
Fake Your Way Through Minis and
Mainframes

(formerly, "The Operating System Hand-
book")

Bob DuCharme

Fake Your Way Through Minis and Mainframes: (formerly,
"The Operating System Handbook")
Bob DuCharme
Copyright © 2001

Table of Contents
I. Introduction ..1

A 2001 Preface to a 1994 Book ... iii
Acknowledgments .. iii

1 Introduction ...5
1.1 Why Should You Learn How to Use Minis and Mainframes?5

1.1.1 What This Book Assumes That You Know7
1.2 Minicomputers ..9
1.3 Mainframes ..9
1.4 Getting to Know an Operating System ..13

1.4.1 History and Culture ..13
1.4.2 Starting Up: Getting to Use the System14
1.4.3 Filenames ..15
1.4.4 How Files Are Organized ..15
1.4.5 On-line Help ..15
1.4.6 Dealing with Files: The Most Important Commands15
1.4.7 The Text Editor ..16
1.4.8 Printing Text Files ..18
1.4.9 Command Files ..18
1.4.10 Sending and Receiving Mail ..19
1.4.11 A Sample Session ...19

1.5 General Advice ...20
1.5.1 Filenames ..20
1.5.2 Mail ..24
1.5.3 The Text Editor ..24
1.5.4 Looking at Text Files ..26
1.5.5 "Printing" on the Screen ..26
1.5.6 Reading and Writing ...27
1.5.7 Logging Off (or Out) ..27
1.5.8 Terminal Emulation and File Transfer28

1.6 Syntax Expressions in this Book ..29
1.7 Comments and Suggestions ...30

II. UNIX ..31
Chapter 2 UNIX: An Introduction ..33

2.1 History ...33
2.1.1 Today ..35
2.1.2 USENET ...37

Chapter 3 Getting Started with UNIX ...39

v

3.1 Starting Up ...39
3.1.1 Finishing Your UNIX Session ...40

3.2 Filenames ...40
3.2.1 Wildcards ..41

3.3 How Files Are Organized ..41
3.3.1 Relative Pathnames ..44
3.3.2 Moving between Directories ...44

3.4 Available On-line Help ..46
Chapter 4 Using Files in UNIX ..47

4.1 The Eight Most Important Commands ..47
4.1.1 Command Options: Switches ..47
4.1.2 Common Error Messages ..48
4.1.3 Listing Filenames ...49
4.1.4 Displaying a Text File's Contents ..57
4.1.5 Copying Files ...60
4.1.6 Renaming Files ..62
4.1.7 Deleting Files ...63
4.1.8 Controlling Access to a File ..65
4.1.9 Creating Directories ..67
4.1.10 Removing Directories ...68

Chapter 5 The UNIX vi Text Editor ...71
5.1 Entering vi ..71
5.2 Inserting Text ...73
5.3 Deleting Text ..73
5.4 Typing Over Existing Text ...74
5.5 Searching for Text ...74
5.6 Saving Your Changes ..74
5.7 Quitting vi ..76
5.8 Other vi commands ...76

Chapter 6 Using a UNIX System ...79
6.1 Printing Text Files ...79

6.1.1 Checking the Print Queue ...79
6.1.2 Canceling Your Print Job ..79

6.2 Command Files ...80
6.2.1 The Automatic Login Command File81

6.3 Communicating with Other Users ...82
6.3.1 Receiving Mail ...83

6.4 A Sample UNIX Session ...85
III. VMS ..89

Chapter 7 OpenVMS: An Introduction ...91
7.1 History ...92

7.1.1 Today ..93

vi
Fake Your Way Through Minis and Main-

frames

7.1.2 VMS, DCL ..95
Chapter 8 Getting Started with OpenVMS ..97

8.1 Starting Up ...97
8.1.1 Finishing Your VMS Session ..97
8.1.2 Entering Commands ...98

8.2 File Names ... 100
8.2.1 Wildcards .. 101

8.3 How Files Are Organized .. 102
8.3.1 Moving Between Directories ... 104
8.3.2 Querying Available Disk Space ... 106

8.4 Available On-line Help .. 106
Chapter 9 Using Files in OpenVMS ... 113

9.1 The Eight Most Important Commands .. 113
9.1.1 Command Options: Qualifiers ... 113
9.1.2 Common Error Messages .. 114
9.1.3 Listing File Names ... 115
9.1.4 Displaying a Text File's Contents .. 118
9.1.5 Copying Files ... 119
9.1.6 Renaming Files .. 121
9.1.7 Deleting Files ... 122
9.1.8 Controlling Access to a File .. 123
9.1.9 Creating Directories .. 125
9.1.10 Removing Directories ... 125

Chapter 10 The OpenVMS EVE Text Editor .. 127
10.1 EVE and Special Keys ... 127
10.2 Entering EVE .. 128
10.3 Inserting Text .. 130
10.4 Deleting Text .. 131
10.5 Typing Over Existing Text ... 131
10.6 Searching for Text ... 131
10.7 Saving Your Changes .. 132
10.8 Quitting EVE .. 132
10.9 EVE On-line Help ... 132
10.10 Other EVE Features ... 135

Chapter 11 Using an OpenVMS System ... 137
11.1 Printing Text Files ... 137

11.1.1 Checking the Print Queue .. 137
11.1.2 Canceling Your Print Job .. 137

11.2 Command Files ... 138
11.2.1 Symbols ... 138
11.2.2 DCL Command Procedures ... 139
11.2.3 The Automatic Login Command File 140

vii

11.3 Communicating with Other Users ... 141
11.3.1 Sending an Existing File ... 142
11.3.2 Receiving Mail ... 142
11.3.3 On-line Help in the MAIL Program 146

11.4 A Sample OpenVMS Session ... 146
IV. OS/400 ... 151

Chapter 12 OS/400: An Introduction .. 153
12.1 History ... 154

12.1.1 Today .. 155
Chapter 13 Getting Started with OS/400 ... 159

13.1 Starting Up ... 159
13.1.1 Finishing Your OS/400 Session ... 161
13.1.2 Entering Commands ... 162

13.2 File Names ... 170
13.2.1 Wildcards .. 171

13.3 How Files Are Organized ... 172
13.3.1 Physical, Source Physical, and Logical Files 173
13.3.2 The Library List and Your Current Library 174

13.4 Available On-line Help .. 175
13.4.1 The Search Index .. 177
13.4.2 Navigating Help Screens ... 180
13.4.3 The On-line Tutorial ... 185
13.4.4 Other Helpful Features .. 187

Chapter 14 Using Files in OS/400 .. 189
14.1 The 12 Most Important Commands ... 189

14.1.1 Common Error Messages .. 189
14.1.2 Listing File Names ... 192
14.1.3 Displaying a Text File's Contents 198
14.1.4 Copying Files ... 200
14.1.5 Renaming Files .. 204
14.1.6 Deleting Files ... 206
14.1.7 Editing Your Library List .. 206
14.1.8 Creating and Deleting Libraries ... 211

Chapter 15 The OS/400 SEU Text Editor ... 213
15.1 Entering SEU .. 213

15.1.1 Entering SEU from the Program Development Manager 215
15.2 Line Commands .. 215

15.2.1 Adding New Lines .. 216
15.2.2 Moving Your Cursor Around .. 220

15.3 Inserting, Deleting, and Typing over Words and Characters 220
15.3.1 Duplicating Lines ... 221
15.3.2 Deleting Lines .. 222

viii
Fake Your Way Through Minis and Main-

frames

15.3.3 Copying Lines .. 223
15.3.4 Moving Lines ... 225

15.4 Searching for Text ... 225
15.4.1 Case Sensitivity .. 226

15.5 Saving Your Changes .. 227
15.6 Quitting SEU .. 227
15.7 Other SEU Features ... 228

15.7.1 SEU On-line Help .. 228
15.7.2 Syntax Prompting ... 229

Chapter 16 Using an OS/400 System .. 231
16.1 Printing Text Files ... 231

16.1.1 Printing a File Member from the Program Development Manager
or SEU ... 235
16.1.2 Checking the Print Queue .. 235
16.1.3 Canceling Your Print Job .. 236

16.2 Command Files ... 236
16.2.1 The Automatic Signon Command File 242

16.3 Communicating with Other Users ... 242
16.3.1 Receiving Mail ... 245
16.3.2 Inquiry Messages .. 246
16.3.3 Sending an Existing File ... 249

16.4 A Sample OS/400 Session ... 252
V. VM/CMS .. 261

Chapter 17 VM/CMS: An Introduction .. 263
17.1 History ... 263

17.1.1 CP: The Control Program .. 264
Chapter 18 Getting Started with VM/CMS ... 267

18.1 Starting Up ... 267
18.1.1 The Logon Screen .. 267
18.1.2 Entering CMS .. 270
18.1.3 Entering Commands ... 271
18.1.4 Finishing Your CMS Session .. 276

18.2 File Names ... 276
18.2.1 Wildcards .. 277

18.3 How Files Are Organized ... 280
18.3.1 Free Space on Your Disk .. 280

18.4 Available On-line Help .. 281
18.4.1 Help Function Keys .. 283
18.4.2 Help Menus ... 284
18.4.3 Command-Line Help .. 288

Chapter 19 Using Files in VM/CMS .. 295
19.1 The Five Most Important Commands .. 295

ix

19.1.1 Command Options .. 295
19.1.2 Common Error Messages .. 295
19.1.3 Listing File Names ... 297
19.1.4 Displaying a Text File's Contents 302
19.1.5 Copying Files ... 302
19.1.6 Renaming Files .. 306
19.1.7 Deleting Files ... 306

19.2 Sharing Files between Users .. 307
19.2.1 Unlinking the Disk ... 310
19.2.2 Other Ways to Link .. 310

Chapter 20 The VM/CMS XEDIT Text Editor .. 311
20.1 Entering XEDIT .. 311
20.2 Customizing Your XEDIT Environment 312
20.3 Prefix Commands .. 314

20.3.1 Adding New Lines .. 315
20.3.2 Moving Your Cursor Around .. 316
20.3.3 Inserting, Deleting, and Typing over Words and Characters . 316
20.3.4 Duplicating Lines ... 317
20.3.5 Deleting Lines .. 318
20.3.6 Copying Lines .. 320
20.3.7 Moving Lines ... 321

20.4 Searching for Text ... 322
20.5 Saving Your Changes .. 323
20.6 Quitting XEDIT .. 323
20.7 Other Useful XEDIT Features .. 324

20.7.1 XEDIT On-line Help .. 324
20.7.2 The Automatic Startup Macro ... 324
20.7.3 The Split/Join Key .. 325

Chapter 21 Using a VM/CMS System .. 329
21.1 Printing Text Files ... 329

21.1.1 Checking the Print Queue .. 329
21.1.2 Canceling Your Print Job .. 329

21.2 Command Files ... 330
21.2.1 The Automatic Logon Command File 331

21.3 Communicating with Other Users ... 332
21.3.1 Sending Files ... 333
21.3.2 Receiving Mail and Files ... 335

21.4 The FILELIST Program ... 339
21.4.1 Copying Files ... 340
21.4.2 Renaming Files .. 341
21.4.3 Deleting Files ... 341
21.4.4 Displaying A Text File's Contents 341

x
Fake Your Way Through Minis and Main-

frames

21.4.5 Editing a File .. 342
21.4.6 Printing a File ... 342

21.5 A Sample VM/CMS Session .. 342
VI. MVS .. 349

Chapter 22 MVS: An Introduction ... 351
22.1 Batch Jobs .. 352
22.2 Interacting with MVS .. 353

22.2.1 TSO ... 353
22.2.2 ISPF .. 353
22.2.3 CICS ... 354
22.2.4 Other MVS Components ... 354

22.3 History ... 354
Chapter 23 Getting Started with MVS .. 357

23.1 Starting Up ... 357
23.1.1 VTAM ... 357
23.1.2 Logging On .. 357
23.1.3 Entering Commands ... 360
23.1.4 Finishing Your MVS Session .. 364

23.2 File Names ... 364
23.2.1 Sequential and Partitioned Data Sets 365
23.2.2 Line Numbers and Data Sets ... 365
23.2.3 Naming Data Sets ... 366
23.2.4 Wildcards .. 368

23.3 How Files Are Organized ... 368
23.4 Available On-line Help .. 369

Chapter 24 Using Files in MVS ... 373
24.1 The Seven Most Important Commands ... 373

24.1.1 Common Error Messages .. 373
24.1.2 Listing Data Set Names ... 375
24.1.3 Looking at Data Sets ... 379
24.1.4 Copying Data Sets .. 380
24.1.5 Renaming Data Sets .. 381
24.1.6 Deleting Data Sets .. 382
24.1.7 Allocating Data Sets ... 383
24.1.8 Adding a Data Set to a Catalog .. 391

Chapter 25 The MVS ISPF Text Editor .. 393
25.1 The ISPF Text Editor ... 393
25.2 Entering the ISPF Editor .. 393

25.2.1 Customizing Your Editor's Environment 397
25.3 Line Commands .. 399

25.3.1 Adding New Lines .. 400
25.3.2 Moving Your Cursor Around .. 402

xi

25.4 Inserting, Deleting, and Typing over Words and Characters 403
25.4.1 Duplicating Lines ... 403
25.4.2 Deleting Lines .. 405
25.4.3 Copying Lines .. 406
25.4.4 Moving Lines ... 408

25.5 Searching for Text ... 408
25.6 Saving Your Changes .. 411
25.7 Quitting the ISPF Editor .. 411

25.7.1 On-line Help in the Editor ... 411
25.8 TSO's EDIT Text Editor .. 412

25.8.1 Starting the Editor .. 412
25.8.2 Creating a New Data Set ... 413
25.8.3 Line Numbering and the EDIT Editor 413
25.8.4 Input Mode and Edit Mode .. 414
25.8.5 Displaying the Data Set's Current Contents 415
25.8.6 The Current Line .. 416
25.8.7 Adding New Lines .. 416
25.8.8 Editing Existing Lines ... 418
25.8.9 Deleting Lines .. 419
25.8.10 Copying Lines .. 419
25.8.11 Duplicating Lines ... 420
25.8.12 Moving Lines ... 420
25.8.13 Searching for Text .. 421
25.8.14 Saving Your Changes .. 421
25.8.15 Quitting the TSO Editor .. 421
25.8.16 On-line Help and the TSO Editor 422

Chapter 26 Using an MVS System ... 423
26.1 Printing Data Sets .. 423
26.2 Command Files ... 423

26.2.1 The Automatic Logon Command File 425
26.3 Communicating with Other Users ... 425

26.3.1 Sending Files ... 426
26.3.2 Receiving Mail and Data Sets .. 429

26.4 ISPF ... 430
26.4.1 Allocating Data Sets ... 432
26.4.2 Copying Data Sets .. 435
26.4.3 Renaming Data Sets .. 437
26.4.4 Deleting Data Sets .. 439
26.4.5 Displaying A Data Set's Contents 440
26.4.6 Printing a Data Set .. 440

26.5 A Sample MVS Session ... 440

xii
Fake Your Way Through Minis and Main-

frames

Part I. Introduction

A 2001 Preface to a 1994 Book
McGraw-Hill published this book seven years ago, and most of the writing took place eight
years ago. I wanted to call this crash course in UNIX, VMS, OS/400, VM and VMS "Fake
Your Way Through Minis and Mainframes," but they wanted something more professional-
sounding for their Professional Book Division.

The book sold a few thousand copies, and I received several e-mails thanking me for writing
it. Once the book went out of print, I had McGraw-Hill revert the rights back to me so that I
could legally give away a free Acrobat version of the book to whoever wanted it.

So here it is. I wrote a perl script to convert the original XyWrite files to DocBook XML and
then used Norm Walsh's stylesheets and the Apache Project's FOP to create the Apache files.
I didn't try to update the content, because I currently don't have access to machines running
most of these operating systems and because I would have put it off too long anyway. Of
course, parts of the book will look dated—Linux hadn't reached release 1.0 yet when I wrote
the Unix chapter and the web was small enough to account for only 1% of Internet traffic.
Just as people now often refer to the Internet as "the web" because web browsing is the most
popular use of the Internet, in 1993 people referred to it as Usenet, because the discussion
newsgroups whose most popular web incarnation were on DejaNews (later bought by the
Google search engine folks) went by that name and was the most popular use of the Internet
at the time. Chapter 2 mentions Usenet several times.

(2006 update: now, through the cleverness of lulu.com, you can buy a hard copy version if
you want it.)

Enjoy!

Bob DuCharme

http://www.snee.com/bob

Acknowledgments
My thanks to Howard Lune, who explained to me the relationship between VM, CMS, and
CP as we killed a bottle of Dewar's at 2 in the morning in a Miami hotel room, and who has
since graciously reviewed the mainframe chapters; to Don Bonnice, whom I have never met,
but who helped me with the OS/400 chapters through the miracle of e-mail; to Ray Hood,
who first taught me UNIX, and, more importantly, taught me how to quickly identify and
learn the important parts of a software system; to Alex Berson, for taking the time to review
the manuscript; to Chet Ensign and Frances Gambino, who taught me to put a book together;
th Madeline—may file allocation be as distant a memory to her generation as magnetic core

iii

memory is to ours; and most of all, to my wife Jennifer, who has patiently learned more about
minis, mainframes, Elvis Presley, Formula 1, Indy cars, and electric guitars than she ever
planned to before she met me.

Company and product names are trademarks or registered trademarks of their respective own-
ers.

iv A 2001 Preface to a 1994 Book

1 Introduction
Today it's fashionable among many personal computer users today to proclaim that minicom-
puters and mainframes are dinosaurs, and that the meteor that renders them extinct is coming
fast. (When I say personal computer, I mean one that's personal, that you have all to yourself,
and that you can afford to have at home or on your desk at work. This includes Macintoshes,
Amigas, and the Atari ST, not just DOS machines.) They call the big machines primitive, be-
cause you don't use a mouse and icons to start up programs.

These personal computer users probably feel frustrated when they look through the want ads
and see the many job openings for people who know UNIX, OpenVMS, OS/400, VM/CMS,
and MVS. They don't understand that the big rigs aren't dying out; their roles are being re-
defined to take advantage of their strengths while personal computers take over the jobs that
personal computers can do better.

The personal computer's mouse and icons mean that its interface is easier to use and more re-
sponsive. Unfortunately, personal computer snobs judge other operating systems by their in-
terfaces. They see the on-line help in MVS scrolling up the screen in all capital letters and
snort, "How very primitive!" They don't realize how many sophisticated features, unrelated to
the user interface, have always been integral parts of MVS and other large operating sys-
tems—features that many in the personal computer business are only now trying to shoehorn
into their products. Data safety, proper multitasking, and serious multiuser support still have a
way to go for networks of personal computers. And mini and mainframe technology is not
standing still; a glance at trade papers shows that they become faster and more powerful
every year.

1.1 Why Should You Learn How to Use Minis and
Mainframes?
For many, the want ads mentioned above provide sufficient impetus to learn about larger sys-
tems. The line "Working knowledge of UNIX, OpenVMS, OS/400, VM/CMS, and MVS"
looks great on a resume.

The recent trend toward downsizing means that some of the development jobs for your favor-
ite operating system involve moving (or "migrating") existing applications from larger sys-
tems to smaller ones. Many jobs involve moving only part of an application to a different sys-
tem. Another big trend is distributed, "client/server" systems, in which the application's user
interface runs on the smaller system and its data is stored on a larger system, and the two (or
more) systems must communicate and cooperate. If you want any of these jobs, you better
know the systems at both ends of the job.

5

An AS/400 running release V2R2 or later of the OS/400 operating system can store a data-
base of up to 2 billion records taking up 248 gigabytes of space. (And remember—that's a
minicomputer, not a mainframe!) It will be quite a while before any personal computer-based
system can handle a database that large. The practicality of storing larger databases on larger
systems brings up another reason for learning how to use minis and mainframes: just as Wil-
lie Sutton said that he robbed banks "because that's where the money is," it's a good idea to
get comfortable with large computer systems because that's where the really massive data-
bases are stored. Access to the big systems means access to more information.

Actually, the best reason for learning these systems is this: they're really not that difficult.
When people discuss the relative merits of different operating systems, they talk about the ad-
vanced features. That's where the difficult parts come in; when it comes to the basics, the
tasks that are necessary to get by are remarkably similar from one operating system to anoth-
er.

BUZZWORD Downsize Minicomputers have provided an alternative to main-
frames since 1961 and personal computers have provided an alternative to
both since 1977. There have always been applications that were too big for
personal computers, and many that were too big for minis as well. As all
classes of computers become more powerful by an estimated 20% a year,
minicomputers and personal computers can more easily handle applications
that were formerly considered too big for them.

The process of moving an application from a mini to a personal computer (or
to a networked group of personal computers) or from a mainframe to either is
known as "downsizing." Some development environments boast of their
availability on multiple platforms, making downsizing easier—in other words,
if you know how to use the language or development program that was used
to create an application, and it's also available on the target system, then
you're halfway there. Still, you must be familiar enough with the basic operat-
ing system commands on both ends of the project to be able to log in and to
read, copy, edit, and transfer files.

A recent variation on "downsizing" is "rightsizing." It essentially means the
same thing, but implies that you're considering options besides moving from
a bigger system to a smaller system. Its main advantage over the word
"downsizing" is that it is more recent, and therefore sounds more up-
to-date—always a big plus with buzzwords.

6 1 Introduction

Show me someone who insists that a certain operating system is superior to all others and I'll
show you someone who probably only knows one operating system. (Or else a DOS user who
has just learned UNIX—sometimes the added power goes to their heads and they forget why
personal computers were invented.) Someone once called it the "baby duck syn-
drome"—these users behave like baby ducks who think that the first thing they see after being
born is their mother.

Sometimes, it's fun to be a snob. It's even better, though, to have a broader background and
wider perspective than one particular subset of computer nerds. Once you can log in, create
and manipulate files, navigate the file system, and send and receive mail on many different
operating systems, you gain a perspective on the strengths and weaknesses of each—a per-
spective that helps you to appreciate these operating systems individually as well as the roles
each can play when they must work together. And, people are impressed by someone who ap-
pears comfortable with several large systems. It doesn't matter if you only know how to do
ten things on each one, as long as they're the right ten things!

1.1.1 What This Book Assumes That You Know

This book is not a beginner's introduction to computers. Although it sticks to basic topics, it
contains a series of crash courses, so it moves quickly through these topics.

Presumably, you already know what an operating system is: the supervisory program that
runs on a computer at all times, taking your instructions to run other programs or to manipu-
late and print files, and carrying out these instructions while it coordinates your actions with
those of other users on the system. You know what a file is, and you know that a computer
that can store thousands of files needs a way to organize them, so that learning a little about
the file system is one of the first steps in learning to use a particular operating system. You
also know the basic operations that people do with text editors and word processors: creating
new files, adding text to them, deleting and editing text, and saving or aborting the edits made
in a given session.

Ideally, you should have some experience with a command-line driven operating system—the
kind where you type commands and press Enter (or Return) to get results. Some operating
systems, like AmigaDOS and the UNIX found on Sun workstations, offer a mouse-driven
graphical user interface to handle files and applications, but also offer a window with a com-
mand line. They do this because, contrary to the insistence of Macintosh purists, typing out
commands is often a more efficient way to accomplish things. For example, typing the word
"erase" followed by a filename and then pressing Enter is a simpler—and, yes, more intuit-
ive—way to erase a file than pushing around a hunk of plastic with a rubber ball inside of it.

As this book shows you, mini and mainframe operating systems either erase files with this
command or with a slight variation, like using the word "delete" instead of "erase." Some

1.1.1 What This Book Assumes That
You Know 7

commands are more complicated than this, but remember, learning the basics of an operating
system does not require memorizing complicated commands! The keys are remembering
simple commands and remembering how to find out the ways to put together more complic-
ated ones when necessary.

For someone only interested in the basics of using an operating system, the easy-to-remember
way to accomplish something is always more important than the most efficient way. If you
already know one of the operating systems covered in this book, you will find that it doesn't
always explain the most efficient techniques. Again, this is because of the crash course ap-
proach. Learning the efficient way to do something usually involves learning why it's more
efficient; this undoubtedly takes you into areas that the dabbler would rather avoid.

BUZZWORD Client/Server This is actually two words, but because it de-
scribes a particular relationship between two or more computers, the two are
often used together. In a client/server system, smaller computers are hooked
up to larger systems, and developers create applications that take advantage
of the combination.

Usually, the smaller computer (the "client") presents the user interface and
formulates a query or command based on the user's actions. It then sends
this query or command to the larger computer, or "server," which carries out
the smaller computer's request and returns the results—often a specific sub-
set of the data stored there—to the smaller computer. The user has the ad-
vantage of the small computer's better interface, but the data is stored on a
system with a large storage capacity, better multi-user support, and built-in
safeguards against possible problems ranging from power outages to at-
tempted break-ins by hackers.

In a broader sense, a server is something that provides a service to a client
system. It may refer to hardware, as with a file server that stores files for oth-
er computers to use. It may refer to software; a database server is a program
that mediates requests for data from clients and ensures the integrity of the
stored data.

Along with downsizing, increased development of client/server systems is an-
other important reason that mainframe, minicomputer, and microcomputer
people must learn more about each others' systems. This way, they can
make these different computers work together as efficiently as possible.

8 1 Introduction

1.2 Minicomputers
In 1961, the Digital Equipment Corporation introduced the "Programmed Data Processor 1."
The PDP-1 is generally considered to be the first commercially available minicomputer. It
was a scaled-down, less expensive (only $120,000!) version of the multi-million dollar be-
hemoths that were synonymous with the word "computer" at the time. To distinguish it from
the bigger computers, they called it a "minicomputer." Before the invention of the minicom-
puter, the word "mainframe" was not even necessary, because people just called them "com-
puters." (Actually, some people called them "IBMs," but that's another story.)

The PDP-1's various successors, especially the $20,000 PDP-8 that DEC introduced in 1965,
proved that there was a real market for minicomputers. Other computer makers soon entered
the minicomputer market—Hewlett Packard, Wang, Data General, even IBM.

The word "minicomputer," coined in the same era as the word "miniskirt," has become ana-
chronistic. Nowadays, when someone says "computer," they're usually talking about a per-
sonal computer or "microcomputer"—something that costs a few thousand dollars and sits on
a desk. A "minicomputer" costs five or six figures and can be as large as a refrigerator.

Considering that modern personal computers are much more powerful than the original
minicomputers, and that modern minis are much more powerful than the mainframes avail-
able when the PDP-1 was first released, what does that make a minicomputer today?

People often use the term "departmental computing" in the same breath as the word "minicom-
puter." This gives a good clue about the role of minis. If all the people in one department
share one computer, it will be bigger than a personal computer, and smaller than a mainframe.
It supports from 10 to 100 people. Maintaining it shouldn't be a full-time job for one person.
Of course, the use of minicomputers isn't limited to individual departments of large compan-
ies or universities; small companies provide one of the minicomputer's biggest markets.

Of the operating systems described in this book, the AS/400's cleverly named OS/400 operat-
ing system is the only one that is unequivocally a minicomputer operating system. Because
the smallest VAXes sometimes qualify as personal computers, and the largest ones as main-
frames, and because versions of UNIX have been developed for everything from IBM PC/
ATs to Cray supercomputers, devotees of these two operating systems insist that their versat-
ility ranges beyond the middle of the computing spectrum designated by the word "minicom-
puter." However, since the majority of the computers running these two operating systems fit
the profile of a mini described above, most people think of OpenVMS and UNIX as
minicomputer operating systems.

1.3 Mainframes
Reports of the death of mainframes have been greatly exaggerated. Mainframes can store

1.3 Mainframes 9

huge amounts of data and accomplish a lot of work. If the personal computer of your dreams
can be compared to an eight-cylinder Ferrari, then a mainframe is an eighteen-wheel truck.
They are the big rigs. Some personal computer snobs claim that a properly networked config-
uration of personal computers can accomplish anything a mainframe can; these people have
no idea of the kinds of things that banks, insurance companies, and governments call on
mainframes to do: to process huge amounts of data, 24 hours a day, in an extremely secure
environment.

BUZZWORD Big iron Refers to mainframe hardware. For example, "The in-
surance company's main office had one Amdahl, but most of the big iron was
IBM."

That fact that many people who've never used mainframes consider them antiquated has hurt
their reputation. In order to appear up-to-date, more people try to avoid using the word "main-
frame." In late 1990, an important trade magazine called "Mainframe Journal" changed its
name to "Enterprise Systems Journal." The use of the buzzword "enterprise" reflects more
than a desire to look current: it shows a change in attitude about mainframes and their role in
business computing today.

BUZZWORD Enterprise Usually used as part of an adjective, as in "Enter-
prise-Wide Computing." A fancy way to say "the whole company." This sort
of phrase comes up more and more as people try to hook up all the com-
puters in a given company into one cooperative system.

Instead of being The Computer, which is what a mainframe represented at most companies
for years, people now consider it to be one of the resources in a computing environment.
There are plenty of former mainframe tasks that that can now be done better and more
cheaply on minicomputers, or even on personal computers, but many jobs remain that are
more suited to mainframes. Since so many computers are hooked up to other computers, the
best possible system is one that distributes the jobs so that each computer does what it's best
at. Of course, someone sitting at a terminal—the company president, a secretary, or a consult-
ant pretending to know the system—shouldn't have to worry about which computer is per-
forming which task as long as this user gets what he or she wants.

10 1 Introduction

DOS on a Mainframe?
Computers did not always use disks to store information. When the disk drive
was invented, it was considered such a breakthrough that virtually all com-
puters today have at least one disk built in. In 1966, when personal com-
puters were only a dream, IBM released the first operating system that took
advantage of disk storage and called it the Disk Operating System, or DOS.
It went through several versions with names like DOS-2314, DOS MP, DOS/
VS, and DOS/VSE. This last one—Disk Operating System/Virtual Storage
Extended—is still used on some smaller mainframes today, although its pop-
ularity waned in the mid-seventies with the rise of VM/CMS and MVS.

When IBM released a personal computer operating system that used disks,
they called it PC/DOS to distinguish it from the mainframe DOS. Microsoft
called their version of PC/DOS "MS-DOS," for "Microsoft Disk Operating Sys-
tem." PC/DOS and MS-DOS are similar enough that people usually don't
bother to distinguish between the two; they refer to both as "DOS." Because
DOS VSE is the most common version of the mainframe DOS that anyone
still uses, people usually refer to the mainframe DOS as "DOS/VSE" to distin-
guish it from the PC operating system.

Actually, they refer to it less and less with each passing year, because its
place in history as a predecessor to MVS and CMS makes it increasingly ar-
chaic. What happens to a DOS/VSE installation that's ready to move on?
They don't always replace DOS/VSE with a more up-to-date mainframe sys-
tem. It tends to be used on smaller System/370s, so the increasing power of
the AS/400 and its comparative simplicity in use and maintenance make it a
popular replacement for DOS/VSE systems.

A system in which personal computers and mainframes work together distributes the jobs that
each computer does best. For personal computers, this means the interface, or "front end":
windows, colors, fonts, and the use of a mouse. For mainframes, this means coordinating vast
amounts of data that many other users might be trying to use simultaneously. (This role has
been cleverly named the "back end" of such a cooperative system.) After the person sitting at
the personal computer uses the flashy interface to describe the needed data, the personal com-
puter sends a request to the mainframe, which does the sorting and manipulation necessary to
pull out the requested data and send it back to the personal computer.

Because of this changing role, organizations who develop mainframe systems no longer both-

1.3 Mainframes 11

er with attempts to make fancy interfaces to their systems. They realize that the mainframe
version of a fancy interface, when used with typical mainframe terminals, pales in comparis-
on to something as common and inexpensive as a hand-held video game. Instead, they con-
centrate on making the huge data manipulation power of mainframes available to other com-
puters that are connected to mainframes, so that mainframes can play an efficient role in the
increasingly popular "distributed systems" made up of various computers connected together.

IBM's 360 Series of Mainframes
In the early days of computers, the question of compatibility, even among
machines from the same company, was moot. Different computers were de-
signed to specialize in handling either characters, integers, or decimal num-
bers. Of the six different computer models offered by IBM in the early 1960's,
no two could run the same programs.

It didn't occur to anyone that a program written on one computer should be
able to run on another computer. This changed when people started getting
new computers and realized how much work would be required to rewrite the
programs to work on their new computers.

IBM saw that it would be easier to sell software if it could offer a wide range
of hardware to run that software. In 1964, IBM announced the System/360
series. The number came from the number of degrees in a circle, and was
supposed to symbolize the computer's ability to be all things to all people.
Even better, the different models were compatible, so that a program that ran
on one could run unaltered on a more powerful model in the series.

Eight years later, after introducing VM/CMS, IBM brought out the 370 series.
Although there have been many upgrades and improvements, just about all
IBM mainframes used today are part of the 370 series.

To sum up, the role of mainframes is changing and evolving faster than it is shrinking. After
all, the guys who designed these things came from the generation of engineers who put men
on the moon. Give them a little credit.

BUZZWORD DASD Because it does have a specific technical meaning, it

12 1 Introduction

may not count as an official buzzword—it sounds so impressive, though,
when you say "dazzdee" instead of "mainframe hard disk." It stands for "Dir-
ect Access Storage Device." (By the way, "device" is practically its own
buzzword, meaning "hardware thing.") A DASD unit is really a stack of hard
disks, but you can think of it as one, since it functions as a single unit of stor-
age.

1.4 Getting to Know an Operating System
Because the most basic, necessary tasks on any operating system are pretty much the same,
each part of this book has a similar outline. Each covers the following subjects:

• History.

• Starting up.

• Filename rules.

• The file system.

• Important commands for dealing with files.

• On-line help.

• Using the text editor.

• Printing.

• Command files.

• How to send and receive electronic mail.

• A sample session.

1.4.1 History and Culture

Knowing an operating system's history is not particularly important to becoming a comfort-
able user of that system. Usually, only the experts who have used the system for years seem
to know or even care about its origins and development. This is precisely why it's great to
know a little of the history: if you want to pretend that you're an expert, it's much easier to

1.4 Getting to Know an Operating Sys-
tem 13

learn where an operating system came from and why it became popular than to memorize the
syntax and usage of dozens of commands. People discussing UNIX at a party or at work will
be very impressed when you casually say, "Of course, the fact that the original UNIX license
agreement included the source code while excluding any technical support was a complete re-
versal of standard practice at the time, and a key factor in the eventual priest-like status of the
important UNIX gurus." On the other hand, if you know every little switch to the UNIX ls
command and can make the filenames list out backwards, forwards, and sideways, they'll just
think you're a computer nerd.

The culture, or general attitude of an operating system's typical heavy users, is closely tied to
the system's strengths and weaknesses. Familiarity with it helps you fake at least a nominal
membership in these cultish groups. It certainly helps you communicate with the real de-
votees, which is crucial to moving beyond beginner status.

1.4.2 Starting Up: Getting to Use the System

When you turn on a personal computer, unless some special security hardware or software
has been added, you can use it right away. Multi-user systems have some measure of security
to prevent the wrong people from using them. The first concern for you, as a user of one of
these systems, is to establish that you are a legitimate user of that system by logging in or log-
ging on. This generally involves entering your user ID—a name assigned to you as a user of
the system—and a password that you theoretically keep secret so that only you can use that
user ID.

Logging In/On/Out/Off
Which is more proper, saying that you log in to a computer, then log out, or
log on, then log off? The original IBM way was to say "log on." However,
when you connect to a UNIX or OpenVMS system, it asks you to "log in," and
it's improper to say that you log on to one of these systems. It's interesting to
note that AIX, IBM's version of UNIX, asks you to "log in," which acknow-
ledges the influence of the world of UNIX on IBM. Novell networks of person-
al computers also ask you to "log in." On the other hand, IBM's AS/400
minicomputer skips the whole question by asking you to "sign on."

Before I remotely connect to my UNIX ID on a Sun workstation ID or to my
mainframe VM/CMS account, I must first log in to a DEC Server that can
route my request to any of several computers. In other words, I must log in to
the DEC Server before I log in to a Sun workstation, but I must log in to the

14 1 Introduction

DEC Server before I log on to an IBM mainframe.

1.4.3 Filenames

You and the operating system distinguish one file from another by its name. But while joe-
memo.txt and JOEMEMO.TXT would both refer to the same file in CMS or OpenVMS,
they would refer to two different files in UNIX, because UNIX is very case-sensitive. (Like
many aspects of UNIX, this is considered both an advantage and a disadvantage, depending
on who you ask.)

As you'll see in section 1.5, "General Advice," we can apply certain guidelines to the naming
of files on all computers, but you must learn the basic idiosyncrasies of file naming rules on a
particular system before you create or rename files on it. How many parts does a filename
have, and what are their names? What does each part do? How long can each part be? Are
there any keyboard characters that are taboo in filenames? What tricks are there for dealing
with more than one file at a time?

1.4.4 How Files Are Organized

Another crucial aspect of an operating system is the method it uses to organize files. When
you issue the command to list filenames, you don't want to see thousands of them; there
should be some way to categorize them into groups, just as you can categorize the files in a
file cabinet according to project or client. Also, on a multi-user system, you will probably be
assigned your own storage area in which to keep your files. This brings up several new ques-
tions: what is the relationship between your files, those of other users, and the program files
that make up the system software? Is there a way to check out what's stored outside of your
own area?

The file organization system is one of the most important features that distinguish one operat-
ing system from another. Until you learn it, you can't get around on a computer to see what's
there and to find the programs and data you need.

1.4.5 On-line Help

If you remember only one thing about any computer or program (in addition to starting up),
remember how to access and use any available on-line help. If you know this, you can discov-
er all the other necessary information on your own. You can also get beyond the basics
covered by this book and become more of a real expert in that system.

1.4.6 Dealing with Files: The Most Important Commands

1.4.3 Filenames 15

Each operating system's "Most Important Commands" chapter describes the crucial com-
mands for manipulating and organizing files.

Using a computer is ultimately about the manipulation of files. (Some systems may use a dif-
ferent term instead of "file," but the same principles apply.) These are the units in which we
group stored data on a computer, regardless of the data's source, destination, or purpose. We
take files called programs that are instructions to the computer, run them, and use them to cre-
ate, look at, alter, delete, and transfer other files.

This section shows you the most important things that you can do to files:

• List their names, with any pertinent information about them (like their size and the last
time that they were changed).

• Put a text file's contents on the screen where you can see it.

• Copy files.

• Rename files.

• Delete files.

Where applicable, this section also shows how to create and remove subdirectories
(subdivisions of the disk space allotted to your user ID) and how to move files in and out of
these subdirectories.

Many operating systems provide a way to control other users' access to your files. If not
knowing this prevents you from using any of the other essential commands, then the "Using
Files" chapter explains how to control access to your files. For example, an OpenVMS sys-
tem may not give you permission to remove your own subdirectories, so the "Using Files in
OpenVMS" chapter explains how to give yourself permission with the SET PROTECTION
command. When you create a command file in UNIX, you may not have permission to ex-
ecute it, so the "Using Files in UNIX" chapter explains how to give yourself this permission
with the chmod command.

This section also prepares you for an operating system's typical error messages. A beginner
will encounter many, and knowing which part of these messages to ignore and which parts
can help you will speed the process of discovering what you did wrong.

1.4.7 The Text Editor

To create your own text files, or to edit existing ones, you need a text editor. Writing your
own command files requires one. Composing mail usually requires one (unless the mail pro-

16 1 Introduction

gram has a text editor built in). Files moved to one computer from another running a different
operating system often have extraneous characters that need to be removed. (For example, al-
though a text file is a text file on any system, older DOS programs indicated the end of a text
file with a ^Z character, which may show up as an unwanted character at the end of a file that
was moved from a DOS PC to another computer.)

Text Files, Binary Files
A text file is generally made up of keyboard characters. Because the Americ-
an National Standard Institute (ANSI) standardized a code that specified
which bytes represent which keyboard characters (the American Standard
Code for Information Interchange, or ASCII), each letter or number in a text
file is represented by the same byte on nearly any computer. For example,
the uppercase letter "A" is represented by 01000001, or byte number 65.
This system makes it easy to move text files from a computer running one
operating system to a computer running another.

Most programs that you run on a computer were originally written as text
files, then compiled into binary files. In other words, they were translated by a
special program known as a compiler into the computer's own language.
These files are just collections of bits and will appear as gibberish if you try to
look at them. Compiled programs aren't the only binary files—data files
stored by popular word processors, spreadsheets, and graphics programs
are also binary. They are full of hidden codes and compressed data stored in
whatever data structures the programmers who designed them thought
would be most efficient.

To do anything with these binary data files, you usually need a copy of the
program that created them. (For instance, to edit a file created with Microsoft
Word, you need Microsoft Word.) Text files, however, are more universal;
any text editor can edit any text file.

This book shows you how to use the text editor that comes with each operating system to do
the following:

• Create a new text file.

• Edit an existing file.

1.4.7 The Text Editor 17

• Insert new text into a file.

• Delete existing characters or lines from a file.

• Search for an expression within a file.

• Save your changes.

• Abort your editing session, so that changes are not saved.

1.4.8 Printing Text Files

A computer industry analyst once said "The paperless office is about as useful as the paper-
less bathroom." Today, people are using their screens more often to read the information that
they need, but the vast majority of computing that takes place still leads to a hard copy result.
People use word processors to write letters that they will print out and mail; they use spread-
sheet and database programs to print out data that they will photocopy and distribute to co-
workers.

Sending a file to a printer is usually pretty simple. The use of a multiuser system adds a few
wrinkles. Because the system may have more than one printer available, you might have to
identify the printer you want to use. Since other users may have print jobs waiting to print on
that same printer, this section also shows how to list out the waiting print jobs, if possible, to
get an idea of how long you must wait. And, if you send something to the printer and then
change your mind about printing it, this section shows you how to cancel the print job.

1.4.9 Command Files

Any computer that lets you issue commands by typing them at a command line will also al-
low you to create a text file with a series of commands and to then execute those commands
by typing in the name of the file where you stored them. These command files provide a way
to automate repetitive tasks. In some cases, they provide a complete programming language.

Command files help you pretend to know more about an operating system than you really do
for two reasons:

• Beginners tend to believe that only experts write and use command files.

• If you look up the syntax of complex commands and put them into command files with
simple names that are easy to remember, you'll have an easy way to execute complex
commands without remembering their syntax.

18 1 Introduction

It's not hard to create simple command files if you are reasonably comfortable with a system's
text editor. This section shows you how.

1.4.10 Sending and Receiving Mail

The ability to communicate through electronic mail, or "e-mail," is one of the greatest advant-
ages of a multi-user system. It cuts down on phone tag. It allows you to ask people questions
when you feel like it, not when they're free, and they can answer you when it's convenient for
them. If the subject of your discussion is in a file on the computer, you can send it, or embed
part of it in your message. If you can log in to the computer over telephone lines, you can
communicate remotely, which by itself has several advantages: you can communicate with
people whose hours are different from yours, and you can keep current on issues in the office
when you are on the road or staying at home. Many people have accounts on multi-user sys-
tems solely to use the electronic mail program.

Because the mail program that comes with a system often leaves something to be desired,
many companies purchase and install a better one. Different mail programs on the same sys-
tem can usually communicate with each other, so even if your company has purchased a new
one, you won't be wasting your time if you learn the basics of the one that's included with the
operating system. The following are the crucial tasks for dealing with your mail:

• Checking to see if you have mail.

• Reading messages.

• Deleting messages.

• Saving a received message as a file.

• Replying to a message.

• Creating a new message.

• Sending an existing file to someone.

1.4.11 A Sample Session

Each part of the book ends with a brief scenario that demonstrates a typical session on that
operating system. Joe User, our hero, works in an office where he is expected to know the ba-
sics of the system described. Usually, he logs in and finds a mail message that asks him to do
something. As he sets out to fulfill the request, he may encounter problems, but perseverance
and the information in this book enable him to work around them. When you read about
someone executing the various commands described for a given operating system, it becomes

1.4.10 Sending and Receiving Mail 19

easier to see how some of the pieces fit together in a typical situation.

You will also find references, in the sample sessions and throughout the book, to a mythical
database management program called UpRiteBase. No such program really exists; in describ-
ing how an application might fit into a typical installed version of each operating system, I
simply chose to make up a sample application program name.

1.5 General Advice
Your life will be easier if you keep certain hints in mind when you attack a new operating
system. Trying to distinguish the key differences and similarities between a new one and one
that you already know can be very confusing. This section offers some advice on strategies by
which you can take advantage of the similarities and minimize the problems caused by the
differences.

BUZZWORD String This isn't really a buzzword, but a technical term describ-
ing a sequence of characters. Quotes are often used to show where a string
begins and ends; for example, "here is one" and 'here is another'.

1.5.1 Filenames

The rules for naming files on different computers can seem very different. How many parts a
name has, how long these parts can be, and which characters you may use vary from com-
puter to computer. I like to use some guidelines that are based on the common denominator of
all the rules I know. They allow me to make up a filename on a particular computer while
knowing that the same name would cause little, if any, trouble on another. This is particularly
important when using a computer that may be attached, through a network, to other com-
puters; it's a shame when all the technical details of file transfer and file sharing are worked
out and automated for you but they don't work because of something as simple as one sys-
tem's inability to recognize a filename on another.

• Parts in the name: UNIX, like the Macintosh and the Amiga, has filenames of only one
string of characters; the name of a DOS filename has two parts; CMS, MVS, and Open-
VMS filenames have three parts. Two is a nice compromise, and systems that use three-
part names usually add a default third part if you don't include one. It's a common practice
(although not a rule) on UNIX machines to use a period as a filename's second, third, or
fourth-to-last character, separating the last few characters so that they can give a clue
about the type of file it is. junememo.txt, clean_up.c, and budget.wks

20 1 Introduction

would not be unusual filenames. The use of the period on DOS and OpenVMS machines
to separate the first two parts of the filenames makes these names just as valid on both of
these systems. The use of more than one period in a filename is a good example of
something that works on some systems but not on others, and which you should therefore
avoid.

• Length of the parts: Systems that divide the name up into parts rarely allow any part to be
more than eight characters long. A three-character length for the filename's second part is
a convention in UNIX and OpenVMS and a rule in DOS, so a maximum of eight for the
first part of our two-part compromise and up to three for the second is a guideline that
gets you by on many different operating systems.

The second part of these names usually give a clue about the nature of those files—for in-
stance, clean_up.c would be the source code for a program written in the C program-
ming language, budget.wks might be a worksheet, and junememo.txt is probably a
simple text file.

• Characters to use: All the operating systems that I know of allow you to use the letters of
the alphabet and the ten numeric digits. All but MVS and OS/400 allow you to use the un-
derscore character (_). If you use some other character from the top row of your key-
board, you may find that it works at first but causes a problem later. Maybe the problem
will occur when you move the file to another computer; maybe it will occur on the com-
puter where you created the file. The section below entitled "Wildcards" shows examples
of characters that lead to trouble if you try to incorporate them into filenames.

Filenames on any computer are notorious for torturous abbreviations that completely ob-
scure their meaning. This is where the underscore comes in handy on operating systems
that allow its use in filenames—if you use it to separate different abbreviations, the name
becomes easier to figure out. aprschd.txt is a tough one, but apr_schd.txt is a
little closer to "april schedule."

1.5.1.1 Wildcards

If you want to carry out an operation on seventeen different files, you don't necessarily need
to type the command seventeen times. Nearly all operating systems let you refer to more than
one file at once by using wildcards to take advantage of common characters in the filenames.

A wildcard is a special character that does for regular characters what its namesake does for
regular cards in poker: it can be treated as any other character—or, sometimes, other charac-
ters. For example, to delete the files april1.txt, april8.txt, april15.txt,
april15a.txt, and april22.txt, you don't need to type in five commands that each
delete a single file. On most computers, you can simply tell the operating system to delete

1.5.1 Filenames 21

something like april*.txt.

On most systems, an asterisk represents zero or more characters; other special characters are
often available to represent other numbers or ranges of characters. (This is why you should
stick to letters and numbers when you make up filenames—characters that can represent other
characters will cause trouble.)

For example, if one computer's command to list out filenames is the word list, then the
command

list schedule*

might list files with the names schedule.jan, schedule.feb, schedule.bak,
schedules, even a file whose entire name is just schedule, because the asterisk can
represent zero or more characters. The term schedule* is known as the file specification,
because it is not itself a filename, but a way to specify a file or group of files.

Wildcards are often demonstrated with the command that lists files, but they can usually be
used with other commands as well. For example, if the command to copy a file is the word
copy and the word accounting represents a disk, subdirectory or other location where
you store accounting files, then the file specification budget* in the command

copy budget* accounting

could copy the files budget92, budget93, budget94, budget.bak, and
budget to the new location.

Notice how both sample commands have the asterisk at the end of the file specification. On
some operating systems, it might be possible to list out aprbud.94, maybud.94, and
junbud.94 by typing this:

list *bud.94

Here the asterisk represents any letters at the beginning of a filename. This is not as common
as using an asterisk at the end of the name or, on an operating system that allows multi-part
filenames, at the end of one part of the name. Check the "Wildcards" section for each operat-
ing system to make sure.

The file litebud.txt would also be listed by the above command, because of the aster-
isk's flexibility. What if you don't want to be that flexible and only want to list filenames with
exactly three letters before the "bud.txt" part? Most operating systems also offer a wildcard to
represent individual characters. If it were a question mark, then the command

copy part?cal.txt accounting

22 1 Introduction

would copy the files part1cal.txt, part2cal.txt, part3cal.txt, and
part4.cal to the accounting area, but it would not copy part12cal.txt or part-
cal.txt.

This character could be repeated to represent a specific number of characters in a filename.
This would solve our problem of listing the 1994 budget files without including lite-
bud.txt; if each begins with exactly three letters before the "bud.94" that they share, you
could enter this:

list ???bud.94

This brings us to an important point about naming your files: files with a similar purpose
should have similar names, so that you can deal with them as a group with a minimum of typ-
ing. If the 1994 budget files had been called aprilbud.94, bud94.may, and
june94.bud, it would take three separate commands to delete, list, or copy them on many
operating systems.

And remember, these aren't the only commands for manipulating files. Any command that
can do something to a file—whether it prints it, searches through it, or e-mails it to another
user—can usually do it to many files at once, if you know how to use wildcards.

1.5.1.2 Wildcards and File Deletion

When you enter any operating system's command to delete files and use a file specification
that includes wildcards, it's a good idea to first use the same file specification with the com-
mand that lists files. This way, you see a list of which files you're about to erase.

For example, let's say a given operating system's commands for listing and deleting files are
LIST and DELETE, and the asterisk is used to represent one or more characters. If you want
to delete five files that all begin with the letters "JUNE," you should enter

LIST JUNE*

before you type this:

DELETE JUNE*

If LIST JUNE* lists seven files that fit that pattern, then you'll know that your pattern is too
general, and that using the same pattern with the DELETE command would have deleted
more files than you had intended.

The command that lists file names can be very useful as you learn about other file manipula-
tion commands. Until you are comfortable with a system, always use the file listing command

1.5.1 Filenames 23

to make sure that the results of your delete, copy, and rename commands had the desired ef-
fect.

1.5.2 Mail

The best way to learn about the mail system on any computer is to send mail to your own ID.
It's nice if you have a friend willing to put up with messages like

Subject:mail^H^Hest?
I ope thethis woks^[^[rks

but you'll spare yourself some embarrassment and get a good idea of what your e-mail looks
like to recipients if you send your first messages to yourself.

To be comfortable with a mail program, you have to be comfortable with the text editor first.
Make sure you understand the basics of creating and editing text files before you try to get
too far with your electronic mail system.

1.5.3 The Text Editor

Don't wait until you have to create important files before practicing with the text editor. At
that point, you'll want to concentrate on what you're saying, not on the commands and key-
strokes necessary to make the file look the way you want. Create some dummy files, or letters
to e-mail to yourself for e-mail practice. Just make sure that they're files that will cause you
no pain if you ruin them.

A good opportunity to practice with the editor is to use it to take notes about the operating
system as you play with it. Save your work often, keep a backup copy of the file, and print it
every now and then in case something unplanned happens to it. If you don't use that computer
for a while and forget some aspects of using it, your file full of notes will be handy when you
have to use the system again.

1.5.3.1 Line Editors, Full-Screen Editors

Many operating systems provide you with two different editors: a line editor, which works in
TTY mode, and a full-screen editor. The line editor will be the older of the two, and will be
provided for the convenience of people who have been using that system for a long time. To
use a line editor, you don't move your cursor from line to line as you do with a modern word
processor or text editor; you issue commands in terms of line numbers. A typical series of
editing commands would tell the editing program to carry out instructions like this: add a new
line after line number 5, show me lines 3 to 15, change the phrase "file name" in line 12 to "fi-
lename," delete line 11, save the file. Unless this sounds like fun, you'll want to use the full-

24 1 Introduction

screen editor provided with each operating system.

BUZZWORD Full screen The ancestors of modern computer terminals were
called teleprinters or teletypewriters. These were essentially printers with
typewriter keyboards attached to them. When you typed a command and
pressed Return, the terminal printed your command and then, if there were
no problems with it, printed the output underneath it.

The first Video Display Terminals (VDTs) to replace these machines substi-
tuted the VDT screen for the long roll of paper necessary on teletypewriters.
Commands and output still appeared one line at a time, but this time they ap-
peared on the bottom of the screen, and as more data appeared the earlier
data scrolled up the screen. If it scrolled off the screen, it was lost forever; to
see it again, you entered the command again.

Eventually, engineers figured out how to make characters appear at specific
places on a screen, instead of always at the bottom. They also devised ways
to display the cursor at a specific location and still have the computer read
whatever the user typed there. This enabled them to create input forms, or
on-screen versions of paper forms, where the user could move the cursor
from place to place on the screen and enter the appropriate data.

This more sophisticated way of dealing with terminals became known as "full-
screen mode." The old way, in which the text perpetual scrolled from the bot-
tom of the screen to the top, became known as teletypewriter mode, or more
commonly, TTY mode.

Although this book will show you the most common text editor available for each operating
system, you should investigate any alternative editors available on your system. Some sites
purchase and install a different text editing program if they consider it superior to the one in-
cluded with the operating system.

People who are familiar with the editor on one system can often find a version of it for anoth-
er operating system that they may use—the PC/DOS KEDIT editor is a PC version of the
mainframe XEDIT program, and various versions of the UNIX vi editor are also available for
PC/DOS and OpenVMS. So, when you move to a new operating system, you may not have to
learn a new text editor.

1.5.3.2 The Editing Buffer

1.5.3 The Text Editor 25

On several different platforms, the word "buffer" comes up occasionally in the text editor's
status messages and, if available, in its on-line help. It just means "the part of memory set
aside for the file you're editing." When you edit a file on any computer, it copies the file from
the disk to the computer's memory, and you then edit that copy. Saving your work means
copying the edited version in memory back to disk; this is why you lose your work when you
lose power in the middle of editing a file on a personal computer.

Sometimes technical talk refers to the copy sitting in memory as the copy in the buffer. For
example, when you edit a file with the OpenVMS EVE editor and then quit without first sav-
ing your changes, a message tells you "Buffer modifications will not be saved, continue quit-
ting?" This means "The edits that you made to the copy of your file sitting in memory won't
be saved, are you sure you want to quit?"

1.5.4 Looking at Text Files

All command-line operating systems have a command to display a text file's contents on your
screen. The command might be TYPE, cat, or LIST. (This last one can be confusing, be-
cause it displays a text file in MVS, but lists file names in VM/CMS.) Remember that these
commands are for looking at text files, not binary files. If you try to display a binary file with
one of these commands, the system tries to interpret the binary information as text so that it
can put it on the screen. At best, it looks like gibberish; at worst, the system interprets some
of the information as special codes telling it that you've changed the settings on your terminal
or terminal emulation software. In response to this, it starts sending codes to your terminal
that have nothing to do with what your terminal expects. If this happens, your terminal may
lock up, forcing you to end your session and start all over again.

Moral: don't start using this command to try to look at every file whose name shows up when
you list filenames. One part of the filename on each system (usually the second part—it might
be called the filetype or extension) gives you a clue as to what kind of file each one is. Get to
know which ones represent text files and which represent binary files.

1.5.5 "Printing" on the Screen

Be careful when you come across the word "print" in a command or a command's description.
In the days of teletypewriters, every program that showed you any information literally prin-
ted it on the paper that scrolled through the terminal. As VDTs proliferated in the nineteen-
seventies, they existed side-by-side with the teletypewriters, and it was understood that text
that would have printed on a teletypewriter was displayed on a VDT's screen.

Although VDTs have replaced teletypewriters, the terminology still hadn't changed. This
means that today a help message that explains that a given command "prints the names of
your files" doesn't mean that it sends filenames to the printer; it means that it "prints" it on

26 1 Introduction

your terminal.

1.5.6 Reading and Writing

When discussing a computer's operations, the use of the terms "read" and "write" often con-
fuse novices. Reading a file doesn't necessarily involve your seeing it; it's the hardware that
reads and writes data. A tape recorder provides the best analogy to understand what com-
puters are doing when they read and write: writing is essentially the act of recording data on
your storage medium, and reading is the playback of that data—that is, pulling it off the stor-
age medium so that you can use it.

When you save a file that you created with a word processor or spreadsheet, you are writing it
to disk. (Writing it "on" the disk may sound like better English, but we're talking computer
talk here—the correct preposition is "to.") When you call up a previously created file into
your word processor or spreadsheet, you are reading it from the disk. When you copy a file
from one disk to another, your computer reads it from the source disk and writes it to the des-
tination disk; this is like playing a song that has been stored on one tape while you record it
on another.

Just as audio cassettes have a little piece of plastic that you can punch out to prevent someone
from recording over the information that exists there, floppy diskettes have either a little
plastic switch to move or a notch that you cover with a sticker to prevent anyone from "record-
ing" on that diskette, or writing over the information there. This protects the data on that
diskette, and is called a "write protect" switch.

One of the most dreaded error messages on any kind of computer is a "read error." This usu-
ally means that there's a problem with the disk that the computer is trying to read. Picture an
audio cassette that fell into a pond and then, after it was fished out, was left out in the cold so
that the moisture inside had a chance to freeze up. Your tape recorder would have a hard time
playing this cassette or reading the information stored on its tape. If your hardware can't get
the data off the storage medium, the data is lost. The same principle applies to the data on
disks. That's why people make backups—with more than one copy of valuable information,
they can read from the backup if the primary disk is corrupted (computer talk for "screwed
up").

1.5.7 Logging Off (or Out)

When you type the command to end your session on a computer and press Enter, some com-
puters give you a clear indication that you finished your session—for example, a summary
that shows the time of day you quit and the amount of time that you were connected. Others
don't. You should always make sure that you have properly ended your session, since some
sites bill you according to the amount of time that you are connected.

1.5.6 Reading and Writing 27

If you don't see such a message, press Enter a couple of times and see what happens. If you
return to a login screen or login prompt, you know that you no longer have an active session.
If you're still unsure, type a simple command for that operating system and see if anything
happens. If anything does, you're still logged in.

What happens at the end of a session can vary from site to site. Even an expert on a particular
operating system would not know exactly what to expect at a particular installation. Don't be
afraid to ask.

1.5.8 Terminal Emulation and File Transfer

All operating systems have communications software available for doing file transfer to and
from other computers. It may be part of the operating system, or it may be purchased from a
third party. (Very likely, both hold true on a particular system; as with text editors and mail
programs, the one included with the operating system may be so limited that a commercial
one is purchased anyway.) On a personal computer or workstation, these programs often must
also do terminal emulation, which lets you use your local computer as if it were a terminal for
the host computer.

The Kermit file transfer and terminal emulation program is available for virtually all operat-
ing systems, and it's free. This is particularly important when doing downsizing work, be-
cause downsizing means "moving an application from a larger computer to a smaller one"
and you need a program to do the file transfer. Once you learn Kermit's most important com-
mands, you can use it on any operating system where you find it installed.

For personal computers, Kermit is available from nearly any bulletin board catering to your
computer. CompuServe has it for DOS computers, the Macintosh, the Amiga, and the Atari-
ST (use the file finder forums—IBMFF, MACFF, AMIGAFF, and ATARIFF—to locate the
latest versions). On minicomputers and mainframes, it takes a system administrator to install
Kermit, but if you're using a computer that is part of an academic computing center, you can
bet that Kermit is already installed.

To find out, enter

kermit

at the operating system's command prompt. If the Kermit prompt appears (this will look dif-
ferent on different systems, but probably be some variant of Kermit>), you've found it.
Enter

help

at the Kermit prompt to learn more.

28 1 Introduction

1.5.8.1 Emulated Terminals

There are two terminals whose names come up often, even though you may never see ex-
amples of the actual terminals:

• The VT100 was one of the original members of DEC's VT ("virtual terminal") series of
terminals. Although they have come out with more advanced models since (each desig-
nated by a higher number, such as VT220 and VT340), emulation of the VT100 has be-
come a baseline of emulation competence for emulation programs and for the terminals
with which a system will work. If the terminals that your system will work with and the
terminals that your emulation software can emulate only have one name in common, it
will be VT100. If they have other names in common, they will probably be more sophist-
icated terminals, and more worthwhile for you to use.

• The 3270 was an important IBM terminal, whose descendants (the 3278, 3279, etc.) are
also still in use. People refer to the family generically as "3270 terminals."

3270 keyboards have a couple of keys not found on typical personal computer keyboards
(for example, the Reset key, and separate Return and Enter keys) so when you're emulat-
ing a 3270 terminal, you must sometimes figure out which personal computer keys are
standing in for the 3270 keys not found on a typical personal computer keyboard. In this
book, you'll find 3270 issues mentioned in the material on the three IBM systems
covered: OS/400, VM/CMS, and MVS.

1.6 Syntax Expressions in this Book
This book shows you the syntax for many commands in the various operating systems
covered. Some commands have mandatory parts, optional parts, and default settings. The fol-
lowing conventions show which parts of a command's syntax are what:

[] Anything in brackets is optional.

/ A slash indicates options from which to choose.

underline If several options are possible, the default setting is underlined.

Key+Key When two keys should be pressed simultaneously, they are writ-
ten with a plus sign between them. For example, to type an up-
per-case "S," you would press Shift+S.

The following syntax for the mythical whatgives command

1.6 Syntax Expressions in this Book 29

whatgives [today/yesterday/tomorrow]

means that you could type the word whatgives by itself, because everything else is in
square brackets, and therefore optional. If you did include a parameter, it should be either
"today," "yesterday," or "tomorrow" because the slash characters show that these are the only
options. If you didn't include any parameter, the whatgives command would be executed
as if you had put "today" after it; this is the default parameter, as indicated by the underline.

1.7 Comments and Suggestions
Comments and suggestions about this book can be sent to me in care of McGraw-Hill Profes-
sional Book Group, 11 West 19th Street, 3rd Floor, New York NY 10011.

To send them more directly to me, you can use electronic mail to send them to BOBDUCH-
ARME@ACM.ORG or CompuServe 72441,3003.

30 1 Introduction

Part II. UNIX

Chapter 2 UNIX: An Introduction
UNIX has been around for over twenty years and many consider it to be the operating system
of the future. Why? Because as personal computers become cheaper and more powerful, the
original operating systems designed for them are less and less adequate; the portability and
multi-tasking ability of UNIX make it a strong candidate for those who want to upgrade from
single-user systems. From PC/DOS 2.0 to the Macintosh's System 7, other operating systems
have increasingly reflected the UNIX influence as their manufacturers strive to increase their
power and capabilities.

UNIX also has a certain mystique, making it a magnet for would-be hackers. Clifford Stoll's
bestselling 1988 book "The Cuckoo's Egg" boosted this mystique with the story of a crunchy-
granola Berkeley astronomer who tracks down some German spies employed by the KGB.
What made this story different from a John LeCarre novel, besides the fact that it was true,
was that the bad guys' spying and the good guy's detective work were all done over a world-
wide UNIX network. (You don't need to know any UNIX to enjoy the book, but a basic
knowledge—the kind provided by this book—definitely enhances your appreciation of the
key characters' maneuverings.)

2.1 History
The mystique of UNIX, however, is much older than Stoll's book. To understand its roots, we
must go all the way back to the twenties. Before the invention of computers, IBM realized
that people would pay good money for solid, reliable support after they bought IBM's time
clocks and tabulating machines. They knew that the relationship between business machines
and post-sales support resembled the relationship that Eastman Kodak had found between
cameras and film: customers may buy the former only once, but they need to purchase the lat-
ter over and over. That's where the real money was.

When IBM started making computers and selling software to go with them, the software's
source code was naturally a trade secret. Source code is the program as the programmers
wrote it; a program called a compiler translates this into the binary file that is the software
you buy and run. The binary file is unintelligible to the eye, while the source code shows how
the program really works. Hobbyists show each other their source code, and computer science
students hand theirs in to be graded, but no IBM source code went beyond IBM.

In 1969, Ken Thompson of Bell Labs developed the first version of UNIX on a DEC PDP-7
for his own use. (The name and several of the concepts were derived from an unfinished joint
venture with General Electric and MIT called MULTICS.) Other Bell Labs programmers
liked it, used it, and added to it. It spread rapidly throughout Bell Labs, where it continues to
be the dominant operating system today.

33

Bell Labs' parent company, AT&T, realized that they had something valuable on their hands,
but this was before the breakup of AT&T, when government regulations restrained them from
getting too far into the computer market. AT&T did license UNIX for inexpensive use by
educational institutions, but with some twists to the typical licensing agreements that fol-
lowed the IBM pattern: instead of selling the operating system and being responsible for sup-
porting it, the deal included the complete source code and the understanding that there would
be no support available.

ULTRIX? XENIX? AIX? AUX? POSIX? DYNIX? MACH? SunOS?
AT&T registered "UNIX" as a trademark, so although anyone may create
their own version and market it, they may not call it UNIX. As a result, differ-
ent companies have come up with their own names. We call these slightly
different versions "flavors" of UNIX. They often end in the letter "X" so that
they sound like the word "UNIX": DEC's ULTRIX, which runs on their DEC-
station workstations; IBM's AIX, which runs on its RS series of workstations;
XENIX, developed for computers with Intel processors (usually machines
considered to be powerful PCs that otherwise run DOS); Sequent's Dynix,
and Apple's AUX. Sun Microsystems calls the operating system for their
workstations "SunOS," and the NeXT computer uses an MIT-developed vari-
ant of UNIX called Mach.

POSIX is not an actual operating system, but a developing government
standard for a version of UNIX that any vendors must conform to if they want
to sell their UNIX products to the government.

The differences between these various flavors, from the user's point of view,
are usually slight—for example, an error message might be worded differ-
ently. It's safe to say that if you're comfortable with one flavor of UNIX, you
can fake it on the others.

The bargain price of UNIX and its ability to run on many different computers quickly made it
popular in universities and small companies that were just acquiring their first computer. The
universities turned out computer science students who knew UNIX, and its popularity spread
further.

The lack of support remained a problem, however, so users banded together to support each
other. Some users formed a user group called /usr/group (a pun on the term "user group" and
on a UNIX subdirectory name) in order to pool the knowledge they had gained by studying

34 Chapter 2 UNIX: An Introduction

the source code. This could be considered the original UNIX cult—at least the first beyond
Bell Labs. Certain Bell Labs names (Kernighan, Ritchie, Aho, and Weinberg, among others)
are still the high priests of this cult.

BUZZWORD The Labs In addition to UNIX, the C programming language,
lasers, communications satellites, and the transistor, Bell Labs is responsible
for countless other things that we take for granted in the world of computers
and in everyday life. Many consider Bell Labs so important that they don't
even need the word "Bell," so you will sometimes hear people refer to "The
Labs."

The extreme terseness of UNIX also contributed to its cultiness. Its most important com-
mands are only two or three letters long—for example, the command to list filenames, ls,
and the command to copy a file, cp. (The real fun comes with commands that are abbrevi-
ated to look like completely unrelated words. The command man has nothing to do with men;
it brings up the on-line manual. The command cat, which you will find in section 4.1, ("The
Eight Most Important Commands") has nothing to do with feline domestic pets. The com-
mand tar is used for tape archiving, and has nothing to do with road surfaces or Brer Rabbit;
the wall command is used by system administrators to write a message to all terminals, and
has nothing to do with the sides of a building.)

These abbreviated commands, along with the use of symbols like the period, the double peri-
od, the slash (/), the pipe (|), and the greater-than and less-than symbols (>, <), enable
UNIX users to put together flexible, powerful commands with a minimum of typing. People
who don't understand these commands and symbols find them intimidating. The combination
of terseness, power, and strange symbols in a command like

ps -aux | grep ../getty | sort >> gettyproc.txt

reminds the uninitiated of the mystical symbols of alchemy, or worse, of assembly language.

2.1.1 Today

When the federal government ordered the breakup of AT&T on January 1, 1984, AT&T did
benefit from the deal: restrictions on many of their potential activities were lifted. Some of
these restrictions had prevented them from getting too far into the computer industry. With
their removal, UNIX became a marketable product for them.

The power and flexibility of UNIX helped it to grow into a big business, but the cultiness was

2.1.1 Today 35

hurting business. /usr/group, whose very name only made sense to the initiated, changed its
name to UNIX International in 1989. Complaints about the cryptic nature of UNIX com-
mands and the success of graphical user interfaces on computers like the Macintosh and the
Amiga inspired people to create interfaces for UNIX systems with windows and icons that
could be controlled with mice.

Computer science students still study UNIX closely at colleges and universities, because
when you study the responsibilities and methods of an operating system, the best way to learn
is to look at the source code of a real operating system. Although commercial versions of
UNIX are more proprietary these days and often too complex for students to understand the
source code, simpler versions of UNIX like MINIX and XINU have been developed specific-
ally for students to dissect and study.

Today, the graphical user interface versions of UNIX always have a window where you can
type in old-fashioned UNIX commands. In fact, they let you have several of these windows at
once.

These commands are not as difficult as their reputation; they're just very abbreviated. DOS
and Amiga users in particular will understand more about their PCs' operating systems when
they study UNIX, because so much of DOS and AmigaDOS were modeled on UNIX.
(Knowing about the UNIX heritage of DOS has earned me some easy money on two occa-
sions—both times, I earned sixty dollars for sending a single paragraph to the "User-to-User"
column in the back of "PC Magazine." Each one described a common UNIX trick that also
worked on the DOS command line.)

Workstations
Imagine that you had a PC so powerful that no existing personal computer
operating system enabled you to take full advantage of that power and that
you used some variant of UNIX instead. This is essentially what a worksta-
tion is. Although their multi-tasking ability allows UNIX computers to be used
by more than one person at once, workstations are usually used by one per-
son at a time.

Workstations are also designed to communicate easily with each other. Sun
Microsystems, the company that first popularized UNIX workstations, is fam-
ous for its slogan "The network is the computer."

Workstations usually have large, high-resolution monitors and graphics cap-
abilities far superior to those of other computers. Because of these abilities,

36 Chapter 2 UNIX: An Introduction

they are popular for scientific visualization and computer animation. This
makes them far more glamorous (or in computer industry parlance, "sexy")
than computers used for mundane tasks such as processing purchase or-
ders. As a result, workstations have become a popular bandwagon. IBM had
Hagar the Horrible selling its RS workstations, Steve Jobs pushed his NeXT
machine from the cover of Newsweek, Hewlett-Packard bought out the popu-
lar workstation manufacturer Apollo in order to gain an entry, and DEC
brought out its DECstation.

Meanwhile, as personal computers and their operating systems get more and
more powerful, computer trade press journalists each write their annual "We
have to redefine what we mean when we say workstation" column.

2.1.2 USENET

When you know UNIX, you not only have the ability to deal with a wide variety of com-
puters from a wide variety of manufacturers (not to mention the many "flavors" of
UNIX—see sidebar); you also have the tools necessary to take advantage of USENET.

Some people call USENET a giant computer bulletin board. From the user's perspective, it
bears a strong resemblance to a bulletin board; you can download programs and you can send
electronic mail and programs to other users. You can read messages from people all over the
world and leave them yourself on any topic imaginable. It keeps many scientists and re-
searchers far more up-to-date on news in their fields than any journal published on paper
could. In spreading hot stories, USENET has often been known to scoop CNN.

It isn't really a bulletin board, though. USENET is actually much more dynamic than that.
Rather than a central computer where people log in to to see what's new, USENET provides a
constant flow of information between nodes, or computers designated to receive and send
along this information. If your system is hooked into one of these nodes, then your system is
itself a node and you have access to whatever portion of USENET is being pulled in to your
node.

2.1.2 USENET 37

38

Chapter 3 Getting Started with UNIX
3.1 Starting Up
When you turn on a terminal connected to a UNIX system, or successfully connect to such a
system over a network or phone line, the first thing you see is the login prompt:

login:

As an authorized user of this system, you should have a login name that represents your iden-
tity on the system. Type it in here and press the Enter key. The next prompt asks for your
password:

password:

Type it in and press the Enter key. If all went well, you will be logged in.

A couple of things to remember:

• If you make a typing mistake, press Enter until the system asks you to log in again. Don't
try to use your Backspace or cursor movement keys to correct the mistake. Because the
computer probably doesn't know what kind of terminal you are using or emulating yet, it
may not understand the codes sent by these keys. If Joe User enters job, then presses the
Backspace key to get rid of the b and types euser, his screen may show that he has
typed joeuser, but when he presses Enter the system may receive something that looks
more like job^]euser as a login name. It won't have a record of such a user and won't
give him access to the system regardless of the password that he types with this login
name.

• Some systems, if you log in in upper case letters, assume that you are using one of the
old-fashioned terminals that cannot type lower case letters. They will then display all text
for that session in upper case letters. Make sure you log in in lower case.

• Just because the system asks you for a password doesn't mean that you entered the login
name correctly. It always asks. If it only asked when you entered a valid username, then
people trying to break in to the system would have an easy way to determine which login
names were valid.

• A login name may have no password. This may be the case the first time you log in. As
soon as you enter the login name, the system displays the screen indicating that you have
logged in.

39

Once you log in, the system probably displays some information about the particular system
that you are logged in to before it displays the prompt where you enter commands. The
prompt usually appears as a dollar sign ($) or a percent sign (%), but can be easily changed.

There are ways to set up a UNIX ID so that, when someone logs in, a certain program auto-
matically runs whether that user wants it to or not. You will often find arrangements like this
for IDs that have no password—this way, anyone can log in to run one particular program,
but they can't have the run of the system. I was once given a UNIX account just to use the
mail program. When I logged in, it automatically started up the mail program; when I quit the
mail program, it automatically logged me out.

3.1.1 Finishing Your UNIX Session

To show that you want to disconnect from the system, type:

exit

A shortcut available on most systems is to type Ctrl+D.

BUZZWORD Box Many manufacturers produce computers that can run
UNIX, or some flavor of it, and users often identify the brand of hardware be-
ing used in a given situation as a "box"—For example, "They're using AT&T
UNIX, but running it on an NCR box."

3.2 Filenames
Filenames in UNIX can be up to 14 characters long and can consist of just about any charac-
ters. Certain characters have special meanings in UNIX and could lead to trouble if used in fi-
lenames; for example, you should avoid <, >, |, -, ?, [,], and *. Most people
use letters, numbers, the underscore and the period. Because spaces are not allowed in file-
names, the underscore provides a way to make abbreviated filenames more readable.
jul_budget is a more understandable filename than julbudget. Also, UNIX is case-
sensitive—it would treat BUDGET.TXT, Budget.txt, and budget.txt as three dif-
ferent files. Again, stick to lower case.

Be careful about using a period for a file's first character, because this makes that file hidden.
This means that including its names in a list of files on the screen requires you to use a spe-
cial option when you use the ls command to list filenames. As a rule, UNIX users only be-

40 Chapter 3 Getting Started with UNIX

gin very specific filenames with a period. Section 6.2, "Command Files," covers two ex-
amples: .profile and .login.

3.2.1 Wildcards

The main wildcards in UNIX are the asterisk and the question mark. Although the examples
below demonstrate their use with the ls command, remember that you can use them with al-
most any command that uses a filename as a command line parameter. For more information,
see the material on wildcards in section 1.5, "General Advice."

3.2.1.1 The Asterisk

The asterisk at the end of a filename has the same significance in UNIX that it has in most
other operating systems. It can represent zero or more characters at that position in the file-
name or file type.

This is typical of many operating systems. In UNIX, however, the asterisk is much more ver-
satile, because it doesn't have to go at the end of the expression you type. For example,

ls *may

lists all the filenames that end with the letters "may," and

ls *may*

lists out all filenames with the letters "may" anywhere in them.

ls rpt*94

would list out all the filenames that began with the letters "rpt" and ended with the digits
"94," regardless of how many characters are between them.

3.2.1.2 The Question Mark

The question mark represents a single character—no more, no less. Several question marks
represent that number of characters, so that

ls ???94rpt.txt

would list out all of the filenames with exactly three characters before the characters
"94rpt.txt."

3.3 How Files Are Organized

3.2.1 Wildcards 41

Like many other aspects of UNIX, its file system has provided a model for many operating
systems developed after it, such as PC/DOS and AmigaDOS. We call this system of file or-
ganization tree-structured directories, which means that the disk is divided into sections
called directories. A directory can be divided into sub-sections called subdirectories, which
can also be divided. The terms "directory" and "subdirectory" are used almost interchange-
ably, since every directory—except the root—is a subdirectory of another.

To understand how the main directory, or root directory, leads to subdivisions which lead to
subdivisions which lead to subdivisions, think of the branches of a tree. The root is like the
tree's trunk, which branches into several main branches. These main branches then divide into
smaller and smaller branches.

In a typical UNIX system, one of the main branches usually holds most of the programs that
come with the operating system. We call this the /bin directory. Another main branch could
hold the software that was purchased for installation on this UNIX system. This branch might
be called /usr, and the system administrator would subdivide it into sections to hold each
of the software packages. For example, the UpRiteBase database package could be in one of
these subdivisions in a directory called /urbase. This subdivision's full name would be /
usr/urbase, because it is a subdirectory of the /usr directory and the full name of any
directory includes its pathname, or the name describing the path up the tree along the various
branches it took to get there. Since the UpRiteBase software package consists of quite a few
files, it is more efficiently organized if the system administrator divides the /usr/urbase
directory into subsections when installing it. The binary files sit in a branch called /
usr/urbase/bin, the files associated with the demonstration database that comes with it
are in a subdirectory called /usr/urbase/demo, and so forth.

Notice how a slash character separates each component of the pathname. The pathname of the
root, or main trunk of the tree, is just a slash by itself. We create a complete pathname by
combining the names of the various subdirectories traversed to get to the subdirectory in
question, separating each with a slash, and by putting a slash at the very beginning to repres-
ent the root.

Figure 3.1 shows a sample UNIX directory tree structure. (Keep in mind that an actual system
would have many more branches.) A level of indentation represents a level of the subdirect-
ory structure; for example, the ninth line represents the subdirectory /usr/urbase/sql.
The first line shows the root directory.

No two directories can have the same name. Although you may see three subdirectories
seemingly named bin in the directory structure in Figure 3.1, keep in mind that their com-
plete pathnames are different: /bin, /usr/bin and /usr/urbase/bin.

42 Chapter 3 Getting Started with UNIX

/
bin
usr

bin
tmp
urbase

bin
demo
sql

usr2
joeuser

mail
networking

maryjones
mymail
payroll

jimcasey
inventory.dbs
letters

Figure 3.1 Sample UNIX directory structure.

At any given time, one of these directories is your "current" or "default" directory. (An equi-
valent expression describes you as being "in" that directory.) This matters to many of the
UNIX commands—for example, if you enter the command to erase a file but don't specify the
directory where the file is located, the system assumes that you want to erase a file in the cur-
rent directory. Section 3.3.2, "Moving between Directories," shows how to make a new dir-
ectory the current one.

Each user is assigned his or her own subdirectory known as their home directory. The system
administrator assigns subdirectories to users as their own disk space in which to keep their
personal files. A UNIX system's directory structure has one or more main branches off the
root to hold these personal directories for the various users (in Figure 3.1, it's called /usr2),
just as main branches exist to hold the software that they use.

In the example, /usr2 leads to the subdirectories /usr2/joeuser, /
usr2/maryjones, and /usr2/jimcasey, which would be the home directories for
three different users.

These users can create and maintain subdirectories of their home directories in whatever ar-
rangement they like. Mary Jones might keep her correspondence in a subdirectory called /
usr2/maryjones/mymail and Joe User might keep his files pertaining to a new net-
working project in a subdirectory called /usr2/joeuser/networking. Section 4.1.9,

3.3 How Files Are Organized 43

"Creating Directories," and section 4.1.10, "Removing Directories," show you how to main-
tain subdivisions of your own home directory.

