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F..t:".[`D;(;);{. y};F[]]F[.;`f]:9$D[]"/ The first line executes each formula of F[]/ and assigns the results to the corresponding/ positions of D. The second line assigns those/ values of D to the corresponding display fields of F.F:D:.+(`a`b`c`d; 4 53#,"") / 4 across and 53 deep`show$`FFigure 1: This K program implements a 4 by 53 spreadsheet, including a user interface andfull access to vector functionality. Comments begin with slashes. The program has two datastructures: a set of formulas and constants F and a set of data D. Every time a formula ischanged, the trigger F..t �res. This trigger updates the data D based on the data and for-mulas. The strings F and data D are initialized to be 4 by 53 arrays of blanks. The lastline displays the spreadsheet. This program has slightly more functionality (because arbi-trary formulas are allowed) than a simple spreadsheet written in Java presented at locationhttp://www.javasoft.com/applets/applets/SpreadSheet/example1.html.Unlike most other list-based languages, K is extremely fast. For example, sorting three millionrecords in memory takes two seconds on an IBM 990. K is also small. The entire runtime system,written in C, �ts in 300,000 bytes.The basic data structures are arbitrary length multi-lists and dictionaries (associative arrays).Binary operations on equi-length multi-lists include element-by-element addition, multiplication,subtraction, and division. max, and min. Boolean comparison (<;>;=) operators are alsoelement-by-element returning a list of 1s and 0s. These operators are overloaded with scalarvariants as in APL. So one can, for example, compare 5 to every element in a list L and get alist of 1s and 0s of length jLj such that position i is 1 if 5 is equal to the ith position in the listand 0 otherwise.Rearrangement operators include sort, duplicate removal, and partition. Partition on a listL returns a list of sublists of positions where a given sublist of positions consists of all thosepositions in L having equal values. For example applying partition to the list 105 20 30 20 3030 105 returns a list consisting of sublists 0 6 (positions having value 105), 1 3 (positions havingvalue 20), and 2 4 5 (positions having value 30).Location functions include \member" (i.e. is a value in a list), \�nd" (viz., �nd �rst place in alist having a value), and \where" (�nd all places in a list having a value). Find can be optimizedusing hashing.Any operator can be modi�ed to form a cross-product as well as left and right \half-cross-products." Using the full cross-product, one can, for example, compare every member of list L1with every member of another list L2. This returns a list of 1s and 0s whose length is the productof the cardinalities of L1 and of L2. Using the left half-cross-product, one can also compare (oradd or divide or any other binary operations) each member of L1 with all of L2 returning a list



of sublists where each sublist is of the length of L2 and the number of sublists is the length ofL1.Reduction operators include count and pre�x scan. For example, one can modify the operatorplus with pre�x scan on the list 3 5 7 8 9 and get the result 3 8 15 23 32. Another operator(called \over") gives the last element of the plus pre�x scan (32 for the example above).Two-dimensional tables are built from multiple lists (a fully vertically partitioned representa-tion in which each attribute is associated with a list). Each value in an attribute can itself be alist. Vertical partitioning works well for decision support, because only the attributes necessaryfor a query are brought in. (Also, the scanning rates in K are very fast. For example, 8 millionrecords in RAM can be scanned in 1.9 seconds on an UltraSparc I to check that a �eld value isgreater than 5 using the \where" feature mentioned above.)The operators above allow K to implement relational algebra and aggregates including groupby and having clauses. An e�cient library for all of relational algebra �ts comfortably on apage. Since K treats names as regular data, one can perform second-order queries. Suppose, forexample, that you want to union certain �elds of a group of tables, where the group is presentedas a list of names. SQL doesn't allow this, but K's second order facility makes this a short oneliner.In addition, K has uni�ed �le input/output with TCP/IP support, and has a graphical userinterface built on top of X-Windows in which the values of variables can determine their color.This is useful on Wall Street where painting losses red is a useful visual cue.K does not have pointers, so does not need to worry about pointer swizzling. Instead data-structures are memory-mapped from �les.Having a language with bulk operators implies that there is no discontinuity between dataintensive operators and other operators. In the Wall Street context, for example, K supportsboth trading and analytics in a seamless fashion. There is no need for cursors, 4th genera-tion languages, embedding calls from C or C++, SQL, OSQL, PowerBuilder, Motif, or Open-Client/OpenServer packages.Note: The Sigmod reviewers found it annoying that we had no references for K. The languageis in fact proprietary, even its description. We therefore depend on the reader's cultural knowledgeof APL as well as the descriptions above to get a sense of what the language is.2 Transaction Processing StrategyThe rest of this paper concentrates on only the most essential aspects of the K language:A full and very fast programming language with bulk operators that can easily express SQL,embodies order (e.g., top ten queries), and that can both access disks and send and receiveTCP/IP messages. How do we construct an online transaction processing from such a language?It turns out to be embarrassingly simple. Assume that a transaction program is implementedas a K procedure, so it can be described by its name and its arguments. Typical Wall Streetprograms enter a trade and update the trader's position as well as many subsidiary risk tablesand back o�ce (bill-clearing) databases. A message may consist of many transaction instances(hereafter just transactions). Our basic strategy is to log all incoming messages onto disk andthen to perform the transactions in those messages on the in-memory version of the database.Recovery consists of replaying the logged transactions on disk after reproducing the state from



