function, which sorts an array using the famous “quicksort” algorithm (see the Wikipedia
article for more information). To use this function, you supply a pointer to a comparison
function. This mechanism allows you to sort arbitrary data in an arbitrary fashion.

We can do something similar using gawk, like this:

quicksort.awk --- Quicksort algorithm, with user-supplied

comparison function

quicksort --- C.A.R. Hoare's quicksort algorithm. See Wikipedia

https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Quicksort

Chapter 9: Functions 227

or almost any algorithms or computer science text.

function quicksort(data, left, right, less_than, i, last)

{

if (left >= right) # do nothing if array contains fewer

return # than two elements

quicksort_swap(data, left, int((left + right) / 2))

last = left

for (i = left + 1; i <= right; i++)

if (@less_than(data[i], data[left]))

quicksort_swap(data, ++last, i)

quicksort_swap(data, left, last)

quicksort(data, left, last - 1, less_than)

quicksort(data, last + 1, right, less_than)

}

quicksort_swap --- helper function for quicksort, should really be inline

function quicksort_swap(data, i, j, temp)

{

temp = data[i]

data[i] = data[j]

data[j] = temp

}

The quicksort() function receives the data array, the starting and ending indices to
sort (left and right), and the name of a function that performs a “less than” comparison.
It then implements the quicksort algorithm.

To make use of the sorting function, we return to our previous example. The first thing
to do is write some comparison functions:

num_lt --- do a numeric less than comparison

function num_lt(left, right)

{

return ((left + 0) < (right + 0))

}

num_ge --- do a numeric greater than or equal to comparison

function num_ge(left, right)

{

return ((left + 0) >= (right + 0))

}

The num_ge() function is needed to perform a descending sort; when used to perform a
“less than” test, it actually does the opposite (greater than or equal to), which yields data
sorted in descending order.

228 GAWK: Effective AWK Programming

Next comes a sorting function. It is parameterized with the starting and ending
field numbers and the comparison function. It builds an array with the data and calls
quicksort() appropriately, and then formats the results as a single string:

do_sort --- sort the data according to `compare'

and return it as a string

function do_sort(first, last, compare, data, i, retval)

{

delete data

for (i = 1; first <= last; first++) {

data[i] = $first

i++

}

quicksort(data, 1, i-1, compare)

retval = data[1]

for (i = 2; i in data; i++)

retval = retval " " data[i]

return retval

}

Finally, the two sorting functions call do_sort(), passing in the names of the two com-
parison functions:

sort --- sort the data in ascending order and return it as a string

function sort(first, last)

{

return do_sort(first, last, "num_lt")

}

rsort --- sort the data in descending order and return it as a string

function rsort(first, last)

{

return do_sort(first, last, "num_ge")

}

Here is an extended version of the data file:

Biology_101 sum average sort rsort data: 87.0 92.4 78.5 94.9

Chemistry_305 sum average sort rsort data: 75.2 98.3 94.7 88.2

English_401 sum average sort rsort data: 100.0 95.6 87.1 93.4

Finally, here are the results when the enhanced program is run:

$ gawk -f quicksort.awk -f indirectcall.awk class_data2

a Biology 101:

a sum: <352.8>

Chapter 9: Functions 229

a average: <88.2>

a sort: <78.5 87.0 92.4 94.9>

a rsort: <94.9 92.4 87.0 78.5>

a
a Chemistry 305:

a sum: <356.4>

a average: <89.1>

a sort: <75.2 88.2 94.7 98.3>

a rsort: <98.3 94.7 88.2 75.2>

a
a English 401:

a sum: <376.1>

a average: <94.025>

a sort: <87.1 93.4 95.6 100.0>

a rsort: <100.0 95.6 93.4 87.1>

Another example where indirect functions calls are useful can be found in processing
arrays. This is described in Section 10.7 [Traversing Arrays of Arrays], page 264.

Remember that you must supply a leading ‘@’ in front of an indirect function call.

Starting with version 4.1.2 of gawk, indirect function calls may also be used with built-
in functions and with extension functions (see Chapter 17 [Writing Extensions for gawk],
page 381). There are some limitations when calling built-in functions indirectly, as follows.

• You cannot pass a regular expression constant to a built-in function through an indirect
function call.21 This applies to the sub(), gsub(), gensub(), match(), split() and
patsplit() functions.

• If calling sub() or gsub(), you may only pass two arguments, since those functions are
unusual in that they update their third argument. This means that $0 will be updated.

gawk does its best to make indirect function calls efficient. For example, in the following
case:

for (i = 1; i <= n; i++)

@the_func()

gawk looks up the actual function to call only once.

9.4 Summary

• awk provides built-in functions and lets you define your own functions.

• POSIX awk provides three kinds of built-in functions: numeric, string, and I/O. gawk
provides functions that sort arrays, work with values representing time, do bit manip-
ulation, determine variable type (array versus scalar), and internationalize and localize
programs. gawk also provides several extensions to some of standard functions, typi-
cally in the form of additional arguments.

• Functions accept zero or more arguments and return a value. The expressions that
provide the argument values are completely evaluated before the function is called.
Order of evaluation is not defined. The return value can be ignored.

21 This may change in a future version; recheck the documentation that comes with your version of gawk
to see if it has.

230 GAWK: Effective AWK Programming

• The handling of backslash in sub() and gsub() is not simple. It is more straightforward
in gawk’s gensub() function, but that function still requires care in its use.

• User-defined functions provide important capabilities but come with some syntactic
inelegancies. In a function call, there cannot be any space between the function name
and the opening left parenthesis of the argument list. Also, there is no provision for
local variables, so the convention is to add extra parameters, and to separate them
visually from the real parameters by extra whitespace.

• User-defined functions may call other user-defined (and built-in) functions and may call
themselves recursively. Function parameters “hide” any global variables of the same
names. You cannot use the name of a reserved variable (such as ARGC) as the name of
a parameter in user-defined functions.

• Scalar values are passed to user-defined functions by value. Array parameters are
passed by reference; any changes made by the function to array parameters are thus
visible after the function has returned.

• Use the return statement to return from a user-defined function. An optional expres-
sion becomes the function’s return value. Only scalar values may be returned by a
function.

• If a variable that has never been used is passed to a user-defined function, how that
function treats the variable can set its nature: either scalar or array.

• gawk provides indirect function calls using a special syntax. By setting a variable to
the name of a function, you can determine at runtime what function will be called at
that point in the program. This is equivalent to function pointers in C and C++.

Part II:

Problem Solving with awk

Chapter 10: A Library of awk Functions 233

10 A Library of awk Functions

Section 9.2 [User-Defined Functions], page 214, describes how to write your own awk func-
tions. Writing functions is important, because it allows you to encapsulate algorithms and
program tasks in a single place. It simplifies programming, making program development
more manageable and making programs more readable.

In their seminal 1976 book, Software Tools,1 Brian Kernighan and P.J. Plauger wrote:

Good Programming is not learned from generalities, but by seeing how signifi-
cant programs can be made clean, easy to read, easy to maintain and modify,
human-engineered, efficient and reliable, by the application of common sense
and good programming practices. Careful study and imitation of good pro-
grams leads to better writing.

In fact, they felt this idea was so important that they placed this statement on the cover
of their book. Because we believe strongly that their statement is correct, this chapter and
Chapter 11 [Practical awk Programs], page 269, provide a good-sized body of code for you
to read and, we hope, to learn from.

This chapter presents a library of useful awk functions. Many of the sample programs
presented later in this book use these functions. The functions are presented here in a
progression from simple to complex.

Section 11.3.7 [Extracting Programs from Texinfo Source Files], page 299, presents a
program that you can use to extract the source code for these example library functions
and programs from the Texinfo source for this book. (This has already been done as part
of the gawk distribution.)

If you have written one or more useful, general-purpose awk functions and would like
to contribute them to the awk user community, see [How to Contribute], page 11, for more
information.

The programs in this chapter and in Chapter 11 [Practical awk Programs], page 269,
freely use gawk-specific features. Rewriting these programs for different implementations of
awk is pretty straightforward:

• Diagnostic error messages are sent to /dev/stderr. Use ‘| "cat 1>&2"’ instead of ‘>
"/dev/stderr"’ if your system does not have a /dev/stderr, or if you cannot use
gawk.

• A number of programs use nextfile (see Section 7.4.9 [The nextfile Statement],
page 155) to skip any remaining input in the input file.

• Finally, some of the programs choose to ignore upper- and lowercase distinctions in
their input. They do so by assigning one to IGNORECASE. You can achieve almost the
same effect2 by adding the following rule to the beginning of the program:

ignore case

{ $0 = tolower($0) }

Also, verify that all regexp and string constants used in comparisons use only lowercase
letters.

1 Sadly, over 35 years later, many of the lessons taught by this book have yet to be learned by a vast
number of practicing programmers.

2 The effects are not identical. Output of the transformed record will be in all lowercase, while IGNORECASE
preserves the original contents of the input record.

234 GAWK: Effective AWK Programming

10.1 Naming Library Function Global Variables

Due to the way the awk language evolved, variables are either global (usable by the en-
tire program) or local (usable just by a specific function). There is no intermediate state
analogous to static variables in C.

Library functions often need to have global variables that they can use to preserve state
information between calls to the function—for example, getopt()’s variable _opti (see
Section 10.4 [Processing Command-Line Options], page 250). Such variables are called
private, as the only functions that need to use them are the ones in the library.

When writing a library function, you should try to choose names for your private vari-
ables that will not conflict with any variables used by either another library function or a
user’s main program. For example, a name like i or j is not a good choice, because user
programs often use variable names like these for their own purposes.

The example programs shown in this chapter all start the names of their private variables
with an underscore (‘_’). Users generally don’t use leading underscores in their variable
names, so this convention immediately decreases the chances that the variable names will
be accidentally shared with the user’s program.

In addition, several of the library functions use a prefix that helps indicate what function
or set of functions use the variables—for example, _pw_byname() in the user database
routines (see Section 10.5 [Reading the User Database], page 256). This convention is
recommended, as it even further decreases the chance of inadvertent conflict among variable
names. Note that this convention is used equally well for variable names and for private
function names.3

As a final note on variable naming, if a function makes global variables available for use
by a main program, it is a good convention to start those variables’ names with a capital
letter—for example, getopt()’s Opterr and Optind variables (see Section 10.4 [Processing
Command-Line Options], page 250). The leading capital letter indicates that it is global,
while the fact that the variable name is not all capital letters indicates that the variable is
not one of awk’s predefined variables, such as FS.

It is also important that all variables in library functions that do not need to save state
are, in fact, declared local.4 If this is not done, the variables could accidentally be used in
the user’s program, leading to bugs that are very difficult to track down:

function lib_func(x, y, l1, l2)

{

...

some_var should be local but by oversight is not

use variable some_var

...

}

A different convention, common in the Tcl community, is to use a single associative
array to hold the values needed by the library function(s), or “package.” This significantly

3 Although all the library routines could have been rewritten to use this convention, this was not done,
in order to show how our own awk programming style has evolved and to provide some basis for this
discussion.

4 gawk’s --dump-variables command-line option is useful for verifying this.

Chapter 10: A Library of awk Functions 235

decreases the number of actual global names in use. For example, the functions described
in Section 10.5 [Reading the User Database], page 256, might have used array elements
PW_data["inited"], PW_data["total"], PW_data["count"], and PW_data["awklib"],
instead of _pw_inited, _pw_awklib, _pw_total, and _pw_count.

The conventions presented in this section are exactly that: conventions. You are not
required to write your programs this way—we merely recommend that you do so.

Beginning with version 5.0, gawk provides a powerful mechanism for solving the problems
described in this section: namespaces. Namespaces and their use are described in detail in
Chapter 15 [Namespaces in gawk], page 361.

10.2 General Programming

This section presents a number of functions that are of general programming use.

10.2.1 Converting Strings to Numbers

The strtonum() function (see Section 9.1.3 [String-Manipulation Functions], page 189) is
a gawk extension. The following function provides an implementation for other versions of
awk:

mystrtonum --- convert string to number

function mystrtonum(str, ret, n, i, k, c)

{

if (str ~ /^0[0-7]*$/) {

octal

n = length(str)

ret = 0

for (i = 1; i <= n; i++) {

c = substr(str, i, 1)

index() returns 0 if c not in string,

includes c == "0"

k = index("1234567", c)

ret = ret * 8 + k

}

} else if (str ~ /^0[xX][[:xdigit:]]+$/) {

hexadecimal

str = substr(str, 3) # lop off leading 0x

n = length(str)

ret = 0

for (i = 1; i <= n; i++) {

c = substr(str, i, 1)

c = tolower(c)

index() returns 0 if c not in string,

includes c == "0"

k = index("123456789abcdef", c)

236 GAWK: Effective AWK Programming

ret = ret * 16 + k

}

} else if (str ~ \

/^[-+]?([0-9]+([.][0-9]*([Ee][0-9]+)?)?|([.][0-9]+([Ee][-+]?[0-9]+)?))$/) {

decimal number, possibly floating point

ret = str + 0

} else

ret = "NOT-A-NUMBER"

return ret

}

BEGIN { # gawk test harness

a[1] = "25"

a[2] = ".31"

a[3] = "0123"

a[4] = "0xdeadBEEF"

a[5] = "123.45"

a[6] = "1.e3"

a[7] = "1.32"

a[8] = "1.32E2"

#

for (i = 1; i in a; i++)

print a[i], strtonum(a[i]), mystrtonum(a[i])

}

The function first looks for C-style octal numbers (base 8). If the input string matches a
regular expression describing octal numbers, then mystrtonum() loops through each char-
acter in the string. It sets k to the index in "1234567" of the current octal digit. The return
value will either be the same number as the digit, or zero if the character is not there, which
will be true for a ‘0’. This is safe, because the regexp test in the if ensures that only octal
values are converted.

Similar logic applies to the code that checks for and converts a hexadecimal value, which
starts with ‘0x’ or ‘0X’. The use of tolower() simplifies the computation for finding the
correct numeric value for each hexadecimal digit.

Finally, if the string matches the (rather complicated) regexp for a regular decimal integer
or floating-point number, the computation ‘ret = str + 0’ lets awk convert the value to a
number.

A commented-out test program is included, so that the function can be tested with gawk

and the results compared to the built-in strtonum() function.

10.2.2 Assertions

When writing large programs, it is often useful to know that a condition or set of conditions
is true. Before proceeding with a particular computation, you make a statement about what
you believe to be the case. Such a statement is known as an assertion. The C language
provides an <assert.h> header file and corresponding assert() macro that a programmer
can use to make assertions. If an assertion fails, the assert() macro arranges to print a

Chapter 10: A Library of awk Functions 237

diagnostic message describing the condition that should have been true but was not, and
then it kills the program. In C, using assert() looks this:

#include <assert.h>

int myfunc(int a, double b)

{

assert(a <= 5 && b >= 17.1);

...

}

If the assertion fails, the program prints a message similar to this:

prog.c:5: assertion failed: a <= 5 && b >= 17.1

The C language makes it possible to turn the condition into a string for use in printing
the diagnostic message. This is not possible in awk, so this assert() function also requires
a string version of the condition that is being tested. Following is the function:

assert --- assert that a condition is true. Otherwise, exit.

function assert(condition, string)

{

if (! condition) {

printf("%s:%d: assertion failed: %s\n",

FILENAME, FNR, string) > "/dev/stderr"

_assert_exit = 1

exit 1

}

}

END {

if (_assert_exit)

exit 1

}

The assert() function tests the condition parameter. If it is false, it prints a message
to standard error, using the string parameter to describe the failed condition. It then sets
the variable _assert_exit to one and executes the exit statement. The exit statement
jumps to the END rule. If the END rule finds _assert_exit to be true, it exits immediately.

The purpose of the test in the END rule is to keep any other END rules from running.
When an assertion fails, the program should exit immediately. If no assertions fail, then
_assert_exit is still false when the END rule is run normally, and the rest of the program’s
END rules execute. For all of this to work correctly, assert.awk must be the first source file
read by awk. The function can be used in a program in the following way:

function myfunc(a, b)

{

assert(a <= 5 && b >= 17.1, "a <= 5 && b >= 17.1")

...

}

238 GAWK: Effective AWK Programming

If the assertion fails, you see a message similar to the following:

mydata:1357: assertion failed: a <= 5 && b >= 17.1

There is a small problem with this version of assert(). An END rule is automatically
added to the program calling assert(). Normally, if a program consists of just a BEGIN

rule, the input files and/or standard input are not read. However, now that the program has
an END rule, awk attempts to read the input data files or standard input (see Section 7.1.4.1
[Startup and Cleanup Actions], page 144), most likely causing the program to hang as it
waits for input.

There is a simple workaround to this: make sure that such a BEGIN rule always ends
with an exit statement.

10.2.3 Rounding Numbers

The way printf and sprintf() (see Section 5.5 [Using printf Statements for Fancier
Printing], page 96) perform rounding often depends upon the system’s C sprintf() sub-
routine. On many machines, sprintf() rounding is unbiased, which means it doesn’t
always round a trailing .5 up, contrary to naive expectations. In unbiased rounding, .5
rounds to even, rather than always up, so 1.5 rounds to 2 but 4.5 rounds to 4. This means
that if you are using a format that does rounding (e.g., "%.0f"), you should check what
your system does. The following function does traditional rounding; it might be useful if
your awk’s printf does unbiased rounding:

round.awk --- do normal rounding

function round(x, ival, aval, fraction)

{

ival = int(x) # integer part, int() truncates

see if fractional part

if (ival == x) # no fraction

return ival # ensure no decimals

if (x < 0) {

aval = -x # absolute value

ival = int(aval)

fraction = aval - ival

if (fraction >= .5)

return int(x) - 1 # -2.5 --> -3

else

return int(x) # -2.3 --> -2

} else {

fraction = x - ival

if (fraction >= .5)

return ival + 1

else

return ival

}

}

Chapter 10: A Library of awk Functions 239

test harness

{ print $0, round($0) }

10.2.4 The Cliff Random Number Generator

The Cliff random number generator is a very simple random number generator that “passes
the noise sphere test for randomness by showing no structure.” It is easily programmed, in
less than 10 lines of awk code:

cliff_rand.awk --- generate Cliff random numbers

BEGIN { _cliff_seed = 0.1 }

function cliff_rand()

{

_cliff_seed = (100 * log(_cliff_seed)) % 1

if (_cliff_seed < 0)

_cliff_seed = - _cliff_seed

return _cliff_seed

}

This algorithm requires an initial “seed” of 0.1. Each new value uses the current seed
as input for the calculation. If the built-in rand() function (see Section 9.1.2 [Numeric
Functions], page 188) isn’t random enough, you might try using this function instead.

10.2.5 Translating Between Characters and Numbers

One commercial implementation of awk supplies a built-in function, ord(), which takes a
character and returns the numeric value for that character in the machine’s character set.
If the string passed to ord() has more than one character, only the first one is used.

The inverse of this function is chr() (from the function of the same name in Pascal),
which takes a number and returns the corresponding character. Both functions are written
very nicely in awk; there is no real reason to build them into the awk interpreter:

ord.awk --- do ord and chr

Global identifiers:

ord: numerical values indexed by characters

_ord_init: function to initialize _ord_

BEGIN { _ord_init() }

function _ord_init(low, high, i, t)

{

low = sprintf("%c", 7) # BEL is ascii 7

if (low == "\a") { # regular ascii

low = 0

high = 127

} else if (sprintf("%c", 128 + 7) == "\a") {

ascii, mark parity

low = 128

http://mathworld.wolfram.com/CliffRandomNumberGenerator.html

240 GAWK: Effective AWK Programming

high = 255

} else { # ebcdic(!)

low = 0

high = 255

}

for (i = low; i <= high; i++) {

t = sprintf("%c", i)

ord[t] = i

}

}

Some explanation of the numbers used by _ord_init() is worthwhile. The most promi-
nent character set in use today is ASCII.5 Although an 8-bit byte can hold 256 distinct
values (from 0 to 255), ASCII only defines characters that use the values from 0 to 127.6 In
the now distant past, at least one minicomputer manufacturer used ASCII, but with mark
parity, meaning that the leftmost bit in the byte is always 1. This means that on those
systems, characters have numeric values from 128 to 255. Finally, large mainframe systems
use the EBCDIC character set, which uses all 256 values. There are other character sets in
use on some older systems, but they are not really worth worrying about:

function ord(str, c)

{

only first character is of interest

c = substr(str, 1, 1)

return _ord_[c]

}

function chr(c)

{

force c to be numeric by adding 0

return sprintf("%c", c + 0)

}

test code

BEGIN {

for (;;) {

printf("enter a character: ")

if (getline var <= 0)

break

printf("ord(%s) = %d\n", var, ord(var))

}

}

5 This is changing; many systems use Unicode, a very large character set that includes ASCII as a subset.
On systems with full Unicode support, a character can occupy up to 32 bits, making simple tests such
as used here prohibitively expensive.

6 ASCII has been extended in many countries to use the values from 128 to 255 for country-specific
characters. If your system uses these extensions, you can simplify _ord_init() to loop from 0 to 255.

Chapter 10: A Library of awk Functions 241

An obvious improvement to these functions is to move the code for the _ord_init func-
tion into the body of the BEGIN rule. It was written this way initially for ease of development.
There is a “test program” in a BEGIN rule, to test the function. It is commented out for
production use.

10.2.6 Merging an Array into a String

When doing string processing, it is often useful to be able to join all the strings in an array
into one long string. The following function, join(), accomplishes this task. It is used later
in several of the application programs (see Chapter 11 [Practical awk Programs], page 269).

Good function design is important; this function needs to be general, but it should also
have a reasonable default behavior. It is called with an array as well as the beginning
and ending indices of the elements in the array to be merged. This assumes that the array
indices are numeric—a reasonable assumption, as the array was likely created with split()

(see Section 9.1.3 [String-Manipulation Functions], page 189):

join.awk --- join an array into a string

function join(array, start, end, sep, result, i)

{

if (sep == "")

sep = " "

else if (sep == SUBSEP) # magic value

sep = ""

result = array[start]

for (i = start + 1; i <= end; i++)

result = result sep array[i]

return result

}

An optional additional argument is the separator to use when joining the strings back
together. If the caller supplies a nonempty value, join() uses it; if it is not supplied, it has
a null value. In this case, join() uses a single space as a default separator for the strings.
If the value is equal to SUBSEP, then join() joins the strings with no separator between
them. SUBSEP serves as a “magic” value to indicate that there should be no separation
between the component strings.7

10.2.7 Managing the Time of Day

The systime() and strftime() functions described in Section 9.1.5 [Time Functions],
page 205, provide the minimum functionality necessary for dealing with the time of day
in human-readable form. Although strftime() is extensive, the control formats are not
necessarily easy to remember or intuitively obvious when reading a program.

The following function, getlocaltime(), populates a user-supplied array with prefor-
matted time information. It returns a string with the current time formatted in the same
way as the date utility:

getlocaltime.awk --- get the time of day in a usable format

7 It would be nice if awk had an assignment operator for concatenation. The lack of an explicit operator
for concatenation makes string operations more difficult than they really need to be.

242 GAWK: Effective AWK Programming

Returns a string in the format of output of date(1)

Populates the array argument time with individual values:

time["second"] -- seconds (0 - 59)

time["minute"] -- minutes (0 - 59)

time["hour"] -- hours (0 - 23)

time["althour"] -- hours (0 - 12)

time["monthday"] -- day of month (1 - 31)

time["month"] -- month of year (1 - 12)

time["monthname"] -- name of the month

time["shortmonth"] -- short name of the month

time["year"] -- year modulo 100 (0 - 99)

time["fullyear"] -- full year

time["weekday"] -- day of week (Sunday = 0)

time["altweekday"] -- day of week (Monday = 0)

time["dayname"] -- name of weekday

time["shortdayname"] -- short name of weekday

time["yearday"] -- day of year (0 - 365)

time["timezone"] -- abbreviation of timezone name

time["ampm"] -- AM or PM designation

time["weeknum"] -- week number, Sunday first day

time["altweeknum"] -- week number, Monday first day

function getlocaltime(time, ret, now, i)

{

get time once, avoids unnecessary system calls

now = systime()

return date(1)-style output

ret = strftime("%a %b %e %H:%M:%S %Z %Y", now)

clear out target array

delete time

fill in values, force numeric values to be

numeric by adding 0

time["second"] = strftime("%S", now) + 0

time["minute"] = strftime("%M", now) + 0

time["hour"] = strftime("%H", now) + 0

time["althour"] = strftime("%I", now) + 0

time["monthday"] = strftime("%d", now) + 0

time["month"] = strftime("%m", now) + 0

time["monthname"] = strftime("%B", now)

time["shortmonth"] = strftime("%b", now)

time["year"] = strftime("%y", now) + 0

time["fullyear"] = strftime("%Y", now) + 0

time["weekday"] = strftime("%w", now) + 0

Chapter 10: A Library of awk Functions 243

time["altweekday"] = strftime("%u", now) + 0

time["dayname"] = strftime("%A", now)

time["shortdayname"] = strftime("%a", now)

time["yearday"] = strftime("%j", now) + 0

time["timezone"] = strftime("%Z", now)

time["ampm"] = strftime("%p", now)

time["weeknum"] = strftime("%U", now) + 0

time["altweeknum"] = strftime("%W", now) + 0

return ret

}

The string indices are easier to use and read than the various formats required by
strftime(). The alarm program presented in Section 11.3.2 [An Alarm Clock Program],
page 290, uses this function. A more general design for the getlocaltime() function would
have allowed the user to supply an optional timestamp value to use instead of the current
time.

10.2.8 Reading a Whole File at Once

Often, it is convenient to have the entire contents of a file available in memory as a single
string. A straightforward but naive way to do that might be as follows:

function readfile1(file, tmp, contents)

{

if ((getline tmp < file) < 0)

return

contents = tmp RT

while ((getline tmp < file) > 0)

contents = contents tmp RT

close(file)

return contents

}

This function reads from file one record at a time, building up the full contents of the
file in the local variable contents. It works, but is not necessarily efficient.

The following function, based on a suggestion by Denis Shirokov, reads the entire con-
tents of the named file in one shot:

readfile.awk --- read an entire file at once

function readfile(file, tmp, save_rs)

{

save_rs = RS

RS = "^$"

getline tmp < file

close(file)

RS = save_rs

244 GAWK: Effective AWK Programming

return tmp

}

It works by setting RS to ‘^$’, a regular expression that will never match if the file has
contents. gawk reads data from the file into tmp, attempting to match RS. The match fails
after each read, but fails quickly, such that gawk fills tmp with the entire contents of the
file. (See Section 4.1 [How Input Is Split into Records], page 61, for information on RT and
RS.)

In the case that file is empty, the return value is the null string. Thus, calling code
may use something like:

contents = readfile("/some/path")

if (length(contents) == 0)

file was empty ...

This tests the result to see if it is empty or not. An equivalent test would be
‘contents == ""’.

See Section 17.7.10 [Reading an Entire File], page 440, for an extension function that
also reads an entire file into memory.

10.2.9 Quoting Strings to Pass to the Shell

Michael Brennan offers the following programming pattern, which he uses frequently:

#! /bin/sh

awkp='

...

'

input_program | awk "$awkp" | /bin/sh

For example, a program of his named flac-edit has this form:

$ flac-edit -song="Whoope! That's Great" file.flac

It generates the following output, which is to be piped to the shell (/bin/sh):

chmod +w file.flac

metaflac --remove-tag=TITLE file.flac

LANG=en_US.88591 metaflac --set-tag=TITLE='Whoope! That'"'"'s Great' file.flac

chmod -w file.flac

Note the need for shell quoting. The function shell_quote() does it. SINGLE is the
one-character string "'" and QSINGLE is the three-character string "\"'\"":

shell_quote --- quote an argument for passing to the shell

function shell_quote(s, # parameter

SINGLE, QSINGLE, i, X, n, ret) # locals

{

if (s == "")

return "\"\""

SINGLE = "\x27" # single quote

Chapter 10: A Library of awk Functions 245

QSINGLE = "\"\x27\""

n = split(s, X, SINGLE)

ret = SINGLE X[1] SINGLE

for (i = 2; i <= n; i++)

ret = ret QSINGLE SINGLE X[i] SINGLE

return ret

}

10.3 Data file Management

This section presents functions that are useful for managing command-line data files.

10.3.1 Noting Data file Boundaries

The BEGIN and END rules are each executed exactly once, at the beginning and end of
your awk program, respectively (see Section 7.1.4 [The BEGIN and END Special Patterns],
page 144). We (the gawk authors) once had a user who mistakenly thought that the BEGIN
rules were executed at the beginning of each data file and the END rules were executed at
the end of each data file.

When informed that this was not the case, the user requested that we add new special
patterns to gawk, named BEGIN_FILE and END_FILE, that would have the desired behavior.
He even supplied us the code to do so.

Adding these special patterns to gawk wasn’t necessary; the job can be done cleanly
in awk itself, as illustrated by the following library program. It arranges to call two user-
supplied functions, beginfile() and endfile(), at the beginning and end of each data
file. Besides solving the problem in only nine(!) lines of code, it does so portably ; this works
with any implementation of awk:

transfile.awk

#

Give the user a hook for filename transitions

#

The user must supply functions beginfile() and endfile()

that each take the name of the file being started or

finished, respectively.

FILENAME != _oldfilename {

if (_oldfilename != "")

endfile(_oldfilename)

_oldfilename = FILENAME

beginfile(FILENAME)

}

END { endfile(FILENAME) }

This file must be loaded before the user’s “main” program, so that the rule it supplies
is executed first.

246 GAWK: Effective AWK Programming

This rule relies on awk’s FILENAME variable, which automatically changes for each new
data file. The current file name is saved in a private variable, _oldfilename. If FILENAME
does not equal _oldfilename, then a new data file is being processed and it is necessary to
call endfile() for the old file. Because endfile() should only be called if a file has been
processed, the program first checks to make sure that _oldfilename is not the null string.
The program then assigns the current file name to _oldfilename and calls beginfile()
for the file. Because, like all awk variables, _oldfilename is initialized to the null string,
this rule executes correctly even for the first data file.

The program also supplies an END rule to do the final processing for the last file. Because
this END rule comes before any END rules supplied in the “main” program, endfile() is called
first. Once again, the value of multiple BEGIN and END rules should be clear.

If the same data file occurs twice in a row on the command line, then endfile() and
beginfile() are not executed at the end of the first pass and at the beginning of the second
pass. The following version solves the problem:

ftrans.awk --- handle datafile transitions

#

user supplies beginfile() and endfile() functions

FNR == 1 {

if (_filename_ != "")

endfile(_filename_)

filename = FILENAME

beginfile(FILENAME)

}

END { endfile(_filename_) }

Section 11.2.7 [Counting Things], page 287, shows how this library function can be used
and how it simplifies writing the main program.� �

So Why Does gawk Have BEGINFILE and ENDFILE?

You are probably wondering, if beginfile() and endfile() functions can do the job,
why does gawk have BEGINFILE and ENDFILE patterns?

Good question. Normally, if awk cannot open a file, this causes an immediate fatal error.
In this case, there is no way for a user-defined function to deal with the problem, as the
mechanism for calling it relies on the file being open and at the first record. Thus, the
main reason for BEGINFILE is to give you a “hook” to catch files that cannot be processed.
ENDFILE exists for symmetry, and because it provides an easy way to do per-file cleanup
processing. For more information, refer to Section 7.1.5 [The BEGINFILE and ENDFILE

Special Patterns], page 145.
 	
10.3.2 Rereading the Current File

Another request for a new built-in function was for a function that would make it possible
to reread the current file. The requesting user didn’t want to have to use getline (see
Section 4.10 [Explicit Input with getline], page 82) inside a loop.

Chapter 10: A Library of awk Functions 247

However, as long as you are not in the END rule, it is quite easy to arrange to immediately
close the current input file and then start over with it from the top. For lack of a better
name, we’ll call the function rewind():

rewind.awk --- rewind the current file and start over

function rewind(i)

{

shift remaining arguments up

for (i = ARGC; i > ARGIND; i--)

ARGV[i] = ARGV[i-1]

make sure gawk knows to keep going

ARGC++

make current file next to get done

ARGV[ARGIND+1] = FILENAME

do it

nextfile

}

The rewind() function relies on the ARGIND variable (see Section 7.5.2 [Built-in Vari-
ables That Convey Information], page 159), which is specific to gawk. It also relies on the
nextfile keyword (see Section 7.4.9 [The nextfile Statement], page 155). Because of this,
you should not call it from an ENDFILE rule. (This isn’t necessary anyway, because gawk

goes to the next file as soon as an ENDFILE rule finishes!)

You need to be careful calling rewind(). You can end up causing infinite recursion if
you don’t pay attention. Here is an example use:

$ cat data

a a

a b

a c

a d

a e

$ cat test.awk

a FNR == 3 && ! rewound {

a rewound = 1

a rewind()

a }

a
a { print FILENAME, FNR, $0 }

$ gawk -f rewind.awk -f test.awk data

a data 1 a

a data 2 b

a data 1 a

248 GAWK: Effective AWK Programming

a data 2 b

a data 3 c

a data 4 d

a data 5 e

10.3.3 Checking for Readable Data files

Normally, if you give awk a data file that isn’t readable, it stops with a fatal error. There
are times when you might want to just ignore such files and keep going.8 You can do this
by prepending the following program to your awk program:

readable.awk --- library file to skip over unreadable files

BEGIN {

for (i = 1; i < ARGC; i++) {

if (ARGV[i] ~ /^[a-zA-Z_][a-zA-Z0-9_]*=.*/ \

|| ARGV[i] == "-" || ARGV[i] == "/dev/stdin")

continue # assignment or standard input

else if ((getline junk < ARGV[i]) < 0) # unreadable

delete ARGV[i]

else

close(ARGV[i])

}

}

This works, because the getline won’t be fatal. Removing the element from ARGV with
delete skips the file (because it’s no longer in the list). See also Section 7.5.3 [Using ARGC

and ARGV], page 166.

Because awk variable names only allow the English letters, the regular expression
check purposely does not use character classes such as ‘[:alpha:]’ and ‘[:alnum:]’ (see
Section 3.4 [Using Bracket Expressions], page 53).

10.3.4 Checking for Zero-Length Files

All known awk implementations silently skip over zero-length files. This is a by-product
of awk’s implicit read-a-record-and-match-against-the-rules loop: when awk tries to read a
record from an empty file, it immediately receives an end-of-file indication, closes the file,
and proceeds on to the next command-line data file, without executing any user-level awk
program code.

Using gawk’s ARGIND variable (see Section 7.5 [Predefined Variables], page 157), it is
possible to detect when an empty data file has been skipped. Similar to the library file
presented in Section 10.3.1 [Noting Data file Boundaries], page 245, the following library
file calls a function named zerofile() that the user must provide. The arguments passed
are the file name and the position in ARGV where it was found:

zerofile.awk --- library file to process empty input files

8 The BEGINFILE special pattern (see Section 7.1.5 [The BEGINFILE and ENDFILE Special Patterns],
page 145) provides an alternative mechanism for dealing with files that can’t be opened. However, the
code here provides a portable solution.

Chapter 10: A Library of awk Functions 249

BEGIN { Argind = 0 }

ARGIND > Argind + 1 {

for (Argind++; Argind < ARGIND; Argind++)

zerofile(ARGV[Argind], Argind)

}

ARGIND != Argind { Argind = ARGIND }

END {

if (ARGIND > Argind)

for (Argind++; Argind <= ARGIND; Argind++)

zerofile(ARGV[Argind], Argind)

}

The user-level variable Argind allows the awk program to track its progress through
ARGV. Whenever the program detects that ARGIND is greater than ‘Argind + 1’, it means
that one or more empty files were skipped. The action then calls zerofile() for each such
file, incrementing Argind along the way.

The ‘Argind != ARGIND’ rule simply keeps Argind up to date in the normal case.

Finally, the END rule catches the case of any empty files at the end of the command-line
arguments. Note that the test in the condition of the for loop uses the ‘<=’ operator, not
‘<’.

10.3.5 Treating Assignments as File names

Occasionally, you might not want awk to process command-line variable assignments (see
Section 6.1.3.2 [Assigning Variables on the Command Line], page 118). In particular, if you
have a file name that contains an ‘=’ character, awk treats the file name as an assignment
and does not process it.

Some users have suggested an additional command-line option for gawk to disable
command-line assignments. However, some simple programming with a library file does
the trick:

noassign.awk --- library file to avoid the need for a

special option that disables command-line assignments

function disable_assigns(argc, argv, i)

{

for (i = 1; i < argc; i++)

if (argv[i] ~ /^[a-zA-Z_][a-zA-Z0-9_]*=.*/)

argv[i] = ("./" argv[i])

}

BEGIN {

if (No_command_assign)

disable_assigns(ARGC, ARGV)

}

250 GAWK: Effective AWK Programming

You then run your program this way:

awk -v No_command_assign=1 -f noassign.awk -f yourprog.awk *

The function works by looping through the arguments. It prepends ‘./’ to any argument
that matches the form of a variable assignment, turning that argument into a file name.

The use of No_command_assign allows you to disable command-line assignments at in-
vocation time, by giving the variable a true value. When not set, it is initially zero (i.e.,
false), so the command-line arguments are left alone.

10.4 Processing Command-Line Options

Most utilities on POSIX-compatible systems take options on the command line that can
be used to change the way a program behaves. awk is an example of such a program (see
Section 2.2 [Command-Line Options], page 31). Often, options take arguments (i.e., data
that the program needs to correctly obey the command-line option). For example, awk’s -F
option requires a string to use as the field separator. The first occurrence on the command
line of either -- or a string that does not begin with ‘-’ ends the options.

Modern Unix systems provide a C function named getopt() for processing command-
line arguments. The programmer provides a string describing the one-letter options. If
an option requires an argument, it is followed in the string with a colon. getopt() is
also passed the count and values of the command-line arguments and is called in a loop.
getopt() processes the command-line arguments for option letters. Each time around the
loop, it returns a single character representing the next option letter that it finds, or ‘?’ if
it finds an invalid option. When it returns −1, there are no options left on the command
line.

When using getopt(), options that do not take arguments can be grouped together.
Furthermore, options that take arguments require that the argument be present. The
argument can immediately follow the option letter, or it can be a separate command-line
argument.

Given a hypothetical program that takes three command-line options, -a, -b, and -c,
where -b requires an argument, all of the following are valid ways of invoking the program:

prog -a -b foo -c data1 data2 data3

prog -ac -bfoo -- data1 data2 data3

prog -acbfoo data1 data2 data3

Notice that when the argument is grouped with its option, the rest of the argument is
considered to be the option’s argument. In this example, -acbfoo indicates that all of the
-a, -b, and -c options were supplied, and that ‘foo’ is the argument to the -b option.

getopt() provides four external variables that the programmer can use:

optind The index in the argument value array (argv) where the first nonoption
command-line argument can be found.

optarg The string value of the argument to an option.

opterr Usually getopt() prints an error message when it finds an invalid option. Set-
ting opterr to zero disables this feature. (An application might want to print
its own error message.)

optopt The letter representing the command-line option.

Chapter 10: A Library of awk Functions 251

The following C fragment shows how getopt() might process command-line arguments
for awk:

int

main(int argc, char *argv[])

{

...

/* print our own message */

opterr = 0;

while ((c = getopt(argc, argv, "v:f:F:W:")) != -1) {

switch (c) {

case 'f': /* file */

...

break;

case 'F': /* field separator */

...

break;

case 'v': /* variable assignment */

...

break;

case 'W': /* extension */

...

break;

case '?':

default:

usage();

break;

}

}

...

}

The GNU project’s version of the original Unix utilities popularized the use of long
command line options. For example, --help in addition to -h. Arguments to long options
are either provided as separate command line arguments (‘--source 'program-text'’) or
separated from the option with an ‘=’ sign (‘--source='program-text'’).

As a side point, gawk actually uses the GNU getopt_long() function to process both
normal and GNU-style long options (see Section 2.2 [Command-Line Options], page 31).

The abstraction provided by getopt() is very useful and is quite handy in awk programs
as well. Following is an awk version of getopt() that accepts both short and long options.

This function highlights one of the greatest weaknesses in awk, which is that it is very
poor at manipulating single characters. The function needs repeated calls to substr()

in order to access individual characters (see Section 9.1.3 [String-Manipulation Functions],
page 189).9

The discussion that follows walks through the code a bit at a time:

9 This function was written before gawk acquired the ability to split strings into single characters using ""

as the separator. We have left it alone, as using substr() is more portable.

252 GAWK: Effective AWK Programming

getopt.awk --- Do C library getopt(3) function in awk

Also supports long options.

External variables:

Optind -- index in ARGV of first nonoption argument

Optarg -- string value of argument to current option

Opterr -- if nonzero, print our own diagnostic

Optopt -- current option letter

Returns:

-1 at end of options

"?" for unrecognized option

<s> a string representing the current option

Private Data:

_opti -- index in multiflag option, e.g., -abc

The function starts out with comments presenting a list of the global variables it uses,
what the return values are, what they mean, and any global variables that are “private” to
this library function. Such documentation is essential for any program, and particularly for
library functions.

The getopt() function first checks that it was indeed called with a string of options
(the options parameter). If both options and longoptions have a zero length, getopt()
immediately returns −1:

function getopt(argc, argv, options, longopts, thisopt, i, j)

{

if (length(options) == 0 && length(longopts) == 0)

return -1 # no options given

if (argv[Optind] == "--") { # all done

Optind++

_opti = 0

return -1

} else if (argv[Optind] !~ /^-[^:[:space:]]/) {

_opti = 0

return -1

}

The next thing to check for is the end of the options. A -- ends the command-line
options, as does any command-line argument that does not begin with a ‘-’ (unless it is
an argument to a preceding option). Optind steps through the array of command-line
arguments; it retains its value across calls to getopt(), because it is a global variable.

The regular expression /^-[^:[:space:]/ checks for a ‘-’ followed by anything that is
not whitespace and not a colon. If the current command-line argument does not match this
pattern, it is not an option, and it ends option processing. Now, we check to see if we are
processing a short (single letter) option, or a long option (indicated by two dashes, e.g.,
‘--filename’). If it is a short option, we continue on:

if (argv[Optind] !~ /^--/) { # if this is a short option

Chapter 10: A Library of awk Functions 253

if (_opti == 0)

_opti = 2

thisopt = substr(argv[Optind], _opti, 1)

Optopt = thisopt

i = index(options, thisopt)

if (i == 0) {

if (Opterr)

printf("%c -- invalid option\n", thisopt) > "/dev/stderr"

if (_opti >= length(argv[Optind])) {

Optind++

_opti = 0

} else

_opti++

return "?"

}

The _opti variable tracks the position in the current command-line argument
(argv[Optind]). If multiple options are grouped together with one ‘-’ (e.g., -abx), it is
necessary to return them to the user one at a time.

If _opti is equal to zero, it is set to two, which is the index in the string of the next
character to look at (we skip the ‘-’, which is at position one). The variable thisopt holds
the character, obtained with substr(). It is saved in Optopt for the main program to use.

If thisopt is not in the options string, then it is an invalid option. If Opterr is nonzero,
getopt() prints an error message on the standard error that is similar to the message from
the C version of getopt().

Because the option is invalid, it is necessary to skip it and move on to the next option
character. If _opti is greater than or equal to the length of the current command-line
argument, it is necessary to move on to the next argument, so Optind is incremented and
_opti is reset to zero. Otherwise, Optind is left alone and _opti is merely incremented.

In any case, because the option is invalid, getopt() returns "?". The main program can
examine Optopt if it needs to know what the invalid option letter actually is. Continuing
on:

if (substr(options, i + 1, 1) == ":") {

get option argument

if (length(substr(argv[Optind], _opti + 1)) > 0)

Optarg = substr(argv[Optind], _opti + 1)

else

Optarg = argv[++Optind]

_opti = 0

} else

Optarg = ""

If the option requires an argument, the option letter is followed by a colon in the
options string. If there are remaining characters in the current command-line argument
(argv[Optind]), then the rest of that string is assigned to Optarg. Otherwise, the next
command-line argument is used (‘-xFOO’ versus ‘-x FOO’). In either case, _opti is reset

254 GAWK: Effective AWK Programming

to zero, because there are no more characters left to examine in the current command-line
argument. Continuing:

if (_opti == 0 || _opti >= length(argv[Optind])) {

Optind++

_opti = 0

} else

_opti++

return thisopt

Finally, for a short option, if _opti is either zero or greater than the length of the
current command-line argument, it means this element in argv is through being processed,
so Optind is incremented to point to the next element in argv. If neither condition is true,
then only _opti is incremented, so that the next option letter can be processed on the next
call to getopt().

On the other hand, if the earlier test found that this was a long option, we take a different
branch:

} else {

j = index(argv[Optind], "=")

if (j > 0)

thisopt = substr(argv[Optind], 3, j - 3)

else

thisopt = substr(argv[Optind], 3)

Optopt = thisopt

First, we search this option for a possible embedded equal sign, as the specification
of long options allows an argument to an option ‘--someopt:’ to be specified as
‘--someopt=answer’ as well as ‘--someopt answer’.

i = match(longopts, "(^|,)" thisopt "($|[,:])")

if (i == 0) {

if (Opterr)

printf("%s -- invalid option\n", thisopt) > "/dev/stderr"

Optind++

return "?"

}

Next, we try to find the current option in longopts. The regular expression given to
match(), "(^|,)" thisopt "($|[,:])", matches this option at the beginning of longopts,
or at the beginning of a subsequent long option (the previous long option would have been
terminated by a comma), and, in any case, either at the end of the longopts string (‘$’), or
followed by a comma (separating this option from a subsequent option) or a colon (indicating
this long option takes an argument (‘[,:]’).

Using this regular expression, we check to see if the current option might possibly be
in longopts (if longopts is not specified, this test will also fail). In case of an error, we
possibly print an error message and then return "?". Continuing on:

if (substr(longopts, i+1+length(thisopt), 1) == ":") {

if (j > 0)

Optarg = substr(argv[Optind], j + 1)

else

Chapter 10: A Library of awk Functions 255

Optarg = argv[++Optind]

} else

Optarg = ""

We now check to see if this option takes an argument and, if so, we set Optarg to the
value of that argument (either a value after an equal sign specified on the command line,
immediately adjoining the long option string, or as the next argument on the command
line).

Optind++

return thisopt

}

}

We increase Optind (which we already increased once if a required argument was sep-
arated from its option by an equal sign), and return the long option (minus its leading
dashes).

The BEGIN rule initializes both Opterr and Optind to one. Opterr is set to one, because
the default behavior is for getopt() to print a diagnostic message upon seeing an invalid
option. Optind is set to one, because there’s no reason to look at the program name, which
is in ARGV[0]:

BEGIN {

Opterr = 1 # default is to diagnose

Optind = 1 # skip ARGV[0]

test program

if (_getopt_test) {

_myshortopts = "ab:cd"

_mylongopts = "longa,longb:,otherc,otherd"

while ((_go_c = getopt(ARGC, ARGV, _myshortopts, _mylongopts)) != -1)

printf("c = <%s>, Optarg = <%s>\n", _go_c, Optarg)

printf("non-option arguments:\n")

for (; Optind < ARGC; Optind++)

printf("\tARGV[%d] = <%s>\n", Optind, ARGV[Optind])

}

}

The rest of the BEGIN rule is a simple test program. Here are the results of some sample
runs of the test program:

$ awk -f getopt.awk -v _getopt_test=1 -- -a -cbARG bax -x

a c = <a>, Optarg = <>

a c = <c>, Optarg = <>

a c = , Optarg = <ARG>

a non-option arguments:

a ARGV[3] = <bax>

a ARGV[4] = <-x>

$ awk -f getopt.awk -v _getopt_test=1 -- -a -x -- xyz abc

256 GAWK: Effective AWK Programming

a c = <a>, Optarg = <>

error x -- invalid option

a c = <?>, Optarg = <>

a non-option arguments:

a ARGV[4] = <xyz>

a ARGV[5] = <abc>

$ awk -f getopt.awk -v _getopt_test=1 -- -a \

> --longa -b xx --longb=foo=bar --otherd --otherc arg1 arg2

a c = <a>, Optarg = <>

a c = <longa>, Optarg = <>

a c = , Optarg = <xx>

a c = <longb>, Optarg = <foo=bar>

a c = <otherd>, Optarg = <>

a c = <otherc>, Optarg = <>

a non-option arguments:

a ARGV[8] = <arg1>

a ARGV[9] = <arg2>

In all the runs, the first -- terminates the arguments to awk, so that it does not try to
interpret the -a, etc., as its own options.

NOTE: After getopt() is through, user-level code must clear out all the el-
ements of ARGV from 1 to Optind, so that awk does not try to process the
command-line options as file names.

Using ‘#!’ with the -E option may help avoid conflicts between your program’s op-
tions and gawk’s options, as -E causes gawk to abandon processing of further options (see
Section 1.1.4 [Executable awk Programs], page 19, and see Section 2.2 [Command-Line
Options], page 31).

Several of the sample programs presented in Chapter 11 [Practical awk Programs],
page 269, use getopt() to process their arguments.

10.5 Reading the User Database

The PROCINFO array (see Section 7.5 [Predefined Variables], page 157) provides access to
the current user’s real and effective user and group ID numbers, and, if available, the
user’s supplementary group set. However, because these are numbers, they do not provide
very useful information to the average user. There needs to be some way to find the user
information associated with the user and group ID numbers. This section presents a suite
of functions for retrieving information from the user database. See Section 10.6 [Reading
the Group Database], page 260, for a similar suite that retrieves information from the group
database.

The POSIX standard does not define the file where user information is kept. Instead, it
provides the <pwd.h> header file and several C language subroutines for obtaining user in-
formation. The primary function is getpwent(), for “get password entry.” The “password”
comes from the original user database file, /etc/passwd, which stores user information
along with the encrypted passwords (hence the name).

Chapter 10: A Library of awk Functions 257

Although an awk program could simply read /etc/passwd directly, this file may not
contain complete information about the system’s set of users.10 To be sure you are able
to produce a readable and complete version of the user database, it is necessary to write a
small C program that calls getpwent(). getpwent() is defined as returning a pointer to
a struct passwd. Each time it is called, it returns the next entry in the database. When
there are no more entries, it returns NULL, the null pointer. When this happens, the C
program should call endpwent() to close the database. Following is pwcat, a C program
that “cats” the password database:

/*

* pwcat.c

*

* Generate a printable version of the password database.

*/

#include <stdio.h>

#include <pwd.h>

int

main(int argc, char **argv)

{

struct passwd *p;

while ((p = getpwent()) != NULL)

printf("%s:%s:%ld:%ld:%s:%s:%s\n",

p->pw_name, p->pw_passwd, (long) p->pw_uid,

(long) p->pw_gid, p->pw_gecos, p->pw_dir, p->pw_shell);

endpwent();

return 0;

}

If you don’t understand C, don’t worry about it. The output from pwcat is the user
database, in the traditional /etc/passwd format of colon-separated fields. The fields are:

Login name
The user’s login name.

Encrypted password
The user’s encrypted password. This may not be available on some systems.

User-ID The user’s numeric user ID number. (On some systems, it’s a C long, and not
an int. Thus, we cast it to long for all cases.)

Group-ID The user’s numeric group ID number. (Similar comments about long versus
int apply here.)

Full name The user’s full name, and perhaps other information associated with the user.

Home directory
The user’s login (or “home”) directory (familiar to shell programmers as $HOME).

10 It is often the case that password information is stored in a network database.

258 GAWK: Effective AWK Programming

Login shell
The program that is run when the user logs in. This is usually a shell, such as
Bash.

A few lines representative of pwcat’s output are as follows:

$ pwcat

a root:x:0:1:Operator:/:/bin/sh

a nobody:*:65534:65534::/:

a daemon:*:1:1::/:

a sys:*:2:2::/:/bin/csh

a bin:*:3:3::/bin:

a arnold:xyzzy:2076:10:Arnold Robbins:/home/arnold:/bin/sh

a miriam:yxaay:112:10:Miriam Robbins:/home/miriam:/bin/sh

a andy:abcca2:113:10:Andy Jacobs:/home/andy:/bin/sh

...

With that introduction, following is a group of functions for getting user information.
There are several functions here, corresponding to the C functions of the same names:

passwd.awk --- access password file information

BEGIN {

tailor this to suit your system

_pw_awklib = "/usr/local/libexec/awk/"

}

function _pw_init(oldfs, oldrs, olddol0, pwcat, using_fw, using_fpat)

{

if (_pw_inited)

return

oldfs = FS

oldrs = RS

olddol0 = $0

using_fw = (PROCINFO["FS"] == "FIELDWIDTHS")

using_fpat = (PROCINFO["FS"] == "FPAT")

FS = ":"

RS = "\n"

pwcat = _pw_awklib "pwcat"

while ((pwcat | getline) > 0) {

_pw_byname[$1] = $0

_pw_byuid[$3] = $0

_pw_bycount[++_pw_total] = $0

}

close(pwcat)

_pw_count = 0

_pw_inited = 1

FS = oldfs

Chapter 10: A Library of awk Functions 259

if (using_fw)

FIELDWIDTHS = FIELDWIDTHS

else if (using_fpat)

FPAT = FPAT

RS = oldrs

$0 = olddol0

}

The BEGIN rule sets a private variable to the directory where pwcat is stored.
Because it is used to help out an awk library routine, we have chosen to put it in
/usr/local/libexec/awk; however, you might want it to be in a different directory on
your system.

The function _pw_init() fills three copies of the user information into three associative
arrays. The arrays are indexed by username (_pw_byname), by user ID number (_pw_byuid),
and by order of occurrence (_pw_bycount). The variable _pw_inited is used for efficiency,
as _pw_init() needs to be called only once.

Because this function uses getline to read information from pwcat, it first saves the
values of FS, RS, and $0. It notes in the variable using_fw whether field splitting with
FIELDWIDTHS is in effect or not. Doing so is necessary, as these functions could be called
from anywhere within a user’s program, and the user may have his or her own way of
splitting records and fields. This makes it possible to restore the correct field-splitting
mechanism later. The test can only be true for gawk. It is false if using FS or FPAT, or on
some other awk implementation.

The code that checks for using FPAT, using using_fpat and PROCINFO["FS"], is similar.

The main part of the function uses a loop to read database lines, split the lines into
fields, and then store the lines into each array as necessary. When the loop is done,
_pw_init() cleans up by closing the pipeline, setting _pw_inited to one, and restoring
FS (and FIELDWIDTHS or FPAT if necessary), RS, and $0. The use of _pw_count is explained
shortly.

The getpwnam() function takes a username as a string argument. If that user is in the
database, it returns the appropriate line. Otherwise, it relies on the array reference to a
nonexistent element to create the element with the null string as its value:

function getpwnam(name)

{

_pw_init()

return _pw_byname[name]

}

Similarly, the getpwuid() function takes a user ID number argument. If that user
number is in the database, it returns the appropriate line. Otherwise, it returns the null
string:

function getpwuid(uid)

{

_pw_init()

return _pw_byuid[uid]

}

260 GAWK: Effective AWK Programming

The getpwent() function simply steps through the database, one entry at a time. It
uses _pw_count to track its current position in the _pw_bycount array:

function getpwent()

{

_pw_init()

if (_pw_count < _pw_total)

return _pw_bycount[++_pw_count]

return ""

}

The endpwent() function resets _pw_count to zero, so that subsequent calls to
getpwent() start over again:

function endpwent()

{

_pw_count = 0

}

A conscious design decision in this suite is that each subroutine calls _pw_init() to
initialize the database arrays. The overhead of running a separate process to generate the
user database, and the I/O to scan it, are only incurred if the user’s main program actually
calls one of these functions. If this library file is loaded along with a user’s program, but none
of the routines are ever called, then there is no extra runtime overhead. (The alternative is
move the body of _pw_init() into a BEGIN rule, which always runs pwcat. This simplifies
the code but runs an extra process that may never be needed.)

In turn, calling _pw_init() is not too expensive, because the _pw_inited variable keeps
the program from reading the data more than once. If you are worried about squeezing
every last cycle out of your awk program, the check of _pw_inited could be moved out of
_pw_init() and duplicated in all the other functions. In practice, this is not necessary, as
most awk programs are I/O-bound, and such a change would clutter up the code.

The id program in Section 11.2.3 [Printing Out User Information], page 278, uses these
functions.

10.6 Reading the Group Database

Much of the discussion presented in Section 10.5 [Reading the User Database], page 256,
applies to the group database as well. Although there has traditionally been a well-known
file (/etc/group) in a well-known format, the POSIX standard only provides a set of C
library routines (<grp.h> and getgrent()) for accessing the information. Even though this
file may exist, it may not have complete information. Therefore, as with the user database,
it is necessary to have a small C program that generates the group database as its output.
grcat, a C program that “cats” the group database, is as follows:

/*

* grcat.c

*

* Generate a printable version of the group database.

*/

#include <stdio.h>

#include <grp.h>

Chapter 10: A Library of awk Functions 261

int

main(int argc, char **argv)

{

struct group *g;

int i;

while ((g = getgrent()) != NULL) {

printf("%s:%s:%ld:", g->gr_name, g->gr_passwd,

(long) g->gr_gid);

for (i = 0; g->gr_mem[i] != NULL; i++) {

printf("%s", g->gr_mem[i]);

if (g->gr_mem[i+1] != NULL)

putchar(',');

}

putchar('\n');

}

endgrent();

return 0;

}

Each line in the group database represents one group. The fields are separated with
colons and represent the following information:

Group Name
The group’s name.

Group Password
The group’s encrypted password. In practice, this field is never used; it is
usually empty or set to ‘*’.

Group ID Number
The group’s numeric group ID number; the association of name to number must
be unique within the file. (On some systems it’s a C long, and not an int.
Thus, we cast it to long for all cases.)

Group Member List
A comma-separated list of usernames. These users are members of the group.
Modern Unix systems allow users to be members of several groups simultane-
ously. If your system does, then there are elements "group1" through "groupN"

in PROCINFO for those group ID numbers. (Note that PROCINFO is a gawk ex-
tension; see Section 7.5 [Predefined Variables], page 157.)

Here is what running grcat might produce:

$ grcat

a wheel:*:0:arnold

a nogroup:*:65534:

a daemon:*:1:

a kmem:*:2:

a staff:*:10:arnold,miriam,andy

262 GAWK: Effective AWK Programming

a other:*:20:

...

Here are the functions for obtaining information from the group database. There are
several, modeled after the C library functions of the same names:

group.awk --- functions for dealing with the group file

BEGIN {

Change to suit your system

_gr_awklib = "/usr/local/libexec/awk/"

}

function _gr_init(oldfs, oldrs, olddol0, grcat,

using_fw, using_fpat, n, a, i)

{

if (_gr_inited)

return

oldfs = FS

oldrs = RS

olddol0 = $0

using_fw = (PROCINFO["FS"] == "FIELDWIDTHS")

using_fpat = (PROCINFO["FS"] == "FPAT")

FS = ":"

RS = "\n"

grcat = _gr_awklib "grcat"

while ((grcat | getline) > 0) {

if ($1 in _gr_byname)

_gr_byname[$1] = _gr_byname[$1] "," $4

else

_gr_byname[$1] = $0

if ($3 in _gr_bygid)

_gr_bygid[$3] = _gr_bygid[$3] "," $4

else

_gr_bygid[$3] = $0

n = split($4, a, "[\t]*,[\t]*")

for (i = 1; i <= n; i++)

if (a[i] in _gr_groupsbyuser)

_gr_groupsbyuser[a[i]] = _gr_groupsbyuser[a[i]] " " $1

else

_gr_groupsbyuser[a[i]] = $1

_gr_bycount[++_gr_count] = $0

}

close(grcat)

Chapter 10: A Library of awk Functions 263

_gr_count = 0

_gr_inited++

FS = oldfs

if (using_fw)

FIELDWIDTHS = FIELDWIDTHS

else if (using_fpat)

FPAT = FPAT

RS = oldrs

$0 = olddol0

}

The BEGIN rule sets a private variable to the directory where grcat is stored.
Because it is used to help out an awk library routine, we have chosen to put it in
/usr/local/libexec/awk. You might want it to be in a different directory on your
system.

These routines follow the same general outline as the user database routines (see
Section 10.5 [Reading the User Database], page 256). The _gr_inited variable is used to
ensure that the database is scanned no more than once. The _gr_init() function first
saves FS, RS, and $0, and then sets FS and RS to the correct values for scanning the group
information. It also takes care to note whether FIELDWIDTHS or FPAT is being used, and to
restore the appropriate field-splitting mechanism.

The group information is stored in several associative arrays. The arrays are indexed
by group name (_gr_byname), by group ID number (_gr_bygid), and by position
in the database (_gr_bycount). There is an additional array indexed by username
(_gr_groupsbyuser), which is a space-separated list of groups to which each user belongs.

Unlike in the user database, it is possible to have multiple records in the database for
the same group. This is common when a group has a large number of members. A pair of
such entries might look like the following:

tvpeople:*:101:johnny,jay,arsenio

tvpeople:*:101:david,conan,tom,joan

For this reason, _gr_init() looks to see if a group name or group ID number is already
seen. If so, the usernames are simply concatenated onto the previous list of users.11

Finally, _gr_init() closes the pipeline to grcat, restores FS (and FIELDWIDTHS or FPAT,
if necessary), RS, and $0, initializes _gr_count to zero (it is used later), and makes _gr_
inited nonzero.

The getgrnam() function takes a group name as its argument, and if that group exists,
it is returned. Otherwise, it relies on the array reference to a nonexistent element to create
the element with the null string as its value:

function getgrnam(group)

{

_gr_init()

return _gr_byname[group]

}

11 There is a subtle problem with the code just presented. Suppose that the first time there were no names.
This code adds the names with a leading comma. It also doesn’t check that there is a $4.

264 GAWK: Effective AWK Programming

The getgrgid() function is similar; it takes a numeric group ID and looks up the
information associated with that group ID:

function getgrgid(gid)

{

_gr_init()

return _gr_bygid[gid]

}

The getgruser() function does not have a C counterpart. It takes a username and
returns the list of groups that have the user as a member:

function getgruser(user)

{

_gr_init()

return _gr_groupsbyuser[user]

}

The getgrent() function steps through the database one entry at a time. It uses _gr_
count to track its position in the list:

function getgrent()

{

_gr_init()

if (++_gr_count in _gr_bycount)

return _gr_bycount[_gr_count]

return ""

}

The endgrent() function resets _gr_count to zero so that getgrent() can start over
again:

function endgrent()

{

_gr_count = 0

}

As with the user database routines, each function calls _gr_init() to initialize the
arrays. Doing so only incurs the extra overhead of running grcat if these functions are
used (as opposed to moving the body of _gr_init() into a BEGIN rule).

Most of the work is in scanning the database and building the various associative arrays.
The functions that the user calls are themselves very simple, relying on awk’s associative
arrays to do work.

The id program in Section 11.2.3 [Printing Out User Information], page 278, uses these
functions.

10.7 Traversing Arrays of Arrays

Section 8.6 [Arrays of Arrays], page 183, described how gawk provides arrays of arrays. In
particular, any element of an array may be either a scalar or another array. The isarray()
function (see Section 9.1.7 [Getting Type Information], page 213) lets you distinguish an
array from a scalar. The following function, walk_array(), recursively traverses an array,

Chapter 10: A Library of awk Functions 265

printing the element indices and values. You call it with the array and a string representing
the name of the array:

function walk_array(arr, name, i)

{

for (i in arr) {

if (isarray(arr[i]))

walk_array(arr[i], (name "[" i "]"))

else

printf("%s[%s] = %s\n", name, i, arr[i])

}

}

It works by looping over each element of the array. If any given element is itself an array,
the function calls itself recursively, passing the subarray and a new string representing the
current index. Otherwise, the function simply prints the element’s name, index, and value.
Here is a main program to demonstrate:

BEGIN {

a[1] = 1

a[2][1] = 21

a[2][2] = 22

a[3] = 3

a[4][1][1] = 411

a[4][2] = 42

walk_array(a, "a")

}

When run, the program produces the following output:

$ gawk -f walk_array.awk

a a[1] = 1

a a[2][1] = 21

a a[2][2] = 22

a a[3] = 3

a a[4][1][1] = 411

a a[4][2] = 42

The function just presented simply prints the name and value of each scalar array ele-
ment. However, it is easy to generalize it, by passing in the name of a function to call when
walking an array. The modified function looks like this:

function process_array(arr, name, process, do_arrays, i, new_name)

{

for (i in arr) {

new_name = (name "[" i "]")

if (isarray(arr[i])) {

if (do_arrays)

@process(new_name, arr[i])

process_array(arr[i], new_name, process, do_arrays)

} else

266 GAWK: Effective AWK Programming

@process(new_name, arr[i])

}

}

The arguments are as follows:

arr The array.

name The name of the array (a string).

process The name of the function to call.

do_arrays

If this is true, the function can handle elements that are subarrays.

If subarrays are to be processed, that is done before walking them further.

When run with the following scaffolding, the function produces the same results as does
the earlier version of walk_array():

BEGIN {

a[1] = 1

a[2][1] = 21

a[2][2] = 22

a[3] = 3

a[4][1][1] = 411

a[4][2] = 42

process_array(a, "a", "do_print", 0)

}

function do_print(name, element)

{

printf "%s = %s\n", name, element

}

10.8 Summary

• Reading programs is an excellent way to learn Good Programming. The functions and
programs provided in this chapter and the next are intended to serve that purpose.

• When writing general-purpose library functions, put some thought into how to name
any global variables so that they won’t conflict with variables from a user’s program.

• The functions presented here fit into the following categories:

General problems
Number-to-string conversion, testing assertions, rounding, random number
generation, converting characters to numbers, joining strings, getting easily
usable time-of-day information, and reading a whole file in one shot

Managing data files
Noting data file boundaries, rereading the current file, checking for readable
files, checking for zero-length files, and treating assignments as file names

Chapter 10: A Library of awk Functions 267

Processing command-line options
An awk version of the standard C getopt() function

Reading the user and group databases
Two sets of routines that parallel the C library versions

Traversing arrays of arrays
Two functions that traverse an array of arrays to any depth

10.9 Exercises

1. In Section 10.3.4 [Checking for Zero-Length Files], page 248, we presented the
zerofile.awk program, which made use of gawk’s ARGIND variable. Can this problem
be solved without relying on ARGIND? If so, how?

2. As a related challenge, revise that code to handle the case where an intervening value
in ARGV is a variable assignment.

Chapter 11: Practical awk Programs 269

11 Practical awk Programs

Chapter 10 [A Library of awk Functions], page 233, presents the idea that reading programs
in a language contributes to learning that language. This chapter continues that theme, pre-
senting a potpourri of awk programs for your reading enjoyment. There are three sections.
The first describes how to run the programs presented in this chapter.

The second presents awk versions of several common POSIX utilities. These are programs
that you are hopefully already familiar with, and therefore whose problems are understood.
By reimplementing these programs in awk, you can focus on the awk-related aspects of
solving the programming problems.

The third is a grab bag of interesting programs. These solve a number of different
data-manipulation and management problems. Many of the programs are short, which
emphasizes awk’s ability to do a lot in just a few lines of code.

Many of these programs use library functions presented in Chapter 10 [A Library of awk
Functions], page 233.

11.1 Running the Example Programs

To run a given program, you would typically do something like this:

awk -f program -- options files

Here, program is the name of the awk program (such as cut.awk), options are any command-
line options for the program that start with a ‘-’, and files are the actual data files.

If your system supports the ‘#!’ executable interpreter mechanism (see Section 1.1.4
[Executable awk Programs], page 19), you can instead run your program directly:

cut.awk -c1-8 myfiles > results

If your awk is not gawk, you may instead need to use this:

cut.awk -- -c1-8 myfiles > results

11.2 Reinventing Wheels for Fun and Profit

This section presents a number of POSIX utilities implemented in awk. Reinventing these
programs in awk is often enjoyable, because the algorithms can be very clearly expressed,
and the code is usually very concise and simple. This is true because awk does so much for
you.

It should be noted that these programs are not necessarily intended to replace the in-
stalled versions on your system. Nor may all of these programs be fully compliant with
the most recent POSIX standard. This is not a problem; their purpose is to illustrate awk

language programming for “real-world” tasks.

The programs are presented in alphabetical order.

11.2.1 Cutting Out Fields and Columns

The cut utility selects, or “cuts,” characters or fields from its standard input and sends
them to its standard output. Fields are separated by TABs by default, but you may supply
a command-line option to change the field delimiter (i.e., the field-separator character).
cut’s definition of fields is less general than awk’s.

270 GAWK: Effective AWK Programming

A common use of cut might be to pull out just the login names of logged-on users from
the output of who. For example, the following pipeline generates a sorted, unique list of the
logged-on users:

who | cut -c1-8 | sort | uniq

The options for cut are:

-c list Use list as the list of characters to cut out. Items within the list may be
separated by commas, and ranges of characters can be separated with dashes.
The list ‘1-8,15,22-35’ specifies characters 1 through 8, 15, and 22 through
35.

-f list Use list as the list of fields to cut out.

-d delim Use delim as the field-separator character instead of the TAB character.

-s Suppress printing of lines that do not contain the field delimiter.

The awk implementation of cut uses the getopt() library function (see Section 10.4
[Processing Command-Line Options], page 250) and the join() library function (see
Section 10.2.6 [Merging an Array into a String], page 241).

The program begins with a comment describing the options, the library functions needed,
and a usage() function that prints out a usage message and exits. usage() is called if
invalid arguments are supplied:

cut.awk --- implement cut in awk

Options:

-f list Cut fields

-d c Field delimiter character

-c list Cut characters

#

-s Suppress lines without the delimiter

#

Requires getopt() and join() library functions

function usage()

{

print("usage: cut [-f list] [-d c] [-s] [files...]") > "/dev/stderr"

print("usage: cut [-c list] [files...]") > "/dev/stderr"

exit 1

}

Next comes a BEGIN rule that parses the command-line options. It sets FS to a single
TAB character, because that is cut’s default field separator. The rule then sets the output
field separator to be the same as the input field separator. A loop using getopt() steps
through the command-line options. Exactly one of the variables by_fields or by_chars is
set to true, to indicate that processing should be done by fields or by characters, respectively.
When cutting by characters, the output field separator is set to the null string:

BEGIN {

FS = "\t" # default

Chapter 11: Practical awk Programs 271

OFS = FS

while ((c = getopt(ARGC, ARGV, "sf:c:d:")) != -1) {

if (c == "f") {

by_fields = 1

fieldlist = Optarg

} else if (c == "c") {

by_chars = 1

fieldlist = Optarg

OFS = ""

} else if (c == "d") {

if (length(Optarg) > 1) {

printf("cut: using first character of %s" \

" for delimiter\n", Optarg) > "/dev/stderr"

Optarg = substr(Optarg, 1, 1)

}

fs = FS = Optarg

OFS = FS

if (FS == " ") # defeat awk semantics

FS = "[]"

} else if (c == "s")

suppress = 1

else

usage()

}

Clear out options

for (i = 1; i < Optind; i++)

ARGV[i] = ""

The code must take special care when the field delimiter is a space. Using a single space
(" ") for the value of FS is incorrect—awk would separate fields with runs of spaces, TABs,
and/or newlines, and we want them to be separated with individual spaces. To this end,
we save the original space character in the variable fs for later use; after setting FS to "[

]" we can’t use it directly to see if the field delimiter character is in the string.

Also remember that after getopt() is through (as described in Section 10.4 [Processing
Command-Line Options], page 250), we have to clear out all the elements of ARGV from 1
to Optind, so that awk does not try to process the command-line options as file names.

After dealing with the command-line options, the program verifies that the options make
sense. Only one or the other of -c and -f should be used, and both require a field list.
Then the program calls either set_fieldlist() or set_charlist() to pull apart the list
of fields or characters:

if (by_fields && by_chars)

usage()

if (by_fields == 0 && by_chars == 0)

by_fields = 1 # default

272 GAWK: Effective AWK Programming

if (fieldlist == "") {

print "cut: needs list for -c or -f" > "/dev/stderr"

exit 1

}

if (by_fields)

set_fieldlist()

else

set_charlist()

}

set_fieldlist() splits the field list apart at the commas into an array. Then, for each
element of the array, it looks to see if the element is actually a range, and if so, splits it
apart. The function checks the range to make sure that the first number is smaller than the
second. Each number in the list is added to the flist array, which simply lists the fields
that will be printed. Normal field splitting is used. The program lets awk handle the job of
doing the field splitting:

function set_fieldlist(n, m, i, j, k, f, g)

{

n = split(fieldlist, f, ",")

j = 1 # index in flist

for (i = 1; i <= n; i++) {

if (index(f[i], "-") != 0) { # a range

m = split(f[i], g, "-")

if (m != 2 || g[1] >= g[2]) {

printf("cut: bad field list: %s\n",

f[i]) > "/dev/stderr"

exit 1

}

for (k = g[1]; k <= g[2]; k++)

flist[j++] = k

} else

flist[j++] = f[i]

}

nfields = j - 1

}

The set_charlist() function is more complicated than set_fieldlist(). The idea
here is to use gawk’s FIELDWIDTHS variable (see Section 4.6 [Reading Fixed-Width Data],
page 74), which describes constant-width input. When using a character list, that is exactly
what we have.