3.3.1 Relative Pathnames

Because you can divide up subdirectories into so many subdivisions, full pathnames can get
long. UNIX provides two shortcuts to make it easier to refer to directories:

• You can substitute of two periods (..) where the system expects a pathname. This means
that the you are referring to the parent of the current directory, or one level closer to the
root. The parent of /usr2/maryjones and /usr2/joeuser is /usr2; the parent
of /usr/urbase is /usr; and the parent of /usr, /usr2, and /bin is /, the root.
Section 3.3.2, "Moving between Directories," gives an example of how to use the two
dots as a substitute for the parent directory's name.

• Another shortcut makes it easier to refer to the child of the current directory (a subdivi-
sion of the current directory). Note how all references to directory names up to now begin
with the slash (/) character. You don't always need this; if you omit the slash, the system
assumes that you are referring to a subdivision of the current directory. For example, if
Mary wants to copy some mail messages from the /usr2/maryjones directory into
the /usr2/maryjones/mymail directory, she could just enter mymail as the des-
tination of her copy command instead of typing out /usr2/maryjones/mymail.
This works as long as she was in the /usr2/maryjones directory at that time. If she
was in her /usr2/maryjones/payroll directory and entered mymail as the des-
tination of her copy command, the system would look for a subdirectory called /
usr2/maryjones/payroll/mymail and not find it. (Instead of giving you an error
message, it would create a file called mymail in the /usr2/maryjones/payroll
subdirectory. See section 4.1.5, "Copying Files," for more information on the logic behind
this.)

We call these two shortcuts relative pathnames, because the system figures out the directory
that you are referring to relative to your current directory. If you enter a command to copy
files into a directory called bin, without a slash, this would mean the /bin directory if you
were currently in the root directory, the /usr/bin directory if you were in the /usr direct-
ory, or the /usr/urbase/bin directory if you were currently in the /usr/urbase dir-
ectory. (In reality, you would not have permission to alter the contents of subdirectories out-
side of your home directory unless you were the system administrator). Similarly, the direct-
ory that you refer to when you type .. completely depends on which directory is current
when you type it.

3.3.2 Moving between Directories

44 Chapter 3 Getting Started with UNIX

When you first log in to a UNIX system, your current directory is the one assigned to your lo-
gin name by the system administrator. If you type ls, the command to list out filenames, the
system lists out the files in the current directory. (The first time you log in to a given system
and enter this command, there may not be any files to list out.)

The command cd, followed by the name of a directory, changes your current location into
that directory. For example,

cd /

puts you into the root directory, and

cd /bin

puts you into the /bin directory. If you misspell a directory name so that your command
tells the system to change into a non-existent directory—for example, blin—it gives a reply
similar to this:

blin: bad directory

When the command executes successfully, the system does not acknowledge that you have a
new working directory, but you can easily find out where you are at any given time with the
pwd, or "print working directory" command. This "prints" the full name of your current dir-
ectory on the screen. (See section 1.5, "General Advice," if the idea of "printing on the
screen" doesn't make sense to you.)

Changing the current working directory provides one example of how the use of relative path-
names can save you a great deal of typing. If your current directory is the /
usr/urbase/bin directory and you want to change into the /usr/urbase directory,
you could type

cd /usr/urbase

but it would be much easier to type

cd ..

because /usr/urbase is the parent directory of /usr/urbase/bin. To change back to
/usr/urbase/bin, just type

cd bin

because the bin directory that you want is a child directory of /usr/urbase. Remember,

3.3.2 Moving between Directories 45

when you type cd bin, the system looks for a child of your current directory called bin.
If you had been in the root directory when you typed the same command, you would have
ended up in the /bin directory, not /usr/urbase/bin.

3.4 Available On-line Help
There are two commands that may give you help after you log in. The first, help, is fairly
obvious. On many systems, typing help by itself starts up a menu-driven program that tells
you a great deal about using UNIX. The first screen that it displays explains how to use it.

The man command may also assist you. In the great tradition of naming UNIX commands by
abbreviating them until they look like completely different words (like cat tar, or wall)
this is an abbreviation of the word "manual." Being more old-fashioned than the help com-
mand, man is used strictly from the command line—there are no menus to help you along.
Type in man by itself, and it tells you how to use it: you enter man followed by the word that
you want to look up in the manual. For a start, look up man itself by typing:

man man

(If a screenful of text scrolls up and then stops, press the Enter key each time you want to
scroll to a new screen.)

It's possible that nothing happens with either the help or man commands. Both get the in-
formation you request by looking it up in text files stored on the computer's hard disk for this
purpose, and some system administrators erase these files from the hard disk to make more
room for other files.

BUZZWORD Gen (pronounced "jen") When PC users think of putting an op-
erating system onto a computer, they think of copying the operating system
files onto their hard disk and maybe running a configuration program to tell
the operating system more specific information about the hardware they are
using. On a UNIX system, the system administrator must run a program that
takes various data and code files and actually creates many of the operating
system files. This is known as "generating" the operating system, but if you
really know your UNIX slang you refer to "genning" the operating system. For
example, "I'm looking forward to checking out the new features of the system
upgrade, but I don't know when I'll have the time to gen it."

46 Chapter 3 Getting Started with UNIX

Chapter 4 Using Files in UNIX
4.1 The Eight Most Important Commands
The shell is the part of UNIX that interprets the commands that you type at the UNIX prompt.
It passes the instructions along to the kernel, the part of UNIX that does the real operating
system work. We call the basic operating system commands that you enter at the UNIX
prompt "shell commands." If someone in the middle of running a program talks about "access-
ing the shell" or "shelling out," they're talking about temporarily gaining access to the main
system prompt where they can type shell commands.

If you are using a graphical user interface version of UNIX and don't see a window where
you can type in commands, never fear—there's one in there somewhere. Either there will be
an icon (on a Sun workstation, it's a little picture of a conch shell) or there's a main menu with
"Shell" as a choice. (To bring up such a menu, try clicking on the screen background—that is,
with your mouse pointer on the background picture, and not on any window or icon—with
any buttons available on your mouse.)

There are two basic versions of the shell, with several variations available. All the UNIX
commands described here work with both of the most popular ones, the Bourne shell and the
C shell . Many systems can run either one, so it's not a dumb question to ask which shell is
the default on a given system.

The eight most important shell commands in UNIX are:

ls lists file names.

cat displays the contents of files.

cp copies files.

mv renames and moves files.

rm deletes files.

chmod grants and revokes access to files.

mkdir creates subdirectories.

rmdir removes subdirectories.

4.1.1 Command Options: Switches

47

UNIX uses a hyphen (-) to indicate options, or switches that give special instructions about
how a command should operate. For example, the ls command by itself only lists filenames,
but with the l switch it lists other information about the file, and with the t switch it lists out
the files in reverse chronological order instead of alphabetical order. You could enter

ls

by itself, or you could enter

ls -l

to indicate that you want to see all the information about the files, or you could enter

ls -t

to see the filenames in reverse chronological order. You can also combine these switches; you
could enter

ls -lt

or even

ls -tl

to see all the information about the filenames, listed in reverse chronological order. The order
in which you put the switches doesn't matter, as long as you remember to include the hyphen,
which means "here come the switches," and to avoid putting any spaces between the letters
that denote command-line options.

Section 4.1.3, "Listing Filenames," gives more information on using switches with the ls
command. When you use UNIX's on-line help system to inquire about a command, it tells
you all about the command's various switches and what they do. Knowing that this informa-
tion is available in on-line help is the main reason to not worry about memorizing a lot of
command line switches.

4.1.2 Common Error Messages

When you type anything at the UNIX command prompt, it looks for a program with that
name and executes it. If you make a typing mistake, for example

max man

when you meant to type man man, UNIX gives you a message along the lines of:

48 Chapter 4 Using Files in UNIX

max: not found

This means that it looked for a program called max and couldn't find it.

Many commands expect you to include some information on the command line after the com-
mand's name. If you omit any, most UNIX systems display a terse explanation of how much
information they expected. For example, to make a copy of a file, you must indicate the file
you want to copy and the name you want to give to the new copy. If you type the cp com-
mand by itself without any filenames, the system responds with something similar to this:

Usage: cp [-ip] f1 f2; or: cp [-ipr] f1 ... fn d2

This shows you that you had to include at least two filenames (represented by f1 and f2)
after the cp command. The alternative syntax, after the or: part, shows that you could also
type one or more filenames followed by the name of a destination directory name, if you want
to copy the files to another directory. Remember—you can always type man cp for more
detailed help on the cp command.

Another common inspiration for error messages is when you instruct the system to do
something to a file that doesn't exist. For example, let's say you want to copy a file called
template.txt and call the copy may_bud.txt, but you make a typo when you enter
the command:

cp tempalte.txt may_bud.txt

The UNIX system responds with

cp: tempalte.txt: No such file or directory

as if to say "There's a problem executing the cp command: I can't find any file or directory
named tempalte.txt."

Remember, the cp command is just used as an example here. Similar mistakes with many
other commands will elicit similar error messages. For a full explanation of the use of the cp
command, see section 4.1.5, "Copying Files."

4.1.3 Listing Filenames

The ls command lists out filenames. If you type ls by itself, it lists out the names of the
files in your current directory in alphabetical order, along with the names of any subdirector-
ies of the current directory. This list might look like the following:

4.1.3 Listing Filenames 49

061293rr
062093rr.prn
06ifp.txt
082294ts.txt
083194vd.txt
index.txt
mailnotes.txt
prepprn.awk
rptapr94
rptfeb94
rptjan94
rptmar94
rptmay94
s_and_rep.awk
sample.txt
schedule.txt
text.txt

You can put two kinds of parameters after the ls command:

• A directory name, which shows that you want to list the files in a directory other than the
current one.

• A file specification, which shows that you only want to list files whose names follow a
certain pattern.

If you type ls followed by a directory name, like this,

ls /bin

you will see several screenfuls of filenames from the /bin directory scroll by alphabetically,
without stopping, until it ends with a screenful of filenames similar to the ones shown in Fig-
ure 4.1.

uuencode
uulog
uuname
uupick
uusend
uustat
uuto
uux
vax
vplot
wall

50 Chapter 4 Using Files in UNIX

who
write
xargs
xget
xsend
yacc
ypcat
ypchfn
ypchsh
ypmatch
yppasswd
ypwhich

Figure 4.1 End of the output from the command ls /bin.

If you type ls followed by a filename, it only lists that file's name. For example, if you type

ls .profile

it shows you this:

.profile

This isn't particularly useful unless you include wildcards when you specify the filename. For
example, to list all the files that begin with the characters "rpt" and end with the characters
"94" you would type

ls rpt*94

and perhaps see output similar to this:

rptapr94
rptfeb94
rptjan94
rptmar94
rptmay94

(For more information on using wildcards to specify the filenames you want included in your
list, see section 3.2.1, "Wildcards.")

If you want to see specific files in a specific directory, you can add the directory and filename
specification after the command. Don't put any spaces between them. For example, to list all

4.1.3 Listing Filenames 51

the files in the /bin directory that begin with the letter "l," type this:

ls /bin/l*

Your output might look like this:

/bin/ld
/bin/line
/bin/ln
/bin/login
/bin/lorder
/bin/ls

It just so happens that one of the files beginning with "l" in the /bin directory is the "ls" pro-
gram itself. The /bin directory holds many of the most often-used commands in UNIX.

4.1.3.1 Listing More than File Names

The ls command may have more switches than other UNIX commands: at least 20, depend-
ing on the flavor of UNIX that you are using. There is a switch to put slashes next to the dir-
ectory names that show up with the filenames, a switch to list the filenames in chronological
order instead of alphabetical order, and a switch to reverse the order in which the names ap-
pear. Few of these switches are worth memorizing; you can always use the man or help
command to learn about them.

The most important switch gives you the "long" listing of the files. It's not really longer, but
actually wider—if you call it the "long" listing, it's easier to remember that the switch is the
letter "l." It tells the ls command to give much more information about the files than just
their names. If you enter the command

ls -l

the output would look something like this:

-rw-rw-r-- 1 joeuser marketing 520 Jun 12 1993 061293rr
-rw-rw-r-- 1 joeuser marketing 3592 Jun 20 1993 062093rr.prn
-rw-rw-r-- 1 joeuser marketing 22305 Nov 6 1993 06ifp.txt
-rw-rw-r-- 1 joeuser marketing 660 Aug 23 1993 082294ts.txt
-rw-rw-r-- 1 joeuser marketing 542 Aug 31 1993 083194vd.txt
-rw-rw-r-- 1 joeuser marketing 504 Jan 2 1994 index.txt
drw-rw-r-- 1 joeuser marketing 512 Nov 12 1993 mail
-rw-rw-r-- 1 joeuser marketing 66 Mar 22 1993 notes.txt
-rwxrwxrwx 1 joeuser marketing 33 Dec 4 1993 prepprn.awk
-rw-rw-r-- 1 joeuser marketing 47 Nov 28 1993 rptapr94
-rwxrwxrwx 1 joeuser marketing 165 Sep 6 1993 rptfeb94

52 Chapter 4 Using Files in UNIX

-rw-rw-r-- 1 joeuser marketing 98 Jan 2 1994 rptjan94
-rw-rw-r-- 1 joeuser marketing 73 Dec 4 1993 rptmar94
-rw-rw-r-- 1 joeuser marketing 44 Nov 28 1993 rptmay94
-rw-rw-r-- 1 joeuser marketing 46 Dec 4 1993 s_and_rep.awk
-rw-rw-r-- 1 joeuser marketing 512 Dec 7 1993 sample.txt
-rw-rw-r-- 1 joeuser marketing 276 Jul 8 1994 schedule.txt
-rw-rw-r-- 1 joeuser marketing 105 Nov 28 1993 text.txt

There's a lot of information here. The last column to the right should look familiar; it's the
file's name. To the left of that is the date that the file was last modified, and to the left of that
is the current size of the file in bytes. The columns that say joeuser and marketing
show the file's owner (usually the user who created the file) and the group that the user be-
longs to.

What is a group? UNIX lets the system administrator assign users to groups because it makes
the system administrator's job easier when giving or taking away system privileges. For ex-
ample, let's say that the system administrator Mary Jones has just installed a new spreadsheet
program on the system. In order to enable the 23 people in the accounting department to use
it, she could just give execution rights to the group "accounting" instead of typing 23 com-
mands to individually give access rights to 23 people.

What are execution rights? And what's the cryptic column all the way to the left? (Ignore the
column of ones just to the left of the joeuser column—this column shows how many links
this file has to substituted names, an advanced UNIX trick.) The first column shows
something called the file's mode. The first character in the file's mode is usually either a hy-
phen (-) or a d. A hyphen means that the line describes a normal file, and a d means that it's a
subdirectory of the directory whose files are being listed. The r's, w's, x's, and other hyphens
show who has what rights with that file or directory. Three kinds of rights are available when
you access a file:

r The right to read (look at or make copies of) a file.

w The right to write (make changes) to a file.

x The right to execute a file. If a file is not some kind of program,
execution rights are irrelevant.

You can assign one set of rights to the file's owner, another to the other people in the owner's
group, and a third set to everybody else. The second through fourth characters (after the one
that tells you whether it's a directory) show the owner's rights; the next three, the group's
rights; and the last three, everyone else's. Figure 4.2 illustrates this.

4.1.3 Listing Filenames 53

r w x r w x r w x

whose rights: owner's owner's group's everyone else's

Figure 4.2 Key to file mode codes.

If the r, w, or x appears, that right exists for that category of user. A hyphen means that
right doesn't exist. For example, the following shows a filemode for a file that its owner can
read or write, that the owner's group can read, but not write, and that people outside of the
owner's group can not even read:

-rw-r-----

A programmer working on a new program might set its filemode to something like this:

-rwxr-xr-x

This lets the programmer read, write, or execute the program, and lets everyone else look at it
or execute it, but not change it.

As mentioned above, a "d" instead of a hyphen in the first character of the first column means
that the name listed is a subdirectory of the current directory, not the name of a file in that dir-
ectory. The rest of the characters in the file's mode mean the same thing that they do when de-
scribing a file, only they describe the privileges that users have when using that directory:

r The right to read (list the files in) the directory.

w The right to write to (create files in) the directory.

x The right to execute the cd command to change into that direct-
ory.

Try using the -l switch with the ls command to look at some of the files in the /bin dir-
ectory, like the ones beginning with "c." With the ls command, any switches go before the
file specification (the part that shows which files you want to see):

ls -l /bin/c*

54 Chapter 4 Using Files in UNIX

The output looks something like this:

-rwxr-xr-x 1 bin bin 28672 Apr 14 1992 /bin/cat
-rwxr-xr-x 1 bin bin 43008 Apr 14 1992 /bin/cc
-rwxr-xr-x 1 bin bin 32768 Apr 14 1992 /bin/chgrp
-rwxr-xr-x 1 bin bin 26624 Apr 14 1992 /bin/chmod
-rwxr-xr-x 1 bin bin 32768 Apr 14 1992 /bin/chown
-rwxr-xr-x 1 bin bin 26624 Apr 14 1992 /bin/cmp
-rwxr-xr-x 3 bin bin 32768 Apr 14 1992 /bin/cp
-rwxr-xr-x 1 bin bin 73728 Apr 14 1992 /bin/cpio
-rwxr-xr-x 1 bin bin 28672 Aug 28 1993 /bin/crypt
-rwxr-xr-x 2 bin bin 110593 Apr 14 1992 /bin/csh

It looks like the owner gets to read, write, and execute the files, and everyone else just gets to
read them and execute them. Who is the owner? Who is the group? The owner and group
columns both say "bin"; this means that the /bin directory itself is a kind of user, and a user
in its own group.

To change the read, write, and execute privileges of a file, use the chmod (change mode)
command, which is covered in section 4.1.8, "Controlling Access to a File."

Besides -l, the other useful switch for the ls command is -x. Use it to list several filenames
across the screen on each line of output. (Another fine example of computer programmers'
novel approach to the English language is the way they abbreviate the word "across" with the
letter "x.") If you typed

ls -x /bin/c*

the output would look like this:

/bin/cat /bin/cc /bin/chgrp /bin/chmod /bin/chown /bin/cmp
/bin/cp /bin/cpio /bin/crypt /bin/csh

(The number of filenames on each line varies from system to system.) This is especially use-
ful when you list out more than 25 filenames; otherwise, these filenames won't all fit on the
screen at the same time. If you tried the ls /bin command mentioned earlier, you probably
saw the names zoom up the screen until it reached the end, at which point you saw the last 25
filenames from the directory. If you added the x switch and typed

ls -x /bin

you would see output like that shown in Figure 4.3.

4.1.3 Listing Filenames 55

acctcom adb ar as att basename
bs cat cc chgrp chmod chown
cmp cp cpio crypt csh date
dd df diff dirname dis du
echo ed env expr false file
find grep ipcrm ipcs kill ksh
ld line ln login lorder ls
mail mail.new mail.newnew mail.old make mesg
mkdir mv newgrp nice nm nohup
od passwd pdp11 pr ps pwd
pyr red rm rmail rmdir rsh
sed sh sh.new size sleep sort
strip stty su sum sun sync
tail tcsh tee telinit time touch
true tty u370 u3b u3b10 u3b15
u3b2 u3b5 ucb uname universe vax
wc who write

Figure 4.3 Sample output of ls -x /bin.

Switches can be easily combined. It wouldn't make much sense to combine the x and l
switches, because there isn't enough room to list out several filenames to a line along with
their sizes and the other information that the l switch adds to the output. However, you could
combine the l switch with the t switch, which specifies that you want to see the filenames in
reverse chronological order, like this:

ls -lt

and see output like that in Figure 4.4.

-rw-rw-r-- 1 joeuser marketing 276 Jul 8 1994 schedule.txt
-rw-rw-r-- 1 joeuser marketing 98 Jan 2 1994 rptjan94
-rw-rw-r-- 1 joeuser marketing 504 Jan 2 1994 index.txt
-rw-rw-r-- 1 joeuser marketing 512 Dec 7 1993 sample.txt
-rw-rw-r-- 1 joeuser marketing 73 Dec 4 1993 rptmar94
-rwxrwxrwx 1 joeuser marketing 33 Dec 4 1993 prepprn.awk
-rw-rw-r-- 1 joeuser marketing 46 Dec 4 1993 s_and_rep.awk
-rw-rw-r-- 1 joeuser marketing 44 Nov 28 1993 rptmay94
-rw-rw-r-- 1 joeuser marketing 105 Nov 28 1993 text.txt
-rw-rw-r-- 1 joeuser marketing 47 Nov 28 1993 rptapr94
-rw-rw-r-- 1 joeuser marketing 22305 Nov 6 1993 06ifp.txt

56 Chapter 4 Using Files in UNIX

-rwxrwxrwx 1 joeuser marketing 165 Sep 6 1993 rptfeb94
-rw-rw-r-- 1 joeuser marketing 542 Aug 31 1993 083194vd.txt
-rw-rw-r-- 1 joeuser marketing 660 Aug 23 1993 082294ts.txt
-rw-rw-r-- 1 joeuser marketing 3590 Jun 20 1993 062093rr.prn
-rw-rw-r-- 1 joeuser marketing 520 Jun 12 1993 061293rr
-rw-rw-r-- 1 joeuser marketing 66 Mar 22 1993 notes.txt

Figure 4.4 Sample output of ls -lt.

The order of the switches doesn't matter in any UNIX command. If you typed

ls -tl

you would see the same output.

Switches, like the rest of UNIX, are case-sensitive. For example, -r means "reverse the listed
order" while -R means "recursively list subdirectories" (list the contents of any subdirectories
along with the names of the files and subdirectories). Because of this, you need to be careful
about whether you type switches in upper or lower case. Most of them are in lower case.

Try using man or help to learn about the other switches to the ls command.

4.1.4 Displaying a Text File's Contents

Another source of confusion for beginning UNIX users is the fact that commands used for
more than one purpose are not always named after their most popular purpose. The cat com-
mand, which displays text files on the screen, is also used to combine or "concatenate" files.
cat is an abbreviation of the word "concatenate," even though it's used far more often to put
the contents of a text file on the screen. If you had a file called schedule.txt and typed

cat schedule.txt

the contents of the file would then appear on the screen:

October 10
10:30 meet Dave C., Laurie. call Laurie first--should I bring new diskettes?
12:30 lunch with Benny
2:00 expecting call from Chicago office. Have page counts ready.
2:30 Anita's presentation--can I get out of going?
4:00 first draft of outline MUST be ready

4.1.4 Displaying a Text File's Contents 57

4.1.4.1 Looking at Text Files One Screen at a Time

One of UNIX's greatest strengths is its ability to make several programs work together, all by
issuing one command. Although this is usually an advanced technique, combining the cat
command with the more command is so useful that you should learn it as soon as you learn
cat.

When you display certain files with the cat command, you may notice that any files longer
than twenty-four lines scroll up and off the screen until the end of the file, at which point you
are only looking at the last twenty-four lines.

The more command remedies this. (Many systems offer a similar alternative called pg. If
more doesn't work on your system, try pg.) It takes what you send it and gives it back to you
a screenful at a time (more has its own command-line switches that adjust, among other
things, how much it outputs at once when you send text to it, but the default value of twenty-
four or twenty-five lines is just fine for most uses).

How do you send text to it? UNIX has a special symbol called the pipe (|) that means "take
the output of the preceding command and send it to be used as input by the following com-
mand." (I told you that UNIX was cryptic—it uses only one symbol to say all that.) Some-
times the pipe symbol appears on screen, on paper, or on a keyboard key as an unbroken ver-
tical line. It may also appear as a vertical line with a gap in the middle.

If the schedule.txt file was 100 lines long, you could look at one screenful at a time
with this command:

cat schedule | more

By doing this, you are "piping" the output of the cat command to be used as input for the
more command. After the first screenful appears, the message —More— appears at the bot-
tom of the screen, as shown in Figure 4.5.

October 9

9:00 Ed may have Knicks tickets for me; bug him when he gets back from Toronto

10:30 office supplies sales rep coming

12:00 lunch with Benny postponed until the 10th

2:30 getting teeth cleaned--call 687-2300 first for address

58 Chapter 4 Using Files in UNIX

4:00 Fed Ex new diskettes to Chicago

October 10

10:30 meet Dave C., Laurie. call Laurie first--should I bring new diskettes?

12:30 lunch with Benny

2:00 expecting call from Chicago office. Have page counts ready.

2:30 Anita's presentation--can I get out of going?
--More--

Figure 4.5 Output from piping schedule file through the more command.

Press the space bar (or, if you piped your output to pg, the Enter key) and another screenful
appears. Continue this, and you can look at the file at your own pace—unless you want to
quit, in which case you type "q" instead of pressing the space bar.

more isn't limited to use with the cat command; you can also use it with the ls command.
Typing this

ls -l bin | more

displays a screen similar to the one shown in Figure 4.6.

-rwxr-xr-x 1 bin bin 63488 Jun 23 1992 acctcom
-rwxr-xr-x 2 bin bin 73728 May 11 1989 adb
-rwxr-xr-x 1 bin bin 49252 Apr 14 1992 ar
-rwxr-xr-x 2 bin bin 110593 Apr 13 1992 as
-rwxr-xr-x 2 bin bin 30720 Apr 14 1992 att
-rwxr-xr-x 1 bin bin 147 Apr 14 1992 basename
-rwxr-xr-x 1 bin bin 77824 Apr 14 1992 bs
-rwxr-xr-x 1 bin bin 28672 Apr 14 1992 cat
-rwxr-xr-x 1 bin bin 43008 Apr 14 1992 cc
-rwxr-xr-x 1 bin bin 32768 Apr 14 1992 chgrp
-rwxr-xr-x 1 bin bin 26624 Apr 14 1992 chmod
-rwxr-xr-x 1 bin bin 32768 Apr 14 1992 chown
-rwxr-xr-x 1 bin bin 26624 Apr 14 1992 cmp
-rwxr-xr-x 3 bin bin 32768 Apr 14 1992 cp
-rwxr-xr-x 1 bin bin 73728 Apr 14 1992 cpio

4.1.4 Displaying a Text File's Contents 59

-rwxr-xr-x 1 bin bin 28672 Aug 28 1993 crypt
-rwxr-xr-x 2 bin bin 110593 Apr 14 1992 csh
-rwxr-xr-x 1 bin bin 32768 Apr 14 1992 date
-rwxr-xr-x 1 bin bin 32768 Apr 14 1992 dd
-rwsr-xr-x 1 root bin 34816 Apr 14 1992 df
-rwxr-xr-x 1 bin bin 34816 Apr 14 1992 diff
--More--

Figure 4.6 Output from piping ls -l bin through more command.

Any command that sends text to the screen can also send it to more. This is a good example
of the real beauty of UNIX: instead of giving you a couple of big utilities that claim to do
everything you need, UNIX gives you many small ones that you can combine any way you
like. If you like a particular combination so much that you'll want to use it repeatedly, you
can store those commands in a shell script file and give this file any name you like. When you
want to use your shell script, you only need to remember the name you made up rather than
the spelling and syntax of the combination of commands. Section 6.2, "Command Files,"
shows you how to do this.

4.1.5 Copying Files

Copying files in UNIX is simple. The command is clearly an abbreviation of the word
"copy": cp. To make a copy of your file with a different name, type

cp sourcefile destfile

where sourcefile is the file that you are copying and destfile is the name of the copy
that you are making. (See section 3.2, "Filenames," for information on valid filenames.) For
example, if you plan to edit a file called proposal and you're going to make so many edits
that you want a backup of your original before you start changing it around, you would type:

cp proposal proposal.bak

This is the simplest form of the cp command. It assumes that the file you want to copy is in
your current directory and that you want to put the copy in the same directory. To get fancier,
you can use the syntax

cp /pathname/sourcefile /pathname/destfile

where /pathname specifies the pathname, or full directory name, of the source and destina-

60 Chapter 4 Using Files in UNIX

tion files. Let's say Mary Jones tells Joe User that Herb sent her some electronic mail that he
should look at and add comments to. She says, "I saved it in the subdirectory of my home dir-
ectory called mymail in a file called aug20.herb. I'll see you later. I'm flying to Phoenix
in an hour, and I want your comments when I get back." Joe calmly sits at his terminal and
types

cp /usr2/maryjones/mymail/aug20.herb /usr2/joeuser

Notice that he included the source file's directory, the name of the source file, and the destina-
tion file's directory, but not a new name for the destination file. If you omit the name of the
destination file, UNIX gives it the same name as the source file—in this case, aug20.herb.
(When making a copy of a file in the same directory as the source file, you must specify a
new name—you can't have two files in the same directory with the same name.)

In section 3.3, "How Files Are Organized," we saw that you can use two periods (..) as short-
hand to refer to the parent of the current directory. You can also use a single period to refer to
the current directory. This doesn't come up when using the cd command, because typing

cd .

would be useless; it means "change my current directory to the one that I'm currently in." The
single period does come in handy, however, with the copy command. If Joe is in the /
usr2/joeuser directory and wants to copy the aug20.herb file from the /
usr2/maryjones/mymail directory into his current directory, he types:

cp /usr2/maryjones/mymail/aug20.herb .

One more comment about copying that file from Mary's directory: Joe needs read privileges
to make a copy of it. If he got a message along the lines of "cannot unlink" or the slightly
more comprehensible "permission denied," then he would use the ls command with the -l
switch, as described in section 4.1.3.1, "Listing More than File Names," to see what kind of
privileges were assigned to that file. He doesn't need to look at all the filenames in Mary's
mymail subdirectory, so he types:

ls -l /usr2/maryjones/mymail/aug20.herb

If he saw something like this,

-rw------- 1 maryjones marketing 147 Aug 20 1994 aug20.herb

he would see that the mode of that file was set so that Mary, its owner, could read it or write
to it, but no one else could read it, not even other people in her group (like Joe). Secure in the
knowledge that it's Mary's fault that he can't add the comments she's expecting, he sends her

4.1.5 Copying Files 61

electronic mail tactfully explaining why he couldn't do as she had asked.

If he could read the file and make a copy of it, he would then own the copy and be able to do
anything he wanted to it.

What happens if you name your new copy after an existing file? There may or may not be a
warning, depending on the UNIX system that you are using. The copy operation might take
place as if the existing file didn't exist, making a new copy over the existing file. Try copying
over an unimportant file on your system to see what happens. If there is no warning, you'll
have to be careful about destination filenames when using the cp command on your system.

What happens if you try to make a copy of a file that doesn't exist? Like for example, if you
misspell the filename of the source file:

cp /usr2/maryjones/mymail/aug20.hreb /usr2/joeuser

UNIX would display a message telling you that it "cannot access (the source file)," which im-
plies that the file was there, but it couldn't get to it. In reality, it means that no such file exists.

4.1.6 Renaming Files

Like the command to look at a text file, the command to rename a file is named after one of
its less common uses. Since it's used to move files from one directory to another, the com-
mand is mv. Just as the copy command can make a new copy of a file in the same directory as
the original file, but with a new name, the mv command can "move" a file within its current
directory, but with a new name—in other words, rename it. For example, if you typed

mv aug20.herb herbfile.txt

you would take the file called aug20.herb in the current directory and give it a new name:
herbfile.txt. If you did want to move the file to another directory, perhaps from your
home directory to your /usr2/joeuser/networking directory, the syntax is similar to
copying a file from one directory to another:

mv aug20.herb /usr2/joeuser/networking

Unlike copying, after this command executes, the original aug20.herb file will no longer
be in your home directory. You will find it in its new home, /
usr2/joeuser/networking. If you want to move it and give it a new name at the
same time, it's easy:

mv aug20.herb /usr2/joeuser/networking/herbfile.txt

62 Chapter 4 Using Files in UNIX

When you refer to a file but don't specify its directory location, UNIX assumes that it's in the
current directory. If you want to do something with a file that isn't in the current directory, in-
sert its pathname in front of the filename. For example, if Mary had told you to move
aug20.herb out of her directory, instead of just making a copy, you would use syntax sim-
ilar to when you copied it out of her directory into your own:

mv /usr2/maryjones/mymail/aug20.herb /usr2/joeuser

Of course, you could have assigned a new name to it when you specified where it should end
up.

Just as you can use the single period to specify the destination directory when you copy a file
to your current directory, you can also use the single period to specify the destination when
you move a file to the current directory:

mv /usr2/maryjones/mymail/aug20.herb .

Section 3.3, "How Files Are Organized," shows you other ways to avoid typing out complete
pathnames.

A file's mode has no effect on your permission to rename a file, as it does with the cp com-
mand. Regardless of the privileges assigned to a file, only the owner (the user who created the
file) may rename it. And remember: if you make a copy of someone else's file, you become
the owner of the copy. How do you find out who owns a file? You use the ls command with
the -l switch to list out that file's name and then look at the third column of information lis-
ted with the filename.

If you rename a file with a name that already applies to an existing file, the renaming takes
place with no problem. Or rather, it takes place with no problem for your renamed file—the
previously existing file with the same name is lost. For example, if you have files called
schedule.txt and dec13.txt and rename dec13.txt to be called schedule.txt,
your original schedule.txt will be lost.

If you try to rename a file that doesn't exist, UNIX gives you the same error message as when
you try to copy a file that didn't exist: "Cannot access (filename)."

4.1.7 Deleting Files

Think of deleting files as removing them, because that helps you to remember the command:
rm. The syntax is simple; rm followed by the filename or filenames that you wish to remove.
For example,

rm schedule.txt

4.1.7 Deleting Files 63

removes the file called schedule.txt. Typing

rm schedule.txt junememo.txt

removes schedule.txt and junememo.txt.

To remove a file, you need write permission in the directory in which the file is located. If
you do not have write permission for the specific file you want to erase, UNIX displays a
cryptic message:

(filename): 444 mode?

This means "Are you sure you want to remove this file, which has a mode of 444?" Some-
times a numbering system is used as a shorthand for the -rwxrwxrwx notation to describe the
permissions that make up a file's mode. Without explaining which numbers mean what, it's
enough to say that if you have write permission on a file that you're trying to erase, the sys-
tem won't give you the warning message. Answer the warning message with either a "y" for
"yes" or an "n" for "no," and press the Enter key. To be on the safe side, "n" is probably a bet-
ter idea; you can then use the ls -l command to double-check the file's mode and then
enter the rm command again if you're sure that you want to erase that file.

Why would someone not have write permission of a file that they own? You might use the
chmod command to take away write permission from yourself for an important file to protect
yourself from accidentally erasing it. You'll still own that file, so you can always grant your-
self write permission for it with the chmod command. (For more on the chmod command,
see section 4.1.8, "Controlling Access to a File.")

The rm command accepts wildcard characters in its argument. Be careful, though, because
this ability to remove more than one file at a time can lead to big mistakes. If you wanted to
remove all of the files that ended with ".bak" you would type this:

rm *.bak

Imagine that you made the simple typing mistake of adding a space after the asterisk:

rm * .bak

Just as the command rm schedule.txt junememo.txt removed the sched-
ule.txt and the junememo.txt files, this command also specifies two things to remove:
first, all the files that match * and second, the file named .bak, if it exists. All the files that
match * would be all the files in the current directory, so you could get yourself into big
trouble.

64 Chapter 4 Using Files in UNIX

What if you typed

rm maymemos

and received the following message:

rm: maymemos directory

Sometimes UNIX is not much more eloquent than Tarzan. "Me UNIX, maymemos direct-
ory." maymemos is a directory, and you can't remove it with the command that removes files.
Section 4.1.10, "Removing Directories," explains how to use the rmdir command for this.

4.1.8 Controlling Access to a File

Use the chmod command to change a file's mode. There are two possible ways to specify the
access rights to your file: first, by a three-digit "octal" number (which means that each digit is
lower than 8, because the number is written in "base 8" notation); second, by initials repres-
enting whose rights are being controlled, whether those rights are being added or removed,
and what the rights are. The latter way is easier to remember, so that's the best one for begin-
ners to start with.

Use these initials to specify whose rights are being controlled:

u You, the file's owner, the user.

g Other users in your group.

o Others outside of your group.

As you saw in section 4.1.3.1, "Listing More than File Names," the letters r, w, and x indic-
ate read, write, and execute permission.

To show that you want to add or take away permission, use the plus (+) and minus (-) charac-
ters.

The complete format of the chmod command is:

chmod [ugo]+/-rwx filename

This command has the following parts:

• The [ugo] is where you put the combination of the letters u, g, and o showing whose
permissions you are specifying. The square braces mean that you can leave this out. If

4.1.8 Controlling Access to a File 65

you do, the system assumes that you mean ugo—in other words, everybody.

• Next, you put a plus sign when adding permission or a minus sign when removing it.

• After the plus or minus symbol, you put the combination of the letters r, w, and x that
indicate the permission or permissions being added or taken away.

• Finally, after a space, you type the name of the file for which you are specifying permis-
sions. You can use wildcards if you want to change the mode of several files at once.

Make sure that the string of characters showing the users, action, and permissions have no
spaces. The only spaces in the whole command should be right after the word chmod and
just before the filename.

For example, let's say you created a file with your resume in it. You cleverly give the file a
boring name that won't attract attention, like "budget.old." You then realize, however, that
maybe a clever name isn't enough; maybe your file needs more protection than that, so you
check on its permissions with the ls -l command, and see the following:

-rw-rw-r-- 1 joeuser marketing 3590 Jun 17 1994 budget.old

You and the people in your group may change it, and everyone may read it. This is not good,
so you first take away your group's permission to write to your file. To specify rights, you
enter "g-w" for "group-remove-write privileges."

chmod g-w budget.old

When you type "ls -l" to see if it worked, you should see this:

-rw-r--r-- 1 joeuser marketing 3590 Jun 17 1994 budget.old

Next, you want to take away the permission of your group and the others outside of your
group to read the file. Instead of doing this in two separate commands, you can combine the g
and the o with the following command:

chmod go-r budget.old

You can also combine the permissions being given or taken away. In fact, the two preceding
commands could have been combined with the following command:

chmod go-rw budget.old

Until you feel comfortable with the chmod command, always use the ls -l command af-

66 Chapter 4 Using Files in UNIX

terwards to make sure that you did exactly what you intended to the file's mode.

You can also grant or revoke permissions from more than one file at a time by using wild-
cards in the filename. For example,

chmod go+rw *.txt

would set the mode of all the files that end with ".txt" so that your group and everyone else
could read them and write to them.

Try taking permissions away from yourself by entering u as the user whose rights are being
controlled. Then, try to read or write the file with the cat command or the vi editor. Then
try giving permission back to yourself. (When fooling around with a new command like this,
make sure to use a file that means nothing to you!)

In section 6.2, "Command Files," you'll see an example of execution permission being added
to a file.

4.1.9 Creating Directories

The commands to create and remove directories are both simple: mkdir (make directory)
followed by a directory name creates a new directory and rmdir followed by a directory
name removes a directory.

The rules governing valid subdirectory names are the same as those that govern valid file-
names. To create a subdirectory of /usr2/maryjones/mail called oldmail, Mary
could type the following:

mkdir /usr2/maryjones/mail/oldmail

Relative pathnames also work; if Mary is already in the usr2/maryjones/mail direct-
ory (and she can always use the pwd command to check which directory she's in) then she
only needs to type this:

mkdir oldmail

If she tried to create a subdirectory of one that she didn't own, like /bin, the system
wouldn't allow her to. Typing

mkdir /bin/wahoo

would cause an error message similar to the following:

mkdir: cannot access /bin

4.1.9 Creating Directories 67

which means that she doesn't have enough access to the /bin directory to allow her to create
something new there. (In other words, she doesn't have "write" access, which would allow her
to create something in that directory.) The system administrator can create directories any-
where. In fact, that's an important part of the system administrator's job—to create and main-
tain directories to hold the system and application files.

One other word of caution: because of the similarities between names of files and names of
child directories, it's possible to try to create one of these when you already have used the
same name for the other. For example, if Mary had a file called oldmail and entered the
command

mkdir /usr2/maryjones/oldmail

she would get a message similar to this:

mkdir: cannot make directory /usr2/maryjones/oldmail

Since the error message doesn't tell you why it couldn't make the directory, you'll have to
watch out for this yourself.

4.1.10 Removing Directories

The syntax and restrictions on removing subdirectories is similar to that of creating them. If
Mary had successfully created her oldmail subdirectory and she wanted to get rid of it, she
could type:

rmdir /usr2/maryjones/mail/oldmail

If she was already in the usr2/maryjones/mail directory then she can use the relative
pathname:

rmdir oldmail

Just as she cannot create subdirectories of directories that she does not own, she cannot re-
move directories that she does not own. Only the system administrator can remove any sub-
directory on the system.

One other obstacle could prevent someone from removing a directory: if it has either files or
subdirectories in it, UNIX won't let you remove it. This is really a safety feature to protect
you from yourself. If Mary had gotten the message

rmdir: oldmail not empty

68 Chapter 4 Using Files in UNIX

then she would use the cd command to change into oldmail to see what was there and
either erase what she found, move it somewhere else, or change her mind about deleting
oldmail.

We saw what happens when you mistake a subdirectory name for a filename and try to re-
move it with the rm command, which we normally use to remove files. The reverse is also a
common mistake; look what happens when you use the rmdir command to try to remove a
file. After typing

rmdir schedule.txt

the system responds with

schedule.txt: not a directory

to let you know that you can't use this command with schedule.txt, because it is a file
and not a directory.

4.1.10 Removing Directories 69

70

Chapter 5 The UNIX vi Text Editor
There are two commonly used editors on UNIX systems. The older one, known as ed, is a
line editor. (Most systems also have a more advanced version of ed called ex.)

The most popular editor on UNIX is a full-screen editor called vi. (Some people pronounce
it as a one-syllable word rhyming with "eye" and others pronounce it as the two letters that
spell it—"vee eye." I couldn't even find a consensus when I asked a roomful of Bell Labs em-
ployees.) The name is an abbreviation of "visual editor." vi has much more in common with
modern word processors than it does with ed. You can move your cursor anywhere on the
screen and correct the text under the cursor. You can scroll the text and search for specific
strings of text. You can use vi to create a new text file, as well as to edit an existing text file.

vi is a command-driven editor. You don't use function keys and menus to tell it what you
want, as with other text editors and word-processors; you type in commands, many of which
are only one letter long, and it carries them out. The advantage to this arrangement is that you
can do a lot of different things with very little typing. The disadvantage is that many systems
do not indicate when you are in command mode and when you are entering text in insert or
replace mode. This leads to two common mistakes:

• You might accidentally enter a command when the system thinks that you are entering
text, so that you enter d3w to delete three words and the characters "d3w" show up in the
middle of your memo, program, or whatever you are writing.

• The opposite problem also occurs: you type a word onto you document, such as "Hello,"
and the system thinks that you are doing whatever the H command means, followed by the
e command, followed by the l command twice, and so on.

The best way to avoid this problem is to double-check your current mode when you are un-
sure by pressing the Escape key. The Escape key puts you into command mode, and if you
press Escape when you are already in command mode, the terminal beeps at you, as if to tell
you, "Enter command mode? We're already in command mode."

Because many programs and operating systems require you to press the Enter key after you
enter a command, it is tempting to do so with vi, but unnecessary with most commands. In
fact, if you enter an i command (which puts you into insert mode) and then press Enter, you
insert a carriage return into your document. If you press Enter in command mode when it
didn't make sense in the context of what vi thought you were doing, it would just beep at
you. As a vi beginner, get used those beeps!

5.1 Entering vi
71

To enter vi, type vi followed by the name of the file that you want to edit at the UNIX shell
prompt. If a file with that name does not exist, vi creates an empty, new file with that name.
If it does exist, vi displays that file on your screen and waits for you to edit it. If you do not
include a filename, you will still enter vi, but you must assign a filename later. See "Saving
Your File" below.

When you first enter vi, you are in command mode. You can use your cursor keys to move
your cursor around the screen to any place with text at any time in command mode.
(Sometimes you can move your cursor like this in insert mode, but there's a greater chance
that vi will act flaky, particularly if you use a PC running a terminal emulation program and
not a real terminal.) If a file is too long to completely fit on the screen at once, move your
cursor to the bottom of the screen and then continue to press the Cursor Down key to scroll
the file up, revealing more text. If there are more lines above the one visible at the top of your
screen, move the cursor to the top of the screen and continue to press the Cursor Up key to
scroll the file down, revealing the text above the line that was at the top of your screen.

If your file is not long enough to fill up a screen, vi represents lines that have no text with a
tilde symbol (~). If you enter

vi johngay.txt

and that file has only seven lines, you will see a screen like the one in Figure 5.1.

Thy Younglings, Cuddy, are but just awake,
No Thrustles shrill the Bramble-Bush forsake,
No chirping Lark the Welken sheen invokes,
No Damsel yet the swelling Udder strokes;

O'er yonder Hill does scant the Dawn appear,
Then why does Cuddy leave his Cott, so rear?
~
~
~
~
~
~
~
~
~
~
~
~
~
~

72 Chapter 5 The UNIX vi Text Editor

~
~
"johngay.txt" 7 lines, 265 characters

Figure 5.1 Opening vi screen when editing a seven-line file.

Note also that it tells you at the bottom of the screen the name of the file you are editing and
how many lines (including blank ones) and characters it has. If you had created a new file
with the vi command, it would say "New File" at the bottom.

5.2 Inserting Text
To insert text, first move your cursor to the place where you want the new text to begin. Make
sure you are in command mode (as mentioned above, if you're not sure whether you're in
command mode, press the Escape key first). Type a lower case i to put vi into insert mode.
If you are lucky (if you are using or emulating a more sophisticated terminal), the word "IN-
SERT" or something similar appears somewhere on your screen to indicate that you are in in-
sert mode. If not, you won't see anything happen, but all the text you type until the next time
you press Escape appears at the cursor as part of your file.

If you type to the end of the line, the cursor jumps to the next line, but only as an alternative
to running off the right of the screen—it didn't really insert a carriage return character at that
position in your file, so make sure to press Enter when you are inserting text and your cursor
nears the right side of your screen. When you finish entering new text, press Escape to return
to command mode.

5.3 Deleting Text
The lower case x has the same effect in vi as the delete key on many keyboards: it deletes
the character at the cursor. Press it as many times as you like to get rid of more than one char-
acter.

To delete more than one character, it is often easier to use the d command. Pressing d by it-
self does nothing; vi waits to find out what to delete. The d is used in combination with oth-
er letters and numbers to delete words, lines, the rest of a sentence, or the rest of a paragraph.
The most important of these for a beginner is the dw command, which deletes from the cursor
to the beginning of the next word. You can stick a number in there to delete more than one
word; for example, d4w deletes the next four words.

5.2 Inserting Text 73

The dw command can also delete a blank line, like the one between "No Damsel yet" and
"O'er yonder Hill" in Figure 5.1.

When you use vi commands that consist of more than one character, you may occasionally
enter a character or two without being sure of how many you just entered. Again, the Escape
key always puts you back to a fresh start in command mode. If you're unsure whether you
typed d or d4, press Escape and type d4 again. (If you accidentally typed an extra "4" after
your d4, you could end up deleting 44 words!)

5.4 Typing Over Existing Text
All the vi commands that we have seen so far have been lower case letters. To enter over-
strike mode, you'll use your first upper case vi command. Type R to enter Replace mode, and
everything you type writes over the characters at the cursor until the next time you press Es-
cape. (A lower case r has a related function: it means you only want to type over one charac-
ter, so the next character you type appears at your cursor, but vi then puts you right back into
command mode. This is useful for making very minor corrections.)

If you reach the end of a line while typing in replace mode, you can continue typing. vi will
add your new text to the end of the line at the cursor position.

5.5 Searching for Text
To search for a string of characters in your document, first press the slash (/) key while in
command mode. The slash appears in the lower-left hand corner of your screen, waiting for
you to type in the characters to search for. After you type them and press Enter, vi will
search for the characters and display that part of the document if the string is found. The
search is case-sensitive, so make sure you type the letters in upper case and lower case ex-
actly as you want to search for them.

5.6 Saving Your Changes
vi inherited many commands from older UNIX text editors such as ed and ex. High on the
list of these commands are those that save your work, indicate another file to edit, and exit
from the editor.

This category of commands has its own prompt. To display it, type a colon (:) while in com-
mand mode. The prompt, which is also a colon, appears in the lower-left corner of your
screen. If you type a command at this prompt that vi does not understand (which includes
upper case versions of commands that should be in lower case), it displays an error message
telling you that it doesn't recognize the command. For example, if you enter "potrzebie" at the

74 Chapter 5 The UNIX vi Text Editor

colon prompt, vi responds with "potrzebie: Not an editor command" or "potrzebie: No such
command from open/visual."

To save your work, type a w for "write" at this prompt. If you put a filename after the w, vi
saves the file with that name. If you type w alone, vi saves your file with its current name
and displays a message telling you the file's name, the number of lines in it, and the number
of characters. The first time you save a particular file, it also says "[New file]."

If you've created a new file but try to save it with the name of an existing file, vi displays a
message like this:

File exists - use "w! filename.txt" to overwrite

This means that you tried to save a file with a name that already exists and that you must put
an exclamation point (a "bang") after the "w" to override the warning. Although the warning
message shows the filename in the syntax, you don't need to include it if the file already has a
name; just type w! at the colon prompt.

BUZZWORD Bang The exclamation point comes up a lot in UNIX. In addition
to its use in vi, it's sometimes used to distinguish the components of an
electronic mail address when sending mail through a big network to another
UNIX machine. Because "exclamation point" can be a real mouthful if you
have to say it often, the term "bang" is often used. (Another cute one is "Ball-
bat.") If someone tells you to "type w bang space filename dot txt," they're
telling you to type w! filename.txt.

If you entered vi by merely typing vi at the UNIX shell prompt and then created a new file
from scratch, it won't have a name yet, so entering w by itself at the colon prompt causes vi
to display the message "No current filename." In other words, type the w command again, but
include a filename this time.

You can't edit just any file, or create a new one in just any directory. If you only have read
permission for a file, you can still bring it up into vi; when you do, the editor displays the
message "[Read only]" at the bottom of your screen. You can make all the changes you like,
but when you type the w command at the colon prompt and press Enter, vi doesn't save the
file; it displays the message "File is read only" instead. You may save the changed file with a
new name by adding a filename after the w command. This is based on the same principle as
copying a file that you only have permission to read—if you make a copy, you own the copy,
and you can do anything you want to that copy, but you aren't allowed to make any changes

5.6 Saving Your Changes 75

to the original.

If you don't even have read permission for a file, vi starts up but displays a message that says
"Permission denied." It shows you an empty file, just as if you had typed vi by itself at the
command line.

5.7 Quitting vi
To quit vi and return to the UNIX shell prompt, type "q" at the colon prompt. If you made
any changes without saving them, vi gives you the message

No write since last change (:quit! overrides)

instead of quitting. This serves as a reminder that you might want to save your file before you
quit, and it also reminds you that if you really want to quit without saving your changes, put
an exclamation point after the "q." (It really suggests that you spell out the word "quit" and
then put an exclamation point, but spelling out an entire English word would be very un-
UNIX, so just enter a "q.")

You can combine commands at the colon prompt. To save your file and quit vi in one com-
mand, type "wq" at the colon. vi displays a message telling you that it is writing the file to
the disk, and it then returns you to the UNIX shell prompt.

5.8 Other vi commands
The commands described here are the bare minimum that you need to get by in vi. There are
many, many more; they are powerful and often confusing. vi has a reputation among people
accustomed to normal word processors as being more cryptic and confusing than UNIX itself.
This often stems from the fact that someone once tried to teach them all of vi at once, instead
of showing them the basics, letting them get comfortable, and then showing them a little
more.

To learn more about vi, check the quick reference cards that are available. Also, nearly every
book on UNIX devotes a chapter to it.

There are two more tricks that you should know in case you find vi acting flaky. Usually it's
not vi itself that's causing the trouble, but a lack of cooperation between a terminal emula-
tion program on a personal computer and the system running vi.

The first trick sometimes makes cursor control easier. Before computer users took it for gran-
ted that every keyboard had special keys devoted to cursor movement (yes kids, there was
such a time), the h, j, k, and l keys were used as the vi commands to move the cursor
left, up, down, and right, respectively. If you can remember which four letters are used

76 Chapter 5 The UNIX vi Text Editor

(they're lined up next to each other on the keyboard), then you can easily remember the pur-
pose of the h and the l because they sit at the left and right of these four keys. j for up and k
for down are a little more difficult to remember, and I always need to press them a couple of
times to remember which does what. As with any vi command, make sure that you're in
command mode when you press these four keys, or you'll add their letters to your file in
places where you don't want them.

Many touch typists with cursor keys on their keyboard actually prefer the use of these four
letter keys over the cursor keys when they move their cursor around, because they can find
them without looking down and moving their hands away from the middle of the keyboard. If
this doesn't apply to you, but your cursor keys don't behave correctly when you edit a file
with vi, try using these alternate keys for cursor movement.

The other trick for people who find that vi does not cooperate with their terminal emulation
program as much as they would like is the redraw command. If you delete characters without
seeing them deleted from the screen, or come across other situations where the words on the
screen don't reflect the commands you just entered, press Ctrl+L to tell vi to resend the
whole screen to your terminal. Your terminal emulation program may have retained or de-
leted a couple more characters on the screen than it was supposed to. Although the wrong
characters may be on the screen, this doesn't necessarily reflect what's in the copy of the file
being edited. Ctrl+L straightens out your terminal emulation program by redisplaying the
true contents of that portion of the file that you are editing.

Don't worry about the need for this unless you notice vi acting strangely. It's still a good idea
to use the cat command to look over any file created or edited with vi after you've saved
the file to disk, just to make sure that your terminal emulation program didn't play any tricks
on you.

5.8 Other vi commands 77

78

Chapter 6 Using a UNIX System
6.1 Printing Text Files
The original term for the machine that printed your file on hard copy was "line printer," be-
cause it printed text a line at a time. The command to send text to the printer is an abbrevi-
ation of "line printer": lp, pronounced "el-pee." Don't worry if you're attached to a laser
printer, which is actually a page printer; it's still the same command.

To print a file, just type:

lp filename

It's that simple. If the file exists, the system sends it to the printer and UNIX displays a mes-
sage similar to this:

request id is hp1-1151 (1 file)

The request id is the name by which the system remembers your file. It comes in handy when
you want to list out the jobs that are waiting to print and when you want to cancel a print job.
If you get an error message (other than the kind indicating that the system didn't understand
the filename you typed) contact your system administrator. Various details about printing can
be specific to each UNIX system (like the name the system uses to refer to each printer) and
you can't be expected to know them on a strange system.

6.1.1 Checking the Print Queue

To find out the status of jobs waiting to print on the "line printer," the command is lpstat.
If Joe User just printed a very short job and no other jobs were waiting to print, it may be too
late, so lpstat may display no information. This means that the system has already sent his
file to the printer. On the other hand, he may see something like this:

$ hp1-1151 maryjones 5,232 Jul 19 09:50 on hp1
$ hp1-1158 joeuser 1,491 Jul 19 09:53 on hp1
$ hp1-1159 jimcasey 2,781 Jul 19 09:53 on hp1

This means that three print jobs are waiting to print on the printer that the system administrat-
or named "hp1"—a 5,232 byte job that Mary Jones sent at 9:50, then your job, and finally Jim
Casey's job.

6.1.2 Canceling Your Print Job

79

Perhaps Joe realizes, looking at the print queue, that he accidentally sent a draft of a memo
about why he can't stand Jim Casey. Since he doesn't want it to pop out of the printer while
Jim stands there waiting for his 2,781 byte job, he cancels his with the cancel command
followed by the request id:

cancel hp1-1158

Only you and the system administrator are allowed to cancel your jobs.

6.2 Command Files
In UNIX, a file full of commands that you can execute as a program is called a shell script,
because it's a script of commands for the shell to execute one after the other. Shell scripts can
be complex, but simple ones can also be useful—especially for users who have trouble re-
membering a lot of UNIX syntax.

We saw in section 4.1.2 ("Common Error Messages") that when you type anything at the
shell prompt, UNIX looks for a program to execute with that name. When you create a shell
script, you are essentially adding a new command to your UNIX environment. If you write a
shell script that contains valid shell commands and store them in a file called "wahoo," then
typing "wahoo" starts up your new program.

For example, let's say you're a DOS or a VAX/VMS user and accustomed to typing dir to
see a list of filenames. You're also used to seeing the size and age of files along with their
names, and you don't want them to zoom off your screen if there are more than twenty-four of
them. The following UNIX command lists files this way:

ls -l | more

This is kind of a pain for the new user to remember. So, to make things easier for yourself,
you use vi to create a file called "dir" which only has one line in it:

ls -l | more

After you save your one-line text file and return to the shell prompt, you can't wait to try your
new program, so you type

dir

and UNIX displays a message telling you "execute permission denied" or worse, "not found."
No execute permission? Not found? But you own it! You just created it! Check out the mode
of your dir file by using ls -l, the very command that you planned to avoid by creating
the dir shell script:

80 Chapter 6 Using a UNIX System

ls -l dir

You'll see that it has a mode of something like -rw-r--r--. (You don't need the | more
when you check out the dir file's mode because you only want to list one filename, so
there's no need to use the more program to make the ls output appear a page at a time.) The
system administrator sets the default file mode for everyone's new files. This default usually
doesn't include execute permission, because system administrators assume that most of the
files you create will not be shell scripts.

As you saw in section 4.1.8, "Controlling Access to a File," we use the chmod command to
add privileges to a file. In this case, you want to give yourself execution privileges for your
dir program:

chmod u+x dir

Now when you type dir, it should have the same effect as typing ls -l | more. You've
written your first useful, working shell script!

At this point, your shell script only works for you if you are in the same directory as the shell
script file. Ask your system administrator for help modify your search path, which determ-
ines where UNIX looks for programs to execute when you type a command name at the shell
prompt. If you store your shell scripts in their own subdirectory of your home directory and
add the name of that directory to your path, you can use your scripts no matter which direct-
ory you are in.

6.2.1 The Automatic Login Command File

If you type

ls -al

you may see one or more files that you didn't see before in the list of files in your home dir-
ectory. The a means "all," and tells ls to include the "hidden" files from that directory in the
list. As you can see, they're not hidden very well; they all have a period (.) as the first charac-
ter in their filename. Typing

ls -l .*

is another way to list these files—you're telling UNIX to list the files whose names begin
with a period.

One of these files is called either .profile or .login (pronounced "dot profile" and "dot
login"). Both are shell scripts; whenever you log in, the system looks for .profile if you

6.2.1 The Automatic Login Command
File 81

are using the Bourne shell or .login if you are using the C shell and executes it automatic-
ally. This means that, if there's any commands that you want executed every time you log in,
you only need to add them to that file. (If you don't have one, you can create it the same way
you create any other shell script. Just remember to store it in your home directory and to give
yourself permission to execute it with the chmod command.)

For example, you could add the lines

mail
cat schedule.txt | more

to your .profile or .login file. The first line, as you will see in the next section, checks
to see if you have mail (although some systems automatically check for this when you log in
anyway) and the next displays a file called schedule.txt one page at a time. If you keep
your appointments in this file, it's handy to have them listed like this whenever you log in.

Some systems automatically create a .profile or .login file when the system adminis-
trator creates a new user ID. If this happens with your ID, the shell script probably has some
strange-looking commands in it. Try looking these up with the man or help commands.

When you add new commands, add them at the end of the file. To test your revised automatic
login script to see if it works, you don't have to log off and log back in again; as with any
shell script, you can just type its name to start it up.

6.3 Communicating with Other Users
You can send mail to someone by merely typing the word mail followed by the login name
of the person getting the mail. For example,

mail maryjones

indicates that you want to send mail to Mary Jones. The mail program then waits for you to
type in your message, but it doesn't give you any proper editing capabilities. It's better to use
the vi editor to create a text file with the message that you want to send, and then "send" that
file to the mail program the same way that you sent a file to the more command when you
wanted to see the file's text one screen at a time: with the pipe (|) symbol. The following com-
mand sends the file 072194mj.txt to Mary Jones' mailbox:

cat 072194mj.txt | mail maryjones

You can send any text file to someone with this trick, not just one that you created yourself
for this purpose.

82 Chapter 6 Using a UNIX System

6.3.1 Receiving Mail

To check whether you have any mail, simply type

mail

all by itself at the UNIX prompt. If you have no mail waiting for you, it tells you something
like

No mail.

and returns you to the UNIX prompt.

If you do have mail, this enters the mail program. It first shows you either the message most
recently sent to you or a list of headers that describe who sent the messages in your mailbox
and when they sent them. Then, the mail program's prompt—usually either a question mark
or an ampersand—appears. The mail program has at least twenty commands that you can
type at this prompt, but you only need a couple to get by. As with most programs, the most
important command is the one that tells you about the others: the question mark.

The system numbers your messages and shows these numbers in the list of mail headers. You
can refer to these messages by number; for example, entering d 3 at the mail program's
prompt means "delete message number 3."

You don't have to use the numbers, especially if you're a beginner. Keep in mind that when
you don't include a number in a command entered at the mail program prompt, the system
treats the command as if you're referring to the "current" message. The simplest way to see
which message is current is to enter the p command without any number. This displays
("prints") the current message. It's a good idea to do this before you delete a message with the
d command, to make sure that you're deleting the right one.

Among the available commands, here are the important ones:

? List the available commands in the mail program with a brief de-
scription of each.

p Print the current message on the screen. The message will have a
header describing, at the very least, the date and time that it was
sent and the sender's login ID. It may also include other informa-
tion with lots of numbers, initials, and punctuation. This is in-
formation that the mail program uses to route the message; it
may be useful to your system administrator if you have any prob-
lems sending or receiving mail.

6.3.1 Receiving Mail 83

+ Move forward to the next message and print it. If there is no next
message, this may return you to the UNIX prompt. The letter n,
for "next," also works.

- Print the message before the current one.

1 (Or any other number) When you enter a number without any
other characters, you're telling the mail program to print the mes-
sage with that number. See the h command to find out how to
see the messages' numbers.

s [filename] Save the current message with the filename shown. The filename
is optional; if you don't include it, the mail program saves the
message in your current directory with the name mbox. (If mbox
already exists, the mail program will add the message to the end
of the file.) Saving a message deletes it from your mailbox,
which makes sense, because once you save it in a file, you don't
need it in your mailbox anymore.

d [1] Delete the current message. If you specify a number after the d
command, the mail program deletes the message with that num-
ber. After you enter this command, the mail program shows
you the message in question. The system doesn't actually delete
it until you leave the mail program; the u command unmarks a
message that you've marked for deletion.

h Print out active message headers. (Not all mail programs provide
this command.) The message headers show one line of informa-
tion about each message in your mailbox. This line will include
the login name of the person who sent you the message, the date
and time it was sent, and the size of the message in bytes. (If the
size appears as two numbers with a slash, like 11/266, these
numbers represent the number of lines in the message and the
number of bytes.) A greater-than symbol (>) on the left of the
screen shows which message is current; many mail programs
also have a column with a one-letter code that tells you more
about the status of each message: "u" for unread, "s" for saved,
"d" if it was marked for deletion, or "n" for new.

r Reply to the current message. After you enter r and press Enter,
the mail program may prompt you for the subject of your mes-
sage, and then you will have a seemingly blank line. Enter the

84 Chapter 6 Using a UNIX System

first line of your message, press Enter, and continue to type in
your reply. Type it carefully, because each time you press Enter
there's no going back to edit that line. When you are done, type a
period (.) as the first character of a new line and press Enter.

If this sounds like a pain, it is. If you want to send a reply of
more than two or three lines, jot down the login ID of the person
that sent you this message, quit out of the mail program, and
send them mail the normal way by first composing it in a text file
with vi and then sending it to the mail program with the pipe
symbol.

q Quit out of the mail program and return to the UNIX prompt.

6.4 A Sample UNIX Session
You just received the following fax from your boss Mary in Phoenix:

Joe - I just remembered that there's some confidential stuff in the
aug20.herb file, so I may have set it so that only I could read it.
If you had any trouble, most of the info from it is in another file
in my home directory called seppromo.txt. Everyone else has made
copies of that, so you can't have any problems copying it to your own
directory. Look it over, and then give me a status report on your
responsibilities in the special promotion we're doing in September.
Just e-mail me your status report; I'll log in from Phoenix to read it.
Make sure it's there by Wednesday at 9AM, Arizona time.
-MJ

No problem, except that you haven't done half the work that you're supposed to on the
September promotion. First step: you'll print out your own notes on the promotion, which
you've stored in a file called promo1.txt. You type the following command:

lp porno1.txt

The system responds with the message

request id is hp1-1343 (1 file)

so you know that your file is queued for the laser printer. But wait! You mistyped
"promo1.txt" as "porno1.txt," accidentally sending the first chapter of your erotic work-
in-progress to the printer! Not only is your eventual masterpiece not ready for a publisher yet,
it's definitely not ready for the secretaries who hang around the laser printer waiting for their

6.4 A Sample UNIX Session 85

memos to come out.

You don't panic. Instead, you type

lpstat

to see the print queue, and you see the following:

$ hp1-1318 mlopez 3,275 Aug 22 11:31 on hp1
$ hp1-1325 jimcasey 1,381 Aug 22 11:33 on hp1
$ hp1-1343 joeuser 6,923 Aug 22 11:34 on hp1

It's not too late; you type

cancel hp1-1434

and see the message

cancel: request hp1-1434 non-existent

Your palms start to sweat. You look back at the list of waiting print jobs, and realize that you
typed the wrong request id number. You try again:

cancel hp1-1343

and press Enter. This time you type it very carefully. No error message appears. To make sure
that it worked, you type

lpstat

again, and this time you see this:

$ hp1-1325 jimcasey 1,381 Aug 22 11:33 on hp1

It looks like you were just in time. Maria Lopez's job finished printing, and Jim's is about to
start. The important thing is, yours will not print. Now you try printing promo1.txt again,
typing more carefully this time:

lp promo1.txt

Next, you check the print queue with the lpstat command. This time, you see

86 Chapter 6 Using a UNIX System

$ hp1-1325 jimcasey 1,381 Aug 22 11:33 on hp1
$ hp1-1348 joeuser 2,348 Aug 22 11:36 on hp1

so you know that you'll have it soon.

While you wait for it, you copy the file Mary told you about into your own directory. She said
that it was in her home directory, not her mail directory, so you copy seppromo.txt into
your home directory with the following command:

cp /usr2/maryjones/seppromo.txt /usr2/joeuser

After printing it, you check to make sure that it's there. You could type ls and list every file
in the current directory, but you only want to check this single file. On the other hand, you're
too lazy to type out ls seppromo.txt, so you take advantage of UNIX's wildcards and
type:

ls -l sep*

You include the -l because you're curious about the file's size. The system responds with the
following:

-rw-rw-r-- 1 maryjones marketing 19853 Sep 18 1994 seppromo.txt

Almost 20 kilobytes, which is about 10 pages. You hope it's useful.

After you pick up your promo1.txt printout from the printer, you look it over and it's not
too bad. If you trim it down and add some stuff from seppromo.txt, it should keep Mary
happy. To be safe, you want to keep the original file, so you make a copy of it and work on
the copy. This copy will end up as a summary of your work on the September promotion, so
you enter the following copy command:

cp promo1.txt seppromo.txt

After you press the Enter key, you realize: Mary's file was called seppromo.txt, and you
just copied over it. Dumb, but not a disaster—you can copy her original file into your direct-
ory again. This time, when you copy it, you give the copy a new name:

cp /usr2/maryjones/seppromo.txt /usr2/joeuser/mjpromo.txt

Then you print it out with the command

lp mjpromo.txt

6.4 A Sample UNIX Session 87

You read through your printouts of promo1.txt and mjpromo.txt and mark them up
with ideas for your own seppromo.txt file. After bringing up seppromo.txt into the
vi text editor, you delete a bit, turn some phrases into complete sentences, and add some
quotes from mjpromo.txt. You also use the vi :w command to save your work every few
minutes while you're editing. When you're done, you use the :wq to save your final changes
and quit out of vi.

After printing out your edited file with the lp command and proofreading it, it looks good
enough to send to Mary. You mail it to her with the following command:

cat seppromo.txt | mail mjones

You receive this message:

mjones... User unknown

Because you entered Mary's login name incorrectly, the system didn't recognize it. You try
again:

cat seppromo.txt | mail maryjones

This time there's no error message, so you know it worked.

That's enough work for the morning, and lunch calls. Because you don't want to leave your
desk with your terminal logged in, you type

exit

to log out.

88 Chapter 6 Using a UNIX System

Part III. VMS

Chapter 7 OpenVMS: An Introduction
VMS has traditionally been the operating system used on Digital Equipment Corporation's
VAX line of computers. OpenVMS is the latest version of VMS, designed to spread its avail-
ability beyond the VAX. (The OpenVMS interface has remained similar enough to that of
VMS that everything described in these chapters works the same way with recent versions of
OpenVMS as they work with VMS. When I refer to "VMS," take it to mean VMS and Open-
VMS together.) Today, the VAX is still the primary platform on which OpenVMS runs, and
because of the close connection between VMS and the VAX for over fifteen years, under-
standing the advantages of the VAX makes it easier to understand OpenVMS.

While VAX models range from the VAXstation VLC, which is inexpensive enough to com-
pete in the marketplace with PCs, to the VAX 9000, which has enough power to compete
with mainframes, all VAXes (or "VAXen"—see the buzzword sidebar on this) are generally
considered to be minicomputers.

One of the VAX's major selling points has always been that, despite the wide range in the
size and power of the different models, all models have the same architecture (the hardware
design, as it appears to the system software) and all can run the same operating system: VMS.
The saying "one architecture, one operating system" often comes up when DEC people dis-
cuss VAXes. This means that you can more easily port your applications and data if you out-
grow one VAX and get a bigger one. It also makes communication between VAXes easier; if
you outgrow one, you don't necessarily have to trade up—you can get a new one and hook it
up to the old one, setting them up to work together.

VAXes work well together because they can operate in a "peer-to-peer" relationship. This
goes a step beyond client/server computing: in a peer-to-peer system, any computer can be a
client and any can be a server. This allows greater flexibility when multiple computers carry
out tasks in cooperation. (For more on client/server systems, see the introduction at the begin-
ning of this book.)

It's not difficult to connect several VAXes together so that they work as a cooperating unit
called a "VAXcluster." In fact, the "one architecture, one operating system" approach to the
design of the VAX line makes this easier with VAXes than with just about any other com-
puter. (Following the VAX's lead, most mini and PC manufacturers are working hard to catch
up.) This cooperation is another of the VAX's advantages: it makes it easier to share resources
like printers and disk drives and it reduces the chance of problems if part of the system mal-
functions. So the VAX you use—especially if it's located at a university or company large
enough to own several—may very well be part of a VAXcluster.

DEC developed VMS and the VAX together. One benefit of this combination is the idea of

91

"balanced architecture," or how well the designers balanced the tradeoffs between work done
by the hardware and work done by the operating system. For computers running an operating
system like UNIX, where programs are supposed to be portable from one company's UNIX
machine to another's, designers must engineer the hardware to accommodate the lowest com-
mon denominator of the various operating system versions. This shifts much of the burden of
management in a complex system to the operating system software. Because VMS and the
VAX architecture were designed together, DEC engineers could make tradeoffs with fewer
compromises. VMS fans assert that this cooperation between the hardware and the system
software makes for a much more efficient computer.

Perhaps the greatest reason for the popularity of VMS is its ease of use. The commands are
English words that are easy to remember, and the on-line help, while extensive, is simple to
figure out. Utilities included with the system, like the mail program and text editors, are also
powerful without intimidating beginners, and feature their own very good on-line help.

7.1 History
DEC released the first VAX, the VAX-11/780, in 1977. Its power and quality sent shock
waves through the minicomputer industry. (Tracy Kidder's book "The Soul of a New Ma-
chine" describes Data General's feverish response to the VAX, as they built a new mini to
compete with it. I highly recommend this classic, the only book on computers that I know of
to win a Pulitzer prize.)

In 1977, the only computer company bigger than DEC was IBM. If you outgrew a smaller
IBM system, a lot of work, time, and expense was necessary to move your programs and data
to one of their bigger systems. This made the VAX's flexibility a strong selling point to or-
ganizations that needed a minicomputer and aspired to more power further down the road.
Academic institutions found them particularly appealing, and today VAXes are very common
at many universities.

VMS versus UNIX
Even if no one had developed versions of UNIX to run on VAXes, proponents
of UNIX and VMS would still be engaged in a long, loud debate over the rel-
ative merits of the two operating systems. (The VAX was actually the target
for one of Bell Labs' first ports of UNIX. Because this version didn't take ad-
vantage of the VAX's virtual memory capability—the "VM" in
"VMS"—developers at the University of California at Berkeley developed a

92 Chapter 7 OpenVMS: An Introduction

new version of UNIX that did. The success of Berkeley UNIX made it the
primary alternative to AT&T's UNIX, and it became the standard in academic
environments.) In Clifford Stoll's book "The Cuckoo's Egg," he describes how
the VMS and UNIX system administrators at the computer center where he
worked loved to disparage each other's operating systems. Their accusations
and jibes reveal much about how the two main camps in the minicomputer
world view each other.

The rivalry between UNIX and VMS can be intense because they compete
for much of the same turf. Small companies looking for something to keep
track of their inventories and payrolls might use an IBM minicomputer, but
academic, medical, scientific, and engineering organizations often have little
interest in a "business machine" (the "BM" in "IBM"). They want a computer
that gives them power without much cost and the flexibility to let them design
their own software.

VMS and UNIX both offer this, but with different approaches. Proponents of
VMS claim that UNIX is difficult because its abbreviated commands are
cryptic and difficult to learn. They view the UNIX approach of offering you
tools and ways to combine them as a disadvantage, because assembling a
collection of pieces—especially when they come from different compan-
ies—can frustrate all but experienced experts. Compared to UNIX, VMS is
easy to learn, and it's easier to coordinate a large amount of VAX hardware
and software.

Proponents of UNIX sometimes accuse VMS of being slow, but the wide
range of VAXes available mean that there's always a faster or slower model
available. They also turn around some of UNIX's alleged disadvantages and
call them advantages: they claim that the tools approach gives greater flexib-
ility in putting together the system that they really need, and the wide variety
of vendors involved eliminates dependence on the whims and fortunes of a
single large corporation—in this case, DEC.

Regardless of individual opinions, VMS and UNIX coexist at many compan-
ies and universities. Being comfortable with both is always better than famili-
arity with one and contempt for the other, because the increasing ease of
communication between the two operating systems means that more and
more sites are hooking them up into one big cooperating network.

7.1.1 Today

7.1.1 Today 93

A 1992 estimate put the number of VAX/VMS systems in the field at 500,000 and the num-
ber of users at 10 million. OpenVMS may outlive the VAX, or at least the VAX as we know
it; DEC's new Alpha processor, a significant jump from the VAX, lies at the heart of their
next round of technology. It's based on RISC technology, a new method for designing pro-
cessors that is playing an increasingly larger role in many companies' new hardware. Al-
though DEC designed the Alpha chip to accommodate several different operating systems,
they made sure that OpenVMS would run well on it. Rest assured that OpenVMS will be with
us for a long time.

7.1.1.1 Popular VMS Software

You can choose from a wide variety of complete software packages available to run under
VMS. By "complete," I mean to distinguish it from UNIX—the UNIX philosophy encourages
a wide choice of specialized tools that one can piece together into customized applications
more than it encourages the kind of complete software packages familiar to PC users. If you
have to take an office full of people, set them up with a multi-user computer, and train them
in the operating system and the applications they need as quickly as possible, you will prob-
ably want to give them either a system running VMS or an AS/400. Of these two, VMS's
seniority means that you have a greater range of complete software packages to choose from,
so there's a better chance that the software you need already exists and is optimized to take
advantage of the VAX. (AS/400s can run programs from IBM's System/36 and System/38
lines, but these don't take advantage of the AS/400's architecture as well as custom-written
applications do.)

One big-selling VMS package is DEC's ALL-IN-1 office management system. It provides
word processing, electronic mail, meeting and appointment scheduling, and other features
that make it popular at many VMS sites.

Another DEC software product closely associated with VMS is Rdb, a relational database
system. Although relational, Rdb does not use SQL (Structured Query Language) to manipu-
late data; in order to avoid this IBM creation DEC came up with their own system, called Di-
gital Standard Relational Interface (DSRI—the "Standard" part is somewhat ironic). To de-
velop Rdb applications, you must purchase software from DEC, but to run them, you only
need RDO (Relational Database Operator), which is included with VMS. This policy has
made Rdb popular in the VMS world, and other database systems must coexist efficiently
with it in order to compete in the VMS marketplace.

Pathworks consists of a series of programs from DEC that allow, among other things, a sys-
tem running VMS to act as a file and print server on a network with DOS, OS/2, or Macin-
tosh microcomputers as clients. As the minicomputer's role changes from being the computer
in a particular company or department to a computer cooperating with smaller ones, Path-
works and Novell products like NetWare for VMS make VMS systems better suited to taking

94 Chapter 7 OpenVMS: An Introduction

on file and print server roles than any other popular minicomputer.

7.1.2 VMS, DCL

VMS stands for "Virtual Memory System." The name derives from the technique it uses to
manage memory: the use of virtual memory is the ability to give programs access to more
memory than the computer actually has.

VMS users refer to commands as "DCL commands" rather than "VMS commands." DCL, or
"Digital Command Language," is the language developed by DEC to tell VMS what to do.

Every command-line driven operating system has a language (really, just a collection of com-
mands) for us to tell it what to do; VMS is the only operating system that I know of that has a
separate name for that language. DCL commands are not that different from the commands
on other major operating systems (for example, COPY, RENAME, and DELETE). What con-
fuses beginners is the existence of a separate name to refer to the command language. To
some, it implies the existence of special commands above and beyond the "normal" com-
mands used to communicate with the operating system, like the relationship of REXX to the
EXEC language on IBM mainframes.

We refer to VMS command files as "DCL command procedures" because, like the command
files in other operating systems, they let you string together operating system commands in a
text file and then run the series of commands by typing that file's name at the command
prompt. Section 11.2, "Command Files," covers this in greater detail.

BUZZWORD Vaxen The official DEC plural for VAX computers is just that:
VAX computers. "VAX," a trademarked brand name, is an adjective that
modifies "computer" the same way that "Xerox" is legally a trademark to be
used as an adjective modifying the word "photocopier." So just as you're not
supposed to say "make some copies with the Xerox," you're not supposed to
refer to the computer as a "VAX" or the plural as "VAXes."

People say "VAXes" anyway. But another plural form has arisen: "VAXen." It
seems to be preferred in more academic, less corporate environments. It's
difficult to trace its etymology. The resemblance to the word "oxen" brings to
mind a popular story that compares DEC's computer to the animal. DEC
people like to point out that when a farmer realizes that his holdings have
grown to the point where his one ox is no longer enough to plow the fields,
he does not look for a bigger ox to replace his original one; instead he pur-
chases an additional ox—or maybe several—and yokes them together to

7.1.2 VMS, DCL 95

combine their power. The farmer increases his plowing power without giving
up his original source of power. The connectivity (to use an overly popular in-
dustry buzzword) of VAX computers makes oxen a good metaphor for their
strengths.

In any case, "VAXes" and "VAXen" mean the same thing. The latter is, at
most, probably considered slightly hipper.

96 Chapter 7 OpenVMS: An Introduction

Chapter 8 Getting Started with OpenVMS
8.1 Starting Up
When you turn on a terminal connected to a VMS system, or successfully connect to such a
system over a network or phone line, the first thing you see is a message that asks for your
user ID (or your "username"). This might be preceded by a message telling you the system
you've connected to:

WELCOME TO THE NEPTUNE VAX SYSTEM
UNAUTHORIZED USE PROHIBITED

O'ROURKE ENTERPRISES
Username:

As an authorized user of this system you should have a login name that represents your iden-
tity on the system. Type it at the Username: prompt and press the Return key. If you make
a typing mistake, use your Delete key to back up your cursor and erase the previous character.
(The use of the Delete key to perform what many regard as the Backspace key's function can
be confusing; see section 8.1.2, "Entering Commands," for more on this.)

VMS is not case-sensitive about your username or password. Whether you enter your user-
name in upper or lower case, it appears in upper case. The next prompt asks you for your
password:

Password:

Type it in and press the Return key. The characters of your password should not show up as
you type them.

If all went well, you will be logged in. The system may display some messages from the sys-
tem administrator before it gets to the DCL command prompt, which is usually a dollar sign.

8.1.1 Finishing Your VMS Session

To log out, type the logout command at the DCL $ prompt. The following shows the sys-
tem's response when Joe User enters this command:

$ logout
JOEUSER logged out at 12-JUL-1994 14:01:58.30

8.1.1.1 Reconnecting

97

If you are ever accidentally disconnected from your session without properly logging out, log
back in as you normally do. Some systems will display a message like this:

You have the following disconnected process:
Terminal Process name Image name
VTA1411: JOE USER $1NEPDISK:[SYS4.SYSCOMMON.][SYSCBI]VMS$INT.EXE;2
Connect to above listed process [YES]:

This tells you that you left off in the middle of something the last time you were connected,
and it asks if you want to resume where you left off. The square braces around the word
"YES" show that it is the default; if you press Return, it assumes that you mean "YES" and
the system resumes whatever you were doing just before you were disconnected. A response
of "NO" tells the system to put you at the DCL $ prompt.