an appropriate dump. (In our applications so far, this is the dump of the state as of last night.)Message logging is su�cient because the database is updated sequentially.2.1 Group LoggingThe basic strategy is slow if every transaction is logged separately. So, we write many trans-actions (each transaction is represented by its transaction type and all its parameters) at a timeto disk. Once they are written to disk, they are secure against main memory failure, becauseone can always recover the state of the database by replaying the log.2.2 Disaster RecoveryWarm start recovery might be slow even with group logging, because one might have to recoverfrom a transaction log that is very long. Avoiding this problem requires frequent (i.e. intra-day)dumping, but let us step back a minute.In the Wall Street setting, we are worried not only about warm start recovery (processorfailure) and media failure (local disk) but site failure as well (remember the World Trade Centerbombing?). So, we are interested in remote backups. Further, we want to dump the databasestate periodically for fast recovery in case of a massive power failure.For these reasons, the backup sites behave di�erently from the primary, as seen in �gure 7.1.On the primary, a single process logs a batch of transactions and applies them to the in-memorydatabase. In every backup, a logger process will receive transactions and log them both on diskand in memory, but is not responsible for applying the transaction to the in-memory database.Once a transaction t is logged on backup b, b will report that t is stable on b. A commit messagefor transaction t will be sent back to the client after it is stable at the primary and a su�cientnumber of backups (how many is a policy issue) and the primary completes the transaction inits main memory database.After logging and replying to the client, the logger process sends large groups of transactionsasynchronously to the worker process which performs the transaction against the main memorydatabase. The logger also periodically instructs the worker process to dump its (the worker's)state to disk. While the worker dumps its state, new transactions will accumulate in its bu�er.One might wonder how the worker will ever catch up to the primary. Note that the workerwill have a huge number of transactions in the bu�er and won't have to log to disk. In ourexperiments, the in-memory performance of K on TPC/B yields transaction rates of slightlyover 50,000 transactions per second on a (167 MHz) UltraSparc I in the absence of TCP/IPand logging vs. 25,000 with the overhead of TCP/IP and logging. So the worker processes ofFigure 7.1 can catch up to the primary at the 50,000 transactions per second rate when it is�nished dumping.Like two phase commit, this strategy ensures that a su�cient number of backups can bebrought up-to-date, but there is negligible overhead per transaction. The net e�ect is that wecan continue processing seamlessly if the primary fails since at least one of the backups will beup-to-date. In the unlikely event, that there is a memory failure of all sites, we can recover byrolling forward from the most recent dump.Ordering the Transaction Arrivals



We now must solve a distributed coordination problem: transactions must be applied in thesame order to all data servers. A simple method is to have a single time server processor thatassigns a sequence number to each transaction and then funnels them to all data servers. Failureof this processor however could cause the entire system to be unavailable.Handling time server failures requires coordination that is as hard as the consensus problem[8]and is therefore prone to blocking, but can be made safe using ISIS process groups[2] and livewith high probability. A possible alternative is to choose an application-speci�c approach whichwe describe in the appendix. Both schemes entail little overhead during failure-free execution(two messages per server per collection of transactions).What Have We Gained?To implement a replicated backup in a standard concurrent database setting, a commit protocolis necessary to ensure (among other things) that transactions commit in the same order at theseveral sites. This requires coordination among all sites (usually through a transaction manageror TP monitor)[11] for each transaction. Because our basic transactions execute sequentially, wecan ensure that the primaries and backups are consistent merely by ensuring that the messagesarrive in the same order at all sites. The moment of commit requires no coordination at all.The only point of coordination is embodied in a time server process group that assigns sequencenumbers to each transaction, sending them to each data server across a point-to-point networkor using multicast. The data servers execute the transactions in sequence number order.Recovering data servers can join the data server group by taking a feed from a dump beingwritten by some other site, replaying the log from that site, and registering with the time server.2.3 Results of this approachWhile the TPC/B benchmark may be an inappropriate benchmark for retailing and perhapsinsurance, it models trading applications quite well. Those applications are characterized byindexed lookups requiring subsecond response time. Here is a brief review of the benchmark:�The database consists of four tables: Account, Teller, Branch, and History with a many-to-one relationship between Account.BranchID and Branch.BranchID and a further many-to-one relationship between Teller.BranchID and Branch.BranchID.�Branch records must contain at least 100 bytes. The intended database size is 10 megabytesper TPS.�The transaction consists of the following steps:1.update account.balance for a given accountid.2.update the teller.balance for a given tellerid.3.update the branch.balance for a given branchid.4. insert the accountid, tellerid, branchid, update amount, and timestamp into a history�le5.commit the work