Setting up FIELDWIDTHS is more complicated than simply listing the fields that need to
be printed. We have to keep track of the fields to print and also the intervening characters
that have to be skipped. For example, suppose you wanted characters 1 through 8, 15, and
22 through 35. You would use ‘-c 1-8,15,22-35’. The necessary value for FIELDWIDTHS
is "8 6 1 6 14". This yields five fields, and the fields to print are $1, $3, and $5. The
intermediate fields are filler, which is stuff in between the desired data. flist lists the
fields to print, and t tracks the complete field list, including filler fields:

Chapter 11: Practical awk Programs 273

function set_charlist(field, i, j, f, g, n, m, t,

filler, last, len)

{

field = 1 # count total fields

n = split(fieldlist, f, ",")

j = 1 # index in flist

for (i = 1; i <= n; i++) {

if (index(f[i], "-") != 0) { # range

m = split(f[i], g, "-")

if (m != 2 || g[1] >= g[2]) {

printf("cut: bad character list: %s\n",

f[i]) > "/dev/stderr"

exit 1

}

len = g[2] - g[1] + 1

if (g[1] > 1) # compute length of filler

filler = g[1] - last - 1

else

filler = 0

if (filler)

t[field++] = filler

t[field++] = len # length of field

last = g[2]

flist[j++] = field - 1

} else {

if (f[i] > 1)

filler = f[i] - last - 1

else

filler = 0

if (filler)

t[field++] = filler

t[field++] = 1

last = f[i]

flist[j++] = field - 1

}

}

FIELDWIDTHS = join(t, 1, field - 1)

nfields = j - 1

}

Next is the rule that processes the data. If the -s option is given, then suppress is true.
The first if statement makes sure that the input record does have the field separator. If
cut is processing fields, suppress is true, and the field separator character is not in the
record, then the record is skipped.

If the record is valid, then gawk has split the data into fields, either using the character
in FS or using fixed-length fields and FIELDWIDTHS. The loop goes through the list of fields

274 GAWK: Effective AWK Programming

that should be printed. The corresponding field is printed if it contains data. If the next
field also has data, then the separator character is written out between the fields:

{

if (by_fields && suppress && index($0, fs) == 0)

next

for (i = 1; i <= nfields; i++) {

if ($flist[i] != "") {

printf "%s", $flist[i]

if (i < nfields && $flist[i+1] != "")

printf "%s", OFS

}

}

print ""

}

This version of cut relies on gawk’s FIELDWIDTHS variable to do the character-based cut-
ting. It is possible in other awk implementations to use substr() (see Section 9.1.3 [String-
Manipulation Functions], page 189), but it is also extremely painful. The FIELDWIDTHS

variable supplies an elegant solution to the problem of picking the input line apart by
characters.

11.2.2 Searching for Regular Expressions in Files

The egrep utility searches files for patterns. It uses regular expressions that are almost
identical to those available in awk (see Chapter 3 [Regular Expressions], page 47). You
invoke it as follows:

egrep [options] 'pattern' files . . .

The pattern is a regular expression. In typical usage, the regular expression is quoted
to prevent the shell from expanding any of the special characters as file name wildcards.
Normally, egrep prints the lines that matched. If multiple file names are provided on the
command line, each output line is preceded by the name of the file and a colon.

The options to egrep are as follows:

-c Print out a count of the lines that matched the pattern, instead of the lines
themselves.

-s Be silent. No output is produced and the exit value indicates whether the
pattern was matched.

-v Invert the sense of the test. egrep prints the lines that do not match the pattern
and exits successfully if the pattern is not matched.

-i Ignore case distinctions in both the pattern and the input data.

-l Only print (list) the names of the files that matched, not the lines that matched.

-e pattern

Use pattern as the regexp to match. The purpose of the -e option is to allow
patterns that start with a ‘-’.

Chapter 11: Practical awk Programs 275

This version uses the getopt() library function (see Section 10.4 [Processing Command-
Line Options], page 250) and the file transition library program (see Section 10.3.1 [Noting
Data file Boundaries], page 245).

The program begins with a descriptive comment and then a BEGIN rule that processes
the command-line arguments with getopt(). The -i (ignore case) option is particularly
easy with gawk; we just use the IGNORECASE predefined variable (see Section 7.5 [Predefined
Variables], page 157):

egrep.awk --- simulate egrep in awk

#

Options:

-c count of lines

-s silent - use exit value

-v invert test, success if no match

-i ignore case

-l print filenames only

-e argument is pattern

#

Requires getopt and file transition library functions

BEGIN {

while ((c = getopt(ARGC, ARGV, "ce:svil")) != -1) {

if (c == "c")

count_only++

else if (c == "s")

no_print++

else if (c == "v")

invert++

else if (c == "i")

IGNORECASE = 1

else if (c == "l")

filenames_only++

else if (c == "e")

pattern = Optarg

else

usage()

}

Next comes the code that handles the egrep-specific behavior. If no pattern is supplied
with -e, the first nonoption on the command line is used. The awk command-line arguments
up to ARGV[Optind] are cleared, so that awk won’t try to process them as files. If no files
are specified, the standard input is used, and if multiple files are specified, we make sure to
note this so that the file names can precede the matched lines in the output:

if (pattern == "")

pattern = ARGV[Optind++]

for (i = 1; i < Optind; i++)

ARGV[i] = ""

276 GAWK: Effective AWK Programming

if (Optind >= ARGC) {

ARGV[1] = "-"

ARGC = 2

} else if (ARGC - Optind > 1)

do_filenames++

if (IGNORECASE)

pattern = tolower(pattern)

}

The last two lines are commented out, as they are not needed in gawk. They should be
uncommented if you have to use another version of awk.

The next set of lines should be uncommented if you are not using gawk. This rule
translates all the characters in the input line into lowercase if the -i option is specified.1

The rule is commented out as it is not necessary with gawk:

#{

if (IGNORECASE)

$0 = tolower($0)

#}

The beginfile() function is called by the rule in ftrans.awk when each new file is
processed. In this case, it is very simple; all it does is initialize a variable fcount to
zero. fcount tracks how many lines in the current file matched the pattern. Naming the
parameter junk shows we know that beginfile() is called with a parameter, but that
we’re not interested in its value:

function beginfile(junk)

{

fcount = 0

}

The endfile() function is called after each file has been processed. It affects the output
only when the user wants a count of the number of lines that matched. no_print is true
only if the exit status is desired. count_only is true if line counts are desired. egrep

therefore only prints line counts if printing and counting are enabled. The output format
must be adjusted depending upon the number of files to process. Finally, fcount is added
to total, so that we know the total number of lines that matched the pattern:

function endfile(file)

{

if (! no_print && count_only) {

if (do_filenames)

print file ":" fcount

else

print fcount

}

total += fcount

}

1 It also introduces a subtle bug; if a match happens, we output the translated line, not the original.

Chapter 11: Practical awk Programs 277

The BEGINFILE and ENDFILE special patterns (see Section 7.1.5 [The BEGINFILE and
ENDFILE Special Patterns], page 145) could be used, but then the program would be
gawk-specific. Additionally, this example was written before gawk acquired BEGINFILE and
ENDFILE.

The following rule does most of the work of matching lines. The variable matches is
true if the line matched the pattern. If the user wants lines that did not match, the sense
of matches is inverted using the ‘!’ operator. fcount is incremented with the value of
matches, which is either one or zero, depending upon a successful or unsuccessful match.
If the line does not match, the next statement just moves on to the next record.

A number of additional tests are made, but they are only done if we are not counting
lines. First, if the user only wants the exit status (no_print is true), then it is enough to
know that one line in this file matched, and we can skip on to the next file with nextfile.
Similarly, if we are only printing file names, we can print the file name, and then skip to the
next file with nextfile. Finally, each line is printed, with a leading file name and colon if
necessary:

{

matches = ($0 ~ pattern)

if (invert)

matches = ! matches

fcount += matches # 1 or 0

if (! matches)

next

if (! count_only) {

if (no_print)

nextfile

if (filenames_only) {

print FILENAME

nextfile

}

if (do_filenames)

print FILENAME ":" $0

else

print

}

}

The END rule takes care of producing the correct exit status. If there are no matches,
the exit status is one; otherwise, it is zero:

END {

exit (total == 0)

}

278 GAWK: Effective AWK Programming

The usage() function prints a usage message in case of invalid options, and then exits:

function usage()

{

print("Usage: egrep [-csvil] [-e pat] [files ...]") > "/dev/stderr"

print("\n\tegrep [-csvil] pat [files ...]") > "/dev/stderr"

exit 1

}

11.2.3 Printing Out User Information

The id utility lists a user’s real and effective user ID numbers, real and effective group ID
numbers, and the user’s group set, if any. id only prints the effective user ID and group ID
if they are different from the real ones. If possible, id also supplies the corresponding user
and group names. The output might look like this:

$ id

a uid=1000(arnold) gid=1000(arnold) groups=1000(arnold),4(adm),7(lp),27(sudo)

This information is part of what is provided by gawk’s PROCINFO array (see Section 7.5
[Predefined Variables], page 157). However, the id utility provides a more palatable output
than just individual numbers.

Here is a simple version of id written in awk. It uses the user database library functions
(see Section 10.5 [Reading the User Database], page 256) and the group database library
functions (see Section 10.6 [Reading the Group Database], page 260) from Chapter 10 [A
Library of awk Functions], page 233.

The program is fairly straightforward. All the work is done in the BEGIN rule. The user
and group ID numbers are obtained from PROCINFO. The code is repetitive. The entry in
the user database for the real user ID number is split into parts at the ‘:’. The name is the
first field. Similar code is used for the effective user ID number and the group numbers:

id.awk --- implement id in awk

#

Requires user and group library functions

output is:

uid=12(foo) euid=34(bar) gid=3(baz) \

egid=5(blat) groups=9(nine),2(two),1(one)

BEGIN {

uid = PROCINFO["uid"]

euid = PROCINFO["euid"]

gid = PROCINFO["gid"]

egid = PROCINFO["egid"]

printf("uid=%d", uid)

pw = getpwuid(uid)

pr_first_field(pw)

if (euid != uid) {

printf(" euid=%d", euid)

pw = getpwuid(euid)

Chapter 11: Practical awk Programs 279

pr_first_field(pw)

}

printf(" gid=%d", gid)

pw = getgrgid(gid)

pr_first_field(pw)

if (egid != gid) {

printf(" egid=%d", egid)

pw = getgrgid(egid)

pr_first_field(pw)

}

for (i = 1; ("group" i) in PROCINFO; i++) {

if (i == 1)

printf(" groups=")

group = PROCINFO["group" i]

printf("%d", group)

pw = getgrgid(group)

pr_first_field(pw)

if (("group" (i+1)) in PROCINFO)

printf(",")

}

print ""

}

function pr_first_field(str, a)

{

if (str != "") {

split(str, a, ":")

printf("(%s)", a[1])

}

}

The test in the for loop is worth noting. Any supplementary groups in the PROCINFO

array have the indices "group1" through "groupN" for some N (i.e., the total number of
supplementary groups). However, we don’t know in advance how many of these groups
there are.

This loop works by starting at one, concatenating the value with "group", and then using
in to see if that value is in the array (see Section 8.1.2 [Referring to an Array Element],
page 173). Eventually, i is incremented past the last group in the array and the loop exits.

The loop is also correct if there are no supplementary groups; then the condition is false
the first time it’s tested, and the loop body never executes.

The pr_first_field() function simply isolates out some code that is used repeatedly,
making the whole program shorter and cleaner. In particular, moving the check for the
empty string into this function saves several lines of code.

280 GAWK: Effective AWK Programming

11.2.4 Splitting a Large File into Pieces

The split program splits large text files into smaller pieces. Usage is as follows:2

split [-count] [file] [prefix]

By default, the output files are named xaa, xab, and so on. Each file has 1,000 lines
in it, with the likely exception of the last file. To change the number of lines in each file,
supply a number on the command line preceded with a minus sign (e.g., ‘-500’ for files with
500 lines in them instead of 1,000). To change the names of the output files to something
like myfileaa, myfileab, and so on, supply an additional argument that specifies the file
name prefix.

Here is a version of split in awk. It uses the ord() and chr() functions presented in
Section 10.2.5 [Translating Between Characters and Numbers], page 239.

The program first sets its defaults, and then tests to make sure there are not too many
arguments. It then looks at each argument in turn. The first argument could be a minus
sign followed by a number. If it is, this happens to look like a negative number, so it is
made positive, and that is the count of lines. The data file name is skipped over and the
final argument is used as the prefix for the output file names:

split.awk --- do split in awk

#

Requires ord() and chr() library functions

usage: split [-count] [file] [outname]

BEGIN {

outfile = "x" # default

count = 1000

if (ARGC > 4)

usage()

i = 1

if (i in ARGV && ARGV[i] ~ /^-[[:digit:]]+$/) {

count = -ARGV[i]

ARGV[i] = ""

i++

}

test argv in case reading from stdin instead of file

if (i in ARGV)

i++ # skip datafile name

if (i in ARGV) {

outfile = ARGV[i]

ARGV[i] = ""

}

s1 = s2 = "a"

out = (outfile s1 s2)

}

2 This is the traditional usage. The POSIX usage is different, but not relevant for what the program aims
to demonstrate.

Chapter 11: Practical awk Programs 281

The next rule does most of the work. tcount (temporary count) tracks how many lines
have been printed to the output file so far. If it is greater than count, it is time to close
the current file and start a new one. s1 and s2 track the current suffixes for the file name.
If they are both ‘z’, the file is just too big. Otherwise, s1 moves to the next letter in the
alphabet and s2 starts over again at ‘a’:

{

if (++tcount > count) {

close(out)

if (s2 == "z") {

if (s1 == "z") {

printf("split: %s is too large to split\n",

FILENAME) > "/dev/stderr"

exit 1

}

s1 = chr(ord(s1) + 1)

s2 = "a"

}

else

s2 = chr(ord(s2) + 1)

out = (outfile s1 s2)

tcount = 1

}

print > out

}

The usage() function simply prints an error message and exits:

function usage()

{

print("usage: split [-num] [file] [outname]") > "/dev/stderr"

exit 1

}

This program is a bit sloppy; it relies on awk to automatically close the last file instead
of doing it in an END rule. It also assumes that letters are contiguous in the character set,
which isn’t true for EBCDIC systems.

11.2.5 Duplicating Output into Multiple Files

The tee program is known as a “pipe fitting.” tee copies its standard input to its standard
output and also duplicates it to the files named on the command line. Its usage is as follows:

tee [-a] file . . .

The -a option tells tee to append to the named files, instead of truncating them and
starting over.

The BEGIN rule first makes a copy of all the command-line arguments into an array
named copy. ARGV[0] is not needed, so it is not copied. tee cannot use ARGV directly,
because awk attempts to process each file name in ARGV as input data.

If the first argument is -a, then the flag variable append is set to true, and both ARGV[1]

and copy[1] are deleted. If ARGC is less than two, then no file names were supplied and

282 GAWK: Effective AWK Programming

tee prints a usage message and exits. Finally, awk is forced to read the standard input by
setting ARGV[1] to "-" and ARGC to two:

tee.awk --- tee in awk

#

Copy standard input to all named output files.

Append content if -a option is supplied.

#

BEGIN {

for (i = 1; i < ARGC; i++)

copy[i] = ARGV[i]

if (ARGV[1] == "-a") {

append = 1

delete ARGV[1]

delete copy[1]

ARGC--

}

if (ARGC < 2) {

print "usage: tee [-a] file ..." > "/dev/stderr"

exit 1

}

ARGV[1] = "-"

ARGC = 2

}

The following single rule does all the work. Because there is no pattern, it is executed
for each line of input. The body of the rule simply prints the line into each file on the
command line, and then to the standard output:

{

moving the if outside the loop makes it run faster

if (append)

for (i in copy)

print >> copy[i]

else

for (i in copy)

print > copy[i]

print

}

It is also possible to write the loop this way:

for (i in copy)

if (append)

print >> copy[i]

else

print > copy[i]

This is more concise, but it is also less efficient. The ‘if’ is tested for each record and for
each output file. By duplicating the loop body, the ‘if’ is only tested once for each input

Chapter 11: Practical awk Programs 283

record. If there are N input records and M output files, the first method only executes N
‘if’ statements, while the second executes N*M ‘if’ statements.

Finally, the END rule cleans up by closing all the output files:

END {

for (i in copy)

close(copy[i])

}

11.2.6 Printing Nonduplicated Lines of Text

The uniq utility reads sorted lines of data on its standard input, and by default removes
duplicate lines. In other words, it only prints unique lines—hence the name. uniq has a
number of options. The usage is as follows:

uniq [-udc [-n]] [+n] [inputfile [outputfile]]

The options for uniq are:

-d Print only repeated (duplicated) lines.

-u Print only nonrepeated (unique) lines.

-c Count lines. This option overrides -d and -u. Both repeated and nonrepeated
lines are counted.

-n Skip n fields before comparing lines. The definition of fields is similar to awk’s
default: nonwhitespace characters separated by runs of spaces and/or TABs.

+n Skip n characters before comparing lines. Any fields specified with ‘-n’ are
skipped first.

inputfile

Data is read from the input file named on the command line, instead of from
the standard input.

outputfile

The generated output is sent to the named output file, instead of to the standard
output.

Normally uniq behaves as if both the -d and -u options are provided.

uniq uses the getopt() library function (see Section 10.4 [Processing Command-Line
Options], page 250) and the join() library function (see Section 10.2.6 [Merging an Array
into a String], page 241).

The program begins with a usage() function and then a brief outline of the options and
their meanings in comments. The BEGIN rule deals with the command-line arguments and
options. It uses a trick to get getopt() to handle options of the form ‘-25’, treating such
an option as the option letter ‘2’ with an argument of ‘5’. If indeed two or more digits
are supplied (Optarg looks like a number), Optarg is concatenated with the option digit
and then the result is added to zero to make it into a number. If there is only one digit in
the option, then Optarg is not needed. In this case, Optind must be decremented so that
getopt() processes it next time. This code is admittedly a bit tricky.

284 GAWK: Effective AWK Programming

If no options are supplied, then the default is taken, to print both repeated and nonre-
peated lines. The output file, if provided, is assigned to outputfile. Early on, outputfile
is initialized to the standard output, /dev/stdout:

uniq.awk --- do uniq in awk

#

Requires getopt() and join() library functions

function usage()

{

print("Usage: uniq [-udc [-n]] [+n] [in [out]]") > "/dev/stderr"

exit 1

}

-c count lines. overrides -d and -u

-d only repeated lines

-u only nonrepeated lines

-n skip n fields

+n skip n characters, skip fields first

BEGIN {

count = 1

outputfile = "/dev/stdout"

opts = "udc0:1:2:3:4:5:6:7:8:9:"

while ((c = getopt(ARGC, ARGV, opts)) != -1) {

if (c == "u")

non_repeated_only++

else if (c == "d")

repeated_only++

else if (c == "c")

do_count++

else if (index("0123456789", c) != 0) {

getopt() requires args to options

this messes us up for things like -5

if (Optarg ~ /^[[:digit:]]+$/)

fcount = (c Optarg) + 0

else {

fcount = c + 0

Optind--

}

} else

usage()

}

if (ARGV[Optind] ~ /^\+[[:digit:]]+$/) {

charcount = substr(ARGV[Optind], 2) + 0

Optind++

}

Chapter 11: Practical awk Programs 285

for (i = 1; i < Optind; i++)

ARGV[i] = ""

if (repeated_only == 0 && non_repeated_only == 0)

repeated_only = non_repeated_only = 1

if (ARGC - Optind == 2) {

outputfile = ARGV[ARGC - 1]

ARGV[ARGC - 1] = ""

}

}

The following function, are_equal(), compares the current line, $0, to the previous line,
last. It handles skipping fields and characters. If no field count and no character count
are specified, are_equal() returns one or zero depending upon the result of a simple string
comparison of last and $0.

Otherwise, things get more complicated. If fields have to be skipped, each line is broken
into an array using split() (see Section 9.1.3 [String-Manipulation Functions], page 189);
the desired fields are then joined back into a line using join(). The joined lines are stored
in clast and cline. If no fields are skipped, clast and cline are set to last and $0,
respectively. Finally, if characters are skipped, substr() is used to strip off the leading
charcount characters in clast and cline. The two strings are then compared and are_

equal() returns the result:

function are_equal(n, m, clast, cline, alast, aline)

{

if (fcount == 0 && charcount == 0)

return (last == $0)

if (fcount > 0) {

n = split(last, alast)

m = split($0, aline)

clast = join(alast, fcount+1, n)

cline = join(aline, fcount+1, m)

} else {

clast = last

cline = $0

}

if (charcount) {

clast = substr(clast, charcount + 1)

cline = substr(cline, charcount + 1)

}

return (clast == cline)

}

286 GAWK: Effective AWK Programming

The following two rules are the body of the program. The first one is executed only for
the very first line of data. It sets last equal to $0, so that subsequent lines of text have
something to be compared to.

The second rule does the work. The variable equal is one or zero, depending upon the
results of are_equal()’s comparison. If uniq is counting repeated lines, and the lines are
equal, then it increments the count variable. Otherwise, it prints the line and resets count,
because the two lines are not equal.

If uniq is not counting, and if the lines are equal, count is incremented. Nothing is
printed, as the point is to remove duplicates. Otherwise, if uniq is counting repeated lines
and more than one line is seen, or if uniq is counting nonrepeated lines and only one line
is seen, then the line is printed, and count is reset.

Finally, similar logic is used in the END rule to print the final line of input data:

NR == 1 {

last = $0

next

}

{

equal = are_equal()

if (do_count) { # overrides -d and -u

if (equal)

count++

else {

printf("%4d %s\n", count, last) > outputfile

last = $0

count = 1 # reset

}

next

}

if (equal)

count++

else {

if ((repeated_only && count > 1) ||

(non_repeated_only && count == 1))

print last > outputfile

last = $0

count = 1

}

}

END {

if (do_count)

printf("%4d %s\n", count, last) > outputfile

Chapter 11: Practical awk Programs 287

else if ((repeated_only && count > 1) ||

(non_repeated_only && count == 1))

print last > outputfile

close(outputfile)

}

As a side note, this program does not follow our recommended convention of naming
global variables with a leading capital letter. Doing that would make the program a little
easier to follow.

11.2.7 Counting Things

The wc (word count) utility counts lines, words, and characters in one or more input files.
Its usage is as follows:

wc [-lwc] [files . . .]

If no files are specified on the command line, wc reads its standard input. If there are
multiple files, it also prints total counts for all the files. The options and their meanings
are as follows:

-l Count only lines.

-w Count only words. A “word” is a contiguous sequence of nonwhitespace char-
acters, separated by spaces and/or TABs. Luckily, this is the normal way awk

separates fields in its input data.

-c Count only characters.

Implementing wc in awk is particularly elegant, because awk does a lot of the work for
us; it splits lines into words (i.e., fields) and counts them, it counts lines (i.e., records), and
it can easily tell us how long a line is.

This program uses the getopt() library function (see Section 10.4 [Processing
Command-Line Options], page 250) and the file-transition functions (see Section 10.3.1
[Noting Data file Boundaries], page 245).

This version has one notable difference from traditional versions of wc: it always prints
the counts in the order lines, words, and characters. Traditional versions note the order of
the -l, -w, and -c options on the command line, and print the counts in that order.

The BEGIN rule does the argument processing. The variable print_total is true if more
than one file is named on the command line:

wc.awk --- count lines, words, characters

Options:

-l only count lines

-w only count words

-c only count characters

#

Default is to count lines, words, characters

#

Requires getopt() and file transition library functions

288 GAWK: Effective AWK Programming

BEGIN {

let getopt() print a message about

invalid options. we ignore them

while ((c = getopt(ARGC, ARGV, "lwc")) != -1) {

if (c == "l")

do_lines = 1

else if (c == "w")

do_words = 1

else if (c == "c")

do_chars = 1

}

for (i = 1; i < Optind; i++)

ARGV[i] = ""

if no options, do all

if (! do_lines && ! do_words && ! do_chars)

do_lines = do_words = do_chars = 1

print_total = (ARGC - i > 1)

}

The beginfile() function is simple; it just resets the counts of lines, words, and char-
acters to zero, and saves the current file name in fname:

function beginfile(file)

{

lines = words = chars = 0

fname = FILENAME

}

The endfile() function adds the current file’s numbers to the running totals of lines,
words, and characters. It then prints out those numbers for the file that was just read. It
relies on beginfile() to reset the numbers for the following data file:

function endfile(file)

{

tlines += lines

twords += words

tchars += chars

if (do_lines)

printf "\t%d", lines

if (do_words)

printf "\t%d", words

if (do_chars)

printf "\t%d", chars

printf "\t%s\n", fname

}

Chapter 11: Practical awk Programs 289

There is one rule that is executed for each line. It adds the length of the record, plus
one, to chars.3 Adding one plus the record length is needed because the newline character
separating records (the value of RS) is not part of the record itself, and thus not included
in its length. Next, lines is incremented for each line read, and words is incremented by
the value of NF, which is the number of “words” on this line:

do per line

{

chars += length($0) + 1 # get newline

lines++

words += NF

}

Finally, the END rule simply prints the totals for all the files:

END {

if (print_total) {

if (do_lines)

printf "\t%d", tlines

if (do_words)

printf "\t%d", twords

if (do_chars)

printf "\t%d", tchars

print "\ttotal"

}

}

11.3 A Grab Bag of awk Programs

This section is a large “grab bag” of miscellaneous programs. We hope you find them both
interesting and enjoyable.

11.3.1 Finding Duplicated Words in a Document

A common error when writing large amounts of prose is to accidentally duplicate words.
Typically you will see this in text as something like “the the program does the following. . . ”
When the text is online, often the duplicated words occur at the end of one line and the
the beginning of another, making them very difficult to spot.

This program, dupword.awk, scans through a file one line at a time and looks for adjacent
occurrences of the same word. It also saves the last word on a line (in the variable prev)
for comparison with the first word on the next line.

The first two statements make sure that the line is all lowercase, so that, for example,
“The” and “the” compare equal to each other. The next statement replaces nonalphanu-
meric and nonwhitespace characters with spaces, so that punctuation does not affect the
comparison either. The characters are replaced with spaces so that formatting controls
don’t create nonsense words (e.g., the Texinfo ‘@code{NF}’ becomes ‘codeNF’ if punctua-
tion is simply deleted). The record is then resplit into fields, yielding just the actual words
on the line, and ensuring that there are no empty fields.

3 Because gawk understands multibyte locales, this code counts characters, not bytes.

290 GAWK: Effective AWK Programming

If there are no fields left after removing all the punctuation, the current record is skipped.
Otherwise, the program loops through each word, comparing it to the previous one:

dupword.awk --- find duplicate words in text

{

$0 = tolower($0)

gsub(/[^[:alnum:][:blank:]]/, " ");

$0 = $0 # re-split

if (NF == 0)

next

if ($1 == prev)

printf("%s:%d: duplicate %s\n",

FILENAME, FNR, $1)

for (i = 2; i <= NF; i++)

if ($i == $(i-1))

printf("%s:%d: duplicate %s\n",

FILENAME, FNR, $i)

prev = $NF

}

11.3.2 An Alarm Clock Program

Nothing cures insomnia like a ringing alarm clock.
—Arnold Robbins

Sleep is for web developers.
—Erik Quanstrom

The following program is a simple “alarm clock” program. You give it a time of day and
an optional message. At the specified time, it prints the message on the standard output.
In addition, you can give it the number of times to repeat the message as well as a delay
between repetitions.

This program uses the getlocaltime() function from Section 10.2.7 [Managing the
Time of Day], page 241.

All the work is done in the BEGIN rule. The first part is argument checking and setting
of defaults: the delay, the count, and the message to print. If the user supplied a message
without the ASCII BEL character (known as the “alert” character, "\a"), then it is added
to the message. (On many systems, printing the ASCII BEL generates an audible alert.
Thus, when the alarm goes off, the system calls attention to itself in case the user is not
looking at the computer.) Just for a change, this program uses a switch statement (see
Section 7.4.5 [The switch Statement], page 151), but the processing could be done with a
series of if-else statements instead. Here is the program:

alarm.awk --- set an alarm

#

Requires getlocaltime() library function

usage: alarm time ["message" [count [delay]]]

BEGIN {

Initial argument sanity checking

Chapter 11: Practical awk Programs 291

usage1 = "usage: alarm time ['message' [count [delay]]]"

usage2 = sprintf("\t(%s) time ::= hh:mm", ARGV[1])

if (ARGC < 2) {

print usage1 > "/dev/stderr"

print usage2 > "/dev/stderr"

exit 1

}

switch (ARGC) {

case 5:

delay = ARGV[4] + 0

fall through

case 4:

count = ARGV[3] + 0

fall through

case 3:

message = ARGV[2]

break

default:

if (ARGV[1] !~ /[[:digit:]]?[[:digit:]]:[[:digit:]]{2}/) {

print usage1 > "/dev/stderr"

print usage2 > "/dev/stderr"

exit 1

}

break

}

set defaults for once we reach the desired time

if (delay == 0)

delay = 180 # 3 minutes

if (count == 0)

count = 5

if (message == "")

message = sprintf("\aIt is now %s!\a", ARGV[1])

else if (index(message, "\a") == 0)

message = "\a" message "\a"

The next section of code turns the alarm time into hours and minutes, converts it (if
necessary) to a 24-hour clock, and then turns that time into a count of the seconds since
midnight. Next it turns the current time into a count of seconds since midnight. The
difference between the two is how long to wait before setting off the alarm:

split up alarm time

split(ARGV[1], atime, ":")

hour = atime[1] + 0 # force numeric

minute = atime[2] + 0 # force numeric

get current broken down time

292 GAWK: Effective AWK Programming

getlocaltime(now)

if time given is 12-hour hours and it's after that

hour, e.g., `alarm 5:30' at 9 a.m. means 5:30 p.m.,

then add 12 to real hour

if (hour < 12 && now["hour"] > hour)

hour += 12

set target time in seconds since midnight

target = (hour * 60 * 60) + (minute * 60)

get current time in seconds since midnight

current = (now["hour"] * 60 * 60) + \

(now["minute"] * 60) + now["second"]

how long to sleep for

naptime = target - current

if (naptime <= 0) {

print "alarm: time is in the past!" > "/dev/stderr"

exit 1

}

Finally, the program uses the system() function (see Section 9.1.4 [Input/Output Func-
tions], page 201) to call the sleep utility. The sleep utility simply pauses for the given
number of seconds. If the exit status is not zero, the program assumes that sleep was
interrupted and exits. If sleep exited with an OK status (zero), then the program prints
the message in a loop, again using sleep to delay for however many seconds are necessary:

zzzzzz..... go away if interrupted

if (system(sprintf("sleep %d", naptime)) != 0)

exit 1

time to notify!

command = sprintf("sleep %d", delay)

for (i = 1; i <= count; i++) {

print message

if sleep command interrupted, go away

if (system(command) != 0)

break

}

exit 0

}

11.3.3 Transliterating Characters

The system tr utility transliterates characters. For example, it is often used to map upper-
case letters into lowercase for further processing:

generate data | tr 'A-Z' 'a-z' | process data ...

Chapter 11: Practical awk Programs 293

tr requires two lists of characters.4 When processing the input, the first character in
the first list is replaced with the first character in the second list, the second character in
the first list is replaced with the second character in the second list, and so on. If there are
more characters in the “from” list than in the “to” list, the last character of the “to” list is
used for the remaining characters in the “from” list.

Once upon a time, a user proposed adding a transliteration function to gawk. The
following program was written to prove that character transliteration could be done with
a user-level function. This program is not as complete as the system tr utility, but it does
most of the job.

The translate program was written long before gawk acquired the ability to split each
character in a string into separate array elements. Thus, it makes repeated use of the
substr(), index(), and gsub() built-in functions (see Section 9.1.3 [String-Manipulation
Functions], page 189). There are two functions. The first, stranslate(), takes three
arguments:

from A list of characters from which to translate

to A list of characters to which to translate

target The string on which to do the translation

Associative arrays make the translation part fairly easy. t_ar holds the “to” characters,
indexed by the “from” characters. Then a simple loop goes through from, one character at
a time. For each character in from, if the character appears in target, it is replaced with
the corresponding to character.

The translate() function calls stranslate(), using $0 as the target. The main pro-
gram sets two global variables, FROM and TO, from the command line, and then changes
ARGV so that awk reads from the standard input.

Finally, the processing rule simply calls translate() for each record:

translate.awk --- do tr-like stuff

Bugs: does not handle things like tr A-Z a-z; it has

to be spelled out. However, if `to' is shorter than `from',

the last character in `to' is used for the rest of `from'.

function stranslate(from, to, target, lf, lt, ltarget, t_ar, i, c,

result)

{

lf = length(from)

lt = length(to)

ltarget = length(target)

for (i = 1; i <= lt; i++)

t_ar[substr(from, i, 1)] = substr(to, i, 1)

if (lt < lf)

for (; i <= lf; i++)

t_ar[substr(from, i, 1)] = substr(to, lt, 1)

4 On some older systems, including Solaris, the system version of tr may require that the lists be written as
range expressions enclosed in square brackets (‘[a-z]’) and quoted, to prevent the shell from attempting
a file name expansion. This is not a feature.

294 GAWK: Effective AWK Programming

for (i = 1; i <= ltarget; i++) {

c = substr(target, i, 1)

if (c in t_ar)

c = t_ar[c]

result = result c

}

return result

}

function translate(from, to)

{

return $0 = stranslate(from, to, $0)

}

main program

BEGIN {

if (ARGC < 3) {

print "usage: translate from to" > "/dev/stderr"

exit

}

FROM = ARGV[1]

TO = ARGV[2]

ARGC = 2

ARGV[1] = "-"

}

{

translate(FROM, TO)

print

}

It is possible to do character transliteration in a user-level function, but it is not neces-
sarily efficient, and we (the gawk developers) started to consider adding a built-in function.
However, shortly after writing this program, we learned that Brian Kernighan had added
the toupper() and tolower() functions to his awk (see Section 9.1.3 [String-Manipulation
Functions], page 189). These functions handle the vast majority of the cases where charac-
ter transliteration is necessary, and so we chose to simply add those functions to gawk as
well and then leave well enough alone.

An obvious improvement to this program would be to set up the t_ar array only once,
in a BEGIN rule. However, this assumes that the “from” and “to” lists will never change
throughout the lifetime of the program.

Another obvious improvement is to enable the use of ranges, such as ‘a-z’, as allowed
by the tr utility. Look at the code for cut.awk (see Section 11.2.1 [Cutting Out Fields and
Columns], page 269) for inspiration.

Chapter 11: Practical awk Programs 295

11.3.4 Printing Mailing Labels

Here is a “real-world”5 program. This script reads lists of names and addresses and generates
mailing labels. Each page of labels has 20 labels on it, two across and 10 down. The
addresses are guaranteed to be no more than five lines of data. Each address is separated
from the next by a blank line.

The basic idea is to read 20 labels’ worth of data. Each line of each label is stored in
the line array. The single rule takes care of filling the line array and printing the page
when 20 labels have been read.

The BEGIN rule simply sets RS to the empty string, so that awk splits records at blank
lines (see Section 4.1 [How Input Is Split into Records], page 61). It sets MAXLINES to 100,
because 100 is the maximum number of lines on the page (20 · 5 = 100).

Most of the work is done in the printpage() function. The label lines are stored
sequentially in the line array. But they have to print horizontally: line[1] next to
line[6], line[2] next to line[7], and so on. Two loops accomplish this. The outer loop,
controlled by i, steps through every 10 lines of data; this is each row of labels. The inner
loop, controlled by j, goes through the lines within the row. As j goes from 0 to 4, ‘i+j’
is the jth line in the row, and ‘i+j+5’ is the entry next to it. The output ends up looking
something like this:

line 1 line 6

line 2 line 7

line 3 line 8

line 4 line 9

line 5 line 10

...

The printf format string ‘%-41s’ left-aligns the data and prints it within a fixed-width
field.

As a final note, an extra blank line is printed at lines 21 and 61, to keep the output
lined up on the labels. This is dependent on the particular brand of labels in use when the
program was written. You will also note that there are two blank lines at the top and two
blank lines at the bottom.

The END rule arranges to flush the final page of labels; there may not have been an even
multiple of 20 labels in the data:

labels.awk --- print mailing labels

Each label is 5 lines of data that may have blank lines.

The label sheets have 2 blank lines at the top and 2 at

the bottom.

BEGIN { RS = "" ; MAXLINES = 100 }

function printpage(i, j)

{

if (Nlines <= 0)

5 “Real world” is defined as “a program actually used to get something done.”

296 GAWK: Effective AWK Programming

return

printf "\n\n" # header

for (i = 1; i <= Nlines; i += 10) {

if (i == 21 || i == 61)

print ""

for (j = 0; j < 5; j++) {

if (i + j > MAXLINES)

break

printf " %-41s %s\n", line[i+j], line[i+j+5]

}

print ""

}

printf "\n\n" # footer

delete line

}

main rule

{

if (Count >= 20) {

printpage()

Count = 0

Nlines = 0

}

n = split($0, a, "\n")

for (i = 1; i <= n; i++)

line[++Nlines] = a[i]

for (; i <= 5; i++)

line[++Nlines] = ""

Count++

}

END {

printpage()

}

11.3.5 Generating Word-Usage Counts

When working with large amounts of text, it can be interesting to know how often different
words appear. For example, an author may overuse certain words, in which case he or she
might wish to find synonyms to substitute for words that appear too often. This subsection
develops a program for counting words and presenting the frequency information in a useful
format.

At first glance, a program like this would seem to do the job:

Chapter 11: Practical awk Programs 297

wordfreq-first-try.awk --- print list of word frequencies

{

for (i = 1; i <= NF; i++)

freq[$i]++

}

END {

for (word in freq)

printf "%s\t%d\n", word, freq[word]

}

The program relies on awk’s default field-splitting mechanism to break each line up into
“words” and uses an associative array named freq, indexed by each word, to count the
number of times the word occurs. In the END rule, it prints the counts.

This program has several problems that prevent it from being useful on real text files:

• The awk language considers upper- and lowercase characters to be distinct. Therefore,
“bartender” and “Bartender” are not treated as the same word. This is undesirable,
because words are capitalized if they begin sentences in normal text, and a frequency
analyzer should not be sensitive to capitalization.

• Words are detected using the awk convention that fields are separated just by white-
space. Other characters in the input (except newlines) don’t have any special meaning
to awk. This means that punctuation characters count as part of words.

• The output does not come out in any useful order. You’re more likely to be interested in
which words occur most frequently or in having an alphabetized table of how frequently
each word occurs.

The first problem can be solved by using tolower() to remove case distinctions. The
second problem can be solved by using gsub() to remove punctuation characters. Finally,
we solve the third problem by using the system sort utility to process the output of the
awk script. Here is the new version of the program:

wordfreq.awk --- print list of word frequencies

{

$0 = tolower($0) # remove case distinctions

remove punctuation

gsub(/[^[:alnum:]_[:blank:]]/, "", $0)

for (i = 1; i <= NF; i++)

freq[$i]++

}

END {

for (word in freq)

printf "%s\t%d\n", word, freq[word]

}

The regexp /[^[:alnum:]_[:blank:]]/ might have been written /[[:punct:]]/, but
then underscores would also be removed, and we want to keep them.

298 GAWK: Effective AWK Programming

Assuming we have saved this program in a file named wordfreq.awk, and that the data
is in file1, the following pipeline:

awk -f wordfreq.awk file1 | sort -k 2nr

produces a table of the words appearing in file1 in order of decreasing frequency.

The awk program suitably massages the data and produces a word frequency table, which
is not ordered. The awk script’s output is then sorted by the sort utility and printed on
the screen.

The options given to sort specify a sort that uses the second field of each input line
(skipping one field), that the sort keys should be treated as numeric quantities (otherwise
‘15’ would come before ‘5’), and that the sorting should be done in descending (reverse)
order.

The sort could even be done from within the program, by changing the END action to:

END {

sort = "sort -k 2nr"

for (word in freq)

printf "%s\t%d\n", word, freq[word] | sort

close(sort)

}

This way of sorting must be used on systems that do not have true pipes at the command-
line (or batch-file) level. See the general operating system documentation for more infor-
mation on how to use the sort program.

11.3.6 Removing Duplicates from Unsorted Text

The uniq program (see Section 11.2.6 [Printing Nonduplicated Lines of Text], page 283)
removes duplicate lines from sorted data.

Suppose, however, you need to remove duplicate lines from a data file but that you want
to preserve the order the lines are in. A good example of this might be a shell history file.
The history file keeps a copy of all the commands you have entered, and it is not unusual
to repeat a command several times in a row. Occasionally you might want to compact
the history by removing duplicate entries. Yet it is desirable to maintain the order of the
original commands.

This simple program does the job. It uses two arrays. The data array is indexed by
the text of each line. For each line, data[$0] is incremented. If a particular line has not
been seen before, then data[$0] is zero. In this case, the text of the line is stored in
lines[count]. Each element of lines is a unique command, and the indices of lines
indicate the order in which those lines are encountered. The END rule simply prints out the
lines, in order:

histsort.awk --- compact a shell history file

Thanks to Byron Rakitzis for the general idea

{

if (data[$0]++ == 0)

lines[++count] = $0

}

Chapter 11: Practical awk Programs 299

END {

for (i = 1; i <= count; i++)

print lines[i]

}

This program also provides a foundation for generating other useful information. For
example, using the following print statement in the END rule indicates how often a particular
command is used:

print data[lines[i]], lines[i]

This works because data[$0] is incremented each time a line is seen.

Rick van Rein offers the following one-liner to do the same job of removing duplicates
from unsorted text:

awk '{ if (! seen[$0]++) print }'

This can be simplified even further, at the risk of becoming almost too obscure:

awk '! seen[$0]++'

This version uses the expression as a pattern, relying on awk’s default action of printing the
line when the pattern is true.

11.3.7 Extracting Programs from Texinfo Source Files

Both this chapter and the previous chapter (Chapter 10 [A Library of awk Functions],
page 233) present a large number of awk programs. If you want to experiment with these
programs, it is tedious to type them in by hand. Here we present a program that can extract
parts of a Texinfo input file into separate files.

This book is written in Texinfo, the GNU Project’s document formatting language. A
single Texinfo source file can be used to produce both printed documentation, with TEX,
and online documentation. (Texinfo is fully documented in the book Texinfo—The GNU
Documentation Format, available from the Free Software Foundation, and also available
online.)

For our purposes, it is enough to know three things about Texinfo input files:

• The “at” symbol (‘@’) is special in Texinfo, much as the backslash (‘\’) is in C or awk.
Literal ‘@’ symbols are represented in Texinfo source files as ‘@@’.

• Comments start with either ‘@c’ or ‘@comment’. The file-extraction program works by
using special comments that start at the beginning of a line.

• Lines containing ‘@group’ and ‘@end group’ commands bracket example text that
should not be split across a page boundary. (Unfortunately, TEX isn’t always smart
enough to do things exactly right, so we have to give it some help.)

The following program, extract.awk, reads through a Texinfo source file and does two
things, based on the special comments. Upon seeing ‘@c system ...’, it runs a com-
mand, by extracting the command text from the control line and passing it on to the
system() function (see Section 9.1.4 [Input/Output Functions], page 201). Upon seeing
‘@c file filename’, each subsequent line is sent to the file filename, until ‘@c endfile’
is encountered. The rules in extract.awk match either ‘@c’ or ‘@comment’ by letting the
‘omment’ part be optional. Lines containing ‘@group’ and ‘@end group’ are simply removed.
extract.awk uses the join() library function (see Section 10.2.6 [Merging an Array into
a String], page 241).

https://www.gnu.org/software/texinfo/
https://www.gnu.org/software/texinfo/manual/texinfo/

300 GAWK: Effective AWK Programming

The example programs in the online Texinfo source for GAWK: Effective AWK Pro-
gramming (gawktexi.in) have all been bracketed inside ‘file’ and ‘endfile’ lines. The
gawk distribution uses a copy of extract.awk to extract the sample programs and install
many of them in a standard directory where gawk can find them. The Texinfo file looks
something like this:

...

This program has a @code{BEGIN} rule

that prints a nice message:

@example

@c file examples/messages.awk

BEGIN @{ print "Don't panic!" @}

@c endfile

@end example

It also prints some final advice:

@example

@c file examples/messages.awk

END @{ print "Always avoid bored archaeologists!" @}

@c endfile

@end example

...

extract.awk begins by setting IGNORECASE to one, so that mixed upper- and lowercase
letters in the directives won’t matter.

The first rule handles calling system(), checking that a command is given (NF is at least
three) and also checking that the command exits with a zero exit status, signifying OK:

extract.awk --- extract files and run programs from Texinfo files

BEGIN { IGNORECASE = 1 }

/^@c(omment)?[\t]+system/ {

if (NF < 3) {

e = ("extract: " FILENAME ":" FNR)

e = (e ": badly formed `system' line")

print e > "/dev/stderr"

next

}

$1 = ""

$2 = ""

stat = system($0)

if (stat != 0) {

e = ("extract: " FILENAME ":" FNR)

e = (e ": warning: system returned " stat)

print e > "/dev/stderr"

}

Chapter 11: Practical awk Programs 301

}

The variable e is used so that the rule fits nicely on the page.

The second rule handles moving data into files. It verifies that a file name is given in the
directive. If the file named is not the current file, then the current file is closed. Keeping
the current file open until a new file is encountered allows the use of the ‘>’ redirection for
printing the contents, keeping open-file management simple.

The for loop does the work. It reads lines using getline (see Section 4.10 [Explicit
Input with getline], page 82). For an unexpected end-of-file, it calls the unexpected_eof()
function. If the line is an “endfile” line, then it breaks out of the loop. If the line is an
‘@group’ or ‘@end group’ line, then it ignores it and goes on to the next line. Similarly,
comments within examples are also ignored.

Most of the work is in the following few lines. If the line has no ‘@’ symbols, the program
can print it directly. Otherwise, each leading ‘@’ must be stripped off. To remove the ‘@’
symbols, the line is split into separate elements of the array a, using the split() function
(see Section 9.1.3 [String-Manipulation Functions], page 189). The ‘@’ symbol is used as the
separator character. Each element of a that is empty indicates two successive ‘@’ symbols
in the original line. For each two empty elements (‘@@’ in the original file), we have to add
a single ‘@’ symbol back in.

When the processing of the array is finished, join() is called with the value of SUBSEP
(see Section 8.5 [Multidimensional Arrays], page 182), to rejoin the pieces back into a single
line. That line is then printed to the output file:

/^@c(omment)?[\t]+file/ {

if (NF != 3) {

e = ("extract: " FILENAME ":" FNR ": badly formed `file' line")

print e > "/dev/stderr"

next

}

if ($3 != curfile) {

if (curfile != "")

filelist[curfile] = 1 # save to close later

curfile = $3

}

for (;;) {

if ((getline line) <= 0)

unexpected_eof()

if (line ~ /^@c(omment)?[\t]+endfile/)

break

else if (line ~ /^@(end[\t]+)?group/)

continue

else if (line ~ /^@c(omment+)?[\t]+/)

continue

if (index(line, "@") == 0) {

print line > curfile

continue

302 GAWK: Effective AWK Programming

}

n = split(line, a, "@")

if a[1] == "", means leading @,

don't add one back in.

for (i = 2; i <= n; i++) {

if (a[i] == "") { # was an @@

a[i] = "@"

if (a[i+1] == "")

i++

}

}

print join(a, 1, n, SUBSEP) > curfile

}

}

An important thing to note is the use of the ‘>’ redirection. Output done with ‘>’
only opens the file once; it stays open and subsequent output is appended to the file (see
Section 5.6 [Redirecting Output of print and printf], page 102). This makes it easy to
mix program text and explanatory prose for the same sample source file (as has been done
here!) without any hassle. The file is only closed when a new data file name is encountered
or at the end of the input file.

When a new file name is encountered, instead of closing the file, the program saves the
name of the current file in filelist. This makes it possible to interleave the code for more
than one file in the Texinfo input file. (Previous versions of this program did close the file.
But because of the ‘>’ redirection, a file whose parts were not all one after the other ended
up getting clobbered.) An END rule then closes all the open files when processing is finished:

END {

close(curfile) # close the last one

for (f in filelist) # close all the rest

close(f)

}

Finally, the function unexpected_eof() prints an appropriate error message and then
exits:

function unexpected_eof()

{

printf("extract: %s:%d: unexpected EOF or error\n",

FILENAME, FNR) > "/dev/stderr"

exit 1

}

11.3.8 A Simple Stream Editor

The sed utility is a stream editor, a program that reads a stream of data, makes changes
to it, and passes it on. It is often used to make global changes to a large file or to a stream
of data generated by a pipeline of commands. Although sed is a complicated program in
its own right, its most common use is to perform global substitutions in the middle of a
pipeline:

command1 < orig.data | sed 's/old/new/g' | command2 > result

Chapter 11: Practical awk Programs 303

Here, ‘s/old/new/g’ tells sed to look for the regexp ‘old’ on each input line and globally
replace it with the text ‘new’ (i.e., all the occurrences on a line). This is similar to awk’s
gsub() function (see Section 9.1.3 [String-Manipulation Functions], page 189).

The following program, awksed.awk, accepts at least two command-line arguments: the
pattern to look for and the text to replace it with. Any additional arguments are treated
as data file names to process. If none are provided, the standard input is used:

awksed.awk --- do s/foo/bar/g using just print

Thanks to Michael Brennan for the idea

function usage()

{

print "usage: awksed pat repl [files...]" > "/dev/stderr"

exit 1

}

BEGIN {

validate arguments

if (ARGC < 3)

usage()

RS = ARGV[1]

ORS = ARGV[2]

don't use arguments as files

ARGV[1] = ARGV[2] = ""

}

look ma, no hands!

{

if (RT == "")

printf "%s", $0

else

print

}

The program relies on gawk’s ability to have RS be a regexp, as well as on the setting of
RT to the actual text that terminates the record (see Section 4.1 [How Input Is Split into
Records], page 61).

The idea is to have RS be the pattern to look for. gawk automatically sets $0 to the text
between matches of the pattern. This is text that we want to keep, unmodified. Then, by
setting ORS to the replacement text, a simple print statement outputs the text we want to
keep, followed by the replacement text.

There is one wrinkle to this scheme, which is what to do if the last record doesn’t end
with text that matches RS. Using a print statement unconditionally prints the replacement
text, which is not correct. However, if the file did not end in text that matches RS, RT is
set to the null string. In this case, we can print $0 using printf (see Section 5.5 [Using
printf Statements for Fancier Printing], page 96).

304 GAWK: Effective AWK Programming

The BEGIN rule handles the setup, checking for the right number of arguments and calling
usage() if there is a problem. Then it sets RS and ORS from the command-line arguments
and sets ARGV[1] and ARGV[2] to the null string, so that they are not treated as file names
(see Section 7.5.3 [Using ARGC and ARGV], page 166).

The usage() function prints an error message and exits. Finally, the single rule handles
the printing scheme outlined earlier, using print or printf as appropriate, depending upon
the value of RT.

11.3.9 An Easy Way to Use Library Functions

In Section 2.7 [Including Other Files into Your Program], page 43, we saw how gawk provides
a built-in file-inclusion capability. However, this is a gawk extension. This section provides
the motivation for making file inclusion available for standard awk, and shows how to do it
using a combination of shell and awk programming.

Using library functions in awk can be very beneficial. It encourages code reuse and the
writing of general functions. Programs are smaller and therefore clearer. However, using
library functions is only easy when writing awk programs; it is painful when running them,
requiring multiple -f options. If gawk is unavailable, then so too is the AWKPATH environ-
ment variable and the ability to put awk functions into a library directory (see Section 2.2
[Command-Line Options], page 31). It would be nice to be able to write programs in the
following manner:

library functions

@include getopt.awk

@include join.awk

...

main program

BEGIN {

while ((c = getopt(ARGC, ARGV, "a:b:cde")) != -1)

...

...

}

The following program, igawk.sh, provides this service. It simulates gawk’s searching
of the AWKPATH variable and also allows nested includes (i.e., a file that is included with
@include can contain further @include statements). igawk makes an effort to only include
files once, so that nested includes don’t accidentally include a library function twice.

igawk should behave just like gawk externally. This means it should accept all of gawk’s
command-line arguments, including the ability to have multiple source files specified via -f

and the ability to mix command-line and library source files.

The program is written using the POSIX Shell (sh) command language.6 It works as
follows:

1. Loop through the arguments, saving anything that doesn’t represent awk source code
for later, when the expanded program is run.

6 Fully explaining the sh language is beyond the scope of this book. We provide some minimal explanations,
but see a good shell programming book if you wish to understand things in more depth.

Chapter 11: Practical awk Programs 305

2. For any arguments that do represent awk text, put the arguments into a shell variable
that will be expanded. There are two cases:

a. Literal text, provided with -e or --source. This text is just appended directly.

b. Source file names, provided with -f. We use a neat trick and append ‘@include
filename’ to the shell variable’s contents. Because the file-inclusion program works
the way gawk does, this gets the text of the file included in the program at the
correct point.

3. Run an awk program (naturally) over the shell variable’s contents to expand @include

statements. The expanded program is placed in a second shell variable.

4. Run the expanded program with gawk and any other original command-line arguments
that the user supplied (such as the data file names).

This program uses shell variables extensively: for storing command-line arguments and
the text of the awk program that will expand the user’s program, for the user’s original
program, and for the expanded program. Doing so removes some potential problems that
might arise were we to use temporary files instead, at the cost of making the script somewhat
more complicated.

The initial part of the program turns on shell tracing if the first argument is ‘debug’.

The next part loops through all the command-line arguments. There are several cases
of interest:

-- This ends the arguments to igawk. Anything else should be passed on to the
user’s awk program without being evaluated.

-W This indicates that the next option is specific to gawk. To make argument
processing easier, the -W is appended to the front of the remaining arguments
and the loop continues. (This is an sh programming trick. Don’t worry about
it if you are not familiar with sh.)

-v, -F These are saved and passed on to gawk.

-f, --file, --file=, -Wfile=
The file name is appended to the shell variable program with an @include

statement. The expr utility is used to remove the leading option part of the
argument (e.g., ‘--file=’). (Typical sh usage would be to use the echo and sed

utilities to do this work. Unfortunately, some versions of echo evaluate escape
sequences in their arguments, possibly mangling the program text. Using expr

avoids this problem.)

--source, --source=, -Wsource=
The source text is appended to program.

--version, -Wversion
igawk prints its version number, runs ‘gawk --version’ to get the gawk version
information, and then exits.

If none of the -f, --file, -Wfile, --source, or -Wsource arguments are supplied, then
the first nonoption argument should be the awk program. If there are no command-line
arguments left, igawk prints an error message and exits. Otherwise, the first argument

306 GAWK: Effective AWK Programming

is appended to program. In any case, after the arguments have been processed, the shell
variable program contains the complete text of the original awk program.

The program is as follows:

#! /bin/sh

igawk --- like gawk but do @include processing

if ["$1" = debug]

then

set -x

shift

fi

A literal newline, so that program text is formatted correctly

n='

'

Initialize variables to empty

program=

opts=

while [$# -ne 0] # loop over arguments

do

case $1 in

--) shift

break ;;

-W) shift

The ${x?'message here'} construct prints a

diagnostic if $x is the null string

set -- -W"${@?'missing operand'}"

continue ;;

-[vF]) opts="$opts $1 '${2?'missing operand'}'"

shift ;;

-[vF]*) opts="$opts '$1'" ;;

-f) program="$program$n@include ${2?'missing operand'}"

shift ;;

-f*) f=$(expr "$1" : '-f\(.*\)')

program="$program$n@include $f" ;;

-[W-]file=*)

f=$(expr "$1" : '-.file=\(.*\)')

program="$program$n@include $f" ;;

Chapter 11: Practical awk Programs 307

-[W-]file)

program="$program$n@include ${2?'missing operand'}"

shift ;;

-[W-]source=*)

t=$(expr "$1" : '-.source=\(.*\)')

program="$program$n$t" ;;

-[W-]source)

program="$program$n${2?'missing operand'}"

shift ;;

-[W-]version)

echo igawk: version 3.0 1>&2

gawk --version

exit 0 ;;

-[W-]*) opts="$opts '$1'" ;;

*) break ;;

esac

shift

done

if [-z "$program"]

then

program=${1?'missing program'}

shift

fi

At this point, `program' has the program.

The awk program to process @include directives is stored in the shell variable expand_
prog. Doing this keeps the shell script readable. The awk program reads through the user’s
program, one line at a time, using getline (see Section 4.10 [Explicit Input with getline],
page 82). The input file names and @include statements are managed using a stack. As
each @include is encountered, the current file name is “pushed” onto the stack and the file
named in the @include directive becomes the current file name. As each file is finished, the
stack is “popped,” and the previous input file becomes the current input file again. The
process is started by making the original file the first one on the stack.

The pathto() function does the work of finding the full path to a file. It simulates
gawk’s behavior when searching the AWKPATH environment variable (see Section 2.5.1 [The
AWKPATH Environment Variable], page 39). If a file name has a ‘/’ in it, no path search is
done. Similarly, if the file name is "-", then that string is used as-is. Otherwise, the file
name is concatenated with the name of each directory in the path, and an attempt is made
to open the generated file name. The only way to test if a file can be read in awk is to go

308 GAWK: Effective AWK Programming

ahead and try to read it with getline; this is what pathto() does.7 If the file can be read,
it is closed and the file name is returned:

expand_prog='

function pathto(file, i, t, junk)

{

if (index(file, "/") != 0)

return file

if (file == "-")

return file

for (i = 1; i <= ndirs; i++) {

t = (pathlist[i] "/" file)

if ((getline junk < t) > 0) {

found it

close(t)

return t

}

}

return ""

}

The main program is contained inside one BEGIN rule. The first thing it does is set up
the pathlist array that pathto() uses. After splitting the path on ‘:’, null elements are
replaced with ".", which represents the current directory:

BEGIN {

path = ENVIRON["AWKPATH"]

ndirs = split(path, pathlist, ":")

for (i = 1; i <= ndirs; i++) {

if (pathlist[i] == "")

pathlist[i] = "."

}

The stack is initialized with ARGV[1], which will be "/dev/stdin". The main loop
comes next. Input lines are read in succession. Lines that do not start with @include are
printed verbatim. If the line does start with @include, the file name is in $2. pathto() is
called to generate the full path. If it cannot, then the program prints an error message and
continues.

The next thing to check is if the file is included already. The processed array is indexed
by the full file name of each included file and it tracks this information for us. If the file is
seen again, a warning message is printed. Otherwise, the new file name is pushed onto the
stack and processing continues.

Finally, when getline encounters the end of the input file, the file is closed and the
stack is popped. When stackptr is less than zero, the program is done:

7 On some very old versions of awk, the test ‘getline junk < t’ can loop forever if the file exists but is
empty.

Chapter 11: Practical awk Programs 309

stackptr = 0

input[stackptr] = ARGV[1] # ARGV[1] is first file

for (; stackptr >= 0; stackptr--) {

while ((getline < input[stackptr]) > 0) {

if (tolower($1) != "@include") {

print

continue

}

fpath = pathto($2)

if (fpath == "") {

printf("igawk: %s:%d: cannot find %s\n",

input[stackptr], FNR, $2) > "/dev/stderr"

continue

}

if (! (fpath in processed)) {

processed[fpath] = input[stackptr]

input[++stackptr] = fpath # push onto stack

} else

print $2, "included in", input[stackptr],

"already included in",

processed[fpath] > "/dev/stderr"

}

close(input[stackptr])

}

}' # close quote ends `expand_prog' variable

processed_program=$(gawk -- "$expand_prog" /dev/stdin << EOF

$program

EOF

)

The shell construct ‘command << marker’ is called a here document. Everything in the
shell script up to the marker is fed to command as input. The shell processes the contents
of the here document for variable and command substitution (and possibly other things as
well, depending upon the shell).

The shell construct ‘$(...)’ is called command substitution. The output of the com-
mand inside the parentheses is substituted into the command line. Because the result is
used in a variable assignment, it is saved as a single string, even if the results contain
whitespace.

The expanded program is saved in the variable processed_program. It’s done in these
steps:

1. Run gawk with the @include-processing program (the value of the expand_prog shell
variable) reading standard input.

2. Standard input is the contents of the user’s program, from the shell variable program.
Feed its contents to gawk via a here document.

310 GAWK: Effective AWK Programming

3. Save the results of this processing in the shell variable processed_program by using
command substitution.

The last step is to call gawk with the expanded program, along with the original options
and command-line arguments that the user supplied:

eval gawk $opts -- '"$processed_program"' '"$@"'

The eval command is a shell construct that reruns the shell’s parsing process. This
keeps things properly quoted.

This version of igawk represents the fifth version of this program. There are four key
simplifications that make the program work better:

• Using @include even for the files named with -f makes building the initial collected
awk program much simpler; all the @include processing can be done once.

• Not trying to save the line read with getline in the pathto() function when testing
for the file’s accessibility for use with the main program simplifies things considerably.

• Using a getline loop in the BEGIN rule does it all in one place. It is not necessary to
call out to a separate loop for processing nested @include statements.

• Instead of saving the expanded program in a temporary file, putting it in a shell variable
avoids some potential security problems. This has the disadvantage that the script relies
upon more features of the sh language, making it harder to follow for those who aren’t
familiar with sh.

Also, this program illustrates that it is often worthwhile to combine sh and awk pro-
gramming together. You can usually accomplish quite a lot, without having to resort to
low-level programming in C or C++, and it is frequently easier to do certain kinds of string
and argument manipulation using the shell than it is in awk.

Finally, igawk shows that it is not always necessary to add new features to a program;
they can often be layered on top.8

11.3.10 Finding Anagrams from a Dictionary

An interesting programming challenge is to search for anagrams in a word list (such as
/usr/share/dict/words on many GNU/Linux systems). One word is an anagram of an-
other if both words contain the same letters (e.g., “babbling” and “blabbing”).

Column 2, Problem C, of Jon Bentley’s Programming Pearls, Second Edition, presents
an elegant algorithm. The idea is to give words that are anagrams a common signature,
sort all the words together by their signatures, and then print them. Dr. Bentley observes
that taking the letters in each word and sorting them produces those common signatures.

The following program uses arrays of arrays to bring together words with the same
signature and array sorting to print the words in sorted order:

anagram.awk --- An implementation of the anagram-finding algorithm

from Jon Bentley's "Programming Pearls," 2nd edition.

Addison Wesley, 2000, ISBN 0-201-65788-0.

Column 2, Problem C, section 2.8, pp 18-20.

8 gawk does @include processing itself in order to support the use of awk programs as Web CGI scripts.

Chapter 11: Practical awk Programs 311

/'s$/ { next } # Skip possessives

The program starts with a header, and then a rule to skip possessives in the dictionary
file. The next rule builds up the data structure. The first dimension of the array is indexed
by the signature; the second dimension is the word itself:

{

key = word2key($1) # Build signature

data[key][$1] = $1 # Store word with signature

}

The word2key() function creates the signature. It splits the word apart into individual
letters, sorts the letters, and then joins them back together:

word2key --- split word apart into letters, sort, and join back together

function word2key(word, a, i, n, result)

{

n = split(word, a, "")

asort(a)

for (i = 1; i <= n; i++)

result = result a[i]

return result

}

Finally, the END rule traverses the array and prints out the anagram lists. It sends
the output to the system sort command because otherwise the anagrams would appear in
arbitrary order:

END {

sort = "sort"

for (key in data) {

Sort words with same key

nwords = asorti(data[key], words)

if (nwords == 1)

continue

And print. Minor glitch: trailing space at end of each line

for (j = 1; j <= nwords; j++)

printf("%s ", words[j]) | sort

print "" | sort

}

close(sort)

}

Here is some partial output when the program is run:

$ gawk -f anagram.awk /usr/share/dict/words | grep '^b'

...

babbled blabbed

babbler blabber brabble

312 GAWK: Effective AWK Programming

babblers blabbers brabbles

babbling blabbing

babbly blabby

babel bable

babels beslab

babery yabber

...

11.3.11 And Now for Something Completely Different

The following program was written by Davide Brini and is published on his website. It serves
as his signature in the Usenet group comp.lang.awk. He supplies the following copyright
terms:

Copyright c© 2008 Davide Brini

Copying and distribution of the code published in this page, with or without
modification, are permitted in any medium without royalty provided the copy-
right notice and this notice are preserved.

Here is the program:

awk 'BEGIN{O="~"~"~";o="=="=="==";o+=+o;x=O""O;while(X++<=x+o+o)c=c"%c";

printf c,(x-O)*(x-O),x*(x-o)-o,x*(x-O)+x-O-o,+x*(x-O)-x+o,X*(o*o+O)+x-O,

X*(X-x)-o*o,(x+X)*o*o+o,x*(X-x)-O-O,x-O+(O+o+X+x)*(o+O),X*X-X*(x-O)-x+O,

O+X*(o*(o+O)+O),+x+O+X*o,x*(x-o),(o+X+x)*o*o-(x-O-O),O+(X-x)*(X+O),x-O}'

We leave it to you to determine what the program does. (If you are truly desperate to
understand it, see Chris Johansen’s explanation, which is embedded in the Texinfo source
file for this book.)

11.4 Summary

• The programs provided in this chapter continue on the theme that reading programs
is an excellent way to learn Good Programming.

• Using ‘#!’ to make awk programs directly runnable makes them easier to use. Other-
wise, invoke the program using ‘awk -f ...’.

• Reimplementing standard POSIX programs in awk is a pleasant exercise; awk’s expres-
sive power lets you write such programs in relatively few lines of code, yet they are
functionally complete and usable.

• One of standard awk’s weaknesses is working with individual characters. The ability
to use split() with the empty string as the separator can considerably simplify such
tasks.

• The examples here demonstrate the usefulness of the library functions from Chapter 10
[A Library of awk Functions], page 233, for a number of real (if small) programs.

• Besides reinventing POSIX wheels, other programs solved a selection of interesting
problems, such as finding duplicate words in text, printing mailing labels, and finding
anagrams.

http://backreference.org/2011/02/03/obfuscated-awk/

Chapter 11: Practical awk Programs 313

11.5 Exercises

1. Rewrite cut.awk (see Section 11.2.1 [Cutting Out Fields and Columns], page 269) using
split() with "" as the separator.

2. In Section 11.2.2 [Searching for Regular Expressions in Files], page 274, we mentioned
that ‘egrep -i’ could be simulated in versions of awk without IGNORECASE by using
tolower() on the line and the pattern. In a footnote there, we also mentioned that
this solution has a bug: the translated line is output, and not the original one. Fix this
problem.

3. The POSIX version of id takes options that control which information is printed.
Modify the awk version (see Section 11.2.3 [Printing Out User Information], page 278)
to accept the same arguments and perform in the same way.

4. The split.awk program (see Section 11.2.4 [Splitting a Large File into Pieces],
page 280) assumes that letters are contiguous in the character set, which isn’t true for
EBCDIC systems. Fix this problem. (Hint: Consider a different way to work through
the alphabet, without relying on ord() and chr().)

5. In uniq.awk (see Section 11.2.6 [Printing Nonduplicated Lines of Text], page 283, the
logic for choosing which lines to print represents a state machine, which is “a device
that can be in one of a set number of stable conditions depending on its previous
condition and on the present values of its inputs.”9 Brian Kernighan suggests that “an
alternative approach to state machines is to just read the input into an array, then use
indexing. It’s almost always easier code, and for most inputs where you would use this,
just as fast.” Rewrite the logic to follow this suggestion.

6. Why can’t the wc.awk program (see Section 11.2.7 [Counting Things], page 287) just
use the value of FNR in endfile()? Hint: Examine the code in Section 10.3.1 [Noting
Data file Boundaries], page 245.

7. Manipulation of individual characters in the translate program (see Section 11.3.3
[Transliterating Characters], page 292) is painful using standard awk functions. Given
that gawk can split strings into individual characters using "" as the separator, how
might you use this feature to simplify the program?

8. The extract.awk program (see Section 11.3.7 [Extracting Programs from Texinfo
Source Files], page 299) was written before gawk had the gensub() function. Use
it to simplify the code.

9. Compare the performance of the awksed.awk program (see Section 11.3.8 [A Simple
Stream Editor], page 302) with the more straightforward:

BEGIN {

pat = ARGV[1]

repl = ARGV[2]

ARGV[1] = ARGV[2] = ""

}

{ gsub(pat, repl); print }

10. What are the advantages and disadvantages of awksed.awk versus the real sed utility?

9 This is the definition returned from entering define: state machine into Google.

314 GAWK: Effective AWK Programming

11. In Section 11.3.9 [An Easy Way to Use Library Functions], page 304, we mentioned that
not trying to save the line read with getline in the pathto() function when testing
for the file’s accessibility for use with the main program simplifies things considerably.
What problem does this engender though?

12. As an additional example of the idea that it is not always necessary to add new features
to a program, consider the idea of having two files in a directory in the search path:

default.awk

This file contains a set of default library functions, such as getopt() and
assert().

site.awk This file contains library functions that are specific to a site or installation;
i.e., locally developed functions. Having a separate file allows default.awk
to change with new gawk releases, without requiring the system adminis-
trator to update it each time by adding the local functions.

One user suggested that gawk be modified to automatically read these files upon
startup. Instead, it would be very simple to modify igawk to do this. Since igawk

can process nested @include directives, default.awk could simply contain @include

statements for the desired library functions. Make this change.

13. Modify anagram.awk (see Section 11.3.10 [Finding Anagrams from a Dictionary],
page 310), to avoid the use of the external sort utility.

Part III:

Moving Beyond Standard awk with gawk

Chapter 12: Advanced Features of gawk 317

12 Advanced Features of gawk

Write documentation as if whoever reads it is a violent psychopath who knows
where you live.

—Steve English, as quoted by Peter Langston

This chapter discusses advanced features in gawk. It’s a bit of a “grab bag” of items
that are otherwise unrelated to each other. First, we look at a command-line option that
allows gawk to recognize nondecimal numbers in input data, not just in awk programs. Then,
gawk’s special features for sorting arrays are presented. Next, two-way I/O, discussed briefly
in earlier parts of this book, is described in full detail, along with the basics of TCP/IP
networking. Finally, we see how gawk can profile an awk program, making it possible to
tune it for performance.

Additional advanced features are discussed in separate chapters of their own:

• Chapter 13 [Internationalization with gawk], page 335, discusses how to internationalize
your awk programs, so that they can speak multiple national languages.

• Chapter 14 [Debugging awk Programs], page 345, describes gawk’s built-in command-
line debugger for debugging awk programs.

• Chapter 16 [Arithmetic and Arbitrary-Precision Arithmetic with gawk], page 367, de-
scribes how you can use gawk to perform arbitrary-precision arithmetic.

• Chapter 17 [Writing Extensions for gawk], page 381, discusses the ability to dynamically
add new built-in functions to gawk.

12.1 Allowing Nondecimal Input Data

If you run gawk with the --non-decimal-data option, you can have nondecimal values in
your input data:

$ echo 0123 123 0x123 |

> gawk --non-decimal-data '{ printf "%d, %d, %d\n", $1, $2, $3 }'

a 83, 123, 291

For this feature to work, write your program so that gawk treats your data as numeric:

$ echo 0123 123 0x123 | gawk '{ print $1, $2, $3 }'

a 0123 123 0x123

The print statement treats its expressions as strings. Although the fields can act as num-
bers when necessary, they are still strings, so print does not try to treat them numerically.
You need to add zero to a field to force it to be treated as a number. For example:

$ echo 0123 123 0x123 | gawk --non-decimal-data '

> { print $1, $2, $3
> print $1 + 0, $2 + 0, $3 + 0 }'

a 0123 123 0x123

a 83 123 291

Because it is common to have decimal data with leading zeros, and because using this
facility could lead to surprising results, the default is to leave it disabled. If you want it,
you must explicitly request it.

CAUTION: Use of this option is not recommended. It can break old programs
very badly. Instead, use the strtonum() function to convert your data (see

318 GAWK: Effective AWK Programming

Section 9.1.3 [String-Manipulation Functions], page 189). This makes your
programs easier to write and easier to read, and leads to less surprising results.

This option may disappear in a future version of gawk.

12.2 Controlling Array Traversal and Array Sorting

gawk lets you control the order in which a ‘for (indx in array)’ loop traverses an array.

In addition, two built-in functions, asort() and asorti(), let you sort arrays based on
the array values and indices, respectively. These two functions also provide control over the
sorting criteria used to order the elements during sorting.

12.2.1 Controlling Array Traversal

By default, the order in which a ‘for (indx in array)’ loop scans an array is not defined;
it is generally based upon the internal implementation of arrays inside awk.

Often, though, it is desirable to be able to loop over the elements in a particular order
that you, the programmer, choose. gawk lets you do this.

Section 8.1.6 [Using Predefined Array Scanning Orders with gawk], page 176, describes
how you can assign special, predefined values to PROCINFO["sorted_in"] in order to control
the order in which gawk traverses an array during a for loop.