Not all VMS systems have this feature; some display the $ prompt as if you were logging in
normally when you reconnect after an aborted session.

8.1.2 Entering Commands

When you enter a command at the DCL $ prompt and press Return, the output appears under
it and the screen scrolls up if necessary to show the output. You only need to type the first
four letters of any DCL command, because no two DCL commands begin with the same first
four letters. If a command does not have the same first three letters as any other DCL com-
mand, which is often the case, you can get away with only using the first three letters.

When using a microcomputer to emulate a terminal, the most popular terminals to emulate
are those of DEC's VT (for "Virtual Terminal") series. Nearly all telecommunications pro-
grams can emulate the VT100, one of the original models in this series, and nearly all
minicomputers and mainframes can work with a VT100. Most telecommunications programs
and computers can also work with more advanced VT terminals, which are named with high-
er numbers like VT220 or VT340.

Users of some keyboards on other computers, especially IBM-based ones, are accustomed to
a Delete key that deletes the character at the cursor and a Backspace key that deletes the char-
acter to the left of the cursor. VT keyboards are more like the Macintosh's (actually, the Mac
keyboard is more like the VT's): the key known as the "Delete" key (in the upper-right of the
keyboard, with a pentagon pointing to the left and an "X" inside the pentagon) deletes the
character just before the cursor position. The VT keyboard has no specific key for deleting
the character at the cursor position. Terminal emulation programs often assign a PC's Delete
key to "delete" in the VT sense of the word, so PC users must get used to using their Delete
key to perform a function that they are accustomed to doing with their Backspace key.

98 Chapter 8 Getting Started with OpenVMS

To sum up, PC users who want to correct a typing mistake when connected to a VMS system
must get used to pressing their Delete key to get their cursor back to the place where they
made a mistake. (To confuse things a little more, note that I said "when connected to a VMS
system"—when emulating a VT terminal while connected to an IBM or UNIX machine, De-
lete usually deletes the character at the cursor and Backspace deletes the character on the
cursor's left.)

One more thing about a very important key: although certain IBM mainframe keyboards have
separate Enter and Return keys, on most other computer keyboards one or the other serves the
purpose of both. VT keyboards only have a Return key, which is what you press when you've
finished typing a command and want to execute it. On a PC emulating a VT terminal, the
Enter key stands in for the Return key. Either way, it's the big one above your right-shift key.

8.1.2.1 Retrieving Previous Commands

Pressing Ctrl+B retrieves previously entered commands, one at a time, to the command line.
If you receive an error message because of a typo in a command you just entered, this saves
you some typing, because you can retrieve the command in one keystroke and fix your mis-
take instead of retyping the whole command. (With some terminal emulation setups, the
Cursor Up key also does this.)

8.1.2.2 Aborting Screen Output

Ctrl+Y is known as the "Interrupt" key. If a command is displaying screens and screens of
output and you don't want to see any more, press Ctrl+Y. VMS displays the word "Interrupt"
to show where you stopped the output and it puts the DCL command prompt underneath it,
ready for your next command.

Ctrl+Y can interrupt more than just screen output. If things get out of hand with just about
any VMS program, it's one of the first things to try if you want to abort your session's current
activity.

If you press Ctrl+Y by mistake, enter CONTINUE at the DCL command prompt to resume the
running process.

8.1.2.3 Command Parameters

Many commands need some information from you in order to do their job. For instance,
when you type the COPY command, the system needs to know the name of the file you want
to copy and the name you want to assign to your new copy. As you'll see in the section on the
COPY command, you could type this:

copy filename.old filename.new

8.1.2 Entering Commands 99

If you type

copy

by itself, VMS responds in a fairly user-friendly way to this abbreviated syntax—it prompts
you for the information it needs. At the _From: and _To: prompts that appear, you indicate
the names of your source and destination files. For example:

$ copy
_From: inven.c
_To: inven_c.bkp
$

8.1.2.4 Case Sensitivity

VMS is not case-sensitive. Whether you enter your commands in upper or lower case, they
still have the same effect. The same applies to file names: when you create or refer to a file,
whether you write out its name in upper or lower case, VMS translates it to upper case.

8.2 File Names
VMS users loosely use the term "file name" to refer to the two-part name that identifies a spe-
cific file in a directory. I say "loosely" because, more formally, it refers to the first of these
two parts, with the second part being the file type. Both the file name and file type can be up
to 39 characters long, but the most commonly used file types are three letters long.

Like its counterparts on other operating systems, the file type is like a person's last name. It
identifies the family to which the file belongs. For example, the following file types indicate
that a file is a member of the following families:

EXE An executable program.

BAS A program written in the BASIC programming language.

LIS A plain text file.

DIR A special file type: a DIR, for all practical purposes, is a subdir-
ectory, or subdivision, of the current default directory. Technic-
ally, it too is a file, but a file that keeps track of the files in the
subdirectory that it names. If you try to look at this file, it will
mostly look like gibberish. For more on subdirectories, see sec-
tion 8.3, "How Files Are Organized."

100 Chapter 8 Getting Started with OpenVMS

You can use letters of the alphabet, numbers, and underscores in file names and types. Spaces
are not allowed. You'll be pushing your luck if you use any other characters—if a command
doesn't work and VMS gives you a message like "check use of special characters," you may
have tried to create a file with a carat (^), a pound sign (#), or one of the keyboard's other
non-alphanumeric characters.

VMS keeps multiple versions of each of your files. The three versions of memos.lis might
be called memos.lis;1, memos.lis;2 and memos.lis;3. The one with the highest
number is the most recent version. If you refer to a file but don't include its version number,
many commands assume that you're referring to the most recent one, but some commands
(like DELETE) force you to include the version number when you tell it which file or files to
act on. Section 8.3, "How Files Are Organized," covers version numbers in more detail.

8.2.1 Wildcards

The main wildcards in VMS are the asterisk and the percent sign. Although the examples be-
low demonstrate their use with the DIRECTORY command, which lists file names, remember
that you can use them with almost any command that uses file names as command-line para-
meters. For more information, see the material on wildcards in section 1.5, "General Advice."

8.2.1.1 The Asterisk

An asterisk at the end of a file name means the same thing in VMS that it means in most other
operating systems. It can represent zero or more characters at that position in the file name or
file type.

In VMS, you're not restricted to putting the asterisk at the end of the file name or file type; if
you use the DIRECTORY command to list file names and enter the following,

DIRECTORY *MAY.LIS

the system lists the names of files with a file type of LIS and a file name that ends with the
letters "MAY." (Because the asterisk represents zero or more characters, the file MAY.LIS
fits that pattern as well as CAMAY.LIS would.)

Entering this

DIRECTORY MAY*94.LIS

lists files with "LIS" as a file type and a file name that begins with "MAY" and ends with
"94" whether there are 0 or 34 characters between the "MAY" and the "94." (Remember, the
file name and type can each be a total of 39 characters, and "MAY" and "94" make five.)

8.2.1 Wildcards 101

To list file names that have "MAY" anywhere in the file name, regardless of the file type,
enter

DIRECTORY *MAY*.*

If you don't include any characters or wildcards to indicate a pattern for the file type, VMS
assumes a default of *. In other words, it includes files with file names that fit the entered
pattern regardless of the file type. For example, entering

DIRECTORY *MAY

lists all files with a file name that ends with "MAY," no matter what their file type.

8.2.1.2 The Percent Sign

The percent sign represents a single character in a file name—no more, no less. Several per-
cent signs represent that number of characters, so that

DIRECTORY %%%93RPT.TXT

would list out the file names with exactly three characters before the characters "93rpt.txt."

8.3 How Files Are Organized
As with several other operating systems, files on a VMS system are organized in divisions
and subdivisions of hard disk space called directories, and a file's full name (called its "file
specification," or "filespec") includes the directory name. Unlike other operating systems, the
complete filespec includes more than the directory name: it also includes the names of the
computer and hard disk on which the file is stored.

The following shows a possible complete filespec for Joe User's file FOR_MARY.LIS:

NEPTUNE::NEPDISK:[JOEUSER.MEMOS.JUNE]FOR_MARY.LIS;3

The filespec consists of the following parts:

node The name of the computer on which the file is stored. This is not
a brand name or model name, but more of a nickname that sys-
tem administrators assign when they install a computer. If you
send electronic mail to someone using a VMS system other than
your own, you need to know their node name. In the example,
Joe User's system administrator named their node NEPTUNE.
Note the use of the two colons to separate the node name from

102 Chapter 8 Getting Started with OpenVMS

the rest of the filespec.

device A given VMS system may store files on several hard disks; the
device name is the specific hard disk where a file is stored. NEP-
DISK is the device name in the example. A single colon separ-
ates the device name from the rest of the file name. (DOS users
will find this use of the colon to separate a disk name from a file
and directory name familiar—for example, in
c:command.com the disk name is c and the file name is com-
mand.com.)

directory A hard disk is divided into sections called directories. The sys-
tem administrator assigns each user ID its own directory, and the
user can create subdivisions of this directory known as subdirect-
ories. (These too may be subdivided, and the subdivisions may
be subdivided, and so forth to seven levels below the user ID's
directory.) A directory's full name consists of the names of the
various levels separated by periods with square braces around the
whole thing.

We call a user ID's main directory—in the example above,
[JOEUSER]—that user's "root directory." DOS and UNIX users
should keep in mind that in VMS "root directory" means the root
of a particular user's arrangement of subdirectories (like a UNIX
user's home directory), rather than the root of the whole hard
disk.

Joe User might divide his JOEUSER directory into several sub-
directories and name one of them MEMOS. This subdirectory's
full name would be [JOEUSER.MEMOS]. If he divided his
MEMOS subdirectory into subsections for each month of the year,
the full name of the subdirectory that holds his June memos
would be [JOEUSER.MEMOS.JUNE], as in the example.

file name This means just what it says. See section 8.2, "File Names," for
information on the two parts of a file name. In the example, the
file name is FOR_MARY.LIS.

version number When you first create a file, VMS assigns it a version number of
1. If you edit the file, the text editor saves the edited version with
a version number of 2 and the old one remains in the same dir-
ectory with a version number of 1. The version number is appen-

8.3 How Files Are Organized 103

ded onto the file name, separated from it by a semicolon. In the
example, the ;3 after the file name FOR_MARY.LIS shows that
the filespec represents the third version of the file.

You will undoubtedly find that your directories gradually fill up
with unnecessary old versions of your files. Section 9.1.7.1, "Pur-
ging Old Versions of Your Files," explains how to delete all but
the most recent version or versions of a file.

The system administrator assigns your user ID to a particular disk of a particular computer. If
you don't include a node or device name when you refer to a file, VMS assumes that you're
talking about a file on the same node and disk that you're already using.

Why does VMS give you the option of including the computer and hard disk name in a file's
complete name, when few other operating systems do? As I mentioned earlier, VAXes are of-
ten grouped together into a network called a VAXcluster. The ability to be so specific about a
file's location makes it much easier to access a file on other VAXes in your cluster.

8.3.1 Moving Between Directories

The command SHOW DEFAULT displays the name of your "default" directory. If Joe User
types this while his root directory is the default, the system displays the following:

NEPDISK:[JOEUSER]

While you get used to the various syntax possibilities for changing your default directory, this
command is very handy, because you can use it to check the success of each attempt to make
a new directory the default one.

The SET DEFAULT command changes your default directory. Because this command and
SHOW DEFAULT come up so often, it saves you some typing to remember that you only
need the first three letters of any DCL keywords. This makes these commands SET DEF and
SHOW DEF—or even SHO DEF.

For Joe User to set his default directory to the MEMOS subdirectory of his root directory, he
could type this:

SET DEFAULT [JOEUSER.MEMOS]

Fortunately, there are other shortcuts besides abbreviating the keywords. If you begin the dir-
ectory name with a period, you tell VMS that the following directory name is a subdirectory
of the current default one. For example, if Joe is already in the [JOEUSER] directory and
wants to go one level down to the MEMOS directory, he can type this:

104 Chapter 8 Getting Started with OpenVMS

SET DEFAULT [.MEMOS]

If he wanted to go from [JOEUSER] to [JOEUSER.MEMOS.JUNE] in one command
without typing the entire name of his destination, he could enter this:

SET DEFAULT [.MEMOS.JUNE]

When moving back one or more levels, a hyphen represents the directory one level closer to
the root. For example, Joe could go from [JOEUSER.MEMOS.JUNE] to
[JOEUSER.MEMOS] by entering this:

SET DEFAULT [-]

To go back multiple levels, you can use multiple hyphens, as long as you separate them with
periods. For example, Joe can go from [JOEUSER.MEMOS.JUNE] to his [JOEUSER] root
directory by entering this:

SET DEFAULT [-.-]

As you'll see in section 9.1.5, "Copying Files," these tricks for abbreviating directory names
also work when you specify a directory other than the current default one as the destination
for a file that you are copying.

8.3.1.1 Default Directory? Current Directory?

There is a subtle difference between the VMS concept of a default directory and the DOS or
UNIX concept of a "current" directory. When you make a new directory current while using
one of the latter two operating systems, you can think of it as moving to a new part of the disk
to work. When you set a default directory in VMS, you indicate a directory (or disk) name to
use with any files for which you don't explicitly include the directory or disk name. Misun-
derstanding this difference can lead to aggravation when you get certain error messages.

For example, this happens when you specify a non-existent directory as your new default dir-
ectory. In UNIX and DOS, when you issue the cd (change directory) command with a non-
existent directory as its parameter, the system gives you an error message right away. On the
other hand, when you use the SET DEFAULT command to tell VMS to "apply this directory
name to files that I refer to in future commands," the system takes it on faith that the name is
a good one. When you try it with a non-existent directory name, the system responds with the
DCL prompt, and no error message:

$ set default [.febyooary]
$

8.3.1 Moving Between Directories 105

If Joe User tries to do anything with this non-existent directory, he gets an error message or
two:

$ dir
%DIRECT-E-OPENIN, error opening NEPDISK:[JOEUSER.FEBYOOARY]*.*;* as input
-RMS-E-DNF, directory not found
-SYSTEM-W-NOSUCHFILE, no such file

(See section 9.1.2, "Common Error Messages" for more on the format of error messages.)
This problem will continue until you fix it, so Joe types

set default [joeuser.february]

to correct his mistake.

8.3.2 Querying Available Disk Space

A VMS system administrator allocates a certain amount of disk space to each ID. To see how
much of yours you have used and how much free space remains, enter the following com-
mand:

SHOW QUOTA

VMS displays a message similar to this:

User [207,JOEUSER] has 356 blocks used, 9644 available,
of 10000 authorized and permitted overdraft of 100 blocks on NEPDISK

The [207,JOEUSER] is the User Identification Code (UIC), a unique code that the system
uses to keep track of users. A block represents 512 bytes, so to picture a given number of
blocks in kilobytes, cut it in half. The preceding example shows that the files in Joe User's ID
space take up about 178 K, and he has about 4822 K of free space. Section 9.1.3, "Listing File
Names," shows how adding the /SIZE qualifier to the DIRECTORY command displays the
size, in blocks, of individual files.

8.4 Available On-line Help
VMS probably has the best on-line help of any operating system that uses character-based
screens. In fact, it outshines the help included with many operating systems that use a graph-
ical user interface. Its greatest strength is the ease with which you can move to a greater or
lesser level of detail and from topic to topic.

106 Chapter 8 Getting Started with OpenVMS

If you type HELP by itself at the DCL prompt, VMS displays an introductory help screen
similar to the one in Figure 8.1.

HELP

The HELP command invokes the VMS HELP Facility to display
information about a VMS command or topic. In response to the "Topic?"
prompt, you can:

o Type the name of the command or topic for which you need help.

o Type INSTRUCTIONS for more detailed instructions on how to use
HELP.

o Type HINTS if you are not sure of the name of the command or
topic for which you need help.

o Type a question mark (?) to redisplay the most recently requested
text.

o Press the RETURN key one or more times to exit from HELP.

Press RETURN to continue ...

Figure 8.1 Screen 1 of the VMS introductory help screen.

This first help screen tells you how to use help. Press Return, and the next help screen looks
similar to the one shown in Figure 8.2.

You can abbreviate any topic name, although ambiguous abbreviations
result in all matches being displayed.

Additional information available:

:= = @ ACCOUNTING ALLIN1 ALLOCATE ANALYZE
APPEND ASSIGN ASU ATTACH AUTHORIZE AUTOGEN BACKUP
BASIC BTEQ CACHE CALL CANCEL CC CDD
CDDL CDDV CDD_PLUS CDO CLOSE CMS COBOL
COLLECT CONNECT CONTINUE CONVERT COPY CREATE DATATRIEVE

8.4 Available On-line Help 107

DBCCP DBC_1012 DBMS DBO DBO40 DDL DDL40
DEALLOCATE DEASSIGN DEBUG DECK DECtrace DEFINE DELETE
DEPOSIT DICTIONARY DIFFERENCES DIRECTORY DISCONNECT DISKQUOTA
DISMOUNT DML DML40 DMU DOCUMENT DSM DTM
DUMP EDIT ENCRYPT EOD EOJ EXAMINE EXCHANGE
EXIT FDL FileChief FINGER FMS FONT FORTRAN
FTP GOSUB GOTO GRAPH HELP Hints IDL
IDMCOPY IDMDATE IDMDUMP IDMFCOPY IDMLOAD INITIALIZE INQUIRE

Press RETURN to continue ...

Figure 8.2 Screen 2 of the VMS introductory help screen.

This shows you the beginning of the list of available help topics. (Note that Hints is on the
list. The first help screen already indicated that this is a valid help topic.)

Your screen probably won't look exactly like this; part of the beauty of VMS on-line help is
the ease with which system administrators can add new help topics, so that users can learn
about issues that pertain to their particular system just as easily as they can learn about VMS
commands.

When you press Return again, VMS displays the rest of the list, and then a prompt that asks
you which topic you want to learn more about:

Topic?

If you respond by merely pressing the Return key, VMS returns you to the DCL prompt. If
you want to know more about one of the listed topics, enter its name. For example, if you re-
spond to the Topic? prompt by entering EDIT, the help program displays a screen similar
to the one shown in Figure 8.3.

EDIT

The EDIT commands perform the following functions:

o Invoke the Access Control List Editor to create or modify an
access control list for an object (see /ACL).

o Invoke the EDT screen-oriented editor (see /EDT).

108 Chapter 8 Getting Started with OpenVMS

o Invoke the FDL editor to create and modify File Definition
Language files (see /FDL).

o Invoke the SUMSLP batch-oriented editor to update a single input
file with multiple files of edit commands (see /SUM).

o Invoke the TECO editor (see /TECO).

o Invoke the TPU editor (see /TPU).

Press RETURN to continue ...

Figure 8.3 VMS help screen 1 for the EDIT topic.

Pressing Return another time displays the second and final general help screen for the EDIT
command, as shown in Figure 8.4.

Additional information available:

/ACL /EDT /FDL /SUM /TECO /TPU

EDIT Subtopic?

Figure 8.4 Additional information available on the EDIT command.

Note how EDIT, as a topic, has subtopics that you can learn more about. Some subtopics
have their own subtopics; if you enter /TPU in response to the EDIT Subtopic? prompt,
VMS displays introductory information about the Text Processing Utility, and then another
subtopic menu to select from, as shown in Figure 8.5.

Additional information available:

EVE_Editor Examples Logicals Parameter Qualifiers /COMMAND /CREATE
/DEBUG /DISPLAY /INITIALIZATION /INTERFACE /JOURNAL /MODIFY
/OUTPUT /READ_ONLY /RECOVER /SECTION /START_POSITION /WORK
/WRITE

8.4 Available On-line Help 109

EDIT /TPU Subtopic?

Figure 8.5 VMS help screen 2 for the EDIT topic.

If you respond to any help prompt by pressing Return without first entering anything, the help
program takes you back to the previous help level's prompt. In the following, note what hap-
pens when a user looking at the EDIT /TPU Subtopic? prompt repeatedly presses Re-
turn until the system returns to the DCL prompt:

EDIT /TPU Subtopic?
EDIT Subtopic?
Topic?
$

When you reach the deepest level of help available on a particular topic (that is, when the cur-
rently displayed topic has no subtopics), the help program redisplays the most recent help
prompt. For example, if EDIT /TPU has no subtopics of its own, the system displays the
EDIT Subtopic? prompt after it displays the help information on EDIT /TPU.

What if you respond to a help prompt with something that the help program doesn't recog-
nize, like POTRZEBIE? The help program responds with a polite message like this:

Sorry, no documentation on POTRZEBIE

Note that one of the EDIT /TPU subtopics is EVE_Editor. Topic and subtopic names
cannot have spaces in them, so they use underscores instead. For example, one subtopic of the
HINTS screen is called Batch_and_print_jobs. Don't forget to include the underscores
when you enter one of these topic names, or you'll get the "Sorry, no documentation" mes-
sage.

You don't always have to go through the various menus and screens to get help. If you need
help with a specific command, enter HELP followed by the command name at the DCL
prompt. For example, to go right from the DCL prompt to the main help screen for the EDIT
command, enter this:

HELP EDIT

For even more specific help, you can add one of a command's qualifiers to go to the help

110 Chapter 8 Getting Started with OpenVMS

screen for that qualifier. For example, entering

HELP EDIT/TPU

takes you right to the screen that describes the TPU editor.

As you can see, the VMS help system is easy to get into, easy to navigate, and easy to get out
of. Also, as the very first screen shows, you can easily find out more about the help program
from the help program itself.

8.4 Available On-line Help 111

112

Chapter 9 Using Files in OpenVMS
9.1 The Eight Most Important Commands
The eight most important commands in VMS are:

DIRECTORY lists file names.

TYPE displays the contents of files.

COPY copies files.

RENAME renames files.

DELETE deletes files and directories.

PURGE erases old versions of your files and keeps recent ones.

SET PROTECTION grants and revokes access to files.

CREATE/DIRECTORY creates directories.

9.1.1 Command Options: Qualifiers

A command option, known as a "qualifier" in VMS, is separated from the command by a
slash. Although any spaces before or after the slash don't affect the command's execution, you
usually see examples written with no spaces before or after the slash. VMS users usually con-
sider the slash to be part of the qualifier, not a separator between qualifiers. For example,
when you're viewing the on-line help's basic description of the EDIT command and want to
see subtopic information on its /TPU qualifier, entering just "TPU" as the subtopic name dis-
plays an error message. You must include the slash for VMS to recognize what you want.

The DIRECTORY command entered by itself only lists file names. Various qualifiers allow
you to list more information with these file names. For example, the /SIZE qualifier lists
each file's size, in blocks, next to its name, regardless of whether you enter

DIRECTORY/SIZE

or

DIRECTORY /SIZE

113

or this:

DIRECTORY/ SIZE

This latitude with spaces still applies when you add more than one qualifier to your com-
mand. For example, adding the /DATE qualifier tells the DIRECTORY command to list the
date of the file's creation, along with the file's name. To list each file's size and creation date,
you could enter

DIRECTORY/DATE/SIZE

or

DIRECTORY / DATE / SIZE

without any problem.

9.1.2 Common Error Messages

VMS error messages take the following form:

%component-c-abbrev, message

This consists of the following parts (don't worry about the first four—the message part is
the important one):

% Marks the beginning of the error message. If the message in-
cludes more than one line, the additional lines give details about
the main error message. These have the same format as the first,
but begin with a hyphen (-) instead of a percent sign.

component Is the component of VMS that choked on the command that
caused the error. This will probably appear as some initials.

c Is the code that tells you the severity of the error:

I Informational

E Error

S Success

F Fatal error

114 Chapter 9 Using Files in OpenVMS

W Warning

abbrev Is a unique error code abbreviation.

message Is the actual error message. With luck it will be a whole sentence
that explains what went wrong.

The most classic error is to misspell a command name so that the system doesn't recognize
the entered command. In the following example, Joe User adds an extra "d" to the DIRECT-
ORY command:

$ ddirectory
%DCL-W-IVVERB, unrecognized command verb - check validity and spelling
\DDIRECTORY\

VMS first tells him that it doesn't recognize the command he entered. It then repeats, between
the slashes, the command that it didn't recognize. This is handy if the system rejects a com-
plicated command and you don't know which part of it caused the error message.

The other classic error is to misspell a file name so that you enter a command to do something
to a nonexistent file. For example, let's say Joe User wants to delete the file SUMRPT.LIS;1
but makes a typo when he enters the file name:

DELETE SLUMRPT.LIS;1

VMS responds with these messages:

%DELETE-W-SEARCHFAIL, error searching for NEPDISK:[JOEUSER]SLUMRPT.LIS;1
-RMS-E-FNF, file not found

The message on the first line indicates that there was a problem searching for the SLUM-
RPT.LIS file. The second line elaborates on the problem: it couldn't find the file. (Another
possible problem that might cause a searching error would be a hardware problem on the hard
drive's disk.)

9.1.3 Listing File Names

The VMS command to list out the files in a directory is DIRECTORY. Because this command
is used so often, its first three letters are more popular than the final six, especially among
DOS users who are used to entering "DIR" on their PCs to list file names.

Entering this command with no qualifiers displays the directory's full name, the file names

9.1.3 Listing File Names 115

and version numbers arranged alphabetically in several columns across the screen, and the
total count of the file names listed at the bottom, as shown in Figure 9.1.

$ dir

Directory NEPDISK:[JOEUSER]

INVEN.C;6 INVEN.C;5 INVEN.C;4 INVEN.EXE;3
INVEN.HLP;1 INVEN.JOU;2 INVEN.JOU;1 INVEN.OBJ;3
L543.TMP;1 L544.TMP;1 L545.TMP;1 MEMOS.DIR;1
MENU.C;4 MENU.C;3 MENU.EXE;2 MENU.EXE;4
MENU.HLP;1 MENU.OBJ;3 SETUP.COM;1 SETUP.DAT;2
SUMRPT.C;2 SUMRPT.C;1 SUMRPT.EXE;2 SUMRPT.EXE;1
SUMRPT.HLP;1 SUMRPT.LIS;1 SUMRPT.OBJ;2 SUMRPT.OBJ;1
TEST.C;1 TEST.EXE;4 TEST.HLP;1 TEST.OBJ;1
TESTPAS.EXE;1 TESTPAS.PAS;1 TODO.TXT;8 TODO.TXT;7
TODO.TXT;6 TODO.TXT;5 UR.COM;1 URBASE_TEST.DIR;1

Total of 40 files.

Figure 9.1 Sample output of DIR (DIRECTORY) command.

If you enter DIR without specifying the directory in which to list the files, it lists the files in
the default directory. To list the files in another directory, add its name (all shortcuts for dir-
ectory names are allowed) after the DIR command, like this:

dir [.memos.june]

If you don't indicate a file specification, the dir command lists all the files in the directory.
If you enter a file name, it only lists versions of that one file. (Note that I said "versions of"; if
you include a file name without a semicolon or number after that semicolon, VMS assumes
that you want to list all versions of that file.)

It's more common to enter a file specification with wildcards, so that VMS lists a subset of
the directory's files. For example, entering the following

dir *.c

produces output like this:

Directory NEPDISK:[JOEUSER]

116 Chapter 9 Using Files in OpenVMS

INVEN.C;6 INVEN.C;5 INVEN.C;4 MENU.C;4
MENU.C;3 SUMRPT.C;2 SUMRPT.C;1 TEST.C;1
Total of 8 files.

Adding a file specification to a directory name lists the files in that directory that meet that
wildcard pattern. For example, entering

dir [joeuser.memos.june]mary*.*

lists all the files that begin with the letters "mary" in the [joeuser.memos.june] direct-
ory.

9.1.3.1 Listing More than File Names

The DIR command has many qualifiers; the most useful are /SIZE, /DATE, and VER-
SION=n. To learn about the others, enter HELP DIRECTORY at the command prompt.

Enter DIR/SIZE to list the file names with their individual sizes, in blocks:

INVEN.JOU;2 1
INVEN.JOU;1 1
INVEN.OBJ;1 4
L543.TMP;1 2
L544.TMP;1 3
L545.TMP;1 3
MEMOS.DIR;1 1
MENU.C;4 5
MENU.C;3 5
MENU.EXE;2 3

As explained in section 8.3.2, "Querying Available Disk Space," a block represents 512
bytes, or half a kilobyte. There are no partial blocks; a 513 byte file and a 1024 byte file both
take up 2 blocks of space on a VMS system.

The /DATE parameter adds the creation date and time, in military format, to each file name.
If you are more interested in when a file was last modified than in when it was created, just
look at the creation date of the copy of the file with the highest version number. For example,
if you enter

dir/date inven.c

and see this as output,

INVEN.C;7 1-AUG-1994 15:20:49.74

9.1.3 Listing File Names 117

INVEN.C;6 30-JUL-1994 16:42:45.85
INVEN.C;5 30-JUL-1994 16:36:35.59
INVEN.C;4 30-JUL-1994 16:24:28.32

you can tell that INVEN.C was last edited at 3:20 PM on August 1.

If the DIR command's output clutters your screen too much, you can instruct it to only list
each file's most recent version by adding /VERSION=1 to the DIR command. (/
VERSION=2 tells it to list the most recent two versions, and so forth.) Section 9.1.7.1, "Pur-
ging Old Versions of Your Files," shows how to delete older unwanted versions of your files
while keeping a specified number of the recent versions.

9.1.4 Displaying a Text File's Contents

To display a text file on your screen, use the VMS TYPE command. Followed by a file name,
it displays that file's contents. For example, the command

type test.c

puts the contents of the test.c file on the screen:

#include <stdio.h>
main() {

printf("I hope I can get the C compiler to work.");
}

9.1.4.1 Looking at Text Files One Screen at a Time

Many files are too long to fit on your screen, and the TYPE command scrolls them up your
screen too quickly to read. The TYPE command's /PAGE qualifier tells the system to show
the file one page at a time. For example, after Joe User enters the following

type/page schedule.txt

and presses Return, VMS displays the first page of the schedule.txt file, as shown in
Figure 9.2.

October 9

9:00 Ed may have Knicks tickets for me; bug him when he gets back from Toronto

118 Chapter 9 Using Files in OpenVMS

10:30 office supplies sales rep coming

12:00 lunch with Benny postponed until the 10th

2:30 getting teeth cleaned--call 687-2300 first for address

4:00 Fed Ex new diskettes to Chicago

October 10

10:30 meet Dave C., Laurie. call Laurie first--should I bring new diskettes?

12:30 lunch with Benny

2:00 expecting call from Chicago office. Have page counts ready.

2:30 Anita's presentation--can I get out of going?

Press RETURN to continue

Figure 9.2 Sample output of TYPE command with the /PAGE qualifier.

The message Press RETURN to continue tells you to press the Return key when
you're ready to see the next page. If you find yourself pressing Return over and over and re-
gretting that you issued the TYPE command with such a large file, press Ctrl+Y to abort the
display and return to the DCL prompt. (For more on using Ctrl+Y, see section 8.1.2.2, "Abort-
ing Screen Output.")

9.1.5 Copying Files

Copying a file is simple. Enter the COPY command followed by the name of the file to copy
and the name to assign to the copy. For example, entering the following creates a copy of
inven.c called inven_c.bkp:

copy inven.c inven_c.bkp

After you press Return, if the system returns you to the DCL prompt with no error message,
then you know that VMS copied the file without any problems.

If you enter COPY without any parameters, VMS is very forgiving. It prompts you with indi-
vidual prompts for the information that it needs:

9.1.5 Copying Files 119

$ copy
_From: inven.c
_To: inven_c.bkp
$

If you don't include the source file's version number, VMS assumes that you want to copy the
most recent version of that file. If you don't include the destination file's version number,
VMS starts it at 1 if no file with that name exists. Otherwise, its version number will be one
higher than the current highest number assigned to a file of that name.

If you include the destination file's version number, VMS creates the new file with that num-
ber. If a file with that name and number already exists, VMS responds with an error message
telling you that it couldn't open the destination file for output because it already exists.

You can use wildcards to copy multiple files at once. The following command copies the
most recent version of all files with a file name of mainmenu to files with a file name of
submenu1:

copy mainmenu.* submenu1.*

9.1.5.1 Copying Files to Other Directories

To copy a file to another directory, specify the directory name as the destination of the copy
operation. For example, entering

copy mainmenu.c [joeuser.inven.old_code]

copies the most recent version of the mainmenu.c file into the
[joeuser.inven.old_code] subdirectory. The copy in the destination directory will
have the same version number as the source version of the file, even if there are no other files
in the destination directory with that file's name.

When you include directory names in the copy command's parameters, you can use the same
shortcuts to refer to directory names that you can use with the SET DEFAULT command to
change the default directory. For example, if [joeuser.inven.old_code] is Joe
User's default directory, and he wants to copy the mainmenu.c program to his root direct-
ory—which happens to be the parent of the parent of his default directory—he could type
this:

copy mainmenu.c [-.-]

See section 8.3.1, "Moving Between Directories," for more on abbreviating directory names.

120 Chapter 9 Using Files in OpenVMS

When you copy a file to another directory, the copy will have the same name unless you spe-
cify otherwise. Specifying otherwise is easy; just put the new name immediately after the des-
tination directory's name:

copy mainmenu.c [-.-]oldmenu.c

Be careful to include the brackets when you specify a directory as the destination of your
copy operation. For example, if Joe wants to copy the file 080494mj.txt from his
[JOEUSER] directory, which is currently his default, to his [JOEUSER.MEMOS] directory,
he enters this:

copy 080494mj.txt [.memos]

If he makes the mistake of typing

copy 080494mj.txt memos

then he creates a new file in his [JOEUSER] directory with the name memos.txt. (The
system assumes that because he did not specify a file type for his new file, he wants it to have
the same file type as the source file.)

Here's a trick that won't make sense on other operating systems, but fits right in to the VMS
scheme of things. The following is a perfectly valid, almost useful VMS command:

copy todo.txt todo.txt

In other operating systems, this would mean "make a copy of the todo.txt file and call it
todo.txt"—a command that wouldn't say much. But because of the default version num-
bers that VMS assigns to the destination of the COPY command, VMS reacts to this com-
mand by taking the most recent version of the todo.txt file and making a copy with the
next highest version number.

9.1.6 Renaming Files

To rename a file, enter the RENAME command followed by the name of the file to rename and
the new name to give it. If you do not include the source file's version number, the most re-
cent version of the file will be renamed. For example, to rename the inven.c file as in-
ven_c.bkp, enter

rename inven.c inven_c.bkp

As with the COPY command, VMS prompts you for any parameters that you omit.

9.1.6 Renaming Files 121

As we saw in section 8.2, "File Names," directories are really special files, so renaming a dir-
ectory is as easy as renaming a file if you remember to include the DIR file type. For ex-
ample, if Joe User's current default directory is [JOEUSER] and he wants to rename his
[JOEUSER.MEMOS] subdirectory as [JOEUSER.LETTERS], he enters this:

rename memos.dir letters.dir

You can also use the RENAME command to move a file from one directory to another. For ex-
ample, entering

rename [joeuser.memos]052394js.txt [joeuser.letters]052394js.txt

moves the file 052394JS.TXT from the [JOEUSER.MEMOS] directory to the
[JOEUSER.LETTERS] directory. (In the above example, the second 052394js.txt is
actually unnecessary. Unless you're giving the file a new name in its new location, you don't
need to specify its name with the destination directory.)

9.1.7 Deleting Files

To delete a file, enter the DELETE command followed by the file name. Unlike other com-
mands, DELETE assumes nothing about version numbers when you enter a file name without
a version number. Entering delete without one, like this,

delete inven_c.bkp

gives you a message similar to the following:

%DELETE-E-DELVER, explicit version number or wild card required

The "wild card" part means that if you really want to delete all the versions of in-
ven_c.bkp, you can simply enter this:

delete inven_c.bkp;*

Otherwise, enter a specific version number after the semicolon.

If you are accustomed to another operating system, you'll probably forget to include the ver-
sion number pretty often when you try to delete a file. This is a great example of how handy
the Ctrl+B or Cursor Up keys can be: if you make a simple mistake with your command and
get an error message, you can use one of these keystrokes to retrieve the command that you
just typed, make the minor correction necessary (in this case, by adding the semicolon and
version number), and press Return. See section 8.1.2.1, "Retrieving Previous Commands" for
more on this feature.

122 Chapter 9 Using Files in OpenVMS

9.1.7.1 Purging Old Versions of Your Files

The VMS practice of keeping multiple versions of your files can quickly clutter up the disk
space allocated to your user ID. VMS has a special command to ease the cleanup of old ver-
sions of your files: PURGE. Entering PURGE with only a file name as a parameter tells VMS
to delete all versions of that file except for the most recent one.

To tell VMS to keep more than one version of the file, use the /KEEP=n qualifier. For ex-
ample, if you have seven versions of todo.txt and enter

purge/keep=3 todo.txt

VMS deletes the four oldest versions of todo.txt and keeps the three newest ones.

9.1.8 Controlling Access to a File

The SET PROTECTION command lets you control who can read, write, execute, and delete
your files and directories. There are four categories of users whose privileges you can set
when you set the protection level for a file or files:

System The system administrators, who have special privileges in order
to maintain the system.

Owner You, because you own the file. (You can't use SET PROTEC-
TION on files that belong to other users.)

Group For easier system maintenance, system administrators classify
users into groups. They might base these groupings on the users'
departments or job titles—for example, people in accounting
could be one group, and programmers another. When you set a
file's protection level, the Group category lets you give your
group's members greater access than everyone else on the sys-
tem.

World Everyone on the system.

Owners are considered to be members of their own groups, and the owner's group is con-
sidered to be part of "World," so if you try to give the group more privileges than the owner,
or the world more privileges than the group, it won't work. (It wouldn't make too much sense
to try this anyway.)

To find out the protection levels assigned to existing files, add the /PROTECTION qualifier
to the DIR command:

9.1.8 Controlling Access to a File 123

$ dir/protection ur.com
UR.COM;1 (RWED,RWED,RE,)

The commas separate the privilege lists for the System administrators, Owner, Group, and
World, in that order. The letters that show the privileges each stand for Read, Write, Edit, and
Delete. In the example, the system administrators and owner can perform any of these opera-
tions on the ur.com file. Others in the owner's group can read or edit it; the lack of any ini-
tials after the final comma shows that people outside the group cannot do anything with it.

To find out the default protection levels assigned to files that you create, enter the command
SHOW PROTECTION, like this:

$ show protection
SYSTEM=RWED, OWNER=RWED, GROUP=RE, WORLD=NO ACCESS

This makes it pretty clear who has what kind of access to your files, or at least the files to
which you don't explicitly assign other access levels.

Use the SET PROTECTION command to assign specific access levels. Its parameters, in
parentheses, are the relevant user categories and the access that each should have. To assign
ur.com the access levels shown above, use this command:

set protection=(system:rwed,owner:rwed,group:re,world) ur.com

Note that world is listed with no privileges at all. If you didn't include world in the paren-
theses, you would assign world the default access levels shown by the SHOW PROTEC-
TION command. In fact, to assign all the default access levels shown by SHOW PROTEC-
TION, you only need to type this:

set protection ur.com

When you assign the different access types that each user category has, you must abbreviate
the words Read, Write, Edit, and Delete to their first letters. (No great loss—would you really
want to type them out every time?) If you want, you can also abbreviate the user categories to
their first letters. This makes the command shown above a bit shorter:

set protection=(s:rwed,o:rwed,g:re,w) ur.com

It's perfectly OK to use wildcards to specify the files whose access levels you are setting. For
example, to make sure that everyone in your group can read but not edit the source code of
your existing C programs (which all have a filetype of "c"), and that people outside of your
group can't even do that, enter this:

124 Chapter 9 Using Files in OpenVMS

set protection=(g:r,w) *.c;*

Notice the semicolon and second asterisk after the c file type. As with many other com-
mands, if you don't indicate a specific version number of the file that you want SET PRO-
TECTION to act on, it only affects the latest revision of the specified file or files. To make
sure that it sets the protection level of every single file with a particular file type, remember to
add an asterisk as a version number.

9.1.9 Creating Directories

The VMS CREATE command can be used to create various kinds of files. Usually, you use
the text editor or an application program to create a file, but you need the CREATE command
with its /DIRECTORY qualifier to create subdirectories of your root directory. (Only system
administrators can create subdirectories of directories that aren't their own.)

Enter CREATE with the /DIRECTORY qualifier followed by the name of the new directory
to create, like this:

create/directory [joeuser.memos.july]

After you create a new subdirectory, the DIR command will not show any files in it. You still
may want to use it to check whether the directory was successfully created. If you use DIR to
inquire about the files in a non-existent directory, like this,

dir [.potrzebie]

VMS responds like this:

%DIRECT-E-OPENIN, error opening NEPDISK:[JOEUSER.POTRZEBIE]*.*;* as input
-RMS-E-DNF, directory not found
-SYSTEM-W-NOSUCHFILE, no such file

In other words, it couldn't find a potrzebie.dir file in the [JOEUSER] directory to rep-
resent a subdirectory of [JOEUSER].

Your subdirectories can have subdirectories and they too can have subdirectories, down to
seven levels below your root directory. For example, Joe could create a subdirectory called
[JOEUSER.LEV1.LEV2.LEV3.LEV4.LEV5.LEV6.LEV7], but he couldn't create any
subdirectories of his LEV7 subdirectory.

9.1.10 Removing Directories

If you know that you can treat a directory called [.whatever] as a file called

9.1.9 Creating Directories 125

whatever.dir and you know that you delete files with the DELETE command, then you
already know how to delete directories. For example, if Joe User's default directory is
[JOEUSER] and he wants to delete the [JOEUSER.URBASE_TEST] directory, he just
types this:

delete urbase_test.dir;1

There is a fairly common problem, however. VMS may respond with this message:

%DELETE-W-FILNOTDEL, error deleting NEPDISK:[JOEUSER]URBASE_TEST.DIR;1
-RMS-E-PRV, insufficient privilege or file protection violation

This means that Joe lacks the proper access to delete this subdirectory. This is not a big prob-
lem; because it's a subdirectory of [JOEUSER], his personal root directory, he can give him-
self the necessary permission with the SET PROTECTION command. Section 9.1.8, "Con-
trolling Access to a File," explains this more fully; for now, it's enough to know that Joe only
needs to type the following to give himself permission to delete the URBASE_TEST.DIR
"file":

set protection=(o:d) urbase_test.dir;1

The "o" stands for "owner," and the "d" for "delete." Although there are other categories of
users and other categories of access to files, at this point Joe only cares about giving the own-
er (himself) permission to delete it. All other privileges for all other users are irrelevant, be-
cause soon URBASE_TEST.DIR will no longer exist.

After he resets the protection level, he can delete the file without any trouble.

If you try to delete a subdirectory that has any files in it, VMS responds like this:

%DELETE-W-FILNOTDEL, error deleting NEPDISK:[JOEUSER]URBASE_TEST.DIR;
1-RMS-E-MKD, ACP could not mark file for deletion
-SYSTEM-F-DIRNOTEMPTY, directory file is not empty

The solution is simple enough: delete anything in the subdirectory, and enter the DELETE
command again.

126 Chapter 9 Using Files in OpenVMS

Chapter 10 The OpenVMS EVE Text Editor
VMS offers several built-in text editors. Entering EDIT at the DCL prompt, with no qualifi-
ers, invokes the EDT line editor. This was the most popular VMS text editor for a long time.
Because it's a line editor, using it means entering commands to go in and out of command,
edit, and insert modes. When you edit with the EDT editor, you edit one line at a time. Al-
though it does have a full-screen mode, where you display your file and move your cursor
around to edit wherever you want, you don't need to bother with EDT because of the superior
full-screen editing offered by a more recent VMS editor called the Extensible VAX Editor, or
EVE.

EVE could very well be the easiest text editor to learn and use on any minicomputer or main-
frame. The commands are simple without limiting you too much, and EVE provides its own
command language that makes it easy to customize and add features to the editor.

The vi Text Editor on VMS
Some VMS systems have the UNIX vi editor installed, so many UNIX users
don't need to learn any of the VMS editors. (Unless you're a real vi expert,
you should at least check out EVE—a vi beginner will almost certainly prefer
it.) If you do look for vi on a VMS system, be aware of a VMS utility called
VIEW used for looking at certain kinds of documents. If you try to start up vi
and it's not on the system, you may start up VIEW instead. It will probably
just give you an error message and return you to the DCL prompt, because
VIEW expects very specific types of files as input.

10.1 EVE and Special Keys
On the DEC VT220 terminal and its more advanced successors, you perform many of the
most important editing functions by using special keys with their names written right on
them. Examples include the Help, Do, and Find keys. If you use a PC running a program to
emulate one of these terminals, chances are that certain function keys will do the job of these
specialized keys.

You can also use the numeric keypad on the right of your keyboard to accomplish many of
EVE's more advanced tricks. In certain situations, you can use a key known as the "Gold" key
(usually the key in the numeric keypad's upper-left corner—PF1 on a VT terminal, or the
NumLock key on a PC emulating one) in combination with others, similar to the way you use

127

the Control key in combination with letter, number, and function keys.

You don't need these keys, in their Gold version or otherwise, to accomplish the most basic
editing tasks; a couple of the specialized keys mentioned above (or their surrogate function
keys) provide all you need.

On a PC, the only function key that you have to make sure to remember is F2— the Help key.
As you'll see in section 10.9, "EVE On-line Help," the Help key shows you what the other
keys do. After you've used EVE a little, you'll no longer need F2 to remind you about F4, be-
cause you'll use it often: it's the PC's substitute for the "Do" key, the key that displays the
Command: prompt below the EVE status line. Commands at this prompt enable you to ac-
complish basic tasks such as saving your work and quitting EVE.

10.2 Entering EVE
The EDIT command can start up several different VMS editors; you indicate which you want
by the qualifier you use. Because /EDT is the default, entering EDIT without any qualifier
enters the line editor. (If you accidentally enter the EDIT/EDT editor, enter QUIT at the *
prompt to get out of it.)

Unfortunately, you don't enter EVE by entering EVE or EDIT/EVE, so you must remember
its other name: the Text Processing Utility, or TPU. (Theoretically, the TPU could be con-
figured to run other editors besides EVE, so I don't mean to make it sound as if TPU and EVE
mean the same thing.) When you enter EDIT/TPU at the DCL command prompt followed by
a file name, the editor displays that file for you to edit if it exists or creates a new file with
that name if it doesn't. For example, when Joe User enters

edit/tpu rochester.txt

and presses Return, the TPU starts up EVE, and—assuming that Joe has no file called
rochester.txt—displays a message (see the bottom of Figure 10.1) informing him that
because none exists, it is creating rochester.txt.

[End of file]

128 Chapter 10 The OpenVMS EVE Text Editor

Buffer: ROCHESTER.TXT | Write | Insert | Forward

Editing new file. Could not find: ROCHESTER.TXT

Figure 10.1 Opening EVE screen when editing a new file.

If the file had existed, and been six lines long, the message at the bottom would have read:

6 lines read from file NEPDISK:[JOEUSER]ROCHESTER.TXT;1

Because the new file is empty before you enter anything, the editor's "End of file" message
appears at the top of the screen. The status line at the screen's bottom tells you three things:

• You can write to this file. In other words, you can make changes to it and save those
changes. Sometimes people use EVE to just look at a file with no intention of changing it;
adding the /NOWRITE qualifier to EDIT/TPU brings up the file with a status line similar
to this:

Buffer: ROCHESTER.TXT | Read-only | Unmodifiable | Forward

When doing this, you can only read the file, and the Insert part of the status line be-
comes irrelevant, because the file is "Unmodifiable."

• When you are in "Write" mode, the "Insert" part shows that EVE will insert newly
entered text at the cursor's position instead of overlaying existing text. As you'll see in
section 10.5, "Typing Over Existing Text," Ctrl+A toggles between Insert and Overstrike
mode.

• The final message on the status line shows that the default direction for commands that

10.2 Entering EVE 129

scroll the text is Forward. EVE doesn't give you separate commands to move or search
backwards and forwards; you have commands to scroll text a certain amount, and a com-
mand to search for text. The direction in which these commands move through your file
depends on the current default direction. Section 10.6, "Searching for Text," shows how
to change direction.

10.3 Inserting Text
As the bottom of the screen shows, you begin in Insert mode. You don't have to enter or press
any special keys to let EVE know that you want to insert text; you can just start typing. Press
Return to move the cursor to a new line. To insert a new line between two existing lines, use
your cursor keys to move your cursor to the beginning of the line after the insertion point and
press Return.

As you type in text, the "End of File" message moves down to show the current position of
the end of the file, as shown in Figure 10.2.

Bursting with pride, the loathed impostume swells;
Prick him, he sheds his venom straight, and smells.
But 'tis so lewd a scribbler, that he writes
With as much force to nature as he fights;
Hardened in shame, 'tis such a baffled fop
That every schoolboy whips him like a top.
[End of file]

Buffer: ROCHESTER.TXT | Write | Insert | Forward

Figure 10.2 The EVE text editor with entered text.

130 Chapter 10 The OpenVMS EVE Text Editor

10.4 Deleting Text
Pressing the Delete key has the same effect in EVE as it has on the DCL command line: it de-
letes the character immediately to the left of the cursor's current location. In Insert mode, it
shifts all characters on the right of the deleted character to the left when it deletes it. In Over-
strike mode, it acts more like a space bar that sends your cursor to the left: it replaces the de-
leted character with a space and leaves the other characters on that line alone.

To delete a blank line, make sure you're in Insert mode (see section 10.5, "Typing Over Exist-
ing Text," for more on the Insert and Overstrike modes), move to the beginning of the follow-
ing line and press the Delete key.

10.5 Typing Over Existing Text
The status line at the bottom of the screen shows whether you are in Insert or Overstrike
mode. To change from one to the other, press Ctrl+A. In Insert mode, any new characters
typed at the cursor's location move the existing characters on the cursor's right one character
further to the right. In Overstrike mode, new characters appear in place of the existing charac-
ters at the cursor.

10.6 Searching for Text
Pressing the Find key (on a PC, the F1 key) displays this prompt just below the EVE status
line:

Forward Find:

(It might say "Reverse Find," depending on the current default scrolling direction, as indic-
ated by your status line. To change the direction of searches, the Change Direction key is F11
on a VT terminal and F3 on a PC.) Enter the text to search for at the Forward Find:
prompt and press Return. EVE searches for the entered text and highlights it if it finds it. If it
cannot find the text you enter, it tells you so. For example, if you tell it to search for "potrze-
bie" and it doesn't find it, it tells you

Could not find: potrzebie

To repeat a search, press F1 twice. The first time you press it, you will see nothing at the
Forward Find: or Reverse Find: prompt; the second time, EVE searches for the
next occurrence of the last search target that you entered at that prompt.

You can control whether the search is case-sensitive by pressing the Do key (F4 on a PC) to
display the Command: prompt and entering SET FIND CASE EXACT to make searches

10.5 Typing Over Existing Text 131

case-sensitive or SET FIND CASE NOEXACT to tell EVE to ignore the case of the text it
searches.

10.7 Saving Your Changes
To save your file, press the Do key to display the Command: prompt, enter the WRITE com-
mand with no parameters, and press Return. EVE saves your file and returns your cursor to its
former position so that you can continue to edit the file. (The SAVE FILE command also ac-
complishes this, but the many options of the SAVE command besides FILE make WRITE a
simpler way to save your work.) Section 10.8, "Quitting EVE," shows how to save your work
and and quit EVE in one command.

10.8 Quitting EVE
Enter QUIT at the Do key's Command: prompt to quit EVE and return to the DCL prompt. If
you've made changes to your file without saving them, EVE displays the following:

Buffer modifications will not be saved, continue quitting [Yes]?

The square brackets show that "Yes" is the default answer. In other words, if you press Re-
turn without entering anything, EVE considers that a "Yes" and finishes the quitting process.
This sends you back to the DCL prompt without saving the changes you've made since the
last time you saved. Entering "N" for "No" at the Buffer modifications prompt tells
EVE that you changed your mind about quitting. The prompt goes away, and EVE returns
your cursor to its location before you pressed the Do key so that you can continue to edit the
file.

Enter the EXIT command at the Do key's Command: prompt to save your work and quit
EVE all at once.

10.9 EVE On-line Help
EVE offers two ways to get help:

• Pressing the Help key (or on a PC emulating a terminal, F2) displays help about the use of
the keyboard in EVE.

• Entering HELP at the Do key's Command: prompt displays the EVE general help menu.

Figure 10.3 shows a typical opening help screen after you press the Help key while using
EVE (the actual screen you see depends on the terminal you use).

132 Chapter 10 The OpenVMS EVE Text Editor

_______________________________ _______________________________
Move up	Move	Move	Move		Find	HELP	Change	Do
	down	left	right				directi	
_______	_______	_______	_______		_______	_______	_______	_______

|Select |Remove |Insert | Move |
To get help on commands, type a | | | here |by line|
command or ? and press RETURN. |_______|_______|_______|_______|

| |Move up| | Erase |
To list all key definitions, type | | | | word |
Keys and press RETURN, or press |_______|_______|_______|_______|
GOLD-HELP. | Move | Move | Move | |

| left | down | right |Change |
To show a key definition, use |_______|_______|_______| mode |
SHOW KEY. | Next screen |Previou| |

| |screen | |
|_______________|_______|_______|

Synonyms for the DO key:
PF4

Buffer: HELP
Press the key that you want help on (RETURN to exit help):

Figure 10.3 Opening EVE help screen.

As the bottom of the screen tells you, you can display help about a specific key by pressing
that key while viewing this screen. For example, press F1 (the Find key—as the diagram
shows, this is the upper-left corner of the numeric keypad, which is NumLock on a PC and
PF1 on an actual VT terminal) to display help about searching for text, as shown in Figure
10.4.

FIND

Searches for a string of text you specify and highlights the found text.

Keys: EVE Default VT100 Keypad EDT Keypad WPS Keypad

FIND PF1 GOLD-PF3 GOLD-, on keyboard

Steps:

1. Use FIND (see key list above).

10.9 EVE On-line Help 133

2. Type the text you want to find (see examples below).

3. To find another occurrence of the same string,
use FIND NEXT or press the FIND key twice.

Examples:

Commands Purposes or Effects

Buffer: HELP To see more, use:Press Up arrow or Down arrow to see more.
Press the key that you want help on (HELP for keypad, Return to exit help):

Figure 10.4 Help screen for EVE's Find key.

The bottom of the screen tells you which keys scroll through this help information. On a VT
terminal, these are the Prev Scrn and Next Scrn keys; when using a terminal emulation pro-
gram, the Cursor Up and Cursor Down keys will probably scroll through the help informa-
tion.

Pressing Return without entering anything leaves the help facility and returns to the file you
were editing. Pressing any other special key displays similar help about that key. Entering a
question mark (?) displays the same main help screen available when you enter HELP at the
Do key's Command: prompt.

Enter HELP at the Do key's Command: prompt to display the general help menu. Figure 10.5
shows the beginning of this help.

List Of Topics (Commands)

For help on EVE topics, type the name of a topic and press RETURN.

o For a keypad diagram, press HELP.
o For help on VAXTPU builtins, type TPU and press RETURN.
o To exit from help and resume editing, press RETURN.

EDITING TEXT

Change Mode Erase Word Restore Character
Copy Insert Here Restore Line
Cut Insert Mode Restore Selection

134 Chapter 10 The OpenVMS EVE Text Editor

Delete Overstrike Mode Restore Sentence
Erase Character Paste Restore Word
Erase Line Quote Select
Erase Previous Word Remove Select All
Erase Start Of Line Restore Store Text

BOX OPERATIONS

Buffer: HELP To see more, use:Press Up arrow or Down arrow to see more.
Type the topic you want help on (press RETURN if done):

Figure 10.5 EVE's general help menu.

At the Type the topic you want help on prompt, enter any of the words or
phrases listed on the screen, such as Delete or Erase Character. Remember, these
choices are merely the beginning; just as EDITING TEXT is a heading for a series of choices,
so are BOX OPERATIONS and several other categories. Scrolling down displays the rest.

The EVE help works essentially the same as regular VMS help. If you choose a broad enough
topic, its help text will end with subtopics from which to choose.

10.10 Other EVE Features
EVE has just about all the capabilities that you could ever want in a text editor or word pro-
cessor. This includes:

• The ability to extend TPU by writing command files.

• The ability to mark ranges and blocks of text for moving, copying, and deletion.

• The ability to split the screen into multiple windows so that you can edit multiple files at
once.

A description of how to use these features is beyond the scope of this chapter, but you can
find out more about them easily enough by exploring EVE's on-line help.

10.10 Other EVE Features 135

136

Chapter 11 Using an OpenVMS System
11.1 Printing Text Files
Printing in VMS is simple. Enter the PRINT command followed by the name of the file to
print. For example, if Joe User enters

PRINT ROCHESTER.TXT

he might see a response from the system like this:

Job ROCHESTER (queue SYS$PRINT,entry 203) started on SYS$PRINT

SYS$PRINT is the name of the default print queue; if Joe had wanted to print
ROCHESTER.TXT on a different printer, he would add the /QUEUE=queuename qualifier
to the end of his print command.

If other print jobs are ahead of this one in the print queue so that it must wait its turn to start
printing, the started on SYSPRINT line will say pending.

11.1.1 Checking the Print Queue

To list the jobs waiting to print, enter the SHOW QUEUE command followed by the name of
the print queue:

SHOW QUEUE SYS$PRINT

The output lists the file currently printing, as well as any waiting files:

Printer queue SYS$PRINT, on NEPTUNE::LCA0:, mounted form DEFAULT
Entry Jobname Username Blocks Status
----- ------- -------- ------ ------
588 091394JS MJONES 2 Printing
590 ROCHESTER JOEUSER 1 Pending
591 TESTDCL MJONES 1 Pending

The columns of information are self-explanatory, with one exception: Entry. This is how
VMS identifies individual print jobs, and how you must refer to your print job if you want to
cancel it.

11.1.2 Canceling Your Print Job

137

To cancel a pending print job, you use the same DELETE command that you use to delete
files and subdirectories, except that you add the /ENTRY=entrynumber qualifier. The
entry number is the number that showed up in the first column when you entered SHOW
QUEUE SYS$PRINT. For example, Joe enters the following to delete ROCHESTER.TXT
from the list of files shown above:

DELETE/ENTRY=590

Since VMS displays no confirmation of a successful deletion from the print queue, you must
enter the SHOW QUEUE command again to see if the job you deleted is gone. If you didn't get
an error message when you entered the DELETE/ENTRY command, chances are that the file
was successfully deleted. The following is the most common error message:

%DELETE-E-NOTDELETED, error deleting 590
-JBC-E-NOSUCHJOB, no such job

In other words, it couldn't find entry 590. Either the number was mistyped or VMS has
already printed that particular job. Either way, the queue has no job with that number waiting
to print.

An optional parameter for the DELETE/ENTRY command is the name of the print queue. If
you omit it, VMS assumes that you mean the SYS$PRINT queue. If Joe had sent the
ROCHESTER.TXT file to a queue called ACCTING, he would have checked out the queue
with the following command:

SHOW QUEUE ACCTING

If ROCHESTER.TXT had an entry number of 304, he would delete it from that queue with
this command:

DELETE/ENTRY=304 ACCTING

11.2 Command Files
On most operating systems, one-line command files are the best way to make it easier to enter
long but commonly used commands. Although DCL command files are useful and easy to
create, VMS has an even better way to define a short string of characters to represent a much
longer one: symbols.

11.2.1 Symbols

Defining a symbol assigns one string of characters to represent another. For example, if you

138 Chapter 11 Using an OpenVMS System

like to use the /DATE/VER=1/SIZE qualifiers with the DIRECTORY command, but get
tired of repeatedly typing

DIR/DATE/VER=1/SIZE

every time you want to list your file names, you can assign this command to a symbol. If the
symbol is the string FILES, you would assign it like this:

FILES=="DIR/DATE/VER=1/SIZE"

Entering FILES at the DCL command prompt would then have the same effect as entering
DIR/DATE/VER=1/SIZE.

When you create the symbol, don't forget the quotes around the string being assigned to the
symbol. You don't always need both equal signs when creating a symbol at the DCL com-
mand prompt, but two are necessary when you put a symbol assignment command in a com-
mand procedure, so it's a good idea to get into the habit of using two.

A symbol assignment only lasts until you log out. If you want certain symbol assignments
done every time you log in (and everyone has a few favorites), add the commands that create
the symbols to your LOGIN.COM command procedure. (For more on LOGIN.COM, see sec-
tion 11.2.3, "The Automatic Login Command File.")

11.2.2 DCL Command Procedures

A DCL command procedure is a file that consists of DCL commands. Each line begins with a
dollar sign ($) and the last line is the following:

$ EXIT

Command files have a file type of COM, and you start them up by typing the file name pre-
ceded by an "at" sign (@).

For example, let's say Joe User has a program called SUMRPT that creates and stores a report
in a text file called SUMRPT.TXT. Every time he runs this report he examines the report out-
put with the EVE text editor, perhaps changing a few things, and then prints it. He could auto-
mate these steps by putting them in a file called SUM.COM with these lines:

! SUM.COM: run summary report, EVE it, print it. 2/13/94 J. User
$ SUMRPT
$ EDIT/TPU SUMRPT.TXT
$ PRINT SUMRPT.TXT
$ SHOW QUEUE SYS$PRINT

11.2.2 DCL Command Procedures 139

$ EXIT

The first line begins with an exclamation point. This tells VMS to ignore the line; it is a com-
ment that describes the purpose of the program. Complicated command procedures need
many comment lines so that someone who reads them at a later date can easily see the pur-
pose of each part.

Except for the dollar signs, the next four lines show just what Joe would have typed at the
DCL prompt to execute these steps. (The SHOW QUEUE SYS$PRINT line is an added bo-
nus that he threw in because most people want to know immediately how long they have to
wait for something that they sent to the printer.) The final line, $ EXIT, returns control to
the DCL prompt.

To run this command procedure, Joe types

@SUM

at the DCL prompt. VMS looks for SUM.COM, finds it, and executes its commands one by
one. (Actually, VMS first checks to make sure that there are no DCL commands with this
name. This is why you should never name a COM file after an existing command, like
COPY.COM or PRINT.COM.)

DCL command procedures can be much more complex than SUM.COM. It's a whole program-
ming language, complete with branching, variables, and subroutines. Built-in functions
known as lexical functions give DCL command procedures the ability to manipulate string
expressions, convert between string and numeric data, query the operating system for inform-
ation, and many other things more often associated with programming languages like C and
Pascal than with an operating system command procedure language.

11.2.3 The Automatic Login Command File

When a user first logs in to a VMS system, the system looks for a command procedure called
LOGIN.COM. If it's in the user's root directory, the system executes it. This is particularly
useful for defining your favorite symbols that you want to use every time you log in. Joe
User's LOGIN.COM command procedure shows how you can define symbols to substitute
new words for often-used commands that may be hard to remember:

$ SHOW QUOTA
$ FILES=="DIR/DATE/VER=1/SIZE"
$ EVE=="EDIT/TPU"
$ SHOW=="TYPE/PAGE"
$ EXIT

140 Chapter 11 Using an OpenVMS System

Joe's LOGIN.COM file begins with the command SHOW QUOTA. This command, discussed
in section 8.3.2, "Querying Available Disk Space," displays information that may be handy
when you first log in.

The next three lines create symbols for Joe to use as shortcuts in his VMS session. For ex-
ample, after his LOGIN.COM command file executes, Joe can type

eve schedule.txt

and VMS reacts as if he had typed this:

edit/tpu schedule.txt

It also substitutes "TYPE/PAGE" everywhere that he types SHOW at the DCL prompt and
"DIR/DATE/VER=1/SIZE" whenever he types FILES.

11.3 Communicating with Other Users
The VMS MAIL program has its own command line, commands, and on-line help to aid you
in creating, sending, receiving, and managing mail messages. It's one of the best mail pro-
grams built-in to any operating system.

To start the program, enter the word MAIL at the DCL prompt. VMS tells you whether you
have new messages waiting and displays the MAIL program's prompt:

You have 1 new message.
MAIL>

To send a mail message, enter the command SEND and press Return. The MAIL program
prompts you for the name of the message's recipient:

MAIL> send
To:

Enter the recipient's login ID and press Return. If the system doesn't recognize the name (for
example, MJOONES), it tells you this:

%MAIL-E-NOSUCHUSR, no such user MJOONES

If it does recognize the recipient's name, it prompts you for the subject of the message. Enter
the subject, press Return, and the mail program displays instructions about entering your mes-
sage:

11.3 Communicating with Other Users 141

MAIL> send
To: mjones
Subj: budget meeting
Enter your message below. Press CTRL/Z when complete, or CTRL/C to quit:
_

The cursor appears under the instructions, ready for your input. You are only allowed the
most primitive kind of input; each time you press Return at the end of a line, you cannot go
back and edit that line. We'll see shortly how to send an existing text file, which gives you the
flexibility to compose your mail message with the EVE text editor before you send it.

As the explanatory message tells you, press Ctrl+C to abort your message or Ctrl+Z when
you are satisfied with it. If you abort, the MAIL program acknowledges your action with the
word "Cancel" and this message:

%MAIL-E-SENDABORT, no message sent

If you press Ctrl+Z to send your message, it displays the word "Exit."

11.3.1 Sending an Existing File

If you add a parameter to the SEND command described earlier, the MAIL program assumes
that it names a file that you want to send. For example, if Joe enters

send marymemo.txt

at the MAIL> prompt, the MAIL program prompts him for the recipient's name and the mes-
sage's subject, as usual, but it then returns him to the MAIL> prompt. If MARYMEMO.TXT
doesn't exist, it displays an error message.

11.3.2 Receiving Mail

If you are logged in when someone sends you a mail message, VMS displays a message sim-
ilar to this on your screen:

New mail on node NEPTUNE from OROURKE::FDAKOVA (12:55:02)

If you are not logged in, your system probably displays a message that tells you how many
unread messages are waiting for you the next time you log in. As we saw in section 11.3,
"Communicating with Other Users," the MAIL program also tells you how many new mes-
sages you have when you start it up.

142 Chapter 11 Using an OpenVMS System

11.3.2.1 Mail Folders

The MAIL program organizes messages into groups called folders. It's easier to learn how to
read, delete, save, and organize mail messages if you first understand the role of folders.

Creating folders and moving messages between them is easy. MAIL automatically creates
three folders for you as you need them: NEWMAIL, MAIL, and WASTEBASKET. To avoid
confusion, keep in mind that certain actions automatically move messages in and out of these
three folders.

VMS stores new, unread messages in the NEWMAIL folder. When you leave the NEW-
MAIL folder, the mail program automatically moves any newly read messages from there to
the MAIL folder if you didn't explicitly move them to any other folders after you read them.
Deleting a message from any folder moves it to the WASTEBASKET folder.

At any given time, one folder is the current one. For example, when you start up MAIL, the
NEWMAIL folder is current if you have any unread messages. If you do not have any unread
messages, the MAIL folder is the current one.

To make a different folder current, enter the SELECT command at the MAIL> prompt fol-
lowed by the name of the folder you want to make current. For example,

SELECT WASTEBASKET

makes the WASTEBASKET folder the current one.

Use the DIR command to list the messages in a given folder. If you don't include a folder
name, the MAIL program assumes that you want to list the messages in the current folder. For
example, if NEWMAIL is your current folder, entering

DIR

lists the messages in the NEWMAIL folder, and

DIR MAIL

lists the messages in the MAIL folder. A message list looks something like this:

MAIL # From Date Subject
1 NEPTUNE::MJONES 17-AUG-1994 1995 budget
2 OROURKE::FDAKOVA 18-AUG-1994 new Windows release?
3 NEPTUNE::KBERRY 19-AUG-1994 lunch Monday
4 NEPTUNE::LSTORCH 19-AUG-1994 Giants tickets

11.3.2 Receiving Mail 143

To list folder names instead of information about messages, add the /FOLDER qualifier to the
DIR command.

Because the MAIL program creates the NEWMAIL and WASTEBASKET folders as you
need them, they may not always exist. If you enter the MAIL program, but have no new mail,
and you enter the command

SELECT NEWMAIL

you'll see an error message like this:

%MAIL-E-NOTEXIST, folder NEWMAIL does not exist

If you have no new messages, you don't have a NEWMAIL folder. A similar idea applies to
WASTEBASKET: after you start up the MAIL program, you won't have a WASTEBASKET
folder until you delete your first message (unless you last left the MAIL program with QUIT
instead of EXIT—see section 11.3.2.5, "Leaving the MAIL Program," for more on this).

Section 11.3.2.2, "Reading Mail," shows how to move messages from one folder to another.

11.3.2.2 Reading Mail

Entering READ displays the first page of the oldest message in the current folder. If you have
any new messages when you first start up the MAIL program, your NEWMAIL folder will be
current, so MAIL will display your oldest unread message. If the message you are reading is
more than one page long, press Return to advance to the next page.

As a matter of fact, since READ is the default command in the MAIL program, you only need
to press Return to read the next message in the current folder. To read a different message in
the current folder, enter its number, which you can learn by entering DIR to list the folder's
messages.

11.3.2.3 Moving a Message to Another Folder

The FILE command (and the MOVE command, which behaves identically) tells the MAIL
program to move a message to another folder. To move the current message, enter FILE at
the MAIL> prompt and the MAIL program prompts you for the name of the destination
folder. If you enter the name of a nonexistent folder, MAIL asks you if you want to create a
folder with that name.

For example, after he reads the following message, Joe User enters file budget95 at the
MAIL> prompt. The MAIL program responds by telling him that no such folder exists, and
asks if he wants to create one:

144 Chapter 11 Using an OpenVMS System

NEWMAIL
From: NEPTUNE::MJONES
To: JOEUSER
CC:
Subj: 1995 budget
I know it seems early, but it's already time to talk about the
budget for fiscal 1995. Get together any notes or ideas you have
and get in touch with me. I'm out of the office on Tuesday.
MAIL> file budget95
Folder BUDGET95 does not exist.
Do you want to create it (Y/N, default is N)?

Joe responds with a "Y" for "Yes," and the MAIL program creates the BUDGET95 folder and
stores this message there.

Just as adding the first message to a folder creates that folder, moving the last message from a
folder automatically deletes that folder. The MAIL program has no explicit command for de-
leting a folder.

Any messages that you read in the NEWMAIL folder without deleting or filing to another
folder get automatically moved to the MAIL folder when you leave NEWMAIL. This hap-
pens whether you leave NEWMAIL by selecting another folder or by exiting the MAIL pro-
gram. If this includes all the messages in NEWMAIL, then the folder itself will be deleted un-
til the next time you start up the MAIL program and have new mail.

11.3.2.4 Deleting Messages from a Folder

Entering DELETE by itself at the MAIL> prompt either deletes the message you are currently
reading, if it takes up more than one screen and is pausing for you, or the message you just
read, if you are between messages. You can also add one or more numbers to the DELETE
command to specify which of the messages in the current folder to delete. For example, if
your current folder has the messages shown in section 11.3.2.1 earlier ("Mail Folders") and
you enter the following command

DELETE 2,4

and follow it with the DIR command, the MAIL program will show the following revised list:

MAIL # From Date Subject
1 NEPTUNE::MJONES 17-AUG-1994 1995 budget
2 (Deleted)
3 NEPTUNE::KBERRY 19-AUG-1994 lunch Monday
4 (Deleted)

11.3.2 Receiving Mail 145

To undelete a message, select the WASTEBASKET folder and move the message in question
to another folder with the FILE or MOVE command. It doesn't have to be moved to the folder
where it was originally located at the time you deleted it.

11.3.2.5 Leaving the MAIL Program

The MAIL program offers two ways to exit and return to the DCL command prompt:

• The QUIT command leaves anything in your WASTEBASKET folder alone when it re-
turns to the DCL prompt. The next time you enter the MAIL program, your WASTEBAS-
KET folder will still be there with everything that you deleted in your previous session.

• The EXIT command empties out your WASTEBASKET folder when it returns you to the
DCL prompt.

11.3.2.6 Saving a Message in a Text File

The EXTRACT command saves the message that you read most recently (or are currently
reading) into a text file in the default directory. In the following example, Joe saves the mes-
sage from Mary in a file called 121794MJ.TXT:

MAIL> extract 121794mj.txt
%MAIL-I-CREATED, NEPDISK:[JOEUSER]121794MJ.TXT;1 created

The system responds with a message that it has successfully created the file.

11.3.3 On-line Help in the MAIL Program

On-line help in the MAIL program resembles on-line help elsewhere in VMS. Enter HELP by
itself at the MAIL> prompt to display an introduction to using help and a list of commands
that you can learn more about. This list includes all the MAIL commands described in this
section and several more.

As with help from the DCL prompt, if you know the command that you want to learn more
about, you can enter that command name as a parameter to the HELP command at the MAIL>
prompt. For example, entering

HELP SELECT

tells you about the command to make a particular folder current.

11.4 A Sample OpenVMS Session
146 Chapter 11 Using an OpenVMS System

One morning you arrive at your desk, log in to your VMS account, and see the following line
along with the other login messages:

You have 1 new Mail message.

You enter MAIL at the DCL prompt to start the mail program, and the MAIL> prompt ap-
pears. Because you know that pressing Return has the same effect as entering the MAIL pro-
gram's READ command and that without additional instructions it will show you the oldest
unread message in your NEWMAIL folder, you press Return and this message shows up on
your screen:

NEWMAIL
From: NEPTUNE::LNIVEN
To: JOEUSER
CC:
Subj: August 1994 numbers
I need the gross and net figures, by region, for last month.
Please run the report and send me the output by e-mail before
lunch. I need them for a 2PM meeting.
Thanks!
MAIL>

Since you know that the data Larry needs isn't complete, you decide to keep a disk file copy
of this memo in case the unreadiness of the numbers comes back to haunt you. You enter
EXTRACT NIVMEMO.TXT at the MAIL> prompt, and then EXIT to return to the DCL
prompt.

Because this report must be run every month, you've already set up a command file called
SUMRPT to run the report and save the data in a file named SUMRPT.TXT. You run the com-
mand file:

@SUMRPT

When the command file finishes, you take a quick look at the report output by using the
TYPE command to display the SUMRPT.TXT file that was just created:

$ type sumrpt.txt

The system responds by showing you SUMRPT.TXT, as shown in Figure 11.1.

AUGUST 1994 Gross Net

11.4 A Sample OpenVMS Session 147

------ ------
Northeast 75,732 11,890
Mid-Atlantic 69,348 11,008
Southeast 61,835 8,890
Southwest 0 0
Midwest 70,762 12,934
Northwest 14,242 1,634
West Coast 0 0

------ ------
AUGUST TOTAL 291,919 26,356

Figure 11.1 The contents of the SUMRPT.TXT file.

It looks like the figures aren't in yet from the southwest and the west coast regions, so the
totals aren't that useful. However, Larry asked for them, so Larry gets them. You pull up
SUMRPT.TXT in the EVE text editor to add a note:

EDIT/TPU SUMRPT.TXT

Once EVE displays the file, you add a few lines at the top, so that your screen looks like Fig-
ure 11.2.

Larry -

As you can see, we're still waiting for the figures from the southwest
and from the west coast. I left voice mail with Ginny in Phoenix and
Jim in LA; I'll call you when I know more.

AUGUST 1994 Gross Net
------ ------

Northeast 75,732 11,890
Mid-Atlantic 69,348 11,008
Southeast 61,835 8,890
Southwest 0 0
Midwest 70,762 12,934
Northwest 14,242 1,634
West Coast 0 0

------ ------
AUGUST TOTAL 291,919 26,356
[End of file]

148 Chapter 11 Using an OpenVMS System

Buffer: SUMRPT.TXT | Write | Insert | Forward

14 lines read from file NEPDISK:[JOEUSER]SUMRPT.TXT;4

Figure 11.2 Summary report file in EVE after editing.

After you add these new lines, you press F4 to display EVE's Command: prompt and type
EXIT there to save your edits and return to the DCL prompt.

Now that the file is ready, you can send it to Larry. You enter MAIL at the DCL prompt to
start up the mail program and SEND SUMRPT.TXT at the MAIL program's MAIL> prompt.
When the mail program asks you for the user ID of the message's recipient, you enter
LNIVEN. After you enter "August numbers" in response to the MAIL program's prompt for
the subject of the message, the program returns you to its MAIL> prompt. You enter EXIT to
return to the DCL prompt, finally entering LOGOUT at the DCL prompt to finish your VMS
session.

11.4 A Sample OpenVMS Session 149

150

Part IV. OS/400

Chapter 12 OS/400: An Introduction
OS/400 is the operating system used on IBM's line of AS/400 minicomputers. "OS" stands
for "Operating System," as it does in "OS/2," and "AS" stands for "Application System." No
one uses any other operating system on the AS/400, and no one installs OS/400 onto any oth-
er computers. Because they're always used together, it's common to use the terms "OS/400"
and "AS/400" interchangeably when we talk about using the computer.

The combination of OS/400 and the AS/400 has an odd mix of advanced and old-fashioned
approaches to computing. On the one hand, the object-oriented approach of treating system
resources and their interaction as objects and messages exists in few other operating systems
used on a large scale in the business world (none of the ones covered by this book) but will be
seen more and more in the coming years. On the other hand, certain aspects of OS/400 and
the AS/400 show their roots in aging technology, such as IBM's encouragement of developers
to use RPG and COBOL and the inclusion of an eight inch or five and a quarter inch disk
drive without an option for three and a half inch disk drives. Because none of these links to
older IBM technology are inherent parts of an AS/400 system, I'm sure that they will be
brought up to date soon if they haven't been by the time you read this. The Integrated Lan-
guage Environment (ILE), available with Version 2 Release 3 of OS/400, already promises to
make things easier for OS/400 developers who use the C programming language.

While features like communications, built-in database support, transaction processing, and
system security were added on to other operating systems over the years, these features were
all part of the design of OS/400 from the start. This may be its greatest advantage, from a
design point of view—IBM included these features as intrinsic parts of the operating system
from the beginning instead of patching them in over time.

From a user's perspective—or even a system administrator's—the biggest advantage of OS/
400 is its ease of use. While many operating systems offer menus to make things easier for
the beginner, OS/400 offers access to a greater percentage of its capabilities through menus
than any other popular operating system. Its command language isn't too bad either; while the
abbreviations that form the commands give them a terse, strange appearance, they're actually
pretty easy to figure out once you learn the logic behind the abbreviation system.

For the system administrator, the ease of use starts as soon as the AS/400 comes out of the
box. IBM went to great trouble to make the AS/400 a "plug and play" computer, doing much
of the setup that a customer needs before shipping it.

All this combines to make the AS/400 a very successful computer. It has been the silver lin-
ing on some of IBM's darkest clouds; in February of 1993, just when the public and stock
market were taking the dimmest view of IBM's future as a major player in the computing

153

world, IBM took out a full page ad in the New York Times that proclaimed in huge letters
"You ain't seen nothing yet. The IBM AS/400. Success isn't complicated." The ad's copy
bragged that IBM had "shipped over 200,000 AS/400s in just over four years—more than our
closest competitor has in seven—to companies of all sizes...with a customer satisfaction rate
just shy of 98%, we've got nothing to be shy about."

12.1 History
The 1960's saw the birth and growth of the minicomputer market. IBM got into the game
fairly late; in 1969, eight years after DEC introduced the PDP-1, IBM introduced its first
minicomputer: the System/3. Although IBM had the resources to provide better support than
other minicomputer makers, it didn't have a better minicomputer. IBM also managed to
charge more than their competitors, so the System/3 provided no threat to DEC's market and
became a historical footnote.

In 1975, IBM announced the System/32. This batch oriented, single-tasking computer was the
beginning of what people now refer to as the "System/3X" family of computers. Neither the
System/32 nor its multi-user, multi-tasking 1977 successor, the System/34, took a firm hold
in the marketplace, but the 1978 System/38 and the 1983 System/36 became very successful.

Users found the System/36 easy to use, and IBM kept this in mind when designing its re-
placement. The popularity of the simple interface on the System/36 and the large installed
base of System/36 and System/38 minicomputers were key factors in the design of the AS/
400, which IBM introduced in 1988. While the AS/400 and OS/400 had an entirely new ar-
chitecture, subsystems were built in to ensure that the more than 8,000 existing System/3X
application packages could run on it. (You can run System/38 programs in the AS/400's Sys-
tem/38 mode without modification, but you must recompile System/36 programs before you
can run them in the AS/400's System/36 mode.) This gave the AS/400 a big start in available
applications—always an important issue with a new computer and operating system.