The approach we used admittedly doesn't �t the rules for this now outlawed benchmark. Ourbasic violation is that we don't let the data grow to 2� 1011 bytes. Further, the history �le wasour log, so we wrote into history at the beginning of the transaction and never needed to commitwork.On an UltraSparc I having 250 megabyte of RAM, we ran a TPC/B benchmark having only8 million records. (All the relevant �elds are hashed, so changing the size from 1 million to 8million records didn't change the timing. On an IBM 990 having 2 gigabytes of memory, thetimings also didn't change with size but were 30% below these numbers. The point is that thesenumbers would change little if the UltraSparc had a bigger RAM.)Two parameters are relevant: (i) whether messages are sent over TCP/IP or not and how bigthe messages are and (ii) whether we log the transactions to disk and in what size.�No TCP/IP; No logging:50,505 transactions per second.This is relevant to our backup strategy because the backup catches up at this rate after ithas dumped the database state.�No TCP/IP; Logging:32,258 transactions per second.�TCP/IP messages of 10,000 transactions each; No logging:26,316 transactions per second.�TCP/IP messages of 1,000 transactions each; Logging in groups of of 2,500 transactionseach:22,703 transactions per second.Note that the response time is still under a second�TCP/IP messages of 10,000 transactions each; Logging in groups of of 10,000 transactionseach:25,017 transactions per second.�For data that spills to disk:5 transactions per second.When data exceeds RAM size, the transaction rate is gated by the disk access that eachtransaction must make against the account table. We now show how to attack this problem.2.4 Aggregate Style QueriesTPC/B is a low functionality benchmark. Let us consider a group by query which is typicalin decision support applications. The data consists of 978,858 rows of telephone billing data (63megabytes). Consider a group by operation that reduces the size to 5,400 rows.set statistics time on;select sum(ReportedCost) as charge, BillingID



into #temp from usage0197 group by BillingID;set statistics time off;drop table #temp;Our hardware consists of two 200 megahertz Ultra Sparc IIs with 1.5 gigabytes of RAM andthe latest version of a major commercial database. We run the query once without timing it.Then we run it several times and get times of around 10.8 seconds per query. Note that #tempis unlogged and will reside in memory.The equivalent group by query in K takes 1.5 seconds once the initial data is in main memory.If K writes the data to a �le on another machine, the time rises to 2.5 seconds.3 Multithreading without Concurrency ControlThe most straightforward way to implement the replicated state machine approach is to executetransactions in the order in which they arrive. This proved to be slow if some of the data is onlyon disk (causing TPC/B performance to decline to 5 TPS from over 20,000). This suggests theneed for multithreading. Multithreading would also be useful for shared memory multiprocessors.A good �rst impulse should be to partition the database and assign one process to eachpartition. That will make better use of the disks on a single server. If one can partition thedatabase into several servers, then the entire problem goes away.If partitioning is impossible or inconvenient, we can achieve parallelism across processors or toparallel disk arms by using multiple K processes while ensuring that transactions APPEAR toexecute in the order in which they arrive. Provided all sites do this, we are assured of consistencyacross the sites. Note that we are asking for a tighter constraint than serializability. We are askingfor a serializable execution that is equivalent to a particular order of transactions (the arrivalorder of transactions).The algorithm OBEYORDER makes use of a programmer-provided predicate called CON-FLICT that will determine whether two transactions con
ict in the normal serializability sense[1]. For example, for TPC/B, CONFLICT(t1, t2) will hold if and only if t1 and t2 access thesame account, branch or teller (and then only if we are worried about negative balances); allother updates are commutative. OBEYORDER works as follows:1.Log the transactions in batches on disk as they arrive.2.Construct a graph whose nodes are the transactions in a batch. Form directed edges fromthe undirected CONFLICT relationship as follows. If t con
icts with t' and t has an earliersequence number than t', then form a directed edge (t, t'). This produces a graph G = (T,E) where T is the set of all the transactions in the batch (or batches) and E is the set ofdirected con
ict edges.3.Execute T in parallel, respecting the order implied by E:while G is not empty doR := roots of G.execute R in parallel



remove R from G as well as all edges in G that touch Rend whileThat is, execute the roots of G in parallel. Then remove those nodes from G, forming anew graph G', and execute the roots of G' in parallel. Continue until there are no morenodes left.Figure 3 illustrates this algorithm.