In addition, the value of PROCINFO["sorted_in"] can be a function name.1 This lets you
traverse an array based on any custom criterion. The array elements are ordered according
to the return value of this function. The comparison function should be defined with at
least four arguments:

function comp_func(i1, v1, i2, v2)

{

compare elements 1 and 2 in some fashion

return < 0; 0; or > 0

}

Here, i1 and i2 are the indices, and v1 and v2 are the corresponding values of the
two elements being compared. Either v1 or v2, or both, can be arrays if the array being
traversed contains subarrays as values. (See Section 8.6 [Arrays of Arrays], page 183, for
more information about subarrays.) The three possible return values are interpreted as
follows:

comp_func(i1, v1, i2, v2) < 0

Index i1 comes before index i2 during loop traversal.

comp_func(i1, v1, i2, v2) == 0

Indices i1 and i2 come together, but the relative order with respect to each
other is undefined.

comp_func(i1, v1, i2, v2) > 0

Index i1 comes after index i2 during loop traversal.

1 This is why the predefined sorting orders start with an ‘@’ character, which cannot be part of an identifier.

Chapter 12: Advanced Features of gawk 319

Our first comparison function can be used to scan an array in numerical order of the
indices:

function cmp_num_idx(i1, v1, i2, v2)

{

numerical index comparison, ascending order

return (i1 - i2)

}

Our second function traverses an array based on the string order of the element values
rather than by indices:

function cmp_str_val(i1, v1, i2, v2)

{

string value comparison, ascending order

v1 = v1 ""

v2 = v2 ""

if (v1 < v2)

return -1

return (v1 != v2)

}

The third comparison function makes all numbers, and numeric strings without any
leading or trailing spaces, come out first during loop traversal:

function cmp_num_str_val(i1, v1, i2, v2, n1, n2)

{

numbers before string value comparison, ascending order

n1 = v1 + 0

n2 = v2 + 0

if (n1 == v1)

return (n2 == v2) ? (n1 - n2) : -1

else if (n2 == v2)

return 1

return (v1 < v2) ? -1 : (v1 != v2)

}

Here is a main program to demonstrate how gawk behaves using each of the previous
functions:

BEGIN {

data["one"] = 10

data["two"] = 20

data[10] = "one"

data[100] = 100

data[20] = "two"

f[1] = "cmp_num_idx"

f[2] = "cmp_str_val"

f[3] = "cmp_num_str_val"

for (i = 1; i <= 3; i++) {

printf("Sort function: %s\n", f[i])

320 GAWK: Effective AWK Programming

PROCINFO["sorted_in"] = f[i]

for (j in data)

printf("\tdata[%s] = %s\n", j, data[j])

print ""

}

}

Here are the results when the program is run:

$ gawk -f compdemo.awk

a Sort function: cmp_num_idx Sort by numeric index
a data[two] = 20

a data[one] = 10 Both strings are numerically zero
a data[10] = one

a data[20] = two

a data[100] = 100

a
a Sort function: cmp_str_val Sort by element values as strings
a data[one] = 10

a data[100] = 100 String 100 is less than string 20
a data[two] = 20

a data[10] = one

a data[20] = two

a
a Sort function: cmp_num_str_val Sort all numeric values before all strings
a data[one] = 10

a data[two] = 20

a data[100] = 100

a data[10] = one

a data[20] = two

Consider sorting the entries of a GNU/Linux system password file according to login
name. The following program sorts records by a specific field position and can be used for
this purpose:

passwd-sort.awk --- simple program to sort by field position

field position is specified by the global variable POS

function cmp_field(i1, v1, i2, v2)

{

comparison by value, as string, and ascending order

return v1[POS] < v2[POS] ? -1 : (v1[POS] != v2[POS])

}

{

for (i = 1; i <= NF; i++)

a[NR][i] = $i

}

Chapter 12: Advanced Features of gawk 321

END {

PROCINFO["sorted_in"] = "cmp_field"

if (POS < 1 || POS > NF)

POS = 1

for (i in a) {

for (j = 1; j <= NF; j++)

printf("%s%c", a[i][j], j < NF ? ":" : "")

print ""

}

}

The first field in each entry of the password file is the user’s login name, and the fields
are separated by colons. Each record defines a subarray, with each field as an element in
the subarray. Running the program produces the following output:

$ gawk -v POS=1 -F: -f sort.awk /etc/passwd

a adm:x:3:4:adm:/var/adm:/sbin/nologin

a apache:x:48:48:Apache:/var/www:/sbin/nologin

a avahi:x:70:70:Avahi daemon:/:/sbin/nologin

...

The comparison should normally always return the same value when given a specific
pair of array elements as its arguments. If inconsistent results are returned, then the order
is undefined. This behavior can be exploited to introduce random order into otherwise
seemingly ordered data:

function cmp_randomize(i1, v1, i2, v2)

{

random order (caution: this may never terminate!)

return (2 - 4 * rand())

}

As already mentioned, the order of the indices is arbitrary if two elements compare equal.
This is usually not a problem, but letting the tied elements come out in arbitrary order
can be an issue, especially when comparing item values. The partial ordering of the equal
elements may change the next time the array is traversed, if other elements are added to or
removed from the array. One way to resolve ties when comparing elements with otherwise
equal values is to include the indices in the comparison rules. Note that doing this may make
the loop traversal less efficient, so consider it only if necessary. The following comparison
functions force a deterministic order, and are based on the fact that the (string) indices of
two elements are never equal:

function cmp_numeric(i1, v1, i2, v2)

{

numerical value (and index) comparison, descending order

return (v1 != v2) ? (v2 - v1) : (i2 - i1)

}

322 GAWK: Effective AWK Programming

function cmp_string(i1, v1, i2, v2)

{

string value (and index) comparison, descending order

v1 = v1 i1

v2 = v2 i2

return (v1 > v2) ? -1 : (v1 != v2)

}

A custom comparison function can often simplify ordered loop traversal, and the sky is
really the limit when it comes to designing such a function.

When string comparisons are made during a sort, either for element values where one
or both aren’t numbers, or for element indices handled as strings, the value of IGNORECASE
(see Section 7.5 [Predefined Variables], page 157) controls whether the comparisons treat
corresponding upper- and lowercase letters as equivalent or distinct.

Another point to keep in mind is that in the case of subarrays, the element values can
themselves be arrays; a production comparison function should use the isarray() function
(see Section 9.1.7 [Getting Type Information], page 213) to check for this, and choose a
defined sorting order for subarrays.

All sorting based on PROCINFO["sorted_in"] is disabled in POSIX mode, because the
PROCINFO array is not special in that case.

As a side note, sorting the array indices before traversing the array has been reported to
add a 15% to 20% overhead to the execution time of awk programs. For this reason, sorted
array traversal is not the default.

12.2.2 Sorting Array Values and Indices with gawk

In most awk implementations, sorting an array requires writing a sort() function. This can
be educational for exploring different sorting algorithms, but usually that’s not the point of
the program. gawk provides the built-in asort() and asorti() functions (see Section 9.1.3
[String-Manipulation Functions], page 189) for sorting arrays. For example:

populate the array data

n = asort(data)

for (i = 1; i <= n; i++)

do something with data[i]

After the call to asort(), the array data is indexed from 1 to some number n, the total
number of elements in data. (This count is asort()’s return value.) data[1] ≤ data[2]

≤ data[3], and so on. The default comparison is based on the type of the elements (see
Section 6.3.2 [Variable Typing and Comparison Expressions], page 128). All numeric values
come before all string values, which in turn come before all subarrays.

An important side effect of calling asort() is that the array’s original indices are irre-
vocably lost. As this isn’t always desirable, asort() accepts a second argument:

populate the array source

n = asort(source, dest)

for (i = 1; i <= n; i++)

do something with dest[i]

In this case, gawk copies the source array into the dest array and then sorts dest,
destroying its indices. However, the source array is not affected.

Chapter 12: Advanced Features of gawk 323

Often, what’s needed is to sort on the values of the indices instead of the values of the
elements. To do that, use the asorti() function. The interface and behavior are identical
to that of asort(), except that the index values are used for sorting and become the values
of the result array:

{ source[$0] = some_func($0) }

END {

n = asorti(source, dest)

for (i = 1; i <= n; i++) {

Work with sorted indices directly:
do something with dest[i]

...

Access original array via sorted indices:
do something with source[dest[i]]

}

}

So far, so good. Now it starts to get interesting. Both asort() and asorti() accept
a third string argument to control comparison of array elements. When we introduced
asort() and asorti() in Section 9.1.3 [String-Manipulation Functions], page 189, we ig-
nored this third argument; however, now is the time to describe how this argument affects
these two functions.

Basically, the third argument specifies how the array is to be sorted. There are two
possibilities. As with PROCINFO["sorted_in"], this argument may be one of the predefined
names that gawk provides (see Section 8.1.6 [Using Predefined Array Scanning Orders with
gawk], page 176), or it may be the name of a user-defined function (see Section 12.2.1
[Controlling Array Traversal], page 318).

In the latter case, the function can compare elements in any way it chooses, taking into
account just the indices, just the values, or both. This is extremely powerful.

Once the array is sorted, asort() takes the values in their final order and uses them
to fill in the result array, whereas asorti() takes the indices in their final order and uses
them to fill in the result array.

NOTE: Copying array indices and elements isn’t expensive in terms of mem-
ory. Internally, gawk maintains reference counts to data. For example, when
asort() copies the first array to the second one, there is only one copy of the
original array elements’ data, even though both arrays use the values.

Because IGNORECASE affects string comparisons, the value of IGNORECASE also affects
sorting for both asort() and asorti(). Note also that the locale’s sorting order does not
come into play; comparisons are based on character values only.2

The following example demonstrates the use of a comparison function with asort().
The comparison function, case_fold_compare(), maps both values to lowercase in order
to compare them ignoring case.

2 This is true because locale-based comparison occurs only when in POSIX-compatibility mode, and be-
cause asort() and asorti() are gawk extensions, they are not available in that case.

324 GAWK: Effective AWK Programming

case_fold_compare --- compare as strings, ignoring case

function case_fold_compare(i1, v1, i2, v2, l, r)

{

l = tolower(v1)

r = tolower(v2)

if (l < r)

return -1

else if (l == r)

return 0

else

return 1

}

And here is the test program for it:

Test program

BEGIN {

Letters = "abcdefghijklmnopqrstuvwxyz" \

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

split(Letters, data, "")

asort(data, result, "case_fold_compare")

j = length(result)

for (i = 1; i <= j; i++) {

printf("%s", result[i])

if (i % (j/2) == 0)

printf("\n")

else

printf(" ")

}

}

When run, we get the following:

$ gawk -f case_fold_compare.awk

a A a B b c C D d e E F f g G H h i I J j k K l L M m

a n N O o p P Q q r R S s t T u U V v w W X x y Y z Z

12.3 Two-Way Communications with Another Process

It is often useful to be able to send data to a separate program for processing and then read
the result. This can always be done with temporary files:

Write the data for processing

tempfile = ("mydata." PROCINFO["pid"])

while (not done with data)

print data | ("subprogram > " tempfile)

Chapter 12: Advanced Features of gawk 325

close("subprogram > " tempfile)

Read the results, remove tempfile when done

while ((getline newdata < tempfile) > 0)

process newdata appropriately

close(tempfile)

system("rm " tempfile)

This works, but not elegantly. Among other things, it requires that the program be run in
a directory that cannot be shared among users; for example, /tmp will not do, as another
user might happen to be using a temporary file with the same name.3

However, with gawk, it is possible to open a two-way pipe to another process. The second
process is termed a coprocess, as it runs in parallel with gawk. The two-way connection is
created using the ‘|&’ operator (borrowed from the Korn shell, ksh):4

do {

print data |& "subprogram"

"subprogram" |& getline results

} while (data left to process)

close("subprogram")

The first time an I/O operation is executed using the ‘|&’ operator, gawk creates a two-
way pipeline to a child process that runs the other program. Output created with print

or printf is written to the program’s standard input, and output from the program’s
standard output can be read by the gawk program using getline. As is the case with
processes started by ‘|’, the subprogram can be any program, or pipeline of programs, that
can be started by the shell.

There are some cautionary items to be aware of:

• As the code inside gawk currently stands, the coprocess’s standard error goes to the
same place that the parent gawk’s standard error goes. It is not possible to read the
child’s standard error separately.

• I/O buffering may be a problem. gawk automatically flushes all output down the pipe
to the coprocess. However, if the coprocess does not flush its output, gawk may hang
when doing a getline in order to read the coprocess’s results. This could lead to a
situation known as deadlock, where each process is waiting for the other one to do
something.

It is possible to close just one end of the two-way pipe to a coprocess, by supplying a
second argument to the close() function of either "to" or "from" (see Section 5.9 [Closing
Input and Output Redirections], page 106). These strings tell gawk to close the end of the
pipe that sends data to the coprocess or the end that reads from it, respectively.

This is particularly necessary in order to use the system sort utility as part of a co-
process; sort must read all of its input data before it can produce any output. The sort

program does not receive an end-of-file indication until gawk closes the write end of the
pipe.

3 Michael Brennan suggests the use of rand() to generate unique file names. This is a valid point;
nevertheless, temporary files remain more difficult to use than two-way pipes.

4 This is very different from the same operator in the C shell and in Bash.

326 GAWK: Effective AWK Programming

When you have finished writing data to the sort utility, you can close the "to" end of
the pipe, and then start reading sorted data via getline. For example:

BEGIN {

command = "LC_ALL=C sort"

n = split("abcdefghijklmnopqrstuvwxyz", a, "")

for (i = n; i > 0; i--)

print a[i] |& command

close(command, "to")

while ((command |& getline line) > 0)

print "got", line

close(command)

}

This program writes the letters of the alphabet in reverse order, one per line, down the
two-way pipe to sort. It then closes the write end of the pipe, so that sort receives an
end-of-file indication. This causes sort to sort the data and write the sorted data back to
the gawk program. Once all of the data has been read, gawk terminates the coprocess and
exits.

As a side note, the assignment ‘LC_ALL=C’ in the sort command ensures traditional Unix
(ASCII) sorting from sort. This is not strictly necessary here, but it’s good to know how
to do this.

Be careful when closing the "from" end of a two-way pipe; in this case gawk waits for
the child process to exit, which may cause your program to hang. (Thus, this particular
feature is of much less use in practice than being able to close the "to" end.)

CAUTION: Normally, it is a fatal error to write to the "to" end of a two-way
pipe which has been closed, and it is also a fatal error to read from the "from"
end of a two-way pipe that has been closed.

You may set PROCINFO["command", "NONFATAL"] to make such operations be-
come nonfatal. If you do so, you then need to check ERRNO after each print,
printf, or getline. See Section 5.10 [Enabling Nonfatal Output], page 109,
for more information.

You may also use pseudo-ttys (ptys) for two-way communication instead of pipes, if your
system supports them. This is done on a per-command basis, by setting a special element
in the PROCINFO array (see Section 7.5.2 [Built-in Variables That Convey Information],
page 159), like so:

command = "sort -nr" # command, save in convenience variable

PROCINFO[command, "pty"] = 1 # update PROCINFO

print ... |& command # start two-way pipe

...

If your system does not have ptys, or if all the system’s ptys are in use, gawk automatically
falls back to using regular pipes.

Using ptys usually avoids the buffer deadlock issues described earlier, at some loss in
performance. This is because the tty driver buffers and sends data line-by-line. On systems

Chapter 12: Advanced Features of gawk 327

with the stdbuf (part of the GNU Coreutils package), you can use that program instead of
ptys.

Note also that ptys are not fully transparent. Certain binary control codes, such Ctrl-d

for end-of-file, are interpreted by the tty driver and not passed through.

CAUTION: Finally, coprocesses open up the possibility of deadlock between
gawk and the program running in the coprocess. This can occur if you send
“too much” data to the coprocess before reading any back; each process is
blocked writing data with no one available to read what they’ve already written.
There is no workaround for deadlock; careful programming and knowledge of
the behavior of the coprocess are required.

The following example, due to Andrew Schorr, demonstrates how using ptys can help
deal with buffering deadlocks.

Suppose gawk were unable to add numbers. You could use a coprocess to do it. Here’s
an exceedingly simple program written for that purpose:

$ cat add.c

#include <stdio.h>

int

main(void)

{

int x, y;

while (scanf("%d %d", & x, & y) == 2)

printf("%d\n", x + y);

return 0;

}

$ cc -O add.c -o add Compile the program

You could then write an exceedingly simple gawk program to add numbers by passing
them to the coprocess:

$ echo 1 2 |

> gawk -v cmd=./add '{ print |& cmd; cmd |& getline x; print x }'

And it would deadlock, because add.c fails to call ‘setlinebuf(stdout)’. The add

program freezes.

Now try instead:

$ echo 1 2 |

> gawk -v cmd=add 'BEGIN { PROCINFO[cmd, "pty"] = 1 }

> { print |& cmd; cmd |& getline x; print x }'

a 3

By using a pty, gawk fools the standard I/O library into thinking it has an interactive
session, so it defaults to line buffering. And now, magically, it works!

12.4 Using gawk for Network Programming

EMRED:
A host is a host from coast to coast,
and nobody talks to a host that’s close,

https://www.gnu.org/software/coreutils/coreutils.html

328 GAWK: Effective AWK Programming

unless the host that isn’t close
is busy, hung, or dead.

—Mike O’Brien (aka Mr. Protocol)

In addition to being able to open a two-way pipeline to a coprocess on the same system
(see Section 12.3 [Two-Way Communications with Another Process], page 324), it is possible
to make a two-way connection to another process on another system across an IP network
connection.

You can think of this as just a very long two-way pipeline to a coprocess. The way gawk

decides that you want to use TCP/IP networking is by recognizing special file names that
begin with one of ‘/inet/’, ‘/inet4/’, or ‘/inet6/’.

The full syntax of the special file name is /net-type/protocol/local-port/remote-
host/remote-port. The components are:

net-type Specifies the kind of Internet connection to make. Use ‘/inet4/’ to force IPv4,
and ‘/inet6/’ to force IPv6. Plain ‘/inet/’ (which used to be the only option)
uses the system default, most likely IPv4.

protocol The protocol to use over IP. This must be either ‘tcp’, or ‘udp’, for a TCP or
UDP IP connection, respectively. TCP should be used for most applications.

local-port The local TCP or UDP port number to use. Use a port number of ‘0’ when
you want the system to pick a port. This is what you should do when writing
a TCP or UDP client. You may also use a well-known service name, such as
‘smtp’ or ‘http’, in which case gawk attempts to determine the predefined port
number using the C getaddrinfo() function.

remote-host
The IP address or fully qualified domain name of the Internet host to which
you want to connect.

remote-port
The TCP or UDP port number to use on the given remote-host. Again, use ‘0’
if you don’t care, or else a well-known service name.

NOTE: Failure in opening a two-way socket will result in a nonfatal error be-
ing returned to the calling code. The value of ERRNO indicates the error (see
Section 7.5.2 [Built-in Variables That Convey Information], page 159).

Consider the following very simple example:

BEGIN {

Service = "/inet/tcp/0/localhost/daytime"

Service |& getline

print $0

close(Service)

}

This program reads the current date and time from the local system’s TCP daytime

server. It then prints the results and closes the connection.

Because this topic is extensive, the use of gawk for TCP/IP programming is documented
separately. See TCP/IP Internetworking with gawk, which comes as part of the gawk

https://www.gnu.org/software/gawk/manual/gawkinet/

Chapter 12: Advanced Features of gawk 329

distribution, for a much more complete introduction and discussion, as well as extensive
examples.

NOTE: gawk can only open direct sockets. There is currently no way to access
services available over Secure Socket Layer (SSL); this includes any web service
whose URL starts with ‘https://’.

12.5 Profiling Your awk Programs

You may produce execution traces of your awk programs. This is done by passing the option
--profile to gawk. When gawk has finished running, it creates a profile of your program
in a file named awkprof.out. Because it is profiling, it also executes up to 45% slower than
gawk normally does.

As shown in the following example, the --profile option can be used to change the
name of the file where gawk will write the profile:

gawk --profile=myprog.prof -f myprog.awk data1 data2

In the preceding example, gawk places the profile in myprog.prof instead of in awkprof.out.

Here is a sample session showing a simple awk program, its input data, and the results
from running gawk with the --profile option. First, the awk program:

BEGIN { print "First BEGIN rule" }

END { print "First END rule" }

/foo/ {

print "matched /foo/, gosh"

for (i = 1; i <= 3; i++)

sing()

}

{

if (/foo/)

print "if is true"

else

print "else is true"

}

BEGIN { print "Second BEGIN rule" }

END { print "Second END rule" }

function sing(dummy)

{

print "I gotta be me!"

}

Following is the input data:

foo

330 GAWK: Effective AWK Programming

bar

baz

foo

junk

Here is the awkprof.out that results from running the gawk profiler on this program
and data (this example also illustrates that awk programmers sometimes get up very early
in the morning to work):

gawk profile, created Mon Sep 29 05:16:21 2014

BEGIN rule(s)

BEGIN {

1 print "First BEGIN rule"

}

BEGIN {

1 print "Second BEGIN rule"

}

Rule(s)

5 /foo/ { # 2

2 print "matched /foo/, gosh"

6 for (i = 1; i <= 3; i++) {

6 sing()

}

}

5 {

5 if (/foo/) { # 2

2 print "if is true"

3 } else {

3 print "else is true"

}

}

END rule(s)

END {

1 print "First END rule"

}

END {

1 print "Second END rule"

}

Chapter 12: Advanced Features of gawk 331

Functions, listed alphabetically

6 function sing(dummy)

{

6 print "I gotta be me!"

}

This example illustrates many of the basic features of profiling output. They are as
follows:

• The program is printed in the order BEGIN rules, BEGINFILE rules, pattern–action rules,
ENDFILE rules, END rules, and functions, listed alphabetically. Multiple BEGIN and END

rules retain their separate identities, as do multiple BEGINFILE and ENDFILE rules.

• Pattern–action rules have two counts. The first count, to the left of the rule, shows
how many times the rule’s pattern was tested. The second count, to the right of the
rule’s opening left brace in a comment, shows how many times the rule’s action was
executed. The difference between the two indicates how many times the rule’s pattern
evaluated to false.

• Similarly, the count for an if-else statement shows how many times the condition was
tested. To the right of the opening left brace for the if’s body is a count showing how
many times the condition was true. The count for the else indicates how many times
the test failed.

• The count for a loop header (such as for or while) shows how many times the loop test
was executed. (Because of this, you can’t just look at the count on the first statement
in a rule to determine how many times the rule was executed. If the first statement is
a loop, the count is misleading.)

• For user-defined functions, the count next to the function keyword indicates how
many times the function was called. The counts next to the statements in the body
show how many times those statements were executed.

• The layout uses “K&R” style with TABs. Braces are used everywhere, even when the
body of an if, else, or loop is only a single statement.

• Parentheses are used only where needed, as indicated by the structure of the program
and the precedence rules. For example, ‘(3 + 5) * 4’ means add three and five, then
multiply the total by four. However, ‘3 + 5 * 4’ has no parentheses, and means ‘3 + (5

* 4)’. However, explicit parentheses in the source program are retained.

• Parentheses are used around the arguments to print and printf only when the print
or printf statement is followed by a redirection. Similarly, if the target of a redirection
isn’t a scalar, it gets parenthesized.

• gawk supplies leading comments in front of the BEGIN and END rules, the BEGINFILE

and ENDFILE rules, the pattern–action rules, and the functions.

The profiled version of your program may not look exactly like what you typed when you
wrote it. This is because gawk creates the profiled version by “pretty-printing” its internal
representation of the program. The advantage to this is that gawk can produce a standard
representation. Also, things such as:

/foo/

332 GAWK: Effective AWK Programming

come out as:

/foo/ {

print

}

which is correct, but possibly unexpected. (If a program uses both ‘print $0’ and plain
‘print’, that distinction is retained.)

Besides creating profiles when a program has completed, gawk can produce a profile
while it is running. This is useful if your awk program goes into an infinite loop and you
want to see what has been executed. To use this feature, run gawk with the --profile

option in the background:

$ gawk --profile -f myprog &

[1] 13992

The shell prints a job number and process ID number; in this case, 13992. Use the kill

command to send the USR1 signal to gawk:

$ kill -USR1 13992

As usual, the profiled version of the program is written to awkprof.out, or to a different
file if one was specified with the --profile option.

Along with the regular profile, as shown earlier, the profile file includes a trace of any
active functions:

Function Call Stack:

3. baz

2. bar

1. foo

-- main --

You may send gawk the USR1 signal as many times as you like. Each time, the profile
and function call trace are appended to the output profile file.

If you use the HUP signal instead of the USR1 signal, gawk produces the profile and the
function call trace and then exits.

When gawk runs on MS-Windows systems, it uses the INT and QUIT signals for producing
the profile, and in the case of the INT signal, gawk exits. This is because these systems don’t
support the kill command, so the only signals you can deliver to a program are those
generated by the keyboard. The INT signal is generated by the Ctrl-c or Ctrl-BREAK key,
while the QUIT signal is generated by the Ctrl-\ key.

Finally, gawk also accepts another option, --pretty-print. When called this way, gawk
“pretty-prints” the program into awkprof.out, without any execution counts.

NOTE: Once upon a time, the --pretty-print option would also run your
program. This is no longer the case.

There is a significant difference between the output created when profiling, and that
created when pretty-printing. Pretty-printed output preserves the original comments that
were in the program, although their placement may not correspond exactly to their original
locations in the source code. However, no comments should be lost. Also, gawk does the
best it can to preserve the distinction between comments at the end of a statement and
comments on lines by themselves. This isn’t always perfect, though.

Chapter 12: Advanced Features of gawk 333

However, as a deliberate design decision, profiling output omits the original program’s
comments. This allows you to focus on the execution count data and helps you avoid the
temptation to use the profiler for pretty-printing.

Additionally, pretty-printed output does not have the leading indentation that the pro-
filing output does. This makes it easy to pretty-print your code once development is com-
pleted, and then use the result as the final version of your program.

Because the internal representation of your program is formatted to recreate an awk

program, profiling and pretty-printing automatically disable gawk’s default optimizations.

Profiling and pretty-printing also preserve the original format of numeric constants; if
you used an octal or hexadecimal value in your source code, it will appear that way in the
output.

12.6 Summary

• The --non-decimal-data option causes gawk to treat octal- and hexadecimal-looking
input data as octal and hexadecimal. This option should be used with caution or not
at all; use of strtonum() is preferable. Note that this option may disappear in a future
version of gawk.

• You can take over complete control of sorting in ‘for (indx in array)’ array traversal
by setting PROCINFO["sorted_in"] to the name of a user-defined function that does
the comparison of array elements based on index and value.

• Similarly, you can supply the name of a user-defined comparison function as the third
argument to either asort() or asorti() to control how those functions sort arrays. Or
you may provide one of the predefined control strings that work for PROCINFO["sorted_
in"].

• You can use the ‘|&’ operator to create a two-way pipe to a coprocess. You read
from the coprocess with getline and write to it with print or printf. Use close()

to close off the coprocess completely, or optionally, close off one side of the two-way
communications.

• By using special file names with the ‘|&’ operator, you can open a TCP/IP (or UDP/IP)
connection to remote hosts on the Internet. gawk supports both IPv4 and IPv6.

• You can generate statement count profiles of your program. This can help you deter-
mine which parts of your program may be taking the most time and let you tune them
more easily. Sending the USR1 signal while profiling causes gawk to dump the profile
and keep going, including a function call stack.

• You can also just “pretty-print” the program.

Chapter 13: Internationalization with gawk 335

13 Internationalization with gawk

Once upon a time, computer makers wrote software that worked only in English. Even-
tually, hardware and software vendors noticed that if their systems worked in the native
languages of non-English-speaking countries, they were able to sell more systems. As a
result, internationalization and localization of programs and software systems became a
common practice.

For many years, the ability to provide internationalization was largely restricted to
programs written in C and C++. This chapter describes the underlying library gawk uses
for internationalization, as well as how gawk makes internationalization features available at
the awk program level. Having internationalization available at the awk level gives software
developers additional flexibility—they are no longer forced to write in C or C++ when
internationalization is a requirement.

13.1 Internationalization and Localization

Internationalization means writing (or modifying) a program once, in such a way that it
can use multiple languages without requiring further source code changes. Localization
means providing the data necessary for an internationalized program to work in a partic-
ular language. Most typically, these terms refer to features such as the language used for
printing error messages, the language used to read responses, and information related to
how numerical and monetary values are printed and read.

13.2 GNU gettext

gawk uses GNU gettext to provide its internationalization features. The facilities in GNU
gettext focus on messages: strings printed by a program, either directly or via formatting
with printf or sprintf().1

When using GNU gettext, each application has its own text domain. This is a unique
name, such as ‘kpilot’ or ‘gawk’, that identifies the application. A complete application
may have multiple components—programs written in C or C++, as well as scripts written
in sh or awk. All of the components use the same text domain.

To make the discussion concrete, assume we’re writing an application named guide.
Internationalization consists of the following steps, in this order:

1. The programmer reviews the source for all of guide’s components and marks each
string that is a candidate for translation. For example, "`-F': option required" is
a good candidate for translation. A table with strings of option names is not (e.g.,
gawk’s --profile option should remain the same, no matter what the local language).

2. The programmer indicates the application’s text domain ("guide") to the gettext

library, by calling the textdomain() function.

3. Messages from the application are extracted from the source code and collected into a
portable object template file (guide.pot), which lists the strings and their translations.
The translations are initially empty. The original (usually English) messages serve as
the key for lookup of the translations.

1 For some operating systems, the gawk port doesn’t support GNU gettext. Therefore, these features are
not available if you are using one of those operating systems. Sorry.

336 GAWK: Effective AWK Programming

4. For each language with a translator, guide.pot is copied to a portable object file
(.po) and translations are created and shipped with the application. For example,
there might be a fr.po for a French translation.

5. Each language’s .po file is converted into a binary message object (.gmo) file. A
message object file contains the original messages and their translations in a binary
format that allows fast lookup of translations at runtime.

6. When guide is built and installed, the binary translation files are installed in a standard
place.

7. For testing and development, it is possible to tell gettext to use .gmo files in a different
directory than the standard one by using the bindtextdomain() function.

8. At runtime, guide looks up each string via a call to gettext(). The returned string
is the translated string if available, or the original string if not.

9. If necessary, it is possible to access messages from a different text domain than the one
belonging to the application, without having to switch the application’s default text
domain back and forth.

In C (or C++), the string marking and dynamic translation lookup are accomplished by
wrapping each string in a call to gettext():

printf("%s", gettext("Don't Panic!\n"));

The tools that extract messages from source code pull out all strings enclosed in calls to
gettext().

The GNU gettext developers, recognizing that typing ‘gettext(...)’ over and over
again is both painful and ugly to look at, use the macro ‘_’ (an underscore) to make things
easier:

/* In the standard header file: */

#define _(str) gettext(str)

/* In the program text: */

printf("%s", _("Don't Panic!\n"));

This reduces the typing overhead to just three extra characters per string and is considerably
easier to read as well.

There are locale categories for different types of locale-related information. The defined
locale categories that gettext knows about are:

LC_MESSAGES

Text messages. This is the default category for gettext operations, but it is
possible to supply a different one explicitly, if necessary. (It is almost never
necessary to supply a different category.)

LC_COLLATE

Text-collation information (i.e., how different characters and/or groups of char-
acters sort in a given language).

LC_CTYPE Character-type information (alphabetic, digit, upper- or lowercase, and so on)
as well as character encoding. This information is accessed via the POSIX
character classes in regular expressions, such as /[[:alnum:]]/ (see Section 3.4
[Using Bracket Expressions], page 53).

Chapter 13: Internationalization with gawk 337

LC_MONETARY

Monetary information, such as the currency symbol, and whether the symbol
goes before or after a number.

LC_NUMERIC

Numeric information, such as which characters to use for the decimal point and
the thousands separator.2

LC_TIME Time- and date-related information, such as 12- or 24-hour clock, month printed
before or after the day in a date, local month abbreviations, and so on.

LC_ALL All of the above. (Not too useful in the context of gettext.)

NOTE: As described in Section 6.6 [Where You Are Makes a Difference],
page 138, environment variables with the same name as the locale categories
(LC_CTYPE, LC_ALL, etc.) influence gawk’s behavior (and that of other
utilities).

Normally, these variables also affect how the gettext library finds translations.
However, the LANGUAGE environment variable overrides the LC_xxx variables.
Many GNU/Linux systems may define this variable without your knowledge,
causing gawk to not find the correct translations. If this happens to you, look to
see if LANGUAGE is defined, and if so, use the shell’s unset command to remove
it.

For testing translations of gawk itself, you can set the GAWK_LOCALE_DIR environment
variable. See the documentation for the C bindtextdomain() function and also see
Section 2.5.3 [Other Environment Variables], page 41.

13.3 Internationalizing awk Programs

gawk provides the following variables for internationalization:

TEXTDOMAIN

This variable indicates the application’s text domain. For compatibility with
GNU gettext, the default value is "messages".

_"your message here"

String constants marked with a leading underscore are candidates for transla-
tion at runtime. String constants without a leading underscore are not trans-
lated.

gawk provides the following functions for internationalization:

dcgettext(string [, domain [, category]])

Return the translation of string in text domain domain for locale category
category. The default value for domain is the current value of TEXTDOMAIN.
The default value for category is "LC_MESSAGES".

If you supply a value for category, it must be a string equal to one of the known
locale categories described in the previous section. You must also supply a text
domain. Use TEXTDOMAIN if you want to use the current domain.

2 Americans use a comma every three decimal places and a period for the decimal point, while many
Europeans do exactly the opposite: 1,234.56 versus 1.234,56.

338 GAWK: Effective AWK Programming

CAUTION: The order of arguments to the awk version of the
dcgettext() function is purposely different from the order for the
C version. The awk version’s order was chosen to be simple and to
allow for reasonable awk-style default arguments.

dcngettext(string1, string2, number [, domain [, category]])

Return the plural form used for number of the translation of string1 and string2
in text domain domain for locale category category. string1 is the English
singular variant of a message, and string2 is the English plural variant of the
same message. The default value for domain is the current value of TEXTDOMAIN.
The default value for category is "LC_MESSAGES".

The same remarks about argument order as for the dcgettext() function apply.

bindtextdomain(directory [, domain])

Change the directory in which gettext looks for .gmo files, in case they will
not or cannot be placed in the standard locations (e.g., during testing). Return
the directory in which domain is “bound.”

The default domain is the value of TEXTDOMAIN. If directory is the null string
(""), then bindtextdomain() returns the current binding for the given domain.

To use these facilities in your awk program, follow these steps:

1. Set the variable TEXTDOMAIN to the text domain of your program. This is best done
in a BEGIN rule (see Section 7.1.4 [The BEGIN and END Special Patterns], page 144), or
it can also be done via the -v command-line option (see Section 2.2 [Command-Line
Options], page 31):

BEGIN {

TEXTDOMAIN = "guide"

...

}

2. Mark all translatable strings with a leading underscore (‘_’) character. It must be
adjacent to the opening quote of the string. For example:

print _"hello, world"

x = _"you goofed"

printf(_"Number of users is %d\n", nusers)

3. If you are creating strings dynamically, you can still translate them, using the
dcgettext() built-in function:3

if (groggy)

message = dcgettext("%d customers disturbing me\n", "adminprog")

else

message = dcgettext("enjoying %d customers\n", "adminprog")

printf(message, ncustomers)

Here, the call to dcgettext() supplies a different text domain ("adminprog") in which
to find the message, but it uses the default "LC_MESSAGES" category.

The previous example only works if ncustomers is greater than one. This example
would be better done with dcngettext():

3 Thanks to Bruno Haible for this example.

Chapter 13: Internationalization with gawk 339

if (groggy)

message = dcngettext("%d customer disturbing me\n",

"%d customers disturbing me\n",

ncustomers, "adminprog")

else

message = dcngettext("enjoying %d customer\n",

"enjoying %d customers\n",

ncustomers, "adminprog")

printf(message, ncustomers)

4. During development, you might want to put the .gmo file in a private directory for
testing. This is done with the bindtextdomain() built-in function:

BEGIN {

TEXTDOMAIN = "guide" # our text domain

if (Testing) {

where to find our files

bindtextdomain("testdir")

joe is in charge of adminprog

bindtextdomain("../joe/testdir", "adminprog")

}

...

}

See Section 13.5 [A Simple Internationalization Example], page 342, for an example
program showing the steps to create and use translations from awk.

13.4 Translating awk Programs

Once a program’s translatable strings have been marked, they must be extracted to create
the initial .pot file. As part of translation, it is often helpful to rearrange the order in
which arguments to printf are output.

gawk’s --gen-pot command-line option extracts the messages and is discussed next.
After that, printf’s ability to rearrange the order for printf arguments at runtime is
covered.

13.4.1 Extracting Marked Strings

Once your awk program is working, and all the strings have been marked and you’ve set
(and perhaps bound) the text domain, it is time to produce translations. First, use the
--gen-pot command-line option to create the initial .pot file:

gawk --gen-pot -f guide.awk > guide.pot

When run with --gen-pot, gawk does not execute your program. Instead, it parses it
as usual and prints all marked strings to standard output in the format of a GNU gettext

Portable Object file. Also included in the output are any constant strings that appear as the
first argument to dcgettext() or as the first and second argument to dcngettext().4 You
should distribute the generated .pot file with your awk program; translators will eventually
use it to provide you translations that you can also then distribute. See Section 13.5 [A

4 The xgettext utility that comes with GNU gettext can handle .awk files.

340 GAWK: Effective AWK Programming

Simple Internationalization Example], page 342, for the full list of steps to go through to
create and test translations for guide.

13.4.2 Rearranging printf Arguments

Format strings for printf and sprintf() (see Section 5.5 [Using printf Statements for
Fancier Printing], page 96) present a special problem for translation. Consider the follow-
ing:5

printf(_"String `%s' has %d characters\n",

string, length(string)))

A possible German translation for this might be:

"%d Zeichen lang ist die Zeichenkette `%s'\n"

The problem should be obvious: the order of the format specifications is different from
the original! Even though gettext() can return the translated string at runtime, it cannot
change the argument order in the call to printf.

To solve this problem, printf format specifiers may have an additional optional element,
which we call a positional specifier. For example:

"%2$d Zeichen lang ist die Zeichenkette `%1$s'\n"

Here, the positional specifier consists of an integer count, which indicates which argument
to use, and a ‘$’. Counts are one-based, and the format string itself is not included. Thus, in
the following example, ‘string’ is the first argument and ‘length(string)’ is the second:

$ gawk 'BEGIN {

> string = "Don\47t Panic"

> printf "%2$d characters live in \"%1$s\"\n",
> string, length(string)

> }'

a 11 characters live in "Don't Panic"

If present, positional specifiers come first in the format specification, before the flags,
the field width, and/or the precision.

Positional specifiers can be used with the dynamic field width and precision capability:

$ gawk 'BEGIN {

> printf("%*.*s\n", 10, 20, "hello")

> printf("%3$*2$.*1$s\n", 20, 10, "hello")

> }'

a hello

a hello

NOTE: When using ‘*’ with a positional specifier, the ‘*’ comes first, then the
integer position, and then the ‘$’. This is somewhat counterintuitive.

gawk does not allow you to mix regular format specifiers and those with positional
specifiers in the same string:

$ gawk 'BEGIN { printf "%d %3$s\n", 1, 2, "hi" }'

error gawk: cmd. line:1: fatal: must use `count$' on all formats or none

5 This example is borrowed from the GNU gettext manual.

Chapter 13: Internationalization with gawk 341

NOTE: There are some pathological cases that gawk may fail to diagnose. In
such cases, the output may not be what you expect. It’s still a bad idea to try
mixing them, even if gawk doesn’t detect it.

Although positional specifiers can be used directly in awk programs, their primary pur-
pose is to help in producing correct translations of format strings into languages different
from the one in which the program is first written.

13.4.3 awk Portability Issues

gawk’s internationalization features were purposely chosen to have as little impact as pos-
sible on the portability of awk programs that use them to other versions of awk. Consider
this program:

BEGIN {

TEXTDOMAIN = "guide"

if (Test_Guide) # set with -v

bindtextdomain("/test/guide/messages")

print _"don't panic!"

}

As written, it won’t work on other versions of awk. However, it is actually almost portable,
requiring very little change:

• Assignments to TEXTDOMAIN won’t have any effect, because TEXTDOMAIN is not special
in other awk implementations.

• Non-GNU versions of awk treat marked strings as the concatenation of a variable named
_ with the string following it.6 Typically, the variable _ has the null string ("") as its
value, leaving the original string constant as the result.

• By defining “dummy” functions to replace dcgettext(), dcngettext(), and
bindtextdomain(), the awk program can be made to run, but all the messages are
output in the original language. For example:

function bindtextdomain(dir, domain)

{

return dir

}

function dcgettext(string, domain, category)

{

return string

}

function dcngettext(string1, string2, number, domain, category)

{

return (number == 1 ? string1 : string2)

}

• The use of positional specifications in printf or sprintf() is not portable. To support
gettext() at the C level, many systems’ C versions of sprintf() do support positional

6 This is good fodder for an “Obfuscated awk” contest.

342 GAWK: Effective AWK Programming

specifiers. But it works only if enough arguments are supplied in the function call.
Many versions of awk pass printf formats and arguments unchanged to the underlying
C library version of sprintf(), but only one format and argument at a time. What
happens if a positional specification is used is anybody’s guess. However, because the
positional specifications are primarily for use in translated format strings, and because
non-GNU awks never retrieve the translated string, this should not be a problem in
practice.

13.5 A Simple Internationalization Example

Now let’s look at a step-by-step example of how to internationalize and localize a simple
awk program, using guide.awk as our original source:

BEGIN {

TEXTDOMAIN = "guide"

bindtextdomain(".") # for testing

print _"Don't Panic"

print _"The Answer Is", 42

print "Pardon me, Zaphod who?"

}

Run ‘gawk --gen-pot’ to create the .pot file:

$ gawk --gen-pot -f guide.awk > guide.pot

This produces:

#: guide.awk:4

msgid "Don't Panic"

msgstr ""

#: guide.awk:5

msgid "The Answer Is"

msgstr ""

This original portable object template file is saved and reused for each language into
which the application is translated. The msgid is the original string and the msgstr is the
translation.

NOTE: Strings not marked with a leading underscore do not appear in the
guide.pot file.

Next, the messages must be translated. Here is a translation to a hypothetical dialect
of English, called “Mellow”:7

$ cp guide.pot guide-mellow.po

Add translations to guide-mellow.po ...

Following are the translations:

#: guide.awk:4

msgid "Don't Panic"

msgstr "Hey man, relax!"

7 Perhaps it would be better if it were called “Hippy.” Ah, well.

Chapter 13: Internationalization with gawk 343

#: guide.awk:5

msgid "The Answer Is"

msgstr "Like, the scoop is"

NOTE: The following instructions apply to GNU/Linux with the GNU C Li-
brary. Be aware that the actual steps may change over time, that the following
description may not be accurate for all GNU/Linux distributions, and that
things may work entirely differently on other operating systems.

The next step is to make the directory to hold the binary message object file and then
to create the guide.mo file. The directory has the form locale/LC_MESSAGES, where locale
is a locale name known to the C gettext routines.

How do we know which locale to use? It turns out that there are four different environ-
ment variables used by the C gettext routines. In order, they are $LANGUAGE, $LC_ALL,
$LANG, and $LC_MESSAGES.8 Thus, we check the value of $LANGUAGE:

$ echo $LANGUAGE
a en_US.UTF-8

We next make the directories:

$ mkdir en_US.UTF-8 en_US.UTF-8/LC_MESSAGES

The msgfmt utility converts the human-readable .po file into a machine-readable .mo

file. By default, msgfmt creates a file named messages. This file must be renamed and
placed in the proper directory (using the -o option) so that gawk can find it:

$ msgfmt guide-mellow.po -o en_US.UTF-8/LC_MESSAGES/guide.mo

Finally, we run the program to test it:

$ gawk -f guide.awk

a Hey man, relax!

a Like, the scoop is 42

a Pardon me, Zaphod who?

If the three replacement functions for dcgettext(), dcngettext(), and
bindtextdomain() (see Section 13.4.3 [awk Portability Issues], page 341) are in a file
named libintl.awk, then we can run guide.awk unchanged as follows:

$ gawk --posix -f guide.awk -f libintl.awk

a Don't Panic

a The Answer Is 42

a Pardon me, Zaphod who?

13.6 gawk Can Speak Your Language

gawk itself has been internationalized using the GNU gettext package. (GNU gettext

is described in complete detail in GNU gettext utilities.) As of this writing, the latest
version of GNU gettext is version 0.19.8.1.

If a translation of gawk’s messages exists, then gawk produces usage messages, warnings,
and fatal errors in the local language.

8 Well, sort of. It seems that if $LC_ALL is set to ‘C’, then no translations are done. Go figure.

https://www.gnu.org/software/gettext/manual/
ftp://ftp.gnu.org/gnu/gettext/gettext-0.19.8.1.tar.gz

344 GAWK: Effective AWK Programming

13.7 Summary

• Internationalization means writing a program such that it can use multiple languages
without requiring source code changes. Localization means providing the data neces-
sary for an internationalized program to work in a particular language.

• gawk uses GNU gettext to let you internationalize and localize awk programs. A
program’s text domain identifies the program for grouping all messages and other data
together.

• You mark a program’s strings for translation by preceding them with an underscore.
Once that is done, the strings are extracted into a .pot file. This file is copied for
each language into a .po file, and the .po files are compiled into .gmo files for use at
runtime.

• You can use positional specifications with sprintf() and printf to rearrange the
placement of argument values in formatted strings and output. This is useful for the
translation of format control strings.

• The internationalization features have been designed so that they can be easily worked
around in a standard awk.

• gawk itself has been internationalized and ships with a number of translations for its
messages.

Chapter 14: Debugging awk Programs 345

14 Debugging awk Programs

It would be nice if computer programs worked perfectly the first time they were run, but
in real life, this rarely happens for programs of any complexity. Thus, most programming
languages have facilities available for “debugging” programs, and awk is no exception.

The gawk debugger is purposely modeled after the GNU Debugger (GDB) command-
line debugger. If you are familiar with GDB, learning how to use gawk for debugging your
programs is easy.

14.1 Introduction to the gawk Debugger

This section introduces debugging in general and begins the discussion of debugging in
gawk.

14.1.1 Debugging in General

(If you have used debuggers in other languages, you may want to skip ahead to Section 14.1.3
[awk Debugging], page 346.)

Of course, a debugging program cannot remove bugs for you, because it has no way
of knowing what you or your users consider a “bug” versus a “feature.” (Sometimes, we
humans have a hard time with this ourselves.) In that case, what can you expect from such
a tool? The answer to that depends on the language being debugged, but in general, you
can expect at least the following:

• The ability to watch a program execute its instructions one by one, giving you, the
programmer, the opportunity to think about what is happening on a time scale of
seconds, minutes, or hours, rather than the nanosecond time scale at which the code
usually runs.

• The opportunity to not only passively observe the operation of your program, but to
control it and try different paths of execution, without having to change your source
files.

• The chance to see the values of data in the program at any point in execution, and also
to change that data on the fly, to see how that affects what happens afterward. (This
often includes the ability to look at internal data structures besides the variables you
actually defined in your code.)

• The ability to obtain additional information about your program’s state or even its
internal structure.

All of these tools provide a great amount of help in using your own skills and under-
standing of the goals of your program to find where it is going wrong (or, for that matter,
to better comprehend a perfectly functional program that you or someone else wrote).

14.1.2 Debugging Concepts

Before diving in to the details, we need to introduce several important concepts that apply
to just about all debuggers. The following list defines terms used throughout the rest of
this chapter:

Stack frame
Programs generally call functions during the course of their execution. One
function can call another, or a function can call itself (recursion). You can

https://www.gnu.org/software/gdb/

346 GAWK: Effective AWK Programming

view the chain of called functions (main program calls A, which calls B, which
calls C), as a stack of executing functions: the currently running function is the
topmost one on the stack, and when it finishes (returns), the next one down
then becomes the active function. Such a stack is termed a call stack.

For each function on the call stack, the system maintains a data area that
contains the function’s parameters, local variables, and return value, as well as
any other “bookkeeping” information needed to manage the call stack. This
data area is termed a stack frame.

gawk also follows this model, and gives you access to the call stack and to each
stack frame. You can see the call stack, as well as from where each function on
the stack was invoked. Commands that print the call stack print information
about each stack frame (as detailed later on).

Breakpoint
During debugging, you often wish to let the program run until it reaches a
certain point, and then continue execution from there one statement (or in-
struction) at a time. The way to do this is to set a breakpoint within the
program. A breakpoint is where the execution of the program should break off
(stop), so that you can take over control of the program’s execution. You can
add and remove as many breakpoints as you like.

Watchpoint
A watchpoint is similar to a breakpoint. The difference is that breakpoints are
oriented around the code: stop when a certain point in the code is reached.
A watchpoint, however, specifies that program execution should stop when a
data value is changed. This is useful, as sometimes it happens that a variable
receives an erroneous value, and it’s hard to track down where this happens
just by looking at the code. By using a watchpoint, you can stop whenever a
variable is assigned to, and usually find the errant code quite quickly.

14.1.3 awk Debugging

Debugging an awk program has some specific aspects that are not shared with programs
written in other languages.

First of all, the fact that awk programs usually take input line by line from a file or files
and operate on those lines using specific rules makes it especially useful to organize viewing
the execution of the program in terms of these rules. As we will see, each awk rule is treated
almost like a function call, with its own specific block of instructions.

In addition, because awk is by design a very concise language, it is easy to lose sight
of everything that is going on “inside” each line of awk code. The debugger provides the
opportunity to look at the individual primitive instructions carried out by the higher-level
awk commands.1

1 The “primitive instructions” are defined by gawk itself; the debugger does not work at the level of machine
instructions.

Chapter 14: Debugging awk Programs 347

14.2 Sample gawk Debugging Session

In order to illustrate the use of gawk as a debugger, let’s look at a sample debugging session.
We will use the awk implementation of the POSIX uniq command presented earlier (see
Section 11.2.6 [Printing Nonduplicated Lines of Text], page 283) as our example.

14.2.1 How to Start the Debugger

Starting the debugger is almost exactly like running gawk normally, except you have to pass
an additional option, --debug, or the corresponding short option, -D. The file(s) containing
the program and any supporting code are given on the command line as arguments to one
or more -f options. (gawk is not designed to debug command-line programs, only programs
contained in files.) In our case, we invoke the debugger like this:

$ gawk -D -f getopt.awk -f join.awk -f uniq.awk -1 inputfile

where both getopt.awk and uniq.awk are in $AWKPATH. (Experienced users of GDB or
similar debuggers should note that this syntax is slightly different from what you are used
to. With the gawk debugger, you give the arguments for running the program in the
command line to the debugger rather than as part of the run command at the debugger
prompt.) The -1 is an option to uniq.awk.

Instead of immediately running the program on inputfile, as gawk would ordinarily
do, the debugger merely loads all the program source files, compiles them internally, and
then gives us a prompt:

gawk>

from which we can issue commands to the debugger. At this point, no code has been
executed.

14.2.2 Finding the Bug

Let’s say that we are having a problem using (a faulty version of) uniq.awk in “field-
skipping” mode, and it doesn’t seem to be catching lines which should be identical when
skipping the first field, such as:

awk is a wonderful program!

gawk is a wonderful program!

This could happen if we were thinking (C-like) of the fields in a record as being numbered
in a zero-based fashion, so instead of the lines:

clast = join(alast, fcount+1, n)

cline = join(aline, fcount+1, m)

we wrote:

clast = join(alast, fcount, n)

cline = join(aline, fcount, m)

The first thing we usually want to do when trying to investigate a problem like this is
to put a breakpoint in the program so that we can watch it at work and catch what it is
doing wrong. A reasonable spot for a breakpoint in uniq.awk is at the beginning of the
function are_equal(), which compares the current line with the previous one. To set the
breakpoint, use the b (breakpoint) command:

gawk> b are_equal

348 GAWK: Effective AWK Programming

a Breakpoint 1 set at file `awklib/eg/prog/uniq.awk', line 63

The debugger tells us the file and line number where the breakpoint is. Now type ‘r’ or
‘run’ and the program runs until it hits the breakpoint for the first time:

gawk> r

a Starting program:

a Stopping in Rule ...

a Breakpoint 1, are_equal(n, m, clast, cline, alast, aline)

at `awklib/eg/prog/uniq.awk':63

a 63 if (fcount == 0 && charcount == 0)

gawk>

Now we can look at what’s going on inside our program. First of all, let’s see how we
got to where we are. At the prompt, we type ‘bt’ (short for “backtrace”), and the debugger
responds with a listing of the current stack frames:

gawk> bt

a #0 are_equal(n, m, clast, cline, alast, aline)

at `awklib/eg/prog/uniq.awk':68

a #1 in main() at `awklib/eg/prog/uniq.awk':88

This tells us that are_equal() was called by the main program at line 88 of uniq.awk.
(This is not a big surprise, because this is the only call to are_equal() in the program,
but in more complex programs, knowing who called a function and with what parameters
can be the key to finding the source of the problem.)

Now that we’re in are_equal(), we can start looking at the values of some variables.
Let’s say we type ‘p n’ (p is short for “print”). We would expect to see the value of n, a
parameter to are_equal(). Actually, the debugger gives us:

gawk> p n

a n = untyped variable

In this case, n is an uninitialized local variable, because the function was called without
arguments (see Section 6.4 [Function Calls], page 136).

A more useful variable to display might be the current record:

gawk> p $0
a $0 = "gawk is a wonderful program!"

This might be a bit puzzling at first, as this is the second line of our test input. Let’s look
at NR:

gawk> p NR

a NR = 2

So we can see that are_equal() was only called for the second record of the file. Of course,
this is because our program contains a rule for ‘NR == 1’:

NR == 1 {

last = $0

next

}

OK, let’s just check that that rule worked correctly:

gawk> p last

Chapter 14: Debugging awk Programs 349

a last = "awk is a wonderful program!"

Everything we have done so far has verified that the program has worked as planned, up
to and including the call to are_equal(), so the problem must be inside this function. To
investigate further, we must begin “stepping through” the lines of are_equal(). We start
by typing ‘n’ (for “next”):

gawk> n

a 66 if (fcount > 0) {

This tells us that gawk is now ready to execute line 66, which decides whether to give
the lines the special “field-skipping” treatment indicated by the -1 command-line option.
(Notice that we skipped from where we were before, at line 63, to here, because the condition
in line 63, ‘if (fcount == 0 && charcount == 0)’, was false.)

Continuing to step, we now get to the splitting of the current and last records:

gawk> n

a 67 n = split(last, alast)

gawk> n

a 68 m = split($0, aline)

At this point, we should be curious to see what our records were split into, so we try to
look:

gawk> p n m alast aline

a n = 5

a m = untyped variable

a alast = array, 5 elements

a aline = untyped variable

(The p command can take more than one argument, similar to awk’s print statement.)

This is kind of disappointing, though. All we found out is that there are five elements in
alast; m and aline don’t have values because we are at line 68 but haven’t executed it yet.
This information is useful enough (we now know that none of the words were accidentally
left out), but what if we want to see inside the array?

The first choice would be to use subscripts:

gawk> p alast[0]

a "0" not in array `alast'

Oops!

gawk> p alast[1]

a alast["1"] = "awk"

This would be kind of slow for a 100-member array, though, so gawk provides a shortcut
(reminiscent of another language not to be mentioned):

gawk> p @alast

a alast["1"] = "awk"

a alast["2"] = "is"

a alast["3"] = "a"

a alast["4"] = "wonderful"

a alast["5"] = "program!"

It looks like we got this far OK. Let’s take another step or two:

gawk> n

350 GAWK: Effective AWK Programming

a 69 clast = join(alast, fcount, n)

gawk> n

a 70 cline = join(aline, fcount, m)

Well, here we are at our error (sorry to spoil the suspense). What we had in mind was
to join the fields starting from the second one to make the virtual record to compare, and
if the first field were numbered zero, this would work. Let’s look at what we’ve got:

gawk> p cline clast

a cline = "gawk is a wonderful program!"

a clast = "awk is a wonderful program!"

Hey, those look pretty familiar! They’re just our original, unaltered input records. A
little thinking (the human brain is still the best debugging tool), and we realize that we
were off by one!

We get out of the debugger:

gawk> q

a The program is running. Exit anyway (y/n)? y

Then we get into an editor:

clast = join(alast, fcount+1, n)

cline = join(aline, fcount+1, m)

and problem solved!

14.3 Main Debugger Commands

The gawk debugger command set can be divided into the following categories:

• Breakpoint control

• Execution control

• Viewing and changing data

• Working with the stack

• Getting information

• Miscellaneous

Each of these are discussed in the following subsections. In the following descriptions,
commands that may be abbreviated show the abbreviation on a second description line.
A debugger command name may also be truncated if that partial name is unambiguous.
The debugger has the built-in capability to automatically repeat the previous command
just by hitting Enter. This works for the commands list, next, nexti, step, stepi, and
continue executed without any argument.

14.3.1 Control of Breakpoints

As we saw earlier, the first thing you probably want to do in a debugging session is to get
your breakpoints set up, because your program will otherwise just run as if it was not under
the debugger. The commands for controlling breakpoints are:

break [[filename:]n | function] ["expression"]
b [[filename:]n | function] ["expression"]

Without any argument, set a breakpoint at the next instruction to be executed
in the selected stack frame. Arguments can be one of the following:

Chapter 14: Debugging awk Programs 351

n Set a breakpoint at line number n in the current source file.

filename:n
Set a breakpoint at line number n in source file filename.

function Set a breakpoint at entry to (the first instruction of) function
function.

Each breakpoint is assigned a number that can be used to delete it from the
breakpoint list using the delete command.

With a breakpoint, you may also supply a condition. This is an awk expression
(enclosed in double quotes) that the debugger evaluates whenever the break-
point is reached. If the condition is true, then the debugger stops execution
and prompts for a command. Otherwise, it continues executing the program.

clear [[filename:]n | function]
Without any argument, delete any breakpoint at the next instruction to be
executed in the selected stack frame. If the program stops at a breakpoint,
this deletes that breakpoint so that the program does not stop at that location
again. Arguments can be one of the following:

n Delete breakpoint(s) set at line number n in the current source file.

filename:n
Delete breakpoint(s) set at line number n in source file filename.

function Delete breakpoint(s) set at entry to function function.

condition n "expression"

Add a condition to existing breakpoint or watchpoint n. The condition is an awk

expression enclosed in double quotes that the debugger evaluates whenever the
breakpoint or watchpoint is reached. If the condition is true, then the debugger
stops execution and prompts for a command. Otherwise, the debugger continues
executing the program. If the condition expression is not specified, any existing
condition is removed (i.e., the breakpoint or watchpoint is made unconditional).

delete [n1 n2 . . .] [n–m]
d [n1 n2 . . .] [n–m]

Delete specified breakpoints or a range of breakpoints. Delete all defined break-
points if no argument is supplied.

disable [n1 n2 . . . | n–m]
Disable specified breakpoints or a range of breakpoints. Without any argument,
disable all breakpoints.

enable [del | once] [n1 n2 . . .] [n–m]
e [del | once] [n1 n2 . . .] [n–m]

Enable specified breakpoints or a range of breakpoints. Without any argu-
ment, enable all breakpoints. Optionally, you can specify how to enable the
breakpoints:

del Enable the breakpoints temporarily, then delete each one when the
program stops at it.

352 GAWK: Effective AWK Programming

once Enable the breakpoints temporarily, then disable each one when
the program stops at it.

ignore n count
Ignore breakpoint number n the next count times it is hit.

tbreak [[filename:]n | function]
t [[filename:]n | function]

Set a temporary breakpoint (enabled for only one stop). The arguments are
the same as for break.

14.3.2 Control of Execution

Now that your breakpoints are ready, you can start running the program and observing its
behavior. There are more commands for controlling execution of the program than we saw
in our earlier example:

commands [n]
silent

. . .
end Set a list of commands to be executed upon stopping at a breakpoint or watch-

point. n is the breakpoint or watchpoint number. Without a number, the last
one set is used. The actual commands follow, starting on the next line, and ter-
minated by the end command. If the command silent is in the list, the usual
messages about stopping at a breakpoint and the source line are not printed.
Any command in the list that resumes execution (e.g., continue) terminates
the list (an implicit end), and subsequent commands are ignored. For example:

gawk> commands

> silent

> printf "A silent breakpoint; i = %d\n", i

> info locals

> set i = 10

> continue

> end

gawk>

continue [count]
c [count] Resume program execution. If continued from a breakpoint and count is speci-

fied, ignore the breakpoint at that location the next count times before stopping.

finish Execute until the selected stack frame returns. Print the returned value.

next [count]
n [count] Continue execution to the next source line, stepping over function calls. The

argument count controls how many times to repeat the action, as in step.

nexti [count]
ni [count] Execute one (or count) instruction(s), stepping over function calls.

return [value]
Cancel execution of a function call. If value (either a string or a number) is
specified, it is used as the function’s return value. If used in a frame other

Chapter 14: Debugging awk Programs 353

than the innermost one (the currently executing function; i.e., frame number
0), discard all inner frames in addition to the selected one, and the caller of
that frame becomes the innermost frame.

run

r Start/restart execution of the program. When restarting, the debugger retains
the current breakpoints, watchpoints, command history, automatic display vari-
ables, and debugger options.

step [count]
s [count] Continue execution until control reaches a different source line in the current

stack frame, stepping inside any function called within the line. If the argument
count is supplied, steps that many times before stopping, unless it encounters
a breakpoint or watchpoint.

stepi [count]
si [count] Execute one (or count) instruction(s), stepping inside function calls. (For il-

lustration of what is meant by an “instruction” in gawk, see the output shown
under dump in Section 14.3.6 [Miscellaneous Commands], page 357.)

until [[filename:]n | function]
u [[filename:]n | function]

Without any argument, continue execution until a line past the current line in
the current stack frame is reached. With an argument, continue execution until
the specified location is reached, or the current stack frame returns.

14.3.3 Viewing and Changing Data

The commands for viewing and changing variables inside of gawk are:

display [var | $n]
Add variable var (or field $n) to the display list. The value of the variable or
field is displayed each time the program stops. Each variable added to the list
is identified by a unique number:

gawk> display x

a 10: x = 1

This displays the assigned item number, the variable name, and its current
value. If the display variable refers to a function parameter, it is silently deleted
from the list as soon as the execution reaches a context where no such variable
of the given name exists. Without argument, display displays the current
values of items on the list.

eval "awk statements"

Evaluate awk statements in the context of the running program. You can
do anything that an awk program would do: assign values to variables, call
functions, and so on.

NOTE: You cannot use eval to execute a statement containing any
of the following: exit, getline, next, nextfile, or return.

354 GAWK: Effective AWK Programming

eval param, . . .
awk statements
end This form of eval is similar, but it allows you to define “local variables” that

exist in the context of the awk statements, instead of using variables or function
parameters defined by the program.

print var1[, var2 . . .]
p var1[, var2 . . .]

Print the value of a gawk variable or field. Fields must be referenced by con-
stants:

gawk> print $3

This prints the third field in the input record (if the specified field does not exist,
it prints ‘Null field’). A variable can be an array element, with the subscripts
being constant string values. To print the contents of an array, prefix the name
of the array with the ‘@’ symbol:

gawk> print @a

This prints the indices and the corresponding values for all elements in the array
a.

printf format [, arg . . .]
Print formatted text. The format may include escape sequences, such as ‘\n’
(see Section 3.2 [Escape Sequences], page 48). No newline is printed unless one
is specified.

set var=value
Assign a constant (number or string) value to an awk variable or field. String
values must be enclosed between double quotes (". . .").

You can also set special awk variables, such as FS, NF, NR, and so on.

watch var | $n ["expression"]
w var | $n ["expression"]

Add variable var (or field $n) to the watch list. The debugger then stops
whenever the value of the variable or field changes. Each watched item is
assigned a number that can be used to delete it from the watch list using the
unwatch command.

With a watchpoint, you may also supply a condition. This is an awk expression
(enclosed in double quotes) that the debugger evaluates whenever the watch-
point is reached. If the condition is true, then the debugger stops execution and
prompts for a command. Otherwise, gawk continues executing the program.

undisplay [n]
Remove item number n (or all items, if no argument) from the automatic display
list.

unwatch [n]
Remove item number n (or all items, if no argument) from the watch list.

14.3.4 Working with the Stack

Whenever you run a program that contains any function calls, gawk maintains a stack of
all of the function calls leading up to where the program is right now. You can see how you

Chapter 14: Debugging awk Programs 355

got to where you are, and also move around in the stack to see what the state of things was
in the functions that called the one you are in. The commands for doing this are:

backtrace [count]
bt [count]
where [count]

Print a backtrace of all function calls (stack frames), or innermost count frames
if count > 0. Print the outermost count frames if count < 0. The backtrace
displays the name and arguments to each function, the source file name, and
the line number. The alias where for backtrace is provided for longtime GDB
users who may be used to that command.

down [count]
Move count (default 1) frames down the stack toward the innermost frame.
Then select and print the frame.

frame [n]
f [n] Select and print stack frame n. Frame 0 is the currently executing, or inner-

most, frame (function call); frame 1 is the frame that called the innermost one.
The highest-numbered frame is the one for the main program. The printed in-
formation consists of the frame number, function and argument names, source
file, and the source line.

up [count] Move count (default 1) frames up the stack toward the outermost frame. Then
select and print the frame.

14.3.5 Obtaining Information About the Program and the
Debugger State

Besides looking at the values of variables, there is often a need to get other sorts of infor-
mation about the state of your program and of the debugging environment itself. The gawk
debugger has one command that provides this information, appropriately called info. info
is used with one of a number of arguments that tell it exactly what you want to know:

info what
i what The value for what should be one of the following:

args List arguments of the selected frame.

break List all currently set breakpoints.

display List all items in the automatic display list.

frame Give a description of the selected stack frame.

functions

List all function definitions including source file names and line
numbers.

locals List local variables of the selected frame.

source Print the name of the current source file. Each time the program
stops, the current source file is the file containing the current
instruction. When the debugger first starts, the current source

356 GAWK: Effective AWK Programming

file is the first file included via the -f option. The ‘list
filename:lineno’ command can be used at any time to change
the current source.

sources List all program sources.

variables

List all global variables.

watch List all items in the watch list.

Additional commands give you control over the debugger, the ability to save the de-
bugger’s state, and the ability to run debugger commands from a file. The commands
are:

option [name[=value]]
o [name[=value]]

Without an argument, display the available debugger options and their current
values. ‘option name’ shows the current value of the named option. ‘option
name=value’ assigns a new value to the named option. The available options
are:

history_size

Set the maximum number of lines to keep in the history file
./.gawk_history. The default is 100.

listsize Specify the number of lines that list prints. The default is 15.

outfile Send gawk output to a file; debugger output still goes to standard
output. An empty string ("") resets output to standard output.

prompt Change the debugger prompt. The default is ‘gawk> ’.

save_history [on | off]
Save command history to file ./.gawk_history. The default is on.

save_options [on | off]
Save current options to file ./.gawkrc upon exit. The default is
on. Options are read back into the next session upon startup.

trace [on | off]
Turn instruction tracing on or off. The default is off.

save filename
Save the commands from the current session to the given file name, so that
they can be replayed using the source command.

source filename
Run command(s) from a file; an error in any command does not terminate
execution of subsequent commands. Comments (lines starting with ‘#’) are
allowed in a command file. Empty lines are ignored; they do not repeat the
last command. You can’t restart the program by having more than one run

command in the file. Also, the list of commands may include additional source
commands; however, the gawk debugger will not source the same file more than
once in order to avoid infinite recursion.

Chapter 14: Debugging awk Programs 357

In addition to, or instead of, the source command, you can use the -D file

or --debug=file command-line options to execute commands from a file non-
interactively (see Section 2.2 [Command-Line Options], page 31).

14.3.6 Miscellaneous Commands

There are a few more commands that do not fit into the previous categories, as follows:

dump [filename]
Dump byte code of the program to standard output or to the file named in
filename. This prints a representation of the internal instructions that gawk

executes to implement the awk commands in a program. This can be very
enlightening, as the following partial dump of Davide Brini’s obfuscated code
(see Section 11.3.11 [And Now for Something Completely Different], page 312)
demonstrates:

gawk> dump

a # BEGIN

a
a [1:0xfcd340] Op_rule : [in_rule = BEGIN] [source_file = brini.awk]

a [1:0xfcc240] Op_push_i : "~" [MALLOC|STRING|STRCUR]

a [1:0xfcc2a0] Op_push_i : "~" [MALLOC|STRING|STRCUR]

a [1:0xfcc280] Op_match :

a [1:0xfcc1e0] Op_store_var : O

a [1:0xfcc2e0] Op_push_i : "==" [MALLOC|STRING|STRCUR]

a [1:0xfcc340] Op_push_i : "==" [MALLOC|STRING|STRCUR]

a [1:0xfcc320] Op_equal :

a [1:0xfcc200] Op_store_var : o

a [1:0xfcc380] Op_push : o

a [1:0xfcc360] Op_plus_i : 0 [MALLOC|NUMCUR|NUMBER]

a [1:0xfcc220] Op_push_lhs : o [do_reference = true]

a [1:0xfcc300] Op_assign_plus :

a [:0xfcc2c0] Op_pop :

a [1:0xfcc400] Op_push : O

a [1:0xfcc420] Op_push_i : "" [MALLOC|STRING|STRCUR]

a [:0xfcc4a0] Op_no_op :

a [1:0xfcc480] Op_push : O

a [:0xfcc4c0] Op_concat : [expr_count = 3] [concat_flag = 0]

a [1:0xfcc3c0] Op_store_var : x

a [1:0xfcc440] Op_push_lhs : X [do_reference = true]

a [1:0xfcc3a0] Op_postincrement :

a [1:0xfcc4e0] Op_push : x

a [1:0xfcc540] Op_push : o

a [1:0xfcc500] Op_plus :

a [1:0xfcc580] Op_push : o

a [1:0xfcc560] Op_plus :

a [1:0xfcc460] Op_leq :

a [:0xfcc5c0] Op_jmp_false : [target_jmp = 0xfcc5e0]

a [1:0xfcc600] Op_push_i : "%c" [MALLOC|STRING|STRCUR]

a [:0xfcc660] Op_no_op :

a [1:0xfcc520] Op_assign_concat : c

a [:0xfcc620] Op_jmp : [target_jmp = 0xfcc440]

...

a [2:0xfcc5a0] Op_K_printf : [expr_count = 17] [redir_type = ""]

a [:0xfcc140] Op_no_op :

a [:0xfcc1c0] Op_atexit :

a [:0xfcc640] Op_stop :

a [:0xfcc180] Op_no_op :

358 GAWK: Effective AWK Programming

a [:0xfcd150] Op_after_beginfile :

a [:0xfcc160] Op_no_op :

a [:0xfcc1a0] Op_after_endfile :

gawk>

exit Exit the debugger. See the entry for ‘quit’, later in this list.

help

h Print a list of all of the gawk debugger commands with a short summary of their
usage. ‘help command’ prints the information about the command command.

list [- | + | n | filename:n | n–m | function]
l [- | + | n | filename:n | n–m | function]

Print the specified lines (default 15) from the current source file or the file
named filename. The possible arguments to list are as follows:

- (Minus) Print lines before the lines last printed.

+ Print lines after the lines last printed. list without any argument
does the same thing.

n Print lines centered around line number n.

n–m Print lines from n to m.

filename:n
Print lines centered around line number n in source file filename.
This command may change the current source file.

function Print lines centered around the beginning of the function function.
This command may change the current source file.

quit

q Exit the debugger. Debugging is great fun, but sometimes we all have to tend
to other obligations in life, and sometimes we find the bug and are free to go on
to the next one! As we saw earlier, if you are running a program, the debugger
warns you when you type ‘q’ or ‘quit’, to make sure you really want to quit.

trace [on | off]
Turn on or off continuous printing of the instructions that are about to be
executed, along with the awk lines they implement. The default is off.

It is to be hoped that most of the “opcodes” in these instructions are fairly
self-explanatory, and using stepi and nexti while trace is on will make them
into familiar friends.

14.4 Readline Support

If gawk is compiled with the GNU Readline library, you can take advantage of that library’s
command completion and history expansion features. The following types of completion
are available:

Command completion
Command names.

http://cnswww.cns.cwru.edu/php/chet/readline/readline.html

Chapter 14: Debugging awk Programs 359

Source file name completion
Source file names. Relevant commands are break, clear, list, tbreak, and
until.

Argument completion
Non-numeric arguments to a command. Relevant commands are enable and
info.

Variable name completion
Global variable names, and function arguments in the current context if the
program is running. Relevant commands are display, print, set, and watch.

14.5 Limitations

We hope you find the gawk debugger useful and enjoyable to work with, but as with any
program, especially in its early releases, it still has some limitations. A few that it’s worth
being aware of are:

• At this point, the debugger does not give a detailed explanation of what you did wrong
when you type in something it doesn’t like. Rather, it just responds ‘syntax error’.
When you do figure out what your mistake was, though, you’ll feel like a real guru.

• If you perused the dump of opcodes in Section 14.3.6 [Miscellaneous Commands],
page 357, (or if you are already familiar with gawk internals), you will realize that
much of the internal manipulation of data in gawk, as in many interpreters, is done on
a stack. Op_push, Op_pop, and the like are the “bread and butter” of most gawk code.

Unfortunately, as of now, the gawk debugger does not allow you to examine the stack’s
contents. That is, the intermediate results of expression evaluation are on the stack,
but cannot be printed. Rather, only variables that are defined in the program can
be printed. Of course, a workaround for this is to use more explicit variables at the
debugging stage and then change back to obscure, perhaps more optimal code later.