IBM currently offers five different series of AS/400s: the B, C, D, E, and F series. Within
each series, a number attached to the letter identifies how that model relates to others in that
series. The higher the number, the greater the power. For example, the F series, when first in-
troduced, offered the F02 as the simplest model and the F95 as the most powerful.

You can upgrade many models to more advanced AS/400s. For example, models from the B
and C series can be upgraded to the D series. This upgradability has always been a big selling
point for the AS/400; if you get one for your small company and your company grows, your
AS/400 can grow with you.

IBM had an amusing way of demonstrating this to the public. You probably remember how
IBM's original television ads for the PS/2 featured all the major characters from the television

154 Chapter 12 OS/400: An Introduction

show MASH except for Hawkeye. They saved him for the AS/400 ads. (As far as I know,
these were not run on television, but run as print ads aimed at a more specialized audience.)
To symbolize the ability of the AS/400 to grow with your business, he was shown watering a
little plant next to a small AS/400; in the next picture, he stood proudly by a much bigger
plant—ostensibly, the same as the one in the first picture, but grown larger—next to a much
bigger AS/400. Warm and friendly as Alan Alda, but capable of providing all the power you
need when you need it—that's the AS/400.

BUZZWORD Blue shop This is actually two buzzwords: "blue" means IBM in
the computer world the same way "yellow" means "Kodak" in the world of
photography. It's an adjective meaning "of or pertaining to IBM." As a noun,
people often say "big blue"; for example, a trade journal might have the
headline "Big Blue Announces New AS/400 Models."

"Shop" refers to a given company's collection of minicomputers and main-
frames. A "blue shop" means that a particular company uses only IBM's
minis and mainframes.

12.1.1 Today

As more and more AS/400's are installed, and more and more applications are written for it,
backwards compatibility with the System/3X computers has become less of an issue. As PCs
and networked PC applications become more prevalent and more powerful, the AS/400's rela-
tionship to this growing segment of the computer world, and not its relationship to IBM's
earlier minis, has come to define Big Blue's positioning of the AS/400's advantages.

Three features play a key role in this new positioning:

• Database management. The AS/400 was designed from the start to be a database manage-
ment machine. It has a relational database manager built in as an integral part of both the
operating system and the machine itself. You don't buy it as a separate piece of software;
in fact, if you do install another database manager on the AS/400, it must translate
everything into the AS/400 database manager's terms in order to perform any work. To
learn more about the AS/400's database management capabilities, use the search index de-
scribed in section 13.4, "Available On-line Help," to search for information about DFU
(Data File Utility) and IDDU (Interactive Data Definition Utility).

• Communications. The AS/400 communicates with other computers—mainframes, PCs,
other AS/400s, and non-IBM minis—better than any past or present IBM computer. It can

12.1.1 Today 155

communicate with other computers using protocols such as Ethernet, SNA, OSI, ISDN,
TCP/IP, Novell NetWare, and others. It can support connections to three different Local
Area Networks at once.

• Security. Features for the implementation and maintenance of data security are also built
right into the operating system and the machine itself. You can define data security in
terms of objects, users, workstations, files, records, and fields.

These three features combine to make the AS/400 an ideal candidate for a database server.
IBM had ideas about this from the beginning, but in the original grand plan the desktop com-
puters attached to these servers were supposed to be PS/2s running OS/2. Over time, IBM
realized that there was a greater advantage in making the AS/400 capable of being a database
server for any other computer that needed it. While the database and security features men-
tioned above were built into the AS/400 from the beginning, many of the communications
protocols were added over time (particularly with the introduction of the D series in 1991) as
IBM began to reposition the AS/400 as a more general-purpose database server. Version 2 of
the OS/400 operating system made it easier for developers to write applications that store and
use PC files on an AS/400; this encouraged developers to write client/server applications that
use the AS/400 as the server.

IBM also offers the PC Support package for the AS/400, which links PCs to an AS/400. PC
Support makes it easier for PCs to act as full-featured AS/400 terminals and to use disks and
printers attached to an AS/400 system.

The AS/400 doesn't always have to be a server in a client/server relationship; it can also be
the client, requesting data from another system. Its extensive peer-to-peer communications
abilities give it a great deal of flexibility, allowing the same AS/400 to be the server for one
application and the client for another.

IBM's Minicomputer: The AS/400 or the RS/6000?
Shortly after introducing the AS/400, IBM introduced the RISC System, or RS
series of computers. The RS computer is essentially an engineering worksta-
tion that runs AIX, IBM's version of UNIX. It can be run as a single- or mul-
tiple-user machine.

It sounds like a minicomputer. How does it differ from the AS/400, the suc-
cessor to the System/3X line and therefore IBM's current main entry in the
minicomputer market? The RS/6000's various technical differences from the

156 Chapter 12 OS/400: An Introduction

AS/400 reflect one key point: it's aimed at a different audience. A scientist or
engineer who must write his own C or C++ program to attack a complicated
math problem that produces complex graphical output would not use the AS/
400, a multiuser machine optimized to run common database applications
such as inventories and payrolls. The technical user wants a machine that he
or she can dedicate to the problem at hand without being slowed down by
other users' programs. The RS/6000 user is familiar with UNIX and UNIX
tools, knows how to combine them to solve technical problems, and wants to
leverage this knowledge.

The RS machines and the AIX operating system are designed for this user.
While the AS/400 competes in the marketplace with business machines like
the VAX and Hewlett-Packard's minicomputers, the RS/6000 competes with
other engineering workstations from companies like Sun and Silicon Graph-
ics. And it competes very well; it has a reputation as a well-built, powerful,
reasonably priced engineering workstation. This made the RS/6000, like the
AS/400, a bright spot in IBM's dark days of the early 1990s.

In fact, the RS/6000 has done so well that it has ended up competing with
the AS/400 after all. One of the AS/400's most promising roles is that of a PC
file server, and some find the RS/6000 more suited to this than the AS/
400—regardless of the applications being run on the PC.

For information on using the RS/6000 computers, see this book's chapters
on UNIX, particularly the sidebars in Chapter 2 titled "ULTRIX? XENIX? AIX?
AUX? POSIX? DYNIX? MACH? SunOS?" and "Workstations."

12.1.1.1 Popular OS/400 Software

As mentioned earlier, OS/400's built-in database manager is one of the main reasons people
use the system. Another popular package available to run under OS/400 is OfficeVision. Of-
ficeVision offers many general-purpose features needed by almost any office: calendar and
scheduling software, word processing, electronic mail, and integration of these facilities with
the AS/400's built-in database. Although message sending and the SEU text editor are built
into OS/400, the OfficeVision alternatives are more powerful and easier to use. (SEU has
many features that still make it better for entering program source code, since OfficeVision's
word processor is geared more toward correspondence and document composition.)

12.1.1 Today 157

158

Chapter 13 Getting Started with OS/400
13.1 Starting Up
The first thing you see when you connect to an AS/400 is its sign-on screen. Figure 13.1
provides an example.

O'Rourke Enterprises
AS/400-F45

V2R2

System : NEPAS4
Subsystem . . . : QINTER
Display : DISP07

User
Password
Program/procedure
Menu
Current library

(C) COPYRIGHT IBM CORP. 1980, 1992.

Figure 13.1 AS/400 sign-on screen.

Your screen may not look exactly like Figure 13.1. It may have additional information, and it
may not tell you the release of OS/400 being used (in the example, "V2R2" means "Version 2
Release 2"). It will tell you three things about where you are signing on:

System The name assigned by the system administrator to the particular
AS/400 on which you have your account.

Subsystem The system administrator may divide various aspects of the sys-
tem into different areas known as "subsystems." Don't worry
about it.

Display The name assigned to the terminal you are using to sign on.

159

Below this information, several fields appear for you to complete. You only need to fill out
the first two. Use your Field Exit key (when emulating a terminal, this will probably be the
Tab key) to move your cursor forward from field to field. If you make a typing mistake, use
your Backspace key to reposition your cursor and fix the mistake.

User The user ID that represents your identity on the system. If you
don't have one, you can't sign on, so contact your system admin-
istrator. It doesn't matter whether you type in your ID in upper or
lower case; it displays in all capital letters.

If you enter a user ID that the system doesn't recognize, it will
tell you. For example, if Joe User mistypes his JOEUSER user
ID as JEOUSER, OS/400 displays a message at the bottom of the
sign-on screen telling him "User JEOUSER does not exist."

Password The password that goes with your ID. If you enter the wrong
password for the entered user ID, the system tells you "Password
not correct for user profile." The user profile is the collection of
information stored about a particular user—the user ID, the pass-
word, and the access rights that user has to the various parts of
the system.

Program/pro-
cedure

If you know the program that you want to run as soon as you are
signed on, you can enter its name here.

Menu All menus in OS/400 have names. If you want to go directly to a
menu other than the currently designated initial menu, enter its
name here.

Current library A library is a collection of objects, much like a subdirectory on
other operating systems is a collection of files. The current lib-
rary is the first place the system looks when you request the use
of a particular object. If you want a library other than the default
one to be the current library for this session, enter its name here.
For more information on libraries, see section 13.3, "How Files
Are Organized."

After you have signed on successfully, OS/400 displays the initial menu.

This will probably be some variation of the AS/400 Main Menu (Figure 13.2), but your sys-
tem administrator may set another menu as your initial one. If there is a specific menu that
you prefer to designate as the initial menu, you can easily set this up; see section 16.2.1, "The

160 Chapter 13 Getting Started with OS/400

Automatic Signon Command File," for more information.

MAIN AS/400 Main Menu
System: NEPAS4

Select one of the following:

1. User tasks
2. Office tasks
3. General System Tasks
4. Files, libraries, and folders
5. Programming
6. Communications
7. Define or change the system
8. Problem handling
9. Display a menu

10. Information Assistant options
11. PC Support tasks

90. Sign off

Selection or command
===>

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=User support
F23=Set initial menu
(C) COPYRIGHT IBM CORP. 1980, 1992.

Figure 13.2 OS/400 main menu.

13.1.1 Finishing Your OS/400 Session

As you will see in section 13.1.2, "Entering Commands," there are two ways to do just about
anything in OS/400: by entering a command or by picking a choice off of a menu. Menu
choices are numbered, and from the OS/400 main menu (Figure 13.2) signing off is always
choice number 90.

Picking a command off of a menu is actually similar to entering a command—you're just en-
tering a number instead of typing out a word or phrase. To sign off, type 90 at the ===>
prompt.

To sign off by entering a command, type SIGNOFF. Although menu choice 90 shows "sign
off" as two words, remember to enter the command as one word.

13.1.1 Finishing Your OS/400 Session 161

The command has one particular advantage over using the number to designate the menu
choice: this menu choice is only available on the main menu, while you can type SIGNOFF
anywhere that you see the ===> prompt.

13.1.2 Entering Commands

Along with SIGNOFF, any OS/400 command can be entered anytime you see the ===>
prompt. We call these commands "CL commands" because they make up the OS/400 Com-
mand Language. (When I say "command prompt," I'm referring to the ===> prompt.) As
you'll see in section 16.2, "Command Files," OS/400 command files are known as "CL pro-
grams."

Most menus have the phrase "Selection or command" above this prompt. This means "type
the number of the menu choice you want to make or a command at this command line." Some
menus have no ===> prompt, but your cursor still appears at the bottom of the screen, wait-
ing for you to type something. If the line above your cursor says "Type a menu option be-
low," then you can't enter a command; you must enter a menu choice number. You might not
even notice these clues indicating that you must enter a number and not a command, but if
you start entering a command and your cursor jumps back to the first character that you typed
as soon as you enter the second character, don't panic; you've found one of these menus.

Much AS/400 literature talks about how intuitive and English-like the CL commands are.
When you see command names like SNDMSG, DLTF, STRSEU and DSPMSG, you're
bound to wonder: if this is English-like, then I guess UNIX commands aren't so bad after all!

Actually, CL commands aren't too bad once you learn the abbreviation system. The words of
a command are usually abbreviated to three (or fewer) letters and then strung together into
verb-object or verb-modifier-object order. The verb part is always three letters. (There are a
few commands that deviate from this system, like GO, which you use to jump directly to a
specific menu, and SIGNOFF.)

Keeping this system in mind, SNDMSG doesn't look as cryptic anymore; it means "Send Mes-
sage." DLTF is "Delete File." Once you know that the Source Entry Utility (SEU) is the name
of the OS/400 text editor, it's not too hard to remember that STRSEU means "Start Source
Entry Utility."

Many commands use STR as an abbreviation of "start." DSP, which means "display," is also
popular; DSPMSG, or "display message" is only one of many commands that begin with these
three letters. Once you get used to the abbreviations for common verbs like STR and DSP and
common verb objects like MSG, you can figure out many commands on your own.

The following shows some other common verb abbreviations:

162 Chapter 13 Getting Started with OS/400

CRT create

WRK work with

CHG change

Certain noun abbreviations also come up often:

LIB libraries

OBJ objects

CMD commands

13.1.2.1 Command Parameters

When a command needs parameters, you enter each one in parentheses preceded by the name
of the parameter. For example, the following command renames a file object called OLD-
NAME with a name of NEWNAME:

RNMOBJ OBJ(OLDNAME) OBJTYPE(*FILE) NEWOBJ(NEWNAME)

If you can't remember the name or order of the parameters, there is plenty of help.

The easiest way to deal with the parameters is the prompt key, F4. If you enter a command
name and press F4 instead of Enter, OS/400 displays the command prompt display, which
displays the parameters for that command on a form for you to fill out. To make things even
easier, it highlights the required parameters that don't have default values and displays a mes-
sage at the bottom telling you the next required parameter to fill out. Figure 13.3 shows the
command prompt display that you get if you press F4 immediately after entering CPYF at the
command prompt.

Copy File (CPYF)

Type choices, press Enter.

From file Name
Library *LIBL Name, *LIBL, *CURLIB

To file Name, *PRINT
Library *LIBL Name, *LIBL, *CURLIB

From member *FIRST Name, generic*, *FIRST, *ALL
To member or label *FIRST Name, *FIRST, *FROMMBR

13.1.2 Entering Commands 163

Replace or add records *NONE *NONE, *ADD, *REPLACE
Create file *NO *NO, *YES
Print format *CHAR *CHAR, *HEX

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
Parameter FROMFILE required.

Figure 13.3 Command prompt display for the Copy File command.

Another way to bring up the command prompt display is to precede the command with a
question mark (for example, ? CPYF). This is a nice trick for making your CL programs a
little more interactive—instead of filling in a command's parameters in the CL program, so
that the command is executed with the same parameters every time someone runs the pro-
gram, a question mark before the command brings up that command's command prompt dis-
play. This allows the CL program's user to set different parameters each time the CL program
is run.

As with the signon screen, you use the Tab key to move from field to field. Press Enter when
you're ready to execute the command or F3 to exit out of the command prompt display. If you
press Enter before you've filled out all the required fields, your cursor jumps to the first man-
datory field that you neglected to fill out and a message appears at the bottom of the screen
telling you that parameter's name and the fact that it is required.

If you press F4 after filling out any of a command's parameters at the command line, those
parameters will be filled in for you on the command prompt display.

Certain commands don't require any parameters, but won't do anything unless you include
some. For example, the Change Profile command (CHGPRF) changes various settings that
control your signon ID's working environment. If Joe User enters CHGPRF with no paramet-
ers and presses Enter, he'll see the message "User profile JOEUSER changed." Nothing about
it was really changed, though, because he didn't indicate any changes to make. Although it
has no mandatory parameters, the Change Profile command has so many optional ones that
AS/400 users nearly always use F4 with it instead of Enter; this allows them to see the names
of the various values that can be reset.

164 Chapter 13 Getting Started with OS/400

After entering a command name and any of its parameters at the command line, you can also
press F1 to display the on-line help about that command. See section 13.4, "Available On-line
Help," for more information.

13.1.2.2 Positional Parameters

When entering a command on the command line, some parameters require you to only enter
their value, without the parameter name or parentheses. These are called "positional paramet-
ers" because each one's position on the command line tells OS/400 which parameter it is. The
use of positional parameters is most common for required parameters, since it saves you some
typing.

A common positional parameter is FILE(), which is often the first parameter for many com-
mands. For example, to delete a file in the current library called BUDGET95, you might enter
this,

DLTF FILE(BUDGET95)

but it's easier to enter this:

DLTF BUDGET95

It's not unusual to leave out the parameter names and parentheses for some of a particular
command's positional parameters and to include them for other optional ones, all on the same
command line.

For a more detailed case study of the use of positional parameters, see section 14.1.4, "Copy-
ing Files."

13.1.2.3 Case Sensitivity

OS/400 doesn't care whether you enter commands, parameters, or parameter names in upper
or lower case. To delete a file called DRAFT1 in the library BUDGET94 (See section 13.3,
"How Files Are Organized," for more on libraries), you could type any of the following three
commands:

DLTF FILE(DRAFT1)
dltf file(draft1)
DlTf FiLe(DrAfT1)

13.1.2.4 The Four Types of Displays

OS/400 has four different kinds of screens. IBM terminology calls them four different kinds

13.1.2 Entering Commands 165

of "displays." All four display types have two things in common: a title at the top to let you
know exactly which display it is and a list of available function keys across the bottom of the
display. As section 13.1.2.5 ("Important Special Keys") shows you, the function keys always
offer you a way to back out of any screen that you displayed accidentally.

The main screen that you see after signing on (Figure 13.2) is an example of a menu display.
Menu displays include a command prompt where you can type either CL commands or the
number of the menu choice that you want to select. The upper-left corner shows the name of
the menu.

Knowing the names of the popular menus is very useful, because entering the GO command at
any command prompt lets you jump directly to any menu. For example, to jump to the MAIN
menu, enter

GO MAIN

at the command prompt.

An entry display is a form for you to fill out. Section 13.1.2.1, "Command Parameters," de-
scribed how you can press F4 instead of entering a command's parameters if you are unsure
of those parameters. The command prompt display that this brings up (Figure 13.3) is a good
example of an entry display.

Sometimes there are hints to the right of each field on an entry display about what you can
enter in that field. There are three types of clues:

Name A name that you either make up or should already know. For ex-
ample, when you copy a file, you should know its name and you
will make up a name for the copy. In Figure 13.3, Name is an
option for the first six fields.

generic* A name with the asterisk wildcard that applies to multiple names.
If you are issuing a command that will display a hundred object
names, and entering JULYBUD will list only the JULYBUD ob-
ject, then entering JULY* will list the names that begin with the
letters "JULY." For more information, see section 13.2.1, "Wild-
cards."

*PREDEFVAL A predefined value is a name that has a specific, defined mean-
ing to OS/400. These are usually spelled in all capital letters and
begin with an asterisk. For example, when you send a message to
another user with the SNDMSG command, you enter the message

166 Chapter 13 Getting Started with OS/400

recipient's ID in the "To user profile" field. On the right of the
blank where you enter the recipient's name, it offers the choices
"Name, *SYSOPR, *ALLACT." The Name part means that you
can just type in someone's user ID. *SYSOPR and *ALLACT are
predefined values; *SYSOPR represents the system operator, so
if you have a problem with the system and want to send a mes-
sage to the system operator you don't need to know which sys-
tem operator is on duty and his or her user ID. *ALLACT means
"all active users." It lets you send a message to everyone who is
currently signed on. (This option would be useful to the system
operator to warn everyone of system problems or impending
down time.)

An entry display often displays more fields than you need to fill out. To make it easier for
you to find the mandatory fields, they are highlighted for you.

Some of an entry display's fields may be filled out for you with default values. To change
them, move your cursor there with your Tab or cursor keys and type a new value over the dis-
played one.

When you ask OS/400 to list information (for example, the files in a library), it often displays
the information on a list display, which allows you to perform actions on items in the list.
Figure 13.4 shows an example of a list that is displayed when you ask the on-line help about
help topics that cover "programming."

Main Help Index for AS/400

Type options, press Enter.
5=Display topic 6=Print topic

Option Topic
_ Add physical file variable-length member (ADDPFVLM) command
_ Add program (ADDPGM) command
_ Analyze program (ANZPGM) command
_ APPC
_ Application program
_ Apply program temporary fix (APYPTF) command
_ APPN
_ Attention-key-handling program
_ Automatic link and external reference
_ BASIC
_ Branch instruction
_ Breakpoint program

13.1.2 Entering Commands 167

More...
Or to search again, type new words and press Enter.
programming

F3=Exit help F5=All topics F12=Cancel F13=User support

Figure 13.4 Entry display of search help topics for "programming."

The first column of a list display is the Option or Opt column. It shows a blank next to
each list item where you enter a number to indicate what you want to do with that list item.
Above the list, a key to the actions shows the numbers you can enter in the options column
and what they do. For example, entering the number 6 next to a help topic title in Figure 13.4
tells OS/400 to send a copy of that help topic to the printer. Use your Tab or cursor keys to
move your cursor to the appropriate place in the Opt column. (For more information on help
topic lists, see section 13.4.1, "The Search Index.")

List displays sometimes have a command line at the bottom. In addition to regular CL com-
mands, you can type any additional information that OS/400 needs to perform an action in-
dicated by a number in the option column. If this is the case, the list display will let you know
just above the command line. For example, if the key to the actions above the list shows that
you can enter 1, 2, 3, 4, or 5 in the options column and entering 2, 3, or 5 requires additional
information, you will see the following message just above the command line:

Parameters for options 2, 3, 5, or command

In other words, you can enter the parameters for options 2, 3, or 5 at the command line or a
regular CL command.

A list or menu display may be too long to fit on your screen. If it fits, the lower-right of the
screen will say "Bottom"; if it's too long, the lower-right will say "More..." (as in Figure
13.4). If there is more, the Page Down and Page Up keys let you scroll through the list. (See
section 13.1.2.5, "Important Special Keys," for more on the use of these keys.)

13.1.2.5 Important Special Keys

We've already seen three special keys: F4 displays an entry screen that prompts you for a
command's parameters, and Page Up and Page Down scroll through a display that doesn't fit
on your screen.

168 Chapter 13 Getting Started with OS/400

When function keys are available to help you, the bottom of the display lists as many function
key descriptions as will fit. Certain function keys nearly always have the same meaning:

F1 On-line Help displays information about the current display and
your options for what to do with it. See section 13.4, "Available
On-line Help," for more information.

F3 Exit ends the current program (for example, on-line help or a
command prompt display) and returns to the screen that was dis-
played when you called that program. (Compare this with F12.)

F4 Prompt displays the command prompt display, an entry screen
whose fields prompt you for the parameters of the command at
the command line.

F9 Retrieve retrieves the previously entered command to the com-
mand line. This can be particularly useful to correct a typo in a
long, complicated command that didn't execute because of the
typo. Just press F9, correct the mistake, and press Enter.

F9 can also teach you the parameters that a command needs; if
you press F4 and use the command prompt display to enter a
command's parameters, pressing F9 later retrieves the command
to the command line as if you had typed it out without the aid of
the command prompt display.

Retrieve does not retrieve menu choice numbers typed at the
command line, but only actual commands. Pressing it repeatedly
retrieves earlier commands from your OS/400 session.

F12 Cancel leaves the current display and returns to the one before it.
This is useful when you are searching through help screens and
you want to return to one you just saw without leaving the help
program.

If you're looking at the first screen in a particular program, this
key acts like F3, returning you to the screen that was displayed
when you called that program.

F13 User Support displays the User Support and Education menu.
This offers a menu-driven way to access the various kinds of on-
line help available for the AS/400. For more information, see
section 13.4, "Available On-line Help."

13.1.2 Entering Commands 169

F16 Major Commands displays the first of a series of menus that can
lead you to the command you need. (The menu's title is MAJOR,
so F16 is essentially a shortcut to entering GO MAJOR at the
command line.)

F24 More Keys displays more function key descriptions if there is not
enough room at the bottom of the screen to describe all of the
current display's available function keys. Repeatedly pressing
this key cycles through descriptions of the current display's avail-
able function keys.

When you use a terminal emulation program, certain keys may be designated as the "scroll
down" and "scroll up" keys. These are analogous to the Page Up and Page Down keys, re-
spectively. This may seem a bit backwards, and can easily lead to confusion—the key that
scrolls down corresponds to the Page Up key, because it scrolls the displayed text down to
show you the text above it.

The AS/400 also lets you insert and delete characters at the command line the same way you
would in a text editor. Pressing the Insert key turns on insert mode; everything you type is in-
serted at the cursor position, moving the characters to the right of the cursor further to the
right.

To return to overstrike mode while using a 3270 terminal, press the key marked "Reset." The
carat symbol should disappear, and newly typed text will take the place of the characters at
the cursor. (When your keyboard "locks up," or refuses to accept input, the Reset key is also
useful for freeing up the keyboard.) On most PCs emulating a 3270, the Insert key does the
job of the 3270 keyboard's Insert key and the Escape key serves as the Reset key. Check your
emulation program's documentation to make sure.

Each time you press the Delete key, it deletes the character at the cursor.

The ability to insert and delete characters is particularly useful when used in conjunction with
the F9 key. To enter a series of similar commands, start by typing out the first one and press-
ing Enter. For each of the remaining commands, press F9 to retrieve the last one entered,
make the necessary changes to turn it into the new command, and press Enter again.

13.2 File Names
As you'll see in section 13.3, "How Files Are Organized," files and nearly everything else on
an AS/400 are treated as objects. You rarely have to worry about the maximum length of the
name of an object or of anything else; when you enter a name on an entry screen, you're
filling out a field, and underscores show the field's maximum length. You'll see that object

170 Chapter 13 Getting Started with OS/400

names can be up to ten characters.

Names can use letters of the alphabet (case doesn't matter—lower case is converted to upper
case) and numeric digits, and the characters $, #, @, and the period (.). Don't start a name
with a numeric digit or a period.

13.2.1 Wildcards

There is only one wildcard in OS/400: the asterisk. It is used to designate "generic object
names," which are essentially the same as the use of a wildcard to refer to multiple files at
once on any other operating system. The string "abc*" refers to all applicable objects that be-
gin with the letters "abc."

The asterisk must go at the end of a generic name. Remember, a name that starts with an as-
terisk is very different from a generic name—it is a predefined value, which is a special string
that represents a specific value defined by the operating system.

A typical command that can make use of generic names is the Work with Members Using the
Program Development Manager (WRKMBRPDM) command. This displays the components of a
file known as "members" on a list display so that you can view and manipulate individual
members. (You'll see more about this command in section 14.1.2.1, "Listing a File's Mem-
bers.") If the 93 members of the QCSRC file are the C source code for 93 different programs,
then entering the command

WRKMBRPDM FILE(QCSRC) MBR(*ALL)

lists all 93 members on the Program Development Manager display. (Since the predefined
value *ALL is the default value for the WRKMBRPDM command's MBR parameter, it doesn't
need to be included in this command.) You can enter a member name as the value for the
MBR() parameter; entering the command

WRKMBRPDM FILE(QCSRC) MBR(CTEST1)

tells WRKMBRPDM to only list the member named CTEST1.

A generic name is a compromise between entering *ALL amd entering a specific member
name. Entering

WRKMBRPDM FILE(QCSRC) MBR(CTEST*)

tells WRKMBRPDM to list the members of the QCSRC file that begin with the letters "CTEST."
With this command, the members CTEST1, CTEST2, CTEST3, and CTEST3A will all
show up in the list display.

13.2.1 Wildcards 171

The GO command is another that accepts generic names as parameters. Because there are
three different menus that begin with the letters "MA," entering the command

GO MA*

displays a list with the names and descriptions of these three menus, letting you pick the one
you want.

13.3 How Files Are Organized
OS/400 treats everything as objects. This includes files, screens, commands, terminals, data-
bases, programs, queues, and libraries.

Each library holds a group of related objects. For example, there is one library for each user
ID, several for the operating system, one or more for each installed application, and so forth.
If the concept of a library sounds similar to the concept of a directory on other operating sys-
tems, you're right, but there is one crucial difference: the QSYS library (one of the operating
system libraries) is the only one that can contain other libraries. You cannot create libraries
within your libraries the way you can create subdirectories on UNIX, VMS, and DOS. As a
general rule, only the system administrator can create new libraries, whether they are for new
users or for new application software.

Each object has an object type. This identifies what the object is and the operations that you
can perform on it. When you list the objects in a library, you will see the type of each object
listed with it; the following are some common object types:

*LIB A library.

*FILE A file.

*CMD A command.

*PGM A program.

Certain object types have an attribute (sometimes known as the "extended attribute") that de-
scribes their role more specifically than their type name does. For example, a *PGM object
has an attribute describing the language in which the program was written, such as C or RPG.
For *FILE objects, the attribute plays a crucial role in identifying a particular file's structure
and purpose, as you'll see in section 13.3.1, "Physical, Source Physical, and Logical Files."

When you refer to an object, you often have to identify the library where it can be found. A
popular shorthand way to refer to an object's full name is LIBNAME/OBJNAME, where LIB-

172 Chapter 13 Getting Started with OS/400

NAME is the library name and OBJNAME is the object name. When the library name is in-
cluded with the object name, it's known as a "qualified object name." (If an object's library is
in your library list, specifying the library name will probably be unnecessary. For more on
library lists, see section 13.3.2, "The Library List and Your Current Library.")

Technically, the term "file" has a more specific meaning on the AS/400 than it does on other
operating systems: It is an object in a library that contains data or source code for programs.
Programs and files are two different object types, so a compiled, executable program is not
considered to be a file the way that it is on other operating systems.

To confuse you even further, a file can be composed of units known as members, which are
individually comparable to a single file of source code on other operating systems. For ex-
ample, a file of C source code can have multiple members, each of which might be the C
source code for a different program. Members don't count as objects in the AS/400's object-
oriented scheme of things, because they can't exist on their own; each member is part of a
*FILE object.

Like a group of C programs on another operating system, the members of a given file gener-
ally have a similar purpose and format. In addition to storing the source code for several dif-
ferent programs written in the same language, a file could hold a group of data file descrip-
tions, a group of operating system command language files, or the information necessary to
display a group of menus.

If you can get used to the AS/400's fairly restricted use of the term "file," then its system of
file organization—excuse me, object organization—is not really that confusing. To recap:
everything is an object. Files and other objects are stored in libraries (which are also objects).
A file can be subdivided into groups called members. A group of members in the same file
usually have the same format and purpose, similar to a group of files with the same file exten-
sion in UNIX or DOS or files with the same file type in VM/CMS or VMS. The whole ar-
rangement will look especially familiar to MVS users, who will recognize a strong resemb-
lance to the concept of partitioned data sets.

13.3.1 Physical, Source Physical, and Logical Files

A physical file is a file that holds database data. This has broader applications on the AS/400
than a traditional database file does on other systems; while you might think of a database file
as holding columns of data for a database (for example, an employee's last name, first name,
social security number, and hire date) on the AS/400 it might hold a simple text file. Technic-
ally, such a file is still columns of data—one for line numbers, one for the date that each re-
cord (that is, each line of the text file) was last changed, and one for the line of text itself. To
see an example of a physical file that holds paragraphs of text, use the DSPPFM command de-
scribed in section 14.1.3, "Displaying a Text File's Contents," to look the AAAMAP member of
the QATTINFO file in the QUSRTOOL library. (This IBM-supplied file describes application

13.3.1 Physical, Source Physical, and
Logical Files 173

development and system management tools available on the system for more advanced
users.)

A physical file whose members contain source code for programs, screens, or databases is
known as a source physical file. A particular source physical file's members might be source
code for several programs written in the same language. (Certain file-naming conventions
make it easier to recognize the programming language by a file's name; for example, QCSRC
is a common name for a source physical file of C code, and QCBLSRC is a typical name for a
file of COBOL source code.) The name of the OS/400 text editor reveals its important role in
creating the members of these files: the "Source Entry Utility," or SEU, is the text editor used
to create and edit these files.

A *FILE object has an attribute that describes what kind of file it is. Two common values for
this attribute are PF (physical file) and LF (logical file). A logical file doesn't hold database
data; it holds information about an alternate format for viewing a particular physical data file
or group of files. For example, if a physical file of employee data holds names, salaries, and
phone numbers, a programmer might define a logical file that only shows the names and
phone numbers from the physical file. A system administrator could then grant wider access
to the logical file, allowing people to look up each other's phone numbers without seeing each
other's salaries.

An object of *FILE can have several other possible attributes—for example, PF38 denotes a
physical file moved from a System/38—but PF and LF are the most common.

13.3.2 The Library List and Your Current Library

When you want to run a program or use a data file, you don't always have to specify the lib-
rary where it is located. How does OS/400 know where to find it? By searching the library
list. The library list is a list of libraries that tell OS/400 where to look for objects and in what
order.

Each user has their own library list. Sometimes, to use a new application program on your
system, you might be told to add the library with that application's objects to your library list.
(For information on doing this, see section 14.1.7, "Editing Your Library List.")

The current library is the first library where the system looks when you request the use of an
object—in other words, the first library on your library list. (Actually, it's the first library on
the part of the list that you can change.) Your default current library will probably be the per-
sonal library assigned for your user ID. This way, you get quick access to objects that you
create.

If this book shows you an OS/400 command with FILE(filename) as a parameter, it usu-
ally takes it for granted that that file is in a library in your library list. If not, you must tell

174 Chapter 13 Getting Started with OS/400

OS/400 where to find the file by either entering the library name as a separate parameter or
by using the FILE(libname/filename) notation.

You can change your current library by indicating a particular library name in the "Current
library" field of the signon screen or by using the CHGCURLIB command. For more informa-
tion, see section 14.1.7, "Editing Your Library List," and section 14.1.7.1, "Changing Your
Current Library."

13.4 Available On-line Help
OS/400 offers many kinds of help. The most important way to get help is also the most basic:
press F1. (On some keyboards, there may be an actual key labeled "Help.")

This doesn't bring up some vague help menu that forces you to search through a dozen
screens to find the information that you need, as F1 does with some other systems and applic-
ation programs. The OS/400 on-line help is context-sensitive, so F1 often takes you right to
the information you need.

All you have to do is move your cursor to the appropriate area of the screen before pressing
F1. For example:

• If you move your cursor to the lines at the bottom of the screen that list the available func-
tion keys, pressing F1 displays explanations of those function keys.

• On a menu display, pressing F1 while your cursor is positioned on one of the menu
choices displays information about that menu choice.

• On an entry display, pressing F1 while your cursor is in one of the fields displays "field
help," or information about that field.

• In a list display, pressing F1 while you cursor is in one of the columns displays help about
the information in that column.

• With your cursor on an error message, F1 displays an explanation of the cause of the error
message and how to fix it.

• If you enter a command or menu choice number at the command line but press F1 instead
of Enter, OS/400 displays help about that command or menu choice.

Figure 13.5 shows the screen displayed after pressing F1 with your cursor on the MAIN
menu's function key list.

13.4 Available On-line Help 175

MAIN AS/400 Main Menu
..
: Function Keys - Help :
: :
: F1=Help :
: Provides additional information about using the display or a :
: specific field on the display. :
: :
: F3=Exit :
: Ends the current task and returns to the display from which the task :
: was started. :
: :
: F4=Prompt :
: Provides assistance in entering or selecting a command. :
: :
: F9=Retrieve :
: More... :
: F2=Extended help F3=Exit help F10=Move to top F11=Search index :
: F12=Cancel F13=User support F14=Print help F20=Enlarge :
: :
:..:
F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=User support

Figure 13.5 Help screen for the Main Menu's function keys.

If your cursor is on a display's command line, title, a blank line, or any part of the screen for
which no specific help is available, OS/400 displays extended help. Extended help is a gener-
al description of the current display and how to use it. It's also available when you are view-
ing any other kind of help by pressing F2. Figure 13.6 shows the extended help for the
SNDMSG (Send Message) command.

Send Message (SNDMSG)
..
: Send Message - Help :
: :
: The Send Message (SNDMSG) command is used by a display station user :
: to send an immediate message from his display station to one or more :
: message queues. (An immediate message is a message that is not :
: predefined and is not stored in a message file.) The message can be :
: sent to the system operator, to other display station users, to a :
: user's message queue, all currently active users' message queues or :

176 Chapter 13 Getting Started with OS/400

: to the system history log, QHST. The sender can require a reply :
: from the message receiver. The primary users of this command are :
: display station users and the system operator. :
: :
: Note: Do not precede an entry with an asterisk unless that :
: entry is a "special value" that is shown (on the display itself :
: or in the help information) with an asterisk. :
: :
: Message text (MSG) :
: More... :
: F3=Exit help F10=Move to top F11=Search index F12=Cancel :
: F13=User support F14=Print help :
: :
:..:

Figure 13.6 SNDMSG extended help screen.

13.4.1 The Search Index

With many help systems, you can't find out about the use of a command unless you already
know the command's name. The OS/400 Search Index makes it easy to find help on a topic
when you only have a vague idea of the information you need and don't yet know the OS/400
name or terminology associated with that command.

To start the Search Index, either enter STRSCHIDX at any command line or press F11 when
the bottom of a help screen tells you that F11=Search Index. This brings up the Search
Help Index display, where you enter a word or phrase that describes the topic in question.
Figure 13.7 shows the Search Help Index display.

Search Help Index

Index Search allows you to tell the system to search for specific
information. To use Index Search, do the following:

1. Type the phrase or words to search for.

2. Press Enter.

When you press Enter, the system searches for topics related to the
words you supplied and displays a list of topics found.

13.4.1 The Search Index 177

If you press Enter without typing anything, the system displays a list
of all available topics.

Type words to search for, press Enter.
__

F3=Exit help F5=All topics F12=Cancel F13=User support

Figure 13.7 Search Help Index display.

After you enter a search phrase, press Enter. OS/400 displays a list of the relevant help topics.
For a vague search phrase, there may be too many topics to fit on one screen. Figure 13.8
shows the result of entering "programming" as the search phrase; note how the message
More... in the lower right tells you that you must press Page Down (or Scroll Up) to look
through the remaining topic titles. Topics are listed alphabetically, and since the list shown in
Figure 13.8 doesn't even get to the topics beginning with the letter "C," it must be quite a long
list.

Main Help Index for AS/400

Type options, press Enter.
5=Display topic 6=Print topic

Option Topic
_ Add physical file variable-length member (ADDPFVLM) command
_ Add program (ADDPGM) command
_ Analyze program (ANZPGM) command
_ APPC
_ Application program
_ Apply program temporary fix (APYPTF) command
_ APPN
_ Attention-key-handling program
_ Automatic link and external reference
_ BASIC
_ Branch instruction

178 Chapter 13 Getting Started with OS/400

_ Breakpoint program

More...
Or to search again, type new words and press Enter.
programming

F3=Exit help F5=All topics F12=Cancel F13=User support

Figure 13.8 Search Help Index topics for "programming."

Figure 13.9 shows the result of a search on a more specific topic, "C programming." The
word "Bottom" in the lower-right shows that all the topics that fit this search phrase are dis-
played on this one screen.

Main Help Index for AS/400

Type options, press Enter.
5=Display topic 6=Print topic

Option Topic
_ C language
_ C language interface (Query Management)
_ Create C locale description (CRTCLD) command
_ Create C/400 program (CRTCPGM) command
_ Create Structured Query Language C (CRTSQLC) command
_ Delete C locale description (DLTCLD) command
_ Including SQLCA in C
_ Retrieve C locale description source (RTVCLDSRC) command

Bottom
Or to search again, type new words and press Enter.
C programming

F3=Exit help F5=All topics F12=Cancel F13=User support

Figure 13.9 Search Help Index topics for "C programming."

13.4.1 The Search Index 179

Because help topics are shown on a list display, the upper part of the screen shows the num-
bers that you can type in the Option column on the left to see the help topics. A 5 displays
the help information for a given topic, and a 6 sends that information to the printer.

13.4.2 Navigating Help Screens

The important function keys in on-line help are consistent with the rest of OS/400: Page Up
(or Scroll Down) and Page Down (or Scroll Up) to page through the help text, F3 to exit help,
and F12 to Cancel (that is, to back up one screen). As with other situations, F1 gives you help
about what you are doing—in this case, using help. Figure 13.10 shows the first "How to Use
Help" screen that OS/400 displays when you press F1 while viewing any other help screen.

Help How to Use Help

Help is provided for all AS/400 displays. The type of help provided
depends on the location of the cursor.

o For all displays, the following information is provided:

- What the display is used for
- How to use the display
- How to use the command line if there is one
- How to use the entry fields and parameter line if any
- What function keys are active and what they do

o The following information is also provided for specific areas,
depending on the type of information being displayed:

- Menus: Meaning of each option
- Entry (prompting) displays: Meanings and use of all values

for each entry field
- List displays: Meaning and use of each column

More...
F3=Exit help F10=Move to top F12=Cancel F14=Print

Figure 13.10 The first "How to Use Help" screen.

13.4.2.1 Expanding Help Windows

Sometimes, when viewing field help after pressing F1 with your cursor on a particular entry
screen field, the help information appears in a window that takes up only part of your screen.
Figure 13.11 shows the help displayed by pressing F1 when the cursor is in the "Send Mes-

180 Chapter 13 Getting Started with OS/400

sage" entry screen's "To user profile" recipient field.

Send Message (SNDMSG)

Type choices, press Enter.

Message text

To user profile Name, *SYSOPR, *ALLACT...
..
: To user profile (TOUSR) - Help :
: :
: Specifies that the message is to be sent to the message :
: queue specified in the user profile for the user named on :
: this parameter. This parameter cannot be used if a value :
: is specified for the To message queue prompt (TOMSGQ :
: More... :
: F2=Extended help F10=Move to top F11=Search index :

F3=Exit F4= : F12=Cancel F20=Enlarge F24=More keys :
F13=How to us : :
Parameter MSG :..:

Figure 13.11 "To user profile" field help overlaying "Send Message" screen.

If a help window covers only part of your screen but has too much information to fit in the
help window, the F20 (Enlarge) key expands it to take up the whole screen. Figure 13.12
shows the "To user profile" help expanded to fill up the whole screen. Much more informa-
tion fits in this help window, so less paging will be necessary to read the whole thing.

Send Message (SNDMSG)
..
: To user profile (TOUSR) - Help :
: :
: Specifies that the message is to be sent to the message queue specified :
: in the user profile for the user named on this parameter. This :
: parameter cannot be used if a value is specified for the To message :
: queue prompt (TOMSGQ parameter). :

13.4.2 Navigating Help Screens 181

: :
: Either this parameter or the To message queue prompt (TOMSGQ parameter) :
: is required. :
: :
: user-profile-name :
: Specify the user profile name of the user to whom the message is :
: sent. :
: :
: *SYSOPR :
: The message is sent to the system operator message queue, :
: QSYS/QSYSOPR. :
: More... :
: F2=Extended help F3=Exit help F10=Move to top F11=Search index :
: F12=Cancel F13=User support F14=Print help :
: :
:..:

Figure 13.12 "To user profile" field help expanded to whole screen.

13.4.2.2 The User Support and Education Menu

The User Support and Education menu offers another form of access to the various kinds of
on-line help. You can display it by entering GO SUPPORT at any command line or by press-
ing F13 while viewing any screen where F13 means "User support." (This applies to nearly
all OS/400 menus.)

SUPPORT User Support and Education
System: NEPAS4

Select one of the following:

1. How to use help
2. Search system help index
3. How to use commands
4. Question and answer
5. AS/400 publications
6. IBM product information
7. How to handle system problems
8. Problem handling
9. Online education

182 Chapter 13 Getting Started with OS/400

Selection or command
===>

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F16=AS/400 Main menu
(C) COPYRIGHT IBM CORP. 1980, 1992.

Figure 13.13 User Support and Education menu.

Figure 13.13 shows an example of the User Support and Education menu. It offers the follow-
ing choices:

1. How to use help displays the same screen that you get when you press F1 while viewing
a help screen: an overview of how to use the on-line help.

2. Search system help index displays the Search Help Index screen, which lets you tell OS/
400 to list help topics related to a word or phrase that you enter. See section 13.4.1, "The
Search Index," for more information.

3. How to use commands displays an overview of the use of the OS/400 command line and
the structure of the available commands and their parameters.

4. Question and answer gives you access to a database of commonly asked questions about
the AS/400 and their answers. Some AS/400 systems are hooked up to mainframes at
IBM sites, giving them access to a wider variety of questions and answers (an excellent
example of the AS/400's potential role in a large, distributed database).

5. AS/400 publications displays a catalog of publications that you can order from IBM that
cover OS/400, the AS/400, and available IBM development and application software.

6. IBM product information displays information about software available for the AS/400.

7. How to handle system problems displays information for system administrators about
ways to approach problems with their AS/400. (Although I wonder about the paragraph
on the first screen that begins "If you cannot turn the system on..." If someone can't turn
the system on, they'll have a tough time taking advantage of the information provided by
"How to handle system problems.")

8. Problem handling displays information for system administrators about the use of tools
such as the job log (a history of a user's activity since signing on) and various kinds of

13.4.2 Navigating Help Screens 183

diagnostic software used to handle problems in communications, programming develop-
ment, and other aspects of the AS/400.

9. Online education leads you to the on-line tutorials about the AS/400 and its software. A
variety of tutorials may be installed; if there is only one, it will be Tutorial System Sup-
port (TSS), which gives you background in the concepts and usage of OS/400. See sec-
tion 13.4.3, "The On-line Tutorial," for more information.

Choices four through eight on this menu are part of something called "Electronic Customer
Support," or "ECS." In much of the computer industry, "customer support" means calling up
some company, being put on hold, asking your question, being put on hold again, and then
being told that someone will call you back with the answer. Electronic Customer Support
takes advantage of the computing and communications resources at your disposal to offer you
a much more efficient alternative.

13.4.2.3 Hypertext Links

On many help screens, you will see certain phrases highlighted or underlined, depending on
the type of terminal that you are using or emulating. This highlighting tells you that the
phrase is a hypertext link to more detailed information on that phrase. These phrases may be
in the middle of a sentence or in a list of topics at the end of a help topic.

For example, on the help screen that you see when you press F1 while viewing the OS/400
Main Menu, one paragraph begins with the sentence "To go to another menu, use the Go to
Menu (GO) command." The phrase "Go to Menu (GO) command" is highlighted, showing
that if you press your Tab key to move your cursor there and then press Enter (not F1
again—remember, F1 while viewing a help screen gives you help about the use of on-line
help) you'll jump directly to a screen that tells you about the GO command.

After you use a hypertext link to another screen, a new function key becomes available: F6
(Viewed Topics). This displays a window with a list of the titles of the help screens you have
viewed. You can jump directly back to any of these help screens by moving your cursor to the
title of your choice and pressing Enter. Figure 13.14 shows the short list of topics displayed if
you press F6 after using the hypertext link described above to go from the Main Menu's help
screen to the GO command's help screen.

MAIN AS/400 Main Menu
..
: Go to Menu - Help :
: .. :

184 Chapter 13 Getting Started with OS/400

: : Viewed Topics : nd :
: : : name. :
: : To return to a topic, position the cursor to that topic : rom :
: : and press Enter. : :
: : : :
: : AS/400 Main Menu - Help : ntry is :
: : Go to Menu - Help : the :
: : : :
: : : :
: : : :
: : : :
: : : :
: : Bottom : :
: : F12=Cancel : :
: : : :
: :..: Bottom :
: F3=Exit help F6=Viewed topics F10=Move to top F11=Search index :
: F12=Cancel F13=User support F14=Print help :
: :
:..:

Figure 13.14 Viewed Topics window listing help screens displayed with hypertext links.

13.4.3 The On-line Tutorial

OS/400 offers various on-line tutorials to help you learn about the system. They let you work
at your own pace, with exercises, reviews, and quizzes. Each course is broken down into les-
sons known as "modules" that can be completed in 15 to 40 minutes. Each module warns you
at the beginning how long it will take. The system keeps track of which modules you have
taken of which courses, which makes it easier to pick up where you left off if you haven't
worked on a particular tutorial in a while. You can even leave "bookmarks" of where you
were if you have to leave a module before finishing it.

The most important course is Tutorial System Support (TSS), which gives you background in
the concepts and usage of OS/400. Even if many tutorials are available on your system, this is
the best one to start with.

To start the on-line education, you can select Online Education from the "User Support and
Education" menu described in section 13.4.2.2 or you can enter STREDU (Start Education)
from the command line.

The first time you do this, an entry display asks you for your first and last name. The system
uses this information to remember which courses you have taken. Next, a list display asks

13.4.3 The On-line Tutorial 185

you to pick from a list of available courses. After you pick one, another list asks you to pick
an audience path, as shown in Figure 13.15.

Select Audience Path

Course title :

Type option, press Enter.
1=Select 5=Display modules 8=Display description

Option Audience Path Title
_ How to Use AS/400 Online Education
_ All Modules in the Course
_ Communications Implementer
_ Database Administrator
_ Data Processing Manager
_ Executives
_ Office Systems Administrator
_ Clerical User (Secretary)
_ Office Implementer
_ Experienced S/36 System Operator
_ Experienced S/38 System Operator
_ Programmer/Implementer
_ Professional User

More...
F3=Exit F9=Print list F12=Cancel F17=Top F18=Bottom

Figure 13.15 List display asking you to pick an audience path for an on-line course.

The "audience path" concept is a nice design touch. Of the many modules available for each
course, certain combinations have been grouped into "paths" for different audiences. For ex-
ample, Figure 13.15 shows different paths for database administrators, secretaries, executives,
and programmers. While all four of these paths have the modules "Getting Started with On-
line Education" and "Working with System Displays," only the database administrator and
programmer paths have the modules "Object Management Concepts." Note also the path "All
Modules in the Course"—while time-consuming, this would obviously give you the most de-
tailed background on the use of the AS/400.

Once you've selected a path, the "Select Course Option" menu offers you the following
choices:

• Start the next module in your path.

186 Chapter 13 Getting Started with OS/400

• Select a different module.

• Return to the displays where you picked your course or your path.

Once you start a module, the on-line education leads you through the step-by-step tutorial.

13.4.4 Other Helpful Features

OS/400 includes several other features that, while not actually part of on-line help, make it
much easier to navigate and to use the system.

The Display Keyboard Map command (DSPKBDMAP) displays a series of help screens that
describe the use of the keys on the terminal that you are using or emulating. If an OS/400
screen refers to a key that isn't on your keyboard, use DSPKBDMAP to find out which of your
keyboard's keys are doing the unfamiliar key's job.

OS/400 enables you to do so much by using menus that some menus can overwhelm many
users. A useful feature called the Operational Assistant can ease this problem. The Operation-
al Assistant is a set of simple menus with a minimum of fancy terminology that let you find
the most important tasks quickly and easily. In addition to allowing the basic tasks required
by all users, it enables a system administrator to add new users, to backup the hard disk to
tape, and to do other tasks that are crucial to running the system. This kind of feature makes
the AS/400 one of the most "plug and play" large computers ever available, because it allows
novice AS/400 users to set up the computer and become productive very quickly with a min-
imum of technical assistance.

To see the first Operational Assistant menu, enter GO ASSIST. Figure 13.16 shows this
menu.

ASSIST AS/400 Operational Assistant (TM) Menu
System: NEPAS4

To select one of the following, type its number below and press Enter:

1. Work with printer output
2. Work with jobs
3. Work with messages
4. Send messages
5. Change your password

75. Information and problem handling

80. Temporary sign-off

13.4.4 Other Helpful Features 187

Type a menu option below

F1=Help F3=Exit F9=Command line F12=Cancel

Figure 13.16 Operational Assistant main menu.

188 Chapter 13 Getting Started with OS/400

Chapter 14 Using Files in OS/400
14.1 The 12 Most Important Commands
OS/400 seems to have a larger number of crucial commands than other operating systems be-
cause of the file/member system. You want the ability to perform the basic operations on files
and on members within files. This doesn't really require memorizing more commands, be-
cause the OS/400 menus and on-line help make it easy to find the commands whose names
you can't remember.

The twelve most important commands in OS/400 are:

DSPLIB lists the files (and other objects) in a library.

DSPFD lists the members in a file.

DSPPFM displays a file or file member's contents.

CRTDUPOBJ copies files and other objects.

CPYSRCF copies file members.

RNMOBJ renames files and other objects.

RNMM renames file members.

DLTF deletes files.

RMVM deletes file members.

EDTLIBL edits your library list.

CRTLIB creates libraries.

DLTLIB deletes libraries.

14.1.1 Common Error Messages

Remember, the greatest thing about OS/400 error messages is that you can always move your
cursor to them and press F1 to display an explanation of what they mean if a message is too
cryptic. For example, let's look at the error message that you get when you pick a non-ex-
istent menu choice. After you enter 75 at the command line while viewing the main menu,
OS/400 responds with the error message shown at the bottom of Figure 14.1.

189

MAIN AS/400 Main Menu
System: NEPAS4

Select one of the following:

1. User tasks
2. Office tasks
3. General System Tasks
4. Files, libraries, and folders
5. Programming
6. Communications
7. Define or change the system
8. Problem handling
9. Display a menu
10. Information Assistant options
11. PC Support tasks

90. Sign off

Selection or command
===> 75

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=User support
F23=Set initial menu
Specified menu selection is not correct.

Figure 14.1 Main menu with error message for incorrect menu choice.

If you move your cursor to the line "Specified menu selection is not correct" and press F1,
OS/400 displays the more detailed "Additional Message Information" about the error mes-
sage, as shown in Figure 14.2.

Additional Message Information

Message ID : CPD6A64
Date sent : 07/10/93 Time sent : 19:33:53

Message : Specified menu selection is not correct.

Cause : The selection that you have specified is not correct for
one of the following reasons:

-- The number selected was not valid.
-- Something other than a menu option was entered on the option line.

190 Chapter 14 Using Files in OS/400

Recovery . . . : Select a valid option and press the Enter or Help key
again.

Bottom
Press Enter to continue.

Figure 14.2 Additional information about the "Specified menu selection is not correct" error message.

Another common error message tells you that OS/400 can't find an object that you asked to
use. If you enter a command that uses a non-existent object named "POTRZEBIE" (for ex-
ample, try entering GO POTRZEBIE) you get an error message similar to this:

Object POTRZEBIE in library *LIBL not found

*LIBL is the OS/400 predefined value that refers to the library list. The error message means
that the object POTRZEBIE cannot be found in any of the libraries in the library list.

*LIBL, as a representative of all the libraries in the library list, sometimes takes the place in
error messages of a specific library name. If you had indicated a specific non-existent library
when you identified the object to use (for example, LOOBRARY/POTRZEBIE), you might
have seen that library's name instead of *LIBL in the error message.

The "not found" error message can be more specific about what it's looking for than just call-
ing it an "object." For example, if you were copying a file and specified a non-existent "from
file" (that is, the file that you are making a copy of, or copying "from") called HELLFILE,
the error message would tell you the following:

From-file HELLFILE in *LIBL not found.

Entering the non-existent command CLEANRUG at the command prompt gives you this error
message:

Command CLEANRUG in library *LIBL not found.

Let's say that the POTRZEBIE program does exist in the library SUPERLIB, but you're not
authorized to use it. You'll get a fairly straightforward error message:

14.1.1 Common Error Messages 191

Not authorized to object POTRZEBIE in SUPERLIB type *PGM.

One more hint about dealing with errors: if you make a mistake when filling out a command
prompt display (the screen you get when you press F4 after entering a command at the com-
mand line) OS/400 returns you to the previous screen and displays the command line version
of the command on the command line with the appropriate error message underneath it. Of
course you can move your cursor to the error message and press F1, but if you want some
background on using that command, you can also move your cursor to the command line and
press F1.

14.1.2 Listing File Names

On the AS/400, you'll want to list more than just file names. In addition to listing the names
of a given library's files and other objects, it's also handy to be able to see the members of a
given file. This is covered in section 14.1.2.1, "Listing a File's Members."

Use the Display Library command (DSPLIB) to list the objects in a library. (Don't confuse it
with the similarly spelled Display Library List command, DSPLIBL—see section 14.1.7,
"Editing Your Library List," for more information on this.)

From the command line, you tell OS/400 to list the contents of a particular library by entering
DSPLIB with the library name as the LIB parameter. For example, to look at the JOEUSER
library, Joe would enter the following:

DSPLIB LIB(JOEUSER)

If you leave out the LIB() part, the system assumes that the DSPLIB command's single
parameter is a library name, so the following works just as well:

DSPLIB JOEUSER

If you type DSPLIB with no parameters and press Enter, the system assumes a default para-
meter of LIB(*LIBL), which tells it "I want to look at a list of objects from one of the lib-
raries in my library list. List them out and then I'll pick one." This brings up a screen like the
one shown in Figure 14.3.

Display Libraries
System: NEPAS4

Libraries: *LIBL

Type options, press Enter.

192 Chapter 14 Using Files in OS/400

5=Display objects in library

Opt Library Type Text
QSYS SYS System Library
QSYS2 SYS System Library for CPI's
QUSRSYS SYS *IN USE
QHLPSYS SYS
JOEUSER CUR Joe User's Library
QTEMP USR
QGPL USR GENERAL PURPOSE LIBRARY
QUSRTOOL USR
QTEMP USR
QGDDM USR

Bottom
F3=Exit F12=Cancel F17=Top F18=Bottom

Figure 14.3 Sample list of libraries displayed when you press Enter after entering DSPLIB with no
parameters.

As the display tells you, all you need to do to list the objects in one of these libraries is to
enter a 5 in the Opt column next to a library name and press Enter. For example, entering a 5
next to QGPL and pressing Enter displays a screen similar to the one shown in Figure 14.4.
Note the "More..." message at the bottom; QGPL has more objects than will fit on one Dis-
play Library screen, and you will need your Page Down and Page Up (or Scroll Up and Scroll
Down, respectively) keys to see the other objects in the list.

Display Library

Library : QGPL Number of objects . : 208
Type : PROD ASP of library . . . : 1
Create authority . . : *SYSVAL

Type options, press Enter.
5=Display full attributes 8=Display service attributes

Opt Object Type Attribute Freed Size Text
ALRC *PGM CLP NO 7680 Does ADDLIBLE NEW (
CC *PGM C NO 54784 compile with as400
CC_CMD *PGM C NO 55808 compile with as400
CCSYSTEM_ *PGM C NO 12288
DKJFOCCLP *PGM CLP NO 22528

14.1.2 Listing File Names 193

DKJSINKC *PGM CLP NO 19968
FUNCLP *PGM CLP NO 22016
FUNCLP2 *PGM CLP NO 20992 FUN System Developm
INZQBATCH *PGM CLP NO 11776 Pgm called when QBA
QDCUPF *PGM PAS NO 44544
QRZHWUG1 *PGM 0 *NOT AUTHORIZED

More...
F3=Exit F12=Cancel F17=Top F18=Bottom
(C) COPYRIGHT IBM CORP. 1980, 1992.

Figure 14.4 List of objects in the QGPL library.

As described earlier, the commands

DSPLIB LIB(QGPL)

or

DSPLIB QGPL

would have taken you right from the command line to the list of objects in the QGPL library.

To the right of the Opt column, the other columns in the library object list tell you the fol-
lowing information:

Object The object's name.

Type The object's type, as described in section 13.3, "How Files Are
Organized."

Attribute If applicable, the object's attribute, as described in section 13.3.1,
"Physical, Source Physical, and Logical Files."

Freed Whether the object's storage space has been freed up. This only
concerns advanced users.

Size The object's size in bytes. If you are not authorized to use the ob-
ject, a zero will appear here.

Text Descriptive text that can be added when the object is created. If
the whole description does not appear on the library object list
screen, entering either 5 or 8 in the Opt column displays the

194 Chapter 14 Using Files in OS/400

complete description along with other technical information
about the object.

According to the Type column in Figure 14.4, most of the objects in the QGPL library look
like programs. A personal library would have more objects of type *FILE. For example, en-
tering the command

DSPLIB LIB(JOEUSER)

shows the object's in Joe User's library, as shown in Figure 14.5.

Display Library

Library : JOEUSER Number of objects . : 31
Type : PROD ASP of library . . . : 1
Create authority . . : *SYSVAL

Type options, press Enter.
5=Display full attributes 8=Display service attributes

Opt Object Type Attribute Freed Size Text
SETUP *PGM CLP NO 1022
STRIPPRN *PGM C NO 3234 Strip codes from pr
RPGTEST *PGM RPG NO 894 My first RPG progra
JOEUSER *OUTQ NO 4608
OUTPUT *OUTQ NO 8704
BUDGET93 *FILE PF NO 11822
BUDGET94 *FILE PF NO 10432
D2235324 *FILE PF NO 18944
DEF *FILE PF NO 15360
JOETEST *FILE PF NO 9216 Sample data to play
SALES93 *FILE PF NO 7320

More...
F3=Exit F12=Cancel F17=Top F18=Bottom
(C) COPYRIGHT IBM CORP. 1980, 1992.

Figure 14.5 Objects in Joe User's personal library.

14.1.2.1 Listing a File's Members

The Display File Description command (DSPFD) will tell you more than you ever want to
know about a given file. Fortunately, there is a way to tell this command "don't tell me every

14.1.2 Listing File Names 195

little technical detail about this file; just tell me the file's members." As its command prompt
display tells you, it has an optional field called "Type of information." The default value is
*ALL, but if you don't want to scroll through all the technical details to find the member list,
you can enter a TYPE of *MBRLIST. If Joe User wants to enter a command at the command
line that displays a list of his CL program source code members, which are in the file QCLS-
RC, he enters

DSPFD FILE(JOEUSER/QCSRC) TYPE(*MBRLIST)

or even just this:

DSPFD QCSRC TYPE(*MBRLIST)

The first screen displayed by this command shows some summary information about the file.
To see the beginning of the list of member names, press Page Down (or Scroll Up) once.

Figure 14.6 shows the results of paging down once after executing this command with the
JOEUSER/QCSRC file. As you can see, DSPFD shows more than just the members'
names—it also shows the size, creation date, and the date and time that each member was last
modified.

Display Spooled File
File : QPDSPFD Page/Line 1/36
Control Columns 1 - 78
Find
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
CONVERT 25322 C 07/18/93 07/18/93 16:07:37 4

Text: Conversion routines
CTEST1 4096 C 07/09/93 05/16/93 09:26:36 4

Text: my first C/400 program
CTEST2 6144 C 07/16/93 05/16/93 09:35:45 30

Text: Another C programming test
GETDATA 4096 C 07/18/93 07/18/93 16:02:48 20

Text: Get data from main file
LKNGLASS 8198 C 07/16/93 07/16/93 09:44:17 4

Text: Alice's Adventures Through the Looking Glass
MAIN344 4096 C 07/18/93 07/18/93 16:04:11 20

Text: Module 344 of main procedure
MAIN346 9416 C 07/18/93 07/30/93 09:23:45 20

Text: Module 346 of main procedure
MAIN347 12844 C 07/18/93 07/23/93 13:36:11 20

Text: Module 347 of main procedure
More...

F3=Exit F12=Cancel F19=Left F20=Right F24=More keys

196 Chapter 14 Using Files in OS/400

Figure 14.6 The members of Joe User's QCSRC file as listed by the DSPFD command.

14.1.2.2 Listing a File's Members with the Program Development Manager

Another quick way to list a file's members is to use the Work with Members using the Pro-
gram Development Manager WRKMBRPDM command. (Like OfficeVision, the Program De-
velopment Manager is an IBM "Licensed Program Product" or "LPP" and therefore not in-
cluded as part of OS/400, so you may not have it installed on your system.)

Entering the command

WRKMBRPDM FILE(libname/filename)

displays a file's members on a list display. Because the program lets you "work with" the
members, you can use this list to edit, copy, delete, display, print and rename a file's mem-
bers, as we'll see later in this chapter. Figure 14.7 shows how WRKMBRPDM lists the members
of Joe User's QCSRC file.

Work with Members Using PDM

File QCSRC
Library JOEUSER Position to

Type options, press Enter.
2=Edit 3=Copy 4=Delete 5=Display 6=Print
7=Rename 8=Display description 9=Save 13=Change text ...

Opt Member Type Text
CONVERT C Conversion routines
CTEST1 C my first C/400 program
CTEST2 C Another C programming test
GETDATA C Get data from main file
LKNGLASS C Alice's Adventures Through the Looking Glass
MAIN344 C Module 344 of main procedure
MAIN346 C Module 346 of main procedure
MAIN347 C Module 347 of main procedure

More...
Parameters or command
===>
F3=Exit F4=Prompt F5=Refresh F6=Create
F9=Retrieve F10=Command entry F23=More options F24=More keys

14.1.2 Listing File Names 197

Figure 14.7 The members of Joe User's QCSRC file as listed by the WRKMBRPDM command.

Many people find WRKMBRPDM easier to use than DSPFD, but keep in mind that it is not
available on all AS/400 installations.

14.1.3 Displaying a Text File's Contents

When you want to see text stored in a file on an AS/400, you want to see a particular member
of a file. Do this with the Display Physical File Member (DSPPFM) command. This command
needs to know the name of the file and the name of the member that you want to see within
that file. (It doesn't really need to know a member name; if you fail to supply one, it displays
the first member of that file.)

In Joe User's QCSRC file, he has a C source code member called WNDRLAND that displays a
passage from "Alice in Wonderland." To view it, he enters the following:

DSPPFM FILE(JOEUSER/QCSRC) MBR(WNDRLAND)

(If the JOEUSER library is in Joe's library list he doesn't really need to include the qualified
object name for QCSRC. He could have just written FILE(QCSRC) as the DSPPFM com-
mand's first parameter.) Figure 14.8 shows the result of this command: the Display Physical
File Member screen with the first 15 lines of the WNDRLAND program.

Display Physical File Member
File : QCSRC Library : JOEUSER
Member : WNDRLAND Record : 1
Control Column : 1
Find
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
000100930709#include <stdio.h>
000200930709main() {
000300930716 printf("Soon her eye fell on a little glass box that was lying\
000400930716 printf("under the table: she opened it, and found in it a very\
000500930716 printf("small cake, on which the words \"EAT ME\" were \n");
000600930716 printf("beautifully marked in currants. \"Well, I'll eat it,\"
000700930716 printf("said Alice, \"and if it makes me grow larger, I can\n")
000800930716 printf("reach the key; and if it makes me grow smaller, I can\n
000900930716 printf("creep under the door: so either way I'll get into the \
001000930716 printf("garden, and I don't care which happens!\"\n\n");
001100930716 printf("She ate a little bit, and said anxiously to herself\n")
001200930716 printf("\"Which way? Which way?\", holding her hand on the top
001300930716 printf("of her head to feel which way it was growing; and she\n

198 Chapter 14 Using Files in OS/400

001400930716 printf("was quite surprised to find that she remained the same
001500930716 printf("size. To be sure, this is what generally happens when\

More...
F3=Exit F12=Cancel F19=Left F20=Right F24=More keys

Figure 14.8 The first fifteen lines of the WNDRLAND program as displayed by DSPPFM.

This file has three columns, although the first two appear as one big column. These two show
the number and the date of the last change for each line. In Figure 14.8, the first two lines
were created on July 9, 1993, and the rest were added a week later on the 16th.

The third column, which takes up most of the screen, is the text file itself. Lines that are too
long to fit on the screen end with the slash (\) character; we'll see a way to scroll to the right
to see what we're missing. (The other slashes are part of the C program. A slash before a quo-
tation mark tells the computer that that quotation mark is part of the text that the program
should output onto the screen, and a slash before the letter "n" causes a carriage return in the
program's output.)

To move around in the file, the description of the function keys at the bottom of the screen
shows that F19 and F20 will scroll a screenful to the left and right. Your Page Down (or
Scroll Up) and Page Up (or Scroll Down) keys will have the same effect here that they have
when you view anything else too long to fit on the screen.

The following commands, which you enter in the Control field at the top of the screen,
give you additional options for scrolling text that doesn't fit on the screen:

n Make line n the top line on the screen.

+n Move forward n lines.

-n Move back n lines.

W+n Shift the text n characters to the left.

W-n Shift the text n characters to the right.

The Find field at the top of the screen makes it easy to search for a string of text. Enter a
string there, press F16, and the system puts the first line with that string near the top of the
screen with the target string highlighted. (Although there was nothing at the bottom of Figure

14.1.3 Displaying a Text File's Con-
tents 199

14.8 about F16, pressing F24 for "More keys" once or twice would have shown you that F16
meant "Find.") Figure 14.9 shows the result of a search for the string "dull and stupid." Note
the message at the bottom of the screen that tells the column and record (that is, line of the
file) where the string was found.

Display Physical File Member
File : QCSRC Library : JOEUSER
Member : WNDRLAND Record : 17
Control Column : 5
Find dull and stupid
+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8..
00930716 printf("of expecting nothing but out-of-the-way things to\n");
00930716 printf("happen, that it seemed quite dull and stupid for life\n");
00930716 printf("to go on the common way.\n");
00930709}

****** END OF DATA ******

Bottom
F3=Exit F12=Cancel F19=Left F20=Right F24=More keys
String found in column 53 in record 18.

Figure 14.9 Result of searching the WNDRLAND file for the string "dull and stupid."

When you are finished looking at the file member, press F3 to exit DSPPFM.

14.1.3.1 Displaying a File's Members with the Program Development Manager

If you use the Program Development Manager to list the names of a file's members, as shown
in section 14.1.2.2, "Listing a File's Members with the Program Development Manager," you
can display one of the listed members by simply entering the number 5 next to that member's
name in the Opt column.

14.1.4 Copying Files

OS/400 does have a command called CPYF to copy files, but its most popular uses can be a

200 Chapter 14 Using Files in OS/400

bit specialized. An easier, more versatile command is "Create Duplicate Object," or
CRTDUPOBJ.

The CRTDUPOBJ needs to know four things:

OBJ() The name of the object being duplicated.

FROMLIB() The library where this object is stored.

OBJTYPE() The type of the object being duplicated. Because you can have
two objects with the same name in the same library (as long as
they have different types) specifying the object type tells OS/400
more specifically which one you want to duplicate. If you want
to copy everything in the FROMLIB() library with the name
given by OBJ(), enter the predefined value *ALL as the OBJ-
TYPE. To copy a file object, enter an OBJTYPE() of *FILE.

NEWOBJ() The new object's name. If an object with this name already ex-
ists, OS/400 displays an error message and does not make the
copy.

When used to copy a file, CRTDUPOBJ copies the file and all of its members. But it doesn't
necessarily copy the contents of these members—you have to tell it to do that with an addi-
tional parameter: DATA(). A value of *NO is the default; this tells CRTDUPOBJ not to copy
the records in the file's members. A parameter of DATA(*YES) tells CRTDUPOBJ to copy
the members' text when the file is copied.

To copy his QCSRC file and all the C source code in it to a file called CCODE, Joe User could
enter the following:

CRTDUPOBJ OBJ(QCSRC) FROMLIB(JOEUSER) OBJTYPE(*ALL) NEWOBJ(CCODE) DATA(*YES)

What if Joe tries this command without the parameter names? He enters this:

CRTDUPOBJ QCSRC JOEUSER *ALL CCODE

and sees this:

Library CCODE not found.

If the fourth parameter doesn't have a parameter name, CRTDUPOBJ assumes that it's the
name of the library to which you are copying the object—the TOLIB(). If you leave out the
TOLIB(), CRTDUPOBJ assumes that you want to put the copy in the same library as the ori-

14.1.4 Copying Files 201

ginal. If you leave out the TOLIB() but want to include more than three parameters,
everything after the third must therefore have a parameter name. Otherwise, the program
thinks that your fourth parameter is the TOLIB(). In Joe's last attempt at copying QCSRC,
CRTDUPOBJ saw CCODE in the fourth position, looked for a library by that name, and didn't
find it.

Positional parameters are not an all-or-nothing proposition. You can include positional para-
meters without the parameter names and parameters that include the parameter names in the
same command, as long as all positional parameters come before all named parameters. Joe
will have no trouble if he enters the command like this:

CRTDUPOBJ QCSRC JOEUSER *ALL NEWOBJ(QCSRC1) DATA(*YES)

14.1.4.1 Copying Members

The Copy Source File (CPYSRCF) command lets you copy individual source file members.
The copy can go in the same source file or to a different one.

CPYSRCF needs to know at least three things:

FROMFILE() The file with the member you are copying.

TOFILE() The file where the copy should go. Even if the copy will go in
the same file as the original, this must be included.

FROMMBR() The name of the member being copied.

When you copy a member from one file to another, the new member can have the same name
as the old one. If your copy is going to be in the same file as the original (that is, the TO-
FILE() is the same as the FROMFILE()), the command will need to know something else:
the name that you want to give the copy. Use the TOMBR() parameter for this.

If you specify an existing file member as the TOMBR(), CPYSRCF copies the FROMMBR()
right over it with no warning.

Joe User's first C source code program on the AS/400 was the member CTEST1 in his QC-
SRC file. He wants to try a variation on this program, but he wants to keep the original intact,
so he makes a copy in the same file called CTEST1A with the following command:

CPYSRCF FROMFILE(JOEUSER/QCSRC) TOFILE(JOEUSER/QCSRC) FROMMBR(CTEST1) TOMBR(CTEST1A)

He can then edit CTEST1A to try out his new ideas.

Next, Joe's QCSRC file has a member called CONVERT which has the code for several data

202 Chapter 14 Using Files in OS/400

conversion routines. He needs this in another file called BIOINPUT and copies it with the
following command:

CPYSRCF QCSRC BIOINPUT CONVERT

Because all the parameters that he needed to enter were required, he entered them as position-
al parameters without their parameter names and saved himself some typing.

14.1.4.2 Copying Members with the Program Development Manager

Once you've listed a file's members with the Program Development Manager, you can copy
one of these members by entering the number 3 next to that member's name in the Opt
column. The Program Development Manager then displays the screen shown in Figure 14.10
to find out the name that you want to give the new member. If you want to put the copy in a
different file or library, enter their names here as well. (If you don't want to put it in a new file
or library, note that the FROMFILE's file and library names are already entered as the default
values.)

Copy Members

From file : QCSRC
From library : JOEUSER

Type the file name and library name to receive the copied members.

To file QCSRC Name, F4 for list
To library JOEUSER

To rename copied member, type New Name, press Enter.

Member New Name
CTEST1 __________

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel
F19=Submit to batch

Figure 14.10 The Program Development Manager's "Copy Members" display.

14.1.5 Renaming Files 203

14.1.5 Renaming Files

Instead of a command for renaming files, OS/400 has a command for naming objects: RN-
MOBJ. This makes things easier, because you use the same command to rename files, pro-
grams, and libraries.

If you enter RNMOBJ by itself and press F4, you get the command prompt display shown in
Figure 14.11. Enter the object's name in the Object field, its library in the Library field
(if you leave the default value of *LIBL, OS/400 will search the library list for the appropri-
ate one) and the object's type in the field with that name. (As with copying, you need to spe-
cify this because you can have two objects with the same name in the same library, as long as
they have two different object types.) In the New object field, enter the new name for the
object.

Rename Object (RNMOBJ)

Type choices, press Enter.

Object Name
Library *LIBL Name, *LIBL, *CURLIB

Object type *ALRTBL, *AUTL, *CFGL...
New object Name

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 14.11 Rename Object command prompt display.

To rename a file called SALES93 to SALES93A, enter SALES93 in the Object field,
*FILE in the Object type field, and SALES93A in the New object field. Assuming
that SALES93 was in a library in your library list, you could leave the Library field at its

204 Chapter 14 Using Files in OS/400

default value of *LIBL.

To do the same thing from the command line, enter this command:

RNMOBJ OBJ(SALES93) OBJTYPE(*FILE) NEWOBJ(SALES93A)

After you rename a file with either the command prompt display or the command line, OS/
400 displays a message confirming the rename:

Object SALES93 in JOEUSER type *FILE renamed SALES93A.

To rename a program, use the same syntax—just be sure to put *PGM as the object type:

RNMOBJ OBJ(RPGTEST) OBJTYPE(*PGM) NEWOBJ(EMPRPT)

Renaming a library would be similar, except that you enter an object type of *LIB.

14.1.5.1 Renaming Members

Use the RNMM command to rename a member within a file. It needs to know three things:

FILE() The file where the member can be found.

MBR() The name of the file to rename.

NEWMBR() The member's new name.

In the following example, Joe User renames the CTEST1 member of his QCSRC file with a
new name of CTEST1A:

RNMM FILE(QCSRC) MBR(CTEST1) NEWMBR(CTEST1A)

Because the command needs such simple, obvious information, it's very easy to enter it with
positional parameters instead. The following command works just as well:

RNMM QCSRC CTEST1 CTEST1A

14.1.5.2 Renaming Members with the Program Development Manager

Once you've listed a file's members with the Program Development Manager, you can rename
one by entering the number 7 next to that member's name in the Opt column. The Program
Development Manager will display the "Rename Members" screen, which has only one field
for you to fill out: the new name of the member.

14.1.6 Deleting Files 205

14.1.6 Deleting Files

Delete files with the DLTF command. Delete the file CTEST1A by entering

DLTF FILE(SALES93A)

or by entering the positional version:

DLTF SALES93A

Because programs are a different object type from files, there is a different command to de-
lete them: DLTPGM. It uses the same syntax as DLTF. To delete a program called CTEST1,
enter this:

DLTPGM CTEST1

14.1.6.1 Deleting Members

Use the RMVM command to delete a member from a file. The RMVM command needs to know
the name of the file and the name of the member within that file to delete. To delete the CT-
EST1A member from the QCSRC file, enter

RMVM FILE(QCSRC) MBR(CTEST1A)

or the positional version:

RMVM QCSRC CTEST1A

14.1.6.2 Deleting Members with the Program Development Manager

Once you've listed a file's members with the Program Development Manager, you can delete
one of these members by entering the number 4 next to that member's name in the Opt
column.

The Program Development Manager will display the "Delete Members" screen. This has no
fields to fill out; it shows the name of the member that you want to delete and a message at
the top that tells you to "Press Enter to confirm your choices for Delete." (The plural
"choices" is used because you could have entered the number 4 next to more than one mem-
ber.) To abort the deletion, press F12 to return to the "Work with Members Using PDM" list
of the file's members.

14.1.7 Editing Your Library List

Use the Edit Library List (EDTLIBL) command to do just what it says. (The Change Library

206 Chapter 14 Using Files in OS/400

List command—CHGLIBL—completely replaces the library list with a new one, as opposed
to merely making edits. That's for advanced users, and is particularly useful in CL programs
where altering the library list needs to be automated.)

The Display Library List command (DSPLIBL) displays a list of the libraries in your mem-
ber list, if you just want to see what your library list looks like. (Don't confuse this with
DSPLIB, the "Display Library" command, which lists the objects in a library.) Although
DSPLIBL is not really an essential command, taking a look at its output makes it easier to
understand some important things about library lists. Figure 14.12 shows the result when Joe
User enters the DSPLIB command, which takes no parameters.

Display Library List
System: NEPAS4

Type options, press Enter.
5=Display objects in library

Opt Library Type Text
QSYS SYS System Library
QSYS2 SYS System Library for CPI's
QUSRSYS SYS *IN USE
QHLPSYS SYS
JOEUSER CUR Joe User's library
URBASE USR UpRiteBase system library
QTEMP USR
QGPL USR GENERAL PURPOSE LIBRARY
USERTOOLS USR
QUSRTOOL USR

Bottom
F3=Exit F12=Cancel F17=Top F18=Bottom
(C) COPYRIGHT IBM CORP. 1980, 1992.

Figure 14.12 DSPLIBL output for Joe User.

When Joe enters EDTLIBL, he will see a list of libraries, but he won't see as many as he sees
when he enters DSPLIBL. That's because a complete library list has several parts, and
EDTLIBL only lets him edit one part: the user part. Figure 14.13 shows what happens when
he enters EDTLIBL.

14.1.7 Editing Your Library List 207

Edit Library List

Type new/changed information, press Enter.
To add a library, type name and desired sequence number.
To remove a library, space over library name.
To change position of a library, type new sequence number.

Sequence Sequence Sequence
Number Library Number Library Number Library
010 120 230
020 URBASE 130 240
030 QTEMP 140 250
040 QGPL 150
050 USERTOOLS 160
060 QUSRTOOL 170
070 180
080 190
090 200
100 210
110 220

F3=Exit F5=Refresh F12=Cancel

Figure 14.13 Edit Library List (EDTLIBL) screen.

The user part of the library list, which comes at the end of the complete library list, is the part
that you can control. You can reorder, delete, and add to its list of libraries.

As it shows in Figure 14.13, you manipulate the libraries and their order in the list by entering
their names in the Library column and entering new numbers in the Sequence Number
column. Each time you press Enter, the Edit Library List program makes (or tries to make)
the changes that you indicated and reorders the numbers. The first library name on the list is
always next to the number 20; you use the number 10 to indicate a library name that you want
to move to the beginning of the list. For example, Figure 14.14 shows that Joe entered a "10"
over the "40" next to the QGPL library's name.