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Fig:  Illustration of ObeyOrder  AlgorithmFigure OBEYORDER shows the intended order of transactions (according to arrivalorder) and the con
ict edges.Theorem 3.1Algorithm OBEYORDER yields an execution that is equivalent to a serial execu-tion of transactions in ascending order of sequence number.proof.To be equivalent, the two executions must order con
icting transactions in the same way. SinceOBEYORDER executes con
icting transactions in sequence order (i.e. arrival order), the resultfollows.Two possible practical objections to this algorithm can be raised. First, OBEYORDER de-pends on knowledge of con
icting transactions. This may not always be possible (though weoften �nd it easy in our transaction processing applications, where con
icts are determined bythe keys). Second, there may be many con
icts, thus excessively limiting concurrency (and morethan a normal database system would).This second objection leads to a PREFETCHING optimization that is independent of OBE-YORDER and exploits the following observation: One can always prefetch data provided one



holds it in a shared bu�er. So, if a transaction t must access account x, it fetches x. If anothertransaction s updates x and s precedes t in the update order, everything is �ne provided theyaccess the same copy of x. The PREFETCHING operation reads data into RAM for as manytransactions as possible, according to the same priority arrangement that OBEYORDER gives.That is, form a topological sort according to the graph de�ned in the OBEYORDER algorithmand read as much data as possible for those transactions in that order.As a side note, one might remark that we may eject pages once they have been used by sometransaction, since it is unlikely that they will be used again. Thus, improvements to the currentlyimplemented LRU bu�er replacement policy are possible.4 Attacks and ParriesHere we list all the objections we have heard against this approach and our responses to them.In some cases, we must agree with the attackers.4.1 The Worried Programmer ArgumentAttack: \Your programmers have to avoid concurrency whereas our programmers (i.e. onesusing a system with system-directed deadlock detection and rollback) can use it without worryingabout it."Parry: First, an application bene�ts from concurrency only if it exceeds the size of RAMor runs on a multiprocessor and can't be partitioned. (We discuss ways K can handle thisfurther in the next subsection.) Second, it is not true that application programmers on relationaldatabase management systems can remain unconcerned about concurrency. If a Sybase or Oracleapplication runs into a deadlock, it must retry it, and often must recover its own program state,because rollback doesn't recover local variables. In our experience on Wall Street, this constitutessome of the most error-prone code in a database application even for experienced applicationsdevelopers.4.2 The Single-threading is History ArgumentAttack: \As shared memory multiprocessors get more and more popular (especially with largememories and 64 bit addressing), the single-threaded argument will be history."Parry: This argument appears to attack the core of our design. Our speed advantage at eachsite depends partly on the lack of concurrency control. Ditto for our doing without two phasecommit. But even accepting the limitation of single-threaded equivalence, K can do severalthings with shared memory multiprocessors:1.Partitioning: many applications can be partitioned on geographical or other grounds, inwhich case each partition can proceed in a single-threaded manner.2.Once K has multithreading, intra-transaction parallelism can be used (e.g. to update thetrade and position tables in a trading system in parallel). Intra-transaction parallelismalso preserves the illusion of single-threaded transactions. The programmer would have torecognize the potential for such parallelism, but would be able to apply it easily since K



has an operator that applies to each member of a list conceptually in parallel. In thiscase, the list would consist of operators on di�erent tables and one would apply all theseoperators in parallel.3.Many of the operators in K such as scan, sort, sum, and partition can be parallelized bothin-memory and on-disk. Such work is in the medium-term horizon for K. Parallelizing suchoperators requires no changes to the programming model and preserves the semantics ofsingle-threading from a concurrency point of view.4. Inter-transaction parallelism can be supported using the OBEYORDER algorithm. Onemight object that this fails in the face of ad hoc queries, but there are few ad hoc queriesduring a busy online window.This said, we admit that our lack of concurrency control makes K unsuitable for IRS (U.S.tax authority) style databases. So be it.4.3 The Buggy Whip/Bandwagon ArgumentAttack: \SQL is the only (real) game in town. You guys are