• There is no way to look “inside” the process of compiling regular expressions to see
if you got it right. As an awk programmer, you are expected to know the meaning of
/[^[:alnum:][:blank:]]/.

• The gawk debugger is designed to be used by running a program (with all its parame-
ters) on the command line, as described in Section 14.2.1 [How to Start the Debugger],
page 347. There is no way (as of now) to attach or “break into” a running program.
This seems reasonable for a language that is used mainly for quickly executing, short
programs.

• The gawk debugger only accepts source code supplied with the -f option. If you have a
shell script that provides an awk program as a command line parameter, and you need
to use the debugger, you can write the script to a temporary file, and use that as the
program, with the -f option. This might look like this:

cat << \EOF > /tmp/script.$$

... Your program here
EOF

gawk -D -f /tmp/script.$$

rm /tmp/script.$$

360 GAWK: Effective AWK Programming

14.6 Summary

• Programs rarely work correctly the first time. Finding bugs is called debugging, and
a program that helps you find bugs is a debugger. gawk has a built-in debugger that
works very similarly to the GNU Debugger, GDB.

• Debuggers let you step through your program one statement at a time, examine and
change variable and array values, and do a number of other things that let you un-
derstand what your program is actually doing (as opposed to what it is supposed to
do).

• Like most debuggers, the gawk debugger works in terms of stack frames, and lets you
set both breakpoints (stop at a point in the code) and watchpoints (stop when a data
value changes).

• The debugger command set is fairly complete, providing control over breakpoints, ex-
ecution, viewing and changing data, working with the stack, getting information, and
other tasks.

• If the GNU Readline library is available when gawk is compiled, it is used by the
debugger to provide command-line history and editing.

• Usually, the debugger does not not affect the program being debugged, but occasionally
it can.

Chapter 15: Namespaces in gawk 361

15 Namespaces in gawk

This chapter describes a feature that is specific to gawk.

CAUTION: This feature described in this chapter is new. It is entirely possible,
and even likely, that there are dark corners (if not bugs) still lurking within the
implementation. If you find any such, please report them (See Section B.4
[Reporting Problems and Bugs], page 478).

15.1 Standard awk’s Single Namespace

In standard awk, there is a single, global, namespace. This means that all function names
and global variable names must be unique. For example, two different awk source files
cannot both define a function named min(), or define the same identifier, used as a scalar
in one and as an array in the other.

This situation is okay when programs are small, say a few hundred lines, or even a few
thousand, but it prevents the development of reusable libraries of awk functions, and can
inadvertently cause independently-developed library files to accidentally step on each other’s
“private” global variables (see Section 10.1 [Naming Library Function Global Variables],
page 234).

Most other programming languages solve this issue by providing some kind of namespace
control: a way to say “this function is in namespace xxx, and that function is in namespace
yyy.” (Of course, there is then still a single namespace for the namespaces, but the hope
is that there are much fewer namespaces in use by any given program, and thus much less
chance for collisions.) These facilities are sometimes referred to as packages or modules.

Starting with version 5.0, gawk provides a simple mechanism to put functions and global
variables into separate namespaces.

15.2 Qualified Names

A qualified name is an identifier that includes a namespace name, the namespace
separator ::, and a component name. For example, one might have a function named
posix::getpid(). Here, the namespace is posix and the function name within the
namespace (the component) is getpid(). The namespace and component names are
separated by a double-colon. Only one such separator is allowed in a qualified name.

NOTE: Unlike C++, the :: is not an operator. No spaces are allowed between
the namespace name, the ::, and the component name.

You must use qualified names from one namespace to access variables and functions in
another. This is especially important when using variable names to index the special SYMTAB
array (see Section 7.5.2 [Built-in Variables That Convey Information], page 159), and when
making indirect function calls (see Section 9.3 [Indirect Function Calls], page 224).

15.3 The Default Namespace

The default namespace, not surprisingly, is awk. All of the predefined awk and gawk variables
are in this namespace, and thus have qualified names like awk::ARGC, awk::NF, and so on.

Furthermore, even when you have changed the namespace for your current source file
(see Section 15.4 [Changing The Namespace], page 362), gawk forces unqualified identifiers

362 GAWK: Effective AWK Programming

whose names are all uppercase letters to be in the awk namespace. This makes it possible
for you to easily reference gawk’s global variables from different namespaces. It also keeps
your code looking natural.

15.4 Changing The Namespace

In order to set the current namespace, use an @namespace directive at the top level of your
program:

@namespace "passwd"

BEGIN { ... }

...

After this directive, all simple non-completely-uppercase identifiers are placed into the
passwd namespace.

You can change the namespace multiple times within a single source file, although this
is likely to become confusing if you do it too much.

NOTE: Association of unqualified identifiers to a namespace is handled while
gawk parses your program, before it starts to run. There is no concept of a “cur-
rent” namespace once your program starts executing. Be sure you understand
this.

Each source file for -i and -f starts out with an implicit ‘@namespace "awk"’. Similarly,
each chunk of command-line code supplied with -e has such an implicit initial statement
(see Section 2.2 [Command-Line Options], page 31).

Files included with @include (see Section 2.7 [Including Other Files into Your Program],
page 43) “push” and “pop” the current namespace. That is, each @include saves the current
namespace and starts over with an implicit ‘@namespace "awk"’ which remains in effect until
an explicit @namespace directive is seen. When gawk finishes processing the included file,
the saved namespace is restored and processing continues where it left off in the original
file.

The use of @namespace has no influence upon the order of execution of BEGIN, BEGINFILE,
END, and ENDFILE rules.

15.5 Namespace and Component Naming Rules

A number of rules apply to the namespace and component names, as follows.

• It is a syntax error to use qualified names for function parameter names.

• It is a syntax error to use any standard awk reserved word (such as if or for), or the
name of any standard built-in function (such as sin() or gsub()) as either part of a
qualified name. Thus, the following produces a syntax error:

@namespace "example"

function gsub(str, pat, result) { ... }

• Outside the awk namespace, the names of the additional gawk built-in functions (such
as gensub() or strftime()) may be used as component names. The same set of names
may be used as namespace names, although this has the potential to be confusing.

Chapter 15: Namespaces in gawk 363

• The additional gawk built-in functions may still be called from outside the awk name-
space by qualifying them. For example, awk::systime(). Here is a somewhat silly
example demonstrating this rule and the previous one:

BEGIN {

print "in awk namespace, systime() =", systime()

}

@namespace "testing"

function systime()

{

print "in testing namespace, systime() =", awk::systime()

}

BEGIN {

systime()

}

When run, it produces output like this:

$ gawk -f systime.awk

a in awk namespace, systime() = 1500488503

a in testing namespace, systime() = 1500488503

• gawk pre-defined variable names may be used: NF::NR is valid, if possibly not all that
useful.

15.6 Internal Name Management

For backwards compatibility, all identifiers in the awk namespace are stored internally as
unadorned identifiers (that is, without a leading ‘awk::’). This is mainly relevant when
using such identifiers as indices for SYMTAB, FUNCTAB, and PROCINFO["identifiers"] (see
Section 7.5.2 [Built-in Variables That Convey Information], page 159), and for use in indirect
function calls (see Section 9.3 [Indirect Function Calls], page 224).

In program code, to refer to variables and functions in the awk namespace from another
namespace, you must still use the ‘awk::’ prefix. For example:

@namespace "awk" This is the default namespace

BEGIN {

Title = "My Report" Qualified name is awk::Title

}

@namespace "report" Now in report namespace

function compute() This is really report::compute()

{

print awk::Title But would be SYMTAB["Title"]

...

}

364 GAWK: Effective AWK Programming

15.7 Namespace Example

The following example is a revised version of the suite of routines developed in Section 10.5
[Reading the User Database], page 256. See there for an explanation of how the code works.

The formulation here, due mainly to Andrew Schorr, is rather elegant. All of the imple-
mentation functions and variables are in the passwd namespace, whereas the main interface
functions are defined in the awk namespace.

ns_passwd.awk --- access password file information

@namespace "passwd"

BEGIN {

tailor this to suit your system

Awklib = "/usr/local/libexec/awk/"

}

function Init(oldfs, oldrs, olddol0, pwcat, using_fw, using_fpat)

{

if (Inited)

return

oldfs = FS

oldrs = RS

olddol0 = $0

using_fw = (PROCINFO["FS"] == "FIELDWIDTHS")

using_fpat = (PROCINFO["FS"] == "FPAT")

FS = ":"

RS = "\n"

pwcat = Awklib "pwcat"

while ((pwcat | getline) > 0) {

Byname[$1] = $0

Byuid[$3] = $0

Bycount[++Total] = $0

}

close(pwcat)

Count = 0

Inited = 1

FS = oldfs

if (using_fw)

FIELDWIDTHS = FIELDWIDTHS

else if (using_fpat)

FPAT = FPAT

RS = oldrs

$0 = olddol0

}

Chapter 15: Namespaces in gawk 365

function awk::getpwnam(name)

{

Init()

return Byname[name]

}

function awk::getpwuid(uid)

{

Init()

return Byuid[uid]

}

function awk::getpwent()

{

Init()

if (Count < Total)

return Bycount[++Count]

return ""

}

function awk::endpwent()

{

Count = 0

}

As you can see, this version also follows the convention mentioned in Section 10.1 [Nam-
ing Library Function Global Variables], page 234, whereby global variable and function
names start with a capital letter.

Here is a simple test program. Since it’s in a separate file, unadorned identifiers are
sought for in the awk namespace:

BEGIN {

while ((p = getpwent()) != "")

print p

}

Here’s what happens when it’s run:

$ gawk -f ns_passwd.awk -f testpasswd.awk

a root:x:0:0:root:/root:/bin/bash

a daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

a bin:x:2:2:bin:/bin:/usr/sbin/nologin

a sys:x:3:3:sys:/dev:/usr/sbin/nologin

...

15.8 Namespaces and Other gawk Features

This section looks briefly at how the namespace facility interacts with other important gawk
features.

366 GAWK: Effective AWK Programming

The profiler and pretty-printer (see Section 12.5 [Profiling Your awk Programs], page 329)
have been enhanced to understand namespaces and the namespace naming rules presented
in Section 15.5 [Namespace and Component Naming Rules], page 362. In particular, the
output groups functions in the same namespace together, and has @namespace directives in
front of rules as necessary. This allows component names to be simple identifiers, instead
of using qualified identifiers everywhere.

Interaction with the debugger (see Section 14.1 [Introduction to the gawk Debugger],
page 345) has not had to change (at least as of this writing). Some of the internal byte
codes changed in order to accommodate namespaces, and the debugger’s dump command
was adjusted to match.

The extension API (see Chapter 17 [Writing Extensions for gawk], page 381) has always
allowed for placing functions into a different namespace, although this was not previously
implemented. However, the symbol lookup and symbol update routines did not have provi-
sion for including a namespace. That has now been corrected (see Section 17.4.10.1 [Variable
Access and Update by Name], page 403). See Section 17.7.4 [Enabling In-Place File Edit-
ing], page 436, for a nice example of an extension that leverages a namespace shared by
cooperating awk and C code.

15.9 Summary

• Standard awk provides a single namespace for all global identifiers (scalars, arrays, and
functions). This is limiting when one wants to develop libraries of reusable functions
or function suites.

• gawk provides multiple namespaces by using qualified names: names consisting of a
namespace name, a double colon, ::, and a component name. Namespace names
might still possibly conflict, but this is true of any language providing namespaces,
modules, or packages.

• The default namespace is awk. The rules for namespace and component names are
provided in Section 15.5 [Namespace and Component Naming Rules], page 362. The
rules are designed in such a way as to make namespace-aware code continue to look
and work naturally while still providing the necessary power and flexibility.

• Other parts of gawk have been extended as necessary to integrate namespaces smoothly
with their operation. This applies most notably to the profiler / pretty-printer (see
Section 12.5 [Profiling Your awk Programs], page 329) and to the extension facility (see
Chapter 17 [Writing Extensions for gawk], page 381).

• Overall, the namespace facility was designed and implemented such that backwards
compatibility is paramount. Programs that don’t use namespaces should see absolutely
no difference in behavior when run by a namespace-capable version of gawk.

Chapter 16: Arithmetic and Arbitrary-Precision Arithmetic with gawk 367

16 Arithmetic and Arbitrary-Precision Arithmetic
with gawk

This chapter introduces some basic concepts relating to how computers do arithmetic and
defines some important terms. It then proceeds to describe floating-point arithmetic, which
is what awk uses for all its computations, including a discussion of arbitrary-precision
floating-point arithmetic, which is a feature available only in gawk. It continues on to
present arbitrary-precision integers, and concludes with a description of some points where
gawk and the POSIX standard are not quite in agreement.

NOTE: Most users of gawk can safely skip this chapter. But if you want to do
scientific calculations with gawk, this is the place to be.

16.1 A General Description of Computer Arithmetic

Until now, we have worked with data as either numbers or strings. Ultimately, however,
computers represent everything in terms of binary digits, or bits. A decimal digit can take
on any of 10 values: zero through nine. A binary digit can take on any of two values, zero
or one. Using binary, computers (and computer software) can represent and manipulate
numerical and character data. In general, the more bits you can use to represent a particular
thing, the greater the range of possible values it can take on.

Modern computers support at least two, and often more, ways to do arithmetic. Each
kind of arithmetic uses a different representation (organization of the bits) for the numbers.
The kinds of arithmetic that interest us are:

Decimal arithmetic
This is the kind of arithmetic you learned in elementary school, using paper and
pencil (and/or a calculator). In theory, numbers can have an arbitrary number
of digits on either side (or both sides) of the decimal point, and the results of
a computation are always exact.

Some modern systems can do decimal arithmetic in hardware, but usually you
need a special software library to provide access to these instructions. There
are also libraries that do decimal arithmetic entirely in software.

Despite the fact that some users expect gawk to be performing decimal arith-
metic,1 it does not do so.

Integer arithmetic
In school, integer values were referred to as “whole” numbers—that is, numbers
without any fractional part, such as 1, 42, or −17. The advantage to integer
numbers is that they represent values exactly. The disadvantage is that their
range is limited.

In computers, integer values come in two flavors: signed and unsigned. Signed
values may be negative or positive, whereas unsigned values are always greater
than or equal to zero.

In computer systems, integer arithmetic is exact, but the possible range of values
is limited. Integer arithmetic is generally faster than floating-point arithmetic.

1 We don’t know why they expect this, but they do.

368 GAWK: Effective AWK Programming

Floating-point arithmetic
Floating-point numbers represent what were called in school “real” numbers
(i.e., those that have a fractional part, such as 3.1415927). The advantage to
floating-point numbers is that they can represent a much larger range of values
than can integers. The disadvantage is that there are numbers that they cannot
represent exactly.

Modern systems support floating-point arithmetic in hardware, with a limited
range of values. There are software libraries that allow the use of arbitrary-
precision floating-point calculations.

POSIX awk uses double-precision floating-point numbers, which can hold more
digits than single-precision floating-point numbers. gawk has facilities for per-
forming arbitrary-precision floating-point arithmetic, which we describe in more
detail shortly.

Computers work with integer and floating-point values of different ranges. Integer values
are usually either 32 or 64 bits in size. Single-precision floating-point values occupy 32
bits, whereas double-precision floating-point values occupy 64 bits. (Quadruple-precision
floating point values also exist. They occupy 128 bits, but such numbers are not available
in awk.) Floating-point values are always signed. The possible ranges of values are shown
in Table 16.1 and Table 16.2.

Representation Minimum value Maximum value
32-bit signed integer −2,147,483,648 2,147,483,647
32-bit unsigned integer 0 4,294,967,295
64-bit signed integer −9,223,372,036,854,775,808 9,223,372,036,854,775,807
64-bit unsigned integer 0 18,446,744,073,709,551,615

Table 16.1: Value ranges for integer representations

Representation Minimum positive
nonzero value

Minimum
finite value

Maximum
finite value

Single-precision floating-point 1.175494 · 10−38 −3.402823 · 1038 3.402823 · 1038
Double-precision floating-point 2.225074 · 10−308 −1.797693 · 10308 1.797693 · 10308
Quadruple-precision floating-point 3.362103 · 10−4932 −1.189731 ·104932 1.189731 · 104932

Table 16.2: Approximate value ranges for floating-point number representations

16.2 Other Stuff to Know

The rest of this chapter uses a number of terms. Here are some informal definitions that
should help you work your way through the material here:

Accuracy A floating-point calculation’s accuracy is how close it comes to the real (paper
and pencil) value.

Error The difference between what the result of a computation “should be” and what
it actually is. It is best to minimize error as much as possible.

Chapter 16: Arithmetic and Arbitrary-Precision Arithmetic with gawk 369

Exponent The order of magnitude of a value; some number of bits in a floating-point value
store the exponent.

Inf A special value representing infinity. Operations involving another number and
infinity produce infinity.

NaN “Not a number.”2 A special value that results from attempting a calculation
that has no answer as a real number. In such a case, programs can either
receive a floating-point exception, or get NaN back as the result. The IEEE 754
standard recommends that systems return NaN. Some examples:

sqrt(-1) This makes sense in the range of complex numbers, but not in the
range of real numbers, so the result is NaN.

log(-8) −8 is out of the domain of log(), so the result is NaN.

Normalized
How the significand (see later in this list) is usually stored. The value is adjusted
so that the first bit is one, and then that leading one is assumed instead of
physically stored. This provides one extra bit of precision.

Precision The number of bits used to represent a floating-point number. The more bits,
the more digits you can represent. Binary and decimal precisions are related
approximately, according to the formula:

prec = 3.322 · dps
Here, prec denotes the binary precision (measured in bits) and dps (short for
decimal places) is the decimal digits.

Rounding mode
How numbers are rounded up or down when necessary. More details are pro-
vided later.

Significand
A floating-point value consists of the significand multiplied by 10 to the power
of the exponent. For example, in 1.2345e67, the significand is 1.2345.

Stability From the Wikipedia article on numerical stability: “Calculations that can be
proven not to magnify approximation errors are called numerically stable.”

See the Wikipedia article on accuracy and precision for more information on some of
those terms.

On modern systems, floating-point hardware uses the representation and operations
defined by the IEEE 754 standard. Three of the standard IEEE 754 types are 32-bit
single precision, 64-bit double precision, and 128-bit quadruple precision. The standard
also specifies extended precision formats to allow greater precisions and larger exponent
ranges. (awk uses only the 64-bit double-precision format.)

Table 16.3 lists the precision and exponent field values for the basic IEEE 754 binary
formats.

2 Thanks to Michael Brennan for this description, which we have paraphrased, and for the examples.

https://en.wikipedia.org/wiki/Numerical_stability
https://en.wikipedia.org/wiki/Accuracy_and_precision

370 GAWK: Effective AWK Programming

Name Total bits Precision Minimum
exponent

Maximum
exponent

Single 32 24 −126 +127
Double 64 53 −1022 +1023
Quadruple 128 113 −16382 +16383

Table 16.3: Basic IEEE format values

NOTE: The precision numbers include the implied leading one that gives them
one extra bit of significand.

16.3 Arbitrary-Precision Arithmetic Features in gawk

By default, gawk uses the double-precision floating-point values supplied by the hardware
of the system it runs on. However, if it was compiled to do so, and the -M command-line
option is supplied, gawk uses the GNU MPFR and GNU MP (GMP) libraries for arbitrary-
precision arithmetic on numbers. You can see if MPFR support is available like so:

$ gawk --version

a GNU Awk 4.1.2, API: 1.1 (GNU MPFR 3.1.0-p3, GNU MP 5.0.2)

a Copyright (C) 1989, 1991-2015 Free Software Foundation.

...

(You may see different version numbers than what’s shown here. That’s OK; what’s im-
portant is to see that GNU MPFR and GNU MP are listed in the output.)

Additionally, there are a few elements available in the PROCINFO array to provide in-
formation about the MPFR and GMP libraries (see Section 7.5.2 [Built-in Variables That
Convey Information], page 159).

The MPFR library provides precise control over precisions and rounding modes, and
gives correctly rounded, reproducible, platform-independent results. With the -M command-
line option, all floating-point arithmetic operators and numeric functions can yield results
to any desired precision level supported by MPFR.

Two predefined variables, PREC and ROUNDMODE, provide control over the working preci-
sion and the rounding mode. The precision and the rounding mode are set globally for every
operation to follow. See Section 16.4.4 [Setting the Precision], page 374, and Section 16.4.5
[Setting the Rounding Mode], page 375, for more information.

16.4 Floating-Point Arithmetic: Caveat Emptor!

Math class is tough!
—Teen Talk Barbie, July 1992

This section provides a high-level overview of the issues involved when doing lots of
floating-point arithmetic.3 The discussion applies to both hardware and arbitrary-precision
floating-point arithmetic.

3 There is a very nice paper on floating-point arithmetic by David Goldberg, “What Every Computer
Scientist Should Know About Floating-Point Arithmetic,” ACM Computing Surveys 23, 1 (1991-03):
5-48. This is worth reading if you are interested in the details, but it does require a background in
computer science.

http://www.mpfr.org
https://gmplib.org
http://www.validlab.com/goldberg/paper.pdf

Chapter 16: Arithmetic and Arbitrary-Precision Arithmetic with gawk 371

CAUTION: The material here is purposely general. If you need to do serious
computer arithmetic, you should do some research first, and not rely just on
what we tell you.

16.4.1 Floating-Point Arithmetic Is Not Exact

Binary floating-point representations and arithmetic are inexact. Simple values like 0.1
cannot be precisely represented using binary floating-point numbers, and the limited pre-
cision of floating-point numbers means that slight changes in the order of operations or
the precision of intermediate storage can change the result. To make matters worse, with
arbitrary-precision floating-point arithmetic, you can set the precision before starting a
computation, but then you cannot be sure of the number of significant decimal places in
the final result.

16.4.1.1 Many Numbers Cannot Be Represented Exactly

So, before you start to write any code, you should think about what you really want and
what’s really happening. Consider the two numbers in the following example:

x = 0.875 # 1/2 + 1/4 + 1/8

y = 0.425

Unlike the number in y, the number stored in x is exactly representable in binary because
it can be written as a finite sum of one or more fractions whose denominators are all powers
of two. When gawk reads a floating-point number from program source, it automatically
rounds that number to whatever precision your machine supports. If you try to print the
numeric content of a variable using an output format string of "%.17g", it may not produce
the same number as you assigned to it:

$ gawk 'BEGIN { x = 0.875; y = 0.425

> printf("%0.17g, %0.17g\n", x, y) }'

a 0.875, 0.42499999999999999

Often the error is so small you do not even notice it, and if you do, you can always
specify how much precision you would like in your output. Usually this is a format string
like "%.15g", which, when used in the previous example, produces an output identical to
the input.

16.4.1.2 Be Careful Comparing Values

Because the underlying representation can be a little bit off from the exact value, comparing
floating-point values to see if they are exactly equal is generally a bad idea. Here is an
example where it does not work like you would expect:

$ gawk 'BEGIN { print (0.1 + 12.2 == 12.3) }'

a 0

The general wisdom when comparing floating-point values is to see if they are within
some small range of each other (called a delta, or tolerance). You have to decide how small
a delta is important to you. Code to do this looks something like the following:

372 GAWK: Effective AWK Programming

delta = 0.00001 # for example

difference = abs(a - b) # subtract the two values

if (difference < delta)

all ok

else

not ok

(We assume that you have a simple absolute value function named abs() defined elsewhere
in your program.) If you write a function to compare values with a delta, you should be
sure to use ‘difference < abs(delta)’ in case someone passes in a negative delta value.

16.4.1.3 Errors Accumulate

The loss of accuracy during a single computation with floating-point numbers usually isn’t
enough to worry about. However, if you compute a value that is the result of a sequence of
floating-point operations, the error can accumulate and greatly affect the computation itself.
Here is an attempt to compute the value of π using one of its many series representations:

BEGIN {

x = 1.0 / sqrt(3.0)

n = 6

for (i = 1; i < 30; i++) {

n = n * 2.0

x = (sqrt(x * x + 1) - 1) / x

printf("%.15f\n", n * x)

}

}

When run, the early errors propagate through later computations, causing the loop to
terminate prematurely after attempting to divide by zero:

$ gawk -f pi.awk

a 3.215390309173475

a 3.159659942097510

a 3.146086215131467

a 3.142714599645573

...

a 3.224515243534819

a 2.791117213058638

a 0.000000000000000

error gawk: pi.awk:6: fatal: division by zero attempted

Here is an additional example where the inaccuracies in internal representations yield
an unexpected result:

$ gawk 'BEGIN {

> for (d = 1.1; d <= 1.5; d += 0.1) # loop five times (?)

> i++

> print i

> }'

a 4

Chapter 16: Arithmetic and Arbitrary-Precision Arithmetic with gawk 373

16.4.2 Getting the Accuracy You Need

Can arbitrary-precision arithmetic give exact results? There are no easy answers. The
standard rules of algebra often do not apply when using floating-point arithmetic. Among
other things, the distributive and associative laws do not hold completely, and order of
operation may be important for your computation. Rounding error, cumulative precision
loss, and underflow are often troublesome.

When gawk tests the expressions ‘0.1 + 12.2’ and ‘12.3’ for equality using the machine
double-precision arithmetic, it decides that they are not equal! (See Section 16.4.1.2 [Be
Careful Comparing Values], page 371.) You can get the result you want by increasing the
precision; 56 bits in this case does the job:

$ gawk -M -v PREC=56 'BEGIN { print (0.1 + 12.2 == 12.3) }'

a 1

If adding more bits is good, perhaps adding even more bits of precision is better? Here
is what happens if we use an even larger value of PREC:

$ gawk -M -v PREC=201 'BEGIN { print (0.1 + 12.2 == 12.3) }'

a 0

This is not a bug in gawk or in the MPFR library. It is easy to forget that the finite
number of bits used to store the value is often just an approximation after proper rounding.
The test for equality succeeds if and only if all bits in the two operands are exactly the
same. Because this is not necessarily true after floating-point computations with a particular
precision and effective rounding mode, a straight test for equality may not work. Instead,
compare the two numbers to see if they are within the desirable delta of each other.

In applications where 15 or fewer decimal places suffice, hardware double-precision arith-
metic can be adequate, and is usually much faster. But you need to keep in mind that every
floating-point operation can suffer a new rounding error with catastrophic consequences, as
illustrated by our earlier attempt to compute the value of π. Extra precision can greatly
enhance the stability and the accuracy of your computation in such cases.

Additionally, you should understand that repeated addition is not necessarily equivalent
to multiplication in floating-point arithmetic. In the example in Section 16.4.1.3 [Errors
Accumulate], page 372:

$ gawk 'BEGIN {

> for (d = 1.1; d <= 1.5; d += 0.1) # loop five times (?)

> i++

> print i

> }'

a 4

you may or may not succeed in getting the correct result by choosing an arbitrarily large
value for PREC. Reformulation of the problem at hand is often the correct approach in such
situations.

16.4.3 Try a Few Extra Bits of Precision and Rounding

Instead of arbitrary-precision floating-point arithmetic, often all you need is an adjustment
of your logic or a different order for the operations in your calculation. The stability and

374 GAWK: Effective AWK Programming

the accuracy of the computation of π in the earlier example can be enhanced by using the
following simple algebraic transformation:

(sqrt(x * x + 1) - 1) / x ≡ x / (sqrt(x * x + 1) + 1)

After making this change, the program converges to π in under 30 iterations:

$ gawk -f pi2.awk

a 3.215390309173473

a 3.159659942097501

a 3.146086215131436

a 3.142714599645370

a 3.141873049979825

...

a 3.141592653589797

a 3.141592653589797

16.4.4 Setting the Precision

gawk uses a global working precision; it does not keep track of the precision or accuracy
of individual numbers. Performing an arithmetic operation or calling a built-in function
rounds the result to the current working precision. The default working precision is 53 bits,
which you can modify using the predefined variable PREC. You can also set the value to
one of the predefined case-insensitive strings shown in Table 16.4, to emulate an IEEE 754
binary format.

PREC IEEE 754 binary format
"half" 16-bit half-precision
"single" Basic 32-bit single precision
"double" Basic 64-bit double precision
"quad" Basic 128-bit quadruple precision
"oct" 256-bit octuple precision

Table 16.4: Predefined precision strings for PREC

The following example illustrates the effects of changing precision on arithmetic opera-
tions:

$ gawk -M -v PREC=100 'BEGIN { x = 1.0e-400; print x + 0

> PREC = "double"; print x + 0 }'

a 1e-400

a 0

CAUTION: Be wary of floating-point constants! When reading a floating-point
constant from program source code, gawk uses the default precision (that of a
C double), unless overridden by an assignment to the special variable PREC on
the command line, to store it internally as an MPFR number. Changing the
precision using PREC in the program text does not change the precision of a
constant.

If you need to represent a floating-point constant at a higher precision than the
default and cannot use a command-line assignment to PREC, you should either
specify the constant as a string, or as a rational number, whenever possible.

Chapter 16: Arithmetic and Arbitrary-Precision Arithmetic with gawk 375

The following example illustrates the differences among various ways to print a
floating-point constant:

$ gawk -M 'BEGIN { PREC = 113; printf("%0.25f\n", 0.1) }'

a 0.1000000000000000055511151

$ gawk -M -v PREC=113 'BEGIN { printf("%0.25f\n", 0.1) }'

a 0.1000000000000000000000000

$ gawk -M 'BEGIN { PREC = 113; printf("%0.25f\n", "0.1") }'

a 0.1000000000000000000000000

$ gawk -M 'BEGIN { PREC = 113; printf("%0.25f\n", 1/10) }'

a 0.1000000000000000000000000

16.4.5 Setting the Rounding Mode

The ROUNDMODE variable provides program-level control over the rounding mode. The cor-
respondence between ROUNDMODE and the IEEE rounding modes is shown in Table 16.5.

Rounding mode IEEE name ROUNDMODE

Round to nearest, ties to even roundTiesToEven "N" or "n"
Round toward positive infinity roundTowardPositive "U" or "u"
Round toward negative infinity roundTowardNegative "D" or "d"
Round toward zero roundTowardZero "Z" or "z"
Round away from zero "A" or "a"

Table 16.5: gawk rounding modes

ROUNDMODE has the default value "N", which selects the IEEE 754 rounding mode
roundTiesToEven. In Table 16.5, the value "A" selects rounding away from zero. This
is only available if your version of the MPFR library supports it; otherwise, setting
ROUNDMODE to "A" has no effect.

The default mode roundTiesToEven is the most preferred, but the least intuitive. This
method does the obvious thing for most values, by rounding them up or down to the nearest
digit. For example, rounding 1.132 to two digits yields 1.13, and rounding 1.157 yields 1.16.

However, when it comes to rounding a value that is exactly halfway between, things do
not work the way you probably learned in school. In this case, the number is rounded to
the nearest even digit. So rounding 0.125 to two digits rounds down to 0.12, but rounding
0.6875 to three digits rounds up to 0.688. You probably have already encountered this
rounding mode when using printf to format floating-point numbers. For example:

BEGIN {

x = -4.5

for (i = 1; i < 10; i++) {

x += 1.0

printf("%4.1f => %2.0f\n", x, x)

}

}

produces the following output when run on the author’s system:4

4 It is possible for the output to be completely different if the C library in your system does not use the
IEEE 754 even-rounding rule to round halfway cases for printf.

376 GAWK: Effective AWK Programming

-3.5 => -4

-2.5 => -2

-1.5 => -2

-0.5 => 0

0.5 => 0

1.5 => 2

2.5 => 2

3.5 => 4

4.5 => 4

The theory behind roundTiesToEven is that it more or less evenly distributes upward
and downward rounds of exact halves, which might cause any accumulating round-off error
to cancel itself out. This is the default rounding mode for IEEE 754 computing functions
and operators.� �

Rounding Modes and Conversion

It’s important to understand that, along with CONVFMT and OFMT, the rounding mode
affects how numbers are converted to strings. For example, consider the following program:

BEGIN {

pi = 3.1416

OFMT = "%.f" # Print value as integer

print pi # ROUNDMODE = "N" by default.

ROUNDMODE = "U" # Now change ROUNDMODE

print pi

}

Running this program produces this output:

$ gawk -M -f roundmode.awk

a 3

a 4
 	
The other rounding modes are rarely used. Rounding toward positive infinity

(roundTowardPositive) and toward negative infinity (roundTowardNegative) are often
used to implement interval arithmetic, where you adjust the rounding mode to calculate
upper and lower bounds for the range of output. The roundTowardZero mode can be used
for converting floating-point numbers to integers. When rounding away from zero, the
nearest number with magnitude greater than or equal to the value is selected.

Some numerical analysts will tell you that your choice of rounding style has tremendous
impact on the final outcome, and advise you to wait until final output for any rounding.
Instead, you can often avoid round-off error problems by setting the precision initially to
some value sufficiently larger than the final desired precision, so that the accumulation
of round-off error does not influence the outcome. If you suspect that results from your
computation are sensitive to accumulation of round-off error, look for a significant difference
in output when you change the rounding mode to be sure.

Chapter 16: Arithmetic and Arbitrary-Precision Arithmetic with gawk 377

16.5 Arbitrary-Precision Integer Arithmetic with gawk

When given the -M option, gawk performs all integer arithmetic using GMP arbitrary-
precision integers. Any number that looks like an integer in a source or data file is stored
as an arbitrary-precision integer. The size of the integer is limited only by the available

memory. For example, the following computes 54
32

, the result of which is beyond the limits
of ordinary hardware double-precision floating-point values:

$ gawk -M 'BEGIN {

> x = 5^4^3^2

> print "number of digits =", length(x)

> print substr(x, 1, 20), "...", substr(x, length(x) - 19, 20)

> }'

a number of digits = 183231

a 62060698786608744707 ... 92256259918212890625

If instead you were to compute the same value using arbitrary-precision floating-point
values, the precision needed for correct output (using the formula prec = 3.322 · dps) would
be 3.322 · 183231, or 608693.

The result from an arithmetic operation with an integer and a floating-point value is a
floating-point value with a precision equal to the working precision. The following program
calculates the eighth term in Sylvester’s sequence5 using a recurrence:

$ gawk -M 'BEGIN {

> s = 2.0

> for (i = 1; i <= 7; i++)

> s = s * (s - 1) + 1

> print s

> }'

a 113423713055421845118910464

The output differs from the actual number, 113,423,713,055,421,844,361,000,443, because
the default precision of 53 bits is not enough to represent the floating-point results exactly.
You can either increase the precision (100 bits is enough in this case), or replace the floating-
point constant ‘2.0’ with an integer, to perform all computations using integer arithmetic
to get the correct output.

Sometimes gawk must implicitly convert an arbitrary-precision integer into an arbitrary-
precision floating-point value. This is primarily because the MPFR library does not always
provide the relevant interface to process arbitrary-precision integers or mixed-mode numbers
as needed by an operation or function. In such a case, the precision is set to the minimum
value necessary for exact conversion, and the working precision is not used for this purpose.
If this is not what you need or want, you can employ a subterfuge and convert the integer
to floating point first, like this:

gawk -M 'BEGIN { n = 13; print (n + 0.0) % 2.0 }'

You can avoid this issue altogether by specifying the number as a floating-point value
to begin with:

gawk -M 'BEGIN { n = 13.0; print n % 2.0 }'

5 Weisstein, Eric W. Sylvester’s Sequence. From MathWorld—A Wolfram Web Resource
(http://mathworld.wolfram.com/SylvestersSequence.html).

http://mathworld.wolfram.com/SylvestersSequence.html

378 GAWK: Effective AWK Programming

Note that for this particular example, it is likely best to just use the following:

gawk -M 'BEGIN { n = 13; print n % 2 }'

When dividing two arbitrary precision integers with either ‘/’ or ‘%’, the result is typically
an arbitrary precision floating point value (unless the denominator evenly divides into the
numerator).

16.6 How To Check If MPFR Is Available

Occasionally, you might like to be able to check if gawk was invoked with the -M option,
enabling arbitrary-precision arithmetic. You can do so with the following function, con-
tributed by Andrew Schorr:

adequate_math_precision --- return true if we have enough bits

function adequate_math_precision(n)

{

return (1 != (1+(1/(2^(n-1)))))

}

Here is code that invokes the function in order to check if arbitrary-precision arithmetic
is available:

BEGIN {

How many bits of mantissa precision are required

for this program to function properly?

fpbits = 123

We hope that we were invoked with MPFR enabled. If so, the

following statement should configure calculations to our desired

precision.

PREC = fpbits

if (! adequate_math_precision(fpbits)) {

print("Error: insufficient computation precision available.\n" \

"Try again with the -M argument?") > "/dev/stderr"

Note: you may need to set a flag here to bail out of END rules

exit 1

}

}

Please be aware that exit will jump to the END rules, if present (see Section 7.4.10 [The
exit Statement], page 156).

16.7 Standards Versus Existing Practice

Historically, awk has converted any nonnumeric-looking string to the numeric value zero,
when required. Furthermore, the original definition of the language and the original POSIX
standards specified that awk only understands decimal numbers (base 10), and not octal
(base 8) or hexadecimal numbers (base 16).

Chapter 16: Arithmetic and Arbitrary-Precision Arithmetic with gawk 379

Changes in the language of the 2001 and 2004 POSIX standards can be interpreted to
imply that awk should support additional features. These features are:

• Interpretation of floating-point data values specified in hexadecimal notation (e.g.,
0xDEADBEEF). (Note: data values, not source code constants.)

• Support for the special IEEE 754 floating-point values “not a number” (NaN), positive
infinity (“inf”), and negative infinity (“−inf”). In particular, the format for these
values is as specified by the ISO 1999 C standard, which ignores case and can allow
implementation-dependent additional characters after the ‘nan’ and allow either ‘inf’
or ‘infinity’.

The first problem is that both of these are clear changes to historical practice:

• The gawk maintainer feels that supporting hexadecimal floating-point values, in par-
ticular, is ugly, and was never intended by the original designers to be part of the
language.

• Allowing completely alphabetic strings to have valid numeric values is also a very severe
departure from historical practice.

The second problem is that the gawk maintainer feels that this interpretation of the
standard, which required a certain amount of “language lawyering” to arrive at in the first
place, was not even intended by the standard developers. In other words, “We see how you
got where you are, but we don’t think that that’s where you want to be.”

Recognizing these issues, but attempting to provide compatibility with the earlier ver-
sions of the standard, the 2008 POSIX standard added explicit wording to allow, but not
require, that awk support hexadecimal floating-point values and special values for “not a
number” and infinity.

Although the gawk maintainer continues to feel that providing those features is inad-
visable, nevertheless, on systems that support IEEE floating point, it seems reasonable to
provide some way to support NaN and infinity values. The solution implemented in gawk

is as follows:

• With the --posix command-line option, gawk becomes “hands off.” String values are
passed directly to the system library’s strtod() function, and if it successfully returns
a numeric value, that is what’s used.6 By definition, the results are not portable across
different systems. They are also a little surprising:

$ echo nanny | gawk --posix '{ print $1 + 0 }'

a nan

$ echo 0xDeadBeef | gawk --posix '{ print $1 + 0 }'

a 3735928559

• Without --posix, gawk interprets the four string values ‘+inf’, ‘-inf’, ‘+nan’, and
‘-nan’ specially, producing the corresponding special numeric values. The leading sign
acts a signal to gawk (and the user) that the value is really numeric. Hexadecimal
floating point is not supported (unless you also use --non-decimal-data, which is not
recommended). For example:

$ echo nanny | gawk '{ print $1 + 0 }'

a 0

6 You asked for it, you got it.

380 GAWK: Effective AWK Programming

$ echo +nan | gawk '{ print $1 + 0 }'

a +nan

$ echo 0xDeadBeef | gawk '{ print $1 + 0 }'

a 0

gawk ignores case in the four special values. Thus, ‘+nan’ and ‘+NaN’ are the same.

Besides handling input, gawk also needs to print “correct” values on output when a value
is either NaN or infinity. Starting with version 4.2.2, for such values gawk prints one of the
four strings just described: ‘+inf’, ‘-inf’, ‘+nan’, or ‘-nan’. Similarly, in POSIX mode,
gawk prints the result of the system’s C printf() function using the %g format string for
the value, whatever that may be.

16.8 Summary

• Most computer arithmetic is done using either integers or floating-point values. Stan-
dard awk uses double-precision floating-point values.

• In the early 1990s Barbie mistakenly said, “Math class is tough!” Although math isn’t
tough, floating-point arithmetic isn’t the same as pencil-and-paper math, and care must
be taken:

− Not all numbers can be represented exactly.

− Comparing values should use a delta, instead of being done directly with ‘==’ and
‘!=’.

− Errors accumulate.

− Operations are not always truly associative or distributive.

• Increasing the accuracy can help, but it is not a panacea.

• Often, increasing the accuracy and then rounding to the desired number of digits
produces reasonable results.

• Use -M (or --bignum) to enable MPFR arithmetic. Use PREC to set the precision in
bits, and ROUNDMODE to set the IEEE 754 rounding mode.

• With -M, gawk performs arbitrary-precision integer arithmetic using the GMP library.
This is faster and more space-efficient than using MPFR for the same calculations.

• There are several areas with respect to floating-point numbers where gawk disagrees
with the POSIX standard. It pays to be aware of them.

• Overall, there is no need to be unduly suspicious about the results from floating-point
arithmetic. The lesson to remember is that floating-point arithmetic is always more
complex than arithmetic using pencil and paper. In order to take advantage of the
power of floating-point arithmetic, you need to know its limitations and work within
them. For most casual use of floating-point arithmetic, you will often get the expected
result if you simply round the display of your final results to the correct number of
significant decimal digits.

• As general advice, avoid presenting numerical data in a manner that implies better
precision than is actually the case.

Chapter 17: Writing Extensions for gawk 381

17 Writing Extensions for gawk

It is possible to add new functions written in C or C++ to gawk using dynamically loaded
libraries. This facility is available on systems that support the C dlopen() and dlsym()

functions. This chapter describes how to create extensions using code written in C or C++.

If you don’t know anything about C programming, you can safely skip this chapter,
although you may wish to review the documentation on the extensions that come with
gawk (see Section 17.7 [The Sample Extensions in the gawk Distribution], page 432), and
the information on the gawkextlib project (see Section 17.8 [The gawkextlib Project],
page 441). The sample extensions are automatically built and installed when gawk is.

NOTE: When --sandbox is specified, extensions are disabled (see Section 2.2
[Command-Line Options], page 31).

17.1 Introduction

An extension (sometimes called a plug-in) is a piece of external compiled code that gawk can
load at runtime to provide additional functionality, over and above the built-in capabilities
described in the rest of this book.

Extensions are useful because they allow you (of course) to extend gawk’s functionality.
For example, they can provide access to system calls (such as chdir() to change directory)
and to other C library routines that could be of use. As with most software, “the sky is
the limit”; if you can imagine something that you might want to do and can write in C or
C++, you can write an extension to do it!

Extensions are written in C or C++, using the application programming interface (API)
defined for this purpose by the gawk developers. The rest of this chapter explains the facil-
ities that the API provides and how to use them, and presents a small example extension.
In addition, it documents the sample extensions included in the gawk distribution and de-
scribes the gawkextlib project. See Section C.5 [Extension API Design], page 489, for a
discussion of the extension mechanism goals and design.

17.2 Extension Licensing

Every dynamic extension must be distributed under a license that is compatible with the
GNU GPL (see [GNU General Public License], page 509).

In order for the extension to tell gawk that it is properly licensed, the extension must
define the global symbol plugin_is_GPL_compatible. If this symbol does not exist, gawk
emits a fatal error and exits when it tries to load your extension.

The declared type of the symbol should be int. It does not need to be in any allo-
cated section, though. The code merely asserts that the symbol exists in the global scope.
Something like this is enough:

int plugin_is_GPL_compatible;

17.3 How It Works at a High Level

Communication between gawk and an extension is two-way. First, when an extension is
loaded, gawk passes it a pointer to a struct whose fields are function pointers. This is
shown in Figure 17.1.

382 GAWK: Effective AWK Programming

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

gawk Main Program Address Space Extension

API

Struct

dl_load(api_p, id);

Figure 17.1: Loading the extension

The extension can call functions inside gawk through these function pointers, at runtime,
without needing (link-time) access to gawk’s symbols. One of these function pointers is to
a function for “registering” new functions. This is shown in Figure 17.2.

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

gawk Main Program Address Space Extension

register_ext_func({ "chdir", do_chdir, 1 });

Figure 17.2: Registering a new function

In the other direction, the extension registers its new functions with gawk by passing
function pointers to the functions that provide the new feature (do_chdir(), for example).
gawk associates the function pointer with a name and can then call it, using a defined calling
convention. This is shown in Figure 17.3.

Chapter 17: Writing Extensions for gawk 383

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

gawk Main Program Address Space Extension

 chdir("/path")

}

BEGIN {

(*fnptr)(1);

Figure 17.3: Calling the new function

The do_xxx() function, in turn, then uses the function pointers in the API struct to
do its work, such as updating variables or arrays, printing messages, setting ERRNO, and so
on.

Convenience macros make calling through the function pointers look like regular function
calls so that extension code is quite readable and understandable.

Although all of this sounds somewhat complicated, the result is that extension code
is quite straightforward to write and to read. You can see this in the sample extension
filefuncs.c (see Section 17.6 [Example: Some File Functions], page 422) and also in the
testext.c code for testing the APIs.

Some other bits and pieces:

• The API provides access to gawk’s do_xxx values, reflecting command-line options, like
do_lint, do_profiling, and so on (see Section 17.4.13 [API Variables], page 417).
These are informational: an extension cannot affect their values inside gawk. In addi-
tion, attempting to assign to them produces a compile-time error.

• The API also provides major and minor version numbers, so that an extension can
check if the gawk it is loaded with supports the facilities it was compiled with. (Version
mismatches “shouldn’t” happen, but we all know how that goes.) See Section 17.4.13.1
[API Version Constants and Variables], page 418, for details.

17.4 API Description

C or C++ code for an extension must include the header file gawkapi.h, which declares the
functions and defines the data types used to communicate with gawk. This (rather large)
section describes the API in detail.

17.4.1 Introduction

Access to facilities within gawk is achieved by calling through function pointers passed into
your extension.

384 GAWK: Effective AWK Programming

API function pointers are provided for the following kinds of operations:

• Allocating, reallocating, and releasing memory.

• Registration functions. You may register:

− Extension functions

− Exit callbacks

− A version string

− Input parsers

− Output wrappers

− Two-way processors

All of these are discussed in detail later in this chapter.

• Printing fatal, warning, and “lint” warning messages.

• Updating ERRNO, or unsetting it.

• Accessing parameters, including converting an undefined parameter into an array.

• Symbol table access: retrieving a global variable, creating one, or changing one.

• Creating and releasing cached values; this provides an efficient way to use values for
multiple variables and can be a big performance win.

• Manipulating arrays:

− Retrieving, adding, deleting, and modifying elements

− Getting the count of elements in an array

− Creating a new array

− Clearing an array

− Flattening an array for easy C-style looping over all its indices and elements

• Accessing and manipulating redirections.

Some points about using the API:

• The following types, macros, and/or functions are referenced in gawkapi.h. For correct
use, you must therefore include the corresponding standard header file before including
gawkapi.h. The list of macros and related header files is shown in Table 17.1.

C entity Header file
EOF <stdio.h>

Values for errno <errno.h>

FILE <stdio.h>

NULL <stddef.h>

memcpy() <string.h>

memset() <string.h>

size_t <sys/types.h>

struct stat <sys/stat.h>

Table 17.1: Standard header files needed by API

Due to portability concerns, especially to systems that are not fully standards-
compliant, it is your responsibility to include the correct files in the correct way. This

Chapter 17: Writing Extensions for gawk 385

requirement is necessary in order to keep gawkapi.h clean, instead of becoming a
portability hodge-podge as can be seen in some parts of the gawk source code.

• If your extension uses MPFR facilities, and you wish to receive such values from gawk

and/or pass such values to it, you must include the <mpfr.h> header before including
<gawkapi.h>.

• The gawkapi.h file may be included more than once without ill effect. Doing so,
however, is poor coding practice.

• Although the API only uses ISO C 90 features, there is an exception; the “constructor”
functions use the inline keyword. If your compiler does not support this keyword, you
should either place ‘-Dinline=''’ on your command line or use the GNU Autotools
and include a config.h file in your extensions.

• All pointers filled in by gawk point to memory managed by gawk and should be treated
by the extension as read-only. Memory for all strings passed into gawk from the
extension must come from calling one of gawk_malloc(), gawk_calloc(), or gawk_

realloc(), and is managed by gawk from then on.

• The API defines several simple structs that map values as seen from awk. A value can
be a double, a string, or an array (as in multidimensional arrays, or when creating a
new array).

String values maintain both pointer and length, because embedded nul characters are
allowed.

NOTE: By intent, gawk maintains strings using the current multibyte en-
coding (as defined by LC_xxx environment variables) and not using wide
characters. This matches how gawk stores strings internally and also how
characters are likely to be input into and output from files.

NOTE: String values passed to an extension by gawk are always nul-
terminated. Thus it is safe to pass such string values to standard library
and system routines. However, because gawk allows embedded nul charac-
ters in string data, before using the data as a regular C string, you should
check that the length for that string passed to the extension matches the
return value of strlen() for it.

• When retrieving a value (such as a parameter or that of a global variable or array
element), the extension requests a specific type (number, string, scalar, value cookie,
array, or “undefined”). When the request is “undefined,” the returned value will have
the real underlying type.

However, if the request and actual type don’t match, the access function returns “false”
and fills in the type of the actual value that is there, so that the extension can, e.g.,
print an error message (such as “scalar passed where array expected”).

You may call the API functions by using the function pointers directly, but the interface
is not so pretty. To make extension code look more like regular code, the gawkapi.h header
file defines several macros that you should use in your code. This section presents the
macros as if they were functions.

17.4.2 General-Purpose Data Types

I have a true love/hate relationship with unions.

386 GAWK: Effective AWK Programming

—Arnold Robbins

That’s the thing about unions: the compiler will arrange things so they can
accommodate both love and hate.

—Chet Ramey

The extension API defines a number of simple types and structures for general-purpose
use. Additional, more specialized, data structures are introduced in subsequent sections,
together with the functions that use them.

The general-purpose types and structures are as follows:

typedef void *awk_ext_id_t;

A value of this type is received from gawk when an extension is loaded. That
value must then be passed back to gawk as the first parameter of each API
function.

#define awk_const ...

This macro expands to ‘const’ when compiling an extension, and to nothing
when compiling gawk itself. This makes certain fields in the API data structures
unwritable from extension code, while allowing gawk to use them as it needs to.

typedef enum awk_bool {

awk_false = 0,

awk_true

} awk_bool_t;

A simple Boolean type.

typedef struct awk_string {

char *str; /* data */

size_t len; /* length thereof, in chars */

} awk_string_t;

This represents a mutable string. gawk owns the memory pointed to if it sup-
plied the value. Otherwise, it takes ownership of the memory pointed to. Such
memory must come from calling one of the gawk_malloc(), gawk_calloc(),
or gawk_realloc() functions!

As mentioned earlier, strings are maintained using the current multibyte en-
coding.

typedef enum {

AWK_UNDEFINED,

AWK_NUMBER,

AWK_STRING,

AWK_REGEX,

AWK_STRNUM,

AWK_ARRAY,

AWK_SCALAR, /* opaque access to a variable */

AWK_VALUE_COOKIE /* for updating a previously created value */

} awk_valtype_t;

This enum indicates the type of a value. It is used in the following struct.

Chapter 17: Writing Extensions for gawk 387

typedef struct awk_value {

awk_valtype_t val_type;

union {

awk_string_t s;

awknum_t n;

awk_array_t a;

awk_scalar_t scl;

awk_value_cookie_t vc;

} u;

} awk_value_t;

An “awk value.” The val_type member indicates what kind of value the union
holds, and each member is of the appropriate type.

#define str_value u.s

#define strnum_value str_value

#define regex_value str_value

#define num_value u.n.d

#define num_type u.n.type

#define num_ptr u.n.ptr

#define array_cookie u.a

#define scalar_cookie u.scl

#define value_cookie u.vc

Using these macros makes accessing the fields of the awk_value_t more read-
able.

enum AWK_NUMBER_TYPE {

AWK_NUMBER_TYPE_DOUBLE,

AWK_NUMBER_TYPE_MPFR,

AWK_NUMBER_TYPE_MPZ

}; This enum is used in the following structure for defining the type of numeric
value that is being worked with. It is declared at the top level of the file so that
it works correctly for C++ as well as for C.

typedef struct awk_number {

double d;

enum AWK_NUMBER_TYPE type;

void *ptr;

} awk_number_t;

This represents a numeric value. Internally, gawk stores every number as either
a C double, a GMP integer, or an MPFR arbitrary-precision floating-point
value. In order to allow extensions to also support GMP and MPFR values,
numeric values are passed in this structure.

The double-precision d element is always populated in data received from gawk.
In addition, by examining the type member, an extension can determine if the
ptr member is either a GMP integer (type mpz_ptr), or an MPFR floating-
point value (type mpfr_ptr_t), and cast it appropriately.

388 GAWK: Effective AWK Programming

typedef void *awk_scalar_t;

Scalars can be represented as an opaque type. These values are obtained from
gawk and then passed back into it. This is discussed in a general fashion in the
text following this list, and in more detail in Section 17.4.10.2 [Variable Access
and Update by Cookie], page 404.

typedef void *awk_value_cookie_t;

A “value cookie” is an opaque type representing a cached value. This is also
discussed in a general fashion in the text following this list, and in more detail
in Section 17.4.10.3 [Creating and Using Cached Values], page 406.

Scalar values in awk are numbers, strings, strnums, or typed regexps. The awk_value_t
struct represents values. The val_type member indicates what is in the union.

Representing numbers is easy—the API uses a C double. Strings require more work.
Because gawk allows embedded nul bytes in string values, a string must be represented as
a pair containing a data pointer and length. This is the awk_string_t type.

A strnum (numeric string) value is represented as a string and consists of user input
data that appears to be numeric. When an extension creates a strnum value, the result is a
string flagged as user input. Subsequent parsing by gawk then determines whether it looks
like a number and should be treated as a strnum, or as a regular string.

This is useful in cases where an extension function would like to do something com-
parable to the split() function which sets the strnum attribute on the array elements it
creates. For example, an extension that implements CSV splitting would want to use this
feature. This is also useful for a function that retrieves a data item from a database. The
PostgreSQL PQgetvalue() function, for example, returns a string that may be numeric or
textual depending on the contents.

Typed regexp values (see Section 6.1.2.2 [Strongly Typed Regexp Constants], page 117)
are not of much use to extension functions. Extension functions can tell that they’ve received
them, and create them for scalar values. Otherwise, they can examine the text of the regexp
through regex_value.str and regex_value.len.

Identifiers (i.e., the names of global variables) can be associated with either scalar values
or with arrays. In addition, gawk provides true arrays of arrays, where any given array
element can itself be an array. Discussion of arrays is delayed until Section 17.4.11 [Array
Manipulation], page 408.

The various macros listed earlier make it easier to use the elements of the union as if
they were fields in a struct; this is a common coding practice in C. Such code is easier
to write and to read, but it remains your responsibility to make sure that the val_type

member correctly reflects the type of the value in the awk_value_t struct.

Conceptually, the first three members of the union (number, string, and array) are all
that is needed for working with awk values. However, because the API provides routines
for accessing and changing the value of a global scalar variable only by using the variable’s
name, there is a performance penalty: gawk must find the variable each time it is accessed
and changed. This turns out to be a real issue, not just a theoretical one.

Chapter 17: Writing Extensions for gawk 389

Thus, if you know that your extension will spend considerable time reading and/or
changing the value of one or more scalar variables, you can obtain a scalar cookie1 object
for that variable, and then use the cookie for getting the variable’s value or for changing
the variable’s value. The awk_scalar_t type holds a scalar cookie, and the scalar_cookie
macro provides access to the value of that type in the awk_value_t struct. Given a scalar
cookie, gawk can directly retrieve or modify the value, as required, without having to find
it first.

The awk_value_cookie_t type and value_cookie macro are similar. If you know that
you wish to use the same numeric or string value for one or more variables, you can create
the value once, retaining a value cookie for it, and then pass in that value cookie whenever
you wish to set the value of a variable. This saves storage space within the running gawk

process and reduces the time needed to create the value.

17.4.3 Memory Allocation Functions and Convenience Macros

The API provides a number of memory allocation functions for allocating memory that can
be passed to gawk, as well as a number of convenience macros. This subsection presents
them all as function prototypes, in the way that extension code would use them:

void *gawk_malloc(size_t size);

Call the correct version of malloc() to allocate storage that may be passed to
gawk.

void *gawk_calloc(size_t nmemb, size_t size);

Call the correct version of calloc() to allocate storage that may be passed to
gawk.

void *gawk_realloc(void *ptr, size_t size);

Call the correct version of realloc() to allocate storage that may be passed
to gawk.

void gawk_free(void *ptr);

Call the correct version of free() to release storage that was allocated with
gawk_malloc(), gawk_calloc(), or gawk_realloc().

The API has to provide these functions because it is possible for an extension to be
compiled and linked against a different version of the C library than was used for the gawk
executable.2 If gawk were to use its version of free() when the memory came from an
unrelated version of malloc(), unexpected behavior would likely result.

Three convenience macros may be used for allocating storage from gawk_malloc(),
gawk_calloc, and gawk_realloc(). If the allocation fails, they cause gawk to exit with a
fatal error message. They should be used as if they were procedure calls that do not return
a value:

#define emalloc(pointer, type, size, message) ...

The arguments to this macro are as follows:

pointer The pointer variable to point at the allocated storage.

1 See the “cookie” entry in the Jargon file for a definition of cookie, and the “magic cookie” entry in the
Jargon file for a nice example. See also the entry for “Cookie” in the [Glossary], page 497.

2 This is more common on MS-Windows systems, but it can happen on Unix-like systems as well.

http://catb.org/jargon/html/C/cookie.html
http://catb.org/jargon/html/M/magic-cookie.html
http://catb.org/jargon/html/M/magic-cookie.html

390 GAWK: Effective AWK Programming

type The type of the pointer variable. This is used to create a cast for
the call to gawk_malloc().

size The total number of bytes to be allocated.

message A message to be prefixed to the fatal error message. Typically this
is the name of the function using the macro.

For example, you might allocate a string value like so:

awk_value_t result;

char *message;

const char greet[] = "Don't Panic!";

emalloc(message, char *, sizeof(greet), "myfunc");

strcpy(message, greet);

make_malloced_string(message, strlen(message), & result);

#define ezalloc(pointer, type, size, message) ...

This is like emalloc(), but it calls gawk_calloc() instead of gawk_malloc().
The arguments are the same as for the emalloc() macro, but this macro guar-
antees that the memory returned is initialized to zero.

#define erealloc(pointer, type, size, message) ...

This is like emalloc(), but it calls gawk_realloc() instead of gawk_malloc().
The arguments are the same as for the emalloc() macro.

Two additional functions allocate MPFR and GMP objects for use by extension functions
that need to create and then return such values:

void *get_mpfr_ptr();

Allocate and initialize an MPFR object and return a pointer to it. If the
allocation fails, gawk exits with a fatal “out of memory” error. If gawk was
compiled without MPFR support, calling this function causes a fatal error.

void *get_mpz_ptr();

Allocate and initialize a GMP object and return a pointer to it. If the allocation
fails, gawk exits with a fatal “out of memory” error. If gawk was compiled
without MPFR support, calling this function causes a fatal error.

Both of these functions return ‘void *’, since the gawkapi.h header file should not have
dependency upon <mpfr.h> (and <gmp.h>, which is included from <mpfr.h>). The actual
return values are of types mpfr_ptr and mpz_ptr respectively, and you should cast the
return values appropriately before assigning the results to variables of the correct types.

17.4.4 Constructor Functions

The API provides a number of constructor functions for creating string and numeric values,
as well as a number of convenience macros. This subsection presents them all as function
prototypes, in the way that extension code would use them:

Chapter 17: Writing Extensions for gawk 391

static inline awk_value_t *

make_const_string(const char *string, size_t length, awk_value_t *result);

This function creates a string value in the awk_value_t variable pointed to by
result. It expects string to be a C string constant (or other string data),
and automatically creates a copy of the data for storage in result. It returns
result.

static inline awk_value_t *

make_malloced_string(const char *string, size_t length, awk_value_t *result);

This function creates a string value in the awk_value_t variable pointed to by
result. It expects string to be a ‘char *’ value pointing to data previously
obtained from gawk_malloc(), gawk_calloc(), or gawk_realloc(). The idea
here is that the data is passed directly to gawk, which assumes responsibility
for it. It returns result.

static inline awk_value_t *

make_null_string(awk_value_t *result);

This specialized function creates a null string (the “undefined” value) in the
awk_value_t variable pointed to by result. It returns result.

static inline awk_value_t *

make_number(double num, awk_value_t *result);

This function simply creates a numeric value in the awk_value_t variable
pointed to by result.

static inline awk_value_t *

make_number_mpz(void *mpz, awk_value_t *result);

This function creates a GMP number value in result. The mpz must be from
a call to get_mpz_ptr() (and thus be of real underlying type mpz_ptr). gawk
takes ownership of this memory.

static inline awk_value_t *

make_number_mpfr(void *mpfr, awk_value_t *result);

This function creates an MPFR number value in result. The mpfr must be
from a call to get_mpfr_ptr(). (and thus be of real underlying type mpfr_ptr)
gawk takes ownership of this memory.

static inline awk_value_t *

make_const_user_input(const char *string, size_t length, awk_value_t

*result);

This function is identical to make_const_string(), but the string is flagged as
user input that should be treated as a strnum value if the contents of the string
are numeric.

static inline awk_value_t *

make_malloced_user_input(const char *string, size_t length, awk_value_t

*result);

This function is identical to make_malloced_string(), but the string is flagged
as user input that should be treated as a strnum value if the contents of the
string are numeric.

392 GAWK: Effective AWK Programming

static inline awk_value_t *

make_const_regex(const char *string, size_t length, awk_value_t *result);

This function creates a strongly typed regexp value by allocating a copy of the
string. string is the regular expression of length len.

static inline awk_value_t *

make_malloced_regex(const char *string, size_t length, awk_value_t *result);

This function creates a strongly typed regexp value. string is the regular
expression of length len. It expects string to be a ‘char *’ value pointing
to data previously obtained from gawk_malloc(), gawk_calloc(), or gawk_

realloc().

17.4.5 Registration Functions

This section describes the API functions for registering parts of your extension with gawk.

17.4.5.1 Registering An Extension Function

Extension functions are described by the following record:

typedef struct awk_ext_func {

const char *name;

awk_value_t *(*const function)(int num_actual_args,

awk_value_t *result,

struct awk_ext_func *finfo);

const size_t max_expected_args;

const size_t min_required_args;

awk_bool_t suppress_lint;

void *data; /* opaque pointer to any extra state */

} awk_ext_func_t;

The fields are:

const char *name;

The name of the new function. awk-level code calls the function by this name.
This is a regular C string.

Function names must obey the rules for awk identifiers. That is, they must
begin with either an English letter or an underscore, which may be followed by
any number of letters, digits, and underscores. Letter case in function names
is significant.

awk_value_t *(*const function)(int num_actual_args,

awk_value_t *result,

struct awk_ext_func *finfo);

This is a pointer to the C function that provides the extension’s functional-
ity. The function must fill in *result with either a number, a string, or a
regexp. gawk takes ownership of any string memory. As mentioned earlier,
string memory must come from one of gawk_malloc(), gawk_calloc(), or
gawk_realloc().

The num_actual_args argument tells the C function how many actual param-
eters were passed from the calling awk code.

Chapter 17: Writing Extensions for gawk 393

The finfo parameter is a pointer to the awk_ext_func_t for this function.
The called function may access data within it as desired, or not.

The function must return the value of result. This is for the convenience of
the calling code inside gawk.

const size_t max_expected_args;

This is the maximum number of arguments the function expects to receive. If
called with more arguments than this, and if lint checking has been enabled,
then gawk prints a warning message. For more information, see the entry for
suppress_lint, later in this list.

const size_t min_required_args;

This is the minimum number of arguments the function expects to receive. If
called with fewer arguments, gawk prints a fatal error message and exits.

awk_bool_t suppress_lint;

This flag tells gawk not to print a lint message if lint checking has been enabled
and if more arguments were supplied in the call than expected. An extension
function can tell if gawk already printed at least one such message by checking
if ‘num_actual_args > finfo->max_expected_args’. If so, and the function
does not want more lint messages to be printed, it should set finfo->suppress_
lint to awk_true.

void *data;

This is an opaque pointer to any data that an extension function may wish
to have available when called. Passing the awk_ext_func_t structure to the
extension function, and having this pointer available in it enable writing a single
C or C++ function that implements multiple awk-level extension functions.

Once you have a record representing your extension function, you register it with gawk

using this API function:

awk_bool_t add_ext_func(const char *name_space, awk_ext_func_t *func);

This function returns true upon success, false otherwise. The name_space

parameter is the namespace in which to place the function (see Chapter 15
[Namespaces in gawk], page 361). Use an empty string ("") or "awk" to place
the function in the default awk namespace. The func pointer is the address of
a struct representing your function, as just described.

gawk does not modify what func points to, but the extension function itself
receives this pointer and can modify what it points to, thus it is purposely not
declared to be const.

The combination of min_required_args, max_expected_args, and suppress_lintmay
be confusing. Here is how you should set things up.

Any number of arguments is valid
Set min_required_args and max_expected_args to zero and set suppress_

lint to awk_true.

A minimum number of arguments is required, no limit on maximum number of arguments
Set min_required_args to the minimum required. Set max_expected_args to
zero and set suppress_lint to awk_true.

394 GAWK: Effective AWK Programming

A minimum number of arguments is required, a maximum number is expected
Set min_required_args to the minimum required. Set max_expected_args to
the maximum expected. Set suppress_lint to awk_false.

A minimum number of arguments is required, and no more than a maximum is allowed
Set min_required_args to the minimum required. Set max_expected_args

to the maximum expected. Set suppress_lint to awk_false. In your exten-
sion function, check that num_actual_args does not exceed f->max_expected_

args. If it does, issue a fatal error message.

17.4.5.2 Registering An Exit Callback Function

An exit callback function is a function that gawk calls before it exits. Such functions are
useful if you have general “cleanup” tasks that should be performed in your extension (such
as closing database connections or other resource deallocations). You can register such a
function with gawk using the following function:

void awk_atexit(void (*funcp)(void *data, int exit_status),

void *arg0);

The parameters are:

funcp A pointer to the function to be called before gawk exits. The data
parameter will be the original value of arg0. The exit_status

parameter is the exit status value that gawk intends to pass to the
exit() system call.

arg0 A pointer to private data that gawk saves in order to pass to the
function pointed to by funcp.

Exit callback functions are called in last-in, first-out (LIFO) order—that is, in the reverse
order in which they are registered with gawk.

17.4.5.3 Registering An Extension Version String

You can register a version string that indicates the name and version of your extension with
gawk, as follows:

void register_ext_version(const char *version);

Register the string pointed to by version with gawk. Note that gawk does not
copy the version string, so it should not be changed.

gawk prints all registered extension version strings when it is invoked with the --version
option.

17.4.5.4 Customized Input Parsers

By default, gawk reads text files as its input. It uses the value of RS to find the end of the
record, and then uses FS (or FIELDWIDTHS or FPAT) to split it into fields (see Chapter 4
[Reading Input Files], page 61). Additionally, it sets the value of RT (see Section 7.5
[Predefined Variables], page 157).

If you want, you can provide your own custom input parser. An input parser’s job is to
return a record to the gawk record-processing code, along with indicators for the value and
length of the data to be used for RT, if any.

Chapter 17: Writing Extensions for gawk 395

To provide an input parser, you must first provide two functions (where XXX is a prefix
name for your extension):

awk_bool_t XXX_can_take_file(const awk_input_buf_t *iobuf);

This function examines the information available in iobuf (which we discuss
shortly). Based on the information there, it decides if the input parser should
be used for this file. If so, it should return true. Otherwise, it should return
false. It should not change any state (variable values, etc.) within gawk.

awk_bool_t XXX_take_control_of(awk_input_buf_t *iobuf);

When gawk decides to hand control of the file over to the input parser, it calls
this function. This function in turn must fill in certain fields in the awk_input_
buf_t structure and ensure that certain conditions are true. It should then
return true. If an error of some kind occurs, it should not fill in any fields and
should return false; then gawk will not use the input parser. The details are
presented shortly.

Your extension should package these functions inside an awk_input_parser_t, which
looks like this:

typedef struct awk_input_parser {

const char *name; /* name of parser */

awk_bool_t (*can_take_file)(const awk_input_buf_t *iobuf);

awk_bool_t (*take_control_of)(awk_input_buf_t *iobuf);

awk_const struct awk_input_parser *awk_const next; /* for gawk */

} awk_input_parser_t;

The fields are:

const char *name;

The name of the input parser. This is a regular C string.

awk_bool_t (*can_take_file)(const awk_input_buf_t *iobuf);

A pointer to your XXX_can_take_file() function.

awk_bool_t (*take_control_of)(awk_input_buf_t *iobuf);

A pointer to your XXX_take_control_of() function.

awk_const struct input_parser *awk_const next;

This is for use by gawk; therefore it is marked awk_const so that the extension
cannot modify it.

The steps are as follows:

1. Create a static awk_input_parser_t variable and initialize it appropriately.

2. When your extension is loaded, register your input parser with gawk using the
register_input_parser() API function (described next).

An awk_input_buf_t looks like this:

typedef struct awk_input {

const char *name; /* filename */

int fd; /* file descriptor */

#define INVALID_HANDLE (-1)

void *opaque; /* private data for input parsers */

396 GAWK: Effective AWK Programming

int (*get_record)(char **out, struct awk_input *iobuf,

int *errcode, char **rt_start, size_t *rt_len,

const awk_fieldwidth_info_t **field_width);

ssize_t (*read_func)();

void (*close_func)(struct awk_input *iobuf);

struct stat sbuf; /* stat buf */

} awk_input_buf_t;

The fields can be divided into two categories: those for use (initially, at least) by XXX_

can_take_file(), and those for use by XXX_take_control_of(). The first group of fields
and their uses are as follows:

const char *name;

The name of the file.

int fd; A file descriptor for the file. If gawk was able to open the file, then fd will not
be equal to INVALID_HANDLE. Otherwise, it will.

struct stat sbuf;

If the file descriptor is valid, then gawk will have filled in this structure via a
call to the fstat() system call.

The XXX_can_take_file() function should examine these fields and decide if the input
parser should be used for the file. The decision can be made based upon gawk state (the
value of a variable defined previously by the extension and set by awk code), the name of
the file, whether or not the file descriptor is valid, the information in the struct stat, or
any combination of these factors.

Once XXX_can_take_file() has returned true, and gawk has decided to use your input
parser, it calls XXX_take_control_of(). That function then fills either the get_record

field or the read_func field in the awk_input_buf_t. It must also ensure that fd is not set
to INVALID_HANDLE. The following list describes the fields that may be filled by XXX_take_

control_of():

void *opaque;

This is used to hold any state information needed by the input parser for this
file. It is “opaque” to gawk. The input parser is not required to use this pointer.

int (*get_record)(char **out,

struct awk_input *iobuf,

int *errcode,

char **rt_start,

size_t *rt_len,

const awk_fieldwidth_info_t **field_width);

This function pointer should point to a function that creates the input records.
Said function is the core of the input parser. Its behavior is described in the
text following this list.

ssize_t (*read_func)();

This function pointer should point to a function that has the same behavior as
the standard POSIX read() system call. It is an alternative to the get_record
pointer. Its behavior is also described in the text following this list.

Chapter 17: Writing Extensions for gawk 397

void (*close_func)(struct awk_input *iobuf);

This function pointer should point to a function that does the “teardown.” It
should release any resources allocated by XXX_take_control_of(). It may also
close the file. If it does so, it should set the fd field to INVALID_HANDLE.

If fd is still not INVALID_HANDLE after the call to this function, gawk calls the
regular close() system call.

Having a “teardown” function is optional. If your input parser does not need
it, do not set this field. Then, gawk calls the regular close() system call on
the file descriptor, so it should be valid.

The XXX_get_record() function does the work of creating input records. The parame-
ters are as follows:

char **out

This is a pointer to a char * variable that is set to point to the record. gawk

makes its own copy of the data, so the extension must manage this storage.

struct awk_input *iobuf

This is the awk_input_buf_t for the file. The fields should be used for reading
data (fd) and for managing private state (opaque), if any.

int *errcode

If an error occurs, *errcode should be set to an appropriate code from
<errno.h>.

char **rt_start

size_t *rt_len

If the concept of a “record terminator” makes sense, then *rt_start should be
set to point to the data to be used for RT, and *rt_len should be set to the
length of the data. Otherwise, *rt_len should be set to zero. gawk makes its
own copy of this data, so the extension must manage this storage.

const awk_fieldwidth_info_t **field_width

If field_width is not NULL, then *field_width will be initialized to NULL, and
the function may set it to point to a structure supplying field width information
to override the default field parsing mechanism. Note that this structure will
not be copied by gawk; it must persist at least until the next call to get_record
or close_func. Note also that field_width is NULL when getline is assigning
the results to a variable, thus field parsing is not needed. If the parser does
set *field_width, then gawk uses this layout to parse the input record, and
the PROCINFO["FS"] value will be "API" while this record is active in $0. The
awk_fieldwidth_info_t data structure is described below.