Edit Library List

Type new/changed information, press Enter.

208 Chapter 14 Using Files in OS/400

To add a library, type name and desired sequence number.
To remove a library, space over library name.
To change position of a library, type new sequence number.

Sequence Sequence Sequence
Number Library Number Library Number Library
010 120 230
020 URBASE 130 240
030 QTEMP 140 250
010 QGPL 150
050 USERTOOLS 160
060 QUSRTOOL 170
070 180
080 190
090 200
100 210
110 220

F3=Exit F5=Refresh F12=Cancel

Figure 14.14 Entering the new sequence number to move QGPL to the top of the library list.

Figure 14.15 shows that after he presses Enter, EDTLBL moves QGPL to the beginning of the
list, ahead of the URBASE library. The list has been renumbered, and QGPL becomes the new
line 20, now that it's first on the list.

Edit Library List

Type new/changed information, press Enter.
To add a library, type name and desired sequence number.
To remove a library, space over library name.
To change position of a library, type new sequence number.

Sequence Sequence Sequence
Number Library Number Library Number Library
010 120 230
020 QGPL 130 240
030 URBASE 140 250
040 QTEMP 150
050 USERTOOLS 160

14.1.7 Editing Your Library List 209

060 QUSRTOOL 170
070 180
080 190
090 200
100 210
110 220

F3=Exit F5=Refresh F12=Cancel

Figure 14.15 The effect of pressing Enter after entering a 10 next to the QGPL library to move it to the front of
the list.

To move a library name between two others, enter a number in the sequence column next to it
that falls between the two numbers at its destination. For example, to move the URBASE lib-
rary name between the USERTOOLS and QUSRTOOL libraries, you could enter the number
55 (or any other number between 50 and 60) next to it and press Enter.

To delete a library from the library list, type over its name with the space bar and press Enter.

To insert a new library:

1. Enter its name in any blank space in the Library column.

2. Give it a number showing where you want it to be placed in the list.

3. Press Enter.

After you make any successful change to your library list, you'll see the message "Library list
changed" at the bottom of your screen.

A typical unsuccessful change would be the attempted addition of a non-existent library. If
you tried to add the non-existent library POTRZEBIE to your list, you get the message "Lib-
rary POTRZEBIE not found."

Any changes you make to your library list will only remain in effect for the current OS/400
session. For help in making permanent changes to your library list, see your system adminis-
trator.

14.1.7.1 Changing Your Current Library

There are two ways to reset your current library:

210 Chapter 14 Using Files in OS/400

• As we saw in section 13.1, "Starting Up," you can enter a specific library in the "Current
library" field of the signon screen when you enter you user ID and password.

• You can use the CHGCURLIB command. This command's command prompt display
shows that it only needs one parameter: the name of the library to make current. To
change your current library to one called URBASE from the command line, enter

CHGCURLIB CURLIB(URBASE)

or even just this:

CHGCURLIB URBASE

14.1.8 Creating and Deleting Libraries

There's a very good chance that the first time you sign on, you will find that the system ad-
ministrator has created a personal library named after your user ID and that you do not have
the privileges to create or delete other libraries. In this situation, you keep your files in your
own library and leave the creation and deletion of libraries to the system administrator.

On the other hand, you may be told "Here's your user ID name. The first thing you have to do
when you sign on is to create a library for yourself." The Create Library (CRTLIB) command
makes it very easy. To create a library called MYLIB, enter the following:

CRTLIB LIB(MYLIB)

Because libraries are objects, just as files are, you follow the same rules for making up library
names that you do for file names. (For more information, see section 13.2, "File Names.")
The one extra rule—a guideline, really, because the system won't prevent you from doing
this—is to avoid beginning a library name with the letter "Q," because this indicates a system
library, and could give other users the wrong idea.

If the command worked, you will see the message "Library MYLIB created" at the bottom of
your screen.

To delete a library, use the Delete Library (DLTLIB) command:

DLTLIB LIB(MYLIB)

If successful, you will see the message "Library MYLIB deleted" at the bottom of your
screen.

Because both of these commands have only one required parameter, there is no problem with

14.1.8 Creating and Deleting Libraries 211

entering that parameter without its parameter name. Entering

CRTLIB MYLIB

or

DLTLIB MYLIB

will both work.

212 Chapter 14 Using Files in OS/400

Chapter 15 The OS/400 SEU Text Editor
As we saw in section 13.3.1, "Physical, Source Physical, and Logical Files," the most popular
use of the OS/400 Source Entry Utility (SEU) text editor—in fact, the reason for its name—is
for creating and editing source code. However, you don't have to limit your use of SEU to
this; you can use it to create any text file you like.

15.1 Entering SEU
To enter SEU, use the Start SEU command (STRSEU). If you enter it with no parameters and
press F4, you'll see its command prompt display screen, as shown in Figure 15.1.

Start Source Entry Utility (STRSEU)

Type choices, press Enter.

Source file *PRV Name, *PRV
Library Name, *LIBL, *CURLIB, *PRV

Source member *PRV Name, *PRV, *SELECT
Source type *SAME Name, *SAME, BAS, BASP, C...
Option *BLANK *BLANK, ' ', 2, 5, 6
Text 'description' *BLANK

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 15.1 The STRSEU text editor's command prompt display screen.

You need to tell STRSEU the file with the member that you want to edit and the name of the
member. Note how the default values for both of these are *PRV; these mean "previous
value." In other words, if you had entered STRSEU with no parameters and pressed Enter, it

213

would have brought up the file member that you had most recently edited.

STRSEU will not create a new file for you, but it will create a new member in an existing file.
In addition to entering the member's name in the "Source Member" field, enter its type in the
"Source Type" field. The default source type is TXT. (Even if the member exists, nothing
prevents you from entering a new value in the "Source Type" field. In fact, this is the easiest
way to change a file member's type.)

Of course, you could skip the command prompt display screen by entering the file and mem-
ber name at the command line. For example, let's say you have a file called YEATS and you
want to edit a member called BYZANTIUM. If you include the parameter names, you would
enter the following:

STRSEU SRCFILE(YEATS) SRCMBR(BYZANTIUM)

If you wanted to leave out the parameter names and enter the file and member names as posi-
tional parameters, you would enter this:

STRSEU YEATS BYZANTIUM

SEU starts up, and if the member exists, it shows the beginning of the member. Otherwise, it
shows a blank editing area and a message at the bottom informing you that the member has
been added to the file. Figure 15.2 shows an example of this.

Columns . . . : 1 71 Edit JOEUSER/YEATS
SEU==> BYZANTIUM
FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

*************** Beginning of data ************************************
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''

****************** End of data ***************************************

214 Chapter 15 The OS/400 SEU Text Editor

F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor
F16=Repeat find F17=Repeat change F24=More keys
Member BYZANTIUM added to file JOEUSER/YEATS.

Figure 15.2 Opening SEU screen for a new member.

The SEU==> prompt points to the SEU command line, where you can enter certain SEU
commands. The F10 key moves the cursor back and forth between the SEU command line
and the data area.

The column of apostrophes (''''''') down the left shows the location of the sequence
number field for each line. This will show numbers next to a file member's lines once they
exist; before then, the apostrophes show places where you can enter new lines of text. This is
where you enter the commands known as line commands, which you use to delete, copy, and
move lines of your file member.

The Columns: 1 71 message in the upper-left show that you are looking at columns 1
through 71 of the file member named in the upper-right. SEU can edit file members that are
too wide for the display and has commands to scroll to the left or right to look at different
parts of it. In these situations, the Columns part of the screen is pretty handy.

15.1.1 Entering SEU from the Program Development Manager

When you've listed a file's members with the Program Development Manager, you can edit
one of these members by entering the number 2 next to that member's name in the Opt
column. The Program Development Manager will start up SEU with that member for you to
edit.

15.2 Line Commands
In addition to command-line commands entered at the SEU==> prompt, many SEU opera-
tions are performed with line commands entered in the sequence number column. You can
add, delete, copy, and move lines by entering one- or two-character commands in this column
and pressing the Enter key. (This will be familiar to users of the MVS ISPF editor, and CMS
users who detect a similarity to the XEDIT text editor will find that line commands are SEU's
counterpart to XEDIT line commands.)

Line commands are not limited to the sequence number column of the contents of your file;
you can also enter them in the sequence number column of the *** Beginning of

15.1.1 Entering SEU from the Program
Development Manager 215

data *** and *** End of data *** lines.

You can enter a line command anywhere on the sequence number. For example, you can
enter the command to delete two lines (D2) on the line numbered "0001.00" like this

D201.00

or

00D2.00

This can obviously lead to confusion if you enter line commands that use numbers (like D2)
on a sequence number column that is displayed as numbers instead of as apostrophes (like
"0001.00") so be careful.

If you ever enter a line command and then realize, before you press Enter, that you didn't
mean to enter it, just type spaces over it. The next time you press Enter, SEU restores the
numbers that were there before you entered the line command.

15.2.1 Adding New Lines

We saw that apostrophes next to a line on the display mean that you can enter new lines of
text there. Since new lines are automatically numbered when you press Enter, all existing
lines will have numbers to the left of them. You can type over the text of existing lines as eas-
ily as you can enter new text on blank lines.

When you press Enter, SEU removes any blank lines that still have apostrophes in the se-
quence number field and that are below the last newly entered line, and the End of data
message jumps up to just below the last real line of the file member.

Figure 15.3 shows the same screen as Figure 15.2 with several lines of text that Joe User has
added. He has not pressed Enter yet.

Columns . . . : 1 71 Edit JOEUSER/YEATS
SEU==> BYZANTIUM
FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

*************** Beginning of data ************************************
''''''' Marbles of the dancing floor
''''''' Break bitter furies of complexity
''''''' Those images that yet
''''''' Fresh images beget
''''''' That dolphin-torn, that gong-tormented sea.
'''''''

216 Chapter 15 The OS/400 SEU Text Editor

'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''

****************** End of data ***************************************

F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor
F16=Repeat find F17=Repeat change F24=More keys
Member BYZANTIUM added to file JOEUSER/YEATS.

Figure 15.3 Empty SEU screen with some text entered, before Enter is pressed.

Figure 15.4 shows the same screen after Enter is pressed. Notice how the entered lines have
been numbered, and the blank lines are gone.

Columns . . . : 1 71 Edit JOEUSER/YEATS
SEU==> BYZANTIUM
FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

*************** Beginning of data ************************************
0001.00 Marbles of the dancing floor
0002.00 Break bitter furies of complexity
0003.00 Those images that yet
0004.00 Fresh images beget
0005.00 That dolphin-torn, that gong-tormented sea.

****************** End of data ***************************************

F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor
F16=Repeat find F17=Repeat change F24=More keys

15.2.1 Adding New Lines 217

Figure 15.4 Effect of pressing Enter when viewing the screen shown in Figure 15.3.

You can easily insert blank lines for new lines of text with the I line command. If you type
an I over the number in a line's sequence number field, the next time you press Enter, a new
blank line will be inserted after that line. (To insert new lines before the current first line,
enter the I command in the same position on the Beginning of data line.)

If you enter a number after the I, that many new lines will be inserted. For example, in Fig-
ure 15.5, Joe User has entered I3 to the left of line 2, but he has not pressed Enter yet. Figure
15.6 shows the effect of pressing Enter to insert those three lines.

FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7
*************** Beginning of data ************************************

0001.00 Marbles of the dancing floor
I302.00 Break bitter furies of complexity
0003.00 Those images that yet
0004.00 Fresh images beget
0005.00 That dolphin-torn, that gong-tormented sea.

****************** End of data ***************************************

Figure 15.5 Entering the line command to insert blank lines after line 2.

In Figure 15.6, new lines have not really been added yet; note that line 2 is still line 2 and line
3 is still line 3. You have 3 potential new lines that serve the same purpose as the blank lines
that you saw when you first started up SEU with a new file member.

FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7
*************** Beginning of data ************************************

0001.00 Marbles of the dancing floor
0002.00 Break bitter furies of complexity
'''''''
'''''''
'''''''
0003.00 Those images that yet
0004.00 Fresh images beget

218 Chapter 15 The OS/400 SEU Text Editor

0005.00 That dolphin-torn, that gong-tormented sea.
****************** End of data ***************************************

Figure 15.6 The effect of pressing Enter after entering the command shown in Figure 15.5.

If you enter text on only one of these new lines, as shown in Figure 15.7, and then press
Enter, you'll get the result shown in Figure 15.8: the line with new text and the blank line be-
fore it are assigned line numbers and the blank line after it is removed.

FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7
*************** Beginning of data ************************************

0001.00 Marbles of the dancing floor
0002.00 Break bitter furies of complexity
'''''''
''''''' Bitter furies of complexity! I'll say! That crazy Yeats!
'''''''
0003.00 Those images that yet
0004.00 Fresh images beget
0005.00 That dolphin-torn, that gong-tormented sea.

****************** End of data ***************************************

Figure 15.7 Entering text on only one of the new lines inserted in Figure 15.6.

FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7
*************** Beginning of data ************************************

0001.00 Marbles of the dancing floor
0002.00 Break bitter furies of complexity
0002.01
0002.02 Bitter furies of complexity! I'll say! That crazy Yeats!
0003.00 Those images that yet
0004.00 Fresh images beget
0005.00 That dolphin-torn, that gong-tormented sea.

****************** End of data ***************************************

Figure 15.8 The effect of pressing Enter after entering the new line shown in Figure 15.7.

15.2.1 Adding New Lines 219

Note how the new line numbers are decimal numbers between 2.00 and 3.00. When you save
the file member, SEU offers you the choice of renumbering the lines with whole numbers or
leaving them as they are. Renumbering them with whole numbers is the default.

If you press Enter after adding text to the last of the new lines that are waiting for text, SEU
inserts a new blank line under it and positions your cursor at its beginning. This is handy for
entering many lines of text, because you can just type a line, press Enter, type another line,
press Enter, and repeat this until you have entered all of your text.

15.2.2 Moving Your Cursor Around

Your up, down, left, and right cursor keys move the cursor in the direction in which they
point.

The Tab key helps you move around more quickly. To move your cursor to the beginning of
the previous line, use the Backtab key (with a PC that is emulating a 3270 terminal, press the
Shift key and the Tab key simultaneously). If your cursor is on a line of text, Tab or Backtab
move your cursor to the sequence number column. If your cursor is on the sequence number
column, pressing either key jumps your cursor to the beginning of the appropriate line.

15.3 Inserting, Deleting, and Typing over Words and
Characters
To add text to blank lines, just move your cursor to the line and type. When you need to move
your cursor back to the command line, press F10.

To delete an individual character, move your cursor there and press your Delete key. On a
3270 terminal, the delete key has a lower case "a" with a proofreader's symbol for deletion: a
line through it that forms a loop. When emulating a 3270 terminal, your emulation software
probably has your PC's Delete key doing this job.

To type over existing text, just move your cursor where you want the new text and type.

To insert text, move your cursor to the place where you want to insert it and press the Insert
key. On a 3270 terminal, this key has the letter "a" with a carat symbol (^) over it. When you
press it, a carat symbol should appear at the bottom of your screen to indicate that you are in
insert mode. (When emulating a 3270, your cursor may change shape.) Text that you type in
moves any text currently to the right of the cursor further to the right.

To return to overstrike mode while using a 3270 terminal, press the key marked "Reset." The
carat symbol should disappear, and newly typed text takes the place of the characters at the
cursor. (When your keyboard "locks up," or refuses to accept input, the Reset key is also use-

220 Chapter 15 The OS/400 SEU Text Editor

ful for freeing up the keyboard.) On most PCs emulating a 3270, the Insert key puts you in in-
sert mode and the Escape key stands in for the Reset key.

15.3.1 Duplicating Lines

Think of it as "repeating" lines, it will be easier to remember the line command: RP. Enter RP
by itself and press Enter to make a single copy of a line. For example, if you enter RP on the
third line in the text shown in Figure 15.9, and then press Enter, you get the result shown in
Figure 15.10.

*************** Beginning of data ************************************
0001.00 Marbles of the dancing floor
00RP.00 Break bitter furies of complexity
0003.00 Those images that yet
0004.00 Fresh images beget
0005.00 That dolphin-torn, that gong-tormented sea.

****************** End of data ***************************************

Figure 15.9 Entering the command to repeat a line.

*************** Beginning of data ************************************
0001.00 Marbles of the dancing floor
0002.00 Break bitter furies of complexity
0002.01 Break bitter furies of complexity
0003.00 Those images that yet
0004.00 Fresh images beget
0005.00 That dolphin-torn, that gong-tormented sea.

****************** End of data ***************************************

Figure 15.10 Effect of pressing Enter after entering RP command in Figure 15.9.

Entering a number after the RP command tells SEU to repeat the line that many times. For
example, if RP3 had been entered on line 2 of Figure 15.9 instead of RP, the result would
have looked like Figure 15.11.

15.3.1 Duplicating Lines 221

*************** Beginning of data ************************************
0001.00 Marbles of the dancing floor
0002.00 Break bitter furies of complexity
0002.01 Break bitter furies of complexity
0002.02 Break bitter furies of complexity
0002.03 Break bitter furies of complexity
0003.00 Those images that yet
0004.00 Fresh images beget
0005.00 That dolphin-torn, that gong-tormented sea.

****************** End of data ***************************************

Figure 15.11 Effect of pressing Enter if RP3 had been entered at line 2 in Figure 15.9.

15.3.2 Deleting Lines

The letter D in a line's sequence number field deletes that line the next time you press Enter.
A number immediately following it tells SEU to delete that many lines, starting with the line
where the command is entered. In Figure 15.12, two lines are about to be deleted.

*************** Beginning of data ************************************
0001.00 Marbles of the dancing floor
000D200 Break bitter furies of complexity
0003.00 Those images that yet
0004.00 Fresh images beget
0005.00 That dolphin-torn, that gong-tormented sea.

****************** End of data ***************************************

Figure 15.12 Entering the 2D line command to delete two lines in SEU.

After you press Enter, they're gone. Figure 15.13 shows the result; note how the lines have
not been renumbered.

*************** Beginning of data ************************************
0001.00 Marbles of the dancing floor
0004.00 Fresh images beget

222 Chapter 15 The OS/400 SEU Text Editor

0005.00 That dolphin-torn, that gong-tormented sea.
****************** End of data **

Figure 15.13 Result of the 2D line command entered in Figure 15.12.

Put the letter D twice in a sequence number field without any number to indicate that the line
begins or ends a block that you want to delete. If you press Enter while only one line has the
DD, SEU leaves it there until it has a partner, and displays the message "Block command not
complete" as a reminder. In Figure 15.14, SEU is ready to delete all but the first and last lines
of text the next time you press Enter.

*************** Beginning of data ************************************
0001.00 Marbles of the dancing floor
DD02.00 Break bitter furies of complexity
0003.00 Those images that yet
00DD.00 Fresh images beget
0005.00 That dolphin-torn, that gong-tormented sea.

****************** End of data ***************************************

Figure 15.14 Entering the DD line command to delete a block of lines in SEU.

After you press Enter, the lines with the DD commands and all the lines between them are re-
moved.

This command is particularly useful when the beginning and end of the block that you want
to delete are not on the same screen, because the alternative (counting the number of lines so
that you can put a number after a single D) is a lot of trouble.

15.3.3 Copying Lines

Copying is similar to deletion except that you use the letter C to indicate the line or lines to
copy and you must indicate a destination for the copied text. SEU gives you three options for
indicating the text to copy:

• Enter a single C in a line's sequence number field if you only want to copy that one line.

15.3.3 Copying Lines 223

• Enter a single C followed by a number to indicate how many lines to copy.

• Enter CC at the first and last lines of the block to copy.

In addition to indicating the line or lines to copy, you must indicate where to copy them. Two
line commands make this possible:

B When Enter is pressed, copy the block to the line before the line
with this command.

A When Enter is pressed, copy the block to the line after the line
with this command.

In Figure 15.15, the third, fourth, and fifth lines are about to get copied above the first line, to
the beginning of the file member.

*************** Beginning of data *************************************
000B.00 Marbles of the dancing floor
0002.00 Break bitter furies of complexity
CC03.00 Those images that yet
0004.00 Fresh images beget
0CC5.00 That dolphin-torn, that gong-tormented sea.

****************** End of data **

Figure 15.15 Using the CC and B line commands to copy a block in SEU.

Figure 15.16 shows how it looks after you press Enter.

*************** Beginning of data ************************************
0000.01 Those images that yet
0000.02 Fresh images beget
0000.03 That dolphin-torn, that gong-tormented sea.
0001.00 Marbles of the dancing floor
0002.00 Break bitter furies of complexity
0003.00 Those images that yet
0004.00 Fresh images beget
0005.00 That dolphin-torn, that gong-tormented sea.

****************** End of data ***************************************

224 Chapter 15 The OS/400 SEU Text Editor

Figure 15.16 Result of the CC and B line commands entered in Figure 15.15.

15.3.4 Moving Lines

Moving is similar to copying, except that after you press Enter, the original lines are no
longer there—they're moved to their new location. As with copying, there are three ways to
specify the block to move, but these use the letter M:

• Enter a single M in a line's sequence number field if you only want to move that one line.

• Enter a single M followed by a number to indicate how many lines to move.

• Enter MM at the first and last lines of the block to move.

To specify the destination of the block to move, use the letters B or A the same way you do to
specify the destination of a block to copy.

15.4 Searching for Text
To search for text, use the FIND command from the SEU command line. (Use the F10 key to
move your cursor to the command line.) If you like, you can abbreviate FIND to just F. If
your search target has spaces in it, enclose it in apostrophes or quotation marks.

Figure 15.17 shows the command to search for the string "images" just before Enter is
pressed.

Columns . . . : 1 71 Edit JOEUSER/YEATS
SEU==> find images BYZANTIUM
FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

*************** Beginning of data ************************************
0001.00 Marbles of the dancing floor
0002.00 Break bitter furies of complexity
0003.00 Those images that yet
0004.00 Fresh images beget
0005.00 That dolphin-torn, that gong-tormented sea.

****************** End of data ***************************************

15.3.4 Moving Lines 225

Figure 15.17 Entering the command to search for the string "images" on the SEU command line.

After you press Enter, if the search was successful, the cursor jumps to the beginning of the
found string and a message at the bottom of the screen informs you that the string was found.
Figure 15.18 shows an example.

Columns . . . : 1 71 Edit JOEUSER/YEATS
SEU==> BYZANTIUM
FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

*************** Beginning of data *************************************
0001.00 Marbles of the dancing floor
0002.00 Break bitter furies of complexity
0003.00 Those images that yet
0004.00 Fresh images beget
0005.00 That dolphin-torn, that gong-tormented sea.

****************** End of data **

F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor
F16=Repeat find F17=Repeat change F24=More keys
String images found.

Figure 15.18 Result of a successful search in SEU.

If this search had been unsuccessful, the cursor would have remained on the command line
and the status line at the bottom of the screen would have told you "String images not found."

As the bottom of the screen shows, pressing F16 searches for the next occurrence of the same
string.

15.4.1 Case Sensitivity

226 Chapter 15 The OS/400 SEU Text Editor

The FIND command can do case-sensitive and case-insensitive searches. You control this
with the SET MATCH command. To make the searches case-sensitive, enter

SET MATCH ON

at the SEU command line. All uses of the FIND command will then look for exact case
matches. To set it to ignore case when searching, you can guess what the command is:

SET MATCH OFF

15.5 Saving Your Changes
To save your file member and then continue working, simply enter SAVE at the SEU com-
mand line. To save the edited file under a new name, enter SAVE followed by that name. For
example, entering

SAVE OHYEAH

saves the file member with the name OHYEAH. If there is no such member in the file, SEU
creates it and displays a message similar to the following at the bottom of the screen:

Member OHYEAH added to file JOEUSER/YEATS.

If a member by this name had already existed, SEU would have warned you with the follow-
ing message:

Member OHYEAH already exists. Press Enter to confirm.

If you want to abort this save, space over the SAVE command at the SEU command line be-
fore the next time you press Enter.

15.6 Quitting SEU
To quit SEU, press F3. SEU will display a screen similar to the one shown in Figure 15.19.

Exit

Type choices, press Enter.

Change/create member N Y=Yes, N=No
Member BYZANTIUM Name, F4 for list

15.5 Saving Your Changes 227

File YEATS Name, F4 for list
Library JOEUSER Name

Text

Resequence member Y Y=Yes, N=No
Start 0001.00 0000.01-9999.99
Increment 01.00 00.01-99.99

Print member N Y=Yes, N=No

Return to editing N Y=Yes, N=No

Go to member list Y Y=Yes, N=No

F3=Exit F4=Prompt F5=Refresh F12=Cancel

Figure 15.19 The "Exit SEU" screen.

If you had any unsaved changes, the default value for "Change/create member" will be "Y"
for "Yes."

The other fields in Figure 15.19 are self-explanatory. As with any entry display, you can use
your Tab or cursor keys to move your cursor to any field and then type in a new value or
press F1 to find out more about that field.

15.7 Other SEU Features

15.7.1 SEU On-line Help

On-line help in SEU follows the same conventions that it does elsewhere in OS/400:

• To learn more about function keys, move your cursor to the their descriptions at the bot-
tom of the screen and press F1.

• To learn more about SEU commands, move your cursor to the sequence number field or
the SEU command line and press F1.

• To learn more about a specific command, enter that command at the SEU command line
and press F1 instead of Enter.

228 Chapter 15 The OS/400 SEU Text Editor

15.7.2 Syntax Prompting

SEU has built-in intelligence that can be a great help in writing programs in any language.
Because it knows the extended attribute of the file member you are editing, it knows the pro-
gramming language you are using to write your source code. This means that it can help you
with that particular language and point out syntax errors as you write so that you don't have to
wait for your compilation to bomb to see what's wrong with your source code.

This is particularly useful when writing CL programs. For more information, see section 16.2,
"Command Files."

15.7.2 Syntax Prompting 229

230

Chapter 16 Using an OS/400 System
16.1 Printing Text Files
Many OS/400 programs offer printing as one of their features; section 16.1.1, "Printing a File
Member from the Program Development Manager or SEU," describes two handy ways to
print file members.

To print something from the OS/400 command line, we can use a command that we've
already seen: CPYSRCF (Copy Source File). The following command uses the predefined
value *PRINT to tell OS/400: "copy the BYZANTIUM member of the YEATS file, but not
to another file member—instead, send it to the printer."

CPYSRCF FROMFILE(JOEUSER/YEATS) TOFILE(*PRINT) FROMMBR(BYZANTIUM)

Using positional parameters, the command would look like this:

CPYSRCF YEATS *PRINT BYZANTIUM

When you tell the system to print something, it doesn't really send it directly to the printer. In-
stead, it goes to a program called a print spooler, which acts as a traffic cop for the various
print jobs as they come up.

Once you've sent something to a print spooler, that doesn't mean that it's going to be printed.
A program known as a printer writer must take the print job from the spooler and pass it
along to the printer.

This and several other useful tasks (like checking the print queue and canceling print jobs, as
you'll see in the following sections) can be done with the Work with Spooled Files (WRKS-
PLF) command, which displays the "Work with Printer Output" display. WRKSPLF doesn't
need any parameters, although there are several optional ones that you can learn about by en-
tering the command and pressing F4 instead of Enter. (Another way to display the "Work
with Printer Output" screen is by selecting choice 1 from the Operational Assistant. Type GO
ASSIST to start up the Operational Assistant.)

Figure 16.1 shows a sample "Work with Printer Output" display after Joe User entered the
command above to print the BYZANTIUM member of the YEATS file.

Work with Printer Output

231

System: NEPAS4
User : JOEUSER

Type options below, then press Enter. To work with printers, press F22.
2=Change 3=Hold 4=Delete 5=Display 6=Release 7=Message
9=Work with printing status 10=Start printing 11=Restart printing

Printer/
Opt Output Status

Not Assigned
QSYSPRT Not assigned to printer (use Opt 10)

Bottom
F1=Help F3=Exit F5=Refresh F9=Command line F11=Dates/pages/forms
F12=Cancel F21=Select assistance level F22=Work with printers

Figure 16.1 WRKSPLF display for controlling printer output.

Notice that it doesn't mention "YEATS" or "BYZANTIUM" anywhere. Instead, it shows the
name assigned by the program that put it in the print spooler (in this case, CPYSRCF):
QSYSPRT. To make sure that QSYSPRT is the print job that you think it is, you can display
it by moving your cursor into the Opt column next to it and entering the number 5. This dis-
plays the text that is waiting to go to the printer on a screen similar to the one used by the
Display Physical File Member (DSPPFM) command.

The column showing QSYSPRT is labeled "Printer/Output." It shows the names of the vari-
ous printers available, and indented under each printer name, the jobs waiting to go there.
Jobs that are not bound for any particular printer are indented under the name "Not As-
signed."

Figure 16.1 shows that QSYSPRT is not headed for any printer. The top of the display shows
that entering the number 10 next to QSYSPRT will "start printing" it. Figure 16.2 shows what
happens when we do this to a printer output file that has not been assigned to a printer.

232 Chapter 16 Using an OS/400 System

Assign Output to a Printer

Printer output . . : QSYSPRT

This printer output is not assigned to a printer.
To print the output, type the printer name below and then press Enter.

Printer __________ Name, F4 for list

F1=Help F3=Exit F12=Cancel

Figure 16.2 Assigning printer output to a particular printer.

As the "Assign Output to a Printer" screen shows, pressing F4 displays a list of the valid
printers that are connected to your AS/400, allowing you to pick one as the destination for
your print job. If you don't know the name assigned to the printer where you want to send
your output, ask your system administrator.

Figure 16.3 shows how the "Work with Printer Output" screen looks once the print job is in
progress. The printer assigned in Figure 16.2 was called NEPPRT1.

Work with Printer Output
System: NEPAS4

User : JOEUSER

Type options below, then press Enter. To work with printers, press F22.
2=Change 3=Hold 4=Delete 5=Display 6=Release 7=Message
9=Work with printing status 10=Start printing 11=Restart printing

16.1 Printing Text Files 233

Printer/
Opt Output Status

NEPPRT1
QPSUPRTF Printing starting or ending (use F5)

Bottom
F1=Help F3=Exit F5=Refresh F9=Command line F11=Dates/pages/forms
F12=Cancel F21=Select assistance level F22=Work with printers

Figure 16.3 The print job on its way to the printer.

The Status column shows the status of the print job at the instant the screen is displayed.
To update the display press F5, the "Refresh" key. Other typical status messages are "Waiting
to print" for a job that has been assigned to a printer but hasn't reached its turn yet and "Print-
ing page 1 of 1" (with whatever appropriate numbers) for a job currently being printed.

If your printer output doesn't automatically get sent to a printer, it would be pretty annoying
to have to go through all of these steps every time you print something. Your user profile
stores the name of your default printer destination, and you can change your profile with the
CHGPRF command with the following steps:

1. Enter CHGPRF and press F4 to see the CHGPRF parameters. It will only show you a few
of the parameters, and "Print Device" won't be one of them.

2. The bottom of this screen will tell you that pressing F10 shows you "Additional Para-
meters." Press F10, and you will see additional parameters, but you still won't see "Print
Device."

3. You will see the More... message in the lower right, and after pressing Page Down
(or Scroll Up) you will see the "Print Device" field. Enter the name of the printer you
learned about from the "Assign Output to a Printer" screen (or from your system admin-
istrator) here and all of your printed output will then be sent to that printer.

4. Press Enter to show that you are done editing the CHGPRF parameters.

234 Chapter 16 Using an OS/400 System

16.1.1 Printing a File Member from the Program Development
Manager or SEU

When you've listed a file's members with the Program Development Manager, you can print
one of these members by entering the number 6 next to that member's name in the Opt
column. The Program Development Manager will send that member to a print queue, if one
has been assigned.

When you finish editing a file member in SEU, the "Exit SEU" screen offers "Print member"
among its various options. The default value is "N" for "No," but you can easily Tab your
cursor to that field and change it to "Y" if you want to print that member.

16.1.2 Checking the Print Queue

As we saw in section 16.1, "Printing Text Files," the Work with Spooled Files (WRKSPLF)
command lists jobs that are waiting to print. Figure 16.4 shows an example.

Work with Printer Output
System: NEPAS4

User : JOEUSER

Type options below, then press Enter. To work with printers, press F22.
2=Change 3=Hold 4=Delete 5=Display 6=Release 7=Message
9=Work with printing status 10=Start printing 11=Restart printing

Printer/
Opt Output Status

NEPPRT1
QSYSPRT Printing page 1 of 1
QSYS2 Waiting to print

NEPPRT2
QSYS3 Held (use Opt 6)

Bottom
F1=Help F3=Exit F5=Refresh F9=Command line F11=Dates/pages/forms
F12=Cancel F21=Select assistance level F22=Work with printers

Figure 16.4 The Work with Printer Output screen.

16.1.2 Checking the Print Queue 235

Across the top of the screen is the key to the various actions you can take on a waiting print
job. We already saw that option 5 shows you what the waiting print job looks like.

Option 2 is a handy one. It displays the "Change Printer Output" screen, which lets you
change certain aspects of the print job. One of the most useful fields on the "Change Printer
Output" screen is "Printer to Use." This lets you redirect your print job to a different printer.

Options 3 and 6 are also useful. In Figure 16.4, whoever sent job QSYS3 to the printer has se-
lected 3 to hold the job. It will remain held until that user selects 6 to release the job, allowing
it to print. Note how the status message of a held job reminds you that option 6 releases it.
Holding a job is useful if you want to select option 2 to change some aspect of how the job is
printed. It's also a way to be a nice guy when you have a huge job in front of someone else's
smaller job, because holding your job lets the smaller job print first.

16.1.3 Canceling Your Print Job

Option 4 of the "Work with Printer Output" screen described in section 16.1.2, "Checking the
Print Queue," deletes a print job. If you enter 4 next to one of your jobs and press Enter, it
won't be deleted right away; another screen will first prompt you to confirm that you really
want to delete that printer job.

16.2 Command Files
A stored collection of CL commands that you can execute as a program is called a "CL pro-
gram." After you use the SEU editor to create a source member of CL commands, it's easy to
create a program from that source member and to then use that program from the OS/400
command line.

On most operating systems, the text file that you create as a command file is the same file that
you tell the system to run as a program. With OS/400, the file that you create is just the
source code for the program that you will run. The source code must be compiled into a pro-
gram, just like the source code for a program written in C or Pascal. (Don't worry—as we'll
see, it's one quick, simple extra step.) This is a great advantage, because a compiled program
runs much faster than its text file equivalent.

As we examine the steps in the creation of a CL program and the built-in features of SEU that
help us write a CL program, we'll create a sample program that does four things:

1. Run the UpRiteBase database program, telling it to run the report called SUMRPT.

2. Display the report output with the SEU editor, allowing us to make any necessary
changes.

236 Chapter 16 Using an OS/400 System

3. Print the edited report.

4. Check the print queue to see how long we'll have to wait for the printout.

If this is your first CL program, you'll need to create a file to hold CL programs as members.
You can call the file anything you want, but the AS/400 convention for naming a CL program
file is QCLSRC. Instead of copying another file to create it, you can create it with the Create
Source Physical File command:

CRTSRCPF FILE(QCSLRC)

Start SEU, telling it you want to edit a member in QCSLRC called SUMMARY.

STRSEU QCSLRC SUMMARY

Since this member doesn't exist, SEU creates it for you.

All CL programs must begin with the line PGM and end with the line ENDPGM, so you start
the SUMMARY program with these three lines:

1. PGM

2. The line that tells the URBASE (UpRiteBase) program to run the SUMRPT report.

3. The line that starts the SEU editor up to edit the SUMRPT member of the RPTS file.

It's good programming practice to indent blocks of code, and everything between PGM and
ENDPGM is considered a block. Figure 16.5 shows the SEU editor with these three lines ad-
ded.

Columns . . . : 1 71 Edit JOEUSER/QCLSRC
SEU==> CLTEST
FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

*************** Beginning of data ************************************
0001.00 PGM
0002.00 URBASE SUMRPT
0003.00 STRSEU RPTS SUMRPT

****************** End of data ***************************************

Figure 16.5 SEU editor with the first three lines of CL program SUMMARY entered.

16.2 Command Files 237

Because you are adding a member to a file called QCLSRC, SEU knows that you are entering
a CL program, and has two ways to help you:

• SEU points out errors in syntax while you are still composing the CL source program.

• Pressing the F4 key brings up the command prompt display to help you with command
syntax the same way that it does when you're entering commands at the command line.

The next line to add to the SUMMARY program shown in Figure 16.5 will print the SUMRPT
member with the CPYSRCF command, but what if you can't remember the complete CPYSR-
CF syntax? If you are entering any command in a CL program and forget the syntax for its
parameters, just press F4.

If (after inserting a new blank line with the I line command) you entered CPYSRCF and
nothing else on the fourth line of the SUMMARY program and then pressed F4, you would see
the screen shown in Figure 16.6—the same screen that you see when you press F4 after enter-
ing CPYSRCF at the OS/400 command line.

Copy Source File (CPYSRCF)

Type choices, press Enter.

Label
Data base source file Name
Library *LIBL Name, *LIBL, *CURLIB

To file Name, *PRINT
Library *LIBL Name, *LIBL, *CURLIB

From member Name, generic*, *FIRST, *ALL
To member or label *FROMMBR Name, *FROMMBR, *FIRST
Replace or add records *REPLACE *REPLACE, *ADD
Source update options *SAME *SAME, *SEQNBR, *DATE

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 16.6 Copy Source File command prompt display from within SEU.

238 Chapter 16 Using an OS/400 System

Actually, there is one difference: the optional "Label" field at the top, where you can enter a
label to identify that line of the program. In more advanced programming, an instruction of
the program could tell the program to jump to that line, and it would use this label to identify
the destination of the jump.

After you fill out the screen by entering RPTS as the "Data base source file," *PRINT as "To
file," and SUMRPT as the "From member," pressing Enter returns you to the SEU screen.
The parameters of the CPYSRCF command have been added for you, as shown in Figure
16.7.

Columns . . . : 1 71 Edit JOEUSER/QCLSRC
SEU==> CLTEST
FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

*************** Beginning of data ************************************
0001.00 PGM
0002.00 URBASE SUMRPT
0003.00 STRSEU RPTS SUMRPT
0004.01 CPYSRCF FROMFILE(JOEUSER/RPTS) TOFILE(*PRINT) +
0004.02 FROMMBR(SUMRPT)

****************** End of data ***************************************

Figure 16.7 CPYSRCF syntax, automatically filled in by SEU.

Note how, even if you had entered CPYSRCF on the left side of the screen before pressing
F4, it gets indented for you after you fill out the command prompt display.

It also added the parameter names, which makes the line easier to read. However, the indent-
ing plus the parameter names meant that the whole command wouldn't fit on the line. No
problem; a plus sign (+) at the end of a line means that the next line is a continuation of that
line.

SEU can help you with the syntax of more than just CL programs. It can provide intelligent
assistance with the creation of programs written in other languages, like RPG, and even with
objects that are not program source code, like the Data Definition Specification (DDS) source
code sometimes used as an alternative to IDDU to create databases.

If you make a mistake while entering a CL program, SEU is glad to let you know about it so
that you don't have to wait until you attempt to compile the program to find out whether you
made a syntax mistake. For example, let's say you forgot the "E" in "STRSEU" and entered
"STRSU RPTS SUMRPT" as the third line of the SUMMARY program. After you press Enter,

16.2 Command Files 239

SEU highlights the offending line and displays the same error message at the bottom of the
screen that it would have displayed if you had entered STRSU at the OS/400 command line,
as shown in Figure 16.8.

Columns . . . : 1 71 Edit JOEUSER/QCLSRC
SEU==> CLTEST
FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

*************** Beginning of data ************************************
0001.00 PGM
0002.00 STRSU RPTS

****************** End of data ***************************************

F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor
F16=Repeat find F17=Repeat change F24=More keys
Command STRSU in library *LIBL not found.

Figure 16.8 SEU's reaction to a mistyped "STRSEU" command entered as part of a CL program.

Once you've properly entered the STRSEU and CPYSRCF commands and then added the fi-
nal two lines of the CL program, the complete SUMMARY program looks like this:

PGM
URBASE SUMRPT
STRSEU RPTS SUMRPT
CPYSRCF FROMFILE(JOEUSER/RPTS) TOFILE(*PRINT) +

FROMMBR(SUMRPT)
WRKSPLF

After saving this file member, you can't run it, because you've only created a member of a
source physical file. In other words, you've created the source code for your CL program, not
the program itself. Remember, a program is a different kind of object.

240 Chapter 16 Using an OS/400 System

To turn your source code into a program, use the Create CL Program command
(CRTCLPGM). You only need one parameter for this command: the name that you want to as-
sign to your working CL program. If you omit the name of the file where the source code is
stored, CRTCLPGM assumes that it's stored in a file called QCLSRC. If you omit the name of
the library where QCLSRC is stored, CRTCLPGM assumes that it will find it in your library
list. And, if you omit the name of the member of QCLSRC holding the source code, CRT-
CLPGM assumes that it has the same name as the program that you are creating. So, if the
SUMMARY source member is in the QCLSRC file in a library in your library list, you can com-
pile it into a program by merely typing

CRTCLPGM PGM(SUMMARY)

or even just this:

CRTCLPGM SUMMARY

Once it's been created, the Display Library (DSPLIB) command will show SUMMARY as a
new object in your library with an object type of *PGM.

To run the program, enter the CALL command followed by the program name. (On some op-
erating systems, every command starts up a corresponding program, but OS/400 makes a dis-
tinction between commands and programs. The CALL command is used to run programs.)
For the SUMMARY program, this would mean entering this:

CALL SUMMARY

All the commands entered in the SUMMARY program will be executed one after the other.
Each program will also pause for input in the same places that it normally does—for example,
when you press F3 to show that you're finished editing the summary report with SEU, the ed-
itor displays the "Exit SEU" screen, allowing you to change the parameter values that control
whether the file member is printed, whether its lines are renumbered, and so forth.

You can make your CL programs pause for user input. As we saw in section 13.1.2.1, "Com-
mand Parameters," entering a question mark (?) before a command and then pressing Enter
has the same effect as typing in that command and pressing F4 instead of Enter: it brings up
the command prompt display and waits for the user to enter the parameters. This same trick
works in CL programs.

For example, if the third line of the SUMMARY program had been

? STRSEU

instead of

16.2 Command Files 241

STRSEU RPTS SUMRPT

the SUMMARY program would have displayed SEU's command prompt display and waited for
the user to enter in the file and member names. After the user was done with SEU, SUMMARY
would continue with the remaining CL program lines normally.

This adds flexibility to a CL program, because the program's user can fill in different para-
meters each time while still getting the benefits of an automated series of commands.

16.2.1 The Automatic Signon Command File

The Change Profile (CHGPRF) command mentioned in section 16.1, "Printing Text Files,"
has a field on its first display prompt screen called "Initial program to call." Enter the name of
a CL program here, and OS/400 will execute that program for you as soon as you sign on, just
as if you had entered the CALL command to run it as soon as the OS/400 prompt appeared.

Another field on the Change Profile display is called "Initial menu." If you enter a menu
name here (remember, each menu has its menu name in the upper-left corner) it will be the
first menu to display when you sign on. The ASSIST menu (the main menu of the Operation-
al Assistant) is a popular choice for beginners as the initial menu. If you specify both an "Ini-
tial program to call" and an "Initial menu" on the Change Profile command prompt display,
the specified program will run first and then the system will display the menu when the pro-
gram is finished.

A popular shortcut for specifying the initial menu is the F23 key. While viewing any OS/400
menu, pressing F23 indicates that you want that menu to be the first menu to appear after
signing on. If you look at the Change Profile command prompt display after doing this, you
will see that pressing F23 just fills out the "Initial menu" field with the menu's name.

16.3 Communicating with Other Users
Part of the AS/400's object-oriented approach is its use of messages for communication
between the operating system, users, and programs. The operating system communicates to
the user via messages—for example, error messages. It communicates to programs via mes-
sages—for example, it might tell a program that a given file that it wants to use is not avail-
able. The person using this program will be unaware of this communication between the op-
erating system and the program, but the program might be designed to pass along its own ver-
sion of the same message to the user, because programs can also send messages to users.

And users can send messages to other users just as easily. You can send a message to a mail-
box-like storage area called a message queue to wait until the recipient wants to read their
waiting messages. In fact, because programs and the operating system can send messages just

242 Chapter 16 Using an OS/400 System

as users can, you will find messages in your message queue from all three sources.

There are two kinds of messages that you can send:

• Informational messages, which simply show up in someone's message queue.

• Inquiry messages, which request a reply from the message's recipient.

Send messages with the Send Message (SNDMSG) command. After you enter it at the OS/400
command line, pressing F4 or Enter displays the screen shown in Figure 16.9. There are two
fields: the long, multi-line one where you enter the message and the one for the name (the si-
gnon ID) of the message's recipient.

Send Message (SNDMSG)

Type choices, press Enter.

Message text __
__
__
__
__
__
__
To user profile __________ Name, *SYSOPR, *ALLACT...

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
Parameter MSG required.

Figure 16.9 Entry screen for Send Message command.

When you enter the message, keep in mind that it will be reformatted. The end of a line on
the Send Message command prompt display won't necessarily be the end of the line when the
message's recipient reads the message. This means that if a word gets split at the end of the

16.3 Communicating with Other Users 243

line it won't appear that way to the message's recipient. If you do enter the last character of a
word on the end of a line and the first letter of the next word on the beginning of the follow-
ing line, with no space between the two, they will probably be displayed as one word to the
message's recipient.

Figure 16.10 shows a sample message that Joe User has entered. There are three things of in-
terest in this particular message:

Send Message (SNDMSG)

Type choices, press Enter.

Message text This is a test message that I am entering to
get familiar with the sending and receiving of messages with OS/400. It seems p
retty simple. I just enter SNDMSG, press Enter, enter the message and the ID of
the person I want to send it to, press Enter again, and I'm all done. I'm send
ing this to myself, and soon I'll see how it looks when it's in the message queu
e.

To user profile JOEUSER Name, *SYSOPR, *ALLACT...

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
Parameter MSG required.

Figure 16.10 Sample message entered by Joe User to send to himself.

• Before sending a real message to another user, he wants to get familiar with OS/400's
message sending capabilities, so he's entering his own ID as the message recipient.

• The words "pretty," "sending," and "queue" are each split up over two lines. We'll see
how they look when Joe "receives" the message. According to what I said above, they
shouldn't cause any problem.

• The words "to" at the end of the first line and "get" at the beginning of the second line

244 Chapter 16 Using an OS/400 System

seem separate enough, but there is no space between them. I warned against this, and we'll
see how it looks when the message reaches Joe's message queue.

When you have finished filling out the Send Messages screen, press Enter to show that you
are done.

16.3.1 Receiving Mail

Use the Display Message (DSPMSG) command to display the Work with Messages screen,
which shows the messages waiting in your message queue. If Joe User enters DSPMSG after
he sends the message shown in Figure 16.10, he will see a Work with Messages screen simil-
ar to the one shown in Figure 16.11.

Work with Messages
System: NEPAS4

Messages for: JOEUSER

Type options below, then press Enter.
4=Remove 5=Display details and reply

Opt Message
Messages needing a reply

(No messages available)

Messages not needing a reply
This is a test message that I am entering toget familiar with the

sending and receiving of messages with OS/400. It seems pretty
simple. I just enter SNDMSG, press Enter, enter the message and the
ID of the person I want to send it to, press Enter again, and I'm all
done. I'm sending this to myself, and soon I'll see how it looks when
it's in the message queue.
From . . : JOEUSER 08/15/93 20:17:16

Bottom
F1=Help F3=Exit F5=Refresh F6=Display system operator messages
F16=Remove messages not needing a reply F17=Top F24=More keys

Figure 16.11 Message composed in Figure 16.10 as shown by the Display Message command.

(Another way to display the "Work with Messages" screen is by selecting choice 3 from the
Operational Assistant. Type GO ASSIST to start up the Operational Assistant.) The upper
part of the Work with Messages screen shows any inquiry messages in the queue. In Figure

16.3.1 Receiving Mail 245

16.11, the line "(No messages available)" shows that there are none.

In the informational messages ("Messages not needing a reply") part of the screen, note how
the words "pretty," "sending," and "queue" are not split up, as they appeared to be when Joe
entered the message. The word "to" on the first line is no longer at the end of a line, and since
there was no space entered between it and the word "get," they show up in the message as one
word: "toget." Clearly, you need to enter a space after every word, even if a word appears to
be separated from the following word by a line break.

Of the actions possible in the Opt column, "Display details and reply" only applies to inquiry
messages. The only action that Joe can take with this informational message is to enter the
number 4 in the Opt column, removing the message. If he has several messages and reads
them all, F16 provides a shortcut to removing all the messages in the bottom half of the
screen at once.

16.3.2 Inquiry Messages

Inquiry messages request a response from the recipient. To send one, you enter SNDMSG, just
like you to do send an informational message. On the "Send Message" screen shown in Fig-
ure 16.10, note how the F10 key will display "Additional Parameters." Pressing it when view-
ing a blank "Send Message" screen adds several fields to the screen, as shown in like Figure
16.12.

Send Message (SNDMSG)

Type choices, press Enter.

Message text __
__
__
__
__
__
__
To user profile Name, *SYSOPR, *ALLACT...

Additional Parameters

To message queue Name, *SYSOPR
Library *LIBL Name, *LIBL, *CURLIB

+ for more values
*LIBL

Message type *INFO *INFO, *INQ
More...

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

246 Chapter 16 Using an OS/400 System

F24=More keys
Parameter MSG required.

Figure 16.12 "Send Message" screen with additional parameters displayed.

The "More..." message at the bottom of the screen shows that there are more parameters than
will fit, but the one we want is there on the screen: "Message type." The default value is
*INFO, for "informational message." For an inquiry message, enter *INQ. If you set "Mes-
sage type" to *INQ, the message that you enter will appear on the recipient's "Work with
Messages" screen under "Messages needing a reply." (If you know that you want to send an
inquiry before you enter SNDMSG at the OS/400 command line, you can add the parameter
MSGTYPE(*INQ) to the SNDMSG command. Except for very short messages, AS/400 users
generally don't enter all SNDMSG parameters at the OS/400 command line because it's easier
to edit the actual message on the SNDMSG command prompt display than to include it on the
OS/400 command line.)

To see how this works, Joe sets "Message type" to *INQ, enters his own ID in the "To user
profile" field, enters a message of "How will this look?", and presses Enter. When the OS/400
command line reappears, he enters DSPMSG and sees the screen shown in Figure 16.13.

Work with Messages
System: NEPAS4

Messages for: JOEUSER

Type options below, then press Enter.
4=Remove 5=Display details and reply

Opt Message
Messages needing a reply

How does this look?
From . . : JOEUSER 08/17/93 10:04:57

Messages not needing a reply
(No messages available)

Bottom

16.3.2 Inquiry Messages 247

F1=Help F3=Exit F5=Refresh F6=Display system operator messages
F16=Remove messages not needing a reply F17=Top F24=More keys

Figure 16.13 Work with Messages display of a message needing a reply.

He replies to the message by entering a 5 in the Opt column next to the message and pressing
Enter. The Display Message program displays the "Additional Message Information" screen
for an inquiry message, which tells him to "Type reply below" at the bottom of the screen.
Joe enters the response shown in Figure 16.14 and presses Enter.

Additional Message Information

From : JOEUSER
Date sent : 08/17/93 Time sent : 10:04:57

Message : How does this look?

Bottom
Type reply below, then press Enter.
Reply It looks pretty reasonable.

Figure 16.14 Responding to an inquiry message.

After he responds to the inquiry, he sees the "Work with Messages" screen again, and it has
changed: because he has responded to the "How does this look?" message, it no longer needs
a reply. It is now displayed, with its answer, under "Messages not needing a reply," as shown
in Figure 16.15.

248 Chapter 16 Using an OS/400 System

Work with Messages
System: NEPAS4

Messages for: JOEUSER

Type options below, then press Enter.
4=Remove 5=Display details and reply

Opt Message
Messages needing a reply

(No messages available)

Messages not needing a reply
How does this look?

From . . : JOEUSER 08/17/93 10:04:57
Reply . . : It looks pretty reasonable.

Bottom
F1=Help F3=Exit F5=Refresh F6=Display system operator messages
F16=Remove messages not needing a reply F17=Top F24=More keys

Figure 16.15 Work with Messages screen after response to inquiry message.

Do the inquiry message ("How does this look") and the response now appear under "Mes-
sages not needing a reply" because Joe was the originator of the inquiry or because he was the
recipient? The answer is both. After an inquiry recipient responds to the inquiry, the inquiry
and its response appear under "Messages not needing a reply" for both the sender and the re-
cipient to give them a record of their exchange. The exchange remains there until they delete
it by entering the number 4 in the Opt column next to it or by pressing F16.

16.3.3 Sending an Existing File

The Send Network File (SNDNETF) command can send file members to other users on your
AS/400 or, as its name implies, to other users on systems attached to your AS/400 over a net-
work—even if the system they are using is not an AS/400.

To send the SUMRPT member of the RPTS file to Mary Jones' MJONES user ID on the
JUPITER system, Joe User enters the following:

SNDNETF FILE(RPTS) TOUSRID((MJONES JUPITER)) MBR(SUMRPT)

16.3.3 Sending an Existing File 249

If he omitted the parameter names and entered the positional parameter version, he would
enter this:

SNDNETF RPTS ((MJONES JUPITER)) SUMRPT

There are several interesting things to note about this command:

• If RPTS wasn't in a library in Joe's library list, he would have to specify which library it
was in with the (libname/filename) syntax.

• The destination user ID and system name are enclosed together in two pairs of paren-
theses, even in the positional parameter version of the command.

• The system name JUPITER might represent an AS/400, but it might not. The system
name of your particular AS/400 will be displayed on the signon screen; in Figure 13.1, it's
NEPAS4. This means that someone sending a file to Joe from their AS/400 ID would
send it to ((JOEUSER NEPAS4)). (From a UNIX system connected over the same net-
work, they would send it to JOEUSER@NEPAS4, and from a VM ID it would be ad-
dressed to JOEUSER AT NEPAS4.)

• Unlike similar commands on other computers, you must specify the destination system
name even if you send it to an ID on the same system that you are using. (Other operating
systems usually assume "same system" as a default if you omit the system name when
identifying a recipient.)

• Don't take it for granted that you have permission to use SNDNETF. If you try it and get
the message "User not enrolled in system distribution directory," speak to your system ad-
ministrator about being enrolled to use the command.

16.3.3.1 Receiving a File

The Work with Network Files command (WRKNETF) displays the screen shown in Figure
16.16. This lets you look at and receive the files that have been sent to you with SNDNETF or
with the equivalent command on other computers connected to your system over a network.
(Like SNDNETF, you must be enrolled by the system administrator to use WRKNETF.)

Work with Network Files NEPAS4
02/19/94 19:38:51

User : JOEUSER
User ID/Address : JOEUSER NEPAS4

250 Chapter 16 Using an OS/400 System

Type options, press Enter.
1=Receive network file 3=Submit job 4=Delete network file
5=Display physical file member

File -------From------- ----Arrival----
Opt File Member Number User ID Address Date Time

RPTS JULYRPT 1 MJONES JUPITER 02/19/94 10:16
QCSRC IOTEST 6 JCASEY NEPTUNE 02/19/94 11:38

Bottom
Parameters or command
===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F11=Display type/records
F12=Cancel

Figure 16.16 The Work with Network Files screen displayed by the WRKNETF command.

The F11 key changes the display so that the type and number of records of the waiting files
are shown instead of the User ID and Address columns. Figure 16.17 shows an example.

Work with Network Files NEPAS4
02/19/94 19:38:51

User : JOEUSER
User ID/Address : JOEUSER NEPAS4

Type options, press Enter.
1=Receive network file 3=Submit job 4=Delete network file
5=Display physical file member

Record -----Send------
Opt File Member Type Records Length Date Time

RPTS JULYRPT *DTA 62 29 02/19/94 18:15
QCSRC IOTEST *SRC 182 92 02/19/94 19:38

Bottom

16.3.3 Sending an Existing File 251

Parameters or command
===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F11=Display user ID/address
F12=Cancel

Figure 16.17 The Work with Network Files screen with object type, number of records, and record length of
the waiting files displayed.

In Figure 16.17, we see that the JULYRPT member of the RPTS file is a simple data file with
62 lines of text. The other file is source code for a program (judging from the file name, it's
written in C) and it's about three times longer than JULYRPT.

The command key at the top shows that entering a 1 in the Opt column will store the waiting
member in a file. When you do this, the system assumes that you already have a file with the
name shown in the File column for that member, and it stores the member there. If you
don't have a file by that name, press F4 instead of Enter after entering the 1 in the Opt
column. This displays the Receive Network File command prompt display, where you can
enter any file name you like.

16.4 A Sample OS/400 Session
One morning you sign on to your OS/400 ID and check your messages with the DSPMSG
command, and you see the screen shown in Figure 16.18.

Work with Messages
System: NEPAS4

Messages for: JOEUSER

Type options below, then press Enter.
4=Remove 5=Display details and reply

Opt Message
Messages needing a reply

You said that you know how to write CL programs, right? I need one
for the guys in the warehouse. We're going to send them a file
with a list of orders over the network each day, and I don't want
to have to teach them about WRKNETF and printing. The member
will be called ORDERS and go into a file called INVEN (they
already have this file, so don't worry about creating it). When

252 Chapter 16 Using an OS/400 System

they type CALL GETORDERS, I want this program to get ORDERS out
of the queue of network files and send it to their printer,
which is called WRHOUSE. Can you handle this?
From . . : MARYJONES 04/27/94 10:03:22

Messages not needing a reply
(No messages available)

Bottom
F1=Help F3=Exit F5=Refresh F6=Display system operator messages
F16=Remove messages not needing a reply F17=Top F24=More keys

Figure 16.18 Message from Mary about CL program to write.

You type in a 4 next to the first line of Mary's message, press Enter, and enter "No problem,
Mary, you'll have it by this afternoon" as your reply.

But there is a slight problem: you know how to receive a network file with WRKNETF, but
how would you automate this? You use WRKNETF by making choices on a list display; you
can't tell it what to do by entering WRKNETF on the OS/400 command line with a couple of
parameters after it. It would be a good idea to review the process of receiving a file, so you
send yourself a short little file—the source code to the first C program that you wrote on the
AS/400—over the network with the following command:

SNDNETF FILE(QCSRC) TOUSRID((JOEUSER NEPAS4)) MBR(CTEST1)

You then enter WRKNETF to bring up the Work with Network Files screen and enter a 1 next
to the CTEST1 member of the QCSRC file. Instead of pressing Enter, you press F4 to see how
much control you can have over the receiving of a file. This displays the Receive Network
File screen, as shown in Figure 16.19.

Receive Network File (RCVNETF)

Type choices, press Enter.

From file > QCSRC Character value
To data base file > *FROMFILE Name, *FROMFILE
Library *LIBL Name, *LIBL, *CURLIB

Member to be received > CTEST1 Character value, *ONLY
To member *FROMMBR Name, *FROMMBR, *FIRST

16.4 A Sample OS/400 Session 253

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys

Figure 16.19 Receive Network File command prompt display, as displayed by WRKNETF program.

The RCVNETF after the screen's title makes you realize something: when you entered the 1 at
the Work with Network Files screen, it just called a program called RCVNETF. You could
have your CL program call RCVNETF directly, and skip over the Work with Network Files
screen.

First, you should test this idea. You press F3 a couple of times to go back to the command
line, enter RCVNETF by itself, and press F4. When you see the screen shown in Figure 16.20,
you recognize it as the same screen that WRKNETF displayed when you entered a 1 in the
Opt column. So WRKNETF really was just calling RCVNETF!

Receive Network File (RCVNETF)

Type choices, press Enter.

From file Character value
To data base file *FROMFILE Name, *FROMFILE
Library *LIBL Name, *LIBL, *CURLIB

Member to be received *ONLY Character value, *ONLY
To member *FROMMBR Name, *FROMMBR, *FIRST

254 Chapter 16 Using an OS/400 System

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys

Figure 16.20 Receive Network File command prompt display, as displayed by entering RCVNETF command.

To receive the file that you sent yourself as a test, you enter "QCSRC" in the "From file
field," "CTEST1" in the "Member to be received" field, and press Enter. The system returns
to the main menu, and displays the message

File QCSRC member CTEST1 number 14 received.

at the bottom. It worked! You press F9 to retrieve the command that you would have typed at
the command line, and you see this:

RCVNETF FROMFILE(QCSRC) FROMMBR(CTEST1)

So that's the command that you'll need for your GETORDERS CL program, only with a file
name of INVEN and a member name of ORDERS. So, you start up SEU and tell it to create
the GETORDERS member of your QCSLSRC file with the following command:

STRSEU QCLSRC GETORDERS

You enter PGM as the program's first line, because that's the first line of the source code in all
CL programs, and the RCVNETF command as the second line, with INVEN and ORDERS as
its parameters.

The GETORDERS program's next task is to print the newly received member. You remember
that this is done with some trick using the CPYSRCF command, but you don't remember the
exact syntax. You enter CPYSRCF as the third line of the CL program's source code and press
F4 to find out more about its potential parameters. SEU displays the screen shown in Figure
16.21.

Copy Source File (CPYSRCF)

16.4 A Sample OS/400 Session 255

Type choices, press Enter.

Label
Data base source file Name
Library *LIBL Name, *LIBL, *CURLIB

To file Name, *PRINT
Library *LIBL Name, *LIBL, *CURLIB

From member Name, generic*, *FIRST, *ALL
To member or label *FROMMBR Name, *FROMMBR, *FIRST
Replace or add records *REPLACE *REPLACE, *ADD
Source update options *SAME *SAME, *SEQNBR, *DATE

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 16.21 Copy Source File command prompt display from within SEU.

Once you see the displayed screen, you know that you enter INVEN as the "Data base source
file" and ORDERS as the "From member." Looking to the right of "To file," you see that
*PRINT is a possible option, instead of "Name." So that was the trick. Entering a name
would have copied the member to another member with the specified name, but entering
*PRINT sends it to the printer. You enter "*PRINT," press Enter, and the system returns you
to the SEU screen where it has filled out the CPYSRCF line for you, as shown in Figure
16.22.

FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7
*************** Beginning of data ************************************

0001.00 PGM
0002.00 RCVNETF FROMFILE(INVEN) FROMMBR(ORDERS)
0003.00 CPYSRCF FROMFILE(INVEN) TOFILE(*PRINT) FROMMBR(ORDERS)

****************** End of data ***************************************

256 Chapter 16 Using an OS/400 System

Figure 16.22 First three lines of the GETORDERS CL program's source code.

Most people want to see the print queue after they send something to the printer, to determine
whether they should walk to the printer right away to get their print job or if they should wait
because of some other print jobs in front of theirs. You add WRKSPLF as the fourth line of
GETORDERS so that the print queue gets automatically displayed, and then ENDPGM to finish
the source code. At this point, your program looks like Figure 16.23.

FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7
*************** Beginning of data ************************************

0001.00 PGM
0002.00 RCVNETF FROMFILE(INVEN)
0003.00 CPYSRCF FROMFILE(INVEN) TOFILE(*PRINT) FROMMBR(ORDERS)
0004.00 WRKSPLF
0005.00 ENDPGM

****************** End of data ***************************************

Figure 16.23 Finished source code for GETORDERS.

You quit out of SEU, saving the file, and enter the command to compile this source code into
a working program:

CRTCLPGM GETORDERS

When you see the message "Program GETORDERS created in library JOEUSER," you know
that it successfully compiled. But you still have to test it; you create a file called INVEN with
a dummy member named ORDERS. You send a copy of ORDERS to your message queue with
the command

SNDNETF FILE(INVEN) TOUSRID((JOEUSER NEPAS4)) MBR(ORDERS)

and then delete ORDERS from the INVEN file with the RMVM command. This way, if your
program works correctly and pulls ORDERS out of the message queue and puts it in INVEN,
you'll know that it was put there by GETORDERS and not left over from the original one that
you created.

Time for the big test. You enter

CALL GETORDERS

16.4 A Sample OS/400 Session 257

and press Enter. Shortly after that, you're looking at the Work with Network Files screen, and
there's the print job sent by your GETORDERS program. You press F3 to return to the com-
mand line and list the members in INVEN by entering

DSPFD INVEN TYPE(*MBRLIST)

and there is ORDERS, even though you deleted it a minute ago. Now you know that GET-
ORDERS put it there like it was supposed to.

It looks like the GETORDERS program works, so you send it to Mary with the command

SNDNETF FILE(QCLSRC) TOUSRID((MJONES NEPAS4)) MBR(GETORDERS)

and then use SNDMSG to send the message shown in Figure 16.24 to her as well.

Send Message (SNDMSG)

Type choices, press Enter.

Message text I finished the first version of GETORDERS an
d sent it to your network queue. (I sent you source code; to compile the progra
m enter QCLSRC GETORDERS at the OS/400 command prompt.) It doesn't have any err
or checking yet, so make sure that you have a file called INVEN and that your ne
twork queue has a member called ORDERS for it before you run GETORDERS. I'll ho
pefully add the error checking parts this afternoon, but maybe not until tomorro
w.
To user profile MJONES Name, *SYSOPR, *ALLACT...

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys

Figure 16.24 Message to Mary about GETORDERS.

Now all that's left is the error checking. You enter STRSCHIDX to start up the search index

258 Chapter 16 Using an OS/400 System

and then enter "CL program" as the search string, confident that you will find what you need
in the OS/400's extensive help system.

16.4 A Sample OS/400 Session 259

260

Part V. VM/CMS

Chapter 17 VM/CMS: An Introduction
Before we begin with VM/CMS, you must understand one crucial concept: the operating sys-
tem you are using. This may seem obvious; after all, the name of this part of the book is "VM/
CMS." But, as you often hear people refer to the operating system as VM and as CMS, learn-
ing the relationship between the two is the first step in understanding it.

17.1 History
IBM developed VM ("Virtual Machine") in 1964. Like any operating system, VM controlled
the computer's resources. It also added a feature that had never existed before: the illusion, for
each of its users, that they had a whole computer to themselves. (Because IBM developed
VM well before the invention of the PC, having even a simulation of your own computer was
a Big Deal.) If twenty people use a VM system at once, it gives them the illusion that they are
using twenty different computers.

The most interesting part is that each of these simulated "computers" can run its own operat-
ing system. IBM has developed versions of MVS, UNIX, DOS/VSE, and even PC/DOS to
run under VM (we call an operating system that runs one of VM's simulated computers a
"guest" operating system running "under" VM), but the most popular is the one that was de-
signed from the ground up to take the fullest possible advantage of the VM environment:
CMS. (VM actually evolved from an earlier version of CMS called CTSS, but this all
happened at IBM's Cambridge Scientific Center in Massachusetts, before either was released
as a commercial product. The M.I.T. engineers who designed CTSS went on to design MUL-
TICS, an ancestor of UNIX, which makes CMS a cousin of UNIX!)

Because the vast majority of people who use VM run CMS as the guest operating system,
most VM user IDs are set up to automatically run CMS when someone logs on to their VM
ID. Many users doesn't realize that this extra step is taking place and assume that it's all part
of the normal process of logging on to the "VM/CMS" operating system. Think of it this way:
once this logon process is complete, you interact with the CMS operating system, but behind
the scenes, the VM operating system runs the show.

CMS originally stood for "Cambridge Monitor System," but IBM decided that its hundreds of
TLAs (three-letter acronyms) weren't quite confusing enough and changed the official mean-
ing of this one to "Conversational Monitor System." The idea of a "conversation" with the
computer, where you type something, it immediately responds, and you continue this inter-
change, was also a Big Deal in the days when "input" often meant dropping off a pile of
punch cards with the guy who fed them into the card reader and "output" meant picking up a
printout and maybe another pile of cards from the same guy—not necessarily on the same
day. In the days before Apple convinced everyone that moving a mouse pointer to a little pic-

263

ture of a garbage can was a more intuitive way to erase a file than typing the word "erase" fol-
lowed by a file's name, CMS was actually considered downright user-friendly.

BUZZWORD Virtual Unlike most computer buzzwords, this one usually holds
true to its dictionary definition when it refers to hardware or software. The
Random House College Dictionary defines "virtual" as "being such in force or
effect, though not actually or expressly such." On a computer, it usually ap-
plies to software or hardware that pretends to be something it isn't. You can
designate a portion of RAM on a PC to be treated as a fast, efficient hard
disk; we often call this a "virtual disk," because you use it as a disk, when it's
not really a disk. Sometimes you can do the opposite—on some systems,
software utilities exist that let you designate a portion of your hard disk to act
like RAM, giving your computer the effect of having more memory than it
really has. We call this "virtual memory," because you use it as memory,
without it actually being memory in the modern sense.

The virtual machines created by a VM system aren't real machines, but simu-
lations of separate machines created by the VM operating system. VM also
gives its users virtual card punchers and virtual card readers, when actual
computer punch cards and the machinery to deal with them are virtually (that
word again!) obsolete. (For more on these, see the sidebar "This Is the
Nineties. Why Do I Need a Card Puncher or a Card Reader?")

Because it does not manage multiple users, CMS is not a multi-user operating system. If
twenty people want to use CMS simultaneously, twenty copies of CMS get started up. VM
handles the multiuser part. If ten people try to print a file at once, their individual copies of
CMS pass these requests through CP to VM, which deals with print job scheduling.

17.1.1 CP: The Control Program

But what is CP? More IBM initials to worry about? It stands for "Control Program." Different
parts of VM deal with the various aspects of the computer's activities in the computer—the
disk drives, memory, and so on. CP is the part that deals with CMS. It starts a CMS session
and functions as a mediator between the CMS sessions and the hardware.

CP has its own set of commands, but you only need to worry about the one that instructs it to
start up a CMS session. (Section 18.1, "Starting Up," covers this in greater detail.) You may
hear that some of the commands you use in CMS are actually CP commands, but don't worry;
you don't need to treat these commands differently. You don't even need to remember which

264 Chapter 17 VM/CMS: An Introduction

are CMS commands and which are CP commands. When you type a CP command at the
CMS prompt, CMS automatically passes it along to CP.

VM/370? VM/IS? VM/SP? VM/XA? VM/ESA?
You might see other initials besides "CMS" after "VM." Usually, these show
the version of VM being used. Various versions developed over the years
take advantage of the hardware in different ways; these differences aren't
anything for you to worry about. They all run CMS, and the commands that
you type are the same for all of them. You might get a memo saying "On Fri-
day the 12th from midnight to 6AM the VM system will be shut down so that
we can upgrade from VM/SP to VM/XA. The increased functionality of VM/
XA will allow us to utilize the blah blah blah..." Don't worry. The logon screen
might look a little different, but you shouldn't need to do anything differently.

17.1.1 CP: The Control Program 265

266

Chapter 18 Getting Started with VM/CMS
18.1 Starting Up
Logging on to a VM/CMS system consists of two or three basic steps:

• Entering your user ID.

• Entering your password.

• Telling the CP part of VM to start up CMS. This may be unnecessary.

If CP does not automatically start up CMS, ask your VM administrator (the VM term for a
system administrator) to set up your CP directory to take care of this. The CP directory keeps
track of who can do what on the system. Only the system administrator has access to the CP
directory.

After you turn on your terminal or hook up to a VM system from a PC running terminal emu-
lation software, and before you log on, you will probably see the logon screen with the logo
of either the company that owns the system or the version of VM being used.

18.1.1 The Logon Screen

The logon screen will look similar to Figure 18.1.

VM/XA SP ONLINE

VV VV
VV VV
VV VV
VVVVV MMM MMM
V MMM MMM

MM M M MM
MM M MM
MM MM

Fill in your USERID and PASSWORD and press ENTER
(Your password will not appear when you type it)
USERID ===> _

267

PASSWORD ===>

COMMAND ===>

Figure 18.1 Sample VM logon screen.

Your cursor should be on the USERID line, waiting for you to type your ID. Type it in, and
press your Tab key to move your cursor to the PASSWORD line. Type in your password. As
the screen tells you, the characters of your password will not appear as you type them, but the
cursor moves along to show how many characters you have typed.

After you type your password, you could press Tab again to move your cursor to the COM-
MAND prompt and enter a command for the system to execute as soon as your logon is com-
plete, or you could press Enter immediately to show that you are done with the logon screen.
If you press Enter at any time before you enter your user ID and password, the system
prompts you to enter the next piece of information it needs.

If you press Enter as soon as you see the logon screen, before you even enter your user ID,
the screen clears and you see a prompt like this:

Enter one of the following commands:
LOGON userid (Example: LOGON VMUSER1)
LOGOFF

(You may see additional commands suggested, but these two are the important ones.) Enter
LOGOFF if you want to give up on logging on. To continue the logon procedure, enter LO-
GON followed by your user ID.

If you've entered your user ID but the system still needs your password, it prompts you for it:

VMXACI104R Enter logon password:

If you entered your user ID and password correctly, the system starts up a session for you. If
you enter a user ID that the system doesn't recognize—in this example, JEOUSER—it dis-
plays something similar to this:

HCPLGO053E JEOUSER not in CP directory
Enter one of the following commands:
LOGON userid (Example: LOGON VMUSER1)
LOGOFF

268 Chapter 18 Getting Started with VM/CMS

If you entered the password incorrectly, the system tells you

HCPLGO050E LOGON unsuccessful--incorrect password

followed by the prompt that tells you the syntax for logging on or off. Don't panic right away
if your first attempt at logging on doesn't work; the VM system will let you make several
more attempts. However, you don't get an unlimited number of chances, because a security
feature of the system closes the connection if someone makes too many successive attempts
to log on to a particular ID without succeeding. It could be an unauthorized person trying to
guess a password, and you don't want to give anyone an unlimited number of guesses.

Once the logon procedure finishes, if you automatically enter CMS, you see the CMS
Ready; prompt (as shown in Figure 18.2) which tells you that the system is ready to accept
your commands.

Ready;

RUNNING

Figure 18.2 Blank CMS screen with Ready; prompt waiting for a command.

Instead of the word Ready; you might just see R; as the prompt. The prompt may also in-
clude the amount of time that the computer's processor spent on the last task you requested
and the current time of day. For example, at 6:43 PM it might look like this:

Ready; T=0.01/0.01 18:43:47

18.1.2 Entering CMS 269

18.1.2 Entering CMS

If you don't see a CMS prompt, you will see a screen waiting for a CP command like the one
in Figure 18.3.

CP

CP READ

Figure 18.3 Blank CP screen waiting for a CP command.

The only CP command you need to worry about is the one that starts up CMS. Enter

IPL CMS

IPL stands for "Initial Program Load." After you type in this command and press Enter you
will see some variation of the CMS Ready; prompt as described above. (You may need to
press Enter one or two more times.)

The IPL CMS command may come in handy later in your session. If something goes drastic-
ally wrong with your CMS session, you may find yourself back in CP, with a prompt screen
just like Figure 18.3. If this happens, type

BEGIN

which will hopefully resume the CMS session that you just lost. If this doesn't work, type

IPL CMS

as if you were starting up a brand new session. You really are starting up a brand new session,
because you have permanently lost your original session.

270 Chapter 18 Getting Started with VM/CMS

18.1.3 Entering Commands

If you press Enter without typing a command, the system displays a message that tells you
which environment you are currently in (either CMS or CP.) This is a handy trick if you are
unsure of your present situation.

When you type a command it appears, as you type it, at the bottom of your screen, like the
list all * being entered in Figure 18.4.

Ready;

list all *_
RUNNING

Figure 18.4 Command being entered on CMS screen.

Although you might be entering your command 22 lines below the line where Ready; is dis-
played, we still speak of entering a command "at" the Ready; prompt. When you press
Enter, the typed command jumps to the line below the most recently displayed line on your
screen and the system's response appears under it, as shown in Figure 18.5.

Ready; T=0.01/0.01 18:48:56

18.1.3 Entering Commands 271

list all *
ALL BACKUP A1
ALL NOTEBOOK A0
ALL NOTEINDX A0

RUNNING

Figure 18.5 CMS response to command entered in Figure 18.4.

If you enter a command like COPY or RENAME and no problems occur when you execute it,
CMS won't display any message telling you that the command executed successfully. If you
don't get an error message, you can assume that the command worked as you had hoped.

18.1.3.1 MORE . . .

Unlike other command-driven operating systems you may have used, CMS doesn't scroll
your typed commands and the system's responses off the top of the screen when the screen
fills up. Instead, the message "MORE..." appears in the screen's lower-right hand corner, to
indicate that there is more to see in addition to the currently displayed text. If you wait 60
seconds CMS automatically clears the current screen and displays the next screen.

If you don't feel like waiting, press the Clear key. On an actual mainframe terminal, this key
has the word "Clear" written on it. When using a terminal emulation program, check its docu-
mentation to see which key on your PC serves as the Clear key with the particular terminal
emulation setting being used. (For example, using Procomm on a DOS PC, the gray plus key
on your keyboard's numeric keypad is the Clear key when you set the emulation to
"3270/950," but F2 is the Clear key when Procomm emulates a VT220 terminal.)

272 Chapter 18 Getting Started with VM/CMS

If you want the information on the screen to remain for longer than a minute, press your Enter
key. The message "HOLDING" replaces the "MORE..." message, and the screen remains un-
til you press the Clear key.

There are four other messages that may appear in that part of your screen:

RUNNING CMS is waiting for you to type a command. This is the most
common message.

VM READ CMS (or some other VM program) is waiting for you to enter
something. Unlike RUNNING, this appears when the system has
asked you for something and is waiting for your answer.

READ CP is waiting for a CP command (as when you first log on, if
you need to start up CMS).

NOT ACCEPTED You entered a command and pressed Enter before the system
was ready for a command, so it couldn't accept it. Press the Reset
key (on a PC emulating a 3270 terminal, this is usually the Es-
cape key) and try again.

18.1.3.2 Aborting Screen Output

If a program has so much output that you press the Clear key over and over and still see the
MORE... message, you may get tired of pressing the Clear key. For example, if you list file
names alphabetically and only start to see file names that begin with the letter "B" after you
press Clear eight times, you may regret issuing the command to list file names. (Actually,
CMS refers to the names of files as "file IDs," not "file names." See section 18.2, "File
Names," for more on this.)

There is help: the Halt Type command, abbreviated as HT. In Figure 18.6, Joe User saw the
MORE... message in the lower-right and decided that he didn't want to see any more file
IDs, so he entered HT to Halt the Typing.

BSHFFUTL EXEC F1 F 80 119 3 9/11/93 1:33:42 65Y370
BSHFINST EXEC F1 F 80 68 2 9/11/93 1:33:52 65Y370
BSHFPNTR EXEC F1 F 80 167 4 9/11/93 1:34:02 65Y370
BSHFPROF DATA F1 F 80 20 1 2/04/94 14:13:15 65Y370
BSHFQCKG EXEC F1 F 80 39 1 9/11/93 1:34:12 65Y370
BSHFSHLL EXEC F1 F 80 526 11 2/04/94 14:17:01 65Y370
BSHFSHOW EXEC F1 F 80 30 1 9/11/93 1:34:34 65Y370

18.1.3 Entering Commands 273

BSHFSMNU EXEC F1 F 80 184 4 9/11/93 1:34:44 65Y370
BSHFSXST EXEC F1 F 80 376 8 9/11/93 1:34:56 65Y370
BSHFTOOL EXEC F1 F 80 119 3 9/11/93 1:35:06 65Y370
BSHFTUTL EXEC F1 F 80 159 4 9/11/93 1:35:17 65Y370
BSHFVIEW EXEC F1 F 80 314 7 9/11/93 1:35:28 65Y370
BSHFXFER EXEC F1 F 80 455 9 9/11/93 1:35:39 65Y370
BSHHFUT1 ERRORS F1 F 80 149 3 9/11/93 1:36:02 65Y370
BSHHFUT2 ERRORS F1 F 80 119 3 9/11/93 1:36:12 65Y370
BSHHMFD ERRORS F1 F 80 167 4 9/11/93 1:36:22 65Y370
BSHHSHLL ERRORS F1 F 80 151 3 9/11/93 1:36:32 65Y370
BSHHSHL2 ERRORS F1 F 80 134 3 9/11/93 1:36:43 65Y370
BSHHTOL2 ERRORS F1 F 80 76 2 9/11/93 1:36:53 65Y370
BSHHTOOL ERRORS F1 F 80 166 4 9/11/93 1:37:03 65Y370
BSHHTUTL ERRORS F1 F 80 115 3 9/11/93 1:37:13 65Y370
BSHMSACC EXEC F1 F 80 1 1 9/11/93 1:39:29 65Y37
ht

MORE...

Figure 18.6 Halt Typing (ht) command entered to stop CMS output.