crazy to re�ght a battle that islong over."Parry: In our setting, some applications are written using K database servers and others useSybase or Oracle. Applications running on top of relational database management systems thatrequire very high performance do virtually all their processing outside of the RDBMS anyway.The interface to the persistent storage manager is then extremely painful and ine�cient.Further, K's single-threaded approach allows excellent disaster recovery without the overheadof two phase commit or the window of vulnerability o�ered by replication servers (where theuser can be told that a transaction has committed before it has been applied at the backup site).If you admit that you want a sequential machine approach, then you must be concerned aboutthe following fact: SQL isn't deterministic even if executed sequentially as observed by RichardGostanian of ISIS[10].The basic reason is that set-oriented operations are non-deterministic, e.g. book a 9 am 
ightfrom jfk to lax on feb. 4 Which 
ight is booked and which seat is chosen may depend on recordlayouts. SQL enforces no order. If one gets exactly the same disks and lays out tables in exactlythe same way, one may hope that the results everywhere are the same, but (i) this is hard to do(ii) the guarantee you get depends on implementation details way below the level of the relationaldata model.One might counter-argue that certain operations are inherently non-deterministic, e.g. callsto a timer. K programs that make such calls must make those calls at the client and submit anynecessary times as parameters of the transaction.Moreover, set-oriented (orderless) languages are inferior to list-preserving ones for many prac-tical applications. Queries on the ten most recent events, year-by-year comparisons, cost of goodssold calculations as well as extensions proposed for decision support by Redbrick (http://www.redbrick.com)and in recent issues of DBMS by Ralph Kimball in his \Data Warehouse Architect" column [14]require notions of order. Scienti�c databases [21] also require order. Writing such queries in SQL



requires a Joe Celko (editor of DBMS magazine and SQL puzzlist extraordinaire) to do at alland even he may have trouble doing them e�ciently.As a �rst step away from legacy systems, developers can use K only in a call-out mode. Oneof our applications, for example, uses K to perform bond valuation calculations. It is called fromSybase through Open Server.Finally, the truly faint at heart can use K's SQL 89 library if they insist on using that language.It runs fast, but is painful for those used to the power of the K language.By the way, didn't relational systems encounter this same bandwagon-style objection in theearly 80s?4.4 The Physical Data Independence ArgumentAttack: \Anyone can design a great algorithm and data structure for a particular problem,but you will never be able to reuse the structures you have designed."Parry: Tables are easily represented as multi-lists. Physical data independence happens asa result of the clever implementation of the bulk operators. We have never found it to be aproblem to write new queries against our global data structures.Further, multivalued dependencies do not need to be decomposed. If a user is associatedwith a set of permissions, one can make the association in the natural way: a user list and aset-of-permissions list.steve {trade, sales-order-match, position}arthur {risk-management, sales-order-match}dennis {risk-management, position}There is no need for further decomposition. The relational partisan might respond that puttingsets in the authorizations column makes queries of the form Which users are associated with acertain permission? hard to answer. But these are easy in K. For example, the following query�nds those user ids having authorization for trade.user.id[ & `trade _in `user.auths]4.5 The Query Optimizer ArgumentAttack: \Your programmers must �gure out how to implement queries, whereas SQL pro-grammers may state their queries declaratively and the optimizer will �gure out what to do."Parry: None, really. A cynic might say that RDBMS query optimizers leave a lot to be desired| witness the temporaries people create to avoid bad processing of DISTINCT, ORs or NOTIN, or witness the facilities o�ered by the DBMS vendors to force indexes and table orderings.Witness also the errors introduced by \improvements" to the optimizers1 But we are not cynics.In K, a little thinking (e.g. avoiding cross-products) yields extremely fast running times forcomplex queries because scan, sort, and duplicate elimination are very well implemented.1One major vendor improved its \not in" and \in" processing in such a way that it gave wrong answers. Inone example, we tested two queries A and B which di�ered only in that query A had "... and trade.pt id in (5,2)"and query B had "... and trade.pt id in (2,5)". Query A returned 13 rows and query B returned 0.