The return value is the length of the buffer pointed to by *out, or EOF if end-of-file was
reached or an error occurred.

It is guaranteed that errcode is a valid pointer, so there is no need to test for a NULL

value. gawk sets *errcode to zero, so there is no need to set it unless an error occurs.

If an error does occur, the function should return EOF and set *errcode to a value greater
than zero. In that case, if *errcode does not equal zero, gawk automatically updates the

398 GAWK: Effective AWK Programming

ERRNO variable based on the value of *errcode. (In general, setting ‘*errcode = errno’
should do the right thing.)

As an alternative to supplying a function that returns an input record, you may instead
supply a function that simply reads bytes, and let gawk parse the data into records. If you
do so, the data should be returned in the multibyte encoding of the current locale. Such
a function should follow the same behavior as the read() system call, and you fill in the
read_func pointer with its address in the awk_input_buf_t structure.

By default, gawk sets the read_func pointer to point to the read() system call. So your
extension need not set this field explicitly.

NOTE: You must choose one method or the other: either a function that returns
a record, or one that returns raw data. In particular, if you supply a function
to get a record, gawk will call it, and will never call the raw read function.

gawk ships with a sample extension that reads directories, returning records for each
entry in a directory (see Section 17.7.6 [Reading Directories], page 438). You may wish to
use that code as a guide for writing your own input parser.

When writing an input parser, you should think about (and document) how it is expected
to interact with awk code. You may want it to always be called, and to take effect as
appropriate (as the readdir extension does). Or you may want it to take effect based upon
the value of an awk variable, as the XML extension from the gawkextlib project does (see
Section 17.8 [The gawkextlib Project], page 441). In the latter case, code in a BEGINFILE

rule can look at FILENAME and ERRNO to decide whether or not to activate an input parser
(see Section 7.1.5 [The BEGINFILE and ENDFILE Special Patterns], page 145).

You register your input parser with the following function:

void register_input_parser(awk_input_parser_t *input_parser);

Register the input parser pointed to by input_parser with gawk.

If you would like to override the default field parsing mechanism for a given record, then
you must populate an awk_fieldwidth_info_t structure, which looks like this:

typedef struct {

awk_bool_t use_chars; /* false ==> use bytes */

size_t nf; /* number of fields in record (NF) */

struct awk_field_info {

size_t skip; /* amount to skip before field starts */

size_t len; /* length of field */

} fields[1]; /* actual dimension should be nf */

} awk_fieldwidth_info_t;

The fields are:

awk_bool_t use_chars;

Set this to awk_true if the field lengths are specified in terms of potentially
multi-byte characters, and set it to awk_false if the lengths are in terms of
bytes. Performance will be better if the values are supplied in terms of bytes.

size_t nf;

Set this to the number of fields in the input record, i.e. NF.

Chapter 17: Writing Extensions for gawk 399

struct awk_field_info fields[nf];

This is a variable-length array whose actual dimension should be nf. For each
field, the skip element should be set to the number of characters or bytes, as
controlled by the use_chars flag, to skip before the start of this field. The len
element provides the length of the field. The values in fields[0] provide the
information for $1, and so on through the fields[nf-1] element containing
the information for $NF.

A convenience macro awk_fieldwidth_info_size(numfields) is provided to calcu-
late the appropriate size of a variable-length awk_fieldwidth_info_t structure containing
numfields fields. This can be used as an argument to malloc() or in a union to allocate
space statically. Please refer to the readdir_test sample extension for an example.

17.4.5.5 Customized Output Wrappers

An output wrapper is the mirror image of an input parser. It allows an extension to take
over the output to a file opened with the ‘>’ or ‘>>’ I/O redirection operators (see Section 5.6
[Redirecting Output of print and printf], page 102).

The output wrapper is very similar to the input parser structure:

typedef struct awk_output_wrapper {

const char *name; /* name of the wrapper */

awk_bool_t (*can_take_file)(const awk_output_buf_t *outbuf);

awk_bool_t (*take_control_of)(awk_output_buf_t *outbuf);

awk_const struct awk_output_wrapper *awk_const next; /* for gawk */

} awk_output_wrapper_t;

The members are as follows:

const char *name;

This is the name of the output wrapper.

awk_bool_t (*can_take_file)(const awk_output_buf_t *outbuf);

This points to a function that examines the information in the awk_output_

buf_t structure pointed to by outbuf. It should return true if the output
wrapper wants to take over the file, and false otherwise. It should not change
any state (variable values, etc.) within gawk.

awk_bool_t (*take_control_of)(awk_output_buf_t *outbuf);

The function pointed to by this field is called when gawk decides to let the output
wrapper take control of the file. It should fill in appropriate members of the
awk_output_buf_t structure, as described next, and return true if successful,
false otherwise.

awk_const struct output_wrapper *awk_const next;

This is for use by gawk; therefore it is marked awk_const so that the extension
cannot modify it.

The awk_output_buf_t structure looks like this:

typedef struct awk_output_buf {

const char *name; /* name of output file */

const char *mode; /* mode argument to fopen */

400 GAWK: Effective AWK Programming

FILE *fp; /* stdio file pointer */

awk_bool_t redirected; /* true if a wrapper is active */

void *opaque; /* for use by output wrapper */

size_t (*gawk_fwrite)(const void *buf, size_t size, size_t count,

FILE *fp, void *opaque);

int (*gawk_fflush)(FILE *fp, void *opaque);

int (*gawk_ferror)(FILE *fp, void *opaque);

int (*gawk_fclose)(FILE *fp, void *opaque);

} awk_output_buf_t;

Here too, your extension will define XXX_can_take_file() and XXX_take_control_

of() functions that examine and update data members in the awk_output_buf_t. The
data members are as follows:

const char *name;

The name of the output file.

const char *mode;

The mode string (as would be used in the second argument to fopen()) with
which the file was opened.

FILE *fp; The FILE pointer from <stdio.h>. gawk opens the file before attempting to
find an output wrapper.

awk_bool_t redirected;

This field must be set to true by the XXX_take_control_of() function.

void *opaque;

This pointer is opaque to gawk. The extension should use it to store a pointer
to any private data associated with the file.

size_t (*gawk_fwrite)(const void *buf, size_t size, size_t count,

FILE *fp, void *opaque);

int (*gawk_fflush)(FILE *fp, void *opaque);

int (*gawk_ferror)(FILE *fp, void *opaque);

int (*gawk_fclose)(FILE *fp, void *opaque);

These pointers should be set to point to functions that perform the equivalent
function as the <stdio.h> functions do, if appropriate. gawk uses these func-
tion pointers for all output. gawk initializes the pointers to point to internal
“pass-through” functions that just call the regular <stdio.h> functions, so an
extension only needs to redefine those functions that are appropriate for what
it does.

The XXX_can_take_file() function should make a decision based upon the name and
mode fields, and any additional state (such as awk variable values) that is appropriate.

When gawk calls XXX_take_control_of(), that function should fill in the other fields
as appropriate, except for fp, which it should just use normally.

You register your output wrapper with the following function:

void register_output_wrapper(awk_output_wrapper_t *output_wrapper);

Register the output wrapper pointed to by output_wrapper with gawk.

Chapter 17: Writing Extensions for gawk 401

17.4.5.6 Customized Two-way Processors

A two-way processor combines an input parser and an output wrapper for two-way I/O with
the ‘|&’ operator (see Section 5.6 [Redirecting Output of print and printf], page 102).
It makes identical use of the awk_input_parser_t and awk_output_buf_t structures as
described earlier.

A two-way processor is represented by the following structure:

typedef struct awk_two_way_processor {

const char *name; /* name of the two-way processor */

awk_bool_t (*can_take_two_way)(const char *name);

awk_bool_t (*take_control_of)(const char *name,

awk_input_buf_t *inbuf,

awk_output_buf_t *outbuf);

awk_const struct awk_two_way_processor *awk_const next; /* for gawk */

} awk_two_way_processor_t;

The fields are as follows:

const char *name;

The name of the two-way processor.

awk_bool_t (*can_take_two_way)(const char *name);

The function pointed to by this field should return true if it wants to take over
two-way I/O for this file name. It should not change any state (variable values,
etc.) within gawk.

awk_bool_t (*take_control_of)(const char *name,

awk_input_buf_t *inbuf,

awk_output_buf_t *outbuf);

The function pointed to by this field should fill in the awk_input_buf_t and
awk_output_buf_t structures pointed to by inbuf and outbuf, respectively.
These structures were described earlier.

awk_const struct two_way_processor *awk_const next;

This is for use by gawk; therefore it is marked awk_const so that the extension
cannot modify it.

As with the input parser and output processor, you provide “yes I can take this” and
“take over for this” functions, XXX_can_take_two_way() and XXX_take_control_of().

You register your two-way processor with the following function:

void register_two_way_processor(awk_two_way_processor_t *two_way_processor);

Register the two-way processor pointed to by two_way_processor with gawk.

17.4.6 Printing Messages

You can print different kinds of warning messages from your extension, as described here.
Note that for these functions, you must pass in the extension ID received from gawk when
the extension was loaded:3

3 Because the API uses only ISO C 90 features, it cannot make use of the ISO C 99 variadic macro feature
to hide that parameter. More’s the pity.

402 GAWK: Effective AWK Programming

void fatal(awk_ext_id_t id, const char *format, ...);

Print a message and then cause gawk to exit immediately.

void nonfatal(awk_ext_id_t id, const char *format, ...);

Print a nonfatal error message.

void warning(awk_ext_id_t id, const char *format, ...);

Print a warning message.

void lintwarn(awk_ext_id_t id, const char *format, ...);

Print a “lint warning.” Normally this is the same as printing a warning message,
but if gawk was invoked with ‘--lint=fatal’, then lint warnings become fatal
error messages.

All of these functions are otherwise like the C printf() family of functions, where the
format parameter is a string with literal characters and formatting codes intermixed.

17.4.7 Updating ERRNO

The following functions allow you to update the ERRNO variable:

void update_ERRNO_int(int errno_val);

Set ERRNO to the string equivalent of the error code in errno_val. The value
should be one of the defined error codes in <errno.h>, and gawk turns it into
a (possibly translated) string using the C strerror() function.

void update_ERRNO_string(const char *string);

Set ERRNO directly to the string value of ERRNO. gawk makes a copy of the value
of string.

void unset_ERRNO(void);

Unset ERRNO.

17.4.8 Requesting Values

All of the functions that return values from gawk work in the same way. You pass in
an awk_valtype_t value to indicate what kind of value you expect. If the actual value
matches what you requested, the function returns true and fills in the awk_value_t result.
Otherwise, the function returns false, and the val_type member indicates the type of the
actual value. You may then print an error message or reissue the request for the actual
value type, as appropriate. This behavior is summarized in Table 17.2.

Chapter 17: Writing Extensions for gawk 403

Type of Actual Value

String Strnum Number Regex Array Undefined
String String String String String false false
Strnum false Strnum Strnum false false false
Number Number Number Number false false false

Type Regex false false false Regex false false
Requested Array false false false false Array false

Scalar Scalar Scalar Scalar Scalar false false
Undefined String Strnum Number Regex Array Undefined
Value
cookie

false false false false false false

Table 17.2: API value types returned

17.4.9 Accessing and Updating Parameters

Two functions give you access to the arguments (parameters) passed to your extension
function. They are:

awk_bool_t get_argument(size_t count,

awk_valtype_t wanted,

awk_value_t *result);

Fill in the awk_value_t structure pointed to by result with the countth argu-
ment. Return true if the actual type matches wanted, and false otherwise. In
the latter case, result->val_type indicates the actual type (see Table 17.2).
Counts are zero-based—the first argument is numbered zero, the second one,
and so on. wanted indicates the type of value expected.

awk_bool_t set_argument(size_t count, awk_array_t array);

Convert a parameter that was undefined into an array; this provides call by
reference for arrays. Return false if count is too big, or if the argument’s type
is not undefined. See Section 17.4.11 [Array Manipulation], page 408, for more
information on creating arrays.

17.4.10 Symbol Table Access

Two sets of routines provide access to global variables, and one set allows you to create and
release cached values.

17.4.10.1 Variable Access and Update by Name

The following routines provide the ability to access and update global awk-level variables by
name. In compiler terminology, identifiers of different kinds are termed symbols, thus the
“sym” in the routines’ names. The data structure that stores information about symbols is
termed a symbol table. The functions are as follows:

404 GAWK: Effective AWK Programming

awk_bool_t sym_lookup(const char *name,

awk_valtype_t wanted,

awk_value_t *result);

Fill in the awk_value_t structure pointed to by result with the value of the
variable named by the string name, which is a regular C string. wanted indicates
the type of value expected. Return true if the actual type matches wanted, and
false otherwise. In the latter case, result->val_type indicates the actual type
(see Table 17.2).

awk_bool_t sym_lookup_ns(const char *name,

const char *name_space,

awk_valtype_t wanted,

awk_value_t *result);

This is like sym_lookup(), but the name_space parameter allows you to specify
which namespace name is part of. name_space cannot be NULL. If it is "" or
"awk", then name is searched for in the default awk namespace.

Note that namespace is a C++ keyword. For interoperability with C++, you
should avoid using that identifier in C code.

awk_bool_t sym_update(const char *name, awk_value_t *value);

Update the variable named by the string name, which is a regular C string.
The variable is added to gawk’s symbol table if it is not there. Return true if
everything worked, and false otherwise.

Changing types (scalar to array or vice versa) of an existing variable is not
allowed, nor may this routine be used to update an array. This routine cannot
be used to update any of the predefined variables (such as ARGC or NF).

awk_bool_t sym_update_ns(const char *name_space, const char *name,

awk_value_t *value);

This is like sym_update(), but the name_space parameter allows you to specify
which namespace name is part of. name_space cannot be NULL. If it is "" or
"awk, then name is searched for in the default awk namespace.

An extension can look up the value of gawk’s special variables. However, with the
exception of the PROCINFO array, an extension cannot change any of those variables.

When searching for or updating variables outside the awk namespace (see Chapter 15
[Namespaces in gawk], page 361), function and variable names must be simple identifiers.4

In addition, namespace names and variable and function names must follow the rules given
in Section 15.5 [Namespace and Component Naming Rules], page 362.

17.4.10.2 Variable Access and Update by Cookie

A scalar cookie is an opaque handle that provides access to a global variable or array. It is
an optimization that avoids looking up variables in gawk’s symbol table every time access
is needed. This was discussed earlier, in Section 17.4.2 [General-Purpose Data Types],
page 385.

4 Allowing both namespace plus identifier and foo::bar would have been too confusing to document, and
to code and test.

Chapter 17: Writing Extensions for gawk 405

The following functions let you work with scalar cookies:

awk_bool_t sym_lookup_scalar(awk_scalar_t cookie,

awk_valtype_t wanted,

awk_value_t *result);

Retrieve the current value of a scalar cookie. Once you have obtained a scalar
cookie using sym_lookup(), you can use this function to get its value more
efficiently. Return false if the value cannot be retrieved.

awk_bool_t sym_update_scalar(awk_scalar_t cookie, awk_value_t *value);

Update the value associated with a scalar cookie. Return false if the new value
is not of type AWK_STRING, AWK_STRNUM, AWK_REGEX, or AWK_NUMBER. Here too,
the predefined variables may not be updated.

It is not obvious at first glance how to work with scalar cookies or what their raison
d’être really is. In theory, the sym_lookup() and sym_update() routines are all you really
need to work with variables. For example, you might have code that looks up the value of
a variable, evaluates a condition, and then possibly changes the value of the variable based
on the result of that evaluation, like so:

/* do_magic --- do something really great */

static awk_value_t *

do_magic(int nargs, awk_value_t *result)

{

awk_value_t value;

if (sym_lookup("MAGIC_VAR", AWK_NUMBER, & value)

&& some_condition(value.num_value)) {

value.num_value += 42;

sym_update("MAGIC_VAR", & value);

}

return make_number(0.0, result);

}

This code looks (and is) simple and straightforward. So what’s the problem?

Well, consider what happens if awk-level code associated with your extension calls the
magic() function (implemented in C by do_magic()), once per record, while processing
hundreds of thousands or millions of records. The MAGIC_VAR variable is looked up in the
symbol table once or twice per function call!

The symbol table lookup is really pure overhead; it is considerably more efficient to get
a cookie that represents the variable, and use that to get the variable’s value and update it
as needed.5

Thus, the way to use cookies is as follows. First, install your extension’s variable in gawk’s
symbol table using sym_update(), as usual. Then get a scalar cookie for the variable using
sym_lookup():

5 The difference is measurable and quite real. Trust us.

406 GAWK: Effective AWK Programming

static awk_scalar_t magic_var_cookie; /* cookie for MAGIC_VAR */

static void

my_extension_init()

{

awk_value_t value;

/* install initial value */

sym_update("MAGIC_VAR", make_number(42.0, & value));

/* get the cookie */

sym_lookup("MAGIC_VAR", AWK_SCALAR, & value);

/* save the cookie */

magic_var_cookie = value.scalar_cookie;

...

}

Next, use the routines in this section for retrieving and updating the value through the
cookie. Thus, do_magic() now becomes something like this:

/* do_magic --- do something really great */

static awk_value_t *

do_magic(int nargs, awk_value_t *result)

{

awk_value_t value;

if (sym_lookup_scalar(magic_var_cookie, AWK_NUMBER, & value)

&& some_condition(value.num_value)) {

value.num_value += 42;

sym_update_scalar(magic_var_cookie, & value);

}

...

return make_number(0.0, result);

}

NOTE: The previous code omitted error checking for presentation purposes.
Your extension code should be more robust and carefully check the return values
from the API functions.

17.4.10.3 Creating and Using Cached Values

The routines in this section allow you to create and release cached values. Like scalar
cookies, in theory, cached values are not necessary. You can create numbers and strings
using the functions in Section 17.4.4 [Constructor Functions], page 390. You can then assign
those values to variables using sym_update() or sym_update_scalar(), as you like.

However, you can understand the point of cached values if you remember that ev-
ery string value’s storage must come from gawk_malloc(), gawk_calloc(), or gawk_

Chapter 17: Writing Extensions for gawk 407

realloc(). If you have 20 variables, all of which have the same string value, you must
create 20 identical copies of the string.6

It is clearly more efficient, if possible, to create a value once, and then tell gawk to reuse
the value for multiple variables. That is what the routines in this section let you do. The
functions are as follows:

awk_bool_t create_value(awk_value_t *value, awk_value_cookie_t *result);

Create a cached string or numeric value from value for efficient later assign-
ment. Only values of type AWK_NUMBER, AWK_REGEX, AWK_STRNUM, and AWK_

STRING are allowed. Any other type is rejected. AWK_UNDEFINED could be
allowed, but doing so would result in inferior performance.

awk_bool_t release_value(awk_value_cookie_t vc);

Release the memory associated with a value cookie obtained from create_

value().

You use value cookies in a fashion similar to the way you use scalar cookies. In the
extension initialization routine, you create the value cookie:

static awk_value_cookie_t answer_cookie; /* static value cookie */

static void

my_extension_init()

{

awk_value_t value;

char *long_string;

size_t long_string_len;

/* code from earlier */

...

/* ... fill in long_string and long_string_len ... */

make_malloced_string(long_string, long_string_len, & value);

create_value(& value, & answer_cookie); /* create cookie */

...

}

Once the value is created, you can use it as the value of any number of variables:

static awk_value_t *

do_magic(int nargs, awk_value_t *result)

{

awk_value_t new_value;

... /* as earlier */

value.val_type = AWK_VALUE_COOKIE;

value.value_cookie = answer_cookie;

sym_update("VAR1", & value);

6 Numeric values are clearly less problematic, requiring only a C double to store. But of course, GMP
and MPFR values do take up more memory.

408 GAWK: Effective AWK Programming

sym_update("VAR2", & value);

...

sym_update("VAR100", & value);

...

}

Using value cookies in this way saves considerable storage, as all of VAR1 through VAR100

share the same value.

You might be wondering, “Is this sharing problematic? What happens if awk code assigns
a new value to VAR1; are all the others changed too?”

That’s a great question. The answer is that no, it’s not a problem. Internally, gawk
uses reference-counted strings. This means that many variables can share the same string
value, and gawk keeps track of the usage. When a variable’s value changes, gawk simply
decrements the reference count on the old value and updates the variable to use the new
value.

Finally, as part of your cleanup action (see Section 17.4.5.2 [Registering An Exit Callback
Function], page 394) you should release any cached values that you created, using release_
value().

17.4.11 Array Manipulation

The primary data structure7 in awk is the associative array (see Chapter 8 [Arrays in awk],
page 171). Extensions need to be able to manipulate awk arrays. The API provides a
number of data structures for working with arrays, functions for working with individual
elements, and functions for working with arrays as a whole. This includes the ability to
“flatten” an array so that it is easy for C code to traverse every element in an array. The
array data structures integrate nicely with the data structures for values to make it easy to
both work with and create true arrays of arrays (see Section 17.4.2 [General-Purpose Data
Types], page 385).

17.4.11.1 Array Data Types

The data types associated with arrays are as follows:

typedef void *awk_array_t;

If you request the value of an array variable, you get back an awk_array_t

value. This value is opaque8 to the extension; it uniquely identifies the array
but can only be used by passing it into API functions or receiving it from
API functions. This is very similar to way ‘FILE *’ values are used with the
<stdio.h> library routines.

7 OK, the only data structure.
8 It is also a “cookie,” but the gawk developers did not wish to overuse this term.

Chapter 17: Writing Extensions for gawk 409

typedef struct awk_element {

/* convenience linked list pointer, not used by gawk */

struct awk_element *next;

enum {

AWK_ELEMENT_DEFAULT = 0, /* set by gawk */

AWK_ELEMENT_DELETE = 1 /* set by extension */

} flags;

awk_value_t index;

awk_value_t value;

} awk_element_t;

The awk_element_t is a “flattened” array element. awk produces an array of
these inside the awk_flat_array_t (see the next item). Individual elements
may be marked for deletion. New elements must be added individually, one at
a time, using the separate API for that purpose. The fields are as follows:

struct awk_element *next;

This pointer is for the convenience of extension writers. It allows
an extension to create a linked list of new elements that can then
be added to an array in a loop that traverses the list.

enum { ... } flags;

A set of flag values that convey information between the extension
and gawk. Currently there is only one: AWK_ELEMENT_DELETE. Set-
ting it causes gawk to delete the element from the original array
upon release of the flattened array.

index

value The index and value of the element, respectively. All memory
pointed to by index and value belongs to gawk.

typedef struct awk_flat_array {

awk_const void *awk_const opaque1; /* for use by gawk */

awk_const void *awk_const opaque2; /* for use by gawk */

awk_const size_t count; /* how many elements */

awk_element_t elements[1]; /* will be extended */

} awk_flat_array_t;

This is a flattened array. When an extension gets one of these from gawk, the
elements array is of actual size count. The opaque1 and opaque2 pointers are
for use by gawk; therefore they are marked awk_const so that the extension
cannot modify them.

17.4.11.2 Array Functions

The following functions relate to individual array elements:

awk_bool_t get_element_count(awk_array_t a_cookie, size_t *count);

For the array represented by a_cookie, place in *count the number of elements
it contains. A subarray counts as a single element. Return false if there is an
error.

410 GAWK: Effective AWK Programming

awk_bool_t get_array_element(awk_array_t a_cookie,

const awk_value_t *const index,

awk_valtype_t wanted,

awk_value_t *result);

For the array represented by a_cookie, return in *result the value of the
element whose index is index. wanted specifies the type of value you wish to
retrieve. Return false if wanted does not match the actual type or if index is
not in the array (see Table 17.2).

The value for index can be numeric, in which case gawk converts it to a string.
Using nonintegral values is possible, but requires that you understand how
such values are converted to strings (see Section 6.1.4 [Conversion of Strings
and Numbers], page 119); thus, using integral values is safest.

As with all strings passed into gawk from an extension, the string value of
index must come from gawk_malloc(), gawk_calloc(), or gawk_realloc(),
and gawk releases the storage.

awk_bool_t set_array_element(awk_array_t a_cookie,

const awk_value_t *const index,

const awk_value_t *const value);

In the array represented by a_cookie, create or modify the element whose index
is given by index. The ARGV and ENVIRON arrays may not be changed, although
the PROCINFO array can be.

awk_bool_t set_array_element_by_elem(awk_array_t a_cookie,

awk_element_t element);

Like set_array_element(), but take the index and value from element. This
is a convenience macro.

awk_bool_t del_array_element(awk_array_t a_cookie,

const awk_value_t* const index);

Remove the element with the given index from the array represented by a_

cookie. Return true if the element was removed, or false if the element did not
exist in the array.

The following functions relate to arrays as a whole:

awk_array_t create_array(void);

Create a new array to which elements may be added. See Section 17.4.11.4
[How To Create and Populate Arrays], page 414, for a discussion of how to
create a new array and add elements to it.

awk_bool_t clear_array(awk_array_t a_cookie);

Clear the array represented by a_cookie. Return false if there was some kind
of problem, true otherwise. The array remains an array, but after calling this
function, it has no elements. This is equivalent to using the delete statement
(see Section 8.4 [The delete Statement], page 180).

Chapter 17: Writing Extensions for gawk 411

awk_bool_t flatten_array_typed(awk_array_t a_cookie,

awk_flat_array_t **data,

awk_valtype_t index_type,

awk_valtype_t value_type);

For the array represented by a_cookie, create an awk_flat_array_t structure
and fill it in with indices and values of the requested types. Set the pointer
whose address is passed as data to point to this structure. Return true upon
success, or false otherwise. See Section 17.4.11.3 [Working With All The Ele-
ments of an Array], page 411, for a discussion of how to flatten an array and
work with it.

awk_bool_t flatten_array(awk_array_t a_cookie, awk_flat_array_t **data);

For the array represented by a_cookie, create an awk_flat_array_t structure
and fill it in with AWK_STRING indices and AWK_UNDEFINED values. This is su-
perseded by flatten_array_typed(). It is provided as a macro, and remains
for convenience and for source code compatibility with the previous version of
the API.

awk_bool_t release_flattened_array(awk_array_t a_cookie,

awk_flat_array_t *data);

When done with a flattened array, release the storage using this function. You
must pass in both the original array cookie and the address of the created
awk_flat_array_t structure. The function returns true upon success, false
otherwise.

17.4.11.3 Working With All The Elements of an Array

To flatten an array is to create a structure that represents the full array in a fashion
that makes it easy for C code to traverse the entire array. Some of the code in
extension/testext.c does this, and also serves as a nice example showing how to use the
APIs.

We walk through that part of the code one step at a time. First, the gawk script that
drives the test extension:

@load "testext"

BEGIN {

n = split("blacky rusty sophie raincloud lucky", pets)

printf("pets has %d elements\n", length(pets))

ret = dump_array_and_delete("pets", "3")

printf("dump_array_and_delete(pets) returned %d\n", ret)

if ("3" in pets)

printf("dump_array_and_delete() did NOT remove index \"3\"!\n")

else

printf("dump_array_and_delete() did remove index \"3\"!\n")

print ""

}

This code creates an array with split() (see Section 9.1.3 [String-Manipulation Functions],
page 189) and then calls dump_array_and_delete(). That function looks up the array
whose name is passed as the first argument, and deletes the element at the index passed in

412 GAWK: Effective AWK Programming

the second argument. The awk code then prints the return value and checks if the element
was indeed deleted. Here is the C code that implements dump_array_and_delete(). It
has been edited slightly for presentation.

The first part declares variables, sets up the default return value in result, and checks
that the function was called with the correct number of arguments:

static awk_value_t *

dump_array_and_delete(int nargs, awk_value_t *result)

{

awk_value_t value, value2, value3;

awk_flat_array_t *flat_array;

size_t count;

char *name;

int i;

assert(result != NULL);

make_number(0.0, result);

if (nargs != 2) {

printf("dump_array_and_delete: nargs not right "

"(%d should be 2)\n", nargs);

goto out;

}

The function then proceeds in steps, as follows. First, retrieve the name of the array,
passed as the first argument, followed by the array itself. If either operation fails, print an
error message and return:

/* get argument named array as flat array and print it */

if (get_argument(0, AWK_STRING, & value)) {

name = value.str_value.str;

if (sym_lookup(name, AWK_ARRAY, & value2))

printf("dump_array_and_delete: sym_lookup of %s passed\n",

name);

else {

printf("dump_array_and_delete: sym_lookup of %s failed\n",

name);

goto out;

}

} else {

printf("dump_array_and_delete: get_argument(0) failed\n");

goto out;

}

For testing purposes and to make sure that the C code sees the same number of elements
as the awk code, the second step is to get the count of elements in the array and print it:

if (! get_element_count(value2.array_cookie, & count)) {

printf("dump_array_and_delete: get_element_count failed\n");

goto out;

Chapter 17: Writing Extensions for gawk 413

}

printf("dump_array_and_delete: incoming size is %lu\n",

(unsigned long) count);

The third step is to actually flatten the array, and then to double-check that the count
in the awk_flat_array_t is the same as the count just retrieved:

if (! flatten_array_typed(value2.array_cookie, & flat_array,

AWK_STRING, AWK_UNDEFINED)) {

printf("dump_array_and_delete: could not flatten array\n");

goto out;

}

if (flat_array->count != count) {

printf("dump_array_and_delete: flat_array->count (%lu)"

" != count (%lu)\n",

(unsigned long) flat_array->count,

(unsigned long) count);

goto out;

}

The fourth step is to retrieve the index of the element to be deleted, which was passed
as the second argument. Remember that argument counts passed to get_argument() are
zero-based, and thus the second argument is numbered one:

if (! get_argument(1, AWK_STRING, & value3)) {

printf("dump_array_and_delete: get_argument(1) failed\n");

goto out;

}

The fifth step is where the “real work” is done. The function loops over every element in
the array, printing the index and element values. In addition, upon finding the element with
the index that is supposed to be deleted, the function sets the AWK_ELEMENT_DELETE bit
in the flags field of the element. When the array is released, gawk traverses the flattened
array, and deletes any elements that have this flag bit set:

for (i = 0; i < flat_array->count; i++) {

printf("\t%s[\"%.*s\"] = %s\n",

name,

(int) flat_array->elements[i].index.str_value.len,

flat_array->elements[i].index.str_value.str,

valrep2str(& flat_array->elements[i].value));

if (strcmp(value3.str_value.str,

flat_array->elements[i].index.str_value.str) == 0) {

flat_array->elements[i].flags |= AWK_ELEMENT_DELETE;

printf("dump_array_and_delete: marking element \"%s\" "

"for deletion\n",

flat_array->elements[i].index.str_value.str);

}

414 GAWK: Effective AWK Programming

}

The sixth step is to release the flattened array. This tells gawk that the extension is no
longer using the array, and that it should delete any elements marked for deletion. gawk

also frees any storage that was allocated, so you should not use the pointer (flat_array in
this code) once you have called release_flattened_array():

if (! release_flattened_array(value2.array_cookie, flat_array)) {

printf("dump_array_and_delete: could not release flattened array\n");

goto out;

}

Finally, because everything was successful, the function sets the return value to success,
and returns:

make_number(1.0, result);

out:

return result;

}

Here is the output from running this part of the test:

pets has 5 elements

dump_array_and_delete: sym_lookup of pets passed

dump_array_and_delete: incoming size is 5

pets["1"] = "blacky"

pets["2"] = "rusty"

pets["3"] = "sophie"

dump_array_and_delete: marking element "3" for deletion

pets["4"] = "raincloud"

pets["5"] = "lucky"

dump_array_and_delete(pets) returned 1

dump_array_and_delete() did remove index "3"!

17.4.11.4 How To Create and Populate Arrays

Besides working with arrays created by awk code, you can create arrays and populate them
as you see fit, and then awk code can access them and manipulate them.

There are two important points about creating arrays from extension code:

• You must install a new array into gawk’s symbol table immediately upon creating it.
Once you have done so, you can then populate the array.

Similarly, if installing a new array as a subarray of an existing array, you must add the
new array to its parent before adding any elements to it.

Thus, the correct way to build an array is to work “top down.” Create the array, and
immediately install it in gawk’s symbol table using sym_update(), or install it as an
element in a previously existing array using set_array_element(). We show example
code shortly.

• Due to gawk internals, after using sym_update() to install an array into gawk, you
have to retrieve the array cookie from the value passed in to sym_update() before
doing anything else with it, like so:

awk_value_t val;

Chapter 17: Writing Extensions for gawk 415

awk_array_t new_array;

new_array = create_array();

val.val_type = AWK_ARRAY;

val.array_cookie = new_array;

/* install array in the symbol table */

sym_update("array", & val);

new_array = val.array_cookie; /* YOU MUST DO THIS */

If installing an array as a subarray, you must also retrieve the value of the array cookie
after the call to set_element().

The following C code is a simple test extension to create an array with two regular
elements and with a subarray. The leading #include directives and boilerplate variable
declarations (see Section 17.4.14 [Boilerplate Code], page 419) are omitted for brevity. The
first step is to create a new array and then install it in the symbol table:

/* create_new_array --- create a named array */

static void

create_new_array()

{

awk_array_t a_cookie;

awk_array_t subarray;

awk_value_t index, value;

a_cookie = create_array();

value.val_type = AWK_ARRAY;

value.array_cookie = a_cookie;

if (! sym_update("new_array", & value))

printf("create_new_array: sym_update(\"new_array\") failed!\n");

a_cookie = value.array_cookie;

Note how a_cookie is reset from the array_cookie field in the value structure.

The second step is to install two regular values into new_array:

(void) make_const_string("hello", 5, & index);

(void) make_const_string("world", 5, & value);

if (! set_array_element(a_cookie, & index, & value)) {

printf("fill_in_array: set_array_element failed\n");

return;

}

(void) make_const_string("answer", 6, & index);

(void) make_number(42.0, & value);

if (! set_array_element(a_cookie, & index, & value)) {

printf("fill_in_array: set_array_element failed\n");

416 GAWK: Effective AWK Programming

return;

}

The third step is to create the subarray and install it:

(void) make_const_string("subarray", 8, & index);

subarray = create_array();

value.val_type = AWK_ARRAY;

value.array_cookie = subarray;

if (! set_array_element(a_cookie, & index, & value)) {

printf("fill_in_array: set_array_element failed\n");

return;

}

subarray = value.array_cookie;

The final step is to populate the subarray with its own element:

(void) make_const_string("foo", 3, & index);

(void) make_const_string("bar", 3, & value);

if (! set_array_element(subarray, & index, & value)) {

printf("fill_in_array: set_array_element failed\n");

return;

}

}

Here is a sample script that loads the extension and then dumps the array:

@load "subarray"

function dumparray(name, array, i)

{

for (i in array)

if (isarray(array[i]))

dumparray(name "[\"" i "\"]", array[i])

else

printf("%s[\"%s\"] = %s\n", name, i, array[i])

}

BEGIN {

dumparray("new_array", new_array);

}

Here is the result of running the script:

$ AWKLIBPATH=$PWD gawk -f subarray.awk

a new_array["subarray"]["foo"] = bar

a new_array["hello"] = world

a new_array["answer"] = 42

(See Section 17.5 [How gawk Finds Extensions], page 422, for more information on the
AWKLIBPATH environment variable.)

17.4.12 Accessing and Manipulating Redirections

The following function allows extensions to access and manipulate redirections.

Chapter 17: Writing Extensions for gawk 417

awk_bool_t get_file(const char *name,

size_t name_len,

const char *filetype,

int fd,

const awk_input_buf_t **ibufp,

const awk_output_buf_t **obufp);

Look up file name in gawk’s internal redirection table. If name is NULL or name_
len is zero, return data for the currently open input file corresponding to
FILENAME. (This does not access the filetype argument, so that may be
undefined). If the file is not already open, attempt to open it. The filetype

argument must be zero-terminated and should be one of:

">" A file opened for output.

">>" A file opened for append.

"<" A file opened for input.

"|>" A pipe opened for output.

"|<" A pipe opened for input.

"|&" A two-way coprocess.

On error, return awk_false. Otherwise, return awk_true, and return addi-
tional information about the redirection in the ibufp and obufp pointers.

For input redirections, the *ibufp value should be non-NULL, and *obufp should
be NULL. For output redirections, the *obufp value should be non-NULL, and
*ibufp should be NULL. For two-way coprocesses, both values should be non-
NULL.

In the usual case, the extension is interested in (*ibufp)->fd and/or
fileno((*obufp)->fp). If the file is not already open, and the fd argument
is nonnegative, gawk will use that file descriptor instead of opening the file in
the usual way. If fd is nonnegative, but the file exists already, gawk ignores
fd and returns the existing file. It is the caller’s responsibility to notice that
neither the fd in the returned awk_input_buf_t nor the fd in the returned
awk_output_buf_t matches the requested value.

Note that supplying a file descriptor is currently not supported for pipes. How-
ever, supplying a file descriptor should work for input, output, append, and
two-way (coprocess) sockets. If filetype is two-way, gawk assumes that it is
a socket! Note that in the two-way case, the input and output file descriptors
may differ. To check for success, you must check whether either matches.

It is anticipated that this API function will be used to implement I/O multiplexing and
a socket library.

17.4.13 API Variables

The API provides two sets of variables. The first provides information about the version of
the API (both with which the extension was compiled, and with which gawk was compiled).
The second provides information about how gawk was invoked.

418 GAWK: Effective AWK Programming

17.4.13.1 API Version Constants and Variables

The API provides both a “major” and a “minor” version number. The API versions are
available at compile time as C preprocessor defines to support conditional compilation, and
as enum constants to facilitate debugging:

API Version C Preprocessor Define enum constant
Major gawk_api_major_version GAWK_API_MAJOR_VERSION

Minor gawk_api_minor_version GAWK_API_MINOR_VERSION

Table 17.3: gawk API version constants

The minor version increases when new functions are added to the API. Such new func-
tions are always added to the end of the API struct.

The major version increases (and the minor version is reset to zero) if any of the data
types change size or member order, or if any of the existing functions change signature.

It could happen that an extension may be compiled against one version of the API but
loaded by a version of gawk using a different version. For this reason, the major and minor
API versions of the running gawk are included in the API struct as read-only constant
integers:

api->major_version

The major version of the running gawk.

api->minor_version

The minor version of the running gawk.

It is up to the extension to decide if there are API incompatibilities. Typically, a check
like this is enough:

if (api->major_version != GAWK_API_MAJOR_VERSION

|| api->minor_version < GAWK_API_MINOR_VERSION) {

fprintf(stderr, "foo_extension: version mismatch with gawk!\n");

fprintf(stderr, "\tmy version (%d, %d), gawk version (%d, %d)\n",

GAWK_API_MAJOR_VERSION, GAWK_API_MINOR_VERSION,

api->major_version, api->minor_version);

exit(1);

}

Such code is included in the boilerplate dl_load_func() macro provided in gawkapi.h

(discussed in Section 17.4.14 [Boilerplate Code], page 419).

17.4.13.2 GMP and MPFR Version Information

The API also includes information about the versions of GMP and MPFR with which the
running gawk was compiled (if any). They are included in the API struct as read-only
constant integers:

api->gmp_major_version

The major version of the GMP library used to compile gawk.

api->gmp_minor_version

The minor version of the GMP library used to compile gawk.

Chapter 17: Writing Extensions for gawk 419

api->mpfr_major_version

The major version of the MPFR library used to compile gawk.

api->mpfr_minor_version

The minor version of the MPFR library used to compile gawk.

These fields are set to zero if gawk was compiled without MPFR support.

You can check if the versions of MPFR and GMP that you are using match those of
gawk with the following macro:

check_mpfr_version(extension)

The extension is the extension id passed to all the other macros and functions
defined in gawkapi.h. If you have not included the <mpfr.h> header file, then
this macro will be defined to do nothing.

If you have included that file, then this macro compares the MPFR and GMP
major and minor versions against those of the library you are compiling against.
If your libraries are newer than gawk’s, it produces a fatal error message.

The dl_load_func() macro (see Section 17.4.14 [Boilerplate Code], page 419)
calls check_mpfr_version().

17.4.13.3 Informational Variables

The API provides access to several variables that describe whether the corresponding
command-line options were enabled when gawk was invoked. The variables are:

do_debug This variable is true if gawk was invoked with --debug option.

do_lint This variable is true if gawk was invoked with --lint option.

do_mpfr This variable is true if gawk was invoked with --bignum option.

do_profile

This variable is true if gawk was invoked with --profile option.

do_sandbox

This variable is true if gawk was invoked with --sandbox option.

do_traditional

This variable is true if gawk was invoked with --traditional option.

The value of do_lint can change if awk code modifies the LINT predefined variable
(see Section 7.5 [Predefined Variables], page 157). The others should not change during
execution.

17.4.14 Boilerplate Code

As mentioned earlier (see Section 17.3 [How It Works at a High Level], page 381), the
function definitions as presented are really macros. To use these macros, your extension
must provide a small amount of boilerplate code (variables and functions) toward the top
of your source file, using predefined names as described here. The boilerplate needed is also
provided in comments in the gawkapi.h header file:

/* Boilerplate code: */

int plugin_is_GPL_compatible;

static gawk_api_t *const api;

420 GAWK: Effective AWK Programming

static awk_ext_id_t ext_id;

static const char *ext_version = NULL; /* or ... = "some string" */

static awk_ext_func_t func_table[] = {

{ "name", do_name, 1, 0, awk_false, NULL },

/* ... */

};

/* EITHER: */

static awk_bool_t (*init_func)(void) = NULL;

/* OR: */

static awk_bool_t

init_my_extension(void)

{

...

}

static awk_bool_t (*init_func)(void) = init_my_extension;

dl_load_func(func_table, some_name, "name_space_in_quotes")

These variables and functions are as follows:

int plugin_is_GPL_compatible;

This asserts that the extension is compatible with the GNU GPL (see [GNU
General Public License], page 509). If your extension does not have this, gawk
will not load it (see Section 17.2 [Extension Licensing], page 381).

static gawk_api_t *const api;

This global static variable should be set to point to the gawk_api_t pointer
that gawk passes to your dl_load() function. This variable is used by all of
the macros.

static awk_ext_id_t ext_id;

This global static variable should be set to the awk_ext_id_t value that gawk
passes to your dl_load() function. This variable is used by all of the macros.

static const char *ext_version = NULL; /* or ... = "some string" */

This global static variable should be set either to NULL, or to point to a string
giving the name and version of your extension.

static awk_ext_func_t func_table[] = { ... };

This is an array of one or more awk_ext_func_t structures, as described earlier
(see Section 17.4.5.1 [Registering An Extension Function], page 392). It can
then be looped over for multiple calls to add_ext_func().

Chapter 17: Writing Extensions for gawk 421

static awk_bool_t (*init_func)(void) = NULL;

OR

static awk_bool_t init_my_extension(void) { ... }

static awk_bool_t (*init_func)(void) = init_my_extension;

If you need to do some initialization work, you should define a function that
does it (creates variables, opens files, etc.) and then define the init_func

pointer to point to your function. The function should return awk_false upon
failure, or awk_true if everything goes well.

If you don’t need to do any initialization, define the pointer and initialize it to
NULL.

dl_load_func(func_table, some_name, "name_space_in_quotes")

This macro expands to a dl_load() function that performs all the necessary
initializations.

The point of all the variables and arrays is to let the dl_load() function (from the
dl_load_func() macro) do all the standard work. It does the following:

1. Check the API versions. If the extension major version does not match gawk’s, or if
the extension minor version is greater than gawk’s, it prints a fatal error message and
exits.

2. Check the MPFR and GMP versions. If there is a mismatch, it prints a fatal error
message and exits.

3. Load the functions defined in func_table. If any of them fails to load, it prints a
warning message but continues on.

4. If the init_func pointer is not NULL, call the function it points to. If it returns awk_
false, print a warning message.

5. If ext_version is not NULL, register the version string with gawk.

17.4.15 Changes From Version 1 of the API

The current API is not binary compatible with version 1 of the API. You will have to
recompile your extensions in order to use them with the current version of gawk.

Fortunately, at the possible expense of some compile-time warnings, the API remains
source-code–compatible with the previous API. The major differences are the additional
members in the awk_ext_func_t structure, and the addition of the third argument to
the C implementation function (see Section 17.4.5.1 [Registering An Extension Function],
page 392).

Here is a list of individual features that changed from version 1 to version 2 of the API:

• Numeric values can now have MPFR/MPZ variants (see Section 17.4.2
[General-Purpose Data Types], page 385).

• There are new string types: AWK_REGEX and AWK_STRNUM (see Section 17.4.2 [General-
Purpose Data Types], page 385).

• The ezalloc() macro is new (see Section 17.4.3 [Memory Allocation Functions and
Convenience Macros], page 389).

• The awk_ext_func_t structure changed. Instead of num_expected_args, it now has
max_expected and min_required (see Section 17.4.5.1 [Registering An Extension
Function], page 392).

422 GAWK: Effective AWK Programming

• For get_record(), an input parser can now specify field widths (see Section 17.4.5.4
[Customized Input Parsers], page 394).

• Extensions can now produce nonfatal error messages (see Section 17.4.6 [Printing Mes-
sages], page 401).

• When flattening an array, you can now specify the index and value types (see
Section 17.4.11.2 [Array Functions], page 409).

• The get_file() API is new (see Section 17.4.12 [Accessing and Manipulating Redi-
rections], page 416).

17.5 How gawk Finds Extensions

Compiled extensions have to be installed in a directory where gawk can find them. If gawk
is configured and built in the default fashion, the directory in which to find extensions is
/usr/local/lib/gawk. You can also specify a search path with a list of directories to
search for compiled extensions. See Section 2.5.2 [The AWKLIBPATH Environment Variable],
page 41, for more information.

17.6 Example: Some File Functions

No matter where you go, there you are.
—Buckaroo Banzai

Two useful functions that are not in awk are chdir() (so that an awk program can
change its directory) and stat() (so that an awk program can gather information about a
file). In order to illustrate the API in action, this section implements these functions for
gawk in an extension.

17.6.1 Using chdir() and stat()

This section shows how to use the new functions at the awk level once they’ve been integrated
into the running gawk interpreter. Using chdir() is very straightforward. It takes one
argument, the new directory to change to:

@load "filefuncs"

...

newdir = "/home/arnold/funstuff"

ret = chdir(newdir)

if (ret < 0) {

printf("could not change to %s: %s\n", newdir, ERRNO) > "/dev/stderr"

exit 1

}

...

The return value is negative if the chdir() failed, and ERRNO (see Section 7.5 [Predefined
Variables], page 157) is set to a string indicating the error.

Using stat() is a bit more complicated. The C stat() function fills in a structure
that has a fair amount of information. The right way to model this in awk is to fill in an
associative array with the appropriate information:

file = "/home/arnold/.profile"

ret = stat(file, fdata)

Chapter 17: Writing Extensions for gawk 423

if (ret < 0) {

printf("could not stat %s: %s\n",

file, ERRNO) > "/dev/stderr"

exit 1

}

printf("size of %s is %d bytes\n", file, fdata["size"])

The stat() function always clears the data array, even if the stat() fails. It fills in the
following elements:

"name" The name of the file that was stat()ed.

"dev"

"ino" The file’s device and inode numbers, respectively.

"mode" The file’s mode, as a numeric value. This includes both the file’s type and its
permissions.

"nlink" The number of hard links (directory entries) the file has.

"uid"

"gid" The numeric user and group ID numbers of the file’s owner.

"size" The size in bytes of the file.

"blocks" The number of disk blocks the file actually occupies. This may not be a function
of the file’s size if the file has holes.

"atime"

"mtime"

"ctime" The file’s last access, modification, and inode update times, respectively.
These are numeric timestamps, suitable for formatting with strftime() (see
Section 9.1.5 [Time Functions], page 205).

"pmode" The file’s “printable mode.” This is a string representation of the file’s type
and permissions, such as is produced by ‘ls -l’—for example, "drwxr-xr-x".

"type" A printable string representation of the file’s type. The value is one of the
following:

"blockdev"

"chardev"

The file is a block or character device (“special file”).

"directory"

The file is a directory.

"fifo" The file is a named pipe (also known as a FIFO).

"file" The file is just a regular file.

"socket" The file is an AF_UNIX (“Unix domain”) socket in the filesystem.

"symlink"

The file is a symbolic link.

424 GAWK: Effective AWK Programming

"devbsize"

The size of a block for the element indexed by "blocks". This information is
derived from either the DEV_BSIZE constant defined in <sys/param.h> on most
systems, or the S_BLKSIZE constant in <sys/stat.h> on BSD systems. For
some other systems, a priori knowledge is used to provide a value. Where no
value can be determined, it defaults to 512.

Several additional elements may be present, depending upon the operating system and
the type of the file. You can test for them in your awk program by using the in operator
(see Section 8.1.2 [Referring to an Array Element], page 173):

"blksize"

The preferred block size for I/O to the file. This field is not present on all
POSIX-like systems in the C stat structure.

"linkval"

If the file is a symbolic link, this element is the name of the file the link points
to (i.e., the value of the link).

"rdev"

"major"

"minor" If the file is a block or character device file, then these values represent the
numeric device number and the major and minor components of that number,
respectively.

17.6.2 C Code for chdir() and stat()

Here is the C code for these extensions.9

The file includes a number of standard header files, and then includes the gawkapi.h

header file, which provides the API definitions. Those are followed by the necessary vari-
able declarations to make use of the API macros and boilerplate code (see Section 17.4.14
[Boilerplate Code], page 419):

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <assert.h>

#include <errno.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include "gawkapi.h"

9 This version is edited slightly for presentation. See extension/filefuncs.c in the gawk distribution for
the complete version.

Chapter 17: Writing Extensions for gawk 425

#include "gettext.h"

#define _(msgid) gettext(msgid)

#define N_(msgid) msgid

#include "gawkfts.h"

#include "stack.h"

static const gawk_api_t *api; /* for convenience macros to work */

static awk_ext_id_t ext_id;

static awk_bool_t init_filefuncs(void);

static awk_bool_t (*init_func)(void) = init_filefuncs;

static const char *ext_version = "filefuncs extension: version 1.0";

int plugin_is_GPL_compatible;

By convention, for an awk function foo(), the C function that implements it is called
do_foo(). The function should have two arguments. The first is an int, usually called
nargs, that represents the number of actual arguments for the function. The second is a
pointer to an awk_value_t structure, usually named result:

/* do_chdir --- provide dynamically loaded chdir() function for gawk */

static awk_value_t *

do_chdir(int nargs, awk_value_t *result, struct awk_ext_func *unused)

{

awk_value_t newdir;

int ret = -1;

assert(result != NULL);

The newdir variable represents the new directory to change to, which is retrieved with
get_argument(). Note that the first argument is numbered zero.

If the argument is retrieved successfully, the function calls the chdir() system call.
Otherwise, if the chdir() fails, it updates ERRNO:

if (get_argument(0, AWK_STRING, & newdir)) {

ret = chdir(newdir.str_value.str);

if (ret < 0)

update_ERRNO_int(errno);

}

Finally, the function returns the return value to the awk level:

return make_number(ret, result);

}

The stat() extension is more involved. First comes a function that turns a numeric
mode into a printable representation (e.g., octal 0644 becomes ‘-rw-r--r--’). This is
omitted here for brevity:

/* format_mode --- turn a stat mode field into something readable */

426 GAWK: Effective AWK Programming

static char *

format_mode(unsigned long fmode)

{

...

}

Next comes a function for reading symbolic links, which is also omitted here for brevity:

/* read_symlink --- read a symbolic link into an allocated buffer.

... */

static char *

read_symlink(const char *fname, size_t bufsize, ssize_t *linksize)

{

...

}

Two helper functions simplify entering values in the array that will contain the result of
the stat():

/* array_set --- set an array element */

static void

array_set(awk_array_t array, const char *sub, awk_value_t *value)

{

awk_value_t index;

set_array_element(array,

make_const_string(sub, strlen(sub), & index),

value);

}

/* array_set_numeric --- set an array element with a number */

static void

array_set_numeric(awk_array_t array, const char *sub, double num)

{

awk_value_t tmp;

array_set(array, sub, make_number(num, & tmp));

}

The following function does most of the work to fill in the awk_array_t result array
with values obtained from a valid struct stat. This work is done in a separate function
to support the stat() function for gawk and also to support the fts() extension, which is
included in the same file but whose code is not shown here (see Section 17.7.1 [File-Related
Functions], page 432).

The first part of the function is variable declarations, including a table to map file types
to strings:

Chapter 17: Writing Extensions for gawk 427

/* fill_stat_array --- do the work to fill an array with stat info */

static int

fill_stat_array(const char *name, awk_array_t array, struct stat *sbuf)

{

char *pmode; /* printable mode */

const char *type = "unknown";

awk_value_t tmp;

static struct ftype_map {

unsigned int mask;

const char *type;

} ftype_map[] = {

{ S_IFREG, "file" },

{ S_IFBLK, "blockdev" },

{ S_IFCHR, "chardev" },

{ S_IFDIR, "directory" },

#ifdef S_IFSOCK

{ S_IFSOCK, "socket" },

#endif

#ifdef S_IFIFO

{ S_IFIFO, "fifo" },

#endif

#ifdef S_IFLNK

{ S_IFLNK, "symlink" },

#endif

#ifdef S_IFDOOR /* Solaris weirdness */

{ S_IFDOOR, "door" },

#endif

};

int j, k;

The destination array is cleared, and then code fills in various elements based on values
in the struct stat:

/* empty out the array */

clear_array(array);

/* fill in the array */

array_set(array, "name", make_const_string(name, strlen(name),

& tmp));

array_set_numeric(array, "dev", sbuf->st_dev);

array_set_numeric(array, "ino", sbuf->st_ino);

array_set_numeric(array, "mode", sbuf->st_mode);

array_set_numeric(array, "nlink", sbuf->st_nlink);

array_set_numeric(array, "uid", sbuf->st_uid);

array_set_numeric(array, "gid", sbuf->st_gid);

array_set_numeric(array, "size", sbuf->st_size);

array_set_numeric(array, "blocks", sbuf->st_blocks);

428 GAWK: Effective AWK Programming

array_set_numeric(array, "atime", sbuf->st_atime);

array_set_numeric(array, "mtime", sbuf->st_mtime);

array_set_numeric(array, "ctime", sbuf->st_ctime);

/* for block and character devices, add rdev,

major and minor numbers */

if (S_ISBLK(sbuf->st_mode) || S_ISCHR(sbuf->st_mode)) {

array_set_numeric(array, "rdev", sbuf->st_rdev);

array_set_numeric(array, "major", major(sbuf->st_rdev));

array_set_numeric(array, "minor", minor(sbuf->st_rdev));

}

The latter part of the function makes selective additions to the destination array, depending
upon the availability of certain members and/or the type of the file. It then returns zero,
for success:

#ifdef HAVE_STRUCT_STAT_ST_BLKSIZE

array_set_numeric(array, "blksize", sbuf->st_blksize);

#endif

pmode = format_mode(sbuf->st_mode);

array_set(array, "pmode", make_const_string(pmode, strlen(pmode),

& tmp));

/* for symbolic links, add a linkval field */

if (S_ISLNK(sbuf->st_mode)) {

char *buf;

ssize_t linksize;

if ((buf = read_symlink(name, sbuf->st_size,

& linksize)) != NULL)

array_set(array, "linkval",

make_malloced_string(buf, linksize, & tmp));

else

warning(ext_id, _("stat: unable to read symbolic link `%s'"),

name);

}

/* add a type field */

type = "unknown"; /* shouldn't happen */

for (j = 0, k = sizeof(ftype_map)/sizeof(ftype_map[0]); j < k; j++) {

if ((sbuf->st_mode & S_IFMT) == ftype_map[j].mask) {

type = ftype_map[j].type;

break;

}

}

array_set(array, "type", make_const_string(type, strlen(type), & tmp));

Chapter 17: Writing Extensions for gawk 429

return 0;

}

The third argument to stat() was not discussed previously. This argument is optional.
If present, it causes do_stat() to use the stat() system call instead of the lstat() system
call. This is done by using a function pointer: statfunc. statfunc is initialized to point to
lstat() (instead of stat()) to get the file information, in case the file is a symbolic link.
However, if the third argument is included, statfunc is set to point to stat(), instead.

Here is the do_stat() function, which starts with variable declarations and argument
checking:

/* do_stat --- provide a stat() function for gawk */

static awk_value_t *

do_stat(int nargs, awk_value_t *result, struct awk_ext_func *unused)

{

awk_value_t file_param, array_param;

char *name;

awk_array_t array;

int ret;

struct stat sbuf;

/* default is lstat() */

int (*statfunc)(const char *path, struct stat *sbuf) = lstat;

assert(result != NULL);

Then comes the actual work. First, the function gets the arguments. Next, it gets the
information for the file. If the called function (lstat() or stat()) returns an error, the
code sets ERRNO and returns:

/* file is first arg, array to hold results is second */

if (! get_argument(0, AWK_STRING, & file_param)

|| ! get_argument(1, AWK_ARRAY, & array_param)) {

warning(ext_id, _("stat: bad parameters"));

return make_number(-1, result);

}

if (nargs == 3) {

statfunc = stat;

}

name = file_param.str_value.str;

array = array_param.array_cookie;

/* always empty out the array */

clear_array(array);

/* stat the file; if error, set ERRNO and return */

ret = statfunc(name, & sbuf);

430 GAWK: Effective AWK Programming

if (ret < 0) {

update_ERRNO_int(errno);

return make_number(ret, result);

}

The tedious work is done by fill_stat_array(), shown earlier. When done, the func-
tion returns the result from fill_stat_array():

ret = fill_stat_array(name, array, & sbuf);

return make_number(ret, result);

}

Finally, it’s necessary to provide the “glue” that loads the new function(s) into gawk.

The filefuncs extension also provides an fts() function, which we omit here (see
Section 17.7.1 [File-Related Functions], page 432). For its sake, there is an initialization
function:

/* init_filefuncs --- initialization routine */

static awk_bool_t

init_filefuncs(void)

{

...

}

We are almost done. We need an array of awk_ext_func_t structures for loading each
function into gawk:

static awk_ext_func_t func_table[] = {

{ "chdir", do_chdir, 1, 1, awk_false, NULL },

{ "stat", do_stat, 3, 2, awk_false, NULL },

...

};

Each extension must have a routine named dl_load() to load everything that needs to
be loaded. It is simplest to use the dl_load_func() macro in gawkapi.h:

/* define the dl_load() function using the boilerplate macro */

dl_load_func(func_table, filefuncs, "")

And that’s it!

17.6.3 Integrating the Extensions

Now that the code is written, it must be possible to add it at runtime to the running gawk

interpreter. First, the code must be compiled. Assuming that the functions are in a file
named filefuncs.c, and idir is the location of the gawkapi.h header file, the following
steps10 create a GNU/Linux shared library:

$ gcc -fPIC -shared -DHAVE_CONFIG_H -c -O -g -Iidir filefuncs.c

10 In practice, you would probably want to use the GNU Autotools (Automake, Autoconf, Libtool, and
gettext) to configure and build your libraries. Instructions for doing so are beyond the scope of this
book. See Section 17.8 [The gawkextlib Project], page 441, for Internet links to the tools.

Chapter 17: Writing Extensions for gawk 431

$ gcc -o filefuncs.so -shared filefuncs.o

Once the library exists, it is loaded by using the @load keyword:

file testff.awk

@load "filefuncs"

BEGIN {

"pwd" | getline curdir # save current directory

close("pwd")

chdir("/tmp")

system("pwd") # test it

chdir(curdir) # go back

print "Info for testff.awk"

ret = stat("testff.awk", data)

print "ret =", ret

for (i in data)

printf "data[\"%s\"] = %s\n", i, data[i]

print "testff.awk modified:",

strftime("%m %d %Y %H:%M:%S", data["mtime"])

print "\nInfo for JUNK"

ret = stat("JUNK", data)

print "ret =", ret

for (i in data)

printf "data[\"%s\"] = %s\n", i, data[i]

print "JUNK modified:", strftime("%m %d %Y %H:%M:%S", data["mtime"])

}

The AWKLIBPATH environment variable tells gawk where to find extensions (see
Section 17.5 [How gawk Finds Extensions], page 422). We set it to the current directory
and run the program:

$ AWKLIBPATH=$PWD gawk -f testff.awk

a /tmp

a Info for testff.awk

a ret = 0

a data["blksize"] = 4096

a data["devbsize"] = 512

a data["mtime"] = 1412004710

a data["mode"] = 33204

a data["type"] = file

a data["dev"] = 2053

a data["gid"] = 1000

a data["ino"] = 10358899

a data["ctime"] = 1412004710

a data["blocks"] = 8

a data["nlink"] = 1

432 GAWK: Effective AWK Programming

a data["name"] = testff.awk

a data["atime"] = 1412004716

a data["pmode"] = -rw-rw-r--

a data["size"] = 666

a data["uid"] = 1000

a testff.awk modified: 09 29 2014 18:31:50

a
a Info for JUNK

a ret = -1

a JUNK modified: 01 01 1970 02:00:00

17.7 The Sample Extensions in the gawk Distribution

This section provides a brief overview of the sample extensions that come in the gawk

distribution. Some of them are intended for production use (e.g., the filefuncs, readdir,
and inplace extensions). Others mainly provide example code that shows how to use the
extension API.

17.7.1 File-Related Functions

The filefuncs extension provides three different functions, as follows. The usage is:

@load "filefuncs"

This is how you load the extension.

result = chdir("/some/directory")

The chdir() function is a direct hook to the chdir() system call to change the
current directory. It returns zero upon success or a value less than zero upon
error. In the latter case, it updates ERRNO.

result = stat("/some/path", statdata [, follow])
The stat() function provides a hook into the stat() system call. It returns
zero upon success or a value less than zero upon error. In the latter case, it
updates ERRNO.

By default, it uses the lstat() system call. However, if passed a third argu-
ment, it uses stat() instead.

In all cases, it clears the statdata array. When the call is successful, stat() fills
the statdata array with information retrieved from the filesystem, as follows:

Subscript Field in struct stat File type
"name" The file name All
"dev" st_dev All
"ino" st_ino All
"mode" st_mode All
"nlink" st_nlink All
"uid" st_uid All
"gid" st_gid All
"size" st_size All
"atime" st_atime All

Chapter 17: Writing Extensions for gawk 433

"mtime" st_mtime All
"ctime" st_ctime All
"rdev" st_rdev Device files
"major" st_major Device files
"minor" st_minor Device files
"blksize" st_blksize All
"pmode" A human-readable version of the mode

value, like that printed by ls (for example,
"-rwxr-xr-x")

All

"linkval" The value of the symbolic link Symbolic links
"type" The type of the file as a string—one

of "file", "blockdev", "chardev",
"directory", "socket", "fifo",
"symlink", "door", or "unknown" (not all
systems support all file types)

All

flags = or(FTS_PHYSICAL, ...)

result = fts(pathlist, flags, filedata)

Walk the file trees provided in pathlist and fill in the filedata array, as
described next. flags is the bitwise OR of several predefined values, also
described in a moment. Return zero if there were no errors, otherwise return
−1.

The fts() function provides a hook to the C library fts() routines for traversing file
hierarchies. Instead of returning data about one file at a time in a stream, it fills in a
multidimensional array with data about each file and directory encountered in the requested
hierarchies.

The arguments are as follows:

pathlist An array of file names. The element values are used; the index values are
ignored.

flags This should be the bitwise OR of one or more of the following predefined con-
stant flag values. At least one of FTS_LOGICAL or FTS_PHYSICAL must be pro-
vided; otherwise fts() returns an error value and sets ERRNO. The flags are:

FTS_LOGICAL

Do a “logical” file traversal, where the information returned for a
symbolic link refers to the linked-to file, and not to the symbolic
link itself. This flag is mutually exclusive with FTS_PHYSICAL.

FTS_PHYSICAL

Do a “physical” file traversal, where the information returned for a
symbolic link refers to the symbolic link itself. This flag is mutually
exclusive with FTS_LOGICAL.

FTS_NOCHDIR

As a performance optimization, the C library fts() routines change
directory as they traverse a file hierarchy. This flag disables that
optimization.

434 GAWK: Effective AWK Programming

FTS_COMFOLLOW

Immediately follow a symbolic link named in pathlist, whether or
not FTS_LOGICAL is set.

FTS_SEEDOT

By default, the C library fts() routines do not return entries for
. (dot) and .. (dot-dot). This option causes entries for dot-dot to
also be included. (The extension always includes an entry for dot;
more on this in a moment.)

FTS_XDEV During a traversal, do not cross onto a different mounted filesystem.

filedata The filedata array holds the results. fts() first clears it. Then it creates an
element in filedata for every element in pathlist. The index is the name of
the directory or file given in pathlist. The element for this index is itself an
array. There are two cases:

The path is a file
In this case, the array contains two or three elements:

"path" The full path to this file, starting from the “root” that
was given in the pathlist array.

"stat" This element is itself an array, containing the same in-
formation as provided by the stat() function described
earlier for its statdata argument. The element may
not be present if the stat() system call for the file
failed.

"error" If some kind of error was encountered, the array will
also contain an element named "error", which is a
string describing the error.

The path is a directory
In this case, the array contains one element for each entry in the
directory. If an entry is a file, that element is the same as for
files, just described. If the entry is a directory, that element is
(recursively) an array describing the subdirectory. If FTS_SEEDOT
was provided in the flags, then there will also be an element named
"..". This element will be an array containing the data as provided
by stat().

In addition, there will be an element whose index is ".". This
element is an array containing the same two or three elements as
for a file: "path", "stat", and "error".

The fts() function returns zero if there were no errors. Otherwise, it returns −1.
NOTE: The fts() extension does not exactly mimic the interface of the C li-
brary fts() routines, choosing instead to provide an interface that is based on
associative arrays, which is more comfortable to use from an awk program. This
includes the lack of a comparison function, because gawk already provides pow-
erful array sorting facilities. Although an fts_read()-like interface could have

Chapter 17: Writing Extensions for gawk 435

been provided, this felt less natural than simply creating a multidimensional
array to represent the file hierarchy and its information.

See test/fts.awk in the gawk distribution for an example use of the fts() extension
function.

17.7.2 Interface to fnmatch()

This extension provides an interface to the C library fnmatch() function. The usage is:

@load "fnmatch"

This is how you load the extension.

result = fnmatch(pattern, string, flags)

The return value is zero on success, FNM_NOMATCH if the string did not match
the pattern, or a different nonzero value if an error occurred.

In addition to the fnmatch() function, the fnmatch extension adds one constant (FNM_
NOMATCH), and an array of flag values named FNM.

The arguments to fnmatch() are:

pattern The file name wildcard to match

string The file name string

flag Either zero, or the bitwise OR of one or more of the flags in the FNM array

The flags are as follows:

Array element Corresponding flag defined by fnmatch()

FNM["CASEFOLD"] FNM_CASEFOLD

FNM["FILE_NAME"] FNM_FILE_NAME

FNM["LEADING_DIR"] FNM_LEADING_DIR

FNM["NOESCAPE"] FNM_NOESCAPE

FNM["PATHNAME"] FNM_PATHNAME

FNM["PERIOD"] FNM_PERIOD

Here is an example:

@load "fnmatch"

...

flags = or(FNM["PERIOD"], FNM["NOESCAPE"])

if (fnmatch("*.a", "foo.c", flags) == FNM_NOMATCH)

print "no match"

17.7.3 Interface to fork(), wait(), and waitpid()

The fork extension adds three functions, as follows:

@load "fork"

This is how you load the extension.

pid = fork()

This function creates a new process. The return value is zero in the child and
the process ID number of the child in the parent, or −1 upon error. In the
latter case, ERRNO indicates the problem. In the child, PROCINFO["pid"] and
PROCINFO["ppid"] are updated to reflect the correct values.

436 GAWK: Effective AWK Programming

ret = waitpid(pid)

This function takes a numeric argument, which is the process ID to wait for.
The return value is that of the waitpid() system call.

ret = wait()

This function waits for the first child to die. The return value is that of the
wait() system call.

There is no corresponding exec() function.

Here is an example:

@load "fork"

...

if ((pid = fork()) == 0)

print "hello from the child"

else

print "hello from the parent"

17.7.4 Enabling In-Place File Editing

The inplace extension emulates GNU sed’s -i option, which performs “in-place” editing
of each input file. It uses the bundled inplace.awk include file to invoke the extension
properly. This extension makes use of the namespace facility to place all the variables and
functions in the inplace namespace (see Chapter 15 [Namespaces in gawk], page 361):

inplace --- load and invoke the inplace extension.

@load "inplace"

Please set inplace::suffix to make a backup copy. For example, you may

want to set inplace::suffix to .bak on the command line or in a BEGIN rule.

Before there were namespaces in gawk, this extension used

INPLACE_SUFFIX as the variable for making backup copies. We allow this

too, so that any code that used the previous version continues to work.

By default, each filename on the command line will be edited inplace.

But you can selectively disable this by adding an inplace::enable=0 argument

prior to files that you do not want to process this way. You can then

reenable it later on the commandline by putting inplace::enable=1 before files

that you wish to be subject to inplace editing.

N.B. We call inplace::end() in the BEGINFILE and END rules so that any

actions in an ENDFILE rule will be redirected as expected.

@namespace "inplace"

BEGIN {

enable = 1 # enabled by default

}

Chapter 17: Writing Extensions for gawk 437

BEGINFILE {

sfx = (suffix ? suffix : awk::INPLACE_SUFFIX)

if (filename != "")

end(filename, sfx)

if (enable)

begin(filename = FILENAME, sfx)

else

filename = ""

}

END {

if (filename != "")

end(filename, (suffix ? suffix : awk::INPLACE_SUFFIX))

}

For each regular file that is processed, the extension redirects standard output to a
temporary file configured to have the same owner and permissions as the original. After the
file has been processed, the extension restores standard output to its original destination.
If inplace::suffix is not an empty string, the original file is linked to a backup file name
created by appending that suffix. Finally, the temporary file is renamed to the original file
name.

Note that the use of this feature can be controlled by placing ‘inplace::enable=0’ on
the command-line prior to listing files that should not be processed this way. You can
reenable inplace editing by adding an ‘inplace::enable=1’ argument prior to files that
should be subject to inplace editing.

The inplace::filename variable serves to keep track of the current filename so as to
not invoke inplace::end() before processing the first file.

If any error occurs, the extension issues a fatal error to terminate processing immediately
without damaging the original file.

Here are some simple examples:

$ gawk -i inplace '{ gsub(/foo/, "bar") }; { print }' file1 file2 file3

To keep a backup copy of the original files, try this:

$ gawk -i inplace -v inplace::suffix=.bak '{ gsub(/foo/, "bar") }

> { print }' file1 file2 file3

Please note that, while the extension does attempt to preserve ownership and permis-
sions, it makes no attempt to copy the ACLs from the original file.

If the program dies prematurely, as might happen if an unhandled signal is received, a
temporary file may be left behind.

17.7.5 Character and Numeric values: ord() and chr()

The ordchr extension adds two functions, named ord() and chr(), as follows:

@load "ordchr"

This is how you load the extension.

438 GAWK: Effective AWK Programming

number = ord(string)

Return the numeric value of the first character in string.

char = chr(number)

Return a string whose first character is that represented by number.

These functions are inspired by the Pascal language functions of the same name. Here
is an example:

@load "ordchr"

...

printf("The numeric value of 'A' is %d\n", ord("A"))

printf("The string value of 65 is %s\n", chr(65))

17.7.6 Reading Directories

The readdir extension adds an input parser for directories. The usage is as follows:

@load "readdir"

When this extension is in use, instead of skipping directories named on the command
line (or with getline), they are read, with each entry returned as a record.

The record consists of three fields. The first two are the inode number and the file name,
separated by a forward slash character. On systems where the directory entry contains the
file type, the record has a third field (also separated by a slash), which is a single letter
indicating the type of the file. The letters and their corresponding file types are shown in
Table 17.4.

Letter File type
b Block device
c Character device
d Directory
f Regular file
l Symbolic link
p Named pipe (FIFO)
s Socket
u Anything else (unknown)

Table 17.4: File types returned by the readdir extension

On systems without the file type information, the third field is always ‘u’.

NOTE: On GNU/Linux systems, there are filesystems that don’t support the
d_type entry (see the readdir(3) manual page), and so the file type is always
‘u’. You can use the filefuncs extension to call stat() in order to get correct
type information.

By default, if a directory cannot be opened (due to permission problems, for example),
gawk will exit. As with regular files, this situation can be handled using a BEGINFILE rule
that checks ERRNO and prints an error or otherwise handles the problem.

Here is an example:

@load "readdir"

Chapter 17: Writing Extensions for gawk 439

...

BEGIN { FS = "/" }

{ print "file name is", $2 }

17.7.7 Reversing Output

The revoutput extension adds a simple output wrapper that reverses the characters in each
output line. Its main purpose is to show how to write an output wrapper, although it may
be mildly amusing for the unwary. Here is an example:

@load "revoutput"

BEGIN {

REVOUT = 1

print "don't panic" > "/dev/stdout"

}

The output from this program is ‘cinap t'nod’.