After he presses Enter, CMS displays only one more line of output and goes back to the
Ready; prompt, as shown in Figure 18.7.

BSHMSACC HLP F1 F 80 11 1 9/11/93 1:38:23 65Y370
ht
Ready; T=0.07/0.36 18:09:37

274 Chapter 18 Getting Started with VM/CMS

RUNNING

Figure 18.7 Result of Halt Typing command.

Remember, this not only works for the command that lists file IDs, but for any command that
has you pressing the Clear key too often when you look at command output.

This is the Nineties. Why Do I Need a Card Puncher or a Punch
Card Reader?
The "virtual computer" created for you as a part of the VM system includes a
virtual card reader and a virtual card puncher. Why would anyone want even
a software simulation of such archaic pieces of hardware? Before sending
files from one user (or computer) to another was as simple as it is today, you
sent someone a file by issuing a command to the computer to create a punch
card version of the file in the recipient's card reader. In other words, you
"punched" it to him. He then "read" the stack of cards by entering the com-
mand that told the card reader to read each card in that stack and turn it into
a line of a disk file.

One of VM's original advantages was its ability to let people emulate these
processes in software, so that physical card punchers and readers became
much less necessary. Now that these machines are virtually obsolete, the
terminology is still with us. In fact, you may still see references to "cards" now
and then on your screen. Instead of referring to those rectangular pieces of
paper, your computer is referring to an 80-character unit of information—the
amount that a single card used to store.

18.1.3.3 Case Sensitivity

CMS is not case-sensitive. Your commands have the same effect whether you enter them in
upper or lower case. The same applies to file IDs: when you create or refer to a file, whether
you write out its name in upper or lower case, CMS translates it to upper case.

18.1.4 Finishing Your CMS Session 275

18.1.4 Finishing Your CMS Session

Logging off is simple. Just type

LOGOFF

at the Ready prompt. This one command ends both your CMS session and the CP session un-
derlying it. You also get a short report on the statistics of your finished session:

CONNECT= 00:02:30 VIRTCPU= 000:01.22 TOTCPU= 000:01.52
LOGOFF AT 09:20:42 EST MONDAY 011/06/94

CONNECT shows how long you were connected to the system, and the other figures show
various aspects of the Central Processing Unit time that you used.

18.2 File Names
In CMS, we don't refer to a file's name as a "filename." It has three parts, and the first by it-
self is known as a "filename." Some IBM literature refers to the combination of the three
parts as a "file label"; other IBM literature refers to a file's full name as the "fileid," with the
last two letters pronounced out loud, as if it had been written "file ID." The three parts have
the following purposes:

filename If you compare the filename and filetype to a person's first and
last name, then the filename is the first name. While a series of
files with the same filetype are all in the same family, different
filenames distinguish each from the other. The filename can have
from one to eight characters and can include letters of the alpha-
bet, numeric digits, and the characters @, #, $, +, -, ;, and _. As
suggested in section 1.5, "General Advice," stick with letters,
numbers, and the underscore character (_) to stay out of trouble.

filetype This shows what family the file belongs to. For example, a file-
type of EXEC shows that the file is a CMS command file (in sec-
tion 21.2, "Command Files," we'll see how to write these); a file-
type of XEDIT shows that the file is a series of commands used
by the CMS text editor XEDIT as a macro; a filetype of COBOL
shows that the file contains source code written in the COBOL
programming language. The filetype can have from one to eight
characters, and can contain the same characters that a filename
can.

276 Chapter 18 Getting Started with VM/CMS

filemode This identifies the minidisk where the file is stored. As you'll see
in section 18.3, "How Files Are Organized," CMS stores files on
disks named after letters of the alphabet, with your own personal
disk named A. (Disks A, B, and C may actually be on the same
physical disk. To make things easier to organize, disks are di-
vided into sections with each named as if it were a separate disk.)
If you omit the filemode when you refer to a file, CMS usually
assumes that you're talking about a file with a filemode of A.

When you list file labels, you may see a numeric digit from 0 to 6 after the filemode letter.
Different numbers represent different purposes and access rights that users have over the file.
The most common digit is 1, the default for files that you create. Files created on your minid-
isk by the system usually have a 0, which prevents other users from looking at the file, even
when they have access to your minidisk. Files that several users may want to share often have
a 2 as their filemode digit. (Section 19.2, "Sharing Files between Users," explains how one
user can gain access to another's minidisk.)

Here are some typical file labels:

MAY_BUDG SCRIPT A1
NOTEBOOK ALL A0
MAINMENU EXEC B2
120794CR MEMO A1

18.2.1 Wildcards

The use of wildcards gives you a fair amount of flexibility with listfile, the command
used to list file IDs, but very little with other commands. The two wildcard characters are the
asterisk, which represents multiple characters, and the percent sign, which represents indi-
vidual characters.

In the examples used to explain these characters, assume that your A minidisk has the these
files on it:

111494JJ MEMO A1
112894BD MEMO A1
120794CR MEMO A1
121794BD MEMO A1
121794CR MEMO A1
122094JJ MEMO A1
LINKUTIL EXEC A1
MAY_BUD SCRIPT A1
JUN_BUD SCRIPT A1

18.2.1 Wildcards 277

NOTEBOOK ALL A0
PHONLIST TXT A1
SUM_RPT EXEC A1
SUM_RPT HLP A1

18.2.1.1 The Asterisk

In many commands that operate on files, you can use the asterisk to substitute for the file-
name, filetype, or filemode. To use the LISTFILE command to list all files with a filename
of SUM_RPT, the command

LISTFILE SUM_RPT *

produces this output:

SUM_RPT EXEC A1
SUM_RPT HLP A1

To list files with a filetype of EXEC, the command

LISTFILE * EXEC

produces this output:

LINKUTIL EXEC A1
SUM_RPT EXEC A1

To list all the EXEC files on your minidisk and all the ones that you have access to, you could
enter

LISTFILE * EXEC *

but be prepared to use the ht command described in section 18.1.3.2, "Aborting Screen Out-
put." An EXEC is a CMS command file, and you will probably find a large number of them
on other disks.

The ERASE command, which erases files, can also use the asterisk. Typing

ERASE * EXEC

would erase all of your EXEC files. Typing

ERASE * EXEC *

278 Chapter 18 Getting Started with VM/CMS

wouldn't erase all the EXEC files on all of the disks to which you have access; you shouldn't
have privileges to alter or erase files on any minidisk besides your own A disk.

Used with the LISTFILE or COPY commands, you can use the asterisk in combination with
other letters. Typing

LISTFILE 11* MEMO

produces the following output:

111494JJ MEMO A1
112894BD MEMO A1

The asterisk doesn't need to go at the end of the filename or filetype in the command. For ex-
ample, you could type

LISTFILE *BD MEMO

and get this output:

112894BD MEMO A1
121794BD MEMO A1

18.2.1.2 The Percent Sign

You can use the percent sign with some commands to represent a single character. Use mul-
tiple percent signs to represent several letters. For example, using three percent signs to rep-
resent three letters in this command

LISTFILE SUM_RPT %%%

produces this output:

SUM_RPT HLP A1

while doing this with 4 percent signs,

LISTFILE SUM_RPT %%%%

has the following output:

SUM_RPT EXEC A1

18.3 How Files Are Organized 279

18.3 How Files Are Organized
In keeping with the VM philosophy of giving you a simulation of your own computer all to
yourself, VM also gives you a simulation of your own disk on which to store your files.
Wow! Big stuff, right? Well, it was in 1964.

The mainframe you use may have many hard disks, but in practice it's easier to think of them
as one big one divided into multiple minidisks. The minidisk is the basic division of hard disk
space; it is analogous to the concept of a volume, directory, or folder on other systems.
(Unlike directories or folders, however, you cannot divide up a minidisk into smaller minid-
isks.)

CMS assigns a letter to each minidisk to make it possible to distinguish a file on one minidisk
from a file with the same filename and filetype on another minidisk. The filemode letter rep-
resents the minidisk on which a file is stored. (See section 18.2, "File Names," for more on
naming files.) Everyone knows their personal minidisk as disk A. The files that comprise the
CMS system programs are stored on the S and Y disks.

In section 19.2, "Sharing Files between Users," you'll see that commands are available to
make your minidisk accessible to other users and to gain access to other users' minidisks.
When you execute ACCESS, the second of the two commands necessary to use someone
else's minidisk, part of the command's syntax specifies the letter that you plan to use as a
filemode for files on that minidisk. If the system lets you pick the letter yourself, the letters
used to designate minidisks are clearly not hard and fast names. If you gain access to Mary
Jones' personal disk and call it disk M, she still treats it as her A disk. The next day, you might
use the same commands to access her minidisk but choose the letter G to represent it; you'll
still be using the same files.

18.3.1 Free Space on Your Disk

When you execute the command QUERY DISK, CMS tells you information about the vari-
ous minidisks to which you currently have access. In addition to your own A disk and the S
and Y disks, your system may have other letters assigned to the minidisks that store applica-
tion software. The output from the QUERY DISK might look like this:

LABEL VDEV M STAT CYL TYPE BLKSIZE FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
DSK191 191 A R/W 2 3390 4096 110 202-56 158 360
65Y-XA 19F F R/O 32 3380 4096 727 3915-82 885 4800
MNT190 190 S R/O 70 3380 4096 279 6547-62 3953 10500
CMSLIB 19E Y/S R/O 45 3380 4096 670 6163-91 587 6750

The most important columns of information right now are the M column, which shows the let-
ters assigned to the available minidisks, and the BLKS USED-(%) column. Actually, only

280 Chapter 18 Getting Started with VM/CMS

the first line of the BLKS USED-(%) column is important, because it applies to your own A
minidisk. The second number tells how full it is. In the above illustration, A is 56% full. If
this figure exceeds 90%, it's time to either make room on your A disk by erasing some files or
to lobby with your system administrator for more space—that is, for a bigger chunk of hard
disk space to be allocated as your A disk. (To help your bargaining position, sometimes
they're willing to grant you extra space for only a limited time—for example, if a big project
means that you'll only need more space until you can get rid of the files needed for the
project.)

18.4 Available On-line Help
CMS has extensive on-line help, accessible from either menus or the command line. With
either, you will find two types of help: brief and detailed.

Brief help rarely exceeds half a screen in length. It shows the syntax of a command and one
or two examples. For example, Figure 18.8 shows the brief help for the LISTFILE com-
mand. It's quite brief—the upper-right, where it says "line 1 of 10," shows that the 10 lines
that you see (counting the four blank lines) are all that it has. It shows the format, or syntax of
the command, and one example of its use. Although the format shows where to put the op-
tions to the command (after a left parenthesis following the command name), it doesn't tell
you what the options are.

COMMANDS LISTFILE Brief Help Information line 1 of 10

The LISTFILE command lists the names of files on any disk or SFS
directory you access.

FORMAT: Listfile (options

EXAMPLE: If you need to see a listing, then enter:

listf

PF1= All 2= Top 3= Quit 4= Return 5= Clocate 6= ?
PF7= Backward 8= Forward 9= PFkeys 10= 11= Related 12= Cursor
DMSHEL241I Press PF11 to get related information.

18.4 Available On-line Help 281

====>
Macro-read 1 File

Figure 18.8 Brief help for LISTFILE command.

Note the use of upper and lower case to show the essential part of the command. All you
really need to type is the upper case part. For the LISTFILE command, only the "L" is really
necessary (making some CMS commands even terser than UNIX commands!). If you just
type the letter "L" at the command line,

l

this has the same effect has typing

listfile

by itself. Of course, you can put any options after the l that you can put after the fully
spelled-out LISTFILE command.

Some commands require more than the first letter; for example, the format part of the help
screen for the COPYFILE command shows it as COPYfile; this means that you must use at
least the first four letters of the word.

While viewing a brief help screen, press PF1 for "All" to display the complete, detailed help
about this command. Figure 18.9 shows how the beginning of this help might look for the
LISTFILE command.

COMMANDS LISTFILE All Help Information line 1 of 610
(c) Copyright IBM Corporation 1990

LISTFILE

Use the LISTFILE command to obtain specified information about:

* CMS files residing on accessed minidisks

* files and subdirectories in Shared File System (SFS)
directories.

Format

282 Chapter 18 Getting Started with VM/CMS

+---+
	+ + + + + +						
Listfile		fn	ft	fm			((options...()))
		*	*	*			
	+ + + + + +						
PF1= Brief 2= Top 3= Quit 4= Return 5= Clocate 6= ?
PF7= Backward 8= Forward 9= PFkeys 10= 11= Related 12= Cursor

====>

Figure 18.9 Beginning of detailed help for the LISTFILE command.

The "line 1 of 610" shows that this is only the tip of the iceberg. If you wish, you can page
down and page down and read more help about the LISTFILE command than you'll ever
need.

18.4.1 Help Function Keys

On either the brief or detailed help screens, the following are the important function keys:

PF1 Help or All or Brief: On a help menu screen, PF1 is the Help
key, which has the same effect as the Enter key: when you move
your cursor to a choice on the menu and press it, CMS displays
help information about the chosen menu item.

On a screen that displays help about a particular command, PF1
gives you the All (that is, detailed) help screen instead of the
Brief help screen. When viewing a Detailed help screen, PF1
gives you the Brief help.

PF2 Top : If you used PF8 to page through a few screens of help in-
formation, PF2 returns you to the top.

PF3 Quit: Quit the current help screen. When using help menus, you
may go from one screen to another as you narrow your search for
the information that you need. The Quit key returns you to the
previous screen that you were viewing. Repeatedly pressing it
brings you back to the CMS Ready; prompt.

PF4 Return: Return directly back to the Ready; prompt, no matter

18.4.1 Help Function Keys 283

how many levels of help you went through to get to the current
screen.

PF7 Backward: Page up, or view help text above the currently dis-
played text.

PF8 Forward: Page down, or view help text below the currently dis-
played text.

PF11 Related: Display a menu of related help topics to choose from.

PF12 Cursor: If the cursor is on the menu part of a help menu, put it at
the command line; if it's at the command line, put it at its previ-
ous position on the screen.

18.4.2 Help Menus

Type the word HELP by itself at the CMS Ready; prompt to start up the Help program. The
first screen you see, shown in Figure 18.10, is its main menu.

HELP TASKS Task Help Information line 1 of 25
(c) Copyright IBM Corporation 1990

Move the cursor to the task that you want, then press the ENTER key
or the PF1 key.

TASKS - Help if you don't know VM/ESA commands.
Good choice for beginners

MENUS - List the HELP component MENUs
HELP - Explain some ways for using HELP
COMMANDS - List VM/ESA commands that you can use
CMS - Show only CMS commands
CP - Show only CP commands
OPTIONS - Show options for the QUERY and SET

commands of both CMS and CP
SUBCMDS - List VM/ESA subcommands that you can

use, such as XEDIT
STATEMTS - Show statements for REXX, EXEC2, and EXEC
PF1= Help 2= Top 3= Quit 4= Return 5= Clocate 6= ?
PF7= Backward 8= Forward 9= PFkeys 10= 11= 12= Cursor

====>
Macro-read 1 File

284 Chapter 18 Getting Started with VM/CMS

Figure 18.10 First page of main CMS help menu.

STATEMTS is not the last choice on this menu; press PF8 to page forward, and you see more
of the menu, as shown in Figure 18.11.

HELP TASKS Task Help Information line 9 of 25
MENUS - List the HELP component MENUs
HELP - Explain some ways for using HELP
COMMANDS - List VM/ESA commands that you can use
CMS - Show only CMS commands
CP - Show only CP commands
OPTIONS - Show options for the QUERY and SET

commands of both CMS and CP
SUBCMDS - List VM/ESA subcommands that you can

use, such as XEDIT
STATEMTS - Show statements for REXX, EXEC2, and EXEC
ROUTINES - Show callable routines
MACROS - Show Assembler Language Macros for

CMS, APPC/VM, and IUCV
MESSAGES - Explain how to get help for messages
OTHER - Show commands for other products,
PRODUCTS such as RSCS and SQLDS

LIBRARY - Describe the VM/ESA library
* * * End of File * * *
PF1= Help 2= Top 3= Quit 4= Return 5= Clocate 6= ?
PF7= Backward 8= Forward 9= PFkeys 10= 11= 12= Cursor

====>
Macro-read 1 File

Figure 18.11 Second page of main CMS help menu.

That's everything for this particular menu. The first clue about its total number of choices was
the first screen's upper-right hand corner, which said line 1 of 25. This meant that the
top of your screen had the first of a total of 25 lines in this help file. (The second clue is the
line at the bottom of the second screen that says * * * End of File * * *.) Other
help files are longer; the PF8 key lets you go through them a page at a time.

Press PF7 to go back to the first screen. Note that part of the description for the TASKS menu

18.4.2 Help Menus 285

choice says "Good choice for beginners." That sounds good; move your cursor to any posi-
tion on that line and press either Enter or PF1. CMS displays the TASK HELP menu, shown
in Figure 18.12.

TASK TASK Task Help Information line 1 of 23
(c) Copyright IBM Corporation 1990

Each VM/ESA task below leads to a more detailed
list of tasks for you to choose from.

Move the cursor to the task that you want, then press the ENTER key
or the PF1 key.

Create or change (edit) files
Manage files (copy, rename, erase, etc.)
Work with windows in fullscreen CMS
Work with virtual screens in CMS
Scroll data in a window
Communicate with other users
Use the CMS Shared File System (SFS)
Debug programs and EXECs
Develop programs and EXECs
PF1= Help 2= Top 3= Quit 4= Return 5= Clocate 6= ?
PF7= Backward 8= Forward 9= PFkeys 10= 11= 12= Cursor

====>
Macro-read 2 Files

Figure 18.12 First screen of "Task Help" menu.

This is great, because on most computers, if you want help with a command, you must re-
member the command's name to ask for help with it. In CMS, this help screen helps you find
the information you need even when you don't know the command's name. (Forgetting the
command names is difficult—one of the nice things about CMS is the sensible choice of
command names: ERASE to erase a file, COPY to copy a file, RENAME to rename a file,
LIST to list their names, and so forth.)

Of the choices on this screen, Manage files covers the most basic ways to manipulate
files; if you move your cursor there and press Enter or PF1, CMS displays the screen shown
in Figure 18.13.

286 Chapter 18 Getting Started with VM/CMS

MANAGE TASK Task Help Information line 1 of 18
(c) Copyright IBM Corporation 1990

PURPOSE: To help you manage your files.

Move the cursor to the task that you want, then press the ENTER key
or the PF1 key.

List files and associated information
List the files on a minidisk (names only)
Print files
Make copies of files
Rename files
Compare files
Discard or Erase files
Send files to other users
Work with files sent by other users
Specify patterns in file identifiers
PF1= Help 2= Top 3= Quit 4= Return 5= Clocate 6= ?
PF7= Backward 8= Forward 9= PFkeys 10= 11= 12= Cursor

====>
Macro-read 3 Files

Figure 18.13 Beginning of "Manage Files" help menu.

If you pick List files on a minidisk, the help system displays Brief help explain-
ing the command that lists file IDs, as shown in Figure 18.14.

CMS LISTFILE Brief Help Information line 1 of 10

The LISTFILE command lists the names of files on any disk or SFS
directory you access.

FORMAT: Listfile (options

EXAMPLE: If you need to see a listing, then enter:

listf

18.4.2 Help Menus 287

PF1= All 2= Top 3= Quit 4= Return 5= Clocate 6= ?
PF7= Backward 8= Forward 9= PFkeys 10= 11= Related 12= Cursor
DMSHEL241I Press PF11 to get related information.
====>

Macro-read 4 Files

Figure 18.14 Brief help for "List files on a minidisk."

Section 18.4.3, "Command-Line Help," shows a quicker way to find help about a particular
command.

18.4.3 Command-Line Help

We saw earlier that typing HELP by itself at the command line brings up the help program's
main menu. If you add the name of a command to the HELP command, it skips the menus
and displays help information about that command. For example, if you type

HELP COPY

at the Ready; prompt, the help program jumps right to the screen shown in Figure 18.15.

COMMANDS COPY Brief Help Information line 1 of 9
The COPYFILE command lets you copy and/or modify files located on
CMS minidisks or in an SFS directory.

FORMAT: COPYfile fname1 ftype1 fmode1 fname2 ftype2 fmode2
(options

EXAMPLE: To copy HISTORY SCRIPT H to HISTORY SCRIPT A, enter:
copy history script h history script a

288 Chapter 18 Getting Started with VM/CMS

PF1= All 2= Top 3= Quit 4= Return 5= Clocate 6= ?
PF7= Backward 8= Forward 9= PFkeys 10= 11= Related 12= Cursor
DMSHEL241I Press PF11 to get related information.
====>

Macro-read 1 File

Figure 18.15 Brief help for COPYFILE command.

This shows the brief version of help for the COPYFILE command. If you want to go directly
from the Ready; prompt to the detailed help about a command, enter

HELP command (DETAIL

where command is the name of the command with which you need help.

If we can abbreviate LISTFILE to one letter and COPYFILE to four, maybe we don't need
to completely spell out DETAIL. Let's use the HELP program to find out. Since we want to
know about the syntax of the HELP command, enter HELP followed by the name of the com-
mand you're inquiring about:

HELP HELP

The HELP program displays the screen shown in Figure 18.16.

COMMANDS HELP Brief Help Information line 1 of 10

The HELP command tells you how to use VM/ESA HELP. For
introductory information on the VM/ESA HELP Facility itself, enter
HELP SELF.

FORMAT: Help component-name command-name (options

EXAMPLE: You forgot how to use the ACCESS command. If you want to
get help for that command, then enter:

help cms access

18.4.3 Command-Line Help 289

PF1= All 2= Top 3= Quit 4= Return 5= Clocate 6= ?
PF7= Backward 8= Forward 9= PFkeys 10= 11= 12= Cursor

====>
Macro-read 1 File

Figure 18.16 Brief help for HELP command.

It looks like the brief help is a little too brief to answer our question. Press PF1 to display the
detailed help shown in Figure 18.17.

COMMANDS HELP All Help Information line 1 of 678
(c) Copyright IBM Corporation 1990

HELP

Use the HELP command to display online information from the VM/ESA
HELP Facility. Online HELP provides information for both new and
experienced users.

* Tasks

- End-user, application programmer, and administrator

* Commands

- For VM/ESA (ESA Feature): CMS, CP, AVS, TSAF, VMSES and
dump viewing facility

- For VM/ESA (370 Feature): CMS, CP370, AVS, TSAF, VMSES and
PF1= Brief 2= Top 3= Quit 4= Return 5= Clocate 6= ?
PF7= Backward 8= Forward 9= PFkeys 10= 11= 12= Cursor

====>
Macro-read 1 File

Figure 18.17 Beginning of detailed help for the HELP command.

290 Chapter 18 Getting Started with VM/CMS

There's nothing about the word DETAIL here, but the detailed help information about the
HELP command is 678 lines long. You could press PF8 over and over to look for the inform-
ation you need, but there's a better way: PF5, the Clocate key.

"Clocate" stands for "Column Locate." As you'll see in the section on XEDIT (the CMS text
editor) the LOCATE command finds the line with a specified search target; the CLOCATE
command finds the line and the column. In other words, it finds the line and puts the cursor
right on the first letter of the word you're searching for.

The PF5 key makes it unnecessary to type out the actual command. Just type the word you're
looking for on the help screen's command line,

detail

and press PF5. It doesn't matter whether you type your search target in upper or lower case;
PF5 finds the next occurrence even if it's spelled "dEtAiL." Figure 18.18 shows what happens
when the on-line help finds the target string: it moves that line to the top of your screen.

COMMANDS HELP All Help Information line 60 of 678
2. DETAIL - complete information (including messages)

3. RELATED - information about similar commands.

Format

+---+
	+ +				
Help		TASKs			
		Help			
		taskname TASKs	+ +		
		menuname MENU		((optionA) (optionB) (optionC)())	
		component-name cmd-name	+ +		
	+ +				
	+ +				
		MESSAGE	message-id		
		MSG			
	+ +				
PF1= Brief 2= Top 3= Quit 4= Return 5= Clocate 6= ?
PF7= Backward 8= Forward 9= PFkeys 10= 11= 12= Cursor

====>
Macro-read 1 File

Figure 18.18 Result of first search for the string "detail."

18.4.3 Command-Line Help 291

It looks like it found the word "DETAIL," but not the information we want. The detailed help
on the syntax of the HELP command seems to begin just below this screen, so the information
about the use of the word "detail" can't be far off.

If you continue to press PF5 after finding a search target, it continues to search for more oc-
currences of the target. Press it a second time after you get the screen in Figure 18.18 and
you'll see a screen similar to the one shown in Figure 18.19.

COMMANDS HELP All Help Information line 80 of 678
		DETail			
		RELated			
	+ +				
	OptionB: (ALL) (DESCript) (FORMat) (PARMs)				
	(OPTions) (NOTEs) (ERRors)				
	+ + + +				
	OptionC:	SCReen		TYPe	(EXTend)
		NOScreen		NOType	
	+ + + +				
+---+

Operands

Help, specified without any parameters, displays a task menu if
you are using the VM/ESA HELP files. If you are using files
other than the VM/ESA HELP files and if the HELP HELPMENU file
has been created, then you will get the HELP HELPMENU file.

PF1= Brief 2= Top 3= Quit 4= Return 5= Clocate 6= ?
PF7= Backward 8= Forward 9= PFkeys 10= 11= 12= Cursor

====>
Macro-read 1 File

Figure 18.19 Result of second search for the word "detail."

There it is: the word "DETail" as part of the detailed help on the HELP command's format. It
looks like you only need the first three letters. In the future, to go directly to the detailed help
about any command, you only need to type

HELP cmdname (DET

where cmdname is the name of the command you want to learn about. You'll find that many
CMS programs, like the XEDIT text editor, have their own built-in help. While using a pro-

292 Chapter 18 Getting Started with VM/CMS

gram, there are two easy ways to check whether it has its own help facility:

• If the program has its own command line, type HELP there and press Enter.

• Press the PF1 key. CMS programs are pretty consistent about always using this as the
Help key.

18.4.3.1 Command-Line Help and Error Messages

When you get an error message in CMS, you usually get a cryptic code along with the brief
description of what went wrong. Command-line help can use this code to get much more de-
tailed help about the error. See section 19.1.2, "Common Error Messages," for more informa-
tion.

18.4.3 Command-Line Help 293

294

Chapter 19 Using Files in VM/CMS
19.1 The Five Most Important Commands
The five most important commands in VM/CMS are:

LISTFILE lists file IDs.

TYPE displays the contents of files.

COPY copies files.

RENAME renames files.

ERASE deletes files.

In addition to these commands, CMS has a program that many people use to perform all these
functions and more. Section 21.4, "The FILELIST Program," introduces this program.

19.1.1 Command Options

CMS uses a left parenthesis to indicate the beginning of special instructions about how a
command should operate. A right parenthesis is optional, and has no effect. For example, the
LISTFILE command lists file IDs by themselves with no other options, but adding the LA-
BEL option indicates that the system should also list other information about the files:

LISTFILE (LABEL

When you use the on-line help in CMS, the brief version of help shows you where to put the
options, but you need to view the detailed help about a command to learn the available op-
tions and the syntax for using them. See section 18.4, "Available On-line Help," for more
about brief versus detailed help.

19.1.2 Common Error Messages

When you type anything at the Ready; prompt, CMS looks for a program with that name
and executes it. If you make a typing mistake, for example

HLEP COPY

when you meant to type HELP COPY, CMS tells you:

295

Unknown CP/CMS command

In other words, there is no CMS or CP command called HLEP.

Many commands expect some information after the command. For example, when you copy
a file, you must indicate the file to copy and the name you want to give to the new copy. If
you type the COPY command by itself without any filenames, the system responds with the
message

DMSCPY042E No fileid(s) specified

The second part of this tells you the problem: you didn't specify any file ID with the com-
mand, which needed at least one. And remember: a complete file ID has three parts, and for-
getting the third part is another common cause of error messages. For example, the command

copy profile exec

causes the system to respond with this message:

DMSCPY054E Incomplete fileid specified

The letters and numbers at the beginning of these error messages look pretty ugly, but they
actually provide the key to some of the best error messages you will find in any operating
system. Using the HELP program with one of these codes as a parameter tells you much more
about your error. For example, entering

HELP DMSCPY054E

at the Ready; prompt displays the screen shown in Figure 19.1.

MSG DMSCPY054E All Help Information line 1 of 14
(c) Copyright IBM Corporation 1990

054E Incomplete <fileid|execid> specified

Explanation: You must specify the file name and file type or execname
and exectype in order for the command to be executed. In addition,
for some commands you must specify the file mode.

System Action: RC=24.
Execution of the command is terminated. The system status remains the
same.

296 Chapter 19 Using Files in VM/CMS

User Response: Check the description of the command, correct the
command line, and reissue the command.
* * * End of File * * *

PF1= 2= Top 3= Quit 4= Return 5= Clocate 6= ?
PF7= Backward 8= Forward 9= PFkeys 10= 11= 12= Cursor

====>
Macro-read 1 File

Figure 19.1 Help description of the DMSCPY054E error code.

The crucial parts of this are the Explanation, which explains the problem in complete sen-
tences, and the User Response, which tells how to correct the problem.

This is a normal help screen. All of its function keys perform identically to their descriptions
in section 18.4.1, "Help Function Keys."

Another popular cause of error messages is instructions that tell the system to perform an ac-
tion on a nonexistent file. For example, let's say you want to copy a file called TEMPLATE
TXT and call the copy MAY_BUD TXT, but you make a typo and enter the following com-
mand:

COPY TEMPALTE TXT A MAY_BUD TXT A

The CMS system responds with

DMSCPY002E INPUT file TEMPALTE TXT A not found

which means "The COPY program can't find the input file that you named." Again, you can
use its error code to learn more if you wish.

Remember, the COPY command is just used as an example here. Similar mistakes with many
different commands elicit similar error messages. For a more detailed explanation of the use
of the COPY command, see section 19.1.5, "Copying Files."

19.1.3 Listing File Names

The full name of the command to list file IDs is LISTFILE. Used by itself without any para-
meters, it gives you the names of all the files on your own minidisk (the A disk).

19.1.3 Listing File Names 297

Many users abbreviate the LISTFILE command as LISTF or LIST. Its help screen shows
that you can abbreviate it down to one character: the "L."

In Figure 19.2, the user types LISTFILE and presses Enter; CMS then responds with the
first screenful of names.

listfile
ALL BACKUP A1
ALL NOTEBOOK A0
ALL NOTEINDX A0
ANSICODE TXT A1
BOB SCRIPT A1
BOB TEST A1
BOB TEST1 A1
BUZZ EXEC A2
C_ATTACH EXEC A1
CLOOP C A1
CLOOP TEXT A1
CMDLIST TXT A0
CMS EXEC A1
CMS TXT A1
COMBINE XEDIT A1
DIR EXEC A1
DOWNLOAD EXEC A1
EMPLOYEE DATA A1
EMPLOYEE INDEX A1
GRAPH DATA A1
GRAPH EXEC A1

MORE...

Figure 19.2 Using the listfile command.

As you can see, there could be more file IDs than will fit on your screen, so you would need
to press the Clear key to continue viewing them (or wait 60 seconds between each screenful).
Don't forget the HT command described in section 18.1.3.2, "Aborting Screen Output"; it can
be handy here.

As explained in section 18.2.1, "Wildcards," the LISTFILE (and FILELIST) commands
give you the most flexibility of any of the commands that allow the use of wildcards. (For
more information on FILELIST, see section 21.4, "The FILELIST Program.") To list only
the files with a filetype of EXEC, use the asterisk to mean "any filename." For example, when
you enter

298 Chapter 19 Using Files in VM/CMS

L * EXEC

CMS displays output similar to this:

BUZZ EXEC A2
C_ATTACH EXEC A1
CC EXEC A1
CMS EXEC A1
CRITBETA EXEC A1
DIR EXEC A1
DOWNLOAD EXEC A1
EMPATTCH EXEC A1
FIND EXEC A1
GRAPH EXEC A1
HTRACK EXEC A1
INFONT EXEC A1
IOBETA EXEC A1
MARY EXEC A1
P EXEC A1
PROFILE EXEC A1
SERVER EXEC A1
STAFF EXEC A1
TEST1 EXEC A1
TEST4 EXEC A1
TUTOR EXEC A1

Although the default filemode of listed files is A, using the asterisk to denote a filemode with
the LISTFILE command tells the system to list file IDs on any minidisk that match the file-
name and filetype given. For example, to list all the SCRIPT files (text files with IBM
formatting codes) on any minidisk that are accessible to your user ID, enter the following:

L * SCRIPT *

This command means "list the IDs of files with any filename, a filetype of SCRIPT, and any
filemode." The output looks like this:

DOCCHAP1 SCRIPT A1
DOCCHAP2 SCRIPT A1
DOCCHAP3 SCRIPT A1
DOCCHAP4 SCRIPT A1
DOCCHAP5 SCRIPT A1
DOCCHAP6 SCRIPT A1
DOCCHAP7 SCRIPT A1
GCC024 SCRIPT Y2
GCC025 SCRIPT Y2
GCC029 SCRIPT Y2
GCC311 SCRIPT Y2

19.1.3 Listing File Names 299

GCC312 SCRIPT Y2

If someone tells you that your system has a report menu program that you start up by typing
RPTMENU, you could check out the program's filetype and minidisk location by typing this:

L RPTMENU * *

If the output was something along the lines of

RPTMENU EXEC Y2
RPTMENU HELPCMS Y2

then you would know that the RPTMENU program was an EXEC file (a CMS command file)
that you can probably look at with the TYPE command or the XEDIT text editor now that you
know the file's full name. (You'll learn how to write your own EXECs in section 21.2, "Com-
mand Files.") The other file listed probably stores HELP information that RPTMENU EXEC
uses if someone presses PF1 while using the RPTMENU program.

19.1.3.1 Listing More than File Names

The LABEL option specifies that you want to see much more than the files' names. Enter

LISTFILE * EXEC (LABEL

and CMS displays a screen similar to this:

FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS DATE TIME LABEL
BUZZ EXEC A2 V 70 36 1 8/17/92 17:54:44 DSK191
C_ATTACH EXEC A1 F 80 2 1 1/30/92 16:48:41 DSK191
CRITBETA EXEC A1 V 19 4 1 1/21/94 11:23:18 DSK191
DIR EXEC A1 V 24 1 1 1/29/92 16:27:20 DSK191
DOWNLOAD EXEC A1 V 73 31 1 2/02/92 11:01:21 DSK191
HTRACK EXEC A1 V 24 2 1 7/27/92 13:17:05 DSK191
INFONT EXEC A1 V 19 2 1 12/10/92 13:30:28 DSK191
IOBETA EXEC A1 V 19 4 1 1/07/94 12:34:47 DSK191
MBAILEY EXEC A1 V 22 1 1 1/30/92 16:49:02 DSK191
PROFILE EXEC A1 V 29 8 1 1/18/94 12:47:00 DSK191
TEST1 EXEC A1 V 27 9 1 2/02/92 10:53:40 DSK191
TEST4 EXEC A1 V 18 8 1 8/21/92 16:20:19 DSK191
TUTOR EXEC A1 V 7 1 1 9/23/93 16:16:57 DSK191
Ready; T=0.01/0.01 10:18:00

The screen shows the following information about the files:

300 Chapter 19 Using Files in VM/CMS

FILENAME The first part of a file ID's three parts. See section 18.2, "File
Names," for more on this.

FILETYPE The second of a file ID's three parts. The filetype shows the type
of file on that line.

FM The filemode, or the third of a file ID's three parts. The filemode
is the letter that represents the minidisk where the file is located.
Section 18.3, "How Files Are Organized," describes its role more
fully.

FORMAT A format (or "record format") of V means that a file's records
have variable length. "Records" here means "lines." The terms
were once fairly synonymous, but as the science of dealing with
databases advanced, the term "record" took on a more specific
meaning.) In other words, the lines aren't all the same length. A
format of F means that they have fixed length. If any lines seem
shorter than others, spaces are inserted to make their lengths
equal.

LRECL The Logical RECord Length (pronounced "ell-rekkul," with the
accent on the first syllable). For a Fixed format file, this shows
each line's length; otherwise, this shows the longest line's length.

RECS The number of records, or lines.

BLOCKS How many blocks, or units of hard disk space, the file takes up.

DATE The date the file was last modified.

TIME The time of day the file was last modified.

LABEL A name used to identify the actual physical disk where the file is
located (as opposed to the virtual disk, which is represented by
the filemode).

The most important information that you ever need to know about a file (besides its name) is
its size and when it was last modified. So RECS, DATE, and TIME are the most important
columns here. You may need to worry about FORMAT and LRECL if an application pro-
gram expects a file to have one format but it actually has another. We'll see in section 19.1.5,
"Copying Files," that when you copy a file, you can specify the copy's FORMAT and LRECL
and make a copy that doesn't cause you trouble if the original did not cooperate with the ap-
plication that tried to use it.

19.1.3 Listing File Names 301

Forget about BLOCKS and LABEL. Part of the point of RECS and filemodes are to keep you
from worrying about these.

19.1.4 Displaying a Text File's Contents

The command to type out a file's contents on the screen is simple: TYPE. For example, if you
want to see what's in a file called PHONLIST TXT, type the following:

TYPE PHONLIST TXT

CMS displays the file's contents on your screen:

Frank x5388
Kate x3325
Jim x0543
Kevin x5453
Tastee Deli 874-5342
Messenger Service 878-0775
Mary 878-3431
Mary @ work 874-5363
Cinema 123 874-6543

If the file's contents take up more than one screen, you may end up pressing the Clear key re-
peatedly, so don't forget about the HT command described in section 18.1.3.2, "Aborting
Screen Output." If you don't know how long a file is, you might want to check it out before
displaying it with the TYPE command by using the LISTFILE command's LABEL option.
For example, if you entered the command

LISTFILE PHONLIST TXT (LABEL

and CMS told you something like

FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS DATE TIME LABEL
PHONLIST TXT A2 V 70 1046 1 8/17/92 17:54:44 DSK191

you would know that, with 1,046 lines, using the TYPE command with this file could keep
you pressing that Clear key for a while. It's better to use the XEDIT text editor to look at such
a file.

19.1.5 Copying Files

The command to copy a file is COPY. (The full name is actually COPYFILE, but you only
need the first four letters.) You simply tell CMS the name of the file you want to copy and the

302 Chapter 19 Using Files in VM/CMS

name that you want to give to the copy. The only tough part to remember is that unlike many
other CMS commands, you must include the filemode in both file IDs. It's easy to make this
mistake, because so many CMS commands don't require you to specify the filemode for files
that have a filemode of A.

Let's say you want to make a copy of the file PHONLIST TXT and call it PHONLIST
BACKUP. This is the correct syntax:

COPY PHONLIST TXT A PHONLIST BACKUP A

If you entered

COPY PHONLIST TXT PHONLIST BACKUP

CMS would tell you:

DMSCPY054E Incomplete fileid specified

as if to tell you, "If you want to copy this file PHONLIST TXT P (it ignores any character
after the first in a filemode, unless it's a number designating the file's access rights), you need
to give the copy a full three-part name, not just BACKUP." If you try to make a copy with the
same name as an existing file, CMS displays the following error message:

DMSCPY024E File PHONLIST BACKUP A1 already exists; specify REPLACE option

If you look at the detailed help for COPY, you will see that REPLACE is one of its many pos-
sible options. (Don't forget the left parenthesis before you add an option.) If included, it
means "Make a copy of file1 and call it file2, even if a file named 'file2' already exists." Sec-
tion 19.1.5.1, "Changing a File's Format," describes other options for the COPY command.

Using the equal sign can reduce the amount of typing necessary for the COPY command if
any part of the copy's file ID is the same as that of the source file. For example, instead of
typing

COPY SCHEDULE TXT A SCHEDULE BACKUP A

you could type

COPY SCHEDULE TXT A = BACKUP =

and the copy would have the same filename and filemode as the original.

You can use the asterisk as a wildcard in the COPY command, but not in combination with
other letters. It must be used to represent an entire filename, filetype, or filemode. For ex-

19.1.5 Copying Files 303

ample, to make copies of all your files that have a filetype of TXT so that all the copies have a
filetype of BACKUP, you could type this:

COPY * TXT A = BACKUP =

19.1.5.1 Changing a File's Format

Sometimes a file might not have the right record format for your needs. For example, if you
use a telecommunications program like Kermit to copy a file from a PC to a VM/CMS sys-
tem, the VM copy will probably have a variable record format (a V shows up as the
FORMAT for that file when you list its name with the LABEL option). If this is a data file for
use by some CMS application, the application might not read it, claiming that it's in the
wrong format.

Instead of actually changing its format, it's better to make a copy of it with a different format.
This is safer in case it takes more than one try, because you leave your original intact. To spe-
cify the copy's format, use the RECFM and LRECL options:

COPY fn1 ft1 fm1 fn2 ft2 fm2 (RECFM F LRECL xx

where fn1, ft1, and fm1 are the filename, filetype, and filemode of the file you're copy-
ing and fn2, ft2, and fm2 are the copy's filename, filetype, and filemode. xx is the
length of the lines in the fixed format copy.

How do you determine what this number should be? 80 is always popular, being the number
of characters that fit on one line of a character-based display screen (as well as the number of
characters that fit on the ancestor of one of these lines, a punch card). The value listed under
LRECL for your source file provides another clue. This shows the length of the longest line.
If you pick a smaller value for the record length of your fixed format copy, you will cut off
the longer lines and lose data.

If you enter the command

COPY PHONLIST TXT A PHONTEST TXT A (RECFM F LRECL 80

and then type

LISTFILE PHON* TXT (LABEL

to check on the results of your copy command, CMS displays something like this:

FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS DATE TIME LABEL
PHONLIST TXT A1 V 78 1046 1 10/11/92 15:36:15 DSK191
PHONTEST TXT A1 F 80 1046 1 1/24/94 9:35:13 DSK191

304 Chapter 19 Using Files in VM/CMS

The best clue for the LRECL value for your data file is found by looking at any other data
files used by the application that rejected your file in the first place. They'll probably all have
the same filetype, since they all serve the same purpose.

For example, say you've used the PC version of the UpRiteBase database program to create a
data file called ADDRESS.UPR. You use Kermit to move it to the mainframe and rename it
ADDRESS UPRITE so that it has the same filetype as other data files used by the CMS ver-
sion of UpRiteBase. The CMS version still doesn't accept it as a data file, so you enter the
command

LIST * UPRITE (LABEL

and CMS shows you the following:

FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS DATE TIME LABEL
ADDRESS UPRITE A1 V 78 342 1 10/11/94 15:36:15 DSK191
INVENTRY UPRITE A1 F 80 1046 1 10/10/94 9:35:13 DSK191
EMPLOYEE UPRITE A1 F 80 214 1 9/24/94 12:34:42 DSK191

It looks like the other CMS UpRiteBase data files have a fixed format and an LRECL of 80,
so you need to change ADDRESS UPRITE to have these attributes. You copy it with the fol-
lowing command:

COPY ADDRESS UPRITE A ADDRESS1 = = (RECFM F LRECL 80

If the CMS version of UpRiteBase accepts ADDRESS1 UPRITE as a proper UpRiteBase
data file, then you can erase ADDRESS UPRITE and rename ADDRESS1 UPRITE with
that name.

Whatever you try, make sure that there are no problems with your copy being accepted by the
program that will use it before you erase your original file and rename the copy to have the
same name as the original. If your LRECL value shortens any lines, you should keep your
original as a backup to check for the lost data.

Changing the format can work the other way, if you need to make a variable length copy of a
fixed format file. Use the following syntax:

COPY fn1 ft1 fm1 fn2 ft2 fm2 (RECFM V

Note that the command includes no LRECL value. The system automatically figures it out.
It's not hard to guess, if your original file had fixed format records: the length of those records
will be the length of the lines in the copy.

19.1.6 Renaming Files 305

19.1.6 Renaming Files

The syntax for renaming a file is nearly identical to the syntax for copying a file:

RENAME oldfn oldft oldfm newfn newft newfm

where oldfn, oldft, and oldfm are the filename, filetype, and filemode of the file to
rename and newfn, newft, and newfm are the three parts of the new file ID. Don't for-
get the filemodes.

Since you rarely change all three parts of a file's ID when renaming it, the equal sign men-
tioned in section 19.1.5, ("Copying Files") is handy when renaming files. For example, to re-
name the file PROPOSED SCHEDULE as APRIL SCHEDULE,

RENAME PROPOSED SCHEDULE A APRIL = =

requires less typing than

RENAME PROPOSED SCHEDULE A APRIL SCHEDULE A

You can also use the asterisk the same way that you use it when copying files. To rename all
the files with a filetype of SCHEDULE so that they have a filetype of OLDSCHED, type:

RENAME * SCHEDULE A = OLDSCHED =

19.1.7 Deleting Files

It's better to remember this as "erasing" files instead of "deleting" them, because it makes it
easier to remember the command:

ERASE filename filetype

If you leave off the filemode, CMS assumes that you mean a filemode of A. You may never
need to specify the filemode when you erase a file, because you may never have permission
to erase any files other than those on your own A minidisk.

You can use the asterisk with the ERASE command the same way you use it with the COPY
or RENAME commands, but be careful. If you decide that you want to erase all the files that
you don't need with the command

ERASE * BACKUP

then you might want to use the same file ID specification with the LIST command first:

306 Chapter 19 Using Files in VM/CMS

LIST * BACKUP

This shows you the names of the files that fit this description, so you can be sure that you
don't erase more files than you had planned.

19.2 Sharing Files between Users
IBM mainframes have always made security a high priority. Poking around the hard disk to
see what else is on the system is not nearly as easy as it is with UNIX or VMS. There is a
way, however, to gain access to minidisks assigned to other user IDs. And remember, each
user ID doesn't necessarily represent a user, because some programs get assigned their own
user ID when they are installed onto the system. In order to run these programs, you need ac-
cess to the disk where they are stored.

There are two steps to gaining access to another minidisk:

• Telling CP about the disk to access with the LINK command.

• Telling CMS what to call this new minidisk with the ACCESS command.

The QUERY DISK command (first mentioned in section 18.3, "How Files Are Organized")
gives you some good background information that is useful to check before you tell the LINK
and ACCESS commands what they need to know. This was the output we saw before from
the QUERY DISK command:

LABEL VDEV M STAT CYL TYPE BLKSIZE FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
DSK191 191 A R/W 2 3390 4096 110 202-56 158 360
65Y-XA 19F F R/O 32 3380 4096 727 3915-82 885 4800
MNT190 190 S R/O 70 3380 4096 279 6547-62 3953 10500
CMSLIB 19E Y/S R/O 45 3380 4096 670 6163-91 587 6750

In addition to the M column that shows the letters assigned to the minidisks, note the VDEV
column that shows the three-digit hexadecimal number that CMS uses to keep track of each
disk. (Hexadecimal numbers have sixteen possible digits going from 0 through 9 and then A
through F, so you occasionally see the first six letters of the alphabet showing up as a digit.
The buzzword version of the term is "hex numbers," a variation whose voodoo numerology
overtones make it one of the more evocative terms in computer science.) If someone wants to
access your A disk, they need to know that your copy of CMS treats it as device number 191.
Almost everyone's A disk has a device number of 191.

When you gain access to someone else's minidisk, you add it to your list of accessible minid-
isks, so you must assign it a letter and a device number. You can use any letter of the alphabet

19.2 Sharing Files between Users 307

that's not already assigned to a minidisk in your list, and you can use just about any number
that's not currently assigned to a minidisk. Let's say we need access to the minidisk of Mary
Jones' MJONES user ID, and we're going to call it disk B and give it the device number 192.

First issue the LINK command. Use the following syntax:

LINK userid devnumber1 devnumber2 mode password

where:

userid Is the user ID of the person whose minidisk you're going to link
to.

devnumber1 Is the virtual device number used by that ID for that disk. (In
other words, the number that the ID uses to keep track of which
piece of hardware it is.) A user's A disk is usually 191; if not,
they have to tell you. They can't expect you to guess it.

devnumber2 Is the device number that your ID will use for the disk. You can
pick just about any number you like, as long as it doesn't show
up in the VDEV column when you enter the command QUERY
DISK, because those numbers show the ones that are already
taken. The upper limit on allowable numbers varies from system
to system; keep it under 300 and you'll be safe.

mode Shows whether you want read and/or write access to the disk,
and whether it matters to you if someone else is currently using
it. The safest value to put here is r, which means you want read
access, and only if no one else is currently using the disk. A
mode of rr means you want read access even if someone is cur-
rently using the disk. This means that you can read files currently
in the process of being changed, which can lead to trouble.

password Is the password required to link to the disk. This is not the same
as the password that the other user logs on with; they must have
a specific password known as the "read password" for someone
to link to their disk to read their files. Another password known
as the "write password" is necessary if other users are going to
link to their disk to change or add files. CMS has no direct com-
mand for setting this password; each installation buys a special
program like DIRMAINT or VMSECURE. You start either of
these programs by typing its name, and then a series of menus

308 Chapter 19 Using Files in VM/CMS

leads you through the necessary steps.

If you link to a disk with software that everyone's allowed to use, there might not even be a
password. If you leave it out when you should have included it, the system will ask you for it.

Instead of having people use read and write passwords, the system administrator may assign a
set of rules determining who can link to where to do what. People in the same group might
get permission to link to each other's disks for read permission, but nothing else. If you try to
link to a disk using a mode that a rule prevents you from using, CMS displays an error mes-
sage telling you that a rule prevents you from making the requested link.

Just because you lack write access to a particular disk doesn't mean you lack read access; be-
cause write access leads to trouble more easily, system administrators often withhold this per-
mission when they grant read access.

Now it's time to link to Mary's disk. The QUERY DISK command showed that no disk is us-
ing the number 192, and Mary said that her read password is READTHIS. So we enter this:

LINK MJONES 191 192 R READTHIS

If the system displays no error messages, it worked.

CP now knows that you can use Mary's disk, but you must still tell CMS. We do this with the
ACCESS command, which has the following syntax:

ACCESS devnumber2 diskletter

where devnumber2 is the same number you used when you issued the LINK com-
mand—the number you said you would use to refer to this hardware device. The disklet-
ter is the letter of the alphabet that you will use to refer to it in CMS commands. In other
words, it's the filemode of any files that you will use from that disk. You can use any letter
that didn't show up in the M column when you entered QUERY DISK, because those letters
are taken. We now enter

ACCESS 192 B

and then another QUERY DISK to see what happened:

LABEL VDEV M STAT CYL TYPE BLKSIZE FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
DSK191 191 A R/W 2 3390 4096 110 202-56 158 360
MKTJXS 192 B R/O 45 3390 4096 355 883-70 377 1260
65Y-XA 19F F R/O 32 3380 4096 727 3915-82 885 4800
MNT190 190 S R/O 70 3380 4096 279 6547-62 3953 10500

19.2 Sharing Files between Users 309

CMSLIB 19E Y/S R/O 45 3380 4096 670 6163-91 587 6750

And there it is, labeled "MKTJXS." The STAT column for the B disk says "R/O" to show that
you have "Read Only" access.

19.2.1 Unlinking the Disk

The system automatically unlinks these disks when you log off, but you may need to undo
these two steps without logging off (for example, if your link prevents someone else from
linking). You can unlink in two steps, but it can also be done in one with the following syn-
tax:

RELEASE devnumber2 (DETACH

These terms each play the following roles:

RELEASE Undoes the ACCESS command.

devnumber2 Is the device number you've been using to refer to the disk since
you accessed it.

(DETACH Shows that you want to detach as well as release the disk.

You'll probably want to do a QUERY DISK again just to make sure that it worked correctly.

19.2.2 Other Ways to Link

Because LINK and ACCESS are used together so often, many sites have an EXEC command
file available that automates these two steps. It might be called something like ATTACH.
(Don't be surprised if many users at that site aren't even aware that ATTACH—or whatever the
EXEC is called—isn't even a real CMS command. This is the beauty of command files, that
creating them is like adding a new command to an operating system.) Just ask if they use
LINK and ACCESS to gain access to other disks, or if they use something else. If the terms
LINK and ACCESS inspire a blank stare, you can be sure that a system administrator at that
site has put together an EXEC for them to use. This won't prevent you from using LINK and
ACCESS; in fact, the EXEC that they call will be using it.

310 Chapter 19 Using Files in VM/CMS

Chapter 20 The VM/CMS XEDIT Text Editor
XEDIT (pronounced "eks-edit") is a powerful text editor with plenty for the beginner and
even more for the expert. It is popular enough that a DOS version called KEDIT has been de-
veloped for PCs. It features extensive on-line help, and you can easily create files called mac-
ros that are like command files for the text editor. When you tell XEDIT to execute a certain
macro, it executes the series of commands in that file as if the file was a program.

20.1 Entering XEDIT
To invoke XEDIT, you only need its first letter. Enter X followed by the name of the file you
want to edit. If it exists, XEDIT displays its first eighteen lines on the screen. If the file
doesn't exist, XEDIT creates an empty file with that name. For example, if you don't have a
file named KUBLA KHAN and you enter

X KUBLA KHAN

XEDIT displays a screen similar to the one shown in Figure 20.1.

KUBLA KHAN A1 F 80 Trunc=80 Size=0 Line=0 Col=1 Alt=0

===== * * * Top of File * * *
===== * * * End of File * * *

====>
X E D I T 1 File

311

Figure 20.1 Opening XEDIT screen for a new file.

Across the top line, XEDIT displays various details about the file (for more on these details,
see section 19.1.3.1, "Listing More than File Names.")

KUBLA The file's filename.

KHAN The file's filetype.

A1 The file's filemode.

F The file's record format: either Fixed or Variable.

80 The length of these fixed-length records (lines of text).

Trunc=80 XEDIT truncates any characters after the 80th.

Size=0 The number of records in the file.

Line=0 The current line number.

Col=1 The column location of a string found using certain advanced
commands.

Alt=0 The number of alterations since the last autosave. See section
20.2, "Customizing Your XEDIT Environment" for more on this.

The next two lines show the file's top and bottom. You enter data between these lines. To
their left, the five equal signs show the prefix area, where you enter commands to insert, de-
lete, copy, and move lines. At the bottom of the screen, the arrow (====>) shows the com-
mand-line, where you enter commands, and the message X E D I T 1 File shows that
XEDIT is currently editing 1 file. (It is capable of editing several at once.)

20.2 Customizing Your XEDIT Environment
Your screen may look slightly different from this. For example, your command line might be
at the top of the screen, your prefix area may show up as sequential numbers (00000,
00001, 00002, etc.). Your prefix area might not be there at all. You can control these de-
tails with the XEDIT SET command. For now, type in the following SET commands manu-

312
Chapter 20 The VM/CMS XEDIT Text Edit-

or

ally at the XEDIT command line; you'll see in section 20.7.2, "The Automatic Startup
Macro," how to make them execute automatically whenever you start up XEDIT.

To move your cursor to the command line, just press your Enter key.

If you don't see a prefix area, enter

SET PREFIX ON

at the command line and press Enter to display it. If the prefix area displays as numbers in-
stead of equal signs, it won't affect the way you use it. SET NUMBER ON and SET NUMBER
OFF control whether it displays as numbers.

Because old-fashioned terminals could only deal with upper case letters, sometimes XEDIT
translates everything you type to upper case. This can be annoying when you type a para-
graph, press Enter to move your cursor to the command line, and the whole paragraph gets
translated to upper case. To tell XEDIT to preserve a mix of upper and lower case letters,
enter

SET CASE MIXED

at the command line. When writing a program in a language like FORTRAN, which expects
all upper case letters, entering the command

SET CASE UPPER

will translate every new line of text to all upper case letters each time you press Enter.

XEDIT has a great feature called "autosave." You can set it to periodically save your work in
a backup file automatically. The backup frequency is determined by how often you press the
Enter key. If you like, you can set it to back up your file every time you press Enter, but the
extra second or two it takes to save can make this annoying. Setting it to back up your file
every fifth time you press Enter is a good interval. Enter the command

SET AUTOSAVE 5

to do this. As you edit your file, the Alt= message at the top of your screen shows how many
alterations since the last save. When it reaches 5, XEDIT displays a message similar to the
following:

DMSXSU510I AUTOSAVED as 100005 AUTOSAVE A1

The number used for the filename may vary, but the filetype is always AUTOSAVE and the
filemode is A1.

20.2 Customizing Your XEDIT Environ-
ment 313

Note that it doesn't save your file with the same name that you originally gave it. This leaves
you the option of aborting your changes if you like. If the system does crash or you lose your
connection, you probably will have forgotten your autosaved file's filename, so you can enter

LISTFILE * AUTOSAVE (LABEL

to see what autosave files you have and when they were created. Don't worry about these
autosave files cluttering up your A disk—if your editing session goes without incident and
you save your file or abort the session without interruption, the system automatically gets rid
of any autosave files.

XEDIT has many other SET commands to customize your session. Section 20.7.1, "XEDIT
On-line Help," tells how you can find out about more of them.

20.3 Prefix Commands
In addition to command-line commands, many XEDIT operations are performed with prefix
commands. You can add, delete, copy, and move lines by entering one- or two-character
commands in the prefix area and pressing the Enter key. (MVS and AS/400 users who find
that the screen looks similar to the ISPF or SEU editor screens will be familiar with line com-
mands; prefix commands are those editors' counterpart to this.)

Prefix commands are not limited to the prefix area of the contents of your file; you can also
enter them in the prefix area of the Top of File and End of File lines. (If you
couldn't do this, it would be pretty tough to add your first blank line.)

You can enter a prefix command anywhere on the prefix. For example, if you enter 2d, the
command to delete two lines, like this

2d===

or like this

===2d

it still works the same. Likewise, if you issue the SET NUMBER ON command so that your
prefixes appear as numbers, it doesn't matter whether you enter the 2d as

2d001

or

0002d

314
Chapter 20 The VM/CMS XEDIT Text Edit-

or

although it can obviously lead to confusion if you enter prefix commands that use numbers
(like 2d) on a prefix area that is displayed as numbers instead of as equal signs.

If you ever enter a prefix command and then realize, before you press Enter, that you didn't
mean to enter that prefix command there, just type spaces over it. The next time you press
Enter, XEDIT will put back whatever was there before you entered the prefix com-
mand—either equal signs or, if the prefix area took the form of numbers, the appropriate pre-
fix numbers.

20.3.1 Adding New Lines

Before you can type any text into your file, you must add some blank lines. To add one blank
line, move your cursor to the prefix of the line that says * * * Top of File * * *
and type the letter a anywhere on the prefix. Figure 20.2 shows where to enter the a.

KUBLA KHAN A1 F 80 Trunc=80 Size=0 Line=0 Col=1 Alt=0

==a== * * * Top of File * * *
===== * * * End of File * * *

Figure 20.2 Entering the a prefix command to add a new line in XEDIT.

Press Enter, and XEDIT adds a new line below the one where you entered the prefix com-
mand, as shown in Figure 20.3.

KUBLA KHAN A1 F 80 Trunc=80 Size=0 Line=0 Col=1 Alt=0

===== * * * Top of File * * *
=====
===== * * * End of File * * *

Figure 20.3 Result of the a prefix command entered in Figure 20.2.

To add multiple lines, you don't need to do this over and over. Instead, most prefix commands

20.3.1 Adding New Lines 315

let you put a number before or after them to say "perform this command this many times." If
you enter

==a7=

or

==7a=

and then press Enter, XEDIT adds seven blank lines below the line where you entered the
command.

20.3.2 Moving Your Cursor Around

Your up, down, left, and right cursor keys move the cursor in the direction in which they
point.

The Tab key helps you move around more quickly. To move your cursor to the beginning of
the previous line, use the Backtab key (if you're using a PC that is emulating a mainframe ter-
minal, press the Shift key and the Tab key simultaneously). If your XEDIT prefix area is dis-
played and your cursor is on a line of text, Tab and Backtab will jump your cursor to the pre-
fix area. If your cursor is on the prefix area, pressing either key jumps your cursor to the be-
ginning of the appropriate line.

20.3.3 Inserting, Deleting, and Typing over Words and Characters

To add text to blank lines, just move your cursor to the line and type. When you need to move
your cursor back to the command line, press Enter; if XEDIT turns all your text into upper
case, you'll need the SET CASED MIXED command described in section 20.2, "Customiz-
ing Your XEDIT Environment."

To delete an individual character, move your cursor there and press your Delete key. On a
3270 terminal, the delete key has a lower case "a" with a proofreader's symbol for deletion: a
line through it that forms a loop. When emulating a 3270 terminal, your emulation software
probably has your PC's Delete key doing this job.

To type over existing text, just move your cursor where you want the new text and type.

To insert text, move your cursor to the place where you want to insert it and press the Insert
key. On a 3270 terminal, this key has the letter "a" with a carat symbol (^) over it. When you
press it, a carat symbol should appear at the bottom of your screen to indicate that you are in
insert mode. (When emulating a 3270, your cursor may change shape.) Text that you type in
moves any text currently to the right of the cursor further to the right. If the last character gets

316
Chapter 20 The VM/CMS XEDIT Text Edit-

or

moved to the column indicated by the TRUNC= value at the top of your screen, XEDIT beeps
at you to indicate that you can't insert more characters on that line.

To return to overstrike mode while using a 3270 terminal, press the key marked "Reset." The
carat symbol should disappear, and newly typed text takes the place of the characters at the
cursor. (When your keyboard "locks up," or refuses to accept input, the Reset key is also use-
ful for freeing up the keyboard.) On most PCs emulating a 3270, the Insert key does the job
of the 3270 keyboard's Insert key and the Escape key serves as the Reset key. Check you
emulation program's documentation to make sure.

20.3.4 Duplicating Lines

Use the double quotation mark, sometimes called the "ditto" symbol (") to duplicate a line of
text. Suppose you entered it next to the line "A stately pleasure-dome decree" as shown in
Figure 20.4.

KUBLA KHAN A1 F 80 Trunc=80 Size=8 Line=0 Col=1 Alt=0

===== * * * Top of File * * *
===== In Xanadu did Kubla Khan
="=== A stately pleasure-dome decree
===== Where Alph, the sacred river, ran
===== Through caverns measureless to man
===== Down to a sunless sea.
=====
=====

Figure 20.4 Entering the " prefix command for line duplication in XEDIT.

After pressing Enter, the line is duplicated; Figure 20.5 shows the result.

KUBLA KHAN A1 F 80 Trunc=80 Size=8 Line=0 Col=1 Alt=0

===== * * * Top of File * * *
===== In Xanadu did Kubla Khan
===== A stately pleasure-dome decree
===== A stately pleasure-dome decree
===== Where Alph, the sacred river, ran
===== Through caverns measureless to man

20.3.4 Duplicating Lines 317

===== Down to a sunless sea.
=====

Figure 20.5 Result of the " prefix command entered in Figure 20.4.

If you put a number immediately before or after the ditto symbol, XEDIT duplicates the line
that many times. Figure 20.6 shows what would have happened if you had entered 5" instead
of just " in Figure 20.4.

KUBLA KHAN A1 F 80 Trunc=80 Size=8 Line=0 Col=1 Alt=0

===== * * * Top of File * * *
===== In Xanadu did Kubla Khan
===== A stately pleasure-dome decree
===== A stately pleasure-dome decree
===== A stately pleasure-dome decree
===== A stately pleasure-dome decree
===== A stately pleasure-dome decree
===== A stately pleasure-dome decree
===== Where Alph, the sacred river, ran
===== Through caverns measureless to man
===== Down to a sunless sea.
=====

Figure 20.6 Result of using the 5" prefix command to duplicate a line five times.

This command is handy when you need to type something repetitive. You just type it once,
make as many copies as you need, and edit the copies.

20.3.5 Deleting Lines

The letter d in a line's prefix deletes that line the next time you press Enter. A number imme-
diately preceding or following it tells XEDIT to delete that many lines, starting with the line
where the command is entered. In Figure 20.7, two lines are about to be deleted.

318
Chapter 20 The VM/CMS XEDIT Text Edit-

or

KUBLA KHAN A1 F 80 Trunc=80 Size=8 Line=0 Col=1 Alt=0

===== * * * Top of File * * *
===== In Xanadu did Kubla Khan
=2d== A stately pleasure-dome decree
===== Where Alph, the sacred river, ran
===== Through caverns measureless to man
===== Down to a sunless sea.
=====
=====

Figure 20.7 Entering the 2d prefix command to delete two lines in XEDIT.

After you press Enter, they're gone. Figure 20.8 shows the result.

KUBLA KHAN A1 F 80 Trunc=80 Size=8 Line=0 Col=1 Alt=0

===== * * * Top of File * * *
===== In Xanadu did Kubla Khan
===== Through caverns measureless to man
===== Down to a sunless sea.
=====
=====
=====
=====

Figure 20.8 Result of the 2d prefix command entered in Figure 20.8.

Put the letter d twice in a prefix without any number to indicate that the line begins or ends a
block that you want to delete. If you press Enter while only one line has the dd, XEDIT
leaves it there until it has a partner. In Figure 20.9, XEDIT is ready to delete all but the first
and last lines of text the next time you press Enter.

KUBLA KHAN A1 F 80 Trunc=80 Size=8 Line=0 Col=1 Alt=0

===== * * * Top of File * * *
===== In Xanadu did Kubla Khan

20.3.5 Deleting Lines 319

=dd== A stately pleasure-dome decree
===== Where Alph, the sacred river, ran
===dd Through caverns measureless to man
===== Down to a sunless sea.
=====
=====

Figure 20.9 Entering the dd prefix command to delete a block of lines in XEDIT.

This is particularly useful when the beginning and end of the block that you want to delete are
not on the same screen, because the alternative (counting the number of lines to delete so that
you can put a number after a single d) is a lot of trouble.

20.3.6 Copying Lines

Copying is similar to deletion except that you use the letter c to indicate the line or lines to
copy and you must indicate a destination for the copied text. XEDIT gives you three options
for indicating the text to copy:

• Enter a single c in a line's prefix if you only need to copy that one line.

• Enter a single c preceded or followed by a number to indicate how many lines to copy.

• Enter cc at the first and last lines of the block to copy.

In addition to indicating the line or lines to copy, you must indicate where to copy them. Two
prefix commands make this possible:

p When Enter is pressed, copy the block to the line preceding this
one.

f When Enter is pressed, copy the block to the line following this
one.

In Figure 20.10, the third, fourth, and fifth lines are about to get copied above the first line, to
the beginning of the file.

320
Chapter 20 The VM/CMS XEDIT Text Edit-

or

KUBLA KHAN A1 F 80 Trunc=80 Size=8 Line=0 Col=1 Alt=0

===== * * * Top of File * * *
====p In Xanadu did Kubla Khan
===== A stately pleasure-dome decree
cc=== Where Alph, the sacred river, ran
===== Through caverns measureless to man
===cc Down to a sunless sea.
=====
=====

Figure 20.10 Using the cc and p prefix commands to copy a block in XEDIT.

Figure 20.11 shows how it looks after you press Enter.

KUBLA KHAN A1 F 80 Trunc=80 Size=8 Line=0 Col=1 Alt=0

===== * * * Top of File * * *
===== Where Alph, the sacred river, ran
===== Through caverns measureless to man
===== Down to a sunless sea.
===== In Xanadu did Kubla Khan
===== A stately pleasure-dome decree
===== Where Alph, the sacred river, ran
===== Through caverns measureless to man
===== Down to a sunless sea.
=====
=====

Figure 20.11 Result of the cc and p prefix commands entered in Figure 20.10.

20.3.7 Moving Lines

Moving is similar to copying, except that after you press Enter, the original lines are no
longer there—they're moved to their new location. As with copying, there are three ways to
specify the block to move, but these use the letter m:

• Enter a single m in a line's prefix if you only need to move that one line.

20.3.7 Moving Lines 321

• Enter a single m preceded or followed by a number to indicate how many lines to move.

• Enter mm at the first and last lines of the block to move.

To specify the destination of the block to move, use the letters p or f the same way you do to
specify the destination of a block to copy.

20.4 Searching for Text
To search for a particular string of text, use the following command:

LOCATE /string

where string is the string you want to find. Actually, you don't really need the LOCATE
part. If you enter the command

/ALPH

and press Enter, XEDIT scrolls forward to make the the line with "Alph" in it the first line on
the screen, as shown in Figure 20.12.

KUBLA KHAN A1 F 80 Trunc=80 Size=8 Line=3 Col=1 Alt=1

===== Where Alph, the sacred river, ran
===== Through caverns measureless to man
===== Down to a sunless sea on 10/12/94.
=====
=====
=====
===== * * * End of File * * *

Figure 20.12 Result of searching for the string "ALPH" with the command /ALPH

Note that although we were searching for "ALPH" it found "Alph." The search is not case-
sensitive.

When XEDIT searches, it searches forward. If you now try the command

/kubla

322
Chapter 20 The VM/CMS XEDIT Text Edit-

or

XEDIT skips to the bottom and tells you "Target not found." To jump to the top of the file be-
fore the next search, enter this command:

TOP

BOTTOM is an equally valid command.

You can use another character instead of the slash to show where your search target begins,
but then you must include the LOCATE command. This is useful when searching for
something that contains a slash, like a date. If you enter

LOCATE #10/12/94

at the XEDIT command line and press return, XEDIT jumps to the next occurrence of that
string, as shown in Figure 20.13.

KUBLA KHAN A1 F 80 Trunc=80 Size=8 Line=3 Col=1 Alt=1

===== Down to a sunless sea on 10/12/94.
=====
=====
=====
===== * * * End of File * * *

Figure 20.13 Result of searching for the string "10/12/94" with the command #10/12/94

20.5 Saving Your Changes
In section 20.2, "Customizing Your XEDIT Environment," we saw how SET AUTOSAVE 5
tells XEDIT to automatically back up your file with a special name every fifth time you press
the Enter key. To save your file with its normal name, just enter SAVE at the command line.

To save a copy with a different file ID, enter the new file ID after the SAVE command. For
example, entering

SAVE CHAKA KHAN

saves the file in its current state under the name CHAKA KHAN.

20.6 Quitting XEDIT
20.5 Saving Your Changes 323

To quit out of XEDIT, type QUIT at the command line. If you made any edits to the file and
have not saved it since you made the most recent edit, XEDIT tells you

DMSXSU577E File has been changed; type QQUIT to quit anyway

The extra "Q" means "Quit no matter what, I don't want to save the changes I've made."

20.7 Other Useful XEDIT Features
XEDIT is one of the most powerful, full-featured text editors that you'll ever find included as
part of an operating system's basic tools. We can't leave it without mentioning a few addition-
al features that, without being absolutely essential, can make your life much easier.

20.7.1 XEDIT On-line Help

XEDIT's built-in help works almost identically to the CMS help. Type HELP by itself at the
XEDIT command line, and you'll see a menu of XEDIT commands. You can move your curs-
or to one and press Enter to find out more about that command. (You won't see all of them;
press PF8 to page down for the complete list.)

As with help from the CMS command line, you can also enter the command HELP followed
by a command name if you want help about that command. For example,

HELP LOCATE

displays the on-line help for the LOCATE command. And, while viewing help information,
the PF1 key toggles between brief and detailed help just like it does with CMS help.

20.7.2 The Automatic Startup Macro

You can store a series of XEDIT commands in a file called a macro and then instruct XEDIT
to execute that macro. All XEDIT macros have XEDIT as a filetype, and one has a special fi-
lename: PROFILE. Whenever you start XEDIT, it looks for this PROFILE XEDIT file and
if it exists, executes it automatically. We saw in section 20.2, "Customizing Your XEDIT En-
vironment," that certain commands are useful enough to run every time you start XEDIT.
Let's see how to create a profile macro with them.

Start up XEDIT with the command

X PROFILE XEDIT A

to create this file (or edit the existing one, if it's there). You need to include the A filemode
because if you leave it off and XEDIT doesn't find the specified file ID on the current A disk,

324
Chapter 20 The VM/CMS XEDIT Text Edit-

or

it looks for a file with that filename and filetype on other disks that your user ID has access
to, and you'll be looking at some system default PROFILE XEDIT. You're not allowed to
edit one from another disk, so make sure to include the filemode of A so that XEDIT knows
to create a PROFILE XEDIT for you if no PROFILE XEDIT A exists.

Use the a3 prefix command to add three blank lines to your file, and type in the commands
covered in the section 20.2 so that your screen ends up looking like Figure 20.14.

PROFILE XEDIT A1 V 80 Trunc=80 Size=3 Line=0 Col=1 Alt=0

===== * * * Top of File * * *
===== SET CASE M
===== SET PREFIX ON
===== SET AUTOSAVE 5
===== * * * End of File * * *

Figure 20.14 Sample PROFILE XEDIT file.

After you save this file, every time you start up XEDIT it automatically executes these three
commands.

If you already have a PROFILE XEDIT file, see if any of these commands are there before
you add them. Now you know what they do.

20.7.3 The Split/Join Key

One annoying thing about an editor that deals with text almost exclusively in lines is the ef-
fect when you delete words from a line, making it too short, or add words to a line, making it
too long. PF11, the Split/Join key, can fix this for a line or pair of lines.

If your cursor is at the end of a line, pressing PF11 joins the following line to the one with the
cursor. In Figure 20.15, the cursor is right after the "n" in "Khan."

===== In Xanadu did Kubla Khan_
===== A stately pleasure-dome decree
===== Where Alph, the sacred river, ran
===== Through caverns measureless to man
===== Down to a sunless sea.

20.7.3 The Split/Join Key 325

Figure 20.15 Cursor position just before pressing PF11 to join two lines.

Pressing PF11 moves the beginning of the following line to the cursor's location, as shown in
Figure 20.16.

===== In Xanadu did Kubla KhanA stately pleasure-dome decree
===== Where Alph, the sacred river, ran
===== Through caverns measureless to man
===== Down to a sunless sea.

Figure 20.16 XEDIT file from Figure 20.15 after pressing PF11 to join two lines.

If PF11 is not at the end of a line, pressing it splits the line into two at the cursor's location.
With the cursor after the word "did" this time, as shown in Figure 20.17, pressing PF11
moves everything beginning at the cursor's location (including the character at the cursor—in
this case, a space) to a new line underneath the one where the cursor is located, as shown in
Figure 20.18.

===== In Xanadu did_Kubla KhanA stately pleasure-dome decree
===== Where Alph, the sacred river, ran
===== Through caverns measureless to man
===== Down to a sunless sea.

Figure 20.17 Cursor position just before pressing PF11 to split a line.

===== In Xanadu did
===== Kubla KhanA stately pleasure-dome decree
===== Where Alph, the sacred river, ran
===== Through caverns measureless to man
===== Down to a sunless sea.

326
Chapter 20 The VM/CMS XEDIT Text Edit-

or

Figure 20.18 XEDIT file from Figure 20.17 after pressing PF11 to split a line.

20.7.3 The Split/Join Key 327

328

Chapter 21 Using a VM/CMS System
21.1 Printing Text Files
Printing a text file is simple. Just enter

PRINT fn ft fm

at the Ready; prompt, where fn, ft, and fm show the filename, filetype, and filemode
of the file you wish to print. If you leave off the filemode, the system assumes that the file is
on your A minidisk. For example, to print a file named SEPT1294 MEMO A, just type this:

PRINT SEPT1294 MEMO

You'll need to ask where the printer is located in your office. There are probably multiple
printers attached to the system, with a particular one specified as your default printer. Ask
your system administrator which one your user ID is configured to print on.

21.1.1 Checking the Print Queue

To display a list of the jobs waiting to print, enter the following command:

QUERY PRINTER ALL

Your output will look similar to this:

ORIGINID FILE CLASS RECORDS CPY HOLD DATE TIME NAME TYPE DIST
ACCLEN 0098 K PRT 000832 001 NONE 10/18 12:24:43 SALES DATA RM234
ACCLEN 0099 K PRT 000110 001 NONE 10/18 12:25:08 MEETING DATA RM234
JOEUSER 0103 K PRT 000110 001 NONE 10/18 12:25:12 SEPT1294 MEMO RM101
MJONES 0112 K PRT 000359 001 NONE 10/18 12:26:23 SETUP EXEC RM112

The NAME and TYPE of each waiting file shows its file ID. The TIME shows when it was ad-
ded to the print queue, and the RECORDS column shows the length of each file. This is im-
portant because it can let you know if there's a huge job ahead of yours in the queue.

The ORIGINID column shows who sent each waiting job, and the FILE column shows the
number, or "spoolid" (pronounced "spool ID") that the printing program uses to refer to the
print job. This number is important if you want to cancel the print job.

21.1.2 Canceling Your Print Job

329

Cancelling your print job is known as "purging" because of the command used to do it. Use
the following syntax:

PURGE PRINTER spoolid

where spoolid is the number that shows up in the FILE column when you issue the
QUERY PRINTER ALL command. (If your file doesn't show up when you query the print
queue, either it already printed—a likely possibility, if it was a small file and no other files
were ahead of it in the print queue—or it never got into the queue in the first place.) You
must include the word PRINTER because the PURGE command can be used to purge other
temporary storage areas, like your reader. (Section 21.3, "Communicating with Other Users,"
covers some uses of the reader.)

If Joe User wants to purge the SEPT1294 MEMO file from the print queue shown above, he
enters the following:

PURGE PRINTER 0103

If he wants to purge the SALES DATA file to speed up the printing of his own file, it's too
bad. That file belongs to the ACCLEN user ID, and only a system administrator can purge oth-
er people's files.

21.2 Command Files
Command files in CMS are called EXECs (pronounced "egg-zeks") after their filetype, which
is short for "executable." Creating and using them is simple; just use XEDIT to create a file
with a file type of EXEC that has a valid CMS or CP command on each line. To run the EX-
EC, type in the file's filename.

Nearly all IBM operating systems (with the notable exception of PC/DOS, thanks to the Byz-
antine politics of IBM's relationship with Microsoft) include some version of a programming
language called REXX that is a superset of the EXEC command language. In other words,
REXX has all the same commands as EXEC, plus more. Once you learn it on any computer,
you can transfer that knowledge (and maybe even the REXX program) to other IBM com-
puters. You can tell a REXX program from an EXEC program by its first line: if it begins
with a slash and an asterisk (/*) and ends with an asterisk and a slash (*/), then it's a REXX
program. Anything between these asterisks is considered a comment to the program, so the
system ignores it. It doesn't really matter what you put there, but it's best to put a line describ-
ing the title and purpose of the program.

You should begin all EXECs (except for the PROFILE EXEC described in section 21.2.1,
"The Automatic Logon Command File") with this so that you can indicate the purpose of

330 Chapter 21 Using a VM/CMS System

your program and have access to the REXX commands. I've written EXECs that didn't work
until I added this first line, so I always add it now.

For example, let's say that you often need to link to a particular minidisk on your system so
that you can run a program called MAINMENU that displays the main menu of available re-
ports for you to run. It would make your life easier to have a command file that performs the
following steps:

• Link to the RPTPROG user ID, which has a virtual address of 192.

• Access the disk as your B disk.

• Type MAINMENU to run the program.

If you want to call your program RPTMENU, you use XEDIT to create a file with a filename
of RPTMENU and a filetype of EXEC. Enter the following at the Ready; prompt:

X RPTMENU EXEC

Once in XEDIT, you add these four lines:

/* RPTMENU EXEC link to the RPTPROG disk and start the MAINMENU program */
LINK RPTPROG 192 193
ACCESS 193 B
MAINMENU

Note how the first line describes the purpose of the program. Save it and quit out of XEDIT.
From then on you only need to type RPTMENU to use the MAINMENU program instead of
the three commands you needed to type before.

In section 18.4.2 ("Help Menus") we saw that entering HELP by itself at the Ready; prompt
displays a menu of various types of information for which help is available. One of the menu
choices was the following:

STATEMTS - Show statements for REXX, EXEC2, and EXEC

Choose this to learn more about EXEC, EXEC2 (a variation on the EXEC command lan-
guage), and REXX programming.

21.2.1 The Automatic Logon Command File

Whenever you log on to your CMS account, the system looks for a special EXEC called
PROFILE EXEC and executes it if found. If there's any command that you want executed

21.2.1 The Automatic Logon Com-
mand File 331

every time you log on, use XEDIT to add a line with that command to your PROFILE EXEC
file. If you don't have one, create it as you would create any other EXEC.

Many systems are set up to give a default PROFILE EXEC to each new user. In other words,
you may have one the first time you log on without even knowing it. If so, take a good look at
it; if your system doesn't seem to behave the way this book describes, it's probably because of
something in your PROFILE. (For example, if a function key acts differently than I've de-
scribed or if the system automatically displays a menu when you log on.)

21.3 Communicating with Other Users
Sending mail or files to another user means putting a copy of it into their "reader," which is
like a mailbox. It's actually a software simulation of the machine that was once used to read
punch cards. The sidebar "This is the Nineties. Why Do I Need a Card Puncher or a Punch
Card Reader?" in section 18.1.3.2 ("Aborting Screen Output") explains why we still use the
term "reader" even though the hardware being simulated is so archaic.