4.6 The Interoperability ArgumentAttack: \Ok, if someone comes to you with a brand new application, you might have a chance,but you have to interoperate with other database systems. How will you do that?"Parry: This objection does in fact cause some pain when we design K applications. The prob-lem boils down to a multi-database concurrency control and recovery problem: if a K databasefails, its recovery consists partly of simply replaying its transactions from the log, including returnvalues from other database systems. This allows the K database to recover its state correctly.The K system should not, however, replay the writes it has made to foreign (e.g., relational)databases. Somehow, it must determine which writes it has done and which it must do uponrecovery. Our solution to this is to keep \persistent breadcrumbs" (in the form of a table) of alltransactions issued by the K system on each foreign database and to keep the breadcrumb tableon the foreign database. Every write transaction from K to the foreign database includes a writeto the breadcrumb table that uniquely describes the transaction. The code also includes a checkto see whether that transaction has already occurred.For example, suppose that a K transaction updates tables R and S in a foreign databaseOTHER. There is no two phase commit across the OTHER and K databases, so the interfaceincludes a third (breadcrumb) table in OTHER called idInK. The pseudo-code to update R andS now looks like this (seqnum is the sequence number of the K transaction and is a parameterof the transaction that is stored in the K log):if (recovering on K side) {begin transaction on OTHER sideif (seqno not in idInK) then update R and S and put seqno in idInKelse do nothingend transaction} else { /* normal operation on K side,OTHER side is working normally.so there is no way seqno could be in idInK */begin transaction on OTHER sideupdate R and S and put seqno in idInKend transaction}There are two other matters to take care of:1. If there is a deadlock in an OTHER side transaction, then the K side must do deadlockretry. This is as arduous for us as it is for anyone else.2. If the OTHER side crashes, the K side must wait for it to recover and must be able tohandle the problem that transactions with the same sequence numbers may arrive. The Kside program must avoid doing a transaction twice.



4.7 The \This is All Obvious" Non-argumentAttack: \You are telling us nothing new. Others have already told us that main memorydatabases are great. You are just rediscovering that fact."Parry: It is indeed true that there has been excellent research in main-memory databases.Telecommunications databases are often main-memory[6, 5]. Toby Lehman and Mike Careyhave looked at many main memory issues having to do with query processing[15], indexes (smallfanout trees known as T-trees work well)[16], concurrency control[18], and recovery[17]. Someof these ideas found their way into the Starburst main-memory storage manager[20] where theauthors �nd that the overhead of locking can dominate the cost of database accesses.The Smallbase project led by Marie-Anne Neimat also uses T-trees as well as hash indexes[12].The project supports a subset of SQL. As in our approach, Smallbase serializes transactions.Smallbase plans to implement undo/redo recovery through value logging. On their size-reducedTPC/B benchmarks, they achieve 20,000 transactions per second through their storage managerinterface without recoverability, serializability, or TCP/IP. In a nice use of the P2 con�gurabledatabase manager, Thomas and Batory achieved 100,000 transactions per second on an HP 755(99 MHz)[22] assuming collision-free hashing.Li and Naughton[19] proposed a multiprocessor main memory databases. One thread groupsinput transactions into an input queue, though they don't use that queue for recovery. They writemodi�ed records to their log at commit. Their checkpoint thread sni�s the log and applies thechanges to a shadow database. Periodically, it writes the shadow database to disk. Unlike them,our input queue is also the log since we use operation-based recovery. Further, our checkpointprocess is completely asynchronous to the execution of the primary. They have one importantsafety feature that we lack: they allow rollbacks due to transaction logic or to exceptionalconditions. The reason is that they keep the before-images of all data items.In the Dali project, researchers Jagadish, Dan Lieuwen, Phil Bohannon, Rajeev Rastogi, AviSilberschatz, and S. Sudarshan have implemented multi-level recovery algorithms (including fuzzycheckpointing) and recoverable T-tree concurrency control algorithms[13, 4, 3]. Margaret Eichand her students have also worked on concurrency control and recovery[7]. Hector Garcia-Molina and Ken Salem have been among the �rst to observe that concurrency control might beunnecessary in a main memory environment[9].ISIS[10] takes a complementary approach that ends almost at the same point. The ISISmechanism delivers messages in order to the primary and backup site(s). Each site is a standardconcurrent database management system, however, so some form of coordination is needed toensure that con
icting transactions commit in the same order at all sites. The claim is that theoverhead for this coordination is lower than that of two phase commit.There are only a few new points in our work:1.We have exploited the no-concurrency-control idea to achieve recoverability without doingimage-based recovery. This allows us to achieve much higher performance levels thanconventional database management systems without sacri�cing fault tolerance (indeed weenhance it).2. In addition to high performance, we have shown how to avoid other distributed system