17.7.8 Two-Way I/O Example

The revtwoway extension adds a simple two-way processor that reverses the characters in
each line sent to it for reading back by the awk program. Its main purpose is to show how to
write a two-way processor, although it may also be mildly amusing. The following example
shows how to use it:

@load "revtwoway"

BEGIN {

cmd = "/magic/mirror"

print "don't panic" |& cmd

cmd |& getline result

print result

close(cmd)

}

The output from this program also is: ‘cinap t'nod’.

17.7.9 Dumping and Restoring an Array

The rwarray extension adds two functions, named writea() and reada(), as follows:

@load "rwarray"

This is how you load the extension.

ret = writea(file, array)

This function takes a string argument, which is the name of the file to which
to dump the array, and the array itself as the second argument. writea()

understands arrays of arrays. It returns one on success, or zero upon failure.

ret = reada(file, array)

reada() is the inverse of writea(); it reads the file named as its first argument,
filling in the array named as the second argument. It clears the array first. Here
too, the return value is one on success, or zero upon failure.

440 GAWK: Effective AWK Programming

The array created by reada() is identical to that written by writea() in the sense
that the contents are the same. However, due to implementation issues, the array traversal
order of the re-created array is likely to be different from that of the original array. As
array traversal order in awk is by default undefined, this is (technically) not a problem. If
you need to guarantee a particular traversal order, use the array sorting features in gawk to
do so (see Section 12.2 [Controlling Array Traversal and Array Sorting], page 318).

The file contains binary data. All integral values are written in network byte order.
However, double-precision floating-point values are written as native binary data. Thus,
arrays containing only string data can theoretically be dumped on systems with one byte
order and restored on systems with a different one, but this has not been tried.

Here is an example:

@load "rwarray"

...

ret = writea("arraydump.bin", array)

...

ret = reada("arraydump.bin", array)

17.7.10 Reading an Entire File

The readfile extension adds a single function named readfile(), and an input parser:

@load "readfile"

This is how you load the extension.

result = readfile("/some/path")

The argument is the name of the file to read. The return value is a string
containing the entire contents of the requested file. Upon error, the function
returns the empty string and sets ERRNO.

BEGIN { PROCINFO["readfile"] = 1 }

In addition, the extension adds an input parser that is activated if
PROCINFO["readfile"] exists. When activated, each input file is returned in
its entirety as $0. RT is set to the null string.

Here is an example:

@load "readfile"

...

contents = readfile("/path/to/file");

if (contents == "" && ERRNO != "") {

print("problem reading file", ERRNO) > "/dev/stderr"

...

}

17.7.11 Extension Time Functions

CAUTION: As gawk version 5.1.0, this extension is considered to be obsolete.
It is replaced by the timex extension in gawkextlib (see Section 17.8 [The
gawkextlib Project], page 441).

For version 5.1, no warning will be issued if this extension is used. For the next
major release, a warning will be issued. In the release after that this extension
will be removed from the distribution.

Chapter 17: Writing Extensions for gawk 441

The time extension adds two functions, named gettimeofday() and sleep(), as follows:

@load "time"

This is how you load the extension.

the_time = gettimeofday()

Return the time in seconds that has elapsed since 1970-01-01 UTC as a floating-
point value. If the time is unavailable on this platform, return −1 and set ERRNO.
The returned time should have sub-second precision, but the actual precision
may vary based on the platform. If the standard C gettimeofday() system
call is available on this platform, then it simply returns the value. Otherwise,
if on MS-Windows, it tries to use GetSystemTimeAsFileTime().

result = sleep(seconds)

Attempt to sleep for seconds seconds. If seconds is negative, or the attempt to
sleep fails, return −1 and set ERRNO. Otherwise, return zero after sleeping for
the indicated amount of time. Note that seconds may be a floating-point (non-
integral) value. Implementation details: depending on platform availability,
this function tries to use nanosleep() or select() to implement the delay.

17.7.12 API Tests

The testext extension exercises parts of the extension API that are not tested by the other
samples. The extension/testext.c file contains both the C code for the extension and
awk test code inside C comments that run the tests. The testing framework extracts the
awk code and runs the tests. See the source file for more information.

17.8 The gawkextlib Project

The gawkextlib project provides a number of gawk extensions, including one for processing
XML files. This is the evolution of the original xgawk (XML gawk) project.

There are a number of extensions. Some of the more interesting ones are:

• abort extension. It allows you to exit immediately from your awk program without
running the END rules.

• json extension. This serializes a multidimensional array into a JSON string, and can
deserialize a JSON string into a gawk array. This extension is interesting since it is
written in C++ instead of C.

• MPFR library extension. This provides access to a number of MPFR functions that
gawk’s native MPFR support does not.

• Select extension. It provides functionality based on the select() system call.

• XML parser extension, using the Expat XML parsing library

You can check out the code for the gawkextlib project using the Git distributed source
code control system. The command is as follows:

git clone git://git.code.sf.net/p/gawkextlib/code gawkextlib-code

You will need to have the RapidJson JSON parser library installed in order to build and
use the json extension.

You will need to have the Expat XML parser library installed in order to build and use
the XML extension.

https://sourceforge.net/projects/gawkextlib/
https://expat.sourceforge.net
https://git-scm.com
http://www.rapidjson.org
https://expat.sourceforge.net

442 GAWK: Effective AWK Programming

In addition, you must have the GNU Autotools installed (Autoconf, Automake, Libtool,
and GNU gettext).

The simple recipe for building and testing gawkextlib is as follows. First, build and
install gawk:

cd .../path/to/gawk/code

./configure --prefix=/tmp/newgawk Install in /tmp/newgawk for now
make && make check Build and check that all is OK
make install Install gawk

Next, go to https://sourceforge.net/projects/gawkextlib/files to download
gawkextlib and any extensions that you would like to build. The README file at that site
explains how to build the code. If you installed gawk in a non-standard location, you
will need to specify ./configure --with-gawk=/path/to/gawk to find it. You may need
to use the sudo utility to install both gawk and gawkextlib, depending upon how your
system works.

If you write an extension that you wish to share with other gawk users, consider doing
so through the gawkextlib project. See the project’s website for more information.

17.9 Summary

• You can write extensions (sometimes called plug-ins) for gawk in C or C++ using the
application programming interface (API) defined by the gawk developers.

• Extensions must have a license compatible with the GNU General Public License
(GPL), and they must assert that fact by declaring a variable named plugin_is_

GPL_compatible.

• Communication between gawk and an extension is two-way. gawk passes a struct to
the extension that contains various data fields and function pointers. The extension
can then call into gawk via the supplied function pointers to accomplish certain tasks.

• One of these tasks is to “register” the name and implementation of new awk-level
functions with gawk. The implementation takes the form of a C function pointer with
a defined signature. By convention, implementation functions are named do_XXXX()

for some awk-level function XXXX().

• The API is defined in a header file named gawkapi.h. You must include a number of
standard header files before including it in your source file.

• API function pointers are provided for the following kinds of operations:

• Allocating, reallocating, and releasing memory

• Registration functions (you may register extension functions, exit callbacks, a ver-
sion string, input parsers, output wrappers, and two-way processors)

• Printing fatal, nonfatal, warning, and “lint” warning messages

• Updating ERRNO, or unsetting it

• Accessing parameters, including converting an undefined parameter into an array

• Symbol table access (retrieving a global variable, creating one, or changing one)

• Creating and releasing cached values; this provides an efficient way to use values
for multiple variables and can be a big performance win

https://www.gnu.org/software/autoconf
https://www.gnu.org/software/automake
https://www.gnu.org/software/libtool
https://www.gnu.org/software/gettext
https://sourceforge.net/projects/gawkextlib/files

Chapter 17: Writing Extensions for gawk 443

• Manipulating arrays (retrieving, adding, deleting, and modifying elements; getting
the count of elements in an array; creating a new array; clearing an array; and
flattening an array for easy C-style looping over all its indices and elements)

• The API defines a number of standard data types for representing awk values, array
elements, and arrays.

• The API provides convenience functions for constructing values. It also provides mem-
ory management functions to ensure compatibility between memory allocated by gawk

and memory allocated by an extension.

• All memory passed from gawk to an extension must be treated as read-only by the
extension.

• All memory passed from an extension to gawk must come from the API’s memory
allocation functions. gawk takes responsibility for the memory and releases it when
appropriate.

• The API provides information about the running version of gawk so that an extension
can make sure it is compatible with the gawk that loaded it.

• It is easiest to start a new extension by copying the boilerplate code described in this
chapter. Macros in the gawkapi.h header file make this easier to do.

• The gawk distribution includes a number of small but useful sample extensions. The
gawkextlib project includes several more (larger) extensions. If you wish to write an
extension and contribute it to the community of gawk users, the gawkextlib project
is the place to do so.

17.10 Exercises

1. Add functions to implement system calls such as chown(), chmod(), and umask() to the
file operations extension presented in Section 17.6.2 [C Code for chdir() and stat()],
page 424.

2. Write an input parser that prints a prompt if the input is a from a “terminal” device.
You can use the isatty() function to tell if the input file is a terminal. (Hint: this
function is usually expensive to call; try to call it just once.) The content of the prompt
should come from a variable settable by awk-level code. You can write the prompt to
standard error. However, for best results, open a new file descriptor (or file pointer)
on /dev/tty and print the prompt there, in case standard error has been redirected.

Why is standard error a better choice than standard output for writing the prompt?
Which reading mechanism should you replace, the one to get a record, or the one to
read raw bytes?

3. Write a wrapper script that provides an interface similar to ‘sed -i’ for the “inplace”
extension presented in Section 17.7.4 [Enabling In-Place File Editing], page 436.

Part IV:

Appendices

Appendix A: The Evolution of the awk Language 447

Appendix A The Evolution of the awk Language

This book describes the GNU implementation of awk, which follows the POSIX specification.
Many longtime awk users learned awk programming with the original awk implementation in
Version 7 Unix. (This implementation was the basis for awk in Berkeley Unix, through 4.3-
Reno. Subsequent versions of Berkeley Unix, and, for a while, some systems derived from
4.4BSD-Lite, used various versions of gawk for their awk.) This chapter briefly describes
the evolution of the awk language, with cross-references to other parts of the book where
you can find more information.

A.1 Major Changes Between V7 and SVR3.1

The awk language evolved considerably between the release of Version 7 Unix (1978) and
the new version that was first made generally available in System V Release 3.1 (1987).
This section summarizes the changes, with cross-references to further details:

• The requirement for ‘;’ to separate rules on a line (see Section 1.6 [awk Statements
Versus Lines], page 28)

• User-defined functions and the return statement (see Section 9.2 [User-Defined Func-
tions], page 214)

• The delete statement (see Section 8.4 [The delete Statement], page 180)

• The do-while statement (see Section 7.4.3 [The do-while Statement], page 150)

• The built-in functions atan2(), cos(), sin(), rand(), and srand() (see Section 9.1.2
[Numeric Functions], page 188)

• The built-in functions gsub(), sub(), and match() (see Section 9.1.3 [String-
Manipulation Functions], page 189)

• The built-in functions close() and system() (see Section 9.1.4 [Input/Output Func-
tions], page 201)

• The ARGC, ARGV, FNR, RLENGTH, RSTART, and SUBSEP predefined variables (see
Section 7.5 [Predefined Variables], page 157)

• Assignable $0 (see Section 4.4 [Changing the Contents of a Field], page 67)

• The conditional expression using the ternary operator ‘?:’ (see Section 6.3.4 [Condi-
tional Expressions], page 135)

• The expression ‘indx in array’ outside of for statements (see Section 8.1.2 [Referring
to an Array Element], page 173)

• The exponentiation operator ‘^’ (see Section 6.2.1 [Arithmetic Operators], page 122)
and its assignment operator form ‘^=’ (see Section 6.2.3 [Assignment Expressions],
page 124)

• C-compatible operator precedence, which breaks some old awk programs (see Section 6.5
[Operator Precedence (How Operators Nest)], page 137)

• Regexps as the value of FS (see Section 4.5 [Specifying How Fields Are Separated],
page 69) and as the third argument to the split() function (see Section 9.1.3 [String-
Manipulation Functions], page 189), rather than using only the first character of FS

• Dynamic regexps as operands of the ‘~’ and ‘!~’ operators (see Section 3.6 [Using
Dynamic Regexps], page 55)

448 GAWK: Effective AWK Programming

• The escape sequences ‘\b’, ‘\f’, and ‘\r’ (see Section 3.2 [Escape Sequences], page 48)

• Redirection of input for the getline function (see Section 4.10 [Explicit Input with
getline], page 82)

• Multiple BEGIN and END rules (see Section 7.1.4 [The BEGIN and END Special Patterns],
page 144)

• Multidimensional arrays (see Section 8.5 [Multidimensional Arrays], page 182)

A.2 Changes Between SVR3.1 and SVR4

The System V Release 4 (1989) version of Unix awk added these features (some of which
originated in gawk):

• The ENVIRON array (see Section 7.5 [Predefined Variables], page 157)

• Multiple -f options on the command line (see Section 2.2 [Command-Line Options],
page 31)

• The -v option for assigning variables before program execution begins (see Section 2.2
[Command-Line Options], page 31)

• The -- signal for terminating command-line options

• The ‘\a’, ‘\v’, and ‘\x’ escape sequences (see Section 3.2 [Escape Sequences], page 48)

• A defined return value for the srand() built-in function (see Section 9.1.2 [Numeric
Functions], page 188)

• The toupper() and tolower() built-in string functions for case translation (see
Section 9.1.3 [String-Manipulation Functions], page 189)

• A cleaner specification for the ‘%c’ format-control letter in the printf function (see
Section 5.5.2 [Format-Control Letters], page 97)

• The ability to dynamically pass the field width and precision ("%*.*d") in the argument
list of printf and sprintf() (see Section 5.5.2 [Format-Control Letters], page 97)

• The use of regexp constants, such as /foo/, as expressions, where they are equivalent
to using the matching operator, as in ‘$0 ~ /foo/’ (see Section 6.1.2 [Using Regular
Expression Constants], page 115)

• Processing of escape sequences inside command-line variable assignments (see
Section 6.1.3.2 [Assigning Variables on the Command Line], page 118)

A.3 Changes Between SVR4 and POSIX awk

The POSIX Command Language and Utilities standard for awk (1992) introduced the fol-
lowing changes into the language:

• The use of -W for implementation-specific options (see Section 2.2 [Command-Line
Options], page 31)

• The use of CONVFMT for controlling the conversion of numbers to strings (see
Section 6.1.4 [Conversion of Strings and Numbers], page 119)

• The concept of a numeric string and tighter comparison rules to go with it (see
Section 6.3.2 [Variable Typing and Comparison Expressions], page 128)

• The use of predefined variables as function parameter names is forbidden (see
Section 9.2.1 [Function Definition Syntax], page 214)

Appendix A: The Evolution of the awk Language 449

• More complete documentation of many of the previously undocumented features of the
language

In 2012, a number of extensions that had been commonly available for many years were
finally added to POSIX. They are:

• The fflush() built-in function for flushing buffered output (see Section 9.1.4 [In-
put/Output Functions], page 201)

• The nextfile statement (see Section 7.4.9 [The nextfile Statement], page 155)

• The ability to delete all of an array at once with ‘delete array’ (see Section 8.4 [The
delete Statement], page 180)

See Section A.7 [Common Extensions Summary], page 459, for a list of common exten-
sions not permitted by the POSIX standard.

The 2018 POSIX standard can be found online at https://pubs.opengroup.org/

onlinepubs/9699919799/.

A.4 Extensions in Brian Kernighan’s awk

Brian Kernighan has made his version available via his home page (see Section B.5 [Other
Freely Available awk Implementations], page 480).

This section describes common extensions that originally appeared in his version of awk:

• The ‘**’ and ‘**=’ operators (see Section 6.2.1 [Arithmetic Operators], page 122, and
Section 6.2.3 [Assignment Expressions], page 124)

• The use of func as an abbreviation for function (see Section 9.2.1 [Function Definition
Syntax], page 214)

• The fflush() built-in function for flushing buffered output (see Section 9.1.4 [In-
put/Output Functions], page 201)

See Section A.7 [Common Extensions Summary], page 459, for a full list of the extensions
available in his awk.

A.5 Extensions in gawk Not in POSIX awk

The GNU implementation, gawk, adds a large number of features. They can all be dis-
abled with either the --traditional or --posix options (see Section 2.2 [Command-Line
Options], page 31).

A number of features have come and gone over the years. This section summarizes the
additional features over POSIX awk that are in the current version of gawk.

• Additional predefined variables:

− The ARGIND, BINMODE, ERRNO, FIELDWIDTHS, FPAT, IGNORECASE, LINT, PROCINFO,
RT, and TEXTDOMAIN variables (see Section 7.5 [Predefined Variables], page 157)

• Special files in I/O redirections:

− The /dev/stdin, /dev/stdout, /dev/stderr, and /dev/fd/N special file names
(see Section 5.8 [Special File names in gawk], page 105)

− The /inet, /inet4, and /inet6 special files for TCP/IP networking using ‘|&’ to
specify which version of the IP protocol to use (see Section 12.4 [Using gawk for
Network Programming], page 327)

https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/

450 GAWK: Effective AWK Programming

• Changes and/or additions to the language:

− The ‘\x’ escape sequence (see Section 3.2 [Escape Sequences], page 48)

− Full support for both POSIX and GNU regexps (see Chapter 3 [Regular Expres-
sions], page 47)

− The ability for FS and for the third argument to split() to be null strings (see
Section 4.5.3 [Making Each Character a Separate Field], page 71)

− The ability for RS to be a regexp (see Section 4.1 [How Input Is Split into Records],
page 61)

− The ability to use octal and hexadecimal constants in awk program source code
(see Section 6.1.1.2 [Octal and Hexadecimal Numbers], page 114)

− The ‘|&’ operator for two-way I/O to a coprocess (see Section 12.3 [Two-Way
Communications with Another Process], page 324)

− Indirect function calls (see Section 9.3 [Indirect Function Calls], page 224)

− Directories on the command line produce a warning and are skipped (see
Section 4.13 [Directories on the Command Line], page 91)

− Output with print and printf need not be fatal (see Section 5.10 [Enabling
Nonfatal Output], page 109)

• New keywords:

− The BEGINFILE and ENDFILE special patterns (see Section 7.1.5 [The BEGINFILE

and ENDFILE Special Patterns], page 145)

− The switch statement (see Section 7.4.5 [The switch Statement], page 151)

• Changes to standard awk functions:

− The optional second argument to close() that allows closing one end of a two-
way pipe to a coprocess (see Section 12.3 [Two-Way Communications with Another
Process], page 324)

− POSIX compliance for gsub() and sub() with --posix

− The length() function accepts an array argument and returns the number of
elements in the array (see Section 9.1.3 [String-Manipulation Functions], page 189)

− The optional third argument to the match() function for capturing text-matching
subexpressions within a regexp (see Section 9.1.3 [String-Manipulation Functions],
page 189)

− Positional specifiers in printf formats for making translations easier (see
Section 13.4.2 [Rearranging printf Arguments], page 340)

− The split() function’s additional optional fourth argument, which is an array
to hold the text of the field separators (see Section 9.1.3 [String-Manipulation
Functions], page 189)

• Additional functions only in gawk:

− The gensub(), patsplit(), and strtonum() functions for more powerful text
manipulation (see Section 9.1.3 [String-Manipulation Functions], page 189)

− The asort() and asorti() functions for sorting arrays (see Section 12.2 [Con-
trolling Array Traversal and Array Sorting], page 318)

Appendix A: The Evolution of the awk Language 451

− The mktime(), systime(), and strftime() functions for working with time-
stamps (see Section 9.1.5 [Time Functions], page 205)

− The and(), compl(), lshift(), or(), rshift(), and xor() functions for bit
manipulation (see Section 9.1.6 [Bit-Manipulation Functions], page 210)

− The isarray() function to check if a variable is an array or not (see Section 9.1.7
[Getting Type Information], page 213)

− The bindtextdomain(), dcgettext(), and dcngettext() functions for interna-
tionalization (see Section 13.3 [Internationalizing awk Programs], page 337)

• Changes and/or additions in the command-line options:

− The AWKPATH environment variable for specifying a path search for the -f

command-line option (see Section 2.2 [Command-Line Options], page 31)

− The AWKLIBPATH environment variable for specifying a path search for the -l

command-line option (see Section 2.2 [Command-Line Options], page 31)

− The -b, -c, -C, -d, -D, -e, -E, -g, -h, -i, -l, -L, -M, -n, -N, -o, -O, -p,
-P, -r, -s, -S, -t, and -V short options. Also, the ability to use GNU-style
long-named options that start with --, and the --assign, --bignum,
--characters-as-bytes, --copyright, --debug, --dump-variables, --exec,
--field-separator, --file, --gen-pot, --help, --include, --lint,
--lint-old, --load, --non-decimal-data, --optimize, --no-optimize,
--posix, --pretty-print, --profile, --re-interval, --sandbox, --source,
--traditional, --use-lc-numeric, and --version long options (see Section 2.2
[Command-Line Options], page 31).

• Support for the following obsolete systems was removed from the code and the docu-
mentation for gawk version 4.0:

− Amiga

− Atari

− BeOS

− Cray

− MIPS RiscOS

− MS-DOS with the Microsoft Compiler

− MS-Windows with the Microsoft Compiler

− NeXT

− SunOS 3.x, Sun 386 (Road Runner)

− Tandem (non-POSIX)

− Prestandard VAX C compiler for VAX/VMS

− GCC for VAX and Alpha has not been tested for a while.

• Support for the following obsolete system was removed from the code for gawk version
4.1:

− Ultrix

• Support for the following systems was removed from the code for gawk version 4.2:

− MirBSD

− GNU/Linux on Alpha

452 GAWK: Effective AWK Programming

A.6 History of gawk Features

This section describes the features in gawk over and above those in POSIX awk, in the order
they were added to gawk.

Version 2.10 of gawk introduced the following features:

• The AWKPATH environment variable for specifying a path search for the -f command-line
option (see Section 2.2 [Command-Line Options], page 31).

• The IGNORECASE variable and its effects (see Section 3.8 [Case Sensitivity in Matching],
page 58).

• The /dev/stdin, /dev/stdout, /dev/stderr and /dev/fd/N special file names (see
Section 5.8 [Special File names in gawk], page 105).

Version 2.13 of gawk introduced the following features:

• The FIELDWIDTHS variable and its effects (see Section 4.6 [Reading Fixed-Width Data],
page 74).

• The systime() and strftime() built-in functions for obtaining and printing time-
stamps (see Section 9.1.5 [Time Functions], page 205).

• Additional command-line options (see Section 2.2 [Command-Line Options], page 31):

− The -W lint option to provide error and portability checking for both the source
code and at runtime.

− The -W compat option to turn off the GNU extensions.

− The -W posix option for full POSIX compliance.

Version 2.14 of gawk introduced the following feature:

• The next file statement for skipping to the next data file (see Section 7.4.9 [The
nextfile Statement], page 155).

Version 2.15 of gawk introduced the following features:

• New variables (see Section 7.5 [Predefined Variables], page 157):

− ARGIND, which tracks the movement of FILENAME through ARGV.

− ERRNO, which contains the system error message when getline returns −1 or
close() fails.

• The /dev/pid, /dev/ppid, /dev/pgrpid, and /dev/user special file names. These
have since been removed.

• The ability to delete all of an array at once with ‘delete array’ (see Section 8.4 [The
delete Statement], page 180).

• Command-line option changes (see Section 2.2 [Command-Line Options], page 31):

− The ability to use GNU-style long-named options that start with --.

− The --source option for mixing command-line and library-file source code.

Version 3.0 of gawk introduced the following features:

• New or changed variables:

− IGNORECASE changed, now applying to string comparison as well as regexp opera-
tions (see Section 3.8 [Case Sensitivity in Matching], page 58).

Appendix A: The Evolution of the awk Language 453

− RT, which contains the input text that matched RS (see Section 4.1 [How Input Is
Split into Records], page 61).

• Full support for both POSIX and GNU regexps (see Chapter 3 [Regular Expressions],
page 47).

• The gensub() function for more powerful text manipulation (see Section 9.1.3 [String-
Manipulation Functions], page 189).

• The strftime() function acquired a default time format, allowing it to be called with
no arguments (see Section 9.1.5 [Time Functions], page 205).

• The ability for FS and for the third argument to split() to be null strings (see
Section 4.5.3 [Making Each Character a Separate Field], page 71).

• The ability for RS to be a regexp (see Section 4.1 [How Input Is Split into Records],
page 61).

• The next file statement became nextfile (see Section 7.4.9 [The nextfile State-
ment], page 155).

• The fflush() function from BWK awk (then at Bell Laboratories; see Section 9.1.4
[Input/Output Functions], page 201).

• New command-line options:

− The --lint-old option to warn about constructs that are not available in the
original Version 7 Unix version of awk (see Section A.1 [Major Changes Between
V7 and SVR3.1], page 447).

− The -m option from BWK awk. (Brian was still at Bell Laboratories at the time.)
This was later removed from both his awk and from gawk.

− The --re-interval option to provide interval expressions in regexps (see
Section 3.3 [Regular Expression Operators], page 50).

− The --traditional option was added as a better name for --compat (see
Section 2.2 [Command-Line Options], page 31).

• The use of GNU Autoconf to control the configuration process (see Section B.2.1 [Com-
piling gawk for Unix-Like Systems], page 469).

• Amiga support. This has since been removed.

Version 3.1 of gawk introduced the following features:

• New variables (see Section 7.5 [Predefined Variables], page 157):

− BINMODE, for non-POSIX systems, which allows binary I/O for input and/or output
files (see Section B.3.1.3 [Using gawk on PC Operating Systems], page 472).

− LINT, which dynamically controls lint warnings.

− PROCINFO, an array for providing process-related information.

− TEXTDOMAIN, for setting an application’s internationalization text domain (see
Chapter 13 [Internationalization with gawk], page 335).

• The ability to use octal and hexadecimal constants in awk program source code (see
Section 6.1.1.2 [Octal and Hexadecimal Numbers], page 114).

• The ‘|&’ operator for two-way I/O to a coprocess (see Section 12.3 [Two-Way Commu-
nications with Another Process], page 324).

454 GAWK: Effective AWK Programming

• The /inet special files for TCP/IP networking using ‘|&’ (see Section 12.4 [Using gawk
for Network Programming], page 327).

• The optional second argument to close() that allows closing one end of a two-way
pipe to a coprocess (see Section 12.3 [Two-Way Communications with Another Process],
page 324).

• The optional third argument to the match() function for capturing text-matching
subexpressions within a regexp (see Section 9.1.3 [String-Manipulation Functions],
page 189).

• Positional specifiers in printf formats for making translations easier (see Section 13.4.2
[Rearranging printf Arguments], page 340).

• A number of new built-in functions:

− The asort() and asorti() functions for sorting arrays (see Section 12.2 [Con-
trolling Array Traversal and Array Sorting], page 318).

− The bindtextdomain(), dcgettext() and dcngettext() functions for interna-
tionalization (see Section 13.3 [Internationalizing awk Programs], page 337).

− The extension() function and the ability to add new built-in functions dynami-
cally (see Chapter 17 [Writing Extensions for gawk], page 381).

− The mktime() function for creating timestamps (see Section 9.1.5 [Time Func-
tions], page 205).

− The and(), or(), xor(), compl(), lshift(), rshift(), and strtonum() func-
tions (see Section 9.1.6 [Bit-Manipulation Functions], page 210).

• The support for ‘next file’ as two words was removed completely (see Section 7.4.9
[The nextfile Statement], page 155).

• Additional command-line options (see Section 2.2 [Command-Line Options], page 31):

− The --dump-variables option to print a list of all global variables.

− The --exec option, for use in CGI scripts.

− The --gen-po command-line option and the use of a leading underscore to mark
strings that should be translated (see Section 13.4.1 [Extracting Marked Strings],
page 339).

− The --non-decimal-data option to allow non-decimal input data (see Section 12.1
[Allowing Nondecimal Input Data], page 317).

− The --profile option and pgawk, the profiling version of gawk, for producing
execution profiles of awk programs (see Section 12.5 [Profiling Your awk Programs],
page 329).

− The --use-lc-numeric option to force gawk to use the locale’s decimal point
for parsing input data (see Section 6.1.4 [Conversion of Strings and Numbers],
page 119).

• The use of GNU Automake to help in standardizing the configuration process (see
Section B.2.1 [Compiling gawk for Unix-Like Systems], page 469).

• The use of GNU gettext for gawk’s own message output (see Section 13.6 [gawk Can
Speak Your Language], page 343).

• BeOS support. This was later removed.

Appendix A: The Evolution of the awk Language 455

• Tandem support. This was later removed.

• The Atari port became officially unsupported and was later removed entirely.

• The source code changed to use ISO C standard-style function definitions.

• POSIX compliance for sub() and gsub() (see Section 9.1.3.1 [More about ‘\’ and ‘&’
with sub(), gsub(), and gensub()], page 198).

• The length() function was extended to accept an array argument and return the
number of elements in the array (see Section 9.1.3 [String-Manipulation Functions],
page 189).

• The strftime() function acquired a third argument to enable printing times as UTC
(see Section 9.1.5 [Time Functions], page 205).

Version 4.0 of gawk introduced the following features:

• Variable additions:

− FPAT, which allows you to specify a regexp that matches the fields, instead of
matching the field separator (see Section 4.7 [Defining Fields by Content], page 77).

− If PROCINFO["sorted_in"] exists, ‘for(iggy in foo)’ loops sort the indices be-
fore looping over them. The value of this element provides control over how the
indices are sorted before the loop traversal starts (see Section 8.1.6 [Using Prede-
fined Array Scanning Orders with gawk], page 176).

− PROCINFO["strftime"], which holds the default format for strftime() (see
Section 9.1.5 [Time Functions], page 205).

• The special files /dev/pid, /dev/ppid, /dev/pgrpid and /dev/user were removed.

• Support for IPv6 was added via the /inet6 special file. /inet4 forces IPv4 and /inet

chooses the system default, which is probably IPv4 (see Section 12.4 [Using gawk for
Network Programming], page 327).

• The use of ‘\s’ and ‘\S’ escape sequences in regular expressions (see Section 3.7 [gawk-
Specific Regexp Operators], page 56).

• Interval expressions became part of default regular expressions (see Section 3.3 [Regular
Expression Operators], page 50).

• POSIX character classes work even with --traditional (see Section 3.3 [Regular
Expression Operators], page 50).

• break and continue became invalid outside a loop, even with --traditional (see
Section 7.4.6 [The break Statement], page 152, and also see Section 7.4.7 [The continue
Statement], page 153).

• fflush(), nextfile, and ‘delete array’ are allowed if --posix or --traditional,
since they are all now part of POSIX.

• An optional third argument to asort() and asorti(), specifying how to sort (see
Section 9.1.3 [String-Manipulation Functions], page 189).

• The behavior of fflush() changed to match BWK awk and for POSIX; now both
‘fflush()’ and ‘fflush("")’ flush all open output redirections (see Section 9.1.4 [In-
put/Output Functions], page 201).

• The isarray() function which distinguishes if an item is an array or not, to make
it possible to traverse arrays of arrays (see Section 9.1.7 [Getting Type Information],
page 213).

456 GAWK: Effective AWK Programming

• The patsplit() function which gives the same capability as FPAT, for splitting (see
Section 9.1.3 [String-Manipulation Functions], page 189).

• An optional fourth argument to the split() function, which is an array to hold the
values of the separators (see Section 9.1.3 [String-Manipulation Functions], page 189).

• Arrays of arrays (see Section 8.6 [Arrays of Arrays], page 183).

• The BEGINFILE and ENDFILE special patterns (see Section 7.1.5 [The BEGINFILE and
ENDFILE Special Patterns], page 145).

• Indirect function calls (see Section 9.3 [Indirect Function Calls], page 224).

• switch / case are enabled by default (see Section 7.4.5 [The switch Statement],
page 151).

• Command-line option changes (see Section 2.2 [Command-Line Options], page 31):

− The -b and --characters-as-bytes options which prevent gawk from treating
input as a multibyte string.

− The redundant --compat, --copyleft, and --usage long options were removed.

− The --gen-po option was finally renamed to the correct --gen-pot.

− The --sandbox option which disables certain features.

− All long options acquired corresponding short options, for use in ‘#!’ scripts.

• Directories named on the command line now produce a warning, not a fatal error, unless
--posix or --traditional are used (see Section 4.13 [Directories on the Command
Line], page 91).

• The gawk internals were rewritten, bringing the dgawk debugger and possibly improved
performance (see Chapter 14 [Debugging awk Programs], page 345).

• Per the GNU Coding Standards, dynamic extensions must now define a global sym-
bol indicating that they are GPL-compatible (see Section 17.2 [Extension Licensing],
page 381).

• In POSIX mode, string comparisons use strcoll() / wcscoll() (see Section 6.3.2.3
[String Comparison Based on Locale Collating Order], page 133).

• The option for raw sockets was removed, since it was never implemented (see
Section 12.4 [Using gawk for Network Programming], page 327).

• Ranges of the form ‘[d-h]’ are treated as if they were in the C locale, no matter what
kind of regexp is being used, and even if --posix (see Section A.8 [Regexp Ranges and
Locales: A Long Sad Story], page 459).

• Support was removed for the following systems:

− Atari

− Amiga

− BeOS

− Cray

− MIPS RiscOS

− MS-DOS with the Microsoft Compiler

− MS-Windows with the Microsoft Compiler

− NeXT

Appendix A: The Evolution of the awk Language 457

− SunOS 3.x, Sun 386 (Road Runner)

− Tandem (non-POSIX)

− Prestandard VAX C compiler for VAX/VMS

Version 4.1 of gawk introduced the following features:

• Three new arrays: SYMTAB, FUNCTAB, and PROCINFO["identifiers"] (see Section 7.5.2
[Built-in Variables That Convey Information], page 159).

• The three executables gawk, pgawk, and dgawk, were merged into one, named just gawk.
As a result the command-line options changed.

• Command-line option changes (see Section 2.2 [Command-Line Options], page 31):

− The -D option invokes the debugger.

− The -i and --include options load awk library files.

− The -l and --load options load compiled dynamic extensions.

− The -M and --bignum options enable MPFR.

− The -o option only does pretty-printing.

− The -p option is used for profiling.

− The -R option was removed.

• Support for high precision arithmetic with MPFR (see Chapter 16 [Arithmetic and
Arbitrary-Precision Arithmetic with gawk], page 367).

• The and(), or() and xor() functions changed to allow any number of arguments, with
a minimum of two (see Section 9.1.6 [Bit-Manipulation Functions], page 210).

• The dynamic extension interface was completely redone (see Chapter 17 [Writing Ex-
tensions for gawk], page 381).

• Redirected getline became allowed inside BEGINFILE and ENDFILE (see Section 7.1.5
[The BEGINFILE and ENDFILE Special Patterns], page 145).

• The where command was added to the debugger (see Section 14.3.4 [Working with the
Stack], page 354).

• Support for Ultrix was removed.

Version 4.2 of gawk introduced the following changes:

• Changes to ENVIRON are reflected into gawk’s environment and that of programs that
it runs. See Section 7.5.2 [Built-in Variables That Convey Information], page 159.

• FIELDWIDTHS was enhanced to allow skipping characters before assigning a value to a
field (see Section 4.7 [Defining Fields by Content], page 77).

• The PROCINFO["argv"] array. See Section 7.5.2 [Built-in Variables That Convey In-
formation], page 159.

• The maximum number of hexadecimal digits in ‘\x’ escapes is now two. See Section 3.2
[Escape Sequences], page 48.

• Strongly typed regexp constants of the form ‘@/.../’ (see Section 6.1.2.2 [Strongly
Typed Regexp Constants], page 117).

• The bitwise functions changed, making negative arguments into a fatal error (see
Section 9.1.6 [Bit-Manipulation Functions], page 210).

458 GAWK: Effective AWK Programming

• The mktime() function now accepts an optional second argument (see Section 9.1.5
[Time Functions], page 205).

• The typeof() function (see Section 9.1.7 [Getting Type Information], page 213).

• Optimizations are enabled by default. Use -s / --no-optimize to disable optimiza-
tions.

• For many years, POSIX specified that default field splitting only allowed spaces and
tabs to separate fields, and this was how gawk behaved with --posix. As of 2013, the
standard restored historical behavior, and now default field splitting with --posix also
allows newlines to separate fields.

• Nonfatal output with print and printf. See Section 5.10 [Enabling Nonfatal Output],
page 109.

• Retryable I/O via PROCINFO[input-file, "RETRY"]; (see Section 4.12 [Retrying
Reads After Certain Input Errors], page 90).

• Changes to the pretty-printer (see Section 12.5 [Profiling Your awk Programs],
page 329):

− The --pretty-print option no longer runs the awk program too.

− Comments in the source program are preserved and placed into the output file.

− Explicit parentheses for expressions in the input are preserved in the generated
output.

• Improvements to the extension API (see Chapter 17 [Writing Extensions for gawk],
page 381):

− The get_file() function to access open redirections.

− The nonfatal() function for generating nonfatal error messages.

− Support for GMP and MPFR values.

− Input parsers can now override the default field parsing mechanism by specifying
explicit locations.

• Shell startup files are supplied with the distribution and installed by ‘make install’
(see Section B.2.2 [Shell Startup Files], page 470).

• The igawk program and its manual page are no longer installed when gawk is built.
See Section 11.3.9 [An Easy Way to Use Library Functions], page 304.

• Support for MirBSD was removed.

• Support for GNU/Linux on Alpha was removed.

Version 5.0 added the following features:

• The PROCINFO["platform"] array element, which allows you to write code that takes
the operating system / platform into account.

Version 5.1 was created to release gawk with a correct major version number for the API.
This was overlooked for version 5.0, unfortunately. It added the following features:

• The index for this manual was completely reworked.

• Support was added for MSYS2.

Appendix A: The Evolution of the awk Language 459

A.7 Common Extensions Summary

The following table summarizes the common extensions supported by gawk, Brian
Kernighan’s awk, and mawk, the three most widely used freely available versions of awk (see
Section B.5 [Other Freely Available awk Implementations], page 480).

Feature BWK awk mawk gawk Now standard
‘\x’ escape sequence X X X
FS as null string X X X
/dev/stdin special file X X X
/dev/stdout special file X X X
/dev/stderr special file X X X
delete without subscript X X X X
fflush() function X X X X
length() of an array X X X
nextfile statement X X X X
** and **= operators X X
func keyword X X
BINMODE variable X X
RS as regexp X X X
Time-related functions X X

A.8 Regexp Ranges and Locales: A Long Sad Story

This section describes the confusing history of ranges within regular expressions and their
interactions with locales, and how this affected different versions of gawk.

The original Unix tools that worked with regular expressions defined character ranges
(such as ‘[a-z]’) to match any character between the first character in the range and the
last character in the range, inclusive. Ordering was based on the numeric value of each
character in the machine’s native character set. Thus, on ASCII-based systems, ‘[a-z]’
matched all the lowercase letters, and only the lowercase letters, as the numeric values for
the letters from ‘a’ through ‘z’ were contiguous. (On an EBCDIC system, the range ‘[a-z]’
includes additional nonalphabetic characters as well.)

Almost all introductory Unix literature explained range expressions as working in this
fashion, and in particular, would teach that the “correct” way to match lowercase letters
was with ‘[a-z]’, and that ‘[A-Z]’ was the “correct” way to match uppercase letters. And
indeed, this was true.1

The 1992 POSIX standard introduced the idea of locales (see Section 6.6 [Where You
Are Makes a Difference], page 138). Because many locales include other letters besides
the plain 26 letters of the English alphabet, the POSIX standard added character classes
(see Section 3.4 [Using Bracket Expressions], page 53) as a way to match different kinds of
characters besides the traditional ones in the ASCII character set.

However, the standard changed the interpretation of range expressions. In the "C" and
"POSIX" locales, a range expression like ‘[a-dx-z]’ is still equivalent to ‘[abcdxyz]’, as in
ASCII. But outside those locales, the ordering was defined to be based on collation order.

1 And Life was good.

460 GAWK: Effective AWK Programming

What does that mean? In many locales, ‘A’ and ‘a’ are both less than ‘B’. In other words,
these locales sort characters in dictionary order, and ‘[a-dx-z]’ is typically not equivalent
to ‘[abcdxyz]’; instead, it might be equivalent to ‘[ABCXYabcdxyz]’, for example.

This point needs to be emphasized: much literature teaches that you should use ‘[a-z]’
to match a lowercase character. But on systems with non-ASCII locales, this also matches
all of the uppercase characters except ‘A’ or ‘Z’! This was a continuous cause of confusion,
even well into the twenty-first century.

To demonstrate these issues, the following example uses the sub() function, which does
text replacement (see Section 9.1.3 [String-Manipulation Functions], page 189). Here, the
intent is to remove trailing uppercase characters:

$ echo something1234abc | gawk-3.1.8 '{ sub("[A-Z]*$", ""); print }'

a something1234a

This output is unexpected, as the ‘bc’ at the end of ‘something1234abc’ should not normally
match ‘[A-Z]*’. This result is due to the locale setting (and thus you may not see it on
your system).

Similar considerations apply to other ranges. For example, ‘["-/]’ is perfectly valid in
ASCII, but is not valid in many Unicode locales, such as en_US.UTF-8.

Early versions of gawk used regexp matching code that was not locale-aware, so ranges
had their traditional interpretation.

When gawk switched to using locale-aware regexp matchers, the problems began; espe-
cially as both GNU/Linux and commercial Unix vendors started implementing non-ASCII
locales, and making them the default. Perhaps the most frequently asked question became
something like, “Why does ‘[A-Z]’ match lowercase letters?!?”

This situation existed for close to 10 years, if not more, and the gawk maintainer grew
weary of trying to explain that gawk was being nicely standards-compliant, and that the
issue was in the user’s locale. During the development of version 4.0, he modified gawk

to always treat ranges in the original, pre-POSIX fashion, unless --posix was used (see
Section 2.2 [Command-Line Options], page 31).2

Fortunately, shortly before the final release of gawk 4.0, the maintainer learned that the
2008 standard had changed the definition of ranges, such that outside the "C" and "POSIX"

locales, the meaning of range expressions was undefined.3

By using this lovely technical term, the standard gives license to implementers to im-
plement ranges in whatever way they choose. The gawk maintainer chose to apply the
pre-POSIX meaning both with the default regexp matching and when --traditional or
--posix are used. In all cases gawk remains POSIX-compliant.

A.9 Major Contributors to gawk

Always give credit where credit is due.
—Anonymous

2 And thus was born the Campaign for Rational Range Interpretation (or RRI). A number of GNU
tools have already implemented this change, or will soon. Thanks to Karl Berry for coining the phrase
“Rational Range Interpretation.”

3 See the standard and its rationale.

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_03_05
https://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xbd_chap09.html#tag_21_09_03_05

Appendix A: The Evolution of the awk Language 461

This section names the major contributors to gawk and/or this book, in approximate
chronological order:

• Dr. Alfred V. Aho, Dr. Peter J. Weinberger, and Dr. Brian W. Kernighan, all of Bell
Laboratories, designed and implemented Unix awk, from which gawk gets the majority
of its feature set.

• Paul Rubin did the initial design and implementation in 1986, and wrote the first draft
(around 40 pages) of this book.

• Jay Fenlason finished the initial implementation.

• Diane Close revised the first draft of this book, bringing it to around 90 pages.

• Richard Stallman helped finish the implementation and the initial draft of this book.
He is also the founder of the FSF and the GNU Project.

• John Woods contributed parts of the code (mostly fixes) in the initial version of gawk.

• In 1988, David Trueman took over primary maintenance of gawk, making it compatible
with “new” awk, and greatly improving its performance.

• Conrad Kwok, Scott Garfinkle, and Kent Williams did the initial ports to MS-DOS
with various versions of MSC.

• Pat Rankin provided the VMS port and its documentation.

• Hal Peterson provided help in porting gawk to Cray systems. (This is no longer sup-
ported.)

• Kai Uwe Rommel provided the initial port to OS/2 and its documentation.

• Michal Jaegermann provided the port to Atari systems and its documentation. (This
port is no longer supported.) He continues to provide portability checking, and has
done a lot of work to make sure gawk works on non-32-bit systems.

• Fred Fish provided the port to Amiga systems and its documentation. (With Fred’s
sad passing, this is no longer supported.)

• Scott Deifik formerly maintained the MS-DOS port using DJGPP.

• Eli Zaretskii currently maintains the MS-Windows port using MinGW.

• Juan Grigera provided a port to Windows32 systems. (This is no longer supported.)

• For many years, Dr. Darrel Hankerson acted as coordinator for the various ports to dif-
ferent PC platforms and created binary distributions for various PC operating systems.
He was also instrumental in keeping the documentation up to date for the various PC
platforms.

• Christos Zoulas provided the extension() built-in function for dynamically adding
new functions. (This was obsoleted at gawk 4.1.)

• Jürgen Kahrs contributed the initial version of the TCP/IP networking code and doc-
umentation, and motivated the inclusion of the ‘|&’ operator.

• Stephen Davies provided the initial port to Tandem systems and its documentation.
(However, this is no longer supported.) He was also instrumental in the initial work to
integrate the byte-code internals into the gawk code base. Additionally, he did most of
the work enabling the pretty-printer to preserve and output comments.

• Matthew Woehlke provided improvements for Tandem’s POSIX-compliant systems.

• Martin Brown provided the port to BeOS and its documentation. (This is no longer
supported.)

462 GAWK: Effective AWK Programming

• Arno Peters did the initial work to convert gawk to use GNU Automake and GNU
gettext.

• Alan J. Broder provided the initial version of the asort() function as well as the code
for the optional third argument to the match() function.

• Andreas Buening updated the gawk port for OS/2.

• Isamu Hasegawa, of IBM in Japan, contributed support for multibyte characters.

• Michael Benzinger contributed the initial code for switch statements.

• Patrick T.J. McPhee contributed the code for dynamic loading in Windows32 environ-
ments. (This is no longer supported.)

• Anders Wallin helped keep the VMS port going for several years.

• Assaf Gordon contributed the initial code to implement the --sandbox option.

• John Haque made the following contributions:

− The modifications to convert gawk into a byte-code interpreter, including the de-
bugger

− The addition of true arrays of arrays

− The additional modifications for support of arbitrary-precision arithmetic

− The initial text of Chapter 16 [Arithmetic and Arbitrary-Precision Arithmetic with
gawk], page 367,

− The work to merge the three versions of gawk into one, for the 4.1 release

− Improved array internals for arrays indexed by integers

− The improved array sorting features were also driven by John, together with Pat
Rankin

• Panos Papadopoulos contributed the original text for Section 2.7 [Including Other Files
into Your Program], page 43.

• Efraim Yawitz contributed the original text for Chapter 14 [Debugging awk Programs],
page 345.

• The development of the extension API first released with gawk 4.1 was driven primarily
by Arnold Robbins and Andrew Schorr, with notable contributions from the rest of the
development team.

• John Malmberg contributed significant improvements to the OpenVMS port and the
related documentation.

• Antonio Giovanni Colombo rewrote a number of examples in the early chapters that
were severely dated, for which I am incredibly grateful. He also provided and maintains
the Italian translation.

• Marco Curreli, together with Antonio Colombo, translated this book into Italian. It is
included in the gawk distribution.

• Juan Manuel Guerrero took over maintenance of the DJGPP port.

• “Jannick” provided support for MSYS2.

• Arnold Robbins has been working on gawk since 1988, at first helping David Trueman,
and as the primary maintainer since around 1994.

Appendix A: The Evolution of the awk Language 463

A.10 Summary

• The awk language has evolved over time. The first release was with V7 Unix, circa 1978.
In 1987, for System V Release 3.1, major additions, including user-defined functions,
were made to the language. Additional changes were made for System V Release 4,
in 1989. Since then, further minor changes have happened under the auspices of the
POSIX standard.

• Brian Kernighan’s awk provides a small number of extensions that are implemented in
common with other versions of awk.

• gawk provides a large number of extensions over POSIX awk. They can be disabled
with either the --traditional or --posix options.

• The interaction of POSIX locales and regexp matching in gawk has been confusing
over the years. Today, gawk implements Rational Range Interpretation, where ranges
of the form ‘[a-z]’ match only the characters numerically between ‘a’ through ‘z’ in
the machine’s native character set. Usually this is ASCII, but it can be EBCDIC on
IBM S/390 systems.

• Many people have contributed to gawk development over the years. We hope that the
list provided in this chapter is complete and gives the appropriate credit where credit
is due.

Appendix B: Installing gawk 465

Appendix B Installing gawk

This appendix provides instructions for installing gawk on the various platforms that are
supported by the developers. The primary developer supports GNU/Linux (and Unix),
whereas the other ports are contributed. See Section B.4 [Reporting Problems and Bugs],
page 478, for the email addresses of the people who maintain the respective ports.

B.1 The gawk Distribution

This section describes how to get the gawk distribution, how to extract it, and then what
is in the various files and subdirectories.

B.1.1 Getting the gawk Distribution

There are two ways to get GNU software:

• Copy it from someone else who already has it.

• Retrieve gawk from the Internet host ftp.gnu.org, in the directory /gnu/gawk. Both
anonymous ftp and http access are supported. If you have the wget program, you can
use a command like the following:

wget https://ftp.gnu.org/gnu/gawk/gawk-5.1.0.tar.gz

The GNU software archive is mirrored around the world. The up-to-date list of mirror
sites is available from the main FSF website. Try to use one of the mirrors; they will be
less busy, and you can usually find one closer to your site.

You may also retrieve the gawk source code from the official Git repository; for more
information see Section C.2.1 [Accessing The gawk Git Repository], page 483.

B.1.2 Extracting the Distribution

gawk is distributed as several tar files compressed with different compression programs:
gzip, bzip2, and xz. For simplicity, the rest of these instructions assume you are using the
one compressed with the GNU Gzip program (gzip).

Once you have the distribution (e.g., gawk-5.1.0.tar.gz), use gzip to expand the file
and then use tar to extract it. You can use the following pipeline to produce the gawk

distribution:

gzip -d -c gawk-5.1.0.tar.gz | tar -xvpf -

On a system with GNU tar, you can let tar do the decompression for you:

tar -xvpzf gawk-5.1.0.tar.gz

Extracting the archive creates a directory named gawk-5.1.0 in the current directory.

The distribution file name is of the form gawk-V.R.P.tar.gz. The V represents the
major version of gawk, the R represents the current release of version V, and the P represents
a patch level, meaning that minor bugs have been fixed in the release. The current patch
level is 0, but when retrieving distributions, you should get the version with the highest
version, release, and patch level. (Note, however, that patch levels greater than or equal to
60 denote “beta” or nonproduction software; you might not want to retrieve such a version
unless you don’t mind experimenting.) If you are not on a Unix or GNU/Linux system,
you need to make other arrangements for getting and extracting the gawk distribution. You
should consult a local expert.

https://www.gnu.org/order/ftp.html

466 GAWK: Effective AWK Programming

B.1.3 Contents of the gawk Distribution

The gawk distribution has a number of C source files, documentation files, subdirectories,
and files related to the configuration process (see Section B.2 [Compiling and Installing
gawk on Unix-Like Systems], page 469), as well as several subdirectories related to different
non-Unix operating systems:

Various ‘.c’, ‘.y’, and ‘.h’ files
These files contain the actual gawk source code.

support/*

C header and source files for routines that gawk uses, but that are not part
of its core functionality. For example, argument parsing, regular expression
matching, and random number generating routines are all kept here.

ABOUT-NLS

A file containing information about GNU gettext and translations.

AUTHORS A file with some information about the authorship of gawk. It exists only to
satisfy the pedants at the Free Software Foundation.

README

README_d/README.*

Descriptive files: README for gawk under Unix and the rest for the various
hardware and software combinations.

INSTALL A file providing an overview of the configuration and installation process.

ChangeLog

A detailed list of source code changes as bugs are fixed or improvements made.

ChangeLog.0

An older list of source code changes.

NEWS A list of changes to gawk since the last release or patch.

NEWS.0 An older list of changes to gawk.

COPYING The GNU General Public License.

POSIX.STD

A description of behaviors in the POSIX standard for awk that are left unde-
fined, or where gawk may not comply fully, as well as a list of things that the
POSIX standard should describe but does not.

doc/awkforai.txt

Pointers to the original draft of a short article describing why gawk is a good
language for artificial intelligence (AI) programming.

doc/bc_notes

A brief description of gawk’s “byte code” internals.

Appendix B: Installing gawk 467

doc/README.card

doc/ad.block

doc/awkcard.in

doc/cardfonts

doc/colors

doc/macros

doc/no.colors

doc/setter.outline

The troff source for a five-color awk reference card. A modern version of troff
such as GNU troff (groff) is needed to produce the color version. See the file
README.card for instructions if you have an older troff.

doc/gawk.1

The troff source for a manual page describing gawk. This is distributed for
the convenience of Unix users.

doc/gawktexi.in

doc/sidebar.awk

The Texinfo source file for this book. It should be processed by
doc/sidebar.awk before processing with texi2dvi or texi2pdf to produce
a printed document, and with makeinfo to produce an Info or HTML file.
The Makefile takes care of this processing and produces printable output via
texi2dvi or texi2pdf.

doc/gawk.texi

The file produced after processing gawktexi.in with sidebar.awk.

doc/gawk.info

The generated Info file for this book.

doc/gawkinet.texi

The Texinfo source file for TCP/IP Internetworking with gawk. It should be
processed with TEX (via texi2dvi or texi2pdf) to produce a printed document
and with makeinfo to produce an Info or HTML file.

doc/gawkinet.info

The generated Info file for TCP/IP Internetworking with gawk.

doc/igawk.1

The troff source for a manual page describing the igawk program presented in
Section 11.3.9 [An Easy Way to Use Library Functions], page 304. (Since gawk
can do its own @include processing, neither igawk nor igawk.1 are installed.)

doc/it/* Files for the Italian translation of this book, produced and contributed by
Antonio Colombo and Marco Curreli.

doc/Makefile.in

The input file used during the configuration process to generate the actual
Makefile for creating the documentation.

468 GAWK: Effective AWK Programming

Makefile.am

*/Makefile.am

Files used by the GNU Automake software for generating the Makefile.in files
used by Autoconf and configure.

Makefile.in

aclocal.m4

bisonfix.awk

config.guess

configh.in

configure.ac

configure

custom.h

depcomp

install-sh

missing_d/*

mkinstalldirs

m4/* These files and subdirectories are used when configuring and compiling gawk for
various Unix systems. Most of them are explained in Section B.2 [Compiling
and Installing gawk on Unix-Like Systems], page 469. The rest are there to
support the main infrastructure.

po/* The po library contains message translations.

awklib/extract.awk

awklib/Makefile.am

awklib/Makefile.in

awklib/eg/*

The awklib directory contains a copy of extract.awk (see Section 11.3.7 [Ex-
tracting Programs from Texinfo Source Files], page 299), which can be used to
extract the sample programs from the Texinfo source file for this book. It also
contains a Makefile.in file, which configure uses to generate a Makefile.
Makefile.am is used by GNU Automake to create Makefile.in. The library
functions from Chapter 10 [A Library of awk Functions], page 233, are included
as ready-to-use files in the gawk distribution. They are installed as part of
the installation process. The rest of the programs in this book are available in
appropriate subdirectories of awklib/eg.

extension/*

The source code, manual pages, and infrastructure files for the sample ex-
tensions included with gawk. See Chapter 17 [Writing Extensions for gawk],
page 381, for more information.

extras/* Additional non-essential files. Currently, this directory contains some shell
startup files to be installed in /etc/profile.d to aid in manipulating the
AWKPATH and AWKLIBPATH environment variables. See Section B.2.2 [Shell
Startup Files], page 470, for more information.

posix/* Files needed for building gawk on POSIX-compliant systems.

Appendix B: Installing gawk 469

pc/* Files needed for building gawk under MS-Windows (see Section B.3.1 [Installa-
tion on MS-Windows], page 472, for details).

vms/* Files needed for building gawk under Vax/VMS and OpenVMS (see
Section B.3.2 [Compiling and Installing gawk on Vax/VMS and OpenVMS],
page 474, for details).

test/* A test suite for gawk. You can use ‘make check’ from the top-level gawk di-
rectory to run your version of gawk against the test suite. If gawk successfully
passes ‘make check’, then you can be confident of a successful port.

B.2 Compiling and Installing gawk on Unix-Like Systems

Usually, you can compile and install gawk by typing only two commands. However, if you
use an unusual system, you may need to configure gawk for your system yourself.

B.2.1 Compiling gawk for Unix-Like Systems

The normal installation steps should work on all modern commercial Unix-derived systems,
GNU/Linux, BSD-based systems, and the Cygwin environment for MS-Windows.

After you have extracted the gawk distribution, cd to gawk-5.1.0. As with most GNU
software, you configure gawk for your system by running the configure program. This
program is a Bourne shell script that is generated automatically using GNU Autoconf. (The
Autoconf software is described fully in Autoconf—Generating Automatic Configuration
Scripts, which can be found online at the Free Software Foundation’s website.)

To configure gawk, simply run configure:

sh ./configure

This produces a Makefile and config.h tailored to your system. The config.h file
describes various facts about your system. You might want to edit the Makefile to change
the CFLAGS variable, which controls the command-line options that are passed to the C
compiler (such as optimization levels or compiling for debugging).

Alternatively, you can add your own values for most make variables on the command
line, such as CC and CFLAGS, when running configure:

CC=cc CFLAGS=-g sh ./configure

See the file INSTALL in the gawk distribution for all the details.

After you have run configure and possibly edited the Makefile, type:

make

Shortly thereafter, you should have an executable version of gawk. That’s all there is to it!
To verify that gawk is working properly, run ‘make check’. All of the tests should succeed.
If these steps do not work, or if any of the tests fail, check the files in the README_d directory
to see if you’ve found a known problem. If the failure is not described there, send in a bug
report (see Section B.4 [Reporting Problems and Bugs], page 478).

Of course, once you’ve built gawk, it is likely that you will wish to install it. To do so,
you need to run the command ‘make install’, as a user with the appropriate permissions.
How to do this varies by system, but on many systems you can use the sudo command to
do so. The command then becomes ‘sudo make install’. It is likely that you will be asked
for your password, and you will have to have been set up previously as a user who is allowed
to run the sudo command.

https://www.gnu.org/software/autoconf/manual/index.html

470 GAWK: Effective AWK Programming

B.2.2 Shell Startup Files

The distribution contains shell startup files gawk.sh and gawk.csh, containing functions
to aid in manipulating the AWKPATH and AWKLIBPATH environment variables. On a Fedora
GNU/Linux system, these files should be installed in /etc/profile.d; on other platforms,
the appropriate location may be different.

gawkpath_default

Reset the AWKPATH environment variable to its default value.

gawkpath_prepend

Add the argument to the front of the AWKPATH environment variable.

gawkpath_append

Add the argument to the end of the AWKPATH environment variable.

gawklibpath_default

Reset the AWKLIBPATH environment variable to its default value.

gawklibpath_prepend

Add the argument to the front of the AWKLIBPATH environment variable.

gawklibpath_append

Add the argument to the end of the AWKLIBPATH environment variable.

B.2.3 Additional Configuration Options

There are several additional options you may use on the configure command line when
compiling gawk from scratch, including:

--disable-extensions

Disable the extension mechanism within gawk. With this option, it is not
possible to use dynamic extensions. This also disables configuring and building
the sample extensions in the extension directory.

This option may be useful for cross-compiling. The default action is to dynam-
ically check if the extensions can be configured and compiled.

--disable-lint

Disable all lint checking within gawk. The --lint and --lint-old options
(see Section 2.2 [Command-Line Options], page 31) are accepted, but silently
do nothing. Similarly, setting the LINT variable (see Section 7.5.1 [Built-in Vari-
ables That Control awk], page 157) has no effect on the running awk program.

When used with the GNU Compiler Collection’s (GCC’s) automatic dead-code-
elimination, this option cuts almost 23K bytes off the size of the gawk executable
on GNU/Linux x86 64 systems. Results on other systems and with other com-
pilers are likely to vary. Using this option may bring you some slight perfor-
mance improvement.

CAUTION: Using this option will cause some of the tests in the
test suite to fail. This option may be removed at a later date.

--disable-mpfr

Skip checking for the MPFR and GMP libraries. This is useful mainly for the
developers, to make sure nothing breaks if MPFR support is not available.

Appendix B: Installing gawk 471

--disable-nls

Disable all message-translation facilities. This is usually not desirable, but it
may bring you some slight performance improvement.

--enable-versioned-extension-dir

Use a versioned directory for extensions. The directory name will include the
major and minor API versions in it. This makes it possible to keep extensions
for different API versions on the same system without their conflicting with one
another.

Use the command ‘./configure --help’ to see the full list of options supplied by
configure.

B.2.4 The Configuration Process

This section is of interest only if you know something about using the C language and
Unix-like operating systems.

The source code for gawk generally attempts to adhere to formal standards wherever
possible. This means that gawk uses library routines that are specified by the ISO C
standard and by the POSIX operating system interface standard. The gawk source code
requires using an ISO C compiler (the 1990 standard).

Many Unix systems do not support all of either the ISO or the POSIX standards. The
missing_d subdirectory in the gawk distribution contains replacement versions of those
functions that are most likely to be missing.

The config.h file that configure creates contains definitions that describe features of
the particular operating system where you are attempting to compile gawk. The three things
described by this file are: what header files are available, so that they can be correctly in-
cluded, what (supposedly) standard functions are actually available in your C libraries, and
various miscellaneous facts about your operating system. For example, there may not be an
st_blksize element in the stat structure. In this case, ‘HAVE_STRUCT_STAT_ST_BLKSIZE’
is undefined.

It is possible for your C compiler to lie to configure. It may do so by not exiting with
an error when a library function is not available. To get around this, edit the custom.h

file. Use an ‘#ifdef’ that is appropriate for your system, and either #define any constants
that configure should have defined but didn’t, or #undef any constants that configure
defined and should not have. The custom.h file is automatically included by the config.h
file.

It is also possible that the configure program generated by Autoconf will not work on
your system in some other fashion. If you do have a problem, the configure.ac file is
the input for Autoconf. You may be able to change this file and generate a new version
of configure that works on your system (see Section B.4 [Reporting Problems and Bugs],
page 478, for information on how to report problems in configuring gawk). The same
mechanism may be used to send in updates to configure.ac and/or custom.h.

B.3 Installation on Other Operating Systems

This section describes how to install gawk on various non-Unix systems.

472 GAWK: Effective AWK Programming

B.3.1 Installation on MS-Windows

This section covers installation and usage of gawk on Intel architecture machines running any
version of MS-Windows. In this section, the term “Windows32” refers to any of Microsoft
Windows 95/98/ME/NT/2000/XP/Vista/7/8/10.

See also the README_d/README.pc file in the distribution.

B.3.1.1 Installing a Prepared Distribution for MS-Windows
Systems

The only supported binary distribution for MS-Windows systems is that provided by Eli
Zaretskii’s “ezwinports” project. Install the compiled gawk from there.

B.3.1.2 Compiling gawk for PC Operating Systems

gawk can be compiled for Windows32 using MinGW (Windows32). The file README_

d/README.pc in the gawk distribution contains additional notes, and pc/Makefile contains
important information on compilation options.

To build gawk for Windows32, copy the files in the pc directory (except for ChangeLog)
to the directory with the rest of the gawk sources, then invoke make with the appropriate
target name as an argument to build gawk. The Makefile copied from the pc directory
contains a configuration section with comments and may need to be edited in order to work
with your make utility.

The Makefile supports a number of targets for building various MS-DOS and Win-
dows32 versions. A list of targets is printed if the make command is given without a target.
As an example, to build a native MS-Windows binary of gawk using the MinGW tools, type
‘make mingw32’.

B.3.1.3 Using gawk on PC Operating Systems

Information in this section applies to the MinGW and DJGPP ports of gawk. See
Section B.3.1.4 [Using gawk In The Cygwin Environment], page 473, for information about
the Cygwin port.

Under MS-Windows, the MinGW environment supports both the ‘|&’ operator and
TCP/IP networking (see Section 12.4 [Using gawk for Network Programming], page 327).
The DJGPP environment does not support ‘|&’.

The MS-Windows version of gawk searches for program files as described in Section 2.5.1
[The AWKPATH Environment Variable], page 39. However, semicolons (rather than colons)
separate elements in the AWKPATH variable. If AWKPATH is not set or is empty, then the
default search path is ‘.;c:/lib/awk;c:/gnu/lib/awk’.

Under MS-Windows, gawk (and many other text programs) silently translates end-of-
line ‘\r\n’ to ‘\n’ on input and ‘\n’ to ‘\r\n’ on output. A special BINMODE variable (c.e.)
allows control over these translations and is interpreted as follows:

• If BINMODE is "r" or one, then binary mode is set on read (i.e., no translations on
reads).

• If BINMODE is "w" or two, then binary mode is set on write (i.e., no translations on
writes).

• If BINMODE is "rw" or "wr" or three, binary mode is set for both read and write.

https://sourceforge.net/projects/ezwinports/

Appendix B: Installing gawk 473

• BINMODE=non-null-string is the same as ‘BINMODE=3’ (i.e., no translations on reads
or writes). However, gawk issues a warning message if the string is not one of "rw" or
"wr".

The modes for standard input and standard output are set one time only (after the command
line is read, but before processing any of the awk program). Setting BINMODE for standard
input or standard output is accomplished by using an appropriate ‘-v BINMODE=N’ option
on the command line. BINMODE is set at the time a file or pipe is opened and cannot be
changed midstream.

On POSIX-compatible systems, this variable’s value has no effect. Thus, if you think
your program will run on multiple different systems and that you may need to use BINMODE,
you should simply set it (in the program or on the command line) unconditionally, and not
worry about the operating system on which your program is running.

The name BINMODE was chosen to match mawk (see Section B.5 [Other Freely Available
awk Implementations], page 480). mawk and gawk handle BINMODE similarly; however, mawk
adds a ‘-W BINMODE=N’ option and an environment variable that can set BINMODE, RS, and
ORS. The files binmode[1-3].awk (under gnu/lib/awk in some of the prepared binary
distributions) have been chosen to match mawk’s ‘-W BINMODE=N’ option. These can be
changed or discarded; in particular, the setting of RS giving the fewest “surprises” is open
to debate. mawk uses ‘RS = "\r\n"’ if binary mode is set on read, which is appropriate for
files with the MS-DOS-style end-of-line.

To illustrate, the following examples set binary mode on writes for standard output and
other files, and set ORS as the “usual” MS-DOS-style end-of-line:

gawk -v BINMODE=2 -v ORS="\r\n" ...

or:

gawk -v BINMODE=w -f binmode2.awk ...

These give the same result as the ‘-W BINMODE=2’ option in mawk. The following changes the
record separator to "\r\n" and sets binary mode on reads, but does not affect the mode
on standard input:

gawk -v RS="\r\n" -e "BEGIN { BINMODE = 1 }" ...

or:

gawk -f binmode1.awk ...

With proper quoting, in the first example the setting of RS can be moved into the BEGIN

rule.

B.3.1.4 Using gawk In The Cygwin Environment

gawk can be built and used “out of the box” under MS-Windows if you are using the
Cygwin environment. This environment provides an excellent simulation of GNU/Linux,
using Bash, GCC, GNU Make, and other GNU programs. Compilation and installation for
Cygwin is the same as for a Unix system:

tar -xvpzf gawk-5.1.0.tar.gz

cd gawk-5.1.0

./configure

make && make check

http://www.cygwin.com

474 GAWK: Effective AWK Programming

When compared to GNU/Linux on the same system, the ‘configure’ step on Cygwin
takes considerably longer. However, it does finish, and then the ‘make’ proceeds as usual.

You may also install gawk using the regular Cygwin installer. In general Cygwin supplies
the latest released version.

Recent versions of Cygwin open all files in binary mode. This means that you should
use ‘RS = "\r?\n"’ in order to be able to handle standard MS-Windows text files with
carriage-return plus line-feed line endings.

The Cygwin environment supports both the ‘|&’ operator and TCP/IP networking (see
Section 12.4 [Using gawk for Network Programming], page 327).

B.3.1.5 Using gawk In The MSYS Environment

In the MSYS environment under MS-Windows, gawk automatically uses binary mode for
reading and writing files. Thus, there is no need to use the BINMODE variable.

This can cause problems with other Unix-like components that have been ported to
MS-Windows that expect gawk to do automatic translation of "\r\n", because it won’t.

Under MSYS2, compilation using the standard ‘./configure && make’ recipe works “out
of the box.”

B.3.2 Compiling and Installing gawk on Vax/VMS and OpenVMS

This subsection describes how to compile and install gawk under VMS. The older designation
“VMS” is used throughout to refer to OpenVMS.

B.3.2.1 Compiling gawk on VMS

To compile gawk under VMS, there is a DCL command procedure that issues all the necessary
CC and LINK commands. There is also a Makefile for use with the MMS and MMK utilities.
From the source directory, use either:

$ @[.vms]vmsbuild.com

or:

$ MMS/DESCRIPTION=[.vms]descrip.mms gawk

or:

$ MMK/DESCRIPTION=[.vms]descrip.mms gawk

MMK is an open source, free, near-clone of MMS and can better handle ODS-5 volumes
with upper- and lowercase file names. MMK is available from https://github.com/

endlesssoftware/mmk.

With ODS-5 volumes and extended parsing enabled, the case of the target parameter
may need to be exact.

gawk has been tested under VAX/VMS 7.3 and Alpha/VMS 7.3-1 using Compaq C V6.4,
and under Alpha/VMS 7.3, Alpha/VMS 7.3-2, and IA64/VMS 8.3. The most recent builds
used HP C V7.3 on Alpha VMS 8.3 and both Alpha and IA64 VMS 8.4 used HP C 7.3.1

See Section B.3.2.5 [The VMS GNV Project], page 478, for information on building gawk
as a PCSI kit that is compatible with the GNV product.

1 The IA64 architecture is also known as “Itanium.”

https://github.com/endlesssoftware/mmk
https://github.com/endlesssoftware/mmk

Appendix B: Installing gawk 475

B.3.2.2 Compiling gawk Dynamic Extensions on VMS

The extensions that have been ported to VMS can be built using one of the following
commands:

$ MMS/DESCRIPTION=[.vms]descrip.mms extensions

or:

$ MMK/DESCRIPTION=[.vms]descrip.mms extensions

gawk uses AWKLIBPATH as either an environment variable or a logical name to find the
dynamic extensions.

Dynamic extensions need to be compiled with the same compiler options for floating-
point, pointer size, and symbol name handling as were used to compile gawk itself. Alpha
and Itanium should use IEEE floating point. The pointer size is 32 bits, and the symbol
name handling should be exact case with CRC shortening for symbols longer than 32 bits.

For Alpha and Itanium:

/name=(as_is,short)

/float=ieee/ieee_mode=denorm_results

For VAX:

/name=(as_is,short)

Compile-time macros need to be defined before the first VMS-supplied header file is
included, as follows:

#if (__CRTL_VER >= 70200000) && !defined (__VAX)

#define _LARGEFILE 1

#endif

#ifndef __VAX

#ifdef __CRTL_VER

#if __CRTL_VER >= 80200000

#define _USE_STD_STAT 1

#endif

#endif

#endif

If you are writing your own extensions to run on VMS, you must supply these definitions
yourself. The config.h file created when building gawk on VMS does this for you; if instead
you use that file or a similar one, then you must remember to include it before any VMS-
supplied header files.

B.3.2.3 Installing gawk on VMS

To use gawk, all you need is a “foreign” command, which is a DCL symbol whose value begins
with a dollar sign. For example:

$ GAWK :== $disk1:[gnubin]gawk

Substitute the actual location of gawk.exe for ‘$disk1:[gnubin]’. The symbol should be
placed in the login.com of any user who wants to run gawk, so that it is defined every time
the user logs on. Alternatively, the symbol may be placed in the system-wide sylogin.com
procedure, which allows all users to run gawk.

476 GAWK: Effective AWK Programming

If your gawk was installed by a PCSI kit into the GNV$GNU: directory tree, the program
will be known as GNV$GNU:[bin]gnv$gawk.exe and the help file will be GNV$GNU:[vms_

help]gawk.hlp.

The PCSI kit also installs a GNV$GNU:[vms_bin]gawk_verb.cld file that can be used to
add gawk and awk as DCL commands.

For just the current process you can use:

$ set command gnv$gnu:[vms_bin]gawk_verb.cld

Or the system manager can use GNV$GNU:[vms_bin]gawk_verb.cld to add the gawk

and awk to the system-wide ‘DCLTABLES’.

The DCL syntax is documented in the gawk.hlp file.

Optionally, the gawk.hlp entry can be loaded into a VMS help library:

$ LIBRARY/HELP sys$help:helplib [.vms]gawk.hlp

(You may want to substitute a site-specific help library rather than the standard VMS
library ‘HELPLIB’.) After loading the help text, the command:

$ HELP GAWK

provides information about both the gawk implementation and the awk programming lan-
guage.

The logical name ‘AWK_LIBRARY’ can designate a default location for awk program files.
For the -f option, if the specified file name has no device or directory path information in
it, gawk looks in the current directory first, then in the directory specified by the translation
of ‘AWK_LIBRARY’ if the file is not found. If, after searching in both directories, the file still
is not found, gawk appends the suffix ‘.awk’ to the file name and retries the file search. If
‘AWK_LIBRARY’ has no definition, a default value of ‘SYS$LIBRARY:’ is used for it.