All CMS systems have the NOTE program to send electronic mail to other users. NOTE gets
the job done, but it's limited enough that many sites purchase a fancier program. On my first
CMS system, I was unaware of the existence of NOTE because of a program that we used
called MAIL. Keep your eye out for a more full-featured alternative to NOTE.

Sending a note is simple: type

NOTE userid

where userid is the ID of your note's recipient. The recipient doesn't need to be logged on.
If not, the next time he or she logs on a message will appear telling them that something is in
their reader.

If Joe User wants to send a note to Mary Jones at her MJONES user ID, he enters this:

NOTE MJONES

CMS then displays the note editing screen, as shown in Figure 21.1.

JOEUSER NOTE A0 V 132 Trunc=132 Size=9 Line=9 Col=1 Alt=0

* * * Top of File * * *
OPTIONS: NOACK LOG SHORT NOTEBOOK ALL

332 Chapter 21 Using a VM/CMS System

Date: 6 February 94, 19:20:11 EST
From: Joe User 212/930-3342 x4288 JOEUSER at JUPITER
To: MJONES

* * * End of File * * *

1= Help 2= Add line 3= Quit 4= Tab 5= Send 6= ?
7= Backward 8= Forward 9= = 10= Rgtleft 11= Spltjoin 12= Power input

====>

Figure 21.1 Screen for entering a note to another user.

It looks a lot like the XEDIT screen when you're creating a new file, except that it automatic-
ally added a header to your message. The "at JUPITER" part shows that Joe's particular VM
system is named JUPITER. The system name is necessary when multiple systems are connec-
ted and someone on one wants to send mail to a user ID on another.

All the XEDIT commands described in this book are valid here. You can start with SET
PREFIX ON and then use the a prefix command to add some blank lines on which to type
your message.

Two function keys speed the creation and delivery of your message:

• Press PF2 to add blank lines to your message. Move your cursor to any line above "End
of File," (for a start, put it on the line that says "To:") and press PF2 to add a new blank
line under the line with the cursor.

• Use PF5, the "Send" key, to show that you have completed your note. When you press it,
the NOTE program sends your message to the recipient's reader.

It also saves a copy in a file on your A disk called ALL NOTEBOOK. This is handy when you
want to see exactly what you sent to someone.

21.3.1 Sending Files

21.3.1 Sending Files 333

The SENDFILE command makes it easy to send an existing file to someone's reader. At the
Ready; prompt, enter

SENDFILE fn ft fm userid

where fn, ft, and fm show the ID of the file to send and userid shows the ID of the
user who gets the file. If CMS does not find a single letter as the third parameter here (in oth-
er words, if you leave out the filemode and just say SENDFILE fn ft userid), it as-
sumes that fn ft represents a file on your A minidisk. Make sure to type all eight letters of
the SENDFILE command; CMS has a separate, unrelated command called SEND.

If you enter SENDFILE by itself, you will see a screen similar to Figure 21.2.

---------------- SENDFILE ---------------

File(s) to be sent (use * for Filename, Filetype and/or Filemode
to select from a list of files)

Enter filename :
filetype :
filemode :

Send files to :

Type over 1 for YES or 0 for NO to change the options:

0 Request acknowledgement when the file has been received?

1 Make a log entry when the file has been sent?

1 Display the file name when the file has been sent?

0 This file is actually a list of files to be sent?

1= Help 3= Quit 5= Send 12= Cursor

====>
Macro-read 1 File

Figure 21.2 SENDFILE screen for sending a file to another user.

In addition to filling out the file ID and recipient's name, you can set the options shown in the
bottom half of the screen. Most of them are self-explanatory. For example, the "log entry"
means that SENDFILE adds a line describing what you sent, when, and to whom to a file

334 Chapter 21 Using a VM/CMS System

called userid NETLOG, where userid is your user ID name.

When you are done with this screen, press PF5 to send the file whose ID you entered or PF3
to abort the SENDFILE program.

21.3.2 Receiving Mail and Files

When you first log on, you may see a message similar to this:

FILES: 0003 RDR, NO PRT, NO PUN

This shows that your reader has three files. To get them out, you could use the RECEIVE
command, which people originally used to read real punch cards and turn their information
into a disk file. However, the RDRLIST program makes it much easier. (If your reader is
empty and you want to play with the RDRLIST program for practice, use the NOTE and
SENDFILE commands to send a few things to your own ID's reader.)

Enter RDRLIST at the Ready; prompt, and you see a screen similar to Figure 21.3.

JOEUSER RDRLIST A0 V 108 Trunc=108 Size=2 Line=1 Col=1 Alt=0
Cmd Filename Filetype Class User at Node Hold Records Date Time

MJONES NOTE PUN A MJONES JUPITER NONE 14 10/16 09:30:59
ACCLEN NOTE PUN A ACCLEN JUPITER NONE 4 10/16 13:01:44
SALES DATA PUN A ACCLEN JUPITER NONE 832 10/16 13:02:45

1= Help 2= Refresh 3= Quit 4= Sort(type) 5= Sort(date) 6= Sort(user)
7= Backward 8= Forward 9= Receive 10= 11= Peek 12= Cursor

====>
X E D I T 1 File

21.3.2 Receiving Mail and Files 335

Figure 21.3 RDRLIST screen for viewing files in the reader.

RDRLIST is a specialized version of FILELIST, which is explained in the next section. Most
of the columns of information here are similar to the information displayed when you enter
the LISTFILE command with the (LABEL option, but with two important new columns: the
User column shows who sent the file, and the Cmd column provides a place where you can
enter commands to act on the file named on a given line. You can also move your cursor to
the line with a particular file's name and press function keys to perform actions on that file.
(See section 19.1.3.1, "Listing More than File Names," for more on the (LABEL option to the
LISTFILE command.)

The three most important things that you want to do to a file in your reader are:

• Look at it while it's still in the reader.

• Pull it out of the reader and save it as a disk file.

• Delete it from the reader.

21.3.2.1 Looking at a File in the Reader

Unless someone told you exactly what they sent you, you'll want to look at each file first, so
that you can decide whether to keep it. Use the Peek function key for this. Move your cursor
to anywhere on the line showing the file you want to peek at and press PF11. For example,
let's say Joe recognizes the ACCLEN user ID as that of Larry Niven, his friend in Account-
ing. If Joe moves his cursor to the ACCLEN NOTE line and presses PF11 to see the note that
Larry sent him, he might see something like the screen shown in Figure 21.4.

0023 PEEK A0 V 132 Trunc=132 Size=12 Line=0 Col=1 Alt=0
Note from ACCLEN at JUPITER Format is NETDATA
* * * Top of File * * *
Date: 16 October 94, 11:43:24 EST
From: Larry Niven 212/930-3342 x3277 ACCLEN at Jupiter
To: JOEUSER

Joe -

I can't make lunch with you today. Preparing for the sales meeting Monday
looks like a lot more work than I had originally thought. A lot of the
figures still aren't in yet. How about Monday after the meeting for lunch?

336 Chapter 21 Using a VM/CMS System

- Larry
* * * End of File * * *

1= Help 2= Add line 3= Quit 4= Tab 5= Clocate 6= ?/Change
7= Backward 8= Forward 9= Receive 10= Rgtleft 11= Spltjoin 12= Cursor

====>
X E D I T 1 File

Figure 21.4 Sample received note.

It looks like an XEDIT screen because it is. The RDRLIST program uses XEDIT to display
the received message. As the function key list at the bottom shows, pressing PF3 quits out of
this display and returns you to the list of files in your reader.

21.3.2.2 Saving a File from the Reader

PF9 "receives" the file, or takes it out of the reader and saves it as a disk file. If someone sent
it to you with the NOTE command, receiving it appends it onto your ALL NOTEBOOK file. If
someone sent it to you with the SENDFILE command, receiving it saves it on your disk with
the file ID specified in the Filename and Filetype columns—in other words, the name it
had before it was sent to you. PF9 also sends a brief message to the message's sender telling
them that you've received it. (This brings up one advantage of PF11, the Peek function key:
you can look at a received file, but the sender never knows that you saw it.)

Note how the function key lists on the RDRLIST screen and on the screen used to peek at
files both show that PF9 receives the file. At the RDRLIST screen, your cursor must be on
the same line as the file you want to receive when you press PF9, so that the system knows
which file to receive. At the PEEK screen, your cursor's location doesn't matter, because the
file you're peeking at is obviously the one you want to receive.

PF9 is a shortcut to use instead of typing out the RECEIVE command. It won't handle special
situations, like receiving a file that has the same name as an existing file. To do this you need
to type RECEIVE at the PEEK screen command line or in the RDRLIST screen's Cmd
column so that you can take advantage of one of its options.

Although the Cmd column isn't very wide, you can type longer commands that begin there,
even if this means typing over the Filename and Filetype columns. When you press

21.3.2 Receiving Mail and Files 337

Enter, the system knows what you mean.

To receive a file that is displayed on the PEEK screen and assign it a new name, enter the
RECEIVE command at the PEEK screen prompt followed by the file ID. For example, to
save a displayed file and give it the name LNIVEN 101694, enter

RECEIVE LNIVEN 101694

at the command line. To receive a file that is displayed on the PEEK screen and have it re-
place your existing file that has the same name, enter

RECEIVE (REPLACE

at the PEEK screen command line.

These commands have the same effect when you type them in the RDRLIST screen's Cmd
column, except that you must put a slash character after the RECEIVE command to stand in
for the name of the file being received. For example, to save the file with the name LNIVEN
101694 type

RECEIVE / LNIVEN 101694

over the beginning of the line that describes that file, as shown in Figure 21.5.

JOEUSER RDRLIST A0 V 108 Trunc=108 Size=2 Line=1 Col=1 Alt=0
Cmd Filename Filetype Class User at Node Hold Records Date Time

MJONES NOTE PUN A MJONES JUPITER NONE 14 10/16 09:30:59
RECEIVE /LNIVEN 101694 PUN A ACCLEN JUPITER NONE 4 10/16 13:01:44

SALES DATA PUN A ACCLEN JUPITER NONE 832 10/16 13:02:45

Figure 21.5 Receiving a file from the reader.

After you press Enter, the system acknowledges your command with a message similar to the
one in Figure 21.6.

JOEUSER RDRLIST A0 V 108 Trunc=108 Size=2 Line=1 Col=1 Alt=0
Cmd Filename Filetype Class User at Node Hold Records Date Time

MJONES NOTE PUN A MJONES JUPITER NONE 14 10/16 09:30:59
* LNIVEN 101694 received from ACCLEN at JUPITER

338 Chapter 21 Using a VM/CMS System

SALES DATA PUN A ACCLEN JUPITER NONE 832 10/16 13:02:45

Figure 21.6 System acknowledgement of receipt of file from the reader.

Similarly, you type RECEIVE / (REPLACE in the same place to pull it out of the reader
and store it on your disk with its original name regardless of whether you already had a file
with that name.

21.3.2.3 Discard a File from the Reader

Don't think of it as "deleting" a file from the reader, but as "discarding" it. After all, you'll re-
member the command more easily: DISCARD. You can type it at the PEEK screen command
line or on the RDRLIST screen beginning in the Cmd column. No parameters are necessary.
Either way, when you press Enter, RDRLIST displays the words "has been discarded" after
the file ID.

21.4 The FILELIST Program
Many people find the FILELIST program useful to carry out basic operations on files. It dis-
plays a list of file IDs and you enter commands next to the names of the files that you want to
manipulate. In fact, the RDRLIST's interface is based on FILELIST.

Entering FILELIST by itself lists your A disk's files on a screen similar to the RDRLIST
screen. You can also enter wildcards to show that you only want to see certain files listed in
FILELIST. For example, if you type

FILELIST * EXEC

FILELIST starts up and displays a screen similar to the one shown in Figure 21.7.

DOCBED FILELIST A0 V 108 Trunc=108 Size=126 Line=1 Col=1 Alt=0
Cmd Filename Filetype Fm Format Lrecl Records Blocks Date Time

BUZZ EXEC A2 V 70 36 1 8/17/92 17:54:44 DSK191
C_ATTACH EXEC A1 F 80 2 1 1/30/92 16:48:41 DSK191
CRITBETA EXEC A1 V 19 4 1 1/21/94 11:23:18 DSK191
DIR EXEC A1 V 24 1 1 1/29/92 16:27:20 DSK191
DOWNLOAD EXEC A1 V 73 31 1 2/02/92 11:01:21 DSK191
HTRACK EXEC A1 V 24 2 1 7/27/92 13:17:05 DSK191

21.4 The FILELIST Program 339

INFONT EXEC A1 V 19 2 1 12/10/92 13:30:28 DSK191
IOBETA EXEC A1 V 19 4 1 1/07/94 12:34:47 DSK191
MBAILEY EXEC A1 V 22 1 1 1/30/92 16:49:02 DSK191
PROFILE EXEC A1 V 29 8 1 1/16/94 12:47:00 DSK191
TEST1 EXEC A1 V 27 9 1 2/02/92 10:53:40 DSK191
TEST4 EXEC A1 V 18 8 1 8/21/92 16:20:19 DSK191
TUTOR EXEC A1 V 7 1 1 9/23/93 16:16:57 DSK191

1= Help 2= Refresh 3= Quit 4= Sort(type) 5= Sort(date) 6= Sort(size)
7= Backward 8= Forward 9= FL /n 10= 11= XEDIT 12= Cursor

====>
X E D I T 1 File

Figure 21.7 FILELIST screen listing EXEC files.

As with RDRLIST, you enter a command that acts on a file in the Cmd column on the line
listing that file. Unlike the commands you enter at the Ready; prompt, you don't need to in-
dicate the file that you want to act on, because FILELIST can tell from your cursor's position.
Instead, enter the slash character where you would have put the file's name.

21.4.1 Copying Files

To make a copy of a file and call it TEST5 EXEC A, enter

COPY / TEST5 EXEC A

right on the line with the file you want to copy. It doesn't matter whether you enter it in upper
or lower case. Figure 21.8 shows a FILELIST screen with this command entered.

DOCBED FILELIST A0 V 108 Trunc=108 Size=126 Line=1 Col=1 Alt=0
Cmd Filename Filetype Fm Format Lrecl Records Blocks Date Time

BUZZ EXEC A2 V 70 36 1 8/17/92 17:54:44 DSK191
C_ATTACH EXEC A1 F 80 2 1 1/30/92 16:48:41 DSK191
CRITBETA EXEC A1 V 19 4 1 1/21/94 11:23:18 DSK191

copy / test5 exec a A1 V 24 1 1 1/29/92 16:27:20 DSK191
DOWNLOAD EXEC A1 V 73 31 1 2/02/92 11:01:21 DSK191
HTRACK EXEC A1 V 24 2 1 7/27/92 13:17:05 DSK191
INFONT EXEC A1 V 19 2 1 12/10/92 13:30:28 DSK191
IOBETA EXEC A1 V 19 4 1 1/07/94 12:34:47 DSK191
MBAILEY EXEC A1 V 22 1 1 1/30/92 16:49:02 DSK191
PROFILE EXEC A1 V 29 8 1 1/16/94 12:47:00 DSK191

340 Chapter 21 Using a VM/CMS System

TEST1 EXEC A1 V 27 9 1 2/02/92 10:53:40 DSK191
TEST4 EXEC A1 V 18 8 1 8/21/92 16:20:19 DSK191
TUTOR EXEC A1 V 7 1 1 9/23/93 16:16:57 DSK191

1= Help 2= Refresh 3= Quit 4= Sort(type) 5= Sort(date) 6= Sort(size)
7= Backward 8= Forward 9= FL /n 10= 11= XEDIT 12= Cursor

====>
X E D I T 1 File

Figure 21.8 Copying a file using FILELIST.

When you press Enter, FILELIST executes the command. (Or commands—you can enter
multiple commands on multiple lines before you press Enter.) Make sure to include the file's
mode (a in Figure 21.8) or FILELIST will display an error message.

21.4.2 Renaming Files

Renaming is similar to copying. To rename a file as TEST5 EXEC A, enter the command

RENAME / TEST5 EXEC A

beginning in the Cmd column on the line with the file you want to copy. After you press
Enter, FILELIST displays the message

** Discarded, Renamed, or Relocated **

on that line.

21.4.3 Deleting Files

Deleting a file is like deleting it from the reader: enter the DISCARD command, beginning in
the Cmd column, on the line with the file you want to delete. After you press Enter, FILEL-
IST displays the same message that it displays when you rename a file, showing you that the
file no longer exists.

21.4.4 Displaying A Text File's Contents

Displaying a file's contents in FILELIST is similar to doing it from the Ready; prompt, ex-
cept that you don't have to enter the file ID. Move your cursor to the Cmd column next to the
file whose contents you want to view, enter the TYPE command, and press Enter. Use the
Clear key and HT command just as you would when using the TYPE command from the

21.4.2 Renaming Files 341

Ready; prompt. When you are done, you will be back at the FILELIST screen.

21.4.5 Editing a File

Note how the bottom of the FILELIST screen shows that pressing PF11 invokes XEDIT. To
edit a file whose name is displayed by the FILELIST program, move your cursor to that file's
line and press PF11. When you finish editing it, CMS returns you to the FILELIST screen.

21.4.6 Printing a File

By now, you can probably guess how to do this: move your cursor to the Cmd column next to
the name of the file you want to print, enter PRINT, and press Enter. This has the same effect
as when you enter

PRINT filename filetype

at the Ready; prompt.

21.5 A Sample VM/CMS Session
One morning you log on and the system displays the following message, which shows that
your reader has two files:

FILES: 0002 RDR, NO PRT, NO PUN

You enter RDRLIST at the command prompt, and the RDRLIST program shows you inform-
ation about the two files in your reader, as shown in Figure 21.9.

JOEUSER RDRLIST A0 V 108 Trunc=108 Size=2 Line=1 Col=1 Alt=0
Cmd Filename Filetype Class User at Node Hold Records Date Time

ACCLEN NOTE PUN A ACCLEN JUPITER NONE 4 10/16 13:01:44
SALES DATA PUN A ACCLEN JUPITER NONE 148 10/16 13:02:45

Figure 21.9 Sample reader contents.

It looks like the user with user ID ACCLEN (your good pal Larry in accounting) sent you a
note and a medium-sized file. You move your cursor to the ACCLEN NOTE file and press
PF11 to peek at the file, and RDRLIST displays the screen shown in Figure 21.10.

342 Chapter 21 Using a VM/CMS System

0023 PEEK A0 V 132 Trunc=132 Size=12 Line=0 Col=1 Alt=0
Note from ACCLEN at JUPITER Format is NETDATA
* * * Top of File * * *
Date: 16 October 94, 13:01:44 EST
From: Larry Niven 212/930-3342 x3277 ACCLEN at Jupiter
To: JOEUSER

Joe -

I'm sending the SALES DATA file to your reader for you to look over. Don't
read the whole thing (you probably won't have time) but look over the
monthly totals before the meeting Monday. Sorry to do this to you on a
Friday!

- Larry
* * * End of File * * *

Figure 21.10 Sample message to you from Larry.

So now you know what that other file is. You save the note from Larry by entering RECEIVE
at the PEEK screen's command line. The system returns you to the RDRLIST screen, which
shows you that the ACCLEN NOTE file has been "added to ALL NOTEBOOK A0." Now
you know the name of the file in which to find this note if you need to refer to it again.

While viewing the RDRLIST screen, you pull the SALES DATA file out of the reader by
moving your cursor to that line and pressing PF9. Then, you quit the RDRLIST program by
pressing PF3.

Next, you take a quick look at this SALES DATA file that Larry mentioned. You enter

TYPE SALES DATA

at the Ready; prompt and see the screen shown in Figure 21.11.

TYPE SALES DATA

Page 01 O'Rourke Enterprises 10/16/94
Monthly Sales Figures by Region

21.5 A Sample VM/CMS Session 343

JANUARY Gross Net
------ ------

Northeast 77,423 12,756
Mid-Atlantic 65,812 11,447
Southeast 58,222 8,800
Southwest 42,342 5,663
Midwest 73,242 12,000
Northwest 14,433 1,500
West Coast 68,443 7,445

------ ------
JANUARY TOTAL 399,917 59,611

FEBRUARY Gross Net
------ ------

Northeast 75,732 11,890
Mid-Atlantic 69,348 11,008

MORE...

Figure 21.11 Beginning of SALES DATA file.

You press the Clear key, and see the screen shown in Figure 21.12.

Southeast 61,835 8,890
Southwest 42,445 5,556
Midwest 70,762 12,934
Northwest 14,242 1,634
West Coast 65,447 7,556

------ ------
FEBRUARY TOTAL 399,811 39,468

MARCH Gross Net
------ ------

Northeast 76,788 12,020
Mid-Atlantic 67,789 11,003
Southeast 62,640 9,126
Southwest 40,400 4,900
Midwest 69,730 11,500
Northwest 13,554 1,330
West Coast 73,354 8,020

------ ------
MARCH TOTAL 399,811 59,468

APRIL Gross Net

344 Chapter 21 Using a VM/CMS System

------ ------

MORE...

Figure 21.12 Second screen of SALES DATA screen.

You get the pattern, and don't need to do this for the whole file, so you type HT to Halt the
Typing, press Enter so that the HT takes effect, and then press Clear one more time.

If Larry said that you should only bother with the monthly totals, it might be a good idea to
consolidate those figures by making a copy of the SALES DATA file and editing out the de-
tails. You enter

COPY SALES DATA A TOTALS DATA A

and then call up the TOTALS DATA file with XEDIT:

X TOTALS DATA

With the beginning of the file displayed in XEDIT, you enter the XEDIT prefix command dd
at the beginning and end of the first block to get rid of in the file, as shown in Figure 21.13.

SALES DATA A1 F 80 Trunc=80 Size=148 Line=0 Col=1 Alt=0

===== * * * Top of File * * *
===== Page 01 O'Rourke Enterprises 10/16/94
===== Monthly Sales Figures by Region
=====
=====
=dd== JANUARY Gross Net
===== ------ ------
===== Northeast 77,423 12,756
===== Mid-Atlantic 65,812 11,447
===== Southeast 58,222 8,800
===== Southwest 42,342 5,663
===== Midwest 73,242 12,000
===== Northwest 14,433 1,500
===== West Coast 68,443 7,445
===dd ------ ------
===== JANUARY TOTAL 399,917 59,611
=====

21.5 A Sample VM/CMS Session 345

===== FEBRUARY Gross Net
===== ------ ------
===== Northeast 75,732 11,890
====>

X E D I T 1 File

Figure 21.13 Deleting a block from the SALES DATA file.

After pressing Enter, you indicate the next block to get rid of with the same command, as
shown in Figure 21.14.

SALES DATA A1 F 80 Trunc=80 Size=139 Line=0 Col=1 Alt=1

===== * * * Top of File * * *
===== Page 01 O'Rourke Enterprises 10/16/94
===== Monthly Sales Figures by Region
=====
=====
===== JANUARY TOTAL 399,917 59,611
=dd==
===== FEBRUARY Gross Net
===== ------ ------
===== Northeast 75,732 11,890
===== Mid-Atlantic 69,348 11,008
===== Southeast 61,835 8,890
===== Southwest 42,445 5,556
===== Midwest 70,762 12,934
===== Northwest 14,242 1,634
===== West Coast 65,447 7,556
===dd ------ ------
===== FEBRUARY TOTAL 399,811 39,468
=====
===== MARCH Gross Net
====>

X E D I T 1 File

Figure 21.14 Deleting another block from the SALES DATA file.

You press Enter and continue this until it is a one-page file that only shows the header and the
monthly totals. As you do this, you periodically enter XEDIT's SAVE command; when you

346 Chapter 21 Using a VM/CMS System

are finished, you enter SAVE one last time and quit out of XEDIT with the QUIT command.

To print, you enter

PRINT TOTALS DATA

at the Ready; prompt. It's a short file, so a minute later the system displays a message that
tells you that it has printed your file. You're done with your CMS session for now, so you
enter

LOGOFF

to log off.

21.5 A Sample VM/CMS Session 347

348

Part VI. MVS

Chapter 22 MVS: An Introduction
MVS is the primary operating system on the IBM 370 series of mainframes. (You may hear
people use various initials and four-digit numbers when referring to IBM mainframes, such as
3033, 3090 or ES9000, but they are all considered hardware models of the 370 series.) MVS
is the eighteen-wheeler of operating systems. People don't use it for flash and speed; they use
it to bear large, heavy loads steadily and dependably.

When we talk about the tremendous processing power of a mainframe running MVS, we're
talking about a power different from that of supercomputers. Supercomputers do complicated
calculations at very high speeds. Designing them for the best possible calculation speed often
means sacrificing I/O (input/output) speed; the scientists who use them are more likely to
give them a complex math problem and say "grind away at this equation all night" than they
are to say "read in these 300,000 records of data, do 8 calculations on each, and then output
300,000 separate reports."

Reading and writing a tremendous amount of data and doing relatively simple calculations
with it (for example, calculating interest payments, as opposed to calculating a boat hull's op-
timum shape) is the province of mainframes running MVS. An insurance company keeping
track of its accounts, a chain of stores keeping track of its inventory, or any large company
keeping track of its employees and payroll would use MVS. Because it's a multi-user operat-
ing system, MVS lets many different users use the same programs and data at once.

Personal computer users like to make fun of big computers running MVS, calling them "dino-
saurs." While the interface may seem primitive, MVS has had many features since its intro-
duction in 1974 that people are only now trying to shoehorn into the operating systems that
control personal computer networks. MVS includes built-in recovery routines for dealing
with faulty hardware like tape drives or even (in a multi-processor environment) faulty pro-
cessors. A system running MVS can support thousands of users at once. The security of one
user's data against tampering by others is an integral part of the system, designed into it from
the ground up. (How often do you hear of a virus or a worm breaking into an MVS system?)

The primitive interface isn't the only thing that give people the wrong idea about MVS. A
given MVS installation is highly customizable, and so is the way that each user uses it. Many
different parameters can be set when doing virtually anything, and MVS doesn't always have
the default settings that we take for granted on other systems. The most efficient settings are
left to individual system administrators to figure out. Since many settings and details are site-
specific, a new user on a particular system—no matter how much MVS experience he or she
brings to that system—can't be expected to know the best way to approach that system. Don't
be embarrassed to ask questions when faced with an unfamiliar MVS installation.

351

22.1 Batch Jobs
The name "MVS," which stands for "Multiple Virtual Storage," comes from the technique it
uses to manage memory. It lets any user work with huge amounts of memory at once, making
MVS ideal for batch processing.

Running a job in batch mode is the opposite of running it interactively. Instead of starting a
program, typing in some input, waiting for the response, typing some more, and continuing
this cycle, you specify what needs to be done at the outset. You tell the system the program to
run, the data to use, and what to do with the output. Preparing a company's payroll or feeding
in thousands of inventory transactions are typical of jobs that should be run as batch jobs. (A
batch job is also known as a "background" job—you can instruct the computer to start run-
ning it and then do something else interactively while your batch job runs in the background.)

In the early days of computers, no one else could use the computer once it began a batch job.
Modern multi-tasking computers let people run other programs while a batch job runs. This
makes MVS ideal for doing huge jobs involving lots of I/O.

Two acronyms that come up when people discuss batch jobs are JES2 and JES3. These are
two versions of the Job Entry Subsystem, the part of MVS that deals with the scheduling of
batch jobs. You need not worry about JES, but you may hear people refer to it.

See the sidebar "JCL: Job Control Language" for an explanation of how we give the system
instructions for running a batch job.

JCL: Job Control Language
JCL is a language for telling a mainframe system how to deal with a batch
job. You use it to indicate the job's size, priority, output destination or destina-
tions, and files, printers, processor time, and disk space to use.

Many mainframe users use JCL regularly without ever knowing anything
about the language. How can they do this? JCL statements are often inser-
ted at the beginning and end of a file holding the program or data to submit.
While doing data entry on a CMS system years ago (although it comes up
more often on MVS systems, the batch capability of VM/CMS means that
JCL is used there as well) I knew of a file of JCL code that I had to add to the
beginning of my file and another to add to the end of my file before I submit-
ted that file as a job to run. I didn't know what any of the JCL code did; I only
knew that I had to add the JCL files to my data file before I typed the com-

352 Chapter 22 MVS: An Introduction

mand that told the computer to process the data file. This sort of arrange-
ment is not uncommon. Often, a more hardcore programmer writes a couple
of chunks of reusable JCL for less sophisticated end users who know enough
about the text editor to insert these chunks into the appropriate places in their
files.

JCL code looks strange and intimidating because it uses so many abbrevi-
ations. Since part of its job is to specify the treatment of certain files, you will
discover that several MVS TSO commands have JCL equivalents, especially
ALLOCATE.

Once you have a good handle on the different parts of a mainframe system,
you can learn how they are represented in JCL and then start writing (or at
least modifying) JCL yourself. It's valuable job skill.

22.2 Interacting with MVS
MVS offers several ways to interact with it: TSO, ISPF, and CICS.

22.2.1 TSO

TSO stands for Time Sharing Option. It's the part of MVS that lets you use the system inter-
actively; you type commands at a command line and see the response on your screen. In addi-
tion to the commands that all operating systems have to copy, rename, and delete files, TSO
also has commands to submit batch jobs and to check on their progress. Most of the next
couple chapters show you various TSO commands for dealing with MVS basics.

When IBM first introduced TSO in 1969, interactive computing was a hot new feature that re-
quired a huge portion of the computer's memory. This is where the "O" in its name comes
from: when all jobs were batch jobs, IBM made this interactive component of MVS optional.
Today, it is part of all MVS systems.

22.2.2 ISPF

ISPF stands for Interactive System Productive Facility. Some refer to it by its older name,
SPF, or by its full name of ISPF/PDF. This alternative to TSO lets you carry out most basic
functions by making menu selections and filling out forms called "panels" on your screen.
The menus vary from system to system, but you will find the same important choices avail-
able at all MVS installations.

Since ISPF often makes things easier, it has become more popular than TSO as a way to get

22.2 Interacting with MVS 353

work done in MVS. TSO, however, offers more speed and flexibility; typing out a command
that indicates what you want to do takes less time than going through a series of menus, and
the command may have options that are unavailable to you when doing the same thing from
an ISPF menu. Also, some terminals and hardware connections to an MVS system may not
provide everything necessary to run ISPF, so you should still know the basic TSO commands.
(For more information on terminal connections and the use of TSO versus ISPF, see section
23.1.1, "VTAM."

22.2.3 CICS

Developers use the Customer Information Control System to ease the development of end-
user applications. Programmers write applications in a traditional mainframe programming
language, usually COBOL, and include sections consisting of CICS commands. Before com-
piling the program, they run a program called a CICS preprocessor, which finds each CICS
statement in the program and converts it into the appropriate series of commands for the pro-
gramming language being used.

What do the CICS commands do? Usually, they accomplish tasks that are difficult in a lan-
guage like COBOL. For example, if you want to write a series of COBOL commands that
display a form to fill out on the end-user's screen, you must worry about the different makes
and models of terminals that the user might have. If you let CICS worry about this for you,
you can describe and display your input form with a minimum of commands and let the the
CICS processor turn them into the appropriate COBOL commands. CICS commands also
simplify the use of data files and the relationship between an end-user's activity and the con-
tents of the files.

22.2.4 Other MVS Components

MVS is made up of many parts. Like TSO, many started as optional features, but eventually
became standard issue at MVS installations. Some components became obsolete and are no
longer offered; others, especially those that take advantage of the extra power of more recent
versions of MVS (like MVS/ESA) are optional now.

Many popular MVS programs, useful enough to seem like part of the operating system in-
stead of being a separate application used for a specific purpose, don't even come from IBM.
The existence of these and IBM's optional MVS features mean that the list of software tools
available at one MVS site may not be the same as those available at another. You can,
however, take for granted that TSO and ISPF are always available, which is why this book
covers them.

22.3 History

354 Chapter 22 MVS: An Introduction

The history of MVS must begin with its lineage. It is descended from the forefather of mod-
ern operating systems: OS. IBM introduced OS, which stands for "Operating System," in
1964 when it announced the 360 series of computers. (For more on this, see the sidebar
"IBM's 360 Series of Mainframes" in this book's introduction.)

The history of operating systems over the next few years is really the history of IBM's im-
provements to OS, as it introduced versions that allowed more users the ability to simultan-
eously run more programs and to let each of these programs use more memory. IBM called
successive versions MFT (Multiprogramming with a Fixed number of Tasks), MVT
(Multiprogramming with a Variable number of Tasks), SVS in 1972 (Single Virtual Storage)
and MVS/XA, (Multiple Virtual Storage/Extended Architecture) in 1974.

In 1988, IBM introduced its ESA/370 mainframes, and a new version of MVS known as
MVS/ESA (Extended System Architecture) to take advantage of the increased power of the
new hardware. The version of MVS that you use has no effect on any of the basic commands
explained in this book; improvements to the operating system usually involve additional
power for users pushing the outer limits of the system.

22.3 History 355

356

Chapter 23 Getting Started with MVS
23.1 Starting Up
Logging on to an MVS system consists of two basic steps: entering your user ID and entering
your password. Before you reach the point where you log on, however, you may need to go
through an MVS component known as VTAM.

23.1.1 VTAM

VTAM (pronounced "vee-tam") stands for "Virtual Telecommunications Access Method."
The phrase "access method" comes up often in MVS. An access method is a collection of
programs that acts as an intermediary between you and something that would otherwise be
difficult and complicated to gain access to.

VTAM is essentially a telecommunications program. When you connect to the MVS system,
you might really be connecting to some hardware running VTAM, which then enables you to
connect to the MVS system. If you see a screen that lists several possible commands to type
and one of them is DIAL, then DIAL VTAM will probably connect you to the MVS system.

Sometimes you can choose between logging on to TSO directly or logging on to VTAM and
using that to access the MVS TSO system. (For example, in addition to the DIAL command,
the screen mentioned above might offer TSO userid as a choice.) Going through VTAM
might offer better control of your terminal than a direct connection to TSO. This increased
control might be reflected in the ability to run ISPF: displaying menus and forms on you
screen to fill out requires a more sophisticated relationship between a computer and a termin-
al than the ability to just scroll lines of text from the bottom of the screen to the top. Trying to
start up ISPF at the TSO prompt after connecting directly to TSO (and bypassing VTAM)
might produce an error message similar to this:

INVALID TERMINAL ACCESS METHOD, ISPF VERSION 3 REQUIRES ACF/VTAM.

In other words, the connection made allows the primitive screen control necessary to let you
enter TSO commands and watch the system's responses scroll up the screen, but not the
screen control necessary to display menus and forms that you would fill out by moving your
cursor from place to place.

23.1.2 Logging On

When you first connect to an MVS system, there are several ways to tell it that you want to
log on. The simplest is to just type the following:

357

logon

The system responds by asking you for your user ID:

IKJ56700A ENTER USERID -

Type in the ID that you were assigned when you received the account. If the system does not
recognize a user ID of "JOEUSER," it displays a message similar to this:

IKJ56420I Userid JOEUSER not authorized to use TSO

An alternate way to log on at some sites uses menus that offer you the choice of connecting to
several different systems. This screen will let you know the syntax for logging on to the sys-
tem you want. Joe User would use a command similar to this to log on to MVS's TSO com-
ponent directly:

tso joeuser

Regardless of how you typed in your user ID, once the system knows it, it then prompts you
for the password that goes with that ID:

ENTER CURRENT PASSWORD FOR JOEUSER-

When you type the characters of your password, they will probably not appear on your
screen. This security feature prevents someone from learning your password by watching you
log on.

Instead of prompting you for the password as above, the system may display a form to com-
plete with the USERID field already filled out and the cursor waiting at the PASSWORD
field for your response. Figure 23.1 shows an example.

------------------------------- TSO/E LOGON ----------------------------------

ENTER LOGON PARAMETERS BELOW: RACF LOGON PARAMETERS:

USERID ===> JOEUSER

PASSWORD ===> _ NEW PASSWORD ===>

PROCEDURE ===> GROUP IDENT ===>

ACCT NMBR ===>

358 Chapter 23 Getting Started with MVS

SIZE ===>

PERFORM ===>

COMMAND ===>

ENTER AN 'S' BEFORE EACH OPTION DESIRED BELOW:

-NOMAIL -NONOTICE -RECONNECT -OIDCARD

Figure 23.1 TSO logon form.

Don't worry about the other fields; type in your password (again, the characters do not display
as you type) and press Enter.

Once you enter a valid ID and password, MVS displays some logon messages and the TSO
READY prompt. Figure 23.2 shows a typical series of messages. (Because the system admin-
istrator can change the default prompt, it might be something other than the word "READY."
Also, the system may automatically start up ISPF instead of displaying the TSO prompt; if
not, we'll soon see how to start it up manually.)

ICH70001I JOEUSER LAST ACCESS AT 18:31:55 ON MONDAY, JANUARY 11, 1994
JOEUSER LOGON IN PROGRESS AT 09:09:30 ON JANUARY 12, 1994

* O'Rourke Enterprises MVS/XA *

* Use CLASS=T for all server batch JOBs or they may be cancelled. *

* Please report any problems to the Help Desk at 878-4531. *

*** N e w s : ***

* Due to a possible security breach, all users must change their *
* passwords by Thursday, January 14. *

You have no messages or data sets to receive.
**** NATIVE TSO READY ****
READY

23.1.2 Logging On 359

Figure 23.2 Typical opening series of messages upon logon.

The messages appearing in upper case letters are from the system, telling you some statistics
about this logon and the same user ID's last logon. The rest of the messages are from the sys-
tem administrator, to keep you abreast of news about the system. The last line, READY, is the
TSO command-line prompt. It means that the system is ready for you to type in TSO com-
mands.

23.1.2.1 Reconnecting

Let's say you're accidentally disconnected from the system and you try to log on again. It may
tell you this

IKJ56425I LOGON REJECTED, USERID JOEUSER IN USE
IKJ56400A ENTER LOGON OR LOGOFF-

because you didn't log off properly. This isn't a problem; MVS provides the RECON option to
the LOGON command, which means "reconnect me to my earlier session." If you respond to
the above message with

logon joeuser recon

the system prompts you for your password and reconnects you, displaying the same screen
you were viewing when you were disconnected.

If you log on by filling out the form displayed in Figure 23.1, note the line at the bottom that
says, "ENTER AN 'S' BEFORE EACH OPTION DESIRED BELOW." (The "S" stands for
"Select.") One of the options is "RECONNECT," so after you enter your password and before
you press Enter, move your cursor to the RECONNECT option by repeatedly pressing the
Tab key. If you type the letter "S" there and press Enter, the system reacts as if you had
entered

logon joeuser recon

at the TSO prompt.

23.1.3 Entering Commands

When you start your session, and at any time throughout, the READY prompt shows that the

360 Chapter 23 Getting Started with MVS

system is ready for you to type in a TSO command.

When you type a command, it appears on the line under the READY prompt. After you press
Enter, the command's output appears under the typed command. If there is too much to fit on
the screen, asterisks appear on the last line to tell you that there is more to see. For example,
the LISTCAT command lists file names (they're really called data sets; more on this later).
Figure 23.3 shows the LISTCAT command entered when there isn't enough room for all of
its output on the screen.

ICH70001I JOEUSER LAST ACCESS AT 18:31:55 ON MONDAY, JANUARY 11, 1994
JOEUSER LOGON IN PROGRESS AT 09:09:30 ON JANUARY 12, 1994

* Use CLASS=T for all server batch JOBs or they may be cancelled. *

* Please report any problems to the Help Desk at 878-4531. *

*** N e w s : ***

* Due to a recent security breach, all users must change their *
* passwords by Thursday, January 14. *

You have no messages or data sets to receive.
**** NATIVE TSO READY ****
READY
listcat
IN CATALOG:SYS1.BGCCTLG
JOEUSER.ACCNTING.CLIST
JOEUSER.ACCNTING.COBOL
JOEUSER.APL.ASM
JOEUSER.CICS.CNTL
JOEUSER.ERRORS.DATA
JOEUSER.FMU.DATA
JOEUSER.HLIPRINT.DATA
JOEUSER.HLIPRINT.FOCUS
JOEUSER.INVENTRY.DATA

Figure 23.3 Beginning of LISTCAT output when remainder doesn't fit on screen.

When you press Enter, more of the command's output appears. If the remaining output doesn't
fit on the second screen, the asterisks will appear at the bottom again, waiting for you to press
Enter. When you do reach the end, the READY prompt reappears, as shown in Figure 23.4.

23.1.3 Entering Commands 361

JOEUSER.INVENTRY.COBOL
JOEUSER.ACCNTING.COBOL.BACKUP
JOEUSER.ISPF.ISPPROF
JOEUSER.JU.ASM
JOEUSER.JU.CLIST
JOEUSER.LOG.MISC
JOEUSER.MASTER.DATA
JOEUSER.OFFLINE.DATA
JOEUSER.PROD.PROCLIB
JOEUSER.RDBAPP.DATA
JOEUSER.RDBAPP.OBJ
JOEUSER.RDBAPP.REXX
JOEUSER.TEST.CNTL
JOEUSER.TEST.ASM
READY

Figure 23.4 End of LISTCAT output.

23.1.3.1 Aborting Screen Output

If you find yourself repeatedly pressing Enter and regretting that you entered the command
that produced so much output, you have an alternative to pressing Enter: the PA1 key. Press-
ing it puts you right back at the TSO READY prompt after it clears the screen, aborting the
output of any command currently putting information on the screen. (When using a PC with a
terminal emulation program instead of an actual mainframe terminal, check the emulation
program's documentation to see which key acts as PA1.)

23.1.3.2 Command Parameters

Many commands need some information from you in order to do their job. For instance,
when you type the COPY command, the system needs to know the name of the data set you
want to copy and the name you want to assign to your new copy. As you'll see in the section
on this command, you could type

copy old.dsname new.dsname

but if you just type

copy

by itself, MVS turns out to be fairly user-friendly about this abbreviated syntax—it prompts
you for the information it needs:

362 Chapter 23 Getting Started with MVS

copy
ENTER 'FROM' DATA SET NAME -
jan13.memo
ENTER 'TO' DATA SET NAME -
jan13.memo.backup
READY

(VMS also does this, although MVS and VMS are completely different operating systems
from completely different companies. IBM's VM and Wang's VS add to the name confu-
sion—the fact that MVS, VS, VMS, and VM are four unrelated operating systems from three
different companies is a big part of what makes the mini and mainframe world so confusing.)

23.1.3.3 Long Commands

Complicated commands may take up more than one whole line of your screen. If this hap-
pens, you can indicate that your command continues on the next line with the plus (+) or
minus (-) sign. For example, listing the contents of the TESTSEQ1.DATA data set by enter-
ing

list +
testseq1.data

has the same effect as entering

list testseq1.data

Of course, there wouldn't be much point to breaking up a command this short over more than
one line.

23.1.3.4 Case Sensitivity

TSO maps all entered commands to upper case, so it doesn't matter whether you type

LIST TESTSEQ1.DATA

or

LIST testseq1.data

or

list testseq1.data

23.1.3 Entering Commands 363

at the READY prompt. They all list the contents of the data set called TESTSEQ1.DATA. In
the TSO examples in this book, entered commands are shown in lower case to make it easier
for you to distinguish between lines that the user types and lines that the system displays,
which almost always appear in upper case.

23.1.3.5 Command-Line Options

IBM's on-line help and literature about TSO refer to command-line options as "operands."
You don't need any special character to indicate that something you add to the command line
is an operand for that command. For example, the LIST command's NONUM option indicates
that you don't want line numbers listed with a data set's contents. You add it onto the com-
mand just as it is, with no "-" (as in UNIX) or "/" (as in VMS) or "(" (as in CMS) to indicate
that it is a special option for the LIST command:

list testseq1.data nonum

Certain TSO commands have options that need extra information from you. This information
is enclosed in parentheses right after the option's name. For example, the ALLOCATE com-
mand, which creates a new data set or indicates an existing data set for a program to use,
sometimes takes the following form:

allocate dataset(dsname)

In this example, dsname represents the name of the data set to allocate. You would substi-
tute a data set name between the parentheses.

Whether you enter an existing data set name or a new one depends on your purpose in enter-
ing the ALLOCATE command. We'll see more about this in section 24.1.7, "Allocating Data
Sets." We'll also see that this command can take many more options than this—enough to
give you practice at using the "+" character to spread your ALLOCATE command over two
lines, as described in section 23.1.3.3, "Long Commands."

23.1.4 Finishing Your MVS Session

Logging off is simple: just type

logoff

at the TSO READY prompt. The system then displays a message telling you the user ID being
logged off, the time, and the date.

23.2 File Names

364 Chapter 23 Getting Started with MVS

Files in MVS are known as data sets. Although most books on MVS tell you that "data set" is
the term used for a file, keep in mind that the terms are not completely interchangeable. The
word "file" has a specific meaning in MVS: when you use the ALLOCATE command to indic-
ate a data set that a particular program will use, FILE is a synonym for DDNAME, or "data
definition name." The program uses the ddname to refer to the data set. For example, if a
database program saves report output in a data set instead of displaying it on the screen, it
might expect the data set to have a DDNAME of RPTOUT. If you wanted the data saved in a
data set called JOEUSER.SUMRPT.TEXT, you would allocate this data set with a DDNAME
of RPTOUT. For more on this, see section 24.1.7, "Allocating Data Sets."

23.2.1 Sequential and Partitioned Data Sets

There are two kinds of data sets: sequential and partitioned. (Actually, there's a third called
VSAM—pronounced "vee-sam"—used to store data for database applications, but that's a
more advanced topic.) A sequential data set is like a regular file in other operating systems; a
partitioned data set (also known as a PDS, or a "library") is like a group of files under one
name. Each one of the files, or "members" of a PDS, is basically the same as a sequential data
set. In fact, we'll see with the COPY command how easily you can take an existing sequential
data set and make it a member of an existing partitioned data set.

Because a partitioned data set is a collection of "files," it's tempting to compare it to a direct-
ory or folder on another operating system. In practice, however, MVS users do not really use
partitioned data sets this way. A single PDS usually holds a group of files that all serve the
same purpose within their respective contexts and that all have the same characteristics (for
example, record length, maximum size, and the units in which their size is defined). In VM/
CMS, this would be like grouping together a collection of files with the same filetype; in oth-
er operating systems, it would be like grouping files with the same extension. For example,
one PDS might hold several CLISTs (TSO command procedures). Another could hold the
data files used by a certain database management program, and another could hold a collec-
tion of report specifications for using data from that program.

Section 23.3, "How Files Are Organized," describes the role of partitioned data sets in greater
detail.

23.2.2 Line Numbers and Data Sets

You may have seen text editors on some operating systems that include line numbers next to
the text. The two text editors used in MVS also do this, but there's an important difference
when compared with other operating systems: MVS editors save the numbers with the data
sets. If this ever presents a problem, most TSO commands offer an operand that lets you omit
the line numbers—for example, when you print or copy a numbered data set.

23.2.1 Sequential and Partitioned Data
Sets 365

23.2.3 Naming Data Sets

The rules for naming sequential and partitioned data sets are the same. (As we'll see, referring
to a particular member of a PDS requires something extra added to the PDS name.)

A data set name is composed of pieces called qualifiers. A period separates each qualifier.
For data sets that you create, MVS adds your user ID as the first, or "high-level" qualifier. For
Joe User, the full name (or, in MVS parlance, the "fully qualified data set name") of a data set
that he named MYFILE.TEXT would be JOEUSER.MYFILE.TEXT.

Some MVS users call this high-level qualifier the data set's "prefix." It's not always the user
ID of the person who created it; it could be the name of the application that uses it or
something else assigned by the system. The data sets that you create, however, nearly always
have your user ID as their high-level qualifier.

When you refer to a data set, you rarely include the high-level qualifier in its name. The sys-
tem assumes that your user ID is it. If you are including the high-level qualifier when specify-
ing a data set name and don't want TSO to automatically add one, enclose the data set name
in apostrophes. For a user ID of JOEUSER, this tells the system that you've added the
"JOEUSER" yourself, like in the following:

'joeuser.myfile.text'

MVS users refer to the apostrophe as a "tick" and the period as a "dot," so if you were reading
the above data set name out loud to someone you would say "tick joeuser dot myfile dot text
tick."

You enclose a data set name in "ticks" to refer to a data set that is not your own, such as a
data set that another user told you to use. Remember, all data sets have a high-level qualifier;
if you enclose a data set name in apostrophes and leave out the high-level qualifier, or use an
invalid one, MVS rejects it.

A fully qualified data set name can have as many parts (that is, qualifiers) as you want, as
long as the total number of characters (including the periods that separate the qualifiers) does
not exceed 44 and no qualifier has more than eight characters. If Joe User's user ID is
JOEUSER, this leaves him with 36 characters for the rest of his fully-qualified data set
names, because MVS automatically adds his seven-character user ID and a period to the be-
ginning of any data set he creates.

Qualifiers can contain letters and numbers, and must begin with a letter. The only other al-
lowable characters are @, $, and #. (Note that the underscore, which is OK on most operating
systems, cannot be used in MVS.) The case of alphabetical characters doesn't matter, since
lower case letters will be converted to upper case.

366 Chapter 23 Getting Started with MVS

Although your data set name could have over a dozen qualifiers, three is the most popular
number. ISPF makes life easier for people who use data set names with three qualifiers; it
even has a name for each of the three:

project The user ID, or high-level qualifier.

group The name that you make up to distinguish this data set from oth-
ers with the same project and type.

type The type of the data set—much like the concept of a file's type in
VMS, its filetype in CMS, or its extension in DOS or UNIX.

For example, if Joe User had written three programs in the COBOL programming language,
he might store them in data sets named JOEUSER.INPUT.COBOL,
JOEUSER.SUMRPT.COBOL, and JOEUSER.DETRPT.COBOL. He could have named the
last one JOEUSER.DETAIL.REPORT.VER1.COBOL, but the three-part name is more con-
ventional.

Some MVS users call the type the "low-level qualifier." This applies not only to three-part
data set names, but to all data set names with two or more parts—in other words, all data set
names. The last part, the part that identifies what kind of data set it is, is always considered
the low-level qualifier. (In the previous paragraph, all the data set names listed as examples
have a low-level qualifier of COBOL—even JOEUSER.DETAIL.REPORT.VER1.COBOL.)
We call the qualifiers in between intermediate qualifiers.

23.2.3.1 The Members of a Partitioned Data Set

The rules for naming a partitioned data set are the same as those for naming a sequential data
set. Since a PDS is actually a collection of data sets, we also need a way to refer to a particu-
lar member of the PDS.

A member name goes right after the PDS name in parentheses. For example, if Joe User
keeps his COBOL programs as members of a partitioned data set called
JOEUSER.SOURCE.COBOL, the member SUMRPT actually has the full name
JOEUSER.SOURCE.COBOL(SUMRPT). Joe refers to it as SOURCE.COBOL(SUMRPT),
knowing that the system adds the JOEUSER part for him. If he wants to refer to the fully-
qualified name by enclosing it in apostrophes, he calls it
'JOEUSER.SOURCE.COBOL(SUMRPT)'.

Member names must follow the same rules as qualifier names: they can be up to eight charac-
ters long, they can contain letters, numbers and the @, $, and # symbols, and they must begin
with a letter of the alphabet.

23.2.3 Naming Data Sets 367

The limit of 44 characters on a data set name does not include the characters of a member
name. A PDS with a 44-character name can still have members with eight-character names.

23.2.4 Wildcards

The only wildcard in TSO is the asterisk (*). You can use it to represent any single qualifier
in a data set name. For example, the LISTCAT command can use the ENTRIES operand to
list information about a single data set, as with the following:

listcat entries(dept.data)

Substituting an asterisk for one of the qualifiers means "perform this command on any data
set that matches the other qualifiers, with anything in the asterisk's position." The following
tells TSO to list the names of the data sets with "DEPT" as the second qualifier (remember,
"JOEUSER" is the first) and anything as the third:

listcat entries(dept.*)

When you write out the data set name, you cannot make the asterisk the first part of the data
set name. For example, to list all the data sets having "DATA" as their last qualifier, you
could not enter this:

listcat entries(*.data)

To get around this, use fully-qualified data set names. Don't forget the apostrophes:

listcat entries('joeuser.*.data')

Remember, the use of the asterisk as a wildcard is not restricted to the LISTCAT command.
Others, including COPY, RENAME, and DELETE can also use it.

23.3 How Files Are Organized
MVS keeps track of data sets in lists of their names and locations called catalogs. The sys-
tem's master catalog stores a list of the names and locations of the user ID catalogs, and your
ID's catalog is the list of your data sets. (Note that the command for listing data set names is
LISTCAT; you're asking the system to list the contents of a catalog.)

The actual storage device that holds a particular data set is identified by a unique number
called a Volume Serial Number, or VOLSER (pronounced "voll-sear"). Part of the purpose of
the catalog system is to keep you from worrying about VOLSERs. On some ISPF screens
where you enter a data set name, one line asks you to enter the "VOLUME SERIAL (IF NOT
CATALOGUED)." In other words, it only needs to know this information if the data set is

368 Chapter 23 Getting Started with MVS

not in any catalog. (To see the Volume Serial Number of your data sets when you list their
names, add the VOLUME operand to the LISTCAT command. See section 24.1.2, "Listing
Data Set Names," for more on LISTCAT.)

A related term is VTOC, the Volume Table of Contents, a special data set that serves as the
table of contents for a particular storage device. As with the VOLSER, advanced users some-
times use the VTOC to access their data more directly, but the use of catalogs relieves begin-
ners from the need to worry about VTOCs. If it comes up in conversation, remember to pro-
nounce it "vee-tok" and people will assume you know what you're talking about.

23.4 Available On-line Help
TSO's on-line is neither terrific nor terrible. Help information appears in all upper case letters,
which is rather primitive, but it gives you syntax and a description for any command that you
can name.

If you don't know command names, you can use the on-line help to find them. Typing HELP
all by itself at the TSO READY prompt displays a list of TSO commands, with a brief descrip-
tion of each one's purpose. Figure 23.5 shows the first of these screens displayed.

READY
help
LANGUAGE PROCESSING COMMANDS:

ASM INVOKE ASSEMBLER PROMPTER AND ASSEMBLER F COMPILER.
CALC INVOKE ITF:PL/1 PROCESSOR FOR DESK CALCULATOR MODE.
COBOL INVOKE COBOL PROMPTER AND ANS COBOL COMPILER.
FORT INVOKE FORTRAN PROMPTER AND FORTRAN IV G1 COMPILER.

PROGRAM CONTROL COMMANDS:

CALL LOAD AND EXECUTE THE SPECIFIED LOAD MODULE.
LINK INVOKE LINK PROMPTER AND LINKAGE EDITOR.
LOADGO LOAD AND EXECUTE PROGRAM.
RUN COMPILE, LOAD, AND EXECUTE PROGRAM.
TEST TEST USER PROGRAM.
TESTAUTH TEST APF AUTHORIZED PROGRAMS.

DATA MANAGEMENT COMMANDS:

ALLOCATE ALLOCATE A DATA SET WITH OR WITHOUT AN ATTRIBUTE
LIST OF DCB PARAMETERS.

ALTLIB DEFINE OPTIONAL, USER-LEVEL OR APPLICATION-LEVEL SETS OF

23.4 Available On-line Help 369

Figure 23.5 First TSO help screen.

For more detailed help about a specific command, enter the command's name as an operand
to the HELP command. Figure 23.6 shows the HELP command being entered with LISTCAT
as an operand, and the beginning of the HELP command's output.

help listcat

FUNCTION -
THE LISTCAT COMMAND LISTS ENTRIES FROM EITHER THE MASTER CATALOG OR
A USER CATALOG.

SYNTAX -
LISTCAT CATALOG('CATNAME/PASSWORD')

FILE('DNAME')
OUTFILE('DNAME')
LEVEL('LEVEL') | ENTRIES('ENTRYNAME/PASSWORD' ...)
CREATION('NNNN')
EXPIRATION('NNNN')
NOTUSABLE
CLUSTER DATA INDEX ALIAS SPACE NONVSAM

USERCATALOG GENERATIONDATAGROUP PAGESPACE
ALTERNATEINDEX PATH

ALL | NAME | HISTORY | VOLUME | ALLOCATION
REQUIRED - NONE
DEFAULTS - NAME
ABBREVIATIONS -

NOTE - IN ADDITION TO NORMAL TSO SHORT FORMS, THESE ARE ACCEPTED.

Figure 23.6 Command and output for help about LISTCAT.

Again, the asterisks at the bottom show that you're only looking at the first screen of a fairly
extensive description of the command. The list of possible syntax variations alone take up al-
most the entire screen.

The separate lines show options that you may add after the LISTCAT command. When you
see several options listed on the same line, such as

370 Chapter 23 Getting Started with MVS

ALL | NAME | HISTORY | VOLUME | ALLOCATION

in Figure 23.6, that means you can choose one of these, but not more than one.

OPERANDS -
CATALOG('CATNAME/PASSWORD')

- SPECIFIES THE NAME OF THE CATALOG CONTAINING THE ENTRIES
TO BE LISTED.

'CATNAME'
- NAME OF THE CATALOG CONTAINING THE ENTRIES TO BE

LISTED.
'PASSWORD'

- PASSWORD OF THE CATALOG CONTAINING THE ENTRIES TO BE
LISTED.

REQUIRED - 'CATNAME'
FILE('DNAME')

- IDENTIFIES THE VOLUMES THAT CONTAIN THE CATALOG
ENTRIES TO BE LISTED.

'DNAME' - NAME OF THE DD STATEMENT THAT IDENTIFIES THE VOLUMES
CONTAINING CATALOG ENTRIES TO BE LISTED.

OUTFILE('DNAME')
- IDENTIFIES THE ALTERNATE OUTPUT DATA SET.

'DNAME' - NAME OF THE JCL STATEMENT THAT IDENTIFIES THE
ALTERNATE OUTPUT DATA SET.

LEVEL('LEVEL')
- SPECIFIES THE LEVEL OF ENTRY NAMES TO BE LISTED.

'LEVEL' - LEVEL OF ENTRY NAMES TO BE LISTED.

Figure 23.7 More help for LISTCAT.

So what do all these options mean? This is revealed after the syntax. For example, Figure
23.7 shows some later help material for the LISTCAT command; each option has at least one
line describing it.

23.4 Available On-line Help 371

372

Chapter 24 Using Files in MVS
24.1 The Seven Most Important Commands
The seven most important TSO commands in MVS are:

LISTCAT lists the data sets in a catalog.

LISTDS lists the members in a partitioned data set.

LIST displays the contents of data sets.

COPY copies data sets and data set members.

RENAME renames data sets and data set members.

DELETE deletes data sets and data set members.

ALLOCATE creates and provides access to data sets.

Remember, in addition to performing these functions with TSO commands, you can use IS-
PF. TSO, however, gives you more flexibility. In other words, if you see a lot of potential op-
tions when you enter "HELP" followed by the name of one of the commands in this section,
ISPF won't necessarily have an equivalent to all of those options.

Nearly all of the commands described here require you to name the data set you wish to act
on. The examples leave out the high-level qualifier, but they all work the same way if you in-
clude the high-level qualifier—as long as you remember to put it between apostrophes. For
example, when logged on to Joe User's ID, there's no difference between entering

delete memos.text

and

delete 'joeuser.memos.text'

24.1.1 Common Error Messages

The simplest mistake to make at the TSO command line is typing in the name of a "com-
mand" that doesn't exist at the READY prompt. If you type in such a command, like

hlep listcat

373

when you meant to type help listcat, TSO tells you:

COMMAND HLEP NOT FOUND

In other words, TSO has no command called HLEP.

A classic mistake on many systems is entering a command that expects command-line para-
meters without entering as many parameters as it expects. (For example, entering the COPY
command without saying what you want to copy and what to call the copy.) When using
TSO, this is not a mistake; as we saw in section 23.1.3.2, "Command Parameters," TSO
prompts you for the rest of the necessary information.

If you try to perform a command on a non-existent data set, you will find that TSO has a vari-
ety of ways to tell you that there's a problem. Trying to rename a non-existent data set called
MYNOTES.TEXT gives you the following error message

DATA SET MYNOTES.TEXT NOT IN CATALOG OR AMOUNT OF DATASETS EXCEEDS WORKAREA FOR GENERIC RENAME

while trying to copy the same non-existent data set gives you a much terser error message:

COPY ENDED DUE TO ERROR

The justification for this disparity in error message information goes something like this: real
TSO commands, like RENAME, get reasonable error messages, but COPY is not a real TSO
command. It's actually a TSO utility program, but it's so useful that it's installed wherever
TSO is installed—sort of like ISPF.

Another error message is worth examining because of its use of MVS terminology. Try to de-
lete a non-existent data set called MYNOTES.TXT and you'll see

ERROR QUALIFYING JOEUSER.MYNOTES.TEXT

The system first adds the high-level qualifier (the user's ID) so that it has the complete data
set name, and then it uses this name to find the data set. Obviously, it fails; there's no such
data set in the JOEUSER catalog. (You'll get the same error message for a data set that seems
to exist, but just isn't part of your catalog. See section 24.1.8, "Adding a Data Set to a Cata-
log," for more on this.)

If you try to do something to a data set and leave off the last qualifier, TSO displays the final
qualifiers for data sets that begin with whatever you entered. For example, if you have data
sets named APRIL.MEMOS.SENT and APRIL.MEMOS.RECEIVED and you enter the
command

374 Chapter 24 Using Files in MVS

delete april.memos

TSO responds like this:

QUALIFIERS FOR DATA SET APRIL.MEMOS ARE
SENT RECEIVED
ENTER QUALIFIER-

You then enter the final qualifier of the data set that you want to delete and press Enter.

TSO reacts similarly when it understands a command name, but not one of its operands. For
example, section 24.1.2.2, "Listing a Partitioned Data Set's Members," shows how you can
list a partitioned data set's members by adding the MEM operand to the LISTDS command
after the data set's name. If you misspelled it like the following,

listds setup.clist mom

TSO responds with the following:

INVALID KEYWORD, MOM
REENTER THIS OPERAND -

This gives you the chance to enter the wrong part again. If you really thought that MOM was
right and you're not sure what to enter now, enter a question mark and TSO responds with a
description of the proper syntax for the command you entered:

?
SYNTAX -

LISTDS 'DSLIST' STATUS HISTORY MEMBERS LABEL
CATALOG('CAT.NAME') LEVEL

REQUIRED - 'DSLIST'
DEFAULTS - NONE

24.1.2 Listing Data Set Names

TSO users use two commands to list data set names: LISTCAT lists the names of data sets in
a catalog, and LISTDS lists a partitioned data set's members.

24.1.2.1 Listing a Catalog's Data Sets

If you enter the LISTCAT command without any operands, it lists the names of data sets in
your user ID's catalog, as shown in Figure 24.1.

24.1.2 Listing Data Set Names 375

listc
IN CATALOG:SYS1.BGCCTLG
JOEUSER.ACCNTING.CLIST
JOEUSER.ACCNTING.COBOL
JOEUSER.APL.ASM
JOEUSER.CICS.CNTL
JOEUSER.ERRORS.DATA
JOEUSER.FMU.DATA
JOEUSER.HLIPRINT.DATA
JOEUSER.HLIPRINT.FOCUS
JOEUSER.INVENTRY.DATA
JOEUSER.INVENTRY.COBOL
JOEUSER.INVENTRY.COBOL.BACKUP
JOEUSER.ISPF.ISPPROF
JOEUSER.JU.ASM
JOEUSER.JU.CLIST
JOEUSER.JU.CLIST1A
JOEUSER.JU.CNTL
JOEUSER.JU.COBOL
JOEUSER.JU.DATA
JOEUSER.JU.DS14
JOEUSER.JU.LOAD

Figure 24.1 Sample output of the LISTCAT command.

(The three asterisks on the last line show that TSO is only displaying the first screenful of
names, not the entire list.) Note how only the first five letters of "LISTCAT" were entered.
This abbreviation is all you need.

Two operands to the LISTCAT command let you narrow down the list of data set names to
display. The ENTRIES operand takes a data set name as an argument, in parentheses, and
lists the name of the data set and the name of the catalog that holds information about the data
set. The following command

listc entries(inventry.cobol)

produces the following output:

NONVSAM ------- JOEUSER.INVENTRY.COBOL
IN-CAT --- SYS1.BGCCTLG

376 Chapter 24 Using Files in MVS

The ENTRIES operand is more useful when you use an asterisk as a wildcard in the data set
name included in the parentheses. Substituting an asterisk for one (and only one) of the data
set name qualifiers causes the LISTCAT command to list all the data set names that have any
qualifier in the asterisk's position, and whose other qualifiers match the corresponding ones in
the data set name between the parentheses. See section 23.2.4, "Wildcards," for examples.

The LEVEL operand tells the LISTCAT command to list data set names that begin with the
qualifier (or qualifiers) entered as a parameter. For example, entering

listc level(joeuser.inventry)

produces the following output:

JOEUSER.INVENTRY.DATA
JOEUSER.INVENTRY.COBOL
JOEUSER.INVENTRY.COBOL.BACKUP

You can use the LEVEL operand to list the data set names in another user ID. For example,
entering

listc level(mjones)

lists all the data set names in the MJONES catalog—if you have permission to list them.
Either Mary Jones must authorize you to list them, or you must be in her group. MVS's high
priority on data security means that your default access to the list of another user's data sets is
no access. For an extra touch of heavy security, a warning message may be mailed to Mary
telling her that you tried to list the names of her data sets.

24.1.2.2 Listing a Partitioned Data Set's Members

Use the LISTDS command to determine if a data set is sequential or partitioned, and if parti-
tioned, the names of its members.

When you enter this command with one data set name as a parameter, like this,

listds errors.data

you'll see output similar to this:

--RECFM-LRECL-BLKSIZE-DSORG
FB 80 23200 PO

--VOLUMES--
USERMB

24.1.2 Listing Data Set Names 377

The most important part of this right now is the data set organization, designated by
"DSORG." The "PO" means that INVENTRY.COBOL is a partitioned data set; if it was se-
quential, the DSORG value would be PS. Other values may show up here, for things like spe-
cific types of database data sets, but PO and PS are the DSORG values that you will see most
often for data sets in your user ID.

To list the members of a partitioned data set, add the MEMBERS (or just MEM) operand to the
LISTDS commands. Figure 24.2 shows an example.

listds inventry.cobol mem
JOEUSER.INVENTRY.COBOL
--RECFM-LRECL-BLKSIZE-DSORG
FB 80 23200 PO

--VOLUMES--
USERMB

--MEMBERS--
SETUP
ADDNEW
DELETE
SUMRPT

Figure 24.2 Listing a data set's members by adding MEM to the LISTDS command.

Adding the MEM operand when using LISTDS with a sequential data set has no effect—the
command lists information about the data set as if you hadn't included the MEM operand. Fig-
ure 24.3 shows an example.

listds autoexec.bat mem
JOEUSER.AUTOEXEC.BAT
--RECFM-LRECL-BLKSIZE-DSORG
VB 84 6233 PS

--VOLUMES--
USERMC

Figure 24.3 Adding MEM to LISTDS with a sequential data set.

378 Chapter 24 Using Files in MVS

As with the ENTRIES operand of the LISTCAT command, you can substitute the asterisk
wildcard for one of the qualifiers in the specified data set name. This lets you list information
about more than one data set, but only if their names have several qualifiers in common.

24.1.3 Looking at Data Sets

Use the LIST command to display the contents of a data set. Like the COPY command,
LIST is technically a utility and not part of TSO. It's so basic and useful, however, that you
can almost take for granted that it is installed on the system you're using.

Using LIST is simple: just add the name of the data set you want to display. For example,
typing

list schedule.text

displays the contents of the data set SCHEDULE.TEXT:

SCHEDULE.TEXT
00010 APRIL 7
00020 10 AM meet Mary Ann in conference room about new office space
00030 1 PM Lunch with Jimmy
00040 3:30 meet Frank in his office. Bring budget notes.
READY

The LIST command is a good example of how you can treat a partitioned data set's individu-
al members like sequential data sets. To view the contents of the APRIL6 member of the
MEMOS.TEXT partitioned data set, type the following:

list memos.text(april6)

The system displays the contents of that member:

MEMOS.TEXT(APRIL6)
Joe -
Can you come to my office tomorrow at 3:30 to discuss
the proposed budget? If not, let me know as soon as
possible so that I can find another time that is
convenient for Jack and Mary.
- Frank

If you try to list a partitioned data set without specifying a member name, MVS looks for a
member named TEMPNAME in that PDS and lists it if found. Otherwise, it tells you that it
couldn't find it:

24.1.3 Looking at Data Sets 379

MEMBER TEMPNAME NOT IN DATA SET MEMOS.TEXT+

24.1.4 Copying Data Sets

In its simplest form, copying data sets is similar to copying files on most other operating sys-
tems. Entering

copy schedule.text schedule.text.backup

instructs the system to make a copy of SCHEDULE.TEXT called SCHED-
ULE.TEXT.BACKUP. If a data set named SCHEDULE.TEXT.BACKUP already exists, TSO
copies SCHEDULE.TEXT right on top of it without displaying any warning message, assum-
ing that the two data sets have a compatible data set organization (DSORG).

Some data sets include line numbers and some don't. The default action of COPY is to include
the line numbers, and if the source data set has none, you might see the following error mes-
sage:

COPY TERMINATED, RENUMBERING ERROR+

If this happens, enter the copy operation again, but include the operand that instructs TSO not
to bother with any line numbers in the source data set:

copy schedule.text schedule.text.backup nonum

24.1.4.1 Copying and Partitioned Data Sets

Copying an entire PDS uses the same syntax as copying a sequential data set. To copy a spe-
cific member of a PDS, you can substitute the name of a PDS member for either or both of
the data sets in the COPY syntax shown above. For example, the following makes a copy of
the APRIL6 member of the MEMOS.TEXT PDS. The copy is a sequential data set called
FRANK.TEXT:

copy memos.text(april6) frank.text

Similarly, you could add a copy of an existing sequential data set to a partitioned data set as a
new member of that PDS with a command like this:

copy joan.text memos.text(april7)

When copying a member from one PDS to another, it's not enough to enter the name of the
destination PDS. If you enter

380 Chapter 24 Using Files in MVS

copy memos.text(april6) memos1994.text

you'll get the following error message:

DATA SET ORGANIZATIONS ARE NOT COMPATIBLE+

Your source data set here is the functional equivalent of a sequential data set, and your destin-
ation is a partitioned data set—that's why they're incompatible. To indicate that you want
APRIL6 added as a member of the PDS MEMOS1994.TEXT, enter the following:

copy memos.text(april6) memos1994.text(april6)

Of course, you can call this new member of MEMOS1994.TEXT anything you want; it
doesn't have to have the same name as the original.

There a couple of points to keep in mind about copying data sets:

• If you enter the above command and the PDS MEMOS1994.TEXT doesn't exist, TSO
creates it for you before adding APRIL6 as its only member.

• If you specify a partitioned data set as the source of your copy and a nonexistent PDS as
the destination, TSO makes a copy of the whole PDS.

• You will see in section 24.1.7, "Allocating Data Sets," that when data sets are created, one
characteristic specified about them is whether its records (lines) are of fixed or variable
length. You can copy a fixed-length member to a PDS with variable-length records, but
you can't copy from a PDS with variable-length records to a destination with fixed-length
records.

The "Allocating Data Sets" section also describes how creating a new data set means specify-
ing its maximum size in directory blocks. If a PDS gets too big and runs out of directory
blocks, copying it somewhere else is the first step toward fixing the problem. After you make
a copy, you can reallocate it and then copy the temporary copy back onto the original.

24.1.5 Renaming Data Sets

Using the RENAME command is simple. Just indicate the data set (or PDS member) to rename
and its new name. The following renames the data set FRANK.TEXT, giving it the new name
FRANK.AUG23.TEXT:

rename frank.text frank.aug23.text

Renaming a member of a partitioned data set uses similar syntax:

24.1.5 Renaming Data Sets 381

rename memos.text(april6) memos.text(fbapril6)

A renamed member will still be in the same data set, so MVS doesn't allow you to change any
of the qualifiers that make up the member's PDS name.

Renaming a whole PDS and leaving its members' names alone has the same syntax as renam-
ing a sequential data set:

rename memos.text oldmemos.text

You can rename multiple data sets if their names are all the same except for one qualifier in
the same position in each data set. For example, to rename MEMOS.JAN.TEXT,
MEMOS.FEB.TEXT, and MEMOS.MAR.TEXT to the names MEMOS.JAN.TEXTBAK,
MEMOS.FEB.TEXTBAK, and MEMOS.MAR.TEXTBAK enter the following:

rename memos.*.text memos.*.textbak

24.1.6 Deleting Data Sets

To delete a data set, just type the DELETE command followed by the name of the data set
you want to delete:

delete memos.jan.text

After deleting the data set, TSO confirms the deletion:

ENTRY (A) JOEUSER.MEMOS.JAN.TEXT DELETED

To delete a single member of a data set, just specify the member name with its data set:

delete memos.text(apr6)

As with the RENAME command, you can enter an asterisk instead of one of the qualifiers to
delete multiple data sets at once. The following command deletes all data sets with a first
qualifier of MEMOS (after the high-level qualifier of the user's ID), a low-level qualifier of
TEXT, and any second qualifier:

delete memos.*.text

To delete multiple data sets with completely different names, you don't have to enter the DE-
LETE command multiple times; just list the names of each data set between parentheses:

delete (apl.asm test.data memos.text)

382 Chapter 24 Using Files in MVS

TSO responds with messages about the deletion of each data set:

ENTRY (A) JOEUSER.APL.ASM DELETED
ENTRY (A) JOEUSER.TEST.DATA DELETED
ENTRY (A) JOEUSER.MEMOS.TEXT DELETED

24.1.7 Allocating Data Sets

There are two kinds of allocation:

• Allocation of an existing data set usually sets it up for use by a particular program.

• Allocation of a non-existent data set is how you create new data sets.

If you have used other operating systems but are new to MVS, data set allocation is the most
difficult concept to get used to, because it has no direct equivalent in other operating systems.
(VM/CMS, being another IBM mainframe operating system, has a related command called
FILEDEF, but it's not as crucial to survival as ALLOCATE is to MVS users.) With most oper-
ating systems, telling the text editor to edit a non-existent file creates a file by that name; in
MVS, however, you must explicitly create a new data set by allocating it before you can do
anything with it.

Allocation requests access to a data set, whether it already exists or not. There are various
levels of access, and if you try to allocate a data set so that you can modify its contents while
someone else currently has it allocated for modification, MVS won't let you. This is part of
the point: more than one user trying to modify the same data set could result in the loss of one
user's work. This doesn't mean that multiple users can't edit the same data set; they just need
to use software—for example, a database management system—that coordinates their actions
so that no user's work destroys another's.

24.1.7.1 Allocating Existing Data Sets

There are several possible reasons to allocate an existing data set:

• Specifying the data sets that will be needed by an application program you're about to use.

• Telling the system where to find things like your command procedures (CLISTs), error
list partitioned data sets, and startup procedures.

• Redirecting output from a program to a new destination, like the printer, a data set, or
your terminal.

24.1.7 Allocating Data Sets 383

The first of these is the most important for now. An application program often refers to a data
set that it uses by a data definition name, or "ddname." The documentation for that program
tells you the ddnames it expects to find already assigned to the data sets it needs. Before start-
ing the program, you assign these names with the following syntax:

allocate dataset(dataset.name) ddname(ddname) [old/shr/mod]

The order of these three operands does not matter. Also, you can abbreviate the keyword
DATASET to DSNAME or even just DA, and DDNAME can be written as FILE, FI, or just F.
This is why you must be careful about using the terms "data set" and "file" interchangeably:
MVS users sometimes use the term "file" to mean "ddname," which is quite distinct from a
data set name. Like a data set qualifier, a ddname can have no more than eight characters.

The final operand in the syntax above shows the status, or the kind of access to the data set
that you want:

OLD requests exclusive access to the data set. If you or the program
that needs to use the data set will modify its contents, you need
this type of access. This is the default.

SHR requests sharable access to the data set. If you or the program
will only read the data (for example, for running a report), you
don't need to prevent others from using it by requesting OLD or
MOD access.

MOD requests access allowing the appending of data onto the end of
the data set. Unlike OLD, which requests access to edit data cur-
rently existing in the data set, we use MOD to add new data—for
example, to perform data entry with a database.

Again, when you need this command, the chances are slim that you will need to figure out all
the syntax elements yourself. Part of the job of the documentation for MVS application pro-
grams that require specific data set allocations is to explain the details of these allocations.
Just remember to recognize the various alternatives to the keywords DATASET (DSNAME,
DA) and DDNAME (FILE, FI, or F) when it tells you the necessary allocations.

For example, the documentation for the UpRiteBase database system might tell you that it ex-
pects data files to have the ddname "urdata" associated with them, and that you would alloc-
ate the data for your inventory data file with the following command (note that ALLOCATE
only needs its first five letters included):

alloc da(inventry.data) fi(urdata) old

384 Chapter 24 Using Files in MVS

This has exactly the same effect as entering this:

allocate dataset(inventry.data) ddname(urdata) old

Since you may need to allocate more than one data set, and a typo in the ddname could cause
trouble, you'll want the ability to list out the allocations made in your session. See section
24.1.7.4, "Finding Out a Data Set's Allocation Status," for more on this.

24.1.7.2 Allocating New Data Sets

When creating a new data set, the system needs to know much more about it than just its
name—whether it's sequential or partitioned, how much space to set aside for it, the length of
its lines, and several other details that few users completely understand. This brings us back
to the high degree of customization possible with MVS: allocating data sets with the best pos-
sible settings for your site boosts the efficiency of the system. (And there's the converse: do-
ing it badly, on a large scale, can slow down the machine.)

Fortunately, there's a way to tell TSO to allocate a new data set with a particular name and to
copy all of its other attributes from an existing data set: the LIKE operand. For example, to
create a new data set called PROJECT2.COBOL and model its attributes after
PROJECT1.COBOL, enter this:

allocate dataset(project2.cobol) like(project1.cobol)

By using a fully-qualified data set name for the model, you can easily copy the details from
someone else's data set:

allocate dataset(project2.cobol) like('mjones.project1.cobol')

If you want to model your new data set after an existing one in all details except certain ones,
you can specify those extra details after the LIKE operand. For example, if you know that
Mary Jones' PROJECT1.COBOL data set is a partitioned data set with room for 18 members,
but you want to allow more room in yours, include the DIR operand, which specifies how
many directory blocks to set aside for a new PDS:

allocate dataset(project2.cobol) like('mjones.project1.cobol') dir(6)

Since each block holds about six members (although this varies from installation to installa-
tion—ask about the figure at your site), this leaves room for 36 members.

If you don't model a new data set after an existing one, a new data set requires you to at least
specify the following:

24.1.7 Allocating Data Sets 385

• Its name.

• How much space to set aside for it.

• Whether it's a sequential or partitioned data set.

We've already seen that the DATASET operand specifies the name. We also saw earlier that
the LISTDS command produces output in which one of the headings, DSORG, shows a data
set's organization. It will usually be either sequential (PS) or partitioned (PO). Specifying this
with the ALLOCATE command uses the same abbreviations: you add the DSORG() operand
with either PS or PO between the parentheses. (Other values are possible, but most data sets
will be one of these two.) If you do specify PO as the data set organization, don't forget to
also include the DIR operand in order to indicate the maximum number of members that may
be stored in the partitioned data set.

When you specify the space to set aside for your new data set, you must first decide on the
units you will use to indicate this space. You have a choice of TRACKS, CYLINDERS, or
BLOCKS. Most typical data sets are just a handful of blocks or tracks. Only very large data
sets are allocated in terms of cylinders.

To understand tracks and cylinders, picture a mainframe's storage device as a stack of 15 or
so hard disks. A typical individual disk has 2,600 tracks arranged as concentric rings. Each
track holds about 47 kilobytes of data. A cylinder is a collection of tracks represented by the
same track on each disk in the pack; a typical size for a cylinder is 15 times 47K, or 705K.

A block is a unit of storage whose size you specify with the BLKSIZE or BLOCK operand.
The best possible size depends on the particular model of storage device that your system
uses; typical values are 2160, 3600, and 6160. Fortunately, we've already seen the command
to check an existing data set's block size: the LISTDS command. Along with the data set or-
ganization (DSORG), which tells you whether a data set is partitioned or not, LISTDS dis-
plays BLKSIZE as one of the headings describing a data set. Investigating the block size of
existing data sets gives you an idea of how to set this parameter if you choose to allocate your
new data set in units of blocks instead of tracks or cylinders.