problems: we have hot backups while avoiding two phase commit (replication servers o�eronly warm backups).3.Finally, we show how to obtain good disk bandwidth when the database size exceeds mainmemory, by using application-speci�c concurrency semantics.5 ConclusionsRelational database systems grew up in a time of RAM scarcity. In such an environment,concurrency control/two phase commit/replication server style solutions made sense. Today,many applications �t comfortably in RAM. In such an environment, di�erent rules apply (aspredicted by Garcia-Molina, Eich, and Lehman), perhaps enabling us to do without concurrencycontrol for many applications. This would avoid a host of problems having to do with blocking,deadlock, two phase commit, and implementation complexity.A language having well-implemented list-based bulk operations yields a system that is simpleand powerful. APL, not relational algebra, may be a better starting point for such a language.The performance gains from this approach follow from1.The possibility (realized in K) of a very e�cient implementation.2.No overhead to enter and exit a database management system, because there is no separatedatabase management system.3.No overhead for concurrency control.4.Simpler logging and recovery code.Further, applications can be made more reliable in K than using relational systems because1.There is no deadlock recovery code (because there are no deadlocks).2.One can realize true hot backups through replicated state machines with much less overheadthan required by commit protocols, because operations are processed (or appear to beprocessed) sequentially.Update applications that don't �t into memory are a potential problem, since a naive single-threaded application can have its performance reduced by a factor of several thousand if itbecomes single-threaded on random disk accesses. Fortunately, applying a little serializabil-ity theory along with pre-fetching heuristics can mitigate this problem. Further, this solutionalso provides a mechanism for exploiting shared memory multiprocessors without sacri�cing thesingle-threaded philosophy. The solution does, however, impose a burden on the programmerwho must implement the CONFLICT predicate on transactions.Decision support is a good next application. Preliminary experiments indicate that K withits vertically partitioned tables works very well for this application (more than a factor of tenimprovement over one previous record holder's TPC/D benchmark number on equivalent hard-ware). Further, the bulk operators such as sort, scan, and duplicate removal all admit parallelimplementations. This library should include a query optimizer and perhaps give hints to theuser about which data structures to build.
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[15] Tobin J. Lehman, Michael J. Carey Query Processing in Main Memory Database Manage-ment Systems. SIGMOD Conference 1986: 239-250[16] Tobin J. Lehman, Michael J. Carey: A Study of Index Structures for Main MemoryDatabase Management Systems. VLDB 1986: 294-303[17] Tobin J. Lehman, Michael J. Carey: A Recovery Algorithm for A High-PerformanceMemory-Resident Database System. SIGMOD Conference 1987: 104-117[18] Tobin J. Lehman, Michael J. Carey: A Concurrency Control Algorithm for Memory-Resident Database Systems. FODO 1989: 490-504[19] Kai Li, Je�rey F. Naughton Multiprocessor Main Memory Transaction Processing. DPDS1988: 177-187[20] Tobin J. Lehman, Eugene J. Shekita, Luis-Felipe Cabrera An Evaluation of Starburst'sMemory Resident Storage Component. TKDE 4(6): 555-566 (1992)[21] Joel Richardson \Supporting Lists in a Data Model (A Timely Approach)" VLDB-92, pp.127-138[22] Je� Thomas and Don Batory \TPC-B on Smallbase and P2" manuscript obtainable frombatory@cs.utexas.edu, August 19957 Appendix: application-speci�c maintenance of time serversRecall the basic scenario of our backup strategy: clients send requests to a time server processgroup which in turn attaches sequence numbers to transactions and sends them to all availabledata servers. We call the sequence number associated with a transaction its transaction number.Transaction numbers are the concatenation of the epoch and a simple number. Each time anew time server takes over the management of transaction number generation, the epoch numberis incremented by one.In addition, there are client tickets that uniquely identify each transaction with a concatenationof client id and client-generated sequence number. Client tickets are used to identify duplicaterequests from a client for the same transaction.The data servers are sequential state machines that process transactions in transaction numberorder (or appear to if they use algorithm OBEYORDER). A transaction t is committed, ifthe client receives the message that t has committed. The last committed transaction is thecommitted transaction having the highest transaction number. A transaction t is stable at dataserver d, if d has stored the transaction parameters for t on disk or the dump from which d wasloaded includes the e�ects of t. A data server d is up-to-date if all transactions up to the lastcommitted transaction are stable on d.Tolerated failures include lost messages and fail-stop processors and disks. Availability shouldnot su�er provided at least one time server is up and a majority of data servers are up-to-date.No committed transaction should be lost provided at least one data server is up-to-date. Hereis the protocol.Normal Operation Rules