B.3.2.4 Running gawk on VMS

Command-line parsing and quoting conventions are significantly different on VMS, so exam-
ples in this book or from other sources often need minor changes. They are minor though,
and all awk programs should run correctly.

Here are a couple of trivial tests:

$ gawk -- "BEGIN {print ""Hello, World!""}"

$ gawk -"W" version

! could also be -"W version" or "-W version"

Note that uppercase and mixed-case text must be quoted.

The VMS port of gawk includes a DCL-style interface in addition to the original shell-style
interface (see the help entry for details). One side effect of dual command-line parsing is
that if there is only a single parameter (as in the quoted string program), the command
becomes ambiguous. To work around this, the normally optional -- flag is required to force
Unix-style parsing rather than DCL parsing. If any other dash-type options (or multiple
parameters such as data files to process) are present, there is no ambiguity and -- can be
omitted.

The exit value is a Unix-style value and is encoded into a VMS exit status value when
the program exits.

Appendix B: Installing gawk 477

The VMS severity bits will be set based on the exit value. A failure is indicated by
1, and VMS sets the ERROR status. A fatal error is indicated by 2, and VMS sets the
FATAL status. All other values will have the SUCCESS status. The exit value is encoded to
comply with VMS coding standards and will have the C_FACILITY_NO of 0x350000 with the
constant 0xA000 added to the number shifted over by 3 bits to make room for the severity
codes.

To extract the actual gawk exit code from the VMS status, use:

unix_status = (vms_status .and. %x7f8) / 8

A C program that uses exec() to call gawk will get the original Unix-style exit value.

Older versions of gawk for VMS treated a Unix exit code 0 as 1, a failure as 2, a fatal
error as 4, and passed all the other numbers through. This violated the VMS exit status
coding requirements.

VAX/VMS floating point uses unbiased rounding. See Section 10.2.3 [Rounding Num-
bers], page 238.

VMS reports time values in GMT unless one of the SYS$TIMEZONE_RULE or TZ logical
names is set. Older versions of VMS, such as VAX/VMS 7.3, do not set these logical names.

The default search path, when looking for awk program files specified by the -f option,
is "SYS$DISK:[],AWK_LIBRARY:". The logical name AWKPATH can be used to override this
default. The format of AWKPATH is a comma-separated list of directory specifications. When
defining it, the value should be quoted so that it retains a single translation and not a
multitranslation RMS searchlist.

This restriction also applies to running gawk under GNV, as redirection is always to a
DCL command.

If you are redirecting data to a VMS command or utility, the current implementation
requires that setting up a VMS foreign command that runs a command file before invoking
gawk. (This restriction may be removed in a future release of gawk on VMS.)

Without this command file, the input data will also appear prepended to the output
data.

This also allows simulating POSIX commands that are not found on VMS or the use of
GNV utilities.

The example below is for gawk redirecting data to the VMS sort command.

$ sort = "@device:[dir]vms_gawk_sort.com"

The command file needs to be of the format in the example below.

The first line inhibits the passed input data from also showing up in the output. It must
be in the format in the example.

The next line creates a foreign command that overrides the outer foreign command which
prevents an infinite recursion of command files.

The next to the last command redirects sys$input to be sys$command, in order to pick
up the data that is being redirected to the command.

The last line runs the actual command. It must be the last command as the data
redirected from gawk will be read when the command file ends.

$!'f$verify(0,0)'

$ sort := sort

478 GAWK: Effective AWK Programming

$ define/user sys$input sys$command:

$ sort sys$input: sys$output:

B.3.2.5 The VMS GNV Project

The VMS GNV package provides a build environment similar to POSIX with ports of a
collection of open source tools. The gawk found in the GNV base kit is an older port.
Currently, the GNV project is being reorganized to supply individual PCSI packages for
each component. See https://sourceforge.net/p/gnv/wiki/InstallingGNVPackages/.

The normal build procedure for gawk produces a program that is suitable for use with
GNV.

The file vms/gawk_build_steps.txt in the distribution documents the procedure for
building a VMS PCSI kit that is compatible with GNV.

B.3.2.6 Some VMS Systems Have An Old Version of gawk

Some versions of VMS have an old version of gawk. To access it, define a symbol, as follows:

$ gawk :== syscommon:[syshlp.examples.tcpip.snmp]gawk.exe

This is apparently version 2.15.6, which is extremely old. We recommend compiling and
using the current version.

B.4 Reporting Problems and Bugs

There is nothing more dangerous than a bored archaeologist.
—Douglas Adams, The Hitchhiker’s Guide to the Galaxy

If you have problems with gawk or think that you have found a bug, report it to the
developers; we cannot promise to do anything, but we might well want to fix it.

B.4.1 Submitting Bug Reports

Before reporting a bug, make sure you have really found a genuine bug. First, verify that
you have the latest version of gawk. Many bugs (usually subtle ones) are fixed at each
release, and if yours is out of date, the problem may already have been solved.

Second, please see if setting the environment variable LC_ALL to LC_ALL=C causes things
to behave as you expect. If so, it’s a locale issue, and may or may not really be a bug.

Third, carefully reread the documentation and see if it says you can do what you’re
trying to do. If it’s not clear whether you should be able to do something or not, report
that too; it’s a bug in the documentation!

Finally, before reporting a bug or trying to fix it yourself, try to isolate it to the smallest
possible awk program and input data file that reproduce the problem. Then send us the
program and data file, some idea of what kind of Unix system you’re using, the compiler
you used to compile gawk, and the exact results gawk gave you. Also say what you expected
to occur; this helps us decide whether the problem is really in the documentation.

Make sure to include the version number of gawk you are using. You can get this
information with the command ‘gawk --version’.

Once you have a precise problem description, send email to bug-gawk@gnu.org.

The gawk maintainers subscribe to this address, and thus they will receive your bug
report. Although you can send mail to the maintainers directly, the bug reporting address

https://sourceforge.net/p/gnv/wiki/InstallingGNVPackages/
mailto:bug-gawk@gnu.org

Appendix B: Installing gawk 479

is preferred because the email list is archived at the GNU Project. All email must be
in English. This is the only language understood in common by all the maintainers. In
addition, please be sure to send all mail in plain text, not (or not exclusively) in HTML.

NOTE: Many distributions of GNU/Linux and the various BSD-based oper-
ating systems have their own bug reporting systems. If you report a bug us-
ing your distribution’s bug reporting system, you should also send a copy to
bug-gawk@gnu.org.

This is for two reasons. First, although some distributions forward bug reports
“upstream” to the GNU mailing list, many don’t, so there is a good chance
that the gawk maintainers won’t even see the bug report! Second, mail to the
GNU list is archived, and having everything at the GNU Project keeps things
self-contained and not dependent on other organizations.

Non-bug suggestions are always welcome as well. If you have questions about things
that are unclear in the documentation or are just obscure features, ask on the bug list; we
will try to help you out if we can.

Please note: We ask that you follow the GNU Kind Communication Guidelines in your
correspondence on the list (as well as off of it).

B.4.2 Please Don’t Post Bug Reports to USENET

I gave up on Usenet a couple of years ago and haven’t really looked back. It’s
like sports talk radio—you feel smarter for not having read it.

—Chet Ramey

Please do not try to report bugs in gawk by posting to the Usenet/Internet newsgroup
comp.lang.awk. Although some of the gawk developers occasionally read this news group,
the primary gawk maintainer no longer does. Thus it’s virtually guaranteed that he will not
see your posting.

Similarly, posting bug reports or questions in web forums (such as Stack Overflow) may
get you an answer, but it won’t be from the gawk maintainers, who do not spend their time
in web forums. The steps described here are the only officially recognized way for reporting
bugs. Really.

B.4.3 Reporting Problems with Non-Unix Ports

If you find bugs in one of the non-Unix ports of gawk, send an email to the bug list, with a
copy to the person who maintains that port. The maintainers are named in the following
list, as well as in the README file in the gawk distribution. Information in the README file
should be considered authoritative if it conflicts with this book.

The people maintaining the various gawk ports are:

Unix and POSIX systems Arnold Robbins, arnold@skeeve.com

MS-DOS with DJGPP Juan Manuel Guerrero, juan.guerrero@gmx.de

MS-Windows with MinGW Eli Zaretskii, eliz@gnu.org

OS/2 Andreas Buening, andreas.buening@nexgo.de

mailto:bug-gawk@gnu.org
https://gnu.org/philosophy/kind-communication.html
https://stackoverflow.com/
mailto:arnold@skeeve.com
mailto:juan.guerrero@gmx.de
mailto:eliz@gnu.org
mailto:andreas.buening@nexgo.de

480 GAWK: Effective AWK Programming

VMS John Malmberg, wb8tyw@qsl.net

z/OS (OS/390) Daniel Richard G. skunk@iSKUNK.ORG

If your bug is also reproducible under Unix, send a copy of your report to the
bug-gawk@gnu.org email list as well.

B.5 Other Freely Available awk Implementations

It’s kind of fun to put comments like this in your awk code:
// Do C++ comments work? answer: yes! of course

—Michael Brennan

There are a number of other freely available awk implementations. This section briefly
describes where to get them:

Unix awk Brian Kernighan, one of the original designers of Unix awk, has made his im-
plementation of awk freely available. You can retrieve it from GitHub:

git clone git://github.com/onetrueawk/awk bwkawk

This command creates a copy of the Git repository in a directory named bwkawk.
If you omit the last argument from the git command line, the repository copy
is created in a directory named awk.

This version requires an ISO C (1990 standard) compiler; the C compiler from
GCC (the GNU Compiler Collection) works quite nicely.

To build it, review the settings in the makefile, and then just run make. Note
that the result of compilation is named a.out; you will have to rename it to
something reasonable.

See Section A.7 [Common Extensions Summary], page 459, for a list of exten-
sions in this awk that are not in POSIX awk.

As a side note, Dan Bornstein has created a Git repository tracking all the
versions of BWK awk that he could find. It’s available at git://github.com/
danfuzz/one-true-awk.

mawk Michael Brennan wrote an independent implementation of awk, called mawk. It
is available under the GPL (see [GNU General Public License], page 509), just
as gawk is.

The original distribution site for the mawk source code no longer has it. A copy
is available at http://www.skeeve.com/gawk/mawk1.3.3.tar.gz.

In 2009, Thomas Dickey took on mawk maintenance. Basic information is
available on the project’s web page. The download URL is http://

invisible-island.net/datafiles/release/mawk.tar.gz.

Once you have it, gunzip may be used to decompress this file. Installation is
similar to gawk’s (see Section B.2 [Compiling and Installing gawk on Unix-Like
Systems], page 469).

See Section A.7 [Common Extensions Summary], page 459, for a list of exten-
sions in mawk that are not in POSIX awk.

mawk 2.0 In 2016, Michael Brennan resumed mawk development. His development snap-
shots are available via Git from the project’s GitHub page.

mailto:wb8tyw@qsl.net
mailto:skunk@iSKUNK.ORG
mailto:bug-gawk@gnu.org
https://git-scm.com
git://github.com/danfuzz/one-true-awk
git://github.com/danfuzz/one-true-awk
http://www.skeeve.com/gawk/mawk1.3.3.tar.gz
http://www.invisible-island.net/mawk
http://invisible-island.net/datafiles/release/mawk.tar.gz
http://invisible-island.net/datafiles/release/mawk.tar.gz
https://github.com/mikebrennan000/mawk-2

Appendix B: Installing gawk 481

awka Written by Andrew Sumner, awka translates awk programs into C, compiles
them, and links them with a library of functions that provide the core awk

functionality. It also has a number of extensions.

The awk translator is released under the GPL, and the library is under the
LGPL.

To get awka, go to https://sourceforge.net/projects/awka.

The project seems to be frozen; no new code changes have been made since
approximately 2001.

pawk Nelson H.F. Beebe at the University of Utah has modified BWK awk to provide
timing and profiling information. It is different from gawk with the --profile
option (see Section 12.5 [Profiling Your awk Programs], page 329) in that it
uses CPU-based profiling, not line-count profiling. You may find it at either
ftp://ftp.math.utah.edu/pub/pawk/pawk-20030606.tar.gz or http://

www.math.utah.edu/pub/pawk/pawk-20030606.tar.gz.

BusyBox awk

BusyBox is a GPL-licensed program providing small versions of many appli-
cations within a single executable. It is aimed at embedded systems. It in-
cludes a full implementation of POSIX awk. When building it, be careful not
to do ‘make install’ as it will overwrite copies of other applications in your
/usr/local/bin. For more information, see the project’s home page.

The OpenSolaris POSIX awk

The versions of awk in /usr/xpg4/bin and /usr/xpg6/bin on Solaris are more
or less POSIX-compliant. They are based on the awk from Mortice Kern
Systems for PCs. We were able to make this code compile and work under
GNU/Linux with 1–2 hours of work. Making it more generally portable (using
GNU Autoconf and/or Automake) would take more work, and this has not
been done, at least to our knowledge.

The source code used to be available from the OpenSolaris website. However,
that project was ended and the website shut down. Fortunately, the Illumos
project makes this implementation available. You can view the files one at a
time from https://github.com/joyent/illumos-joyent/blob/master/

usr/src/cmd/awk_xpg4.

goawk This is an awk interpreter written in the Go programming language. It im-
plements POSIX awk, with a few minor extensions. Source code is available
from https://github.com/benhoyt/goawk. The author wrote a nice article
describing the implementation.

jawk This is an interpreter for awk written in Java. It claims to be a full interpreter,
although because it uses Java facilities for I/O and for regexp matching, the
language it supports is different from POSIX awk. More information is available
on the project’s home page.

Libmawk This is an embeddable awk interpreter derived from mawk. For more information,
see http://repo.hu/projects/libmawk/.

https://sourceforge.net/projects/awka
ftp://ftp.math.utah.edu/pub/pawk/pawk-20030606.tar.gz
http://www.math.utah.edu/pub/pawk/pawk-20030606.tar.gz
http://www.math.utah.edu/pub/pawk/pawk-20030606.tar.gz
https://busybox.net
https://wiki.illumos.org/display/illumos/illumos+Home
https://wiki.illumos.org/display/illumos/illumos+Home
https://github.com/joyent/illumos-joyent/blob/master/usr/src/cmd/awk_xpg4
https://github.com/joyent/illumos-joyent/blob/master/usr/src/cmd/awk_xpg4
https://golang.org/
https://github.com/benhoyt/goawk
https://benhoyt.com/writings/goawk/
https://jawk.sourceforge.net
http://repo.hu/projects/libmawk/

482 GAWK: Effective AWK Programming

Mircea Neacsu’s Embeddable awk
Mircea Neacsu has created an embeddable awk interpreter, based on BWK awk.
It’s available at https://github.com/neacsum/awk.

pawk This is a Python module that claims to bring awk-like features to Python. See
https://github.com/alecthomas/pawk for more information. (This is not
related to Nelson Beebe’s modified version of BWK awk, described earlier.)

QSE awk This is an embeddable awk interpreter. For more information, see https://

code.google.com/p/qse/.

QTawk This is an independent implementation of awk distributed under the GPL. It
has a large number of extensions over standard awk and may not be 100%
syntactically compatible with it. See http://www.quiktrim.org/QTawk.html

for more information, including the manual. The download link there is out
of date; see http://www.quiktrim.org/#AdditionalResources for the latest
download link.

The project may also be frozen; no new code changes have been made since
approximately 2014.

Other versions
See also the “Versions and implementations” section of the Wikipedia article
on awk for information on additional versions.

B.6 Summary

• The gawk distribution is available from the GNU Project’s main distribution site,
ftp.gnu.org. The canonical build recipe is:

wget https://ftp.gnu.org/gnu/gawk/gawk-5.1.0.tar.gz

tar -xvpzf gawk-5.1.0.tar.gz

cd gawk-5.1.0

./configure && make && make check

NOTE: Because of the ‘https://’ URL, you may have to supply the --no-
check-certificate option to wget to download the file.

• gawk may be built on non-POSIX systems as well. The currently supported sys-
tems are MS-Windows using MSYS, MSYS2, DJGPP, MinGW, and Cygwin, and both
Vax/VMS and OpenVMS. Instructions for each system are included in this appendix.

• Bug reports should be sent via email to bug-gawk@gnu.org. Bug reports should be
in English and should include the version of gawk, how it was compiled, and a short
program and data file that demonstrate the problem.

• There are a number of other freely available awk implementations. Many are POSIX-
compliant; others are less so.

https://github.com/neacsum/awk
https://github.com/alecthomas/pawk
https://code.google.com/p/qse/
https://code.google.com/p/qse/
http://www.quiktrim.org/QTawk.html
http://www.quiktrim.org/#AdditionalResources
https://en.wikipedia.org/wiki/Awk_language#Versions_and_implementations
mailto:bug-gawk@gnu.org

Appendix C: Implementation Notes 483

Appendix C Implementation Notes

This appendix contains information mainly of interest to implementers and maintainers of
gawk. Everything in it applies specifically to gawk and not to other implementations.

C.1 Downward Compatibility and Debugging

See Section A.5 [Extensions in gawk Not in POSIX awk], page 449, for a summary of the
GNU extensions to the awk language and program. All of these features can be turned off
by invoking gawk with the --traditional option or with the --posix option.

If gawk is compiled for debugging with ‘-DDEBUG’, then there is one more option available
on the command line:

-Y

--parsedebug

Print out the parse stack information as the program is being parsed.

This option is intended only for serious gawk developers and not for the casual user.
It probably has not even been compiled into your version of gawk, since it slows down
execution.

C.2 Making Additions to gawk

If you find that you want to enhance gawk in a significant fashion, you are perfectly free to
do so. That is the point of having free software; the source code is available and you are
free to change it as you want (see [GNU General Public License], page 509).

This section discusses the ways you might want to change gawk as well as any consider-
ations you should bear in mind.

C.2.1 Accessing The gawk Git Repository

As gawk is Free Software, the source code is always available. Section B.1 [The gawk

Distribution], page 465, describes how to get and build the formal, released versions of
gawk.

However, if you want to modify gawk and contribute back your changes, you will probably
wish to work with the development version. To do so, you will need to access the gawk source
code repository. The code is maintained using the Git distributed version control system.
You will need to install it if your system doesn’t have it. Once you have done so, use the
command:

git clone git://git.savannah.gnu.org/gawk.git

This clones the gawk repository. If you are behind a firewall that does not allow you to use
the Git native protocol, you can still access the repository using:

git clone https://git.savannah.gnu.org/r/gawk.git

Once you have made changes, you can use ‘git diff’ to produce a patch, and send that
to the gawk maintainer; see Section B.4 [Reporting Problems and Bugs], page 478, for how
to do that.

Once upon a time there was Git–CVS gateway for use by people who could not install
Git. However, this gateway no longer works, so you may have better luck using a more

https://git-scm.com

484 GAWK: Effective AWK Programming

modern version control system like Bazaar, that has a Git plug-in for working with Git
repositories.

C.2.2 Adding New Features

You are free to add any new features you like to gawk. However, if you want your changes
to be incorporated into the gawk distribution, there are several steps that you need to take
in order to make it possible to include them:

1. Before building the new feature into gawk itself, consider writing it as an extension (see
Chapter 17 [Writing Extensions for gawk], page 381). If that’s not possible, continue
with the rest of the steps in this list.

2. Be prepared to sign the appropriate paperwork. In order for the FSF to distribute
your changes, you must either place those changes in the public domain and submit
a signed statement to that effect, or assign the copyright in your changes to the FSF.
Both of these actions are easy to do and many people have done so already. If you
have questions, please contact me (see Section B.4 [Reporting Problems and Bugs],
page 478), or assign@gnu.org.

3. Get the latest version. It is much easier for me to integrate changes if they are relative
to the most recent distributed version of gawk, or better yet, relative to the latest code
in the Git repository. If your version of gawk is very old, I may not be able to integrate
your changes at all. (See Section B.1.1 [Getting the gawk Distribution], page 465, for
information on getting the latest version of gawk.)

4. Follow theGNU Coding Standards. This document describes how GNU software should
be written. If you haven’t read it, please do so, preferably before starting to modify
gawk. (The GNU Coding Standards are available from the GNU Project’s website.
Texinfo, Info, and DVI versions are also available.)

5. Use the gawk coding style. The C code for gawk follows the instructions in the GNU
Coding Standards, with minor exceptions. The code is formatted using the traditional
“K&R” style, particularly as regards to the placement of braces and the use of TABs.
In brief, the coding rules for gawk are as follows:

• Use ANSI/ISO style (prototype) function headers when defining functions.

• Put the name of the function at the beginning of its own line.

• Use ‘#elif’ instead of nesting ‘#if’ inside ‘#else’.

• Put the return type of the function, even if it is int, on the line above the line
with the name and arguments of the function.

• Put spaces around parentheses used in control structures (if, while, for, do,
switch, and return).

• Do not put spaces in front of parentheses used in function calls.

• Put spaces around all C operators and after commas in function calls.

• Do not use the comma operator to produce multiple side effects, except in for

loop initialization and increment parts, and in macro bodies.

• Use real TABs for indenting, not spaces.

• Use the “K&R” brace layout style.

mailto:assign@gnu.org
https://www.gnu.org/prep/standards/

Appendix C: Implementation Notes 485

• Use comparisons against NULL and '\0' in the conditions of if, while, and for

statements, as well as in the cases of switch statements, instead of just the plain
pointer or character value.

• Use true and false for bool values, the NULL symbolic constant for pointer values,
and the character constant '\0' where appropriate, instead of 1 and 0.

• Provide one-line descriptive comments for each function.

• Do not use the alloca() function for allocating memory off the stack. Its use
causes more portability trouble than is worth the minor benefit of not having to
free the storage. Instead, use malloc() and free().

• Do not use comparisons of the form ‘! strcmp(a, b)’ or similar. As Henry Spencer
once said, “strcmp() is not a boolean!” Instead, use ‘strcmp(a, b) == 0’.

• If adding new bit flag values, use explicit hexadecimal constants (0x001, 0x002,
0x004, and so on) instead of shifting one left by successive amounts (‘(1<<0)’,
‘(1<<1)’, and so on).

NOTE: If I have to reformat your code to follow the coding style used in
gawk, I may not bother to integrate your changes at all.

6. Update the documentation. Along with your new code, please supply new sections
and/or chapters for this book. If at all possible, please use real Texinfo, instead of just
supplying unformatted ASCII text (although even that is better than no documenta-
tion at all). Conventions to be followed in GAWK: Effective AWK Programming are
provided after the ‘@bye’ at the end of the Texinfo source file. If possible, please update
the man page as well.

You will also have to sign paperwork for your documentation changes.

7. Submit changes as unified diffs. Use ‘diff -u -r -N’ to compare the original gawk
source tree with your version. I recommend using the GNU version of diff, or best of
all, ‘git diff’ or ‘git format-patch’. Send the output produced by diff to me when
you submit your changes. (See Section B.4 [Reporting Problems and Bugs], page 478,
for the electronic mail information.)

Using this format makes it easy for me to apply your changes to the master version of
the gawk source code (using patch). If I have to apply the changes manually, using a
text editor, I may not do so, particularly if there are lots of changes.

8. Include an entry for the ChangeLog file with your submission. This helps further
minimize the amount of work I have to do, making it easier for me to accept patches.
It is simplest if you just make this part of your diff.

Although this sounds like a lot of work, please remember that while you may write the
new code, I have to maintain it and support it. If it isn’t possible for me to do that with a
minimum of extra work, then I probably will not.

C.2.3 Porting gawk to a New Operating System

If you want to port gawk to a new operating system, there are several steps:

1. Follow the guidelines in the previous section concerning coding style, submission of
diffs, and so on.

2. Be prepared to sign the appropriate paperwork. In order for the FSF to distribute
your code, you must either place your code in the public domain and submit a signed

486 GAWK: Effective AWK Programming

statement to that effect, or assign the copyright in your code to the FSF. Both of these
actions are easy to do and many people have done so already. If you have questions,
please contact me, or gnu@gnu.org.

3. When doing a port, bear in mind that your code must coexist peacefully with the rest
of gawk and the other ports. Avoid gratuitous changes to the system-independent parts
of the code. If at all possible, avoid sprinkling ‘#ifdef’s just for your port throughout
the code.

If the changes needed for a particular system affect too much of the code, I probably
will not accept them. In such a case, you can, of course, distribute your changes on
your own, as long as you comply with the GPL (see [GNU General Public License],
page 509).

4. A number of the files that come with gawk are maintained by other people. Thus, you
should not change them unless it is for a very good reason; i.e., changes are not out
of the question, but changes to these files are scrutinized extra carefully. These are all
the files in the support directory within the gawk distribution. See there.

5. A number of other files are provided by the GNU Autotools (Autoconf, Automake,
and GNU gettext). You should not change them either, unless it is for a very good
reason. The files are ABOUT-NLS, config.guess, config.rpath, config.sub, depcomp,
INSTALL, install-sh, missing, mkinstalldirs, and ylwrap.

6. Be willing to continue to maintain the port. Non-Unix operating systems are supported
by volunteers who maintain the code needed to compile and run gawk on their systems.
If no-one volunteers to maintain a port, it becomes unsupported and it may be necessary
to remove it from the distribution.

7. Supply an appropriate gawkmisc.??? file. Each port has its own gawkmisc.??? that
implements certain operating system specific functions. This is cleaner than a plethora
of ‘#ifdef’s scattered throughout the code. The gawkmisc.c in the main source di-
rectory includes the appropriate gawkmisc.??? file from each subdirectory. Be sure to
update it as well.

Each port’s gawkmisc.??? file has a suffix reminiscent of the machine or operating
system for the port—for example, pc/gawkmisc.pc and vms/gawkmisc.vms. The use
of separate suffixes, instead of plain gawkmisc.c, makes it possible to move files from
a port’s subdirectory into the main subdirectory, without accidentally destroying the
real gawkmisc.c file. (Currently, this is only an issue for the PC operating system
ports.)

8. Supply a Makefile as well as any other C source and header files that are necessary for
your operating system. All your code should be in a separate subdirectory, with a name
that is the same as, or reminiscent of, either your operating system or the computer
system. If possible, try to structure things so that it is not necessary to move files out
of the subdirectory into the main source directory. If that is not possible, then be sure
to avoid using names for your files that duplicate the names of files in the main source
directory.

9. Update the documentation. Please write a section (or sections) for this book describing
the installation and compilation steps needed to compile and/or install gawk for your
system.

mailto:gnu@gnu.org

Appendix C: Implementation Notes 487

Following these steps makes it much easier to integrate your changes into gawk and have
them coexist happily with other operating systems’ code that is already there.

In the code that you supply and maintain, feel free to use a coding style and brace layout
that suits your taste.

C.2.4 Why Generated Files Are Kept In Git

If you look at the gawk source in the Git repository, you will notice that it includes files
that are automatically generated by GNU infrastructure tools, such as Makefile.in from
Automake and even configure from Autoconf.

This is different from many Free Software projects that do not store the derived files,
because that keeps the repository less cluttered, and it is easier to see the substantive
changes when comparing versions and trying to understand what changed between commits.

However, there are several reasons why the gawk maintainer likes to have everything in
the repository.

First, because it is then easy to reproduce any given version completely, without relying
upon the availability of (older, likely obsolete, and maybe even impossible to find) other
tools.

As an extreme example, if you ever even think about trying to compile, oh, say, the V7
awk, you will discover that not only do you have to bootstrap the V7 yacc to do so, but you
also need the V7 lex. And the latter is pretty much impossible to bring up on a modern
GNU/Linux system.1

(Or, let’s say gawk 1.2 required bison whatever-it-was in 1989 and that there was no
awkgram.c file in the repository. Is there a guarantee that we could find that bison version?
Or that it would build?)

If the repository has all the generated files, then it’s easy to just check them out and
build. (Or easier, depending upon how far back we go.)

And that brings us to the second (and stronger) reason why all the files really need to
be in Git. It boils down to who do you cater to—the gawk developer(s), or the user who
just wants to check out a version and try it out?

The gawk maintainer wants it to be possible for any interested awk user in the world to
just clone the repository, check out the branch of interest and build it. Without their having
to have the correct version(s) of the autotools.2 That is the point of the bootstrap.sh file.
It touches the various other files in the right order such that

The canonical incantation for building GNU software:

./bootstrap.sh && ./configure && make

will just work.

This is extremely important for the master and gawk-X.Y-stable branches.

1 We tried. It was painful.
2 There is one GNU program that is (in our opinion) severely difficult to bootstrap from the Git repository.

For example, on the author’s old (but still working) PowerPC Macintosh with Mac OS X 10.5, it was
necessary to bootstrap a ton of software, starting with Git itself, in order to try to work with the latest
code. It’s not pleasant, and especially on older systems, it’s a big waste of time.

Starting with the latest tarball was no picnic either. The maintainers had dropped .gz and .bz2 files
and only distribute .tar.xz files. It was necessary to bootstrap xz first!

488 GAWK: Effective AWK Programming

Further, the gawk maintainer would argue that it’s also important for the gawk develop-
ers. When he tried to check out the xgawk branch3 to build it, he couldn’t. (No ltmain.sh

file, and he had no idea how to create it, and that was not the only problem.)

He felt extremely frustrated. With respect to that branch, the maintainer is no different
than Jane User who wants to try to build gawk-4.1-stable or master from the repository.

Thus, the maintainer thinks that it’s not just important, but critical, that for any given
branch, the above incantation just works.

A third reason to have all the files is that without them, using ‘git bisect’ to try to find
the commit that introduced a bug is exceedingly difficult. The maintainer tried to do that
on another project that requires running bootstrapping scripts just to create configure

and so on; it was really painful. When the repository is self-contained, using git bisect

in it is very easy.

What are some of the consequences and/or actions to take?

1. We don’t mind that there are differing files in the different branches as a result of
different versions of the autotools.

A. It’s the maintainer’s job to merge them and he will deal with it.

B. He is really good at ‘git diff x y > /tmp/diff1 ; gvim /tmp/diff1’ to remove
the diffs that aren’t of interest in order to review code.

2. It would certainly help if everyone used the same versions of the GNU tools as he does,
which in general are the latest released versions of Automake, Autoconf, bison, GNU
gettext, and Libtool.

Installing from source is quite easy. It’s how the maintainer worked for years (and still
works). He had /usr/local/bin at the front of his PATH and just did:

wget https://ftp.gnu.org/gnu/package/package-x.y.z.tar.gz

tar -xpzvf package-x.y.z.tar.gz

cd package-x.y.z

./configure && make && make check

make install # as root

NOTE: Because of the ‘https://’ URL, you may have to supply the --no-
check-certificate option to wget to download the file.

Most of the above was originally written by the maintainer to other gawk developers. It
raised the objection from one of the developers “. . . that anybody pulling down the source
from Git is not an end user.”

However, this is not true. There are “power awk users” who can build gawk (using the
magic incantation shown previously) but who can’t program in C. Thus, the major branches
should be kept buildable all the time.

It was then suggested that there be a cron job to create nightly tarballs of “the source.”
Here, the problem is that there are source trees, corresponding to the various branches! So,
nightly tarballs aren’t the answer, especially as the repository can go for weeks without
significant change being introduced.

3 A branch (since removed) created by one of the other developers that did not include the generated files.

Appendix C: Implementation Notes 489

Fortunately, the Git server can meet this need. For any given branch named branchname,
use:

wget https://git.savannah.gnu.org/cgit/gawk.git/snapshot/gawk-branchname.tar.gz

to retrieve a snapshot of the given branch.

C.3 Probable Future Extensions

AWK is a language similar to PERL, only considerably more elegant.
—Arnold Robbins

Hey!
—Larry Wall

The TODO file in the master branch of the gawk Git repository lists possible future
enhancements. Some of these relate to the source code, and others to possible new features.
Please see that file for the list. See Section C.2 [Making Additions to gawk], page 483, if
you are interested in tackling any of the projects listed there.

C.4 Some Limitations of the Implementation

This following table describes limits of gawk on a Unix-like system (although it is variable
even then). Other systems may have different limits.

Item Limit
Characters in a character class 2^(number of bits per byte)
Length of input record MAX_INT

Length of output record Unlimited
Length of source line Unlimited
Number of fields in a record MAX_LONG

Number of file redirections Unlimited
Number of input records in one file MAX_LONG

Number of input records total MAX_LONG

Number of pipe redirections min(number of processes per user, number of open
files)

Numeric values Double-precision floating point (if not using MPFR)
Size of a field MAX_INT

Size of a literal string MAX_INT

Size of a printf string MAX_INT

C.5 Extension API Design

This section documents the design of the extension API, including a discussion of some of
the history and problems that needed to be solved.

The first version of extensions for gawk was developed in the mid-1990s and released
with gawk 3.1 in the late 1990s. The basic mechanisms and design remained unchanged for
close to 15 years, until 2012.

The old extension mechanism used data types and functions from gawk itself, with a
“clever hack” to install extension functions.

490 GAWK: Effective AWK Programming

gawk included some sample extensions, of which a few were really useful. However, it
was clear from the outset that the extension mechanism was bolted onto the side and was
not really well thought out.

C.5.1 Problems With The Old Mechanism

The old extension mechanism had several problems:

• It depended heavily upon gawk internals. Any time the NODE structure4 changed,
an extension would have to be recompiled. Furthermore, to really write extensions
required understanding something about gawk’s internal functions. There was some
documentation in this book, but it was quite minimal.

• Being able to call into gawk from an extension required linker facilities that are common
on Unix-derived systems but that did not work on MS-Windows systems; users wanting
extensions on MS-Windows had to statically link them into gawk, even though MS-
Windows supports dynamic loading of shared objects.

• The API would change occasionally as gawk changed; no compatibility between versions
was ever offered or planned for.

Despite the drawbacks, the xgawk project developers forked gawk and developed several
significant extensions. They also enhanced gawk’s facilities relating to file inclusion and
shared object access.

A new API was desired for a long time, but only in 2012 did the gawk maintainer and the
xgawk developers finally start working on it together. More information about the xgawk

project is provided in Section 17.8 [The gawkextlib Project], page 441.

C.5.2 Goals For A New Mechanism

Some goals for the new API were:

• The API should be independent of gawk internals. Changes in gawk internals should
not be visible to the writer of an extension function.

• The API should provide binary compatibility across gawk releases as long as the API
itself does not change.

• The API should enable extensions written in C or C++ to have roughly the same
“appearance” to awk-level code as awk functions do. This means that extensions should
have:

− The ability to access function parameters.

− The ability to turn an undefined parameter into an array (call by reference).

− The ability to create, access and update global variables.

− Easy access to all the elements of an array at once (“array flattening”) in order to
loop over all the element in an easy fashion for C code.

− The ability to create arrays (including gawk’s true arrays of arrays).

Some additional important goals were:

• The API should use only features in ISO C 90, so that extensions can be written using
the widest range of C and C++ compilers. The header should include the appropriate

4 A critical central data structure inside gawk.

Appendix C: Implementation Notes 491

‘#ifdef __cplusplus’ and ‘extern "C"’ magic so that a C++ compiler could be used.
(If using C++, the runtime system has to be smart enough to call any constructors and
destructors, as gawk is a C program. As of this writing, this has not been tested.)

• The API mechanism should not require access to gawk’s symbols5 by the compile-
time or dynamic linker, in order to enable creation of extensions that also work on
MS-Windows.

During development, it became clear that there were other features that should be
available to extensions, which were also subsequently provided:

• Extensions should have the ability to hook into gawk’s I/O redirection mechanism. In
particular, the xgawk developers provided a so-called “open hook” to take over reading
records. During development, this was generalized to allow extensions to hook into
input processing, output processing, and two-way I/O.

• An extension should be able to provide a “call back” function to perform cleanup
actions when gawk exits.

• An extension should be able to provide a version string so that gawk’s --version option
can provide information about extensions as well.

The requirement to avoid access to gawk’s symbols is, at first glance, a difficult one to
meet.

One design, apparently used by Perl and Ruby and maybe others, would be to make the
mainline gawk code into a library, with the gawk utility a small C main() function linked
against the library.

This seemed like the tail wagging the dog, complicating build and installation and making
a simple copy of the gawk executable from one system to another (or one place to another
on the same system!) into a chancy operation.

Pat Rankin suggested the solution that was adopted. See Section 17.3 [How It Works at
a High Level], page 381, for the details.

C.5.3 Other Design Decisions

As an arbitrary design decision, extensions can read the values of predefined variables and
arrays (such as ARGV and FS), but cannot change them, with the exception of PROCINFO.

The reason for this is to prevent an extension function from affecting the flow of an awk

program outside its control. While a real awk function can do what it likes, that is at the
discretion of the programmer. An extension function should provide a service or make a C
API available for use within awk, and not mess with FS or ARGC and ARGV.

In addition, it becomes easy to start down a slippery slope. How much access to gawk

facilities do extensions need? Do they need getline? What about calling gsub() or
compiling regular expressions? What about calling into awk functions? (That would be
messy.)

In order to avoid these issues, the gawk developers chose to start with the simplest, most
basic features that are still truly useful.

5 The symbols are the variables and functions defined inside gawk. Access to these symbols by code
external to gawk loaded dynamically at runtime is problematic on MS-Windows.

492 GAWK: Effective AWK Programming

Another decision is that although gawk provides nice things like MPFR, and arrays
indexed internally by integers, these features are not being brought out to the API in
order to keep things simple and close to traditional awk semantics. (In fact, arrays indexed
internally by integers are so transparent that they aren’t even documented!)

Additionally, all functions in the API check that their pointer input parameters are not
NULL. If they are, they return an error. (It is a good idea for extension code to verify that
pointers received from gawk are not NULL. Such a thing should not happen, but the gawk

developers are only human, and they have been known to occasionally make mistakes.)

With time, the API will undoubtedly evolve; the gawk developers expect this to be driven
by user needs. For now, the current API seems to provide a minimal yet powerful set of
features for creating extensions.

C.5.4 Room For Future Growth

The API can later be expanded, in at least the following way:

• gawk passes an “extension id” into the extension when it first loads the extension. The
extension then passes this id back to gawk with each function call. This mechanism
allows gawk to identify the extension calling into it, should it need to know.

Of course, as of this writing, no decisions have been made with respect to the above.

C.6 Summary

• gawk’s extensions can be disabled with either the --traditional option or with the
--posix option. The --parsedebug option is available if gawk is compiled with
‘-DDEBUG’.

• The source code for gawk is maintained in a publicly accessible Git repository. Anyone
may check it out and view the source.

• Contributions to gawk are welcome. Following the steps outlined in this chapter will
make it easier to integrate your contributions into the code base. This applies both to
new feature contributions and to ports to additional operating systems.

• gawk has some limits—generally those that are imposed by the machine architecture.

• The extension API design was intended to solve a number of problems with the previous
extension mechanism, enable features needed by the xgawk project, and provide binary
compatibility going forward.

• The previous extension mechanism is no longer supported and was removed from the
code base with the 4.2 release.

Appendix D: Basic Programming Concepts 493

Appendix D Basic Programming Concepts

This appendix attempts to define some of the basic concepts and terms that are used
throughout the rest of this book. As this book is specifically about awk, and not about
computer programming in general, the coverage here is by necessity fairly cursory and
simplistic. (If you need more background, there are many other introductory texts that you
should refer to instead.)

D.1 What a Program Does

At the most basic level, the job of a program is to process some input data and produce
results. See Figure D.1.

ResultsData Program

Figure D.1: General Program Flow

The “program” in the figure can be either a compiled program1 (such as ls), or it may
be interpreted. In the latter case, a machine-executable program such as awk reads your
program, and then uses the instructions in your program to process the data.

When you write a program, it usually consists of the following, very basic set of steps,
as shown in Figure D.2:

More

Data

 ?

No

Yes

Initialization Clean Up

Process

Figure D.2: Basic Program Steps

1 Compiled programs are typically written in lower-level languages such as C, C++, or Ada, and then
translated, or compiled, into a form that the computer can execute directly.

494 GAWK: Effective AWK Programming

Initialization
These are the things you do before actually starting to process data, such as
checking arguments, initializing any data you need to work with, and so on.
This step corresponds to awk’s BEGIN rule (see Section 7.1.4 [The BEGIN and
END Special Patterns], page 144).

If you were baking a cake, this might consist of laying out all the mixing bowls
and the baking pan, and making sure you have all the ingredients that you
need.

Processing This is where the actual work is done. Your program reads data, one logical
chunk at a time, and processes it as appropriate.

In most programming languages, you have to manually manage the reading
of data, checking to see if there is more each time you read a chunk. awk’s
pattern-action paradigm (see Chapter 1 [Getting Started with awk], page 17)
handles the mechanics of this for you.

In baking a cake, the processing corresponds to the actual labor: breaking eggs,
mixing the flour, water, and other ingredients, and then putting the cake into
the oven.

Clean Up Once you’ve processed all the data, you may have things you need to do before
exiting. This step corresponds to awk’s END rule (see Section 7.1.4 [The BEGIN

and END Special Patterns], page 144).

After the cake comes out of the oven, you still have to wrap it in plastic wrap
to keep anyone from tasting it, as well as wash the mixing bowls and utensils.

An algorithm is a detailed set of instructions necessary to accomplish a task, or process
data. It is much the same as a recipe for baking a cake. Programs implement algorithms.
Often, it is up to you to design the algorithm and implement it, simultaneously.

The “logical chunks” we talked about previously are called records, similar to the records
a company keeps on employees, a school keeps for students, or a doctor keeps for patients.
Each record has many component parts, such as first and last names, date of birth, address,
and so on. The component parts are referred to as the fields of the record.

The act of reading data is termed input, and that of generating results, not too surpris-
ingly, is termed output. They are often referred to together as “input/output,” and even
more often, as “I/O” for short. (You will also see “input” and “output” used as verbs.)

awk manages the reading of data for you, as well as the breaking it up into records and
fields. Your program’s job is to tell awk what to do with the data. You do this by describing
patterns in the data to look for, and actions to execute when those patterns are seen. This
data-driven nature of awk programs usually makes them both easier to write and easier to
read.

D.2 Data Values in a Computer

In a program, you keep track of information and values in things called variables. A variable
is just a name for a given value, such as first_name, last_name, address, and so on. awk
has several predefined variables, and it has special names to refer to the current input record
and the fields of the record. You may also group multiple associated values under one name,
as an array.

Appendix D: Basic Programming Concepts 495

Data, particularly in awk, consists of either numeric values, such as 42 or 3.1415927,
or string values. String values are essentially anything that’s not a number, such as a
name. Strings are sometimes referred to as character data, since they store the individual
characters that comprise them. Individual variables, as well as numeric and string variables,
are referred to as scalar values. Groups of values, such as arrays, are not scalars.

Section 16.1 [A General Description of Computer Arithmetic], page 367, provided a
basic introduction to numeric types (integer and floating-point) and how they are used
in a computer. Please review that information, including a number of caveats that were
presented.

While you are probably used to the idea of a number without a value (i.e., zero), it takes
a bit more getting used to the idea of zero-length character data. Nevertheless, such a thing
exists. It is called the null string. The null string is character data that has no value. In
other words, it is empty. It is written in awk programs like this: "".

Humans are used to working in decimal; i.e., base 10. In base 10, numbers go from 0 to
9, and then “roll over” into the next column. (Remember grade school? 42 = 4× 10 + 2.)

There are other number bases though. Computers commonly use base 2 or binary, base
8 or octal, and base 16 or hexadecimal. In binary, each column represents two times the
value in the column to its right. Each column may contain either a 0 or a 1. Thus, binary
1010 represents (1× 8) + (0× 4) + (1× 2) + (0× 1), or decimal 10. Octal and hexadecimal
are discussed more in Section 6.1.1.2 [Octal and Hexadecimal Numbers], page 114.

At the very lowest level, computers store values as groups of binary digits, or bits.
Modern computers group bits into groups of eight, called bytes. Advanced applications
sometimes have to manipulate bits directly, and gawk provides functions for doing so.

Programs are written in programming languages. Hundreds, if not thousands, of pro-
gramming languages exist. One of the most popular is the C programming language. The
C language had a very strong influence on the design of the awk language.

There have been several versions of C. The first is often referred to as “K&R” C, after
the initials of Brian Kernighan and Dennis Ritchie, the authors of the first book on C.
(Dennis Ritchie created the language, and Brian Kernighan was one of the creators of awk.)

In the mid-1980s, an effort began to produce an international standard for C. This work
culminated in 1989, with the production of the ANSI standard for C. This standard became
an ISO standard in 1990. In 1999, a revised ISO C standard was approved and released.
Where it makes sense, POSIX awk is compatible with 1999 ISO C.

Glossary 497

Glossary

Action A series of awk statements attached to a rule. If the rule’s pattern matches
an input record, awk executes the rule’s action. Actions are always enclosed in
braces. (See Section 7.3 [Actions], page 147.)

Ada A programming language originally defined by the U.S. Department of Defense
for embedded programming. It was designed to enforce good Software Engi-
neering practices.

Amazing awk Assembler
Henry Spencer at the University of Toronto wrote a retargetable assembler
completely as sed and awk scripts. It is thousands of lines long, including
machine descriptions for several eight-bit microcomputers. It is a good example
of a program that would have been better written in another language.

Amazingly Workable Formatter (awf)
Henry Spencer at the University of Toronto wrote a formatter that accepts a
large subset of the ‘nroff -ms’ and ‘nroff -man’ formatting commands, using
awk and sh.

Anchor The regexp metacharacters ‘^’ and ‘$’, which force the match to the beginning
or end of the string, respectively.

ANSI The American National Standards Institute. This organization produces many
standards, among them the standards for the C and C++ programming lan-
guages. These standards often become international standards as well. See also
“ISO.”

Argument An argument can be two different things. It can be an option or a file name
passed to a command while invoking it from the command line, or it can be
something passed to a function inside a program, e.g. inside awk.

In the latter case, an argument can be passed to a function in two ways. Either it
is given to the called function by value, i.e., a copy of the value of the variable
is made available to the called function, but the original variable cannot be
modified by the function itself; or it is given by reference, i.e., a pointer to the
interested variable is passed to the function, which can then directly modify
it. In awk scalars are passed by value, and arrays are passed by reference. See
“Pass By Value/Reference.”

Array A grouping of multiple values under the same name. Most languages just pro-
vide sequential arrays. awk provides associative arrays.

Assertion A statement in a program that a condition is true at this point in the program.
Useful for reasoning about how a program is supposed to behave.

Assignment
An awk expression that changes the value of some awk variable or data object.
An object that you can assign to is called an lvalue. The assigned values are
called rvalues. See Section 6.2.3 [Assignment Expressions], page 124.

498 GAWK: Effective AWK Programming

Associative Array
Arrays in which the indices may be numbers or strings, not just sequential
integers in a fixed range.

awk Language
The language in which awk programs are written.

awk Program
An awk program consists of a series of patterns and actions, collectively known
as rules. For each input record given to the program, the program’s rules are
all processed in turn. awk programs may also contain function definitions.

awk Script Another name for an awk program.

Bash The GNU version of the standard shell (the Bourne-Again SHell). See also
“Bourne Shell.”

Binary Base-two notation, where the digits are 0–1. Since electronic circuitry works
“naturally” in base 2 (just think of Off/On), everything inside a computer is
calculated using base 2. Each digit represents the presence (or absence) of a
power of 2 and is called a bit. So, for example, the base-two number 10101 is
the same as decimal 21, ((1× 16) + (1× 4) + (1× 1)).

Since base-two numbers quickly become very long to read and write, they are
usually grouped by 3 (i.e., they are read as octal numbers), or by 4 (i.e., they are
read as hexadecimal numbers). There is no direct way to insert base 2 numbers
in a C program. If need arises, such numbers are usually inserted as octal or
hexadecimal numbers. The number of base-two digits that fit into registers
used for representing integer numbers in computers is a rough indication of
the computing power of the computer itself. Most computers nowadays use 64
bits for representing integer numbers in their registers, but 32-bit, 16-bit and
8-bit registers have been widely used in the past. See Section 6.1.1.2 [Octal and
Hexadecimal Numbers], page 114.

Bit Short for “Binary Digit.” All values in computer memory ultimately reduce
to binary digits: values that are either zero or one. Groups of bits may be
interpreted differently—as integers, floating-point numbers, character data, ad-
dresses of other memory objects, or other data. awk lets you work with floating-
point numbers and strings. gawk lets you manipulate bit values with the built-in
functions described in Section 9.1.6 [Bit-Manipulation Functions], page 210.

Computers are often defined by how many bits they use to represent integer
values. Typical systems are 32-bit systems, but 64-bit systems are becoming
increasingly popular, and 16-bit systems have essentially disappeared.

Boolean Expression
Named after the English mathematician Boole. See also “Logical Expression.”

Bourne Shell
The standard shell (/bin/sh) on Unix and Unix-like systems, originally written
by Steven R. Bourne at Bell Laboratories. Many shells (Bash, ksh, pdksh, zsh)
are generally upwardly compatible with the Bourne shell.

Glossary 499

Braces The characters ‘{’ and ‘}’. Braces are used in awk for delimiting actions, com-
pound statements, and function bodies.

Bracket Expression
Inside a regular expression, an expression included in square brackets, meant
to designate a single character as belonging to a specified character class. A
bracket expression can contain a list of one or more characters, like ‘[abc]’, a
range of characters, like ‘[A-Z]’, or a name, delimited by ‘:’, that designates a
known set of characters, like ‘[:digit:]’. The form of bracket expression en-
closed between ‘:’ is independent of the underlying representation of the char-
acter themselves, which could utilize the ASCII, EBCDIC, or Unicode codesets,
depending on the architecture of the computer system, and on localization. See
also “Regular Expression.”

Built-in Function
The awk language provides built-in functions that perform various numerical,
I/O-related, and string computations. Examples are sqrt() (for the square
root of a number) and substr() (for a substring of a string). gawk provides
functions for timestamp management, bit manipulation, array sorting, type
checking, and runtime string translation. (See Section 9.1 [Built-in Functions],
page 187.)

Built-in Variable
ARGC, ARGV, CONVFMT, ENVIRON, FILENAME, FNR, FS, NF, NR, OFMT, OFS, ORS,
RLENGTH, RSTART, RS, and SUBSEP are the variables that have special meaning
to awk. In addition, ARGIND, BINMODE, ERRNO, FIELDWIDTHS, FPAT, IGNORECASE,
LINT, PROCINFO, RT, and TEXTDOMAIN are the variables that have special mean-
ing to gawk. Changing some of them affects awk’s running environment. (See
Section 7.5 [Predefined Variables], page 157.)

C The system programming language that most GNU software is written in. The
awk programming language has C-like syntax, and this book points out simi-
larities between awk and C when appropriate.

In general, gawk attempts to be as similar to the 1990 version of ISO C as makes
sense.

C Shell The C Shell (csh or its improved version, tcsh) is a Unix shell that was created
by Bill Joy in the late 1970s. The C shell was differentiated from other shells
by its interactive features and overall style, which looks more like C. The C
Shell is not backward compatible with the Bourne Shell, so special attention is
required when converting scripts written for other Unix shells to the C shell,
especially with regard to the management of shell variables. See also “Bourne
Shell.”

C++ A popular object-oriented programming language derived from C.

Character Class
See “Bracket Expression.”

Character List
See “Bracket Expression.”

500 GAWK: Effective AWK Programming

Character Set
The set of numeric codes used by a computer system to represent the characters
(letters, numbers, punctuation, etc.) of a particular country or place. The most
common character set in use today is ASCII (American Standard Code for
Information Interchange). Many European countries use an extension of ASCII
known as ISO-8859-1 (ISO Latin-1). The Unicode character set is increasingly
popular and standard, and is particularly widely used on GNU/Linux systems.

CHEM A preprocessor for pic that reads descriptions of molecules and produces pic
input for drawing them. It was written in awk by Brian Kernighan and Jon
Bentley, and is available from http://netlib.org/typesetting/chem.

Comparison Expression
A relation that is either true or false, such as ‘a < b’. Comparison expressions
are used in if, while, do, and for statements, and in patterns to select which
input records to process. (See Section 6.3.2 [Variable Typing and Comparison
Expressions], page 128.)

Compiler A program that translates human-readable source code into machine-executable
object code. The object code is then executed directly by the computer. See
also “Interpreter.”

Complemented Bracket Expression
The negation of a bracket expression. All that is not described by a given
bracket expression. The symbol ‘^’ precedes the negated bracket expression.
E.g.: ‘[^[:digit:]]’ designates whatever character is not a digit. ‘[^bad]’
designates whatever character is not one of the letters ‘b’, ‘a’, or ‘d’. See
“Bracket Expression.”

Compound Statement
A series of awk statements, enclosed in curly braces. Compound statements
may be nested. (See Section 7.4 [Control Statements in Actions], page 148.)

Computed Regexps
See “Dynamic Regular Expressions.”

Concatenation
Concatenating two strings means sticking them together, one after another,
producing a new string. For example, the string ‘foo’ concatenated with the
string ‘bar’ gives the string ‘foobar’. (See Section 6.2.2 [String Concatenation],
page 123.)

Conditional Expression
An expression using the ‘?:’ ternary operator, such as ‘expr1 ? expr2 : expr3’.
The expression expr1 is evaluated; if the result is true, the value of the whole
expression is the value of expr2; otherwise the value is expr3. In either case,
only one of expr2 and expr3 is evaluated. (See Section 6.3.4 [Conditional Ex-
pressions], page 135.)

Control Statement
A control statement is an instruction to perform a given operation or a set
of operations inside an awk program, if a given condition is true. Control

http://www.unicode.org
http://netlib.org/typesetting/chem

Glossary 501

statements are: if, for, while, and do (see Section 7.4 [Control Statements in
Actions], page 148).

Cookie A peculiar goodie, token, saying or remembrance produced by or presented to
a program. (With thanks to Professor Doug McIlroy.)

Coprocess A subordinate program with which two-way communications is possible.

Curly Braces
See “Braces.”

Dark Corner
An area in the language where specifications often were (or still are) not clear,
leading to unexpected or undesirable behavior. Such areas are marked in this
book with the picture of a flashlight in the margin and are indexed under the
heading “dark corner.”

Data Driven
A description of awk programs, where you specify the data you are interested
in processing, and what to do when that data is seen.

Data Objects
These are numbers and strings of characters. Numbers are converted into strings
and vice versa, as needed. (See Section 6.1.4 [Conversion of Strings and Num-
bers], page 119.)

Deadlock The situation in which two communicating processes are each waiting for the
other to perform an action.

Debugger A program used to help developers remove “bugs” from (de-bug) their pro-
grams.

Double Precision
An internal representation of numbers that can have fractional parts. Double
precision numbers keep track of more digits than do single precision numbers,
but operations on them are sometimes more expensive. This is the way awk

stores numeric values. It is the C type double.

Dynamic Regular Expression
A dynamic regular expression is a regular expression written as an ordinary
expression. It could be a string constant, such as "foo", but it may also be an
expression whose value can vary. (See Section 3.6 [Using Dynamic Regexps],
page 55.)

Empty String
See “Null String.”

Environment
A collection of strings, of the form ‘name=val’, that each program has available
to it. Users generally place values into the environment in order to provide in-
formation to various programs. Typical examples are the environment variables
HOME and PATH.

502 GAWK: Effective AWK Programming

Epoch The date used as the “beginning of time” for timestamps. Time values in
most systems are represented as seconds since the epoch, with library functions
available for converting these values into standard date and time formats.

The epoch on Unix and POSIX systems is 1970-01-01 00:00:00 UTC. See also
“GMT” and “UTC.”

Escape Sequences
A special sequence of characters used for describing nonprinting characters,
such as ‘\n’ for newline or ‘\033’ for the ASCII ESC (Escape) character. (See
Section 3.2 [Escape Sequences], page 48.)

Extension An additional feature or change to a programming language or utility not de-
fined by that language’s or utility’s standard. gawk has (too) many extensions
over POSIX awk.

FDL See “Free Documentation License.”

Field When awk reads an input record, it splits the record into pieces separated
by whitespace (or by a separator regexp that you can change by setting the
predefined variable FS). Such pieces are called fields. If the pieces are of fixed
length, you can use the built-in variable FIELDWIDTHS to describe their lengths.
If you wish to specify the contents of fields instead of the field separator, you
can use the predefined variable FPAT to do so. (See Section 4.5 [Specifying
How Fields Are Separated], page 69, Section 4.6 [Reading Fixed-Width Data],
page 74, and Section 4.7 [Defining Fields by Content], page 77.)

Flag A variable whose truth value indicates the existence or nonexistence of some
condition.

Floating-Point Number
Often referred to in mathematical terms as a “rational” or real number, this is
just a number that can have a fractional part. See also “Double Precision” and
“Single Precision.”

Format Format strings control the appearance of output in the strftime() and
sprintf() functions, and in the printf statement as well. Also, data
conversions from numbers to strings are controlled by the format strings
contained in the predefined variables CONVFMT and OFMT. (See Section 5.5.2
[Format-Control Letters], page 97.)

Fortran Shorthand for FORmula TRANslator, one of the first programming languages
available for scientific calculations. It was created by John Backus, and has
been available since 1957. It is still in use today.

Free Documentation License
This document describes the terms under which this book is published and may
be copied. (See [GNU Free Documentation License], page 521.)

Free Software Foundation
A nonprofit organization dedicated to the production and distribution of freely
distributable software. It was founded by Richard M. Stallman, the author
of the original Emacs editor. GNU Emacs is the most widely used version of
Emacs today.

Glossary 503

FSF See “Free Software Foundation.”

Function A part of an awk program that can be invoked from every point of the program,
to perform a task. awk has several built-in functions. Users can define their
own functions in every part of the program. Function can be recursive, i.e.,
they may invoke themselves. See Chapter 9 [Functions], page 187. In gawk it is
also possible to have functions shared among different programs, and included
where required using the @include directive (see Section 2.7 [Including Other
Files into Your Program], page 43). In gawk the name of the function that
should be invoked can be generated at run time, i.e., dynamically. The gawk

extension API provides constructor functions (see Section 17.4.4 [Constructor
Functions], page 390).

gawk The GNU implementation of awk.

General Public License
This document describes the terms under which gawk and its source code may
be distributed. (See [GNU General Public License], page 509.)

GMT “Greenwich Mean Time.” This is the old term for UTC. It is the time of day
used internally for Unix and POSIX systems. See also “Epoch” and “UTC.”

GNU “GNU’s not Unix”. An on-going project of the Free Software Foundation to
create a complete, freely distributable, POSIX-compliant computing environ-
ment.

GNU/Linux
A variant of the GNU system using the Linux kernel, instead of the Free Soft-
ware Foundation’s Hurd kernel. The Linux kernel is a stable, efficient, full-
featured clone of Unix that has been ported to a variety of architectures. It is
most popular on PC-class systems, but runs well on a variety of other systems
too. The Linux kernel source code is available under the terms of the GNU
General Public License, which is perhaps its most important aspect.

GPL See “General Public License.”

Hexadecimal
Base 16 notation, where the digits are 0–9 and A–F, with ‘A’ representing 10, ‘B’
representing 11, and so on, up to ‘F’ for 15. Hexadecimal numbers are written
in C using a leading ‘0x’, to indicate their base. Thus, 0x12 is 18 ((1×16)+2).
See Section 6.1.1.2 [Octal and Hexadecimal Numbers], page 114.

I/O Abbreviation for “Input/Output,” the act of moving data into and/or out of a
running program.

Input Record
A single chunk of data that is read in by awk. Usually, an awk input record
consists of one line of text. (See Section 4.1 [How Input Is Split into Records],
page 61.)

Integer A whole number, i.e., a number that does not have a fractional part.

Internationalization
The process of writing or modifying a program so that it can use multiple
languages without requiring further source code changes.

504 GAWK: Effective AWK Programming

Interpreter
A program that reads human-readable source code directly, and uses the in-
structions in it to process data and produce results. awk is typically (but not
always) implemented as an interpreter. See also “Compiler.”

Interval Expression
A component of a regular expression that lets you specify repeated matches of
some part of the regexp. Interval expressions were not originally available in
awk programs.

ISO The International Organization for Standardization. This organization pro-
duces international standards for many things, including programming lan-
guages, such as C and C++. In the computer arena, important standards like
those for C, C++, and POSIX become both American national and ISO inter-
national standards simultaneously. This book refers to Standard C as “ISO C”
throughout. See the ISO website for more information about the name of the
organization and its language-independent three-letter acronym.

Java A modern programming language originally developed by Sun Microsystems
(now Oracle) supporting Object-Oriented programming. Although usually im-
plemented by compiling to the instructions for a standard virtual machine (the
JVM), the language can be compiled to native code.

Keyword In the awk language, a keyword is a word that has special meaning. Keywords
are reserved and may not be used as variable names.

gawk’s keywords are: BEGIN, BEGINFILE, END, ENDFILE, break, case, continue,
default, delete, do...while, else, exit, for...in, for, function, func,
if, next, nextfile, switch, and while.

Korn Shell
The Korn Shell (ksh) is a Unix shell which was developed by David Korn at Bell
Laboratories in the early 1980s. The Korn Shell is backward-compatible with
the Bourne shell and includes many features of the C shell. See also “Bourne
Shell.”

Lesser General Public License
This document describes the terms under which binary library archives or
shared objects, and their source code may be distributed.

LGPL See “Lesser General Public License.”

Linux See “GNU/Linux.”

Localization
The process of providing the data necessary for an internationalized program
to work in a particular language.

Logical Expression
An expression using the operators for logic, AND, OR, and NOT, written ‘&&’,
‘||’, and ‘!’ in awk. Often called Boolean expressions, after the mathematician
who pioneered this kind of mathematical logic.

https://www.iso.org/iso/home/about.htm

Glossary 505

Lvalue An expression that can appear on the left side of an assignment operator. In
most languages, lvalues can be variables or array elements. In awk, a field
designator can also be used as an lvalue.

Matching The act of testing a string against a regular expression. If the regexp describes
the contents of the string, it is said to match it.

Metacharacters
Characters used within a regexp that do not stand for themselves. Instead,
they denote regular expression operations, such as repetition, grouping, or al-
ternation.

Nesting Nesting is where information is organized in layers, or where objects contain
other similar objects. In gawk the @include directive can be nested. The “nat-
ural” nesting of arithmetic and logical operations can be changed using paren-
theses (see Section 6.5 [Operator Precedence (How Operators Nest)], page 137).

No-op An operation that does nothing.

Null String
A string with no characters in it. It is represented explicitly in awk programs
by placing two double quote characters next to each other (""). It can appear
in input data by having two successive occurrences of the field separator appear
next to each other.

Number A numeric-valued data object. Modern awk implementations use double pre-
cision floating-point to represent numbers. Ancient awk implementations used
single precision floating-point.

Octal Base-eight notation, where the digits are 0–7. Octal numbers are written in C
using a leading ‘0’, to indicate their base. Thus, 013 is 11 ((1 × 8) + 3). See
Section 6.1.1.2 [Octal and Hexadecimal Numbers], page 114.

Output Record
A single chunk of data that is written out by awk. Usually, an awk output
record consists of one or more lines of text. See Section 4.1 [How Input Is Split
into Records], page 61.

Pattern Patterns tell awk which input records are interesting to which rules.

A pattern is an arbitrary conditional expression against which input is tested.
If the condition is satisfied, the pattern is said to match the input record. A
typical pattern might compare the input record against a regular expression.
(See Section 7.1 [Pattern Elements], page 141.)

PEBKAC An acronym describing what is possibly the most frequent source of computer
usage problems. (Problem Exists Between Keyboard And Chair.)

Plug-in See “Extensions.”

POSIX The name for a series of standards that specify a Portable Operating System
interface. The “IX” denotes the Unix heritage of these standards. The main
standard of interest for awk users is IEEE Standard for Information Technology,
Standard 1003.1TM-2017 (Revision of IEEE Std 1003.1-2008). The 2018 POSIX

506 GAWK: Effective AWK Programming

standard can be found online at https://pubs.opengroup.org/onlinepubs/
9699919799/.

Precedence
The order in which operations are performed when operators are used without
explicit parentheses.

Private Variables and/or functions that are meant for use exclusively by library func-
tions and not for the main awk program. Special care must be taken when
naming such variables and functions. (See Section 10.1 [Naming Library Func-
tion Global Variables], page 234.)

Range (of input lines)
A sequence of consecutive lines from the input file(s). A pattern can specify
ranges of input lines for awk to process or it can specify single lines. (See
Section 7.1 [Pattern Elements], page 141.)

Record See “Input record” and “Output record.”

Recursion When a function calls itself, either directly or indirectly. If this is clear, stop,
and proceed to the next entry. Otherwise, refer to the entry for “recursion.”

Redirection
Redirection means performing input from something other than the standard
input stream, or performing output to something other than the standard out-
put stream.

You can redirect input to the getline statement using the ‘<’, ‘|’, and ‘|&’
operators. You can redirect the output of the print and printf statements to
a file or a system command, using the ‘>’, ‘>>’, ‘|’, and ‘|&’ operators. (See
Section 4.10 [Explicit Input with getline], page 82, and Section 5.6 [Redirect-
ing Output of print and printf], page 102.)

Reference Counts
An internal mechanism in gawk to minimize the amount of memory needed
to store the value of string variables. If the value assumed by a variable is
used in more than one place, only one copy of the value itself is kept, and
the associated reference count is increased when the same value is used by an
additional variable, and decreased when the related variable is no longer in use.
When the reference count goes to zero, the memory space used to store the
value of the variable is freed.

Regexp See “Regular Expression.”

Regular Expression
A regular expression (“regexp” for short) is a pattern that denotes a set of
strings, possibly an infinite set. For example, the regular expression ‘R.*xp’
matches any string starting with the letter ‘R’ and ending with the letters ‘xp’.
In awk, regular expressions are used in patterns and in conditional expressions.
Regular expressions may contain escape sequences. (See Chapter 3 [Regular
Expressions], page 47.)

https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/

Glossary 507

Regular Expression Constant
A regular expression constant is a regular expression written within slashes, such
as /foo/. This regular expression is chosen when you write the awk program
and cannot be changed during its execution. (See Section 3.1 [How to Use
Regular Expressions], page 47.)

Regular Expression Operators
See “Metacharacters.”

Rounding Rounding the result of an arithmetic operation can be tricky. More than one
way of rounding exists, and in gawk it is possible to choose which method
should be used in a program. See Section 16.4.5 [Setting the Rounding Mode],
page 375.

Rule A segment of an awk program that specifies how to process single input records.
A rule consists of a pattern and an action. awk reads an input record; then, for
each rule, if the input record satisfies the rule’s pattern, awk executes the rule’s
action. Otherwise, the rule does nothing for that input record.

Rvalue A value that can appear on the right side of an assignment operator. In awk,
essentially every expression has a value. These values are rvalues.

Scalar A single value, be it a number or a string. Regular variables are scalars; arrays
and functions are not.

Search Path
In gawk, a list of directories to search for awk program source files. In the shell,
a list of directories to search for executable programs.

sed See “Stream Editor.”

Seed The initial value, or starting point, for a sequence of random numbers.

Shell The command interpreter for Unix and POSIX-compliant systems. The shell
works both interactively, and as a programming language for batch files, or shell
scripts.

Short-Circuit
The nature of the awk logical operators ‘&&’ and ‘||’. If the value of the en-
tire expression is determinable from evaluating just the lefthand side of these
operators, the righthand side is not evaluated. (See Section 6.3.3 [Boolean
Expressions], page 133.)

Side Effect
A side effect occurs when an expression has an effect aside from merely pro-
ducing a value. Assignment expressions, increment and decrement expressions,
and function calls have side effects. (See Section 6.2.3 [Assignment Expressions],
page 124.)

Single Precision
An internal representation of numbers that can have fractional parts. Single
precision numbers keep track of fewer digits than do double precision numbers,
but operations on them are sometimes less expensive in terms of CPU time.
This is the type used by some ancient versions of awk to store numeric values.
It is the C type float.

508 GAWK: Effective AWK Programming

Space The character generated by hitting the space bar on the keyboard.

Special File
A file name interpreted internally by gawk, instead of being handed directly to
the underlying operating system—for example, /dev/stderr. (See Section 5.8
[Special File names in gawk], page 105.)

Statement An expression inside an awk program in the action part of a pattern–action
rule, or inside an awk function. A statement can be a variable assignment, an
array operation, a loop, etc.

Stream Editor
A program that reads records from an input stream and processes them one or
more at a time. This is in contrast with batch programs, which may expect to
read their input files in entirety before starting to do anything, as well as with
interactive programs which require input from the user.

String A datum consisting of a sequence of characters, such as ‘I am a string’. Con-
stant strings are written with double quotes in the awk language and may
contain escape sequences. (See Section 3.2 [Escape Sequences], page 48.)

Tab The character generated by hitting the TAB key on the keyboard. It usually
expands to up to eight spaces upon output.

Text Domain
A unique name that identifies an application. Used for grouping messages that
are translated at runtime into the local language.

Timestamp
A value in the “seconds since the epoch” format used by Unix and POSIX
systems. Used for the gawk functions mktime(), strftime(), and systime().
See also “Epoch,” “GMT,” and “UTC.”

Unix A computer operating system originally developed in the early 1970’s at AT&T
Bell Laboratories. It initially became popular in universities around the world
and later moved into commercial environments as a software development sys-
tem and network server system. There are many commercial versions of Unix,
as well as several work-alike systems whose source code is freely available (such
as GNU/Linux, NetBSD, FreeBSD, and OpenBSD).

UTC The accepted abbreviation for “Universal Coordinated Time.” This is standard
time in Greenwich, England, which is used as a reference time for day and date
calculations. See also “Epoch” and “GMT.”

Variable A name for a value. In awk, variables may be either scalars or arrays.

Whitespace
A sequence of space, TAB, or newline characters occurring inside an input
record or a string.

http://www.netbsd.org
https://www.freebsd.org
http://www.openbsd.org

GNU General Public License 509

GNU General Public License

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

https://fsf.org/

510 GAWK: Effective AWK Programming

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

GNU General Public License 511

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

512 GAWK: Effective AWK Programming

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

GNU General Public License 513

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

514 GAWK: Effective AWK Programming

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

GNU General Public License 515

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

516 GAWK: Effective AWK Programming

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

GNU General Public License 517

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

518 GAWK: Effective AWK Programming

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

GNU General Public License 519

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see https://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read https://www.gnu.org/philosophy/why-not-lgpl.html.

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://www.gnu.org/philosophy/why-not-lgpl.html

GNU Free Documentation License 521

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

https://fsf.org/

522 GAWK: Effective AWK Programming

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

GNU Free Documentation License 523

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

524 GAWK: Effective AWK Programming

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

GNU Free Documentation License 525

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

526 GAWK: Effective AWK Programming

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

GNU Free Documentation License 527

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

https://www.gnu.org/copyleft/

528 GAWK: Effective AWK Programming

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index 529

Index

!
! (exclamation point),

! operator 134, 138, 143, 277
!= operator . 131, 138
!~ operator . . 47, 55, 58, 115, 131, 133, 138, 142

"
" (double quote),

in regexp constants . 56
in shell commands . 22

#
(number sign),

#! (executable scripts) . 19
commenting . 20

$
$ (dollar sign),

$ field operator . 65, 138
incrementing fields and arrays 127
regexp operator . 51

%
% (percent sign),

% operator . 138
%= operator . 126, 138

&
& (ampersand),

&& operator . 134, 138
gsub()/gensub()/sub() functions and 198

’
' (single quote) . 17

in gawk command lines . 19
in shell commands . 21
vs. apostrophe . 20
with double quotes . 22

(
() (parentheses),

in a profile . 331
regexp operator . 51

*
* (asterisk),

* operator,
as multiplication operator 138
as regexp operator . 52
null strings, matching 198

** operator . 123, 138
**= operator . 126, 138
*= operator . 126, 138

+
+ (plus sign),

+ operator . 138
++ operator . 127, 138
+= operator . 125, 138
regexp operator . 52

,
, (comma), in range patterns 143

–
- (hyphen),

- operator . 138
-- end of options marker 37
-- operator . 127, 138
-= operator . 126, 138
file names beginning with 32
in bracket expressions . 53

--assign option . 32
--bignum option . 35
--characters-as-bytes option 32
--copyright option . 33
--debug option . 33
--disable-extensions configuration option . . . 470
--disable-lint configuration option 470
--disable-mpfr configuration option 470
--disable-nls configuration option 470
--dump-variables option . 33

using for library functions 234
--enable-versioned-extension-dir

configuration option . 471
--exec option . 33
--field-separator option . 31
--file option . 31
--gen-pot option . 34, 339
--help option . 34
--include option . 34
--lint option . 31, 35
--lint-old option . 37
--load option . 34
--no-optimize option . 36

530 GAWK: Effective AWK Programming

--non-decimal-data option 35, 317
strtonum() function and 317

--optimize option . 36
--posix option . 36

--traditional option and 36
--pretty-print option . 35
--profile option . 36, 329
--re-interval option . 36
--sandbox option . 37

disabling system() function 203
input redirection with getline 82
output redirection with print,

printf . 102
--source option . 33
--traditional option . 32

--posix option and . 36
--use-lc-numeric option . 35
--version option . 37
-b option . 32
-c option . 32
-C option . 33
-d option . 33
-D option . 33
-e option . 33, 37
-E option . 33
-f option . 18, 31

multiple uses . 37
-F option . 31

-Ft sets FS to TAB . 37
command-line . 71

-g option . 34
-h option . 34
-i option . 34
-l option . 34, 35
-L option . 37
-M option . 35
-n option . 35
-N option . 35
-o option . 35
-O option . 36
-p option . 36
-P option . 36
-r option . 36
-s option . 36
-S option . 37
-v option . 32, 118
-V option . 37
-W option . 32

.

. (period), regexp operator . 51

.gmo files . 336
specifying directory of 336, 338

.mo files, converting from .po 343

.po files . 335, 339
converting to .mo . 343

.pot files . 335

/
/ (forward slash),

/ operator . 138
/= operator . 126, 138

vs. /=.../ regexp constant 126
patterns and . 142
to enclose regular expressions 47

/= operator vs. /=.../ regexp constant 126
/dev/... special files . 105
/dev/fd/N special files (gawk) 105
/inet/... special files (gawk) 327
/inet4/... special files (gawk) 327
/inet6/... special files (gawk) 327

:
: (colon),

:: namespace separator 361
?: operator . 138

;
; (semicolon),

AWKPATH variable and . 472
separating rules . 29
separating statements in actions . . . 29, 147, 148

<
< (left angle bracket),

< operator . 131, 138
< operator (I/O) . 84
<= operator . 131, 138

=
= (equals sign),

= operator . 124
== operator . 131, 138

>
> (right angle bracket),

> operator . 131, 138
> operator (I/O) . 102
>= operator . 131, 138
>> operator (I/O) . 103, 138

?
? (question mark),

?: operator . 138
regexp operator . 52, 57

[
[] (square brackets), regexp operator 51

Index 531

^
^ (caret),

^ operator . 138
^= operator . 126, 138
in bracket expressions . 53
in FS . 71
regexp operator . 51, 57

_ (underscore),
C macro . 336
in names of private variables 234
translatable strings . 338

_gr_init() user-defined function 262
_ord_init() user-defined function 239
_pw_init() user-defined function 258

@
@ (at-sign),

@-notation for indirect function calls 225
@include directive . 43
@load directive . 44
@namespace directive . 362

BEGIN, BEGINFILE, END, ENDFILE and . . . 362

\
\ (backslash) . 21

\" escape sequence . 49
\' operator (gawk) . 57
\/ escape sequence . 49
\< operator (gawk) . 57
\> operator (gawk) . 57
\` operator (gawk) . 57
\a escape sequence . 48
\b escape sequence . 48
\B operator (gawk) . 57
\f escape sequence . 48
\n escape sequence . 48
\nnn escape sequence . 48
\r escape sequence . 48
\s operator (gawk) . 57
\S operator (gawk) . 57
\t escape sequence . 48
\v escape sequence . 48
\w operator (gawk) . 57
\W operator (gawk) . 57
\x escape sequence . 48
\y operator (gawk) . 57
as field separator . 72
continuing lines and . 28

comments and . 29
in csh . 28

gsub()/gensub()/sub() functions and 198
in bracket expressions . 53

in escape sequences . 48, 49
POSIX and . 50

in regexp constants . 56
in shell commands . 21
regexp operator . 51

{
{} (braces) . 331

actions and . 147
regexp operator . 52
statements, grouping . 148

|
| (vertical bar) . 51

| operator (I/O) 86, 103, 138
|& operator (I/O) 87, 103, 138, 325

pipes, closing . 108
|| operator . 134, 138

~
~ (tilde), ~ operator 47, 55, 58, 115, 131, 133,

138, 142

A
aaa (amazing awk assembler) program 497
accessing fields . 65
accessing global variables from extensions 403
account information . 256, 260
actions . 147

control statements in . 148
default . 25
empty . 25

Ada programming language 497
adding,

features to gawk . 484
fields . 67

advanced features,
fixed-width data . 74
gawk . 317
network programming . 327
nondecimal input data . 317
processes, communicating with 324
specifying field content . 77

Aho, Alfred . 6, 461
alarm clock example program 290
alarm.awk program . 290
algorithms . 494
all source files, show in debugger 356
allocating memory for extensions 389
amazing awk assembler (aaa) 497
amazingly workable formatter (awf) 497
ambiguity, syntactic: /= operator vs.
/=.../ regexp constant . 126

532 GAWK: Effective AWK Programming

ampersand (&),
&& operator . 134, 138
gsub()/gensub()/sub() functions and 198

anagram.awk program . 310
anagrams, finding . 310
and Boolean-logic operator . 133
and() function (gawk) . 210
AND bitwise operation . 210
ANSI . 497
API,

informational variables . 419
version . 418

arbitrary precision . 367, 368
integers . 377

archaeologists . 478
arctangent . 188
ARGC/ARGV variables . 159

command-line arguments 38
how to use . 166
portability and . 20

ARGIND variable . 160
command-line arguments 38

arguments,
command-line . 38, 159, 166

invoking awk . 31
in function calls . 136
processing . 250

ARGV array . 37
ARGV array, indexing into . 38
arithmetic operators . 122
array manipulation in extensions 408
array members . 173
array scanning order, controlling 176
array subscripts,

null string as . 180
numbers as . 179

arrays . 171
arrays of arrays . 183
as parameters to functions 221
associative . 172

library functions and 234
deleting entire contents . 181
elements,

assigning values . 174
deleting . 180
order of access by in operator 175
retrieving number of 190
that don’t exist . 173

example of using . 174
for statement and . 175
IGNORECASE variable and 173
indexing . 172
merging into strings . 241
multidimensional . 182

scanning . 183
number of elements . 192
numeric subscripts . 179
referencing elements . 173

scanning . 175
sorting,

asort() function (gawk) 322
asorti() function (gawk) 322
IGNORECASE variable and 323

sparse . 172
subscripts, uninitialized variables as 180
unassigned elements . 173

artificial intelligence, gawk and 466
ASCII 48, 54, 113, 240, 290, 326, 459, 460, 463,

499, 502
asort() function (gawk) 190, 322

arrays, sorting . 322
side effects . 322

asorti() function (gawk) 190, 322
arrays, sorting . 322
side effects . 322

assert() function (C library) 236
assert() user-defined function 237
assertions . 236
assign values to variables, in debugger 354
assignment operators . 124

evaluation order . 126
lvalues/rvalues . 124

assignments as file names . 249
associative arrays . 172
asterisk (*),

* operator,
as multiplication operator 138
as regexp operator . 52
null strings, matching 198

** operator . 123, 138
**= operator . 126, 138
*= operator . 126, 138

at-sign (@),
@-notation for indirect function calls 225
@include directive . 43
@load directive . 44
@namespace directive . 362

BEGIN, BEGINFILE, END, ENDFILE and . . . 362
atan2() function . 188
automatic displays, in debugger 355
awf (amazingly workable formatter) program . . 497
awk . 5, See also gawk

function of . 17
gawk and . 5, 7
history of . 6
implementation issues,

pipes . 104
implementations . 480

limits . 88
invoking . 31
language, POSIX version 126, 155, 216
namespace . 361

identifier name storage 363
use for indirect function calls 363

new vs. old . 6
OFMT variable . 120

Index 533

POSIX and 5, See also POSIX awk

profiling, enabling . 36
regexp constants and . 133
terms describing . 7
uses for . 5, 17, 30
versions of . . 447, See also Brian Kernighan’s awk

changes between SVR3.1 and SVR4 448
changes between

SVR4 and POSIX awk 448
changes between V7 and SVR3.1 447

awk programs . 17, 19, 26
complex . 30
debugging, enabling . 33
documenting . 20, 234
examples of . 269
execution of . 154
internationalizing . 214, 337
lengthy . 18

assertions . 236
location of . 31, 33, 34
one-line examples . 25
profiling . 329
running . 17, 18

from shell scripts . 17
without input files . 18

shell variables in . 146
awka compiler for awk . 480
AWKLIBPATH environment variable 41
AWKPATH environment variable 39, 472
awkprof.out file . 329
awksed.awk program . 303
awkvars.out file . 33

B
b debugger command (alias for break) 350
backslash (\) . 21

\" escape sequence . 49
\' operator (gawk) . 57
\/ escape sequence . 49
\< operator (gawk) . 57
\> operator (gawk) . 57
\` operator (gawk) . 57
\a escape sequence . 48
\b escape sequence . 48
\B operator (gawk) . 57
\f escape sequence . 48
\n escape sequence . 48
\nnn escape sequence . 48
\r escape sequence . 48
\s operator (gawk) . 57
\S operator (gawk) . 57
\t escape sequence . 48
\v escape sequence . 48
\w operator (gawk) . 57
\W operator (gawk) . 57
\x escape sequence . 48
\y operator (gawk) . 57

as field separator . 72
continuing lines and . 28

comments and . 29
in csh . 28

gsub()/gensub()/sub() functions and 198
in bracket expressions . 53
in escape sequences . 48, 49

POSIX and . 50
in regexp constants . 56
in shell commands . 21
regexp operator . 51

backtrace debugger command 355
Beebe, Nelson H.F. 12, 188, 481
BEGIN pattern . 69, 144

@namespace directive and 362
assert() user-defined function and 238
Boolean patterns and . 142
exit statement and . 156
getline and . 88
headings, adding . 94
next/nextfile statements and 145, 155
OFS/ORS variables, assigning values to 95
operators and . 144
print statement and . 145
profiling and . 330
pwcat program . 259
running awk programs and 270
TEXTDOMAIN variable and 338

beginfile() user-defined function 246
BEGINFILE pattern . 145

@namespace directive and 362
Boolean patterns and . 142

Bentley, Jon . 500
Benzinger, Michael . 462
Berry, Karl . 12, 460
binary input/output . 157
bindtextdomain() function (C library) 336
bindtextdomain() function (gawk) 214, 338

portability and . 341
BINMODE variable . 157, 472
bit-manipulation functions . 210
bits2str() user-defined function 211
bitwise,

AND . 210
complement . 210
operations . 210
OR . 210
shift . 210
XOR . 210

body,
in actions . 148
in loops . 149

Boolean expressions . 133
as patterns . 142

Boolean operators, See Boolean expressions
Bourne shell, quoting rules for 21
braces ({}) . 331

actions and . 147

534 GAWK: Effective AWK Programming

regexp operator . 52
statements, grouping . 148

bracket expressions . 51, 53
character classes . 53
character lists . 53
collating elements . 54
collating symbols . 54
complemented . 51
equivalence classes . 54
non-ASCII . 54
range expressions . 53

break debugger command . 350
break statement . 152
breakpoint . 346

at location, how to delete 351
commands to execute at 352
condition . 351
delete by number . 351
how to disable or enable 351
setting . 350
show all in debugger . 355

Brennan, Michael 2, 3, 12, 181, 303, 480
Brian Kernighan’s awk . . 30, 50, 57, 64, 71, 86, 123,

145, 153, 154, 156, 181, 197, 198, 201
extensions . 449
source code . 480

Brini, Davide . 312
Brink, Jeroen . 23
Broder, Alan J. 462
Brown, Martin . 461
BSD-based operating systems 508
bt debugger command (alias for backtrace) . . . 355
Buening, Andreas . 12, 462, 479
buffering,

input/output . 205, 325
interactive vs. noninteractive 203

buffers,
flushing . 201, 205
operators for . 57

bug reports, email address,
bug-gawk@gnu.org . 478

bug-gawk@gnu.org bug reporting address 478
built-in functions . 187

evaluation order . 187
BusyBox Awk . 481

C
c.e., See common extensions
C library functions,

assert() . 236
bindtextdomain() . 336
endgrent() . 264
endpwent() . 260
getaddrinfo() . 328
getgrent() . 260, 264
getgrgid() . 263
getgrnam() . 263

getgruser() . 264
getopt() . 250
getpwent() . 256, 259
getpwnam() . 259
getpwuid() . 259
gettext() . 336
textdomain() . 335

call by reference . 221
call by value . 220
call stack,

display in debugger . 355
explanation of . 345

caret (^),
^ operator . 138
^= operator . 126, 138
in bracket expressions . 53
regexp operator . 51, 57

case keyword . 151
case sensitivity,

array indices and . 173
converting case . 198
example programs . 233
gawk . 58
regexps and . 58, 158
string comparisons and . 158

CGI, awk scripts for . 33
character classes, See bracket expressions
character lists, See bracket expressions
character sets (in regular expressions), See bracket
expressions
character sets (machine

character encodings) 240, 499
characters,

counting . 287
transliterating . 292
values of as numbers . 239

Chassell, Robert J. 12
chdir() extension function 432
checking for MPFR . 378
chem utility . 500
chr() extension function . 438
chr() user-defined function 239
clear debugger command . 351
Cliff random numbers . 239
cliff_rand() user-defined function 239
close file or coprocess . 201
close() function . 107, 201

portability . 108
return value . 109
two-way pipes and . 325

Close, Diane . 10, 461
Collado, Manuel . 12, 78
collating elements . 54
collating symbols . 54
Colombo, Antonio . 12, 462
colon (:),

:: namespace separator 361
?: operator . 138

Index 535

columns,
aligning . 94
cutting . 269

comma (,), in range patterns 143
command completion, in debugger 358
command line,

arguments 38, 159, 162, 166
directories on . 91
formats . 17
FS on, setting . 71
invoking awk from . 31
option -f . 18
options . 31

end of . 32
processing . 250
string extraction . 339

variables, assigning on . 118
commands debugger command 352
commands to execute at breakpoint 352
commenting . 20

backslash continuation and 29
common extensions,

** operator . 122
**= operator . 126
/dev/stderr special file 105
/dev/stdin special file . 105
/dev/stdout special file 105
\x escape sequence . 48
BINMODE variable . 472
delete to delete entire arrays 181
func keyword . 216
length() applied to an array 192
RS as a regexp . 63
single character fields . 71

comp.lang.awk newsgroup . 479
comparison expressions . 128

as patterns . 142
string vs. regexp . 132

compatibility mode (gawk),
extensions . 449
file names . 106
hexadecimal numbers . 115
octal numbers . 115
specifying . 32

compiled programs . 493, 500
compiling gawk,

for Cygwin . 473
for MS-Windows . 472
for VMS . 474

compl() function (gawk) . 210
complement, bitwise . 210
component name . 361

naming rules . 362
compound statements, control

statements and . 148
concatenating . 123
condition debugger command 351
conditional expressions . 135

configuration option,
--disable-extensions . 470
--disable-lint . 470
--disable-mpfr . 470
--disable-nls . 470
--enable-versioned-extension-dir 471

configuration options, gawk . 470
constants,

nondecimal . 317
numeric . 113
regexp . 48
string . 113
types of . 113

continue debugger command 352
continue program, in debugger 352
continue statement . 153
control statements . 148
controlling array scanning order 176
converting,

dates to timestamps . 207
integer array subscripts to strings 179
numbers to strings . 119, 211
string to lower case . 198
string to numbers 119, 196, 211
string to upper case . 198

CONVFMT variable . 120, 157
array subscripts and . 179

cookie . 501
coprocesses . 103, 325

closing . 106
getline from . 87

cos() function . 188
cosine . 188
counting words, lines, and characters 287
csh utility . 28

|& operator, comparison with 325
POSIXLY_CORRECT environment variable 38

ctime() user-defined function 217
Curreli, Marco . 462
currency symbols, localization 336
current namespace, pushing and popping 362
current source file, show in debugger 355
current system time . 206
custom.h file . 471
customized input parser . 394
customized output wrapper 399
customized two-way processor 401
cut utility . 269
cut.awk program . 270

536 GAWK: Effective AWK Programming

D
d debugger command (alias for delete) 351
d.c., See dark corner
dark corner . 10, 501

"0" is actually true . 128
/= operator vs. /=.../ regexp constant 126
^, in FS . 71
ARGV variable, value of . 20
array subscripts . 180
break statement . 153
close() function . 109
command-line arguments 119
continue statement . 154
CONVFMT variable . 120
empty programs . 31
escape sequences . 39

for metacharacters . 50
exit statement . 156
field separators . 73
FILENAME variable . 88, 161
FNR/NR variables . 166
format-control characters 97, 98
FS as null string . 71
input files . 63
invoking awk . 31
length() function . 192
locale’s decimal point character 121
multiline records . 80
NF variable, decrementing 68
OFMT variable . 96
range patterns, line continuation and 144
regexp as second argument to index() 192
regexp constants . 116

/= operator and . 126
as arguments to

user-defined functions 116
split() function . 195
string continuation . 114
strings, storing . 65
value of ARGV[0] . 160

data, fixed-width . 74
data-driven languages . 494
database,

group, reading . 260
users, reading . 256

date utility,
GNU . 205
POSIX . 209

dates,
converting to timestamps 207
information related to, localization 337

Davies, Stephen . 12, 461
Day, Robert P.J. 12
dcgettext() function (gawk) 214, 337

portability and . 341
dcngettext() function (gawk) 214, 338

portability and . 341
deadlocks . 325

debugger,
capabilities . 345
command completion . 358
commands,

b (break) . 347, 350
backtrace . 348, 355
break . 347, 350
breakpoint . 347
bt (backtrace) 348, 355
c (continue) . 352
clear . 351
commands . 352
condition . 351
continue . 352
d (delete) . 351
delete . 351
disable . 351
display . 353
down . 355
dump . 357
e (enable) . 351
enable . 351
end . 352
eval . 353
f (frame) . 355
finish . 352
frame . 355
h (help) . 358
help . 358
i (info) . 355
ignore . 352
info . 355
l (list) . 358
list . 358
n (next) . 349, 352
next . 349, 352
nexti . 352
ni (nexti) . 352
o (option) . 356
option . 356
p (print) . 348, 354
print . 348, 354
printf . 354
q (quit) . 358
quit . 358
r (run) . 353
return . 352
run . 348, 353
s (step) . 353
set . 354
si (stepi) . 353
silent . 352
step . 353
stepi . 353
t (tbreak) . 352
tbreak . 352
trace . 358
u (until) . 353

Index 537

undisplay . 354
until . 353
unwatch . 354
up . 355
w (watch) . 354
watch . 354
where (backtrace) . 355

concepts . 345
default list amount . 356
history expansion . 358
history file . 356
history size . 356
how to start . 347
instruction tracing . 356
interaction with namespaces 366
limitations . 359
options . 356
printing all array elements 349
printing single array elements 349
prompt . 347, 356
read commands from a file 356
repeating commands . 350
running the program . 348
save commands to a file 356
setting a breakpoint . 347
stack frames, showing . 348

debugging,
awk programs . 345
example session . 347

debugging gawk, bug reports 478
decimal point character, locale specific 36
decrement operators . 127
default keyword . 151
Deifik, Scott . 12, 461
delete array . 181
delete breakpoint,

at location . 351
by number . 351

delete debugger command 351
delete statement . 180
delete watchpoint . 354
deleting,

elements in arrays . 180
entire arrays . 181

Demaille, Akim . 12
describe call stack frame, in debugger 355
differences in awk and gawk,

ARGC/ARGV variables . 168
ARGIND variable . 160
array elements, deleting 181
AWKLIBPATH environment variable 41
AWKPATH environment variable 39
BEGIN/END patterns . 145
BEGINFILE/ENDFILE patterns 145
BINMODE variable . 157, 472
close() function . 108, 109
command-line directories 91
ERRNO variable . 161

error messages . 105
FIELDWIDTHS variable . 157
FPAT variable . 157
FUNCTAB variable . 161
function arguments . 187
getline command . 82
IGNORECASE variable . 158
implementation limitations 88, 104
indirect function calls . 224
input/output operators 87, 103
length() function . 192
line continuations . 135
LINT variable . 158
match() function . 193
print/printf statements 99
PROCINFO array . 162
read timeouts . 89
record separators . 63
regexp constants . 116
regular expressions . 58
retrying input . 90
RS/RT variables 63, 64, 82, 165
single-character fields . 71
split() function . 195
strings . 113, 114

storing . 65
SYMTAB variable . 165
TEXTDOMAIN variable . 159
trunc-mod operation . 122

directories,
command-line . 91
searching,

for loadable extensions 41
for source files . 39, 314

disable breakpoint . 351
disable debugger command 351
display debugger command 353
display debugger options . 356
division . 122
do-while statement . 150

use of regexps in . 47
documentation,

of awk programs . 234
online . 10

documents, searching . 289
dollar sign ($),

$ field operator . 65, 138
incrementing fields and arrays 127
regexp operator . 51

double quote ("),
in regexp constants . 56
in shell commands . 22

double-precision . 368
down debugger command . 355
Drepper, Ulrich . 12
Duman, Patrice . 12
dump all variables of a program 33
dump debugger command . 357

538 GAWK: Effective AWK Programming

dupword.awk program . 290
dynamic profiling . 332
dynamically loaded extensions 381

E
e debugger command (alias for enable) 351
EBCDIC . 240, 459, 463
effective group ID of gawk user 162
effective user ID of gawk user 162
egrep utility . 53, 274
egrep.awk program . 275
elements in arrays . 173

assigning values . 174
deleting . 180
order of access by in operator 175
scanning . 175

email address for bug reports,
bug-gawk@gnu.org . 478

empty array elements . 173
empty pattern . 146
empty strings, See null strings
EMRED . 327
enable breakpoint . 351
enable debugger command 351
end debugger command . 352
END pattern . 144

@namespace directive and 362
assert() user-defined function and 238
Boolean patterns and . 142
exit statement and . 156
next/nextfile statements and 145, 155
operators and . 144
print statement and . 145
profiling and . 330

endfile() user-defined function 246
ENDFILE pattern . 145

@namespace directive and 362
Boolean patterns and . 142

endgrent() function (C library) 264
endgrent() user-defined function 264
endpwent() function (C library) 260
endpwent() user-defined function 260
English, Steve . 317
ENVIRON array . 160
environment variables,

AWKLIBPATH . 41
AWKPATH . 39, 472
GAWK_LOCALE_DIR . 337
GAWK_READ_TIMEOUT . 90
GAWK_SOCK_RETRIES . 110
in ENVIRON array . 160
LANG . 343
LANGUAGE . 337, 343
LC_ALL . 343
LC_MESSAGES . 343
POSIXLY_CORRECT . 38
used by gawk . 39

epoch, definition of . 501
equals sign (=),

= operator . 124
== operator . 131, 138

EREs (Extended Regular Expressions) 53
ERRNO variable . 161, 328

with BEGINFILE pattern 146
with close() function . 109
with getline command . 82

error handling . 105
ERRNO variable and . 161

error output . 104
escape processing,

gsub()/gensub()/sub() functions 198
escape sequences 48, See also backslash
eval debugger command . 353
evaluate expressions, in debugger 353
evaluation order . 128

concatenation . 123
functions . 187

examining fields . 65
example debugging session . 347
exclamation point (!),

! operator . 134, 138, 277
!= operator . 131, 138
!~ operator . . 47, 55, 58, 115, 131, 133, 138, 142

exit debugger command . 358
exit statement . 156
exit status, of gawk . 43

on VMS . 476
exit the debugger . 358
exp() function . 188
expand utility . 25
Expat XML parser library . 441
exponent . 188
expressions . 113

as patterns . 141
assignment . 124
Boolean . 133
comparison . 128
conditional . 135
selecting . 135

expressions, matching, See comparison expressions
Extended Regular Expressions (EREs) 53
extension API . 383

informational variables . 419
interaction with namespaces 366
version number . 164, 418

extensions,
Brian Kernighan’s awk 449, 459
common,

** operator . 122
**= operator . 126
/dev/stderr special file 105
/dev/stdin special file 105
/dev/stdout special file 105
\x escape sequence . 48
BINMODE variable . 472

Index 539

delete to delete entire arrays 181
fflush() function . 201
func keyword . 216
length() applied to an array 192
RS as a regexp . 63
single character fields 71

in gawk, not in POSIX awk 449
loadable,

allocating memory . 389
array manipulation in 408
distributed with gawk 432
example . 422
gawkextlib project . 441
loading, @load directive 44
registration . 392
search path . 422

mawk . 459
extract.awk program . 300
extraction, of marked strings

(internationalization) . 339

F
f debugger command (alias for frame) 355
false, logical . 128
FDL (Free Documentation License) 521
features,

adding to gawk . 484
deprecated . 45
undocumented . 45

Fenlason, Jay . 6, 461
fflush() function . 201
field numbers . 66
field operator $. 65
field operators, dollar sign as 65
field separator 69, 158, 159, See also OFS

backslash (\) as . 72
choice of . 69
FIELDWIDTHS variable and 157
FPAT variable and . 157
FS variable and . 70
in multiline records . 80
on command line . 71
POSIX and . 73
regular expression as . 69, 70
spaces as . 271
whitespace as . 70

fields . 61, 65, 494
adding . 67
changing contents of . 67
cutting . 269
examining . 65
number of . 65
numbers . 66
printing . 93
separating . 69
single-character . 71

FIELDWIDTHS variable . 74, 157

file descriptors . 104
file inclusion, @include directive 43
file names,

assignments as . 249
distinguishing . 160
in compatibility mode . 106
standard streams in gawk 105

FILENAME variable . 61, 161
getline, setting with . 88

files,
.gmo . 336

specifying directory of 336, 338
.mo, converting from .po 343
.po . 335, 339

converting to .mo . 343
.pot . 335
/dev/... special files . 105
/inet/... (gawk) . 327
/inet4/... (gawk) . 327
/inet6/... (gawk) . 327
awk programs in . 18
awkprof.out . 329
awkvars.out . 33
closing . 201
descriptors, See file descriptors
group . 260
initialization and cleanup 245
input, See input files
log, timestamps in . 205
managing . 245

data file boundaries . 245
message object . 336

converting from portable object files 343
specifying directory of 336, 338

multiple passes over . 39
multiple, duplicating output into 281
output, See output files
password . 256
portable object . 335, 339

converting to message object files 343
generating . 34
template file (.pot) . 335

processing, ARGIND variable and 160
reading . 246

multiline records . 80
searching for regular expressions 274
skipping . 248
source, search path for . 314
splitting . 280
Texinfo, extracting programs from 299

find substring in string . 192
finding extensions . 422
finish debugger command 352
Fish, Fred . 461
fixed-width data . 74
flag variables . 134, 281
floating-point,

numbers . 367

540 GAWK: Effective AWK Programming

arbitrary-precision 367, 368
double-precision . 368
single-precision . 368
VAX/VMS . 477

flush buffered output . 201
fnmatch() extension function 435
FNR variable . 61, 161

changing . 166
for statement . 150

looping over arrays . 175
fork() extension function . 435
format specifiers . 96

mixing regular with positional specifiers . . . 340
printf statement . 97
strftime() function (gawk) 207

format time string . 206
formats, numeric output . 96
formatting,

output . 96
strings . 196

forward slash (/),
/ operator . 138
/= operator . 126, 138

vs. /=.../ regexp constant 126
patterns and . 142
to enclose regular expressions 47

FPAT variable . 77, 157
frame debugger command . 355
Free Documentation License (FDL) 521
Free Software Foundation (FSF) . . 10, 465, 502, 503
FreeBSD . 508
FS variable . 69, 158

--field-separator option and 31
changing value of . 69
containing ^ . 71
in multiline records . 80
null string as . 71
running awk programs and 270
setting from command line 71
TAB character as . 36

FSF (Free Software Foundation) . . 10, 465, 502, 503
fts() extension function . 433
FUNCTAB array . 161
function arguments, show in debugger 355
function calls . 136

indirect . 224
@-notation for . 225

function definition example 216
function definitions, list in debugger 355
function pointers . 224
functions,

arrays as parameters to . 221
built-in . 136, 187

evaluation order . 187
defining . 214
library . 233

assertions . 236
associative arrays and 234

C library . 250
character values as numbers 239
Cliff random numbers 239
command-line options 250
example program for using 304
group database, reading 260
managing data files . 245
managing time . 241
merging arrays into strings 241
rounding numbers . 238
user database, reading 256

names of . 215
recursive . 216
string-translation . 214
undefined . 221
user-defined . 214

calling . 218
counts, in a profile . 331
library of . 233
next/nextfile statements and 155, 156

G
G-d . 13
G., Daniel Richard . 12, 479
Garfinkle, Scott . 461
gawk . 5, See also awk

ARGIND variable in . 38
awk and . 5, 7
bitwise operations in . 210
break statement in . 153
character classes and . 55
coding style in . 484
command-line options,

regular expressions and 57
configuring . 471

options . 470
continue statement in . 154
distribution . 466
dynamic profiling . 332
ERRNO variable in 82, 109, 146, 161, 328
escape sequences 50, See also backslash
extensions, disabling . 36
features,

adding . 484
advanced . 317

field separators and . 158
FIELDWIDTHS variable in 74, 157
file names in . 105
format-control characters 97, 98
FPAT variable in . 77, 157
FUNCTAB array in . 161
function arguments and 187
hexadecimal numbers and 115
IGNORECASE variable in . . 58, 158, 173, 190, 323
implementation issues . 483

debugging . 483
downward compatibility 483

Index 541

limits . 88
pipes . 104

installing . 465
internationalization, See internationalization
interpreter, adding code to 430
interval expressions and . 52
line continuation in . 135
LINT variable in . 158
list of contributors to . 460
MS-Windows version of . 472
newlines in . 28
octal numbers and . 115
predefined variables and 157
PROCINFO array in 38, 162, 206, 326
profiling programs . 332
regexp constants and . 116
regular expressions,

case sensitivity . 58
operators . 56
precedence . 52

RT variable in 63, 64, 82, 165
source code, obtaining . 465
splitting fields and . 79
string-translation functions 214
SYMTAB array in . 165
TEXTDOMAIN variable in . 159
timestamps . 205
uses for . 5
version of . 163

printing information about 37
VMS version of . 474
word-boundary operator . 57

GAWK_LOCALE_DIR environment variable 337
GAWK_READ_TIMEOUT environment variable 90
GAWK_SOCK_RETRIES environment variable 110
gawkextlib project . 441
gawklibpath_append shell function 470
gawklibpath_default shell function 470
gawklibpath_prepend shell function 470
gawkpath_append shell function 470
gawkpath_default shell function 470
gawkpath_prepend shell function 470
General Public License, See GPL
generate time values . 206
gensub() function (gawk) 116, 191

escape processing . 198
getaddrinfo() function (C library) 328
getgrent() function (C library) 260, 264
getgrent() user-defined function 260, 264
getgrgid() function (C library) 263
getgrgid() user-defined function 264
getgrnam() function (C library) 263
getgrnam() user-defined function 263
getgruser() function (C library) 264
getgruser() user-defined function 264
getline command . 61

_gr_init() user-defined function 262
_pw_init() function . 259

BEGINFILE/ENDFILE patterns and 146
coprocesses, using from 87, 106
deadlock and . 325
explicit input with . 82
FILENAME variable and . 88
from a file . 84
into a variable . 84
return values . 82
variants . 88

getlocaltime() user-defined function 241
getopt() function (C library) 250
getopt() user-defined function 251, 252
getpwent() function (C library) 256, 259
getpwent() user-defined function 256, 260
getpwnam() function (C library) 259
getpwnam() user-defined function 259
getpwuid() function (C library) 259
getpwuid() user-defined function 259
gettext library . 335

locale categories . 336
gettext() function (C library) 336
gettimeofday() extension function 441
git utility . 441, 480, 483, 485
Git, use of for gawk source code 487
global variables, show in debugger 356
GNITS mailing list . 12
GNU awk, See gawk

GNU Free Documentation License 521
GNU General Public License, See GPL
GNU Lesser General Public License 504
GNU long options . 31

printing list of . 34
GNU Project . 10, 503
GNU/Linux . 10, 343, 508
Go implementation of awk . 481
goawk . 481
Gordon, Assaf . 462
GPL (General Public License) 10, 503

printing . 33
grcat program . 260
Grigera, Juan . 461
group database, reading . 260
group file . 260
group ID of gawk user . 162
groups, information about. 260
gsub() function . 116, 191

arguments of . 197
escape processing . 198

Guerrero, Juan Manuel 12, 462, 479

542 GAWK: Effective AWK Programming

H
h debugger command (alias for help) 358
Hankerson, Darrel . 12, 461
Haque, John . 462
Hartholz,

Elaine . 12
Marshall . 12

Hasegawa, Isamu . 462
help debugger command . 358
hexadecimal numbers . 114
hexadecimal values, enabling interpretation of . . 35
history expansion, in debugger 358
histsort.awk program . 298
Hughes, Phil . 12
HUP signal, for dynamic profiling 332
hyphen (-),

- operator . 138
-- end of options marker 37
-- operator . 127, 138
-= operator . 126, 138
file names beginning with 32
in bracket expressions . 53

I
i debugger command (alias for info) 355
id utility . 278
id.awk program . 278
if statement . 148

actions, changing . 143
use of regexps in . 47

igawk.sh program . 306
ignore breakpoint . 352
ignore debugger command 352
IGNORECASE variable . 158

array indices and . 173
array sorting functions and 323
in example programs . 233
with ~ and !~ operators . 58

Illumos, POSIX-compliant awk 481
implementation issues, gawk 483

debugging . 483
limits . 88, 104

implicit namespace . 362
in operator . 131, 138, 151

index existence in
multidimensional arrays 182

order of array access . 175
testing if array element exists 173
use in loops . 175

@include directive . 43
including files, @include directive 43
increment operators . 127
index() function . 192
indexing arrays . 172
indirect function calls . 224

@-notation . 225
infinite precision . 367

info debugger command . 355
initialization, automatic . 27
inplace extension . 436
input,

data, nondecimal . 317
explicit . 82
multiline records . 80
splitting into records . 61
standard . 18, 104

input files . 61
closing . 106
counting elements in . 287
examples . 23
reading . 61
running awk without . 18
variable assignments and 38

input pipeline . 86
input record, length of . 192
input redirection . 84
input, files, See input files
input/output,

binary . 157
from BEGIN and END . 145
functions . 201
two-way . 325

insomnia, cure for . 290
installing gawk . 465

Cygwin . 474
MS-Windows . 472
VMS . 474

instruction tracing, in debugger 356
int() function . 188
INT signal (MS-Windows) . 332
integer array indices . 179
integers,

arbitrary precision . 377
unsigned . 367

interacting with other programs 203
internationalization . 214, 335

localization . 159, 335
character classes . 55
currency symbols . 336
gawk and . 335
locale categories . 336
marked strings . 337
monetary information 336
portability and . 341

internationalizing a program 335
interpreted programs . 493, 503
interval expressions, regexp operator 52
inventory-shipped file . 24
invoke shell command . 203
isarray() function (gawk) . 213
ISO . 504

ISO 8601 date and time standard 208
ISO 8859-1 character set 499
ISO Latin-1 character set 499

Index 543

J
Jacobs, Andrew . 258
Jaegermann, Michal . 12, 461
Jannick . 462
Java implementation of awk 481
Java programming language 504
jawk . 481
jedi knights . 45
Johansen, Chris . 312
join() user-defined function 241

K
Kahrs, Jürgen . 12, 461
Kasal, Stepan . 12
Kenobi, Obi-Wan . 45
Kernighan, Brian 6, 10, 12, 86, 123, 233, 449,

461, 480, 495, 500
kill command, dynamic profiling 332
knights, jedi . 45
Kwok, Conrad . 461

L
l debugger command (alias for list) 358
labels.awk program . 295
LANG environment variable . 343
Langston, Peter . 317
LANGUAGE environment variable 337, 343
languages, data-driven . 494
LC_ALL environment variable 343
LC_ALL locale category . 337
LC_COLLATE locale category 336
LC_CTYPE locale category . 336
LC_MESSAGES environment variable 343
LC_MESSAGES locale category 336

bindtextdomain() function (gawk) 339
LC_MONETARY locale category 336
LC_NUMERIC locale category 337
LC_TIME locale category . 337
left angle bracket (<),

< operator . 131, 138
< operator (I/O) . 84
<= operator . 131, 138

left shift, bitwise . 210
leftmost longest match . 80
length of input record . 192
length of string . 192
length() function . 192
Lesser General Public License (LGPL) 504
LGPL (Lesser General Public License) 504
libmawk . 481
libraries of awk functions . 233

assertions . 236
associative arrays and . 234
character values as numbers 239
command-line options . 250
example program for using 304

group database, reading 260
managing,

data files . 245
time . 241

merging arrays into strings 241
rounding numbers . 238
user database, reading . 256

line breaks . 28
line continuations . 134

gawk . 135
in print statement . 94
with C shell . 27

lines,
blank, printing . 93
counting . 287
duplicate, removing . 298
matching ranges of . 143
skipping between markers 143

lint checking . 158
array subscripts . 180, 181
empty programs . 31
issuing warnings . 35
POSIXLY_CORRECT environment variable 38
undefined functions . 222

LINT variable . 158
Linux, See GNU/Linux
list all global variables, in debugger 356
list debugger command . 358
list function definitions, in debugger 355
@load directive . 44
loading extensions . 34

@load directive . 44
local variables,

in a function . 218
show in debugger . 355

locale categories . 336
locale decimal point character 36
locale, definition of . 138
localization, See internationalization, localization
log files, timestamps in . 205
log() function . 188
logarithm . 188
logical false/true . 128
logical operators, See Boolean expressions
login information . 256
long options . 31
loops 149, See also while statement

break statement and . 152
continue statement and 151
count for header, in a profile 331
do-while . 150
exiting . 152
for,

array scanning . 175
iterative . 150

while . 149
ls utility . 27
lshift() function (gawk) . 210

544 GAWK: Effective AWK Programming

lvalues/rvalues . 124

M
mail-list file . 23
mailing labels, printing . 295
mailing list, GNITS . 12
Malmberg, John . 12, 462, 479
mark parity . 240
marked string extraction

(internationalization) . 339
Marx, Groucho . 128
match regexp in string . 193
match() function . 193

RSTART/RLENGTH variables 193
side effects . 193

matching,
expressions, See comparison expressions
leftmost longest . 80
null strings . 198

mawk utility 50, 86, 123, 156, 480
maximum precision supported by

MPFR library . 164
McIlroy, Doug . 501
McPhee, Patrick T.J. 462
memory, allocating for extensions 389
message object files . 336

converting from portable object files 343
specifying directory of 336, 338

messages from extensions . 401
metacharacters,

escape sequences for . 50
in regular expressions . 50

minimum precision required by
MPFR library . 164

mktime() function (gawk) . 206
modifiers, in format specifiers 99
module, definition of . 361
monetary information, localization 336
Moore, Duncan . 88
MPFR, checking for . 378
msgfmt utility . 343
multiple precision . 367
multiple-line records . 80

N
n debugger command (alias for next) 352
name management . 363
names,

arrays/variables . 234
functions . 215, 234

namespace,
awk . 361
default . 361
definition of . 361
example code . 364
implicit . 362

pushing and popping . 362
standard awk, global . 361

@namespace directive . 362
namespaces,

backwards compatibility 366
changing . 362
interaction with,

debugger . 366
extension API . 366
pretty printer . 365
profiler . 365

naming rules . 362
qualified names . 361

naming issues . 234
functions . 215

naming rules, namespace and
component names . 362

Neacsu, Mircea . 481
NetBSD . 508
networks,

programming . 327
support for . 106

newlines . 28, 36, 134
as record separators . 61
in dynamic regexps . 56
in regexp constants . 56
printing . 93
separating statements in actions 147, 148

next debugger command . 352
next file statement . 454
next statement . 135, 154

BEGIN/END patterns and 145
BEGINFILE/ENDFILE patterns and 146
user-defined functions and 155

nextfile statement . 155
BEGIN/END patterns and 145
BEGINFILE/ENDFILE patterns and 146
user-defined functions and 156

nexti debugger command . 352
NF variable . 65, 161

decrementing . 68
ni debugger command (alias for nexti) 352
noassign.awk program . 249
non-existent array elements 173
not Boolean-logic operator . 133
NR variable . 61, 161

changing . 166
null strings . 63, 70, 128, 495

as array subscripts . 180
converting numbers to strings 120
deleting array elements and 181
in gawk arguments, quoting and 22
matching . 198

number of array elements . 192
number sign (#),

#! (executable scripts) . 19
commenting . 20

Index 545

numbers,
as array subscripts . 179
as string of bits . 211
as values of characters . 239
Cliff random . 239
converting . 119, 211

to strings . 157, 158
hexadecimal . 114
octal . 114
rounding . 238

numeric,
constants . 113
functions . 188
output format . 96
strings . 130

O
o debugger command (alias for option) 356
obsolete features . 45
octal numbers . 114
octal values, enabling interpretation of 35
OFMT variable . 96, 120, 158

POSIX awk and . 96
OFS variable . 68, 95, 159
OpenBSD . 508
OpenSolaris . 481
operating systems . . 465, See also GNU/Linux, See

also PC operating systems, See also Unix
BSD-based . 10
PC, gawk on . 472

installing . 472
porting gawk to . 485

operations, bitwise . 210
operators,

arithmetic . 122
assignment . 124

evaluation order . 126
comparison . 131
decrement/increment . 127
GNU-specific . 56
input/output 84, 86, 87, 102, 103, 138
precedence of . 128, 137
short-circuit . 134
string . 123
string-matching . 47

for buffers . 57
word-boundary (gawk) . 57

operators, Boolean, See Boolean expressions
operators, logical, See Boolean expressions
operators, relational, See operators, comparison
option debugger command 356
options,

command-line . 31
end of . 32
invoking awk . 31
processing . 250

deprecated . 45

long . 31
printing list of . 34

or Boolean-logic operator . 133
or() function (gawk) . 210
OR bitwise operation . 210
ord() extension function . 437
ord() user-defined function 239
order of evaluation, concatenation 123
ORS variable . 95, 159
output,

buffering . 201, 205
duplicating into files . 281
files, closing . 106
format specifier, OFMT . 96
formatted . 96
pipes . 103
records . 95
standard . 104

output field separator, See OFS variable
output record separator, See ORS variable
output redirection . 102
output wrapper . 399
output, printing, See printing

P
p debugger command (alias for print) 354
package, definition of . 361
Papadopoulos, Panos . 462
parent process ID of gawk process 163
parentheses (),

in a profile . 331
regexp operator . 51

password file . 256
patsplit() function (gawk) 194
patterns . 141

Boolean expressions as . 142
comparison expressions as 142
counts, in a profile . 331
default . 25
empty . 146
expressions as . 141
ranges in . 143
regexp constants as 47, 141, 142
types of . 141

pawk (profiling version of Brian
Kernighan’s awk) . 481

pawk, awk-like facilities for Python 482
PC operating systems, gawk on 472

installing . 472
percent sign (%),

% operator . 138
%= operator . 126, 138

period (.), regexp operator . 51
Perl . 489
Peters, Arno . 462
Peterson, Hal . 461

546 GAWK: Effective AWK Programming

pipe,
closing . 106
input . 86
output . 103

platform running on . 163
Plauger, P.J. 233
plug-in . 381
plus sign (+),

+ operator . 138
++ operator . 127, 138
+= operator . 125, 138
regexp operator . 52

pointers to functions . 224
portability . 49

#! (executable scripts) . 20
** operator and . 123
**= operator and . 126
ARGV variable . 20
backslash continuation and 28
backslash in escape sequences 50
close() function and . 108
data files as single record 65
deleting array elements . 181
example programs . 233
functions, defining . 216
gawk . 485
gettext library and . 335
internationalization and 341
length() function . 192
new awk vs. old awk . 120
next statement in user-defined functions . . . 222
NF variable, decrementing 68
operators . 128

not in POSIX awk . 138
POSIXLY_CORRECT environment variable 38
substr() function . 198

portable object,
files . 335, 339

converting to message object files 343
generating . 34

template files . 335
porting gawk . 485
positional specifiers, printf statement 99, 340

mixing with regular formats 340
POSIX,

awk and . 5
gawk extensions not included in 449
programs, implementing in awk 269

POSIX awk . 7, 126
** operator and . 138
**= operator and . 126
< operator and . 85
| I/O operator and . 86
arithmetic operators and 122
backslashes in string constants 50
BEGIN/END patterns . 145
bracket expressions and . 53

character classes . 53, 55

break statement and . 153
changes in awk versions . 448
continue statement and 154
CONVFMT variable and . 157
date utility and . 209
field separators and . 73
function keyword in . 216
functions and,

gsub()/sub() . 200
length() . 192

GNU long options and . 31
interval expressions in . 52
next/nextfile statements and 155
numeric strings and . 130
OFMT variable and . 96, 120
period (.), using . 51
printf format strings and 101
regular expressions and . 52
timestamps and . 205

POSIX mode 36, 38, 51, 92, 106, 109, 114, 121,
133, 195, 322, 380, 456

POSIXLY_CORRECT environment variable 38
PREC variable . 159
precedence . 128, 137

regexp operators . 52
predefined variables . 157

-v option, setting with . 32
conveying information . 159
user-modifiable . 157

pretty printer, interaction with namespaces 365
pretty printing . 35, 332

profiling, difference with 332
print debugger command . 354
print statement . . 93, See also redirection of output

BEGIN/END patterns and 145
commas, omitting . 94
I/O operators in . 138
line continuations and . 94
OFMT variable and . 159
sprintf() function and 238

print variables, in debugger 354
printf debugger command 354
printf statement . . . 93, 96, See also redirection of

output
columns, aligning . 94
format-control characters 97
I/O operators in . 138
modifiers . 99
positional specifiers . 99, 340

mixing with regular formats 340
sprintf() function and 238
syntax of . 96

printing . 93
list of options . 34
mailing labels . 295
messages from extensions 401
unduplicated lines of text 283
user information . 278

Index 547

private variables . 234
process group ID of gawk process 163
process ID of gawk process . 163
processes, two-way communications with 324
processing data . 493
PROCINFO array . 162, 206, 256

communications via ptys and 326
group membership and . 260
platform running on . 163
testing the field splitting 259
user and group ID numbers and 278
values of sorted_in . 177

profiler, interaction with namespaces 365
profiling awk programs . 329

dynamically . 332
profiling, pretty printing, difference with 332
program identifiers . 162
program, definition of . 17
programming,

basic steps . 493
concepts . 493

programming conventions,
--non-decimal-data option 317
ARGC/ARGV variables . 160
exit statement . 156
function parameters . 223
functions,

calling . 187
writing . 215

gawk extensions . 425
private variable names . 234

programming language, recipe for 6
programming languages,

Ada . 497
data-driven vs. procedural 17
Go . 481
Java . 504

pwcat program . 256

Q
q debugger command (alias for quit) 358
QSE awk . 482
qualified name,

definition of . 361
use of . 361

Quanstrom, Erik . 290
question mark (?),

?: operator . 138
regexp operator . 52, 57

QuikTrim Awk . 482
quit debugger command . 358
QUIT signal (MS-Windows) . 332
quoting,

for small awk programs . 20
in gawk command lines . 19

tricks for . 22

R
r debugger command (alias for run) 353
Rakitzis, Byron . 298
Ramey, Chet . 12, 385
rand() function . 188
random numbers,

Cliff . 239
rand()/srand() functions 188
seed of . 189

range expressions (regexps) . 53
range patterns . 143

line continuation and . 144
Rankin, Pat . 12, 125, 461
RapidJson JSON parser library 441
reada() extension function 439
readable data files, checking 248
readable.awk program . 248
readdir extension . 438
readfile() extension function 440
readfile() user-defined function 243
reading input files . 61
recipe for a programming language 6
record separators . 61, 159

changing . 63
newlines as . 61
regular expressions as . 63
with multiline records . 80

records . 61, 494
multiline . 80
printing . 93
splitting input into . 61
terminating . 63
treating files as . 65

recursive functions . 216
redirect gawk output, in debugger 356
redirection,

of input . 84
of output . 102
on VMS . 477

reference counting, sorting arrays 323
regexp . 47
regexp constants . 48, 115, 133

/=.../,
/= operator and . 126

as patterns . 142
in gawk . 116
slashes vs. quotes . 56
vs. string constants . 56

register loadable extension . 392
regular expressions . 47

anchors in . 51
as field separators . 69, 70
as patterns . 47, 141
as record separators . 63
case sensitivity . 58, 158
computed . 55
dynamic . 55

with embedded newlines 56

548 GAWK: Effective AWK Programming

gawk, command-line options 57
interval expressions and . 36
leftmost longest match . 55
operators . 47, 50

for buffers . 57
for words . 56
gawk . 56
precedence of . 52

searching for . 274
regular expressions, constants, See regexp constants
relational operators, See comparison operators
replace in string . 196
retrying input . 90
return debugger command 352
return statement, user-defined functions 222
return value, close() function 109
rev() user-defined function 217
revoutput extension . 439
revtwoway extension . 439
rewind() user-defined function 247
right angle bracket (>),

> operator . 131, 138
> operator (I/O) . 102
>= operator . 131, 138
>> operator (I/O) . 103, 138

right shift, bitwise . 210
Ritchie, Dennis . 495
RLENGTH variable . 165

match() function and . 193
Robbins,

Arnold 72, 86, 258, 290, 385, 462, 479, 489
Bill . 86
Harry . 13
Jean . 13
Miriam . 13, 86, 258

Rommel, Kai Uwe . 461
round to nearest integer . 188
round() user-defined function 238
rounding numbers . 238
ROUNDMODE variable . 159, 375
RS variable . 61, 159

multiline records and . 80
rshift() function (gawk) . 210
RSTART variable . 165

match() function and . 193
RT variable . 63, 64, 82, 165
Rubin, Paul . 6, 461
rule, definition of . 17
run debugger command . 353
rvalues/lvalues . 124

S
s debugger command (alias for step) 353
sample debugging session . 347
sandbox mode . 37
save debugger options . 356
scalar or array . 213
scalar values . 494
scanning arrays . 175
scanning multidimensional arrays 183
Schorr, Andrew . 12, 165, 462
Schreiber,

Bert . 12
Rita . 12

search and replace in strings 191
search for substring . 192
search paths . 314, 472, 477

for loadable extensions . 41
for source files 39, 314, 472, 477

searching,
files for regular expressions 274
for words . 289

sed utility . 73, 302, 497
seeding random number generator 189
semicolon (;),

AWKPATH variable and . 472
separating rules . 29
separating statements in actions . . . 29, 147, 148

separators,
field . 158, 159

FIELDWIDTHS variable and 157
FPAT variable and . 157
FS variable and . 70

for records . 61, 63, 159
regular expressions as 63

for statements in actions 147
subscript . 159

set breakpoint . 350
set debugger command . 354
set directory of message catalogs 214
set watchpoint . 354
shadowing of variable values 216
shell function,

gawklibpath_append . 470
gawklibpath_default . 470
gawklibpath_prepend . 470
gawkpath_append . 470
gawkpath_default . 470
gawkpath_prepend . 470

shell quoting, rules for . 21
shells,

piping commands into . 104
quoting . 146

rules for . 21
scripts . 17
sea . 45
variables . 146

shift, bitwise . 210
short-circuit operators . 134

Index 549

show in debugger,
all source files . 356
breakpoints . 355
function arguments . 355
local variables . 355
name of current source file 355
watchpoints . 356

si debugger command (alias for stepi) 353
side effects . 123, 127, 128

array indexing . 173
asort() function . 322
asorti() function . 322
assignment expressions . 124
Boolean operators . 134
conditional expressions . 135
decrement/increment operators 127
FILENAME variable . 88
function calls . 136
gsub() function . 197
match() function . 193
statements . 148
sub() function . 197

sidebar,
A Constant’s Base Does

Not Affect Its Value . 115
Backslash Before Regular Characters 49
Beware The Smoke and Mirrors! 212
Changing FS Does Not Affect the Fields 73
Changing NR and FNR . 166
Controlling Output

Buffering with system() 204
Escape Sequences for Metacharacters 50
FS and IGNORECASE . 74
Interactive Versus

Noninteractive Buffering 203
Matching the Null String 198
Operator Evaluation Order 128
Piping into sh . 104
Pre-POSIX awk Used OFMT for

String Conversion . 120
Recipe for a Programming Language 6
Rounding Modes and Conversion 376
RS = "\0" Is Not Portable 64
So Why Does gawk Have
BEGINFILE and ENDFILE? 246

Syntactic Ambiguities Between ‘/=’
and Regular Expressions 126

Understanding ‘#!’ . 19
Understanding $0 . 69
Using \n in Bracket Expressions

of Dynamic Regexps . 56
Using close()’s Return Value 108

SIGHUP signal, for dynamic profiling 332
SIGINT signal (MS-Windows) 332
signals,

HUP/SIGHUP, for profiling 332
INT/SIGINT (MS-Windows) 332
QUIT/SIGQUIT (MS-Windows) 332

USR1/SIGUSR1, for profiling 332
signature program . 312
SIGQUIT signal (MS-Windows) 332
SIGUSR1 signal, for dynamic profiling 332
silent debugger command 352
sin() function . 189
sine . 189
single quote (') . 17

in gawk command lines . 19
in shell commands . 21
vs. apostrophe . 20
with double quotes . 22

single records, treating files as 65
single-character fields . 71
single-precision . 368
single-step execution, in the debugger 352
Skywalker, Luke . 45
sleep utility . 292
sleep() extension function 441
Smith, Gavin . 12
Solaris, POSIX-compliant awk 481
sort array . 190
sort array indices . 190
sort function, arrays, sorting 322
sort utility . 297

coprocesses and . 325
sorting characters in different languages 336
source code,

awka . 480
Brian Kernighan’s awk . 480
BusyBox Awk . 481
embeddable awk interpreter 481
gawk . 465
goawk . 481
Illumos awk . 481
jawk . 481
libmawk . 481
mawk . 480
mixing . 33
pawk (profiling version of

Brian Kernighan’s awk) 481
pawk (Python version) . 482
QSE awk . 482
QuikTrim Awk . 482
Solaris awk . 481

source file, show in debugger 355
source files, search path for 314
sparse arrays . 172
Spencer, Henry . 497
split string into array . 194
split utility . 280
split() function . 194

array elements, deleting 181
split.awk program . 280
sprintf() function . 96, 196

print/printf statements and 238
sqrt() function . 189
square brackets ([]), regexp operator 51

550 GAWK: Effective AWK Programming

square root . 189
srand() function . 189
stack frame (debugger) . 345
Stallman, Richard 10, 11, 461, 502
standard error . 104
standard input . 18, 104
standard output . 104
starting the debugger . 347
stat() extension function . 432
statements,

compound, control statements and 148
control, in actions . 148
multiple . 29

step debugger command . 353
stepi debugger command . 353
stop automatic display, in debugger 354
stream editors . 73, 302
strftime() function (gawk) 206
string,

constants . 113
vs. regexp constants . 56

extraction (internationalization) 339
length . 192
operators . 123
regular expression match of 193

string-manipulation functions 189
string-matching operators . 47
string-translation functions . 214
strings,

continuation across lines 114
converting . 119, 211

numbers to . 157, 158
converting letter case . 198
empty, See null strings
extracting . 339
for localization . 337
length limitations . 113
merging arrays into . 241
null . 70
numeric . 130
splitting, example . 195

strtonum() function (gawk) 196
--non-decimal-data option and 317

sub() function . 116, 196
arguments of . 197
escape processing . 198

subscript separators . 159
subscripts in arrays,

multidimensional . 182
scanning . 183

numbers as . 179
uninitialized variables as 180

SUBSEP variable . 159
multidimensional arrays and 182

substitute in string . 191
substr() function . 197
substring . 197
Sumner, Andrew . 480

supplementary groups of gawk process 164
switch statement . 151
SYMTAB array . 165
syntactic ambiguity: /= operator vs.
/=.../ regexp constant . 126

system() function . 203
systime() function (gawk) . 206

T
t debugger command (alias for tbreak) 352
tbreak debugger command 352
Tcl . 234
TCP/IP . 327

support for . 106
tee utility . 281
tee.awk program . 282
temporary breakpoint . 352
terminating records . 63
testbits.awk program . 211
testext extension . 441
Texinfo 9, 233, 289, 299, 467, 485

chapter beginnings in files 51
extracting programs from source files 299

text, printing . 93
unduplicated lines of . 283

textdomain() function (C library) 335
TEXTDOMAIN variable . 159, 337

BEGIN pattern and . 338
portability and . 341

tilde (~), ~ operator 47, 55, 58, 115, 131, 133,
138, 142

time,
alarm clock example program 290
localization and . 337
managing . 241
retrieving . 205

time functions . 205
timeout, reading input . 89
timestamps . 205, 206

converting dates to . 207
formatted . 241

tolower() function . 198
toupper() function . 198
tr utility . 292
trace debugger command . 358
traceback, display in debugger 355
translate string . 214
translate.awk program . 293
treating files, as single records 65
troubleshooting,

--non-decimal-data option 35
== operator . 132
awk uses FS not IFS . 69
backslash before nonspecial character 50
division . 122
fatal errors,

field widths, specifying 74

Index 551

printf format strings 101
fflush() function . 202
function call syntax . 136
gawk . 483

bug reports . 478
fatal errors, function arguments 187

getline command . 248
gsub()/sub() functions 197
match() function . 194
print statement, omitting commas 94
printing . 104
quotes with file names . 105
readable data files . 248
regexp constants vs. string constants 56
string concatenation . 123
substr() function . 197
system() function . 203
typographical errors, global variables 33

true, logical . 128
Trueman, David . 6, 12, 461
trunc-mod operation . 122
truth values . 128
type,

conversion . 120
of variable, typeof() function (gawk) 213

typeof() function (gawk) . 213

U
u debugger command (alias for until) 353
unassigned array elements . 173
undefined functions . 221
underscore (_),

C macro . 336
in names of private variables 234
translatable strings . 338

undisplay debugger command 354
undocumented features . 45
Unicode . 240, 460, 499
uninitialized variables, as array subscripts 180
uniq utility . 283
uniq.awk program . 284
Unix . 508

awk scripts and . 19
Unix awk,

backslashes in escape sequences 50
close() function and . 109
password files, field separators and 72

unsigned integers . 367
until debugger command . 353
unwatch debugger command 354
up debugger command . 355
uppercase names, namespace for 361
user database, reading . 256
user-defined,

function,
_gr_init() . 262
_ord_init() . 239

_pw_init() . 258
assert() . 237
beginfile() . 246
bits2str() . 211
chr() . 239
cliff_rand() . 239
ctime() . 217
endfile() . 246
endgrent() . 264
endpwent() . 260
getgrent() . 260, 264
getgrgid() . 264
getgrnam() . 263
getgruser() . 264
getlocaltime() . 241
getopt() . 251, 252
getpwent() . 256, 260
getpwnam() . 259
getpwuid() . 259
join() . 241
ord() . 239
readfile() . 243
rev() . 217
rewind() . 247
round() . 238
walk_array() . 265

functions . 214
counts, in a profile . 331

variables . 118
user-modifiable variables . 157
users, information about,

printing . 278
retrieving . 256

USR1 signal, for dynamic profiling 332

V
values,

numeric . 494
regexp . 117
string . 494

variable assignments and input files 38
variable type, typeof() function (gawk) 213
variables . 29, 494

assigning on command line 118
built-in . 118
flag . 134
getline command into, using 84, 85, 87
global,

for library functions . 234
printing list of . 33

initializing . 118
local to a function . 218
predefined . 157

-v option, setting with 32
conveying information 159

private . 234
setting . 32

552 GAWK: Effective AWK Programming

shadowing . 216
types of . 124

comparison expressions and 128
uninitialized, as array subscripts 180
user-defined . 118

version of,
gawk . 163
gawk extension API . 164
GNU MP library . 164
GNU MPFR library . 164

vertical bar (|) . 51
| operator (I/O) . 86, 138
|& operator (I/O) 87, 138, 325
|| operator . 134, 138

Vinschen, Corinna . 12

W
w debugger command (alias for watch) 354
w utility . 74
wait() extension function . 436
waitpid() extension function 435
walk_array() user-defined function 265
Wall, Larry . 171, 489
Wallin, Anders . 462
warnings, issuing . 35
watch debugger command . 354
watchpoint (debugger) . 346
watchpoints, show in debugger 356
wc utility . 287
wc.awk program . 287
Weinberger, Peter . 6, 461
where debugger command (alias

for backtrace) . 355
while statement . 149

use of regexps in . 47
whitespace,

as field separators . 70
definition of . 65
functions, calling . 187
newlines as . 36

Williams, Kent . 461
Woehlke, Matthew . 461
Woods, John . 461
word boundaries, matching . 57
word, regexp definition of . 56
word-boundary operator (gawk) 57
wordfreq.awk program . 297
words,

counting . 287
duplicate, searching for . 289
usage counts, generating 296

writea() extension function 439

X
xgettext utility . 339
xor() function (gawk) . 210
XOR bitwise operation . 210

Y
Yawitz, Efraim . 462

Z
Zaretskii, Eli . 12, 461, 479
zerofile.awk program . 248
Zoulas, Christos . 461

	Foreword to the Third Edition
	Foreword to the Fourth Edition
	Preface
	History of awk and gawk
	A Rose by Any Other Name
	Using This Book
	Typographical Conventions
	Dark Corners

	The GNU Project and This Book
	How to Contribute
	Acknowledgments

	1 Getting Started with awk
	How to Run awk Programs
	One-Shot Throwaway awk Programs
	Running awk Without Input Files
	Running Long Programs
	Executable awk Programs
	Comments in awk Programs
	Shell Quoting Issues
	Quoting in MS-Windows Batch Files

	Data files for the Examples
	Some Simple Examples
	An Example with Two Rules
	A More Complex Example
	awk Statements Versus Lines
	Other Features of awk
	When to Use awk
	Summary

	2 Running awk and gawk
	Invoking awk
	Command-Line Options
	Other Command-Line Arguments
	Naming Standard Input
	The Environment Variables gawk Uses
	The AWKPATH Environment Variable
	The AWKLIBPATH Environment Variable
	Other Environment Variables

	gawk's Exit Status
	Including Other Files into Your Program
	Loading Dynamic Extensions into Your Program
	Obsolete Options and/or Features
	Undocumented Options and Features
	Summary

	3 Regular Expressions
	How to Use Regular Expressions
	Escape Sequences
	Regular Expression Operators
	Regexp Operators in awk
	Some Notes On Interval Expressions

	Using Bracket Expressions
	How Much Text Matches?
	Using Dynamic Regexps
	gawk-Specific Regexp Operators
	Case Sensitivity in Matching
	Summary

	4 Reading Input Files
	How Input Is Split into Records
	Record Splitting with Standard awk
	Record Splitting with gawk

	Examining Fields
	Nonconstant Field Numbers
	Changing the Contents of a Field
	Specifying How Fields Are Separated
	Whitespace Normally Separates Fields
	Using Regular Expressions to Separate Fields
	Making Each Character a Separate Field
	Setting FS from the Command Line
	Making the Full Line Be a Single Field
	Field-Splitting Summary

	Reading Fixed-Width Data
	Processing Fixed-Width Data
	Skipping Intervening Fields
	Capturing Optional Trailing Data
	Field Values With Fixed-Width Data

	Defining Fields by Content
	More on CSV Files

	Checking How gawk Is Splitting Records
	Multiple-Line Records
	Explicit Input with getline
	Using getline with No Arguments
	Using getline into a Variable
	Using getline from a File
	Using getline into a Variable from a File
	Using getline from a Pipe
	Using getline into a Variable from a Pipe
	Using getline from a Coprocess
	Using getline into a Variable from a Coprocess
	Points to Remember About getline
	Summary of getline Variants

	Reading Input with a Timeout
	Retrying Reads After Certain Input Errors
	Directories on the Command Line
	Summary
	Exercises

	5 Printing Output
	The print Statement
	print Statement Examples
	Output Separators
	Controlling Numeric Output with print
	Using printf Statements for Fancier Printing
	Introduction to the printf Statement
	Format-Control Letters
	Modifiers for printf Formats
	Examples Using printf

	Redirecting Output of print and printf
	Special Files for Standard Preopened Data Streams
	Special File names in gawk
	Accessing Other Open Files with gawk
	Special Files for Network Communications
	Special File name Caveats

	Closing Input and Output Redirections
	Enabling Nonfatal Output
	Summary
	Exercises

	6 Expressions
	Constants, Variables, and Conversions
	Constant Expressions
	Numeric and String Constants
	Octal and Hexadecimal Numbers
	Regular Expression Constants

	Using Regular Expression Constants
	Standard Regular Expression Constants
	Strongly Typed Regexp Constants

	Variables
	Using Variables in a Program
	Assigning Variables on the Command Line

	Conversion of Strings and Numbers
	How awk Converts Between Strings and Numbers
	Locales Can Influence Conversion

	Operators: Doing Something with Values
	Arithmetic Operators
	String Concatenation
	Assignment Expressions
	Increment and Decrement Operators

	Truth Values and Conditions
	True and False in awk
	Variable Typing and Comparison Expressions
	String Type versus Numeric Type
	Comparison Operators
	String Comparison Based on Locale Collating Order

	Boolean Expressions
	Conditional Expressions

	Function Calls
	Operator Precedence (How Operators Nest)
	Where You Are Makes a Difference
	Summary

	7 Patterns, Actions, and Variables
	Pattern Elements
	Regular Expressions as Patterns
	Expressions as Patterns
	Specifying Record Ranges with Patterns
	The BEGIN and END Special Patterns
	Startup and Cleanup Actions
	Input/Output from BEGIN and END Rules

	The BEGINFILE and ENDFILE Special Patterns
	The Empty Pattern

	Using Shell Variables in Programs
	Actions
	Control Statements in Actions
	The if-else Statement
	The while Statement
	The do-while Statement
	The for Statement
	The switch Statement
	The break Statement
	The continue Statement
	The next Statement
	The nextfile Statement
	The exit Statement

	Predefined Variables
	Built-in Variables That Control awk
	Built-in Variables That Convey Information
	Using ARGC and ARGV

	Summary

	8 Arrays in awk
	The Basics of Arrays
	Introduction to Arrays
	Referring to an Array Element
	Assigning Array Elements
	Basic Array Example
	Scanning All Elements of an Array
	Using Predefined Array Scanning Orders with gawk

	Using Numbers to Subscript Arrays
	Using Uninitialized Variables as Subscripts
	The delete Statement
	Multidimensional Arrays
	Scanning Multidimensional Arrays

	Arrays of Arrays
	Summary

	9 Functions
	Built-in Functions
	Calling Built-in Functions
	Numeric Functions
	String-Manipulation Functions
	More about \ and & with sub(), gsub(), and gensub()

	Input/Output Functions
	Time Functions
	Bit-Manipulation Functions
	Getting Type Information
	String-Translation Functions

	User-Defined Functions
	Function Definition Syntax
	Function Definition Examples
	Calling User-Defined Functions
	Writing a Function Call
	Controlling Variable Scope
	Passing Function Arguments by Value Or by Reference
	Other Points About Calling Functions

	The return Statement
	Functions and Their Effects on Variable Typing

	Indirect Function Calls
	Summary

	10 A Library of awk Functions
	Naming Library Function Global Variables
	General Programming
	Converting Strings to Numbers
	Assertions
	Rounding Numbers
	The Cliff Random Number Generator
	Translating Between Characters and Numbers
	Merging an Array into a String
	Managing the Time of Day
	Reading a Whole File at Once
	Quoting Strings to Pass to the Shell

	Data file Management
	Noting Data file Boundaries
	Rereading the Current File
	Checking for Readable Data files
	Checking for Zero-Length Files
	Treating Assignments as File names

	Processing Command-Line Options
	Reading the User Database
	Reading the Group Database
	Traversing Arrays of Arrays
	Summary
	Exercises

	11 Practical awk Programs
	Running the Example Programs
	Reinventing Wheels for Fun and Profit
	Cutting Out Fields and Columns
	Searching for Regular Expressions in Files
	Printing Out User Information
	Splitting a Large File into Pieces
	Duplicating Output into Multiple Files
	Printing Nonduplicated Lines of Text
	Counting Things

	A Grab Bag of awk Programs
	Finding Duplicated Words in a Document
	An Alarm Clock Program
	Transliterating Characters
	Printing Mailing Labels
	Generating Word-Usage Counts
	Removing Duplicates from Unsorted Text
	Extracting Programs from Texinfo Source Files
	A Simple Stream Editor
	An Easy Way to Use Library Functions
	Finding Anagrams from a Dictionary
	And Now for Something Completely Different

	Summary
	Exercises

	12 Advanced Features of gawk
	Allowing Nondecimal Input Data
	Controlling Array Traversal and Array Sorting
	Controlling Array Traversal
	Sorting Array Values and Indices with gawk

	Two-Way Communications with Another Process
	Using gawk for Network Programming
	Profiling Your awk Programs
	Summary

	13 Internationalization with gawk
	Internationalization and Localization
	GNU gettext
	Internationalizing awk Programs
	Translating awk Programs
	Extracting Marked Strings
	Rearranging printf Arguments
	awk Portability Issues

	A Simple Internationalization Example
	gawk Can Speak Your Language
	Summary

	14 Debugging awk Programs
	Introduction to the gawk Debugger
	Debugging in General
	Debugging Concepts
	awk Debugging

	Sample gawk Debugging Session
	How to Start the Debugger
	Finding the Bug

	Main Debugger Commands
	Control of Breakpoints
	Control of Execution
	Viewing and Changing Data
	Working with the Stack
	Obtaining Information About the Program and the Debugger State
	Miscellaneous Commands

	Readline Support
	Limitations
	Summary

	15 Namespaces in gawk
	Standard awk's Single Namespace
	Qualified Names
	The Default Namespace
	Changing The Namespace
	Namespace and Component Naming Rules
	Internal Name Management
	Namespace Example
	Namespaces and Other gawk Features
	Summary

	16 Arithmetic and Arbitrary-Precision Arithmetic with gawk
	A General Description of Computer Arithmetic
	Other Stuff to Know
	Arbitrary-Precision Arithmetic Features in gawk
	Floating-Point Arithmetic: Caveat Emptor!
	Floating-Point Arithmetic Is Not Exact
	Many Numbers Cannot Be Represented Exactly
	Be Careful Comparing Values
	Errors Accumulate

	Getting the Accuracy You Need
	Try a Few Extra Bits of Precision and Rounding
	Setting the Precision
	Setting the Rounding Mode

	Arbitrary-Precision Integer Arithmetic with gawk
	How To Check If MPFR Is Available
	Standards Versus Existing Practice
	Summary

	17 Writing Extensions for gawk
	Introduction
	Extension Licensing
	How It Works at a High Level
	API Description
	Introduction
	General-Purpose Data Types
	Memory Allocation Functions and Convenience Macros
	Constructor Functions
	Registration Functions
	Registering An Extension Function
	Registering An Exit Callback Function
	Registering An Extension Version String
	Customized Input Parsers
	Customized Output Wrappers
	Customized Two-way Processors

	Printing Messages
	Updating ERRNO
	Requesting Values
	Accessing and Updating Parameters
	Symbol Table Access
	Variable Access and Update by Name
	Variable Access and Update by Cookie
	Creating and Using Cached Values

	Array Manipulation
	Array Data Types
	Array Functions
	Working With All The Elements of an Array
	How To Create and Populate Arrays

	Accessing and Manipulating Redirections
	API Variables
	API Version Constants and Variables
	GMP and MPFR Version Information
	Informational Variables

	Boilerplate Code
	Changes From Version 1 of the API

	How gawk Finds Extensions
	Example: Some File Functions
	Using chdir() and stat()
	C Code for chdir() and stat()
	Integrating the Extensions

	The Sample Extensions in the gawk Distribution
	File-Related Functions
	Interface to fnmatch()
	Interface to fork(), wait(), and waitpid()
	Enabling In-Place File Editing
	Character and Numeric values: ord() and chr()
	Reading Directories
	Reversing Output
	Two-Way I/O Example
	Dumping and Restoring an Array
	Reading an Entire File
	Extension Time Functions
	API Tests

	The gawkextlib Project
	Summary
	Exercises

	A The Evolution of the awk Language
	Major Changes Between V7 and SVR3.1
	Changes Between SVR3.1 and SVR4
	Changes Between SVR4 and POSIX awk
	Extensions in Brian Kernighan's awk
	Extensions in gawk Not in POSIX awk
	History of gawk Features
	Common Extensions Summary
	Regexp Ranges and Locales: A Long Sad Story
	Major Contributors to gawk
	Summary

	B Installing gawk
	The gawk Distribution
	Getting the gawk Distribution
	Extracting the Distribution
	Contents of the gawk Distribution

	Compiling and Installing gawk on Unix-Like Systems
	Compiling gawk for Unix-Like Systems
	Shell Startup Files
	Additional Configuration Options
	The Configuration Process

	Installation on Other Operating Systems
	Installation on MS-Windows
	Installing a Prepared Distribution for MS-Windows Systems
	Compiling gawk for PC Operating Systems
	Using gawk on PC Operating Systems
	Using gawk In The Cygwin Environment
	Using gawk In The MSYS Environment

	Compiling and Installing gawk on Vax/VMS and OpenVMS
	Compiling gawk on VMS
	Compiling gawk Dynamic Extensions on VMS
	Installing gawk on VMS
	Running gawk on VMS
	The VMS GNV Project
	Some VMS Systems Have An Old Version of gawk

	Reporting Problems and Bugs
	Submitting Bug Reports
	Please Don't Post Bug Reports to USENET
	Reporting Problems with Non-Unix Ports

	Other Freely Available awk Implementations
	Summary

	C Implementation Notes
	Downward Compatibility and Debugging
	Making Additions to gawk
	Accessing The gawk Git Repository
	Adding New Features
	Porting gawk to a New Operating System
	Why Generated Files Are Kept In Git

	Probable Future Extensions
	Some Limitations of the Implementation
	Extension API Design
	Problems With The Old Mechanism
	Goals For A New Mechanism
	Other Design Decisions
	Room For Future Growth

	Summary

	D Basic Programming Concepts
	What a Program Does
	Data Values in a Computer

	Glossary
	GNU General Public License
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Index