1.The active time server assigns consecutive transaction numbers to transactions. If t andt' are from the same client, and t has a smaller client ticket than t', then the time serverwill assign a smaller transaction number to t than to t'. (There is no ordering betweentransactions coming from di�erent clients.)2.A data server d reports that t is stable after all transactions having lower transactionnumbers are stable on d and t is logged.3.The active time server tells a client c to commit a transaction t after a majority of theup-to-date data servers report t to be stable and the primary data server gives a returnvalue and it has sent commit messages for all transactions having lower client tickets fromc. The client c commits t only after it has committed all transactions having lower clienttickets.Failover:1. If the backup time server detects a problem, it sends a robot to close down the primarytime server. (In practice, this might be a system administrator who is beeped for thispurpose.)2.After the primary has been shut down, the backup time server then checks with the dataservers with whom it can communicate to determine the highest transaction number stableon at least one of those servers. The backup time server stops if it cannot talk to a majorityof the data servers. (In that case, the backup time server calls for human assistance, becausea network partition may have occurred. The person in question must determine the highesttransaction number and cause all servers to be up-to-date, possibly after repairing thenetwork.)3.Suppose the backup time server can talk to a majority of data servers. Identify this majorityset as S. Suppose n is the highest transaction number stable on any data server within S.The backup time server causes all data servers in S to be up-to-date up to n. It also resendsto the client any necessary commit messages.4.The backup time server then requests clients to send uncommitted transaction requests toit. It checks these against the client tickets of all previously committed transactions toensure that it is not doing the same transaction twice, but executes those that have notyet been committed. It then changes its name to the new active time server.5.The new active time server starts a new epoch. Sequence numbers are the concatenationof epochs with counters within epochs.7.1 Guarantees�After the new time server takes over, but before it accepts client requests, every committedtransaction is stable on all data servers with which the new time server can communicate.All those data servers are up-to-date with respect to committed transactions.



Proof: Let the last committed transaction be t. Transaction t must be stable on a majorityM of the data servers by the normal operation rule. That majority and the majority S withwhich the new time server communicates must intersect. So, t is stable on one of the dataservers in S. Since the protocol speci�es that all data servers in S are brought up to datewith respect to the highest transaction number in S (step 3 of failover), t will be stable onall members of S.�No transaction will be given di�erent transaction numbers.Proof: No single time server would do this. Two time servers can never be active at thesame time since the primary is turned o� before the backup comes on-line. If a transactiont is committed by time server ts1 and then time server ts2 receives the same transactionas uncommitted, time server ts2 will detect the repetition (step 4 of failover) by using theclient tickets.�No two transactions will be assigned the same transaction number.Proof: Every time server starts a new epoch. As long as the order in which time serverstake over from one another is well-de�ned, only one will start a given epoch number. Ifthere is just one timeserver backup, then only one time server can take over. If there aremany timeserver backups, then this can be ensured by using timeserver identi�ers (but wedon't deal with that here).�A given transaction is written at most once to any data server.Proof: By the last two propositions, there is a one-to-one correspondence between transac-tion numbers and transactions. Each data server writes transactions in transaction numberorder to the local log.�Data servers write and process transactions in the same order.Proof: By the normal operation rule, data servers process operations in transaction numberorder (or appear to).� If a client c commits t, then t is stable on a majority of data servers, and any t' submittedby c such that t' has a lower client ticket than t is also stable on a majority of the dataservers.Proof: Follows from the 1-1 correspondence between transaction numbers and transactionsand the Normal Operation Rules.�The system will continue to run even after the failure of one time server and a minority ofdata servers, provided there is communication connectivity among all surviving nodes. Itwill stop otherwise.Proof: Nothing in the protocol depends on more than a majority of data servers or a singletime server.
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Figure: Hot Backup Strategy
Primary logs a group of transactions to disk and then executes them
on an in-memory copy of the database.
Each backup has a logger process that logs transaction parameters
to disk (like the primary). The logger also sends two kinds of
commands to the worker: process this transaction and dump
state. The backup tells the time servers that a transaction is safe
as soon as the logger has written the transaction’s parameters to
disk, so response time doesn’t suffer during dumps.
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This �gure illustrates a scenario in which a primary and one or more backups remainin synchrony by logging transactions and applying them in the same order.