Once you decide on the units of storage, you must choose how many of these units to set
aside with the SPACE operand. SPACE takes two arguments: the primary allocation, which
indicates how much space you expect the data set to need, and the secondary allocation, a
backup amount that the system provides if the data set grows beyond the primary amount.
The figure for the secondary amount is usually half of the primary amount.

The following command allocates a sequential data set called MYTEST.TEXT and sets aside
10 tracks of space for it, with 5 tracks as the amount of secondary space to add on if 10 isn't

386 Chapter 24 Using Files in MVS

enough:

allocate dataset(mytest.text) dsorg(ps) tracks space(10 5)

The next command creates a partitioned data set named INVENTRY.COBOL with room for
10 members. Its total space is 10 8000-byte blocks, with 5 blocks set aside as the secondary
storage if necessary. Note that the command won't fit on one line; as section 23.1.3 ("Entering
Commands") explains, we add a plus sign at the end of one line to show that the next typed
line is a continuation of the first one.

allocate dataset(inventry.cobol) block(8000) space(10 5) +
dsorg(po) dir(10)

Another common operand shows the disposition of the data set, or what happens to it when it
is unallocated (see section 24.1.7.3, "Unallocating Data Sets," for information on how this
happens.) There are three possible operands for the data set's disposition:

CATALOG Add the new data set to the master catalog, because you plan to
keep this data set around. This is the default, so you don't need to
add it to your ALLOCATE command if you choose it for your
data set.

DELETE Delete the data set as soon as it is unallocated. Use this for tem-
porary data sets.

KEEP Don't delete it, but don't add it to the catalog. Leave this option
to the experts. Part of the point of the catalog is to make it unne-
cessary for you to know the physical details of the data set's stor-
age; accessing an uncataloged data set requires you to know
more than you want to about your data set.

The following command allocates a sequential data set that MVS deletes as soon as the data
set is unallocated:

allocate dataset(temp.tmp) ddname(tempfile) dsorg(ps) tracks space(10 5) delete

The last two important ALLOCATE operands to be aware of are RECFM, for Record Format,
and LRECL, or Logical Record Length.

A record format of V means that a data set's records have variable length. ("Records" here
means "lines." The terms were once fairly synonymous, but as the science of dealing with
databases advanced, the term "record" took on a much more specific meaning.) In other

24.1.7 Allocating Data Sets 387

words, the lines aren't all the same length. A format of F means that they have fixed length. If
any lines seem shorter than others, the system inserts spaces to make their lengths equal.

When you indicate the record format, you also indicate whether to use blocked records by in-
cluding (or leaving out) a comma and the letter "B." For example, RECFM(F,B) tells MVS
to make them fixed length, blocked records; RECFM(V) means variable-length, unblocked
records. Generally, you'll want blocked records unless you're told specifically otherwise. For
example, if a program's documentation tells you about data sets to create for that program's
use, it tells you how it expects RECFM to be set for these data sets.

If the records have a fixed length, you must set this length—in other words, you must indicate
how long the records are. For variable length records, you must indicate the longest possible
length. Use the LRECL, or Logical Record Length operand, for this. A setting of LRECL(80)
is pretty common.

The following command allocates a data set called HEYJOE.TEXT as a fixed-length,
blocked data set with a record length of 80. Note how the BLOCK operand is an even multiple
of 80 (1760/80 = 22). This way, when the system reads or writes a block of data, it never in-
cludes a partial record, so input and output will be more efficient.

allocate dataset(heyjoe.text) space(10 5) tracks dsorg(ps) +
recfm(f,b) lrecl(80) block(1760)

The ALLOCATE command actually has over fifty possible operands. If you're curious to see
them all, enter HELP ALLOCATE to display further information. I guarantee that you'll be
using that PA1 key ("Aborting Screen Output," section 23.1.3.1) before you've seen them all!

24.1.7.3 Unallocating Data Sets

When you log off, the system automatically unallocates any allocated data sets. You may
want to unallocate one or more data sets before logging off if someone else needs to use one
that you've been using and you're not ready to log off yet. You also may want to unallocate a
data set if you've allocated it with some of the wrong details, like its disposition, and you
want to redo it. MVS won't let you allocate a data set that's already been allocated, so you
must unallocate it first.

The FREE command makes this possible. The only operand it really needs is the name of the
data set to unallocate. For example, to free up the TEMP.TMP data set mentioned above,
enter

free dataset(temp.tmp)

Because the allocation of TEMP.TMP in section 24.1.7.2 included a disposition of DELETE,

388 Chapter 24 Using Files in MVS

unallocating it deletes it.

You also have the option of unallocating it by specifying the ddname used to allocate it. Since
each allocated data set must have a unique ddname, MVS knows which data set you want to
unallocate. Given the allocation of TEMP.TMP shown earlier, the following command has the
same effect as the previous one:

free dataset(tempfile)

Both the DATASET and DDNAME operands of the FREE command can take multiple argu-
ments. For example, if you had allocated the data sets MAYMEMOS.TEXT, JUN-
MEMOS.TEXT, and JULMEMOS.TXT with the ddnames MAY, JUNE, and JULY you could
free all three with either the command

free dataset(maymemos.txt junmemos.txt julmemos.txt)

or with this:

free ddname(may june july)

You can unallocate all the data sets you've allocated with the following command:

free all

Note that this frees up all the data sets that you personally allocated, not all the allocated ones
you may use. The system automatically allocates some, as you'll see in the next section, and it
takes care of unallocating them.

24.1.7.4 Finding Out a Data Set's Allocation Status

Two commands show you a data set's allocation status. You already know one; the LISTDS
command, described in section 24.1.2.2 ("Listing a Partitioned Data Set's Members"), can
take an additional operand that shows a data set's ddname and disposition along with its block
size and data set organization: STATUS. The command

listds dept.data status

produces the following output:

--RECFM-LRECL-BLKSIZE-DSORG--DDNAME---DISP
FB 80 3120 PO SYS00002 KEEP

--VOLUMES--
USERME

24.1.7 Allocating Data Sets 389

It's a partitioned data set, the ddname looks like something the system assigned, and it's a
keeper.

Instead of listing a particular data set's allocation status, you might want to list the names of
all of the allocated data sets. Use the LISTALC command for this. Figure 24.4 shows some
sample output from typing LISTA (you only need the first five letters) with no operands.

DSN220.DSNLOAD
SYS1.DFQLLIB
EDC.V2R1M0.SEDCCOMP
EDC.V2R1M0.SEDCLINK
SYS1.V2R3M0.SIBMLINK
IPO1.CMDPROC
EDC.V2R1M0.SEDCLIST
ISR.V3R2M0.ISRCLIB
UBU0.CLIST
UBU1.CLIST
DSN220.DSNCLIST
SYS1.SBLSCLI0
ISR.V3R2M0.ISRCLIB
ISP.V3R2M0.ISPEXEC
SYS1.SBLSCLI0
DSN220.DSNSPFP
EDC.V2R1M0.SEDCPNLS
ISP.V3R2M0.ISPPENU
ISR.V3R2M0.ISRPENU
ISF.V1R3M1.ISFPLIB
SYS1.SBLSPNL0
SYS1.DFQPLIB
ISP.V3R2M0.ISPMENU

Figure 24.4 Listing allocated data sets with LISTALC (or LISTA).

The asterisks at the bottom show that this is only the first screen of names. You don't have to
allocate over 23 data sets to see output like Figure 24.4; the system automatically allocates
quite a few data sets on its own, and their names are mixed in.

As with the LISTDS command, you can add the STATUS operand to the LISTALC com-
mand to find out the ddname and status of the allocated data sets. Figure 24.5 shows a
sample.

390 Chapter 24 Using Files in MVS

--DDNAME---DISP--
DSN220.DSNLOAD
STEPLIB KEEP

SYS1.DFQLLIB
ISPLLIB KEEP

EDC.V2R1M0.SEDCCOMP
KEEP

EDC.V2R1M0.SEDCLINK
KEEP

SYS1.V2R3M0.SIBMLINK
KEEP

IPO1.CMDPROC
SYSPROC KEEP

EDC.V2R1M0.SEDCLIST
KEEP

ISR.V3R2M0.ISRCLIB
KEEP

UBU0.CLIST
KEEP

UBU1.CLIST
KEEP

DSN220.DSNCLIST
KEEP

SYS1.SBLSCLI0

Figure 24.5 Listing the ddname and status of allocated data sets by adding STATUS to the LISTALC
command.

The first one listed, DSN220.DSNLOAD, has a ddname of STEPLIB and a status of KEEP.
Most others on the list don't have ddnames. Ours is not to question why; it's the system's job
to worry about these things.

24.1.8 Adding a Data Set to a Catalog

There's no specific command for adding a data set to a catalog, but as I mentioned in section
24.1.7.3, "Unallocating Data Sets," the ability to unallocate lets you re-allocate a data set with
different operands. This makes it possible to take an existing data set that doesn't belong to a
catalog and add it to one.

The following series of commands and responses shows an attempt to take a data set called
MEMOS.TXT and add it to the user's catalog. At first, the system won't allow this because it's
already allocated and not part of a catalog. After the data set is freed up, the same allocation

24.1.8 Adding a Data Set to a Catalog 391

command works the second time and adds the data set to the catalog.

allocate dataset(memos.text) tracks space(4 2) catalog
DATA SET JOEUSER.MEMOS.TEXT NOT ALLOCATED, REQUESTED AS NEW BUT CURRENTLY ALLOCATED
READY
free dataset(memos.text)
READY
allocate dataset(memos.text) tracks space(4 2) catalog
READY

The lack of an error message after the second attempt shows that it worked.

392 Chapter 24 Using Files in MVS

Chapter 25 The MVS ISPF Text Editor
25.1 The ISPF Text Editor
Editing data sets is one of the few places in MVS where ISPF gives you far more power and
flexibility than TSO. Given the choice between the ISPF text editor and the TSO EDIT text
editor, virtually everyone chooses the former. If the lack of a proper system connection limits
you to using TSO without access to ISPF, see section 25.8, "TSO's EDIT Text Editor," for the
basics of editing data sets with the more primitive editor. (In fairness, I should mention one
advantage of EDIT over the ISPF editor: you can get in and out of it much faster. The lack of
menus and panels to fill out make it more efficient for quickly creating small data sets or per-
forming simple edits to short data sets.)

25.2 Entering the ISPF Editor
To get into the ISPF editor, you must first enter ISPF by typing

ispf

at the TSO command prompt. This displays the ISPF main (or "primary") menu screen shown
in Figure 25.1. (An MVS system administrator can customize the ISPF menu screens, so your
main menu may not look exactly the same.)

----------------------- ISPF/PDF PRIMARY OPTION MENU ------------------------
OPTION ===> _

USERID -JOEUSER
0 ISPF PARMS - Specify terminal and user parameters TIME - 09:24
1 BROWSE - Display source data or output listings TERMINAL - 3278
2 EDIT - Create or change source data PF KEYS - 24
3 UTILITIES - Perform utility functions
4 FOREGROUND - Invoke language processors in foreground
5 BATCH - Submit job for language processing
6 COMMAND - Enter TSO Command, CLIST, or REXX exec
7 DIALOG TEST - Perform dialog testing
8 LM UTILITIES- Perform library administrator utility functions
9 IBM PRODUCTS- Additional IBM program development products

10 SCLM - Software Configuration and Library Manager
D DB2 - DB2 Facilities
H HSM - DFHSM Facilities
C CHANGES - Display summary of changes for this release
S SDSF - System Display and Search Facility

SO DFSORT - DFSORT Facility

393

T TUTORIAL - Display information about ISPF/PDF
X EXIT - Terminate ISPF using log and list defaults

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 25.1 The ISPF primary menu.

Your cursor appears next to the OPTION ===> prompt, waiting for you to enter the number
of one of the menu choices. On the menu shown in Figure 25.1, entering 2 brings you to the
entry panel shown in Figure 25.2, where you enter the name of the data set that you will edit.
(Here's a nice shortcut: if you enter ISPF 2 at the TSO prompt, you jump right to this
screen.)

--------------------------- EDIT - ENTRY PANEL ------------------------------
COMMAND ===>

ISPF LIBRARY:
PROJECT ===>
GROUP ===> ===> ===> ===>
TYPE ===>
MEMBER ===> (Blank or pattern for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged)

DATA SET PASSWORD ===> (If password protected)

PROFILE NAME ===> (Blank defaults to data set type)

INITIAL MACRO ===> LMF LOCK ===> YES (YES, NO or NEVER)

FORMAT NAME ===> MIXED MODE ===> NO (YES or NO)

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 25.2 Entry panel for naming the data set to edit.

394 Chapter 25 The MVS ISPF Text Editor

Each arrow (===>) points at a field of the entry panel to fill out. To move your cursor for-
ward from field to field, press your Tab key. To move your cursor in the other direction, press
Backtab. (On most PC keyboards, this means pressing the Shift key and the Tab key together;
on a mainframe keyboard, Backtab has its own key.)

The only really crucial fields on this entry panel are the ones that you use to enter the name of
the data set that you want to edit. (The other fields on the Edit entry panel are used for more
advanced features like password protection and stored collections of settings known as edit
profiles. If you don't know what to do with any of these other fields, leave them alone. Blank
is a good default in ISPF.) As explained in section 23.2.3, "Naming Data Sets," fully qualified
data set names often have a total of three qualifiers, and ISPF refers to the three as the data
set's project, group, and type. Figure 25.3 shows how Joe User fills out the ISPF LIBRARY
section of the entry panel to edit the data set INVENTRY.COBOL.

ISPF LIBRARY:
PROJECT ===> JOEUSER
GROUP ===> INVENTRY ===> ===> ===>
TYPE ===> COBOL
MEMBER ===> (Blank or pattern for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged)

Figure 25.3 Sample entries in the ISPF LIBRARY section of the EDIT entry panel to edit INVENTRY.COBOL.

To edit a member of a partitioned data set, enter the three parts of the PDS name in the
PROJECT, GROUP, and TYPE fields, and then the member name in the MEMBER field.

If your full data set name does not have three qualifiers, enter its name at the DATA SET
NAME field under the line "OTHER PARTITIONED OR SEQUENTIAL DATA SET." You
don't need the high-level qualifier; ISPF assumes that it's your user ID. If you don't want it to
automatically add this, do the same thing that you do when entering the data set name as part
of a command on the TSO command line: enclose it in apostrophes. (You really only need the
first one.)

Figure 25.4 shows how Joe fills out the DATA SET NAME field to enter the same data set
name in the panel.

25.2 Entering the ISPF Editor 395

ISPF LIBRARY:
PROJECT ===>
GROUP ===> ===> ===> ===>
TYPE ===>
MEMBER ===> (Blank or pattern for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===> INVENTRY.COBOL
VOLUME SERIAL ===> (If not cataloged)

Figure 25.4 Sample entries in the DATA SET NAME section of the EDIT entry panel to edit
INVENTRY.COBOL.

You don't always have to fill out the data set name; once you've entered a data set's qualifiers
in the PROJECT, GROUP, and TYPE fields, the ISPF editor redisplays the qualifier names
you typed there the next time you use this entry panel. To edit that data set again, just call up
that panel and press the Enter key. To edit a data set with a similar name, you only need to
change the appropriate fields. (However, if you entered the name at the DATA SET NAME
field, ISPF will not remember what you typed there.)

One way or another, some existing data set's name must be entered. With many text editors
included with other operating systems, telling the editor to edit a data set that doesn't exist
causes it to create a file with that name. The ISPF editor, however, expects the data set to
already exist, even if it's empty. If you want to create a new data set, you must allocate it first
with the ALLOCATE command. (For more on this, see section 24.1.7.2, "Allocating New
Data Sets.")

Once you tell ISPF the data set that you want to edit press Enter. ISPF displays the editing
screen, as shown in Figure 25.5.

EDIT ---- JOEUSER.INVENTRY.COBOL ----------------------------- COLUMNS 001 072
COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
==MSG> -WARNING- THE UNDO COMMAND IS NOT AVAILABLE UNTIL YOU CHANGE
==MSG> YOUR EDIT PROFILE USING THE COMMAND "RECOVERY ON".
''''''
''''''
''''''
''''''

396 Chapter 25 The MVS ISPF Text Editor

''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
****** **************************** BOTTOM OF DATA ****************************
F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 25.5 ISPF editor screen for an empty new data set.

Besides showing that you're using the ISPF EDIT program, the top line of the screen shows
the name of the data set being edited and which columns of this data set are being displayed.
The second line has the prompt where you enter editing commands and, to the right of where
it says SCROLL ===>, a message telling you how far you will scroll when you press the
PF7 or PF8 keys to move up or down in your data set.

The left side of the screen shows the numbers automatically added to the lines of your data
set. Where no lines of data exist, the editor shows six apostrophes ('''''') instead.

The main blank space on the screen is where you enter your text. When editing an existing
data set, this is where it appears. As Figure 25.5 shows, other kinds of information can also
appear there. The column on the left identifies the type of this information. For example,
==MSG> means that the line shows a message from the editor to you. The message shown in
the example tells the user that the UNDO command is unavailable until a certain change is
made to the edit profile. (For more on edit profiles, see the following section.)

25.2.1 Customizing Your Editor's Environment

There are several commands that you can type at the editor's command line to customize the
editor's behavior. (If your cursor is not already at the command line, press the Home key to
move it up there.)

Because some programming languages expect everything to be in upper case, the ISPF editor
sometimes translates everything you type to upper case. This is annoying when you type a

25.2.1 Customizing Your Editor's En-
vironment 397

paragraph, press Enter, and the whole paragraph gets converted. If you want the editor to re-
spect a mix of upper and lower case letters, enter

caps off

at the command line. When writing a program in a language like FORTRAN, which requires
upper case letters, entering the command

caps on

will translate every new line of text to all upper case letters each time you press Enter.

Another setting that can cause confusing behavior is NULLS. You set it on by typing

nulls on

at the editor's command line and set it off by typing OFF instead of ON in the same command.

When set to OFF, the editor automatically puts blanks everywhere on a line where you didn't
type anything else (between each word and throughout the remainder of the line after the last
word) as if you had moved to each of these places and pressed the space bar to insert the
blank character. This fills up each line, and causes problems when you want to insert new
characters on a line. As with any text editor, inserted characters move existing characters on
the right of the cursor further to the right; if the blank character fills all the space that looks
empty, then the editor has nowhere to move the existing characters when you insert new char-
acters. Trying to do so locks the keyboard, and you must press the Reset key to continue. (For
more detailed information on inserting new characters, see section 25.4, "Inserting, Deleting,
and Typing over Words and Characters.")

If setting NULLS to ON avoids this problem, there must be a disadvantage to setting it ON.
Otherwise, the editor wouldn't offer you two different settings, right? Many books describing
the ISPF editor describe the following "problem": sometimes you want a space inserted where
you didn't actually press the space bar, and with NULLS set to ON, pressing Enter resets the
typed line, squeezing out all the places where nothing was typed. If you type "how are you"
on a line and use your cursor-right key instead of the space bar for the spaces between the
words, pressing Enter turns the phrase into "howareyou."

When editing a simple text data set, it makes more sense to set NULLS to ON. Setting it to
OFF only provides an advantage when the ISPF editor is used to fill out a data entry form, in
which the screen displays named fields of fixed lengths. In this case, use the Erase EOF
(erase to end of field) key to clear any characters in the field from the cursor's position to the
end of the field.

398 Chapter 25 The MVS ISPF Text Editor

To sum up: if you have problems inserting, set NULLS to ON so the editor will not automat-
ically fill in the remainder of a line after the last word with blanks.

Once you've set various parameters to customize your editing environment, many editors
provide a way to save these settings for future use in a collection called an edit profile. The
ISPF editor does this for you automatically, and it goes a step further than many other editors:
it saves different collections of settings based on the TYPE of the data set. This way, if you
set CAPS to ON when writing a program in FORTRAN (for example, a data set called
MAINMENU.FORT), then CAPS will always be ON for any data set you edit with a type of
FORT, whether it's called RPTMENU.FORT, SUMRPT.FORT, or MAINMENU.FORT. If you
set CAPS to OFF when editing a data set called MAY6MEMO.TEXT, it remains set to OFF
every time you edit a data set with that type. If you alternately edit TEXT and FORT data
sets, you won't have to reset CAPS every time, because the editor remembers how you set
CAPS and all the other settings for each data set type.

25.3 Line Commands
In addition to the kind of commands that you enter at the command line at the top of your
screen (described in section 25.2.1, "Customizing Your Editor's Environment,") the ISPF ed-
itor has another category of commands called "line commands." (These will be familiar to
users of the AS/400's SEU editor. Also, CMS users who find that the screen resembles the
XEDIT text editor's screen will find that line commands are the ISPF editor's counterpart to
XEDIT prefix commands.) You can add, delete, copy, and move lines by entering one- or
two-character commands in the line command area and pressing the Enter key. You can enter
line command commands in the column to the left of the TOP OF DATA and BOTTOM OF
DATA lines as well; if you couldn't, it would be pretty tough to add your first line.

You can enter a line command command anywhere on the line command area. For example,
if you enter d2, the command to delete two lines, on the line command area like this

d2000

or like this

000d2

it still works the same. If you enter a command with a number in it, make sure that your curs-
or is right after the number when you press Enter, because the system treats every character
up to the character preceding the cursor as part of the number you meant to type. For ex-
ample, when you enter your 2d on the line command area for line number 11400 like this

d2400

25.3 Line Commands 399

and press Enter with your cursor at the 4, the editor deletes two lines. If your cursor was on
the second zero when you pressed Enter, the system would think that you wanted to delete
240 lines!

25.3.1 Adding New Lines

Use the line command i (for "insert") to add new lines on which to type. Figure 25.6 shows
an example.

COMMAND ===> SCROLL ===> PAGE
i** ************************** TOP OF DATA ******************************
****** **************************** BOTTOM OF DATA ****************************

Figure 25.6 Adding the i line command to insert a new blank line.

When you press Enter, the editor adds a new blank line after the line where you entered the
command and positions your cursor at the beginning of the new line, waiting for you to type
in text, as shown in Figure 25.7.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
'''''' _
****** **************************** BOTTOM OF DATA ****************************

Figure 25.7 The effect of the i command entered in Figure 25.6.

The new line isn't really a part of your data set until you add something there. After you type
some text and press Enter, the editor assigns a number to the line, creates a new blank line un-
der it, and positions your cursor at the beginning of the new one. Figure 25.8 shows an ex-
ample.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************

400 Chapter 25 The MVS ISPF Text Editor

000100 The shadowy daughter of Urthona stood before red Orc
'''''' _
****** **************************** BOTTOM OF DATA ****************************

Figure 25.8 New line added by ISPF after you enter text and press Enter.

If the editor converts your entered text to all upper case, but you didn't want it to, you'll need
the CAPS OFF command to change this. See section 25.2.1, "Customizing Your Editor's En-
vironment," for more information.

Adding a number after the i command tells the editor to add that many lines. In Figure 25.9,
3 lines are about to be added; Figure 25.10 shows the effect of this command.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
0001i3 The shadowy daughter of Urthona stood before red Orc
****** **************************** BOTTOM OF DATA ****************************

Figure 25.9 Adding 3 lines with the i command.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 The shadowy daughter of Urthona stood before red Orc
'''''' _
''''''
''''''
****** **************************** BOTTOM OF DATA ****************************

Figure 25.10 The effect of the i line command entered shown in Figure 25.9.

If any of these new lines have no text when you press Enter, the editor removes them and
only assigns numbers to the new lines with text. Figure 25.11 shows three new blank lines
with text entered at only one of them, and Figure 25.12 shows how this looks after pressing

25.3.1 Adding New Lines 401

Enter.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 The shadowy daughter of Urthona stood before red Orc
''''''
'''''' When fourteen suns had faintly journey'd o'er his dark abode;
''''''
****** **************************** BOTTOM OF DATA ****************************

Figure 25.11 Three new lines, but with text entered at only one of them.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 The shadowy daughter of Urthona stood before red Orc
000200 When fourteen suns had faintly journey'd o'er his dark abode;
****** **************************** BOTTOM OF DATA ****************************

Figure 25.12 The effect of pressing Enter when viewing Figure 25.11.

If you do want a blank line to remain in your data set, use your space bar to type at least one
space there.

25.3.2 Moving Your Cursor Around

Your up, down, left, and right cursor keys move the cursor in the direction in which they
point.

The Tab key moves your cursor around more quickly. To move your cursor to the beginning
of the previous line, use the Backtab key (with a PC that is emulating a mainframe terminal,
press the Shift key and the Tab key simultaneously). If your cursor is on a line of text, Tab
and Backtab jump your cursor to the line command area; if your cursor is on the line com-
mand area, pressing either key jumps your cursor to the beginning of the appropriate line.

Some mainframe terminals have a Return key that is separate from the Enter key. It might
have an arrow pointing down and then left, or it might say "New Line" on it. When using the
editor, pressing this key jumps your cursor to the beginning of the next line.

402 Chapter 25 The MVS ISPF Text Editor

Use the commands UP, DOWN, LEFT, and RIGHT at the command line to scroll the text
in one of those four directions. For example,

down 10

scrolls the text down ten lines, and

right 20

scrolls to the right 20 positions.

25.4 Inserting, Deleting, and Typing over Words and
Characters
To delete an individual character, move your cursor there and press your Delete key. On a
3270 terminal, the delete key has a lower case "a" with a proofreader's symbol for deletion: a
line through it that forms a loop. When emulating a 3270 terminal, your emulation software
probably has your PC's Delete key doing this job.

To type over existing text, just move your cursor where you want the new text and type.

To insert text, move your cursor to the place where you want to insert it and press the Insert
key. On a 3270 terminal, this key has the letter "a" with a carat symbol (^) over it. When you
press it, a carat symbol should appear at the bottom of your screen to indicate that you are in
insert mode. (When emulating a 3270, your cursor may change shape.) Text that you type in
moves any text currently on the right of the cursor further to the right.

If the last character gets moved too far to the right, the ISPF editor beeps at you to indicate
that you can't insert more characters on that line. When you first allocate a data set, the LRE-
CL operand (described in section 24.1.7.2, "Allocating New Data Sets") sets its width and the
maximum length of any lines.

To return to overstrike mode while using a 3270 terminal, press the key marked "Reset." The
carat symbol disappears, and newly typed text will then take the place of the characters at the
cursor. (When your keyboard "locks up," or refuses to accept input, the Reset key is also use-
ful for freeing up the keyboard.) On most PCs emulating a 3270, the Insert key does the job
of the 3270 keyboard's Insert key and the Escape key serves as the Reset key. Check you
emulation program's documentation to make sure.

25.4.1 Duplicating Lines

When duplicating lines, think of it as "repeating" lines. This will make it will be easier to re-

25.4 Inserting, Deleting, and Typing
over Words and Characters 403

member the line command: r. Enter r by itself in the line command area and press Enter to
make a single copy of a line. For example, if you enter r on the third line in the text shown in
Figure 25.13, and then press Enter, you get the result shown in Figure 25.14.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 The shadowy daughter of Urthona stood before red Orc
000200 When fourteen suns had faintly journey'd o'er his dark abode;
0r0300 His food she brought in iron baskets, his drink in cups of iron
000400 Crown'd with a helmet & dark hair the nameless female stood.
000500 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.13 Entering the r line command to repeat a line.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 The shadowy daughter of Urthona stood before red Orc
000200 When fourteen suns had faintly journey'd o'er his dark abode;
000300 His food she brought in iron baskets, his drink in cups of iron
000400 His food she brought in iron baskets, his drink in cups of iron
000500 Crown'd with a helmet & dark hair the nameless female stood.
000600 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.14 The effect of pressing Enter after entering the r line command shown in Figure 25.13.

Notice how the editor renumbered the line (or if applicable, lines) after the new one.

Following the r command with a number tells the editor to add that many repetitions of the
line with the command. Pressing Enter after entering the command shown on line 200 in Fig-
ure 25.15 repeats that line four times, as shown in Figure 25.16.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************

404 Chapter 25 The MVS ISPF Text Editor

000100 The shadowy daughter of Urthona stood before red Orc
r40200 When fourteen suns had faintly journey'd o'er his dark abode;
000300 His food she brought in iron baskets, his drink in cups of iron
000400 Crown'd with a helmet & dark hair the nameless female stood.
000500 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.15 Entering the r line command with a 4 to repeat the line 4 times.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 The shadowy daughter of Urthona stood before red Orc
000200 When fourteen suns had faintly journey'd o'er his dark abode;
000300 When fourteen suns had faintly journey'd o'er his dark abode;
000400 When fourteen suns had faintly journey'd o'er his dark abode;
000500 When fourteen suns had faintly journey'd o'er his dark abode;
000600 When fourteen suns had faintly journey'd o'er his dark abode;
000700 His food she brought in iron baskets, his drink in cups of iron
000800 Crown'd with a helmet & dark hair the nameless female stood.
000900 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.16 The effect of pressing Enter after entering the r4 line command shown in Figure 25.15.

25.4.2 Deleting Lines

Delete lines with the d line command. Entering d by itself in the line command area and then
pressing Enter deletes the line where you entered the command; adding a number after the d
command deletes a total of that many lines, beginning with the line where you entered the
command.

You can also delete multiple lines by indicating the beginning and end of a block to delete.
Enter dd at the first and last line of the block to delete and the editor will delete all of those
lines, including the ones where you entered the dd commands, when you press Enter. For ex-
ample, after entering dd at lines 200 and 700 in Figure 25.17, pressing Enter deletes those
lines and the lines between them, as shown in Figure 25.18.

25.4.2 Deleting Lines 405

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 The shadowy daughter of Urthona stood before red Orc
dd0200 When fourteen suns had faintly journey'd o'er his dark abode;
000300 When fourteen suns had faintly journey'd o'er his dark abode;
000400 When fourteen suns had faintly journey'd o'er his dark abode;
000500 When fourteen suns had faintly journey'd o'er his dark abode;
000600 When fourteen suns had faintly journey'd o'er his dark abode;
0dd700 His food she brought in iron baskets, his drink in cups of iron
000800 Crown'd with a helmet & dark hair the nameless female stood.
000900 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.17 Entering the dd line commands to delete 6 lines.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 The shadowy daughter of Urthona stood before red Orc
000200 Crown'd with a helmet & dark hair the nameless female stood.
000300 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.18 The effect of pressing Enter after entering the dd line commands shown in Figure 25.17.

You will find this particularly handy when you want to delete a block that doesn't begin and
end on the same screen, because the alternative (counting the number of lines so that you can
put a number after a single d) is a lot of trouble.

25.4.3 Copying Lines

Copying is similar to deletion except that you use the letter c to indicate the line or lines to
copy and you must indicate a destination for the copied text. The ISPF editor gives you three
options for indicating the text to copy:

• Enter a single c in a line's command area if you only need to copy that one line.

• Enter a single c followed by a number to indicate how many lines to copy.

406 Chapter 25 The MVS ISPF Text Editor

• Enter cc at the first and last lines of the block to copy.

In addition to indicating the line or lines to copy, you must indicate where to copy them. Two
line commands make this possible:

b When Enter is pressed, copy the block to the line before this one.

a When Enter is pressed, copy the block to the line after this one.

In Figure 25.19, Joe User is about to copy the second, third, and fourth lines above the first
line, to the beginning of the data set. Figure 25.20 shows the effect of pressing Enter after he
enters these commands.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
0b0100 The shadowy daughter of Urthona stood before red Orc
cc0200 When fourteen suns had faintly journey'd o'er his dark abode;
000300 His food she brought in iron baskets, his drink in cups of iron
0cc400 Crown'd with a helmet & dark hair the nameless female stood.
000500 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.19 Entering the cc line commands to copy 3 lines above the first line.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 When fourteen suns had faintly journey'd o'er his dark abode;
000200 His food she brought in iron baskets, his drink in cups of iron
000300 Crown'd with a helmet & dark hair the nameless female stood.
000400 The shadowy daughter of Urthona stood before red Orc
000500 When fourteen suns had faintly journey'd o'er his dark abode;
000600 His food she brought in iron baskets, his drink in cups of iron
000700 Crown'd with a helmet & dark hair the nameless female stood.
000800 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.20 The effect of pressing Enter after entering the cc line commands shown in Figure 25.19.

25.4.4 Moving Lines 407

25.4.4 Moving Lines

Moving is similar to copying, except that after pressing Enter, the original lines are no longer
there—they're at their new location. As with copying, there are three ways to specify the
block to move, but these use the letter m:

• Enter a single m in a line's command area if you only need to move that one line.

• Enter a single m followed by a number to indicate how many lines to move.

• Enter mm at the first and last lines of the block to move.

To specify the destination of the block to move, use the letters b or a the same way you do to
specify the destination of a block to copy.

25.5 Searching for Text
If you think of searching for text in the ISPF editor as "finding" it, you'll remember the com-
mand: the letter "F" entered at the command line. Figure 25.21 shows this command entered
to find the word "his," and Figure 25.22 shows the result.

EDIT ---- JOEUSER.BLAKE.TEXT --------------------------------- COLUMNS 001 072
COMMAND ===> f his SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000001 The shadowy daughter of Urthona stood before red Orc
000002 When fourteen suns had faintly journey'd o'er his dark abode;
000003 His food she brought in iron baskets, his drink in cups of iron;
000004 Crown'd with a helmet & dark hair the nameless female stood.
000005 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.21 Using the find command to look for the word "his."

The cursor jumps to the first occurrence, and a message in the upper-right of the screen shows
the characters that it found.

If your search target has a blank in it, (for example, if you want to search for the string "his
drink") enclose the string in apostrophes, like this:

f 'his drink'

408 Chapter 25 The MVS ISPF Text Editor

Note at the bottom of the screen in Figure 25.22 how the F5 key means RFIND, or "repeat
find." Press it, and the cursor jumps to the next occurrence of the string "his." Figure 25.23
shows the effect of pressing F5 when viewing the screen shown in Figure 25.22.

EDIT ---- JOEUSER.BLAKE.TEXT ------------------------------- CHARS 'his' FOUND
COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000001 The shadowy daughter of Urthona stood before red Orc
000002 When fourteen suns had faintly journey'd o'er his dark abode;
000003 His food she brought in iron baskets, his drink in cups of iron;
000004 Crown'd with a helmet & dark hair the nameless female stood.
000005 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 25.22 The effect of pressing Enter after entering the find command shown in Figure 25.21.

EDIT ---- JOEUSER.BLAKE.TEXT ------------------------------ CHARS 'His' FOUND
COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000001 The shadowy daughter of Urthona stood before red Orc
000002 When fourteen suns had faintly journey'd o'er his dark abode;
000003 His food she brought in iron baskets, his drink in cups of iron;
000004 Crown'd with a helmet & dark hair the nameless female stood.
000005 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

25.5 Searching for Text 409

Figure 25.23 Finding "his" a second time by pressing the F5 key.

What happens if the search target isn't found? Figure 25.24 shows what happens after press-
ing F5 a third time, when there are no more occurrences. As the message in the upper-right of
Figure 25.24 shows, it searched from the cursor location to the bottom of the data, and didn't
find the string.

EDIT ---- JOEUSER.BLAKE.TEXT ------------------------ *BOTTOM OF DATA REACHED*
COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000001 The shadowy daughter of Urthona stood before red Orc
000002 When fourteen suns had faintly journey'd o'er his dark abode;
000003 His food she brought in iron baskets, his drink in cups of iron;
000004 Crown'd with a helmet & dark hair the nameless female stood.
000005 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.24 The result of an unsuccessful search for a string.

Searching is not case-sensitive; although we were searching for "his," it also found "His." To
do an exact-case search, put the letter "C" just before your search target. (Whether the target
has a blank in it or not, you need to enclose it in apostrophes to separate it from the "C.") The
following shows an example:

f c'his'

The f command always searches from the cursor location, unless you tell it otherwise with
the word "first." Typing the following

f first his

tells the system, "search for the word 'his' starting at the first line of the data set."

Combining these features is no problem; entering

f first c'his'

tells the editor to do an exact-case search for the string "his" starting at the beginning of the
data set.

410 Chapter 25 The MVS ISPF Text Editor

25.6 Saving Your Changes
To save your edits, enter SAVE at the command line and press Enter. You can then continue
editing. To abort any edits made since the last time you saved your work, enter CANCEL at
the command line. The editor returns you to the Edit Entry Panel where you first entered the
name of the data set to edit.

The next section shows a shortcut for saving your work and quitting all at once.

25.7 Quitting the ISPF Editor
As the bottom of the screen shows, F3 is the END key. Pressing this saves your work and re-
turns you to the Edit Entry Panel, where you can enter the name of another data set to edit or
quit back to the main ISPF menu.

If you are done editing your data set and know that you don't want to edit any other data sets,
press F4, the RETURN key (not to be confused with the Return key on the right side of your
keyboard). This saves your data set, quits out of the editor, and skips the Edit Entry Panel, re-
turning you directly to the ISPF main menu. To exit this menu and return to the TSO prompt,
select the EXIT menu choice.

25.7.1 On-line Help in the Editor

While using the editor, you can access on-line help in two ways:

• Typing HELP at the command line.

• Pressing F1.

Either way, the system displays the main help menu for the editor, as shown in Figure 25.25.

TUTORIAL -------------------------- EDIT ----------------------------- TUTORIAL
OPTION ===>

EDIT

Edit allows you to create or change source data.

The following topics are presented in sequence, or may be selected by number:
0 - General introduction 8 - Display modes (CAPS/HEX/NULLS)

25.7 Quitting the ISPF Editor 411

1 - Types of data sets 9 - Tabbing (hardware/software/logical)
2 - Edit entry panel 10 - Automatic recovery
3 - SCLM edit entry panel 11 - Edit profiles
4 - Member selection list 12 - Edit line commands
5 - Display screen format 13 - Edit primary commands
6 - Scrolling data 14 - Labels and line ranges
7 - Sequence numbering 15 - Ending an edit session

The following topics will be presented only if selected by number:
16 - Interaction between LMF and SCLM
17 - Edit models
F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 25.25 Main help menu for ISPF editor.

As with any other help screen, pressing F1 again gives you help about the available help—in
other words, it tells you how to use the help system. Using it is pretty simple: at the OPTION
===> prompt, enter the number of the menu choice about which you want to learn more.
Help about a complicated topic may lead to another menu that lets you choose a subtopic.
When you are done, press F3 or F4 to return to the editing screen.

25.8 TSO's EDIT Text Editor
If you can't use the ISPF editor, you can still use the TSO EDIT text editor. Some PC users
who used DOS before release 5.0 endured a similar situation: when they needed a text editor
but lacked a decent one, they had to use the dreaded EDLIN, which came with the operating
system.

As a matter of fact, anyone with experience with EDLIN will find the TSO EDIT editor very
familiar. It has a command mode and an input mode, and everything you enter and everything
that the system displays scrolls up the screen a line a time.

25.8.1 Starting the Editor

In its simplest form, you can tell the editor that you want to edit a particular data set by enter-
ing EDIT followed by the data set name. However, as you will see in section 25.8.16, "On-
line Help and the TSO Editor," typing HELP EDIT at the TSO prompt reveals quite a few
possible operands that you can add. Many of these tell the editor what kind of data set you are
editing—for example, whether it's a text data set or source code for a FORTRAN or COBOL
program—if the editor can't figure it out from the data set name.

412 Chapter 25 The MVS ISPF Text Editor

For example, if you enter

edit blake.text

it knows that you are editing a data set consisting of simple text. If, on the other hand, you
enter

edit jan3bc.memo

then TSO asks you to

ENTER DATA SET TYPE-

and you enter "text" in response to this. If the data set type is not obvious from the low-level
qualifier, you can add it as an operand, like this,

edit jan3bc.memo text

and the editor doesn't prompt you to enter the type of the data set.

25.8.2 Creating a New Data Set

The TSO editor does have one significant advantage over the ISPF editor: if you tell it to edit
a nonexistent data set, it allocates and creates the data set for you instead of just telling you
that it doesn't exist. For example, if you enter

edit test.text

the TSO editor responds with

DATA SET OR MEMBER NOT FOUND, ASSUMED TO BE NEW

Because the details of the allocation vary from installation to installation, try creating a data
set this way and then using the LISTDS command to learn the allocation parameters used.
(Section 24.1.7.4, "Finding Out a Data Set's Allocation Status," explains more about the
LISTDS command.)

After creating a new data set, the editor displays the line number for the data set's first line
and puts you in input mode. The following section explains more about using input mode.

25.8.3 Line Numbering and the EDIT Editor

Data sets may be numbered or unnumbered, which affects how you use the EDIT editor. Like

25.8.2 Creating a New Data Set 413

the programs that enable you to write programs in BASIC on older computers, you can use
these numbers to indicate which lines should be affected by each command. Also, when edit-
ing a numbered data set, you can tell more easily when you are in input mode, because EDIT
displays the number of the line being added.

25.8.4 Input Mode and Edit Mode

The EDIT program is always waiting for you to type something in. While in input mode, (see
section 25.8.7, "Adding New Lines," for more on input mode) each line you type becomes a
new line of the data set. In edit mode, the editor interprets each line you type as a command
("command mode" would have been a better name than "edit mode") and executes it, if pos-
sible, or gives you an error message if not. The two classic mistakes are the following:

• Entering a command when you're really in input mode, which adds a line to your data set
consisting of the command you thought you were entering.

• Entering what you think is a new line of text when it's really in edit mode, so that the edit-
or tries to interpret the text as a command and tells you something along the lines of
"'Dear Mom' is an unrecognized editor command."

When editing a numbered data set, this won't happen too easily, because the editor displays
the number of the line you are entering when you are in input mode. In the following ex-
ample, after Joe User entered each line and pressed Enter, the next line number appeared,
waiting for a new line. For the third line, instead of entering anything, he pressed Enter im-
mediately. This told the editor that he was done with input mode, so it went back to edit
mode.

INPUT
00010 Lo, a shadow of horror is risen
00020 In Eternity! Unknown, unprolific?
00030
EDIT
Self-closd, all-repelling: what Demon
INVALID SUBCOMMAND
input
INPUT
00030 Self-closd, all-repelling: what Demon
00040

Joe then typed the third line, but the editor thought he was typing a command (a subcom-
mand, actually, since EDIT is the command to start the editor, and commands within the edit-
or are considered subcommands). It displayed an error message saying that it couldn't find a
subcommand called "SELF-CLOSD." Joe then entered the command INPUT to return to in-

414 Chapter 25 The MVS ISPF Text Editor

put mode, the line number appeared, waiting for his text, and he entered it without a problem.

When editing an unnumbered data set, the lack of line numbers requires you to pay closer at-
tention to which mode you're in. The following example shows the same steps as the previous
one, only with an unnumbered data set.

INPUT
Lo, a shadow of horror is risen
In Eternity! Unknown, unprolific?
EDIT
Self-closd, all-repelling: what Demon
INVALID SUBCOMMAND
input
INPUT
Self-closd, all-repelling: what Demon
EDIT
INPUT
EDIT

Although no line number appeared after Joe typed the second line, pressing Enter without
typing anything on the third line produced the same effect: it put him in edit mode. The same
"Self-closd" mistake caused the same error message, and entering the INPUT command put
him back into input mode.

After inputting the "Self-closd" line properly, Joe pressed the Enter key a few more times.
Note how it shifted him between edit and input mode as long as he didn't enter anything at the
command line. This shows that pressing Enter once or twice is a good way to switch between
modes and to double-check which mode you're in.

When in input mode or edit mode, you can use all the same keys that you use to edit any TSO
command line: cursor left and right, insert, and delete.

25.8.5 Displaying the Data Set's Current Contents

Enter LIST to see the contents of the data set that you are editing. (This command is easy to
remember because it's the same as the TSO command to do the same thing.) If it has too
many lines to fit on the screen, you can enter beginning and ending line numbers. For ex-
ample, if you enter

list 20 30

while editing the numbered data set shown above, the editor responds with this:

00020 In Eternity! Unknown, unprolific?
00030 Self-closd, all-repelling: what Demon

25.8.5 Displaying the Data Set's Cur-
rent Contents 415

If you try this with an unnumbered data set, the editor responds with an error message telling
you that it can't list lines 20 and 30 because the data set is unnumbered. When editing an un-
numbered data set, you must list either the whole data set or just the current line.

25.8.6 The Current Line

At any given time, the editor treats one line of your data set as the "current" line. It's import-
ant to be aware of which line is current because certain commands (like DELETE) have a de-
fault action of only acting on the current line.

With a command whose default action is to act on the whole data set, like LIST, you can add
a line number to refer to a specific line or an asterisk to refer to the current line. For example,
to list just the current line, enter this:

list *

You'll probably enter this command often, because it's the best way to check on which line is
current.

The commands UP and DOWN let you change the current line. For example, if the fifth line is
current, entering

up 2

makes the third line current. If you enter a number that's too big, like

up 1000

you won't get an error message; the editor just makes the first line current. DOWN works the
same way: entering it with a number greater than the number of lines in your data set makes
the last line current. (For a simpler way to jump to the top or bottom of your data set, enter
the commands TOP or BOTTOM.)

Be careful when using the LIST command to view the whole data set. After viewing the data
set, the last listed line becomes the current one regardless of which line was current before
you entered the command. Try this by entering LIST alone, pressing Enter, and then entering
LIST * to see which is the new current line.

25.8.7 Adding New Lines

The examples in section 25.8.4, "Input Mode and Edit Mode," show how to use the INPUT
command to add new lines. Remember, once in input mode, you remain there until you enter
a line with nothing on it by pressing Enter when the editor is waiting for you to type in a new

416 Chapter 25 The MVS ISPF Text Editor

line.

If you enter INPUT with no operands in edit mode, the editor puts you in edit mode and ap-
pends each new line that you enter to the end of your data set. Adding new lines between ex-
isting lines depends on whether you are editing a numbered or unnumbered data set.

When editing a numbered data set, you have a little more flexibility for entering new lines.
The simplest way is to enter the new line number followed by the new line while in edit
mode.

If you enter

25 (You gotta love this Blake guy)

and press the Enter key, the editor adds the line and returns you to edit mode. If you then
enter the LIST command to see how the data set looks, you'll see this:

00010 Lo, a shadow of horror is risen
00020 In Eternity! Unknown, unprolific?
00025 (You gotta love this Blake guy)
00030 Self-closd, all-repelling: what Demon

If you want to enter more than one new line, use the INPUT command, but with two oper-
ands: the number of the line after which you want to begin and the increment to increase the
line number. If you omit the second operand, the editor assumes a default of 10. This default
value could cause a problem; for the data set above, if you enter

INPUT 20

then the new line after line 20 would be line 30. As it already has a line 30, it gives you an er-
ror message saying

INPUT TERMINATED, NEXT LINE NUMBER IS 30

If, on the other hand, you entered

INPUT 20 2

then you would be in input mode to enter line 22, then 24, and so forth until you entered line
28. After 28, you would get the same error message, because 30 comes after 28. For sub-
sequent INPUT commands in that editing session, it will assume an increment of 2 until you
reset it with a similar command.

After squeezing new lines between the existing ones, you might want to occasionally set all

25.8.7 Adding New Lines 417

the line numbers back to multiples of 10 by entering the command RENUM in Edit mode.

To input new lines between existing lines in an unnumbered data set, use the asterisk denot-
ing "current line" with the INPUT command. First, use the UP, DOWN, and LIST * com-
mands to find the line just before the place where you want to insert new lines. For example,
let's say Joe User is editing the following data set.

The shadowy daughter of Urthona stood before red Orc
When fourteen suns had faintly journey'd o'er his dark abode;
His food she brought in iron baskets, his drink in cups of iron;
Crown'd with a helmet & dark hair the nameless female stood.

He makes the second line current and enters LIST * to make sure it's current. It displays by
itself, so he knows that he's in the right place. He enters

INPUT *

and then, underneath it,

(Fourteen suns? What a wildman!)

and then presses Enter twice to show that he only wants to input that one line. When he enters
LIST again to see the whole data set, he sees this:

The shadowy daughter of Urthona stood before red Orc
When fourteen suns had faintly journey'd o'er his dark abode;
(Fourteen suns? What a wildman!)
His food she brought in iron baskets, his drink in cups of iron;
Crown'd with a helmet & dark hair the nameless female stood.

25.8.8 Editing Existing Lines

To edit a string in the current line, use the CHANGE command. Its operands are the string to
replace and the new one to put there, both enclosed in apostrophes. For example, if the cur-
rent line is

His food she brought in iron baskets, his drink in cups of iron;

and you enter

change 'cups of iron' 'a plaid Thermos'

then entering LIST * shows that the line now reads:

418 Chapter 25 The MVS ISPF Text Editor

His food she brought in iron baskets, his drink in a plaid Thermos;

To replace the entire current line, you can enter an asterisk followed by the new line while in
edit mode, like this:

* Here is text for a new line

Both of these tricks for editing existing lines work for numbered and unnumbered data sets.
You can take the last trick a step further for numbered data sets; if the line you want to re-
place is not the current line, but you know its number, enter its number followed by the new
contents of the line. (Replacing the current line by entering an asterisk and the new text is ac-
tually a variation on this; remember, the asterisk acts as a substitute for the current line's line
number.)

25.8.9 Deleting Lines

Entering DELETE by itself deletes the current line. To delete a range of lines from a
numbered data set, enter DELETE followed by the line numbers of the first and last lines to
delete. For example, entering

DELETE 40 90

deletes lines 40, 90, and all the lines between them.

To delete multiple lines from an unnumbered data set, first make the first line to delete the
current line. Then, enter the command to delete the current line, followed by the total number
of lines you want to delete. For example, entering

DELETE * 5

will delete the current line and the four lines following it.

25.8.10 Copying Lines

Whether you are copying lines in a numbered or unnumbered data set, the syntax for specify-
ing the lines to copy is just like the syntax for indicating lines to delete. The COPY command
takes one more parameter: a number telling you where to put the copy.

To copy lines in a numbered data set, you need three parameters after the COPY command:
the first of the lines to copy, the last of the lines to copy, and the line number where the copy
should start. For example, the command

COPY 20 50 95

25.8.9 Deleting Lines 419

means "make a copy of lines 20 through 50 and start it at line 95." If line 95 exists, it starts
the copy right after it.

With an unnumbered data set, you must first make the first of the lines to copy your current
line. As with deleting lines in an unnumbered data set, your first parameter is the asterisk and
the second is the number of lines you want to copy. The third parameter is the position of the
line just before where you want to put your copy. If you picture the data set being numbered
in increments of one (as opposed to the increments of 10 more popular in numbered data
sets), then this would be the line number of the target line. For example, in the following data
set,

The shadowy daughter of Urthona stood before red Orc
When fourteen suns had faintly journey'd o'er his dark abode;
His food she brought in iron baskets, his drink in cups of iron;
Crown'd with a helmet & dark hair the nameless female stood.
A quiver with its burning stores, a bow like that of night
When pestilence is shot from heaven--no other arms she need:

we want to copy the lines beginning "Crown'd with a helmet," "A quiver with" and "When
pestilence" and put the copy after the line "When fourteen suns." First, make the line
"Crown'd with a helmet" the first line; then, the command

COPY * 3 2

tells the editor "copy three lines, beginning with the current one (represented by the asterisk)
and put the copy after the second line."

25.8.11 Duplicating Lines

Duplicating the current line of your data set involves using the COPY command with the as-
terisk. Section 25.8.10, "Copying Lines," shows that when you copy a line or lines, you indic-
ate the lines to copy and the line after which to put the copy. Using the asterisk to indicate the
current line as both of these parameters, you can type

COPY * *

to tell the editor, "Make a copy of the current line, and put the copy right after itself."

25.8.12 Moving Lines

Move lines with the MOVE command. For numbered and unnumbered data sets, the syntax is
the same as when copying. The only difference is, after you've executed the command, the
original won't exist anymore—it will be in the location specified by the third parameter of

420 Chapter 25 The MVS ISPF Text Editor

either of the following commands:

MOVE firstline lastline destination

for numbered data sets or

MOVE * lines destination

for unnumbered data sets.

25.8.13 Searching for Text

The FIND command does a case-sensitive search for the string entered as its operand. En-
close the string in apostrophes. For example, entering

find 'helmet'

when the first of the earlier passage's lines is current makes the fourth line the current line be-
cause it has the phrase "Crown'd with a helmet." Entering

find 'potrzebie'

causes the editor to look for, but not find this string, and it gives you the message TEXT NOT
FOUND. Entering find 'helmet' twice in a row displays the TEXT NOT FOUND mes-
sage the second time, because the search always begins at the current line and the passage has
no more occurrences of the word "helmet" after it finds it the first time.

If you want to search for something with an apostrophe in it, you can enclose your search
string in quotation marks. For example, when searching from the top of the passage, you
could enter

find "o'er"

to find the line with the phrase "journey'd o'er his dark abode." That line then becomes the
current line.

25.8.14 Saving Your Changes

To save your changes, simply enter SAVE while in edit mode. See the next section for in-
formation on quitting and saving in one command.

25.8.15 Quitting the TSO Editor

The END command tells the editor that you want to return to the TSO prompt. If you have any

25.8.13 Searching for Text 421

unsaved changes, it tells you:

NOTHING SAVED
ENTER SAVE OR END-

At this point, enter END to quit without saving your changes or SAVE to save them. If you
enter SAVE, it returns you to edit mode, waiting for another command. (You'll probably want
to enter END again; this time, it won't give you the message about unsaved changes.)

To save your work and quit with one command, enter the following:

END SAVE

The editor saves your data set and return you to the TSO prompt. To quit without saving your
changes, enter this:

END NOSAVE

25.8.16 On-line Help and the TSO Editor

Entering HELP EDIT at the TSO prompt gives you several screens of information about the
EDIT program. Most of it is information about the command-line parameters that you can
add when starting up the EDIT program, and not help about actions you can take within the
EDIT program, but this is what the TSO help does: it tells you about the syntax of commands
typed at the TSO prompt.

The first part of the information displayed by HELP EDIT is a section called SUBCOM-
MANDS that lists the commands that you can use in edit mode. Including the ones described
in this section, the editor has over 30 of these subcommands. One of them is HELP, which
shows that you can get help from within the editor.

If you enter HELP by itself in the editor's edit mode, it lists the subcommands and tells you
this:

FOR MORE INFORMATION ENTER HELP SUBCOMMANDNAME OR HELP HELP

In other words, you can enter HELP followed by one of the subcommand names to find out
more about that particular subcommand. This includes the HELP subcommand it-
self—entering HELP HELP tells you more about the use of the HELP command within the
text editor.

422 Chapter 25 The MVS ISPF Text Editor

Chapter 26 Using an MVS System
26.1 Printing Data Sets
There are several ways to print data sets. Many involve printing the result of a batch job; in a
case like this, you add certain commands to the JCL part of the job telling it to route output to
a particular printer.

The simplest way to print a data set uses the PRINTDS or DSPRINT programs, whichever is
available on your system. At their most basic level, both of these commands require the same
information from you:

• The data set you want to print.

• The name of the printer to which you want to send the data set.

The main difference between the two is that DSPRINT assumes that the first operand is the
data set to print and the second identifies the printer. With PRINTDS, you can enter them in
any order, but you must include the words DATASET and DEST (for "destination"), putting
the appropriate information in parentheses.

For example, to use PRINTDS to send the data set BLAKE.TEXT to the printer called
ACCTNG, enter this:

printds dataset(blake.text) dest(acctng)

With the DSPRINT command, you enter this:

dsprint blake.text acctng

Ask about the name of the closest mainframe printer, which each site's system administrator
assigns.

Other differences between PRINTDS and DSPRINT lie in the additional operands available
to control their print output. One that you will find useful with both is NONUM. It tells the
command, "If the data set is numbered, don't print the numbers." The TSO on-line help tells
you more about other operands for these commands.

26.2 Command Files
A CLIST (pronounced "see-list") is a program written in the TSO command language. In oth-

423

er words, it's a data set consisting of a series of TSO commands. CLISTs can be complex, but
simple ones consisting of the TSO commands that you already know can be quite useful.

CLISTs are usually stored as members of a partitioned data set called either CLIST or
whatever.CLIST, where whatever is a name you supply.

There are two ways to execute a particular CLIST. The first uses the EXEC command. To ex-
ecute a CLIST in MYCLISTS.CLIST with a member name of MYTEST, enter the following:

exec myclists(mytest)

If you stored MYTEST in a partitioned data set called only CLIST, execute it with this com-
mand:

exec (mytest)

You can execute a CLIST by just entering its name. To execute MYTEST, type

mytest

at the TSO prompt. How will the system know the partitioned data set in which to find it? It
looks for a special ddname of SYSPROC. This means that you must allocate the partitioned
data set that holds your CLISTs with a ddname of SYSPROC by entering a command like
this:

allocate dataset(myclists.clist) ddname(sysproc)

If you want to let others use the MYCLISTS CLISTs while you use them, add the SHR para-
meter to this allocation command.

People often use CLISTs to allocate several data sets at once. Many application programs re-
quire you to do several allocations before starting them up; creating a new member of a
CLIST partitioned data set with the required ALLOCATE commands means that you only
have to type that member's name to do all those allocations.

For example, let's say the MVS version of the UpRiteBase database program requires you to
allocate the partitioned data set holding your data files with the ddname URDATA and the
PDS holding the command procedures to use with that data as URPROC. You store your data
as members of the MYDATA.DAT PDS and your procedures in the MYPROCS.PRC PDS, and
you start UpRiteBase by entering URBASE. You can automate the allocations and the
URBASE part by creating a new member of the partitioned data set holding your CLISTs
called UR with the following commands in it:

424 Chapter 26 Using an MVS System

/* UR: allocate procedure and database files for UpRiteBase, */
/* then start up UpRiteBase. 2/23/94 Joe User */
FREE DD(URPROC URBASE)
ALLOCATE DS(MYDATA.PRC) DD(URPROC) SHR
ALLOCATE DS(MYPROCS.DAT) DD(URBASE) SHR
URBASE

Note three things about this CLIST:

• The first two lines begin with /* and end with */. TSO ignores everything between the
asterisks, so they are used to demarcate comments describing the purpose of the CLIST.
Among other things, the comments shows that this member of the CLISTs PDS is called
UR.

• The FREE command frees up the ddnames before the subsequent lines allocate the data
sets, just in case these ddnames are already allocated.

• The CLIST finishes by starting up UpRiteBase for you with the URBASE command.

Using this CLIST, you only have to type "UR" and TSO performs all these tasks for you. In
addition to TSO commands, CLISTs can contain REXX commands. In their attempt to make
a command language that is portable from one operating system to another, IBM made the
basic rules of REXX the same on MVS systems as on CMS systems. See section 21.1
(VM/CMS "Command Files") for more on REXX.

26.2.1 The Automatic Logon Command File

When you log on to your MVS account, TSO looks for a sequential data set named LO-
GON.CLIST. If it finds it, it automatically executes it. You will find this useful for automat-
ing actions that you want performed every time you log on. For example, if you keep your
other CLISTs in a partitioned data set called MYCLISTS.CLIST, you could put the line

ALLOCATE DATASET(MYCLISTS.CLIST) DDNAME(SYSPROC)

in your LOGON.CLIST data set so that you could then invoke any one of your CLISTs by
typing its name at the TSO prompt. A LOGON.CLIST that ends with the command ISPF
automatically starts up ISPF for you when you log on.

26.3 Communicating with Other Users
MVS offers no built-in mail facility. Many companies buy mail programs to run on their
MVS system; check to see whether your site has one installed.

26.2.1 The Automatic Logon Com-
mand File 425

You can use the SEND command to send a one-line message to someone else's terminal.
(Most operating systems have some equivalent command; it seems a little more important in
MVS because of the lack of a built-in mail facility.) To send the message "Are we still on for
lunch?" to Mary Jones' MJONES user ID, Joe User would enter

send 'Are we still on for lunch?' user(mjones)

If Mary is logged on, the message appears on her screen followed by the user ID of the per-
son who sent it:

Are we still on for lunch? JOEUSER

If Mary is not logged on when Joe enters the SEND command asking her about lunch, he will
see a message like this:

USER(S) MJONES NOT LOGGED ON OR TERMINAL DISCONNECTED, MESSAGE CANCELLED

He could then type the command again, adding the SAVE operand at the end. This tells TSO
to display the message the next time Mary logs on. But an even better alternative exists: he
could have added the operand LOGON when he first typed the command:

send 'Are we still on for lunch?' user(mjones) logon

This tells the system, "If Mary is logged on now, display this on her screen right away; other-
wise, display it the next time she logs on."

You may have noticed that the message is enclosed in apostrophes. If you want one displayed
in your message, enter two where you want it to appear. For example, entering

send 'Looks like I''ll have to work through lunch' user(mjones)

displays the following on Mary's screen:

Looks like I'll have to work through lunch JOEUSER

Another way to send a message to appear on someone's screen is with the MSGDATASET op-
tion of the TRANSMIT command. For more on this, see section 26.3.1, "Sending Files."

26.3.1 Sending Files

Data sets are sent from one ID to another with the TRANSMIT command and received with
the RECEIVE command. You have two options when you send a data set with TRANSMIT:

426 Chapter 26 Using an MVS System

• If you send a data set as a regular data set, RECEIVE stores it with the recipient's other
data sets.

• If you send it as a message, RECEIVE displays it on the screen for them.

It's not unusual to send two data sets this way simultaneously. One might be a data file, and
the other, a memo about the first.

The simplest form of TRANSMIT just includes the name given to the recipient's system, the
user ID, and the data set to send. To send the BLAKE.TEXT data set to the MJONES ID on
an MVS system called SATURN, the command is:

transmit saturn.mjones dataset(blake.text)

After you press the Enter key, TSO displays a message telling you whether it sent the data set
successfully and if not, why.

To send a message stored in the data set YOMARY.TEXT along with BLAKE.TEXT so that
the RECEIVE command displays the message on Mary's screen when she uses RECEIVE to
pull in BLAKE.TEXT, enter this:

transmit saturn.mjones dataset(blake.text) msgdataset(yomary.text)

You can't store the message in just any data set; it must meet the following requirements:

• It must be either a sequential data set or a specific member of a partitioned data set.

• It must be allocated with a fixed, blocked record format: RECFM(F,B).

• It must have a logical record length of 80: LRECL(80).

If you try to send a data set that doesn't meet these requirements, you'll get an error message
saying that the message data set "contains attributes that are not valid."

The data set sent with the DATASET operand doesn't have to be sequential, but part of this
command's flexibility may become a limitation when you try to send a partitioned data set.
The flexibility lies in the capability to send data sets to other, non-MVS systems: if your
MVS system's company or university site has other systems connected to it through a net-
work, you can send data sets to them using the same syntax. For example, if you want to send
the BLAKE.TEXT data set to Mary's MJONES ID on a VAX system called NEPTUNE, enter
this:

transmit neptune.mjones dataset(blake.text)

26.3.1 Sending Files 427

Although TRANSMIT can send partitioned data sets as well as sequential data sets, remember
that the concept of a PDS is peculiar to MVS—sending one to a machine running another op-
erating system doesn't mean that the other operating system can do anything with it.

You can, however, send a particular member of a PDS and instruct TRANSMIT to treat it as a
sequential data set by adding the SEQ operand. For example, the following command sends
the TUTORIAL member of the REXX.CLIST PDS:

transmit neptune.mjones dataset(rexx.clist(tutorial)) seq

What happens if you just enter TRANSMIT and a user ID, without specifying anything to
send? The TRANSMIT command assumes you want to send a message, not an existing data
set. After prompting you to enter your message's recipient it displays an editor to allow you to
enter that message, as shown in Figure 26.1.

DATA FOR SATURN.MJONES
00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
PF3 = FINISHED | PF7 = BACKWARD, | PF8 = FORWARD | PA1 = ABORT

Figure 26.1 Data entry screen for a message sent with TRANSMIT.

The editor is a simplified version of the ISPF editor. As the bottom line shows, PF7 and PF8

428 Chapter 26 Using an MVS System

scroll backward and forward a page at a time if you enter more than 22 lines of text, PF3 tells
the editor that you are finished, and PA1 indicates that you want to abort this message.

26.3.2 Receiving Mail and Data Sets

The TRANSMIT command doesn't automatically add data sets to the recipient's disk space.
They wait in a special area until they are pulled in with the RECEIVE command. If you enter
RECEIVE when no data sets or messages are waiting for you to pull them in, TSO displays a
message similar to this:

You have no messages or data sets to receive.

If there are one or more data sets waiting for you, it displays either the first message sent, a
prompt asking you about a data set that was sent to you, or both if the message was sent with
the data set. The prompt tells you the name of the data set, who sent it, and what system they
sent it from. For example, let's say Mary Jones sent the data set STATS.TEXT to the
JOEUSER ID from her ID on an MVS system identified as SATURN. When Joe enters the
RECEIVE command, the system responds with a message like this:

Dataset MJONES.STATS.TEXT from MJONES on SATURN
Enter restore parameters or 'DELETE' or 'END' +

Although the prompt only offers two choices to respond with, you actually have several.
Pressing Enter without entering anything is the equivalent of typing the word RESTORE as a
response. It means "put this data set, as is, with the rest of my data sets." If Mary named it
MJONES.STATS.TEXT before she sent it and your ID is JOEUSER, RECEIVE stores it as
JOEUSER.STATS.TEXT.

Responding with DELETE means "I don't want that data set; delete it." Responding with END
tells the RECEIVE program to leave off where it was and return to the TSO prompt. The next
time you start up RECEIVE, it gives you the same prompt about the data set where you left
off.

To restore the data set with a name that differs from the one shown in the message, enter the
word "DATASET" followed by parentheses surrounding the new name. For example, if the
RECEIVE program displayed the message above and you want to save the STATS.TEXT
data set as STATSFEB.TEXT, respond by entering this:

dataset(statsfeb.text)

Of course, since you probably don't know the names of all your current data sets, you may not
notice that an incoming data set has the same name as one already in your collection. If you

26.3.2 Receiving Mail and Data Sets 429

press Enter to tell RECEIVE to recover the data set and you already have one with that name,
RECEIVE displays a message like this:

Dataset 'JOEUSER.STATS.TEXT' already exists. Reply 'R' to replace it. +

As the message tells you, entering an "R" and pressing Enter replaces the existing
STATS.TEXT data set with the one being recovered. You can also respond with an alternate
name, the same way you can respond to the "Enter restore parameters" prompt with data-
set(new.dsname). When you press Enter, RECEIVE saves the incoming data set with
the new name. You can also respond to the "already exists" prompt by typing "END," which
returns you to the TSO prompt. In fact, this is the default action, so pressing Enter without
typing anything also returns you to the TSO prompt, leaving any unrecovered data sets for
you to deal with later.

Most other potential responses to the "Enter restore parameters" prompt let you specify alloc-
ation details of the data set to recover, if you want to change them. To see them before recov-
ering the data set, enter a question mark (?) in response to the prompt.

If you never respond with END, the RECEIVE program goes through the waiting messages
and data sets one a time, giving the same information and asking the same question with each.
When none are left, it tells you

No more files remain for the receive command to process.

Many users want to check whether data sets are waiting for them every time they log on.
Your ID may be set up to invoke the RECEIVE command each time you log on; if not, you
can easily add it to (or create) a LOGON.CLIST data set. (Section 26.2.1, "The Automatic
Logon Command File," covers LOGON.CLIST in more detail.)

26.4 ISPF
Chapter 25, "The MVS ISPF Text Editor," showed how to start ISPF, pick the appropriate
choice from the main (or "primary") menu to edit a data set, and fill out the entry panel to in-
dicate the data set you want to edit. Most of the important things that you do with ISPF begin
with similar steps: selecting a menu choice and then filling out a panel to indicate the data set
that you want to act on.

As you go from menu to menu in ISPF, you may display a menu that you didn't mean to. As
the bottom of the screen shows you, the PF3 key ("END") ends the display of the current
menu—in other words, it backs out of that menu to the previous one. To leave the main
menu, note how the last menu choice has an "X" instead of a number preceding it, as shown
in Figure 26.2. This means that entering X at the OPTION ===> prompt returns you to the

430 Chapter 26 Using an MVS System

TSO prompt.

----------------------- ISPF/PDF PRIMARY OPTION MENU ------------------------
OPTION ===> _

USERID -JOEUSER
0 ISPF PARMS - Specify terminal and user parameters TIME - 09:24
1 BROWSE - Display source data or output listings TERMINAL - 3278
2 EDIT - Create or change source data PF KEYS - 24
3 UTILITIES - Perform utility functions
4 FOREGROUND - Invoke language processors in foreground
5 BATCH - Submit job for language processing
6 COMMAND - Enter TSO Command, CLIST, or REXX exec
7 DIALOG TEST - Perform dialog testing
8 LM UTILITIES- Perform library administrator utility functions
9 IBM PRODUCTS- Additional IBM program development products

10 SCLM - Software Configuration and Library Manager
D DB2 - DB2 Facilities
H HSM - DFHSM Facilities
C CHANGES - Display summary of changes for this release
S SDSF - System Display and Search Facility

SO DFSORT - DFSORT Facility
T TUTORIAL - Display information about ISPF/PDF
X EXIT - Terminate ISPF using log and list defaults

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 26.2 ISPF primary option menu.

If you do anything more than browse around the menus in ISPF, like running programs or
copying, renaming, editing or deleting data sets, then ISPF may keep a log of your activity.
This log lists the date, time, and nature of each transaction. When you exit from the main
menu, you may see a screen asking what you want to do with that log; Figure 26.3 shows an
example.

------------------- SPECIFY DISPOSITION OF LOG DATA SET ---------------------
COMMAND ===>

LOG DATA SET DISPOSITION LIST DATA SET OPTIONS NOT AVAILABLE
------------------------- -----------------------------------
Process option ===>
SYSOUT class ===> A
Local printer ID ===>

26.4 ISPF 431

VALID PROCESS OPTIONS:
PD - Print data set and delete
D - Delete data set without printing
K - Keep data set (allocate same data set in next session)
KN - Keep data set and allocate new data set in next session

Press ENTER key to complete ISPF termination.
Enter END command to return to the primary option menu.

JOB STATEMENT INFORMATION: (Required for system printer)
===> //JOEUSERA JOB (ACCOUNT),'NAME'
===> //*
===> //*

Figure 26.3 Entry panel for dealing with ISPF log.

The four "VALID PROCESS OPTIONS" are fairly self-explanatory; you'll probably want to
choose D most of the time to delete the log so that it doesn't take up space. You might want to
try entering K at the Process Option prompt some time to see what the log looks like.
When ISPF returns you to the TSO prompt, it displays a message similar to this:

JOEUSER.SPFLOG1.LIST HAS BEEN KEPT.
READY

Now you know the name of the data set where the system stored this log. You can then use
the LIST command to look at it.

If you choose K, ISPF continues to use this data set to log transactions the next time you use
ISPF. If you choose KN, ISPF saves your transactions but create a new log data set the next
time you use ISPF.

26.4.1 Allocating Data Sets

Selecting UTILITIES from the main ISPF menu displays a new menu that looks similar to
the one shown in Figure 26.4. As the description of the DATASET choice tells you, choosing
it allows you to allocate data sets. Selecting DATASET displays a menu similar to the one
shown in Figure 26.5.

432 Chapter 26 Using an MVS System

------------------------- UTILITY SELECTION MENU ----------------------------
OPTION ===>

1 LIBRARY - Compress or print data set. Print index listing.
Print, rename, delete, or browse members

2 DATASET - Allocate, rename, delete, catalog, uncatalog, or
display information of an entire data set

3 MOVE/COPY - Move, copy, or promote members or data sets
4 DSLIST - Print or display (to process) list of data set names

Print or display VTOC information
5 RESET - Reset statistics for members of ISPF library
6 HARDCOPY - Initiate hardcopy output
8 OUTLIST - Display, delete, or print held job output
9 COMMANDS - Create/change an application command table
10 CONVERT - Convert old format menus/messages to new format
11 FORMAT - Format definition for formatted data Edit/Browse
12 SUPERC - Compare data sets (Standard dialog)
13 SUPERCE - Compare data sets (Extended dialog)
14 SEARCH-FOR - Search data sets for strings of data

Figure 26.4 ISPF Utility menu.

---------------------------- DATA SET UTILITY -------------------------------
OPTION ===>

A - Allocate new data set C - Catalog data set
R - Rename entire data set U - Uncatalog data set
D - Delete entire data set S - Data set information (short)
blank - Data set information

ISPF LIBRARY:
PROJECT ===> JOEUSER
GROUP ===> FIELDING
TYPE ===> TEXT

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged, required for option "C")

DATA SET PASSWORD ===> (If password protected)

Figure 26.5 ISPF data set utility menu.

26.4.1 Allocating Data Sets 433

Enter the letter "A" at the OPTION ===> prompt and the name of the data set to allocate in
the ISPF LIBRARY section of the panel. When you press Enter, ISPF displays ALLOCATE
NEW DATA SET screen, where you enter the details of how you want your data set alloc-
ated. As you can see in Figure 26.6, this screen includes the data set name you entered on the
DATA SET UTILITY screen. The crucial fields on the ALLOCATE NEW DATA SET
screen are covered in section 24.1.7, "Allocating Data Sets."

------------------------ ALLOCATE NEW DATA SET ------------------------------
COMMAND ===>

DATA SET NAME: JOEUSER.FIELDING.TEXT

VOLUME SERIAL ===> USERMD (Blank for authorized default volume) *
GENERIC UNIT ===> (Generic group name or unit address) *
SPACE UNITS ===> TRACK (BLKS, TRKS, or CYLS)
PRIMARY QUANTITY ===> 2 (In above units)
SECONDARY QUANTITY ===> 2 (In above units)
DIRECTORY BLOCKS ===> 0 (Zero for sequential data set)
RECORD FORMAT ===> FB
RECORD LENGTH ===> 80
BLOCK SIZE ===> 27920
EXPIRATION DATE ===> (YY/MM/DD, YYYY/MM/DD

YY.DDD, YYYY.DDD in Julian form
DDDD for retention period in days
or blank)

(* Only one of these fields may be specified)

Figure 26.6 Data set allocation screen.

It's still a lot of trouble, dealing with all those allocation parameters; luckily, ISPF offers you
a way to model a new data set's allocation parameters on those of an existing data set. On the
DATA SET UTILITY screen, if you enter an existing data set's name and press the Enter key
without entering anything at the OPTION ===> prompt (note how the OPTION choices in-
clude "blank - Data set information") ISPF displays allocation information about the data set
whose name you entered. Figure 26.7 shows an example of the displayed information.

-------------------------- DATA SET INFORMATION -----------------------------
COMMAND ===>

434 Chapter 26 Using an MVS System

DATA SET NAME: JOEUSER.BLAKE.TEXT

GENERAL DATA: CURRENT ALLOCATION:
Volume serial: USERMC Allocated Tracks: 1
Device type: 3390 Allocated extents: 1
Organization: PS
Record format: VB
Record length: 84
Block size: 6233 CURRENT UTILIZATION:
1st extent Tracks: 1 Used Tracks: 1
Secondary Tracks: 5 Used extents: 1

Creation date: 1994/06/04
Expiration date: ***NONE***

Figure 26.7 Data set allocation information.

When you leave this screen and go through the steps of allocating a new data set, the next
time you reach the ALLOCATE NEW DATA SET screen, ISPF fills out the allocation para-
meters of the new data set with those of the existing data set about which you just inquired.
Since you entered the name of the new data set that you want to allocate in order to reach the
ALLOCATE NEW DATA SET screen, all that remains when viewing that screen is to press
Enter to allocate the new data set with the parameters of the existing data set.

26.4.2 Copying Data Sets

Copying a data set in TSO or a file in another operating system usually means "make me a
new file that is a copy of this data set, and give the copy the following name." When you do
this in ISPF, there's a catch: the data set specified as the destination of the copy operation
must already exist. In other words, you must allocate it before you begin the copy operation.
The best way to do this is to allocate the copy with the same allocation parameters as the data
set being copied, as explained in section 24.4.1, "Allocating Data Sets."

Once it's allocated, you can perform the copy operation. We saw in the last section that after
selecting UTILITIES from the main ISPF menu, selecting DATASET from the UTILITIES
menu makes it possible to allocate data sets. Another choice on the UTILITIES menu is
MOVE/COPY. Selecting it displays the panel shown in Figure 26.8 for you to fill out.

--------------------------- MOVE/COPY UTILITY -------------------------------

26.4.2 Copying Data Sets 435

OPTION ===>

C - Copy data set or member(s) CP - Copy and print
M - Move data set or member(s) MP - Move and print
L - Copy and LMF lock member(s) LP - Copy, LMF lock, and print
P - LMF Promote data set or member(s) PP - LMF Promote and print

SPECIFY "FROM" DATA SET BELOW, THEN PRESS ENTER KEY

FROM ISPF LIBRARY: ------ Options C, CP, L, and LP only -------
PROJECT ===> JOEUSER | |
GROUP ===> BLAKE ===> ===> ===>
TYPE ===> TEXT
MEMBER ===> (Blank or pattern for member selection list,

'*' for all members)

FROM OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged)

DATA SET PASSWORD ===> (If password protected)

Figure 26.8 ISPF screen for moving or copying data sets.

To copy a data set, enter "C" at the OPTION ===> prompt and the name of the data set to
copy in the FROM ISPF LIBRARY section of the panel. When you press Enter, ISPF dis-
plays a screen similar to the one shown in Figure 26.9 to find out the name of your copy.

COPY --- FROM JOEUSER.BLAKE.TEXT --
COMMAND ===>

SPECIFY "TO" DATA SET BELOW.

TO ISPF LIBRARY:
PROJECT ===> JOEUSER
GROUP ===>
TYPE ===>
MEMBER ===>

TO OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged)

436 Chapter 26 Using an MVS System

DATA SET PASSWORD ===> (If password protected)

"TO" DATA SET OPTIONS:
IF PARTITIONED, REPLACE LIKE-NAMED MEMBERS ===> (YES or NO)
IF SEQUENTIAL, "TO" DATA SET DISPOSITION ===> (OLD or MOD)
SPECIFY PACK OPTION FOR "TO" DATA SET ===> (YES, NO or blank)

Figure 26.9 ISPF screen prompting for destination of copy operation.

In the TO ISPF LIBRARY section, enter the name of the data set to which you want to copy
your "FROM" data set. Press Enter, and ISPF makes the copy and returns you to the MOVE/
COPY UTILITY screen, with the message "DATA SET COPIED" displayed in the upper-
right.

26.4.3 Renaming Data Sets

We've already seen (Figure 26.4) the menu that appears when you select UTILITIES from the
main ISPF menu. On this menu, the LIBRARY choice offers you utilities for dealing with
members of partitioned data sets, and the DATASET choice offers you utilities for dealing
with sequential data sets. So, to rename (or delete) a member of a PDS, select LIBRARY; to
rename or delete a sequential data set, select DATASET.

When you select LIBRARY, ISPF displays a panel similar to the one shown in Figure 26.10.
At the OPTION ===> prompt, enter an "R" and use your Tab key to move to the ISPF LIB-
RARY part of the panel so that you can specify the data set member to rename. In the
PROJECT, GROUP, and TYPE fields, enter the name of the partitioned data set containing
the member you want to rename. In the MEMBER field, enter the member's name, and in the
NEWNAME field, enter its new name. (When renaming a member of a PDS you can't change
any part of the PDS name; whatever the member's name becomes, it's still part of the same
PDS.) When you press Enter, ISPF renames the data set and displays a message in the upper-
right of the screen telling you that it did so.

---------------------------- LIBRARY UTILITY ----------------------------
OPTION ===>

blank - Display member list B - Browse member
C - Compress data set P - Print member
X - Print index listing R - Rename member
L - Print entire data set D - Delete member

26.4.3 Renaming Data Sets 437

I - Data set information S - Data set information (short)

ISPF LIBRARY:
PROJECT ===> JOEUSER
GROUP ===> URBASE ===> ===> ===>
TYPE ===> CLIST
MEMBER ===> URTEST (If "P", "R", "D", "B", or blank selected)
NEWNAME ===> UR (If "R" selected)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged)

DATA SET PASSWORD ===> (If password protected)

Figure 26.10 The ISPF library utility screen.

If Joe User pressed the Enter key after filling out the panel as shown in Figure 26.10, he
would rename the URTEST member of the URBASE.CLIST partitioned data set with a new
name of UR. After he pressed Enter, ISPF would display the message MEMBER URTEST
RENAMED in the upper-right of the screen.

To rename a sequential data set or an entire partitioned data set (as opposed to just renaming
one of the members of a PDS), you'll use the same panel you used to allocate a data set: the
DATA SET UTILITY screen (Figure 24.5). Display it by selecting DATASET from the
UTILITIES menu.

Enter "R" at the OPTION ===> prompt and the name of the data set to rename in the ISPF
LIBRARY section of the panel. Press Enter, and ISPF displays a panel similar to the one
shown in Figure 26.11 to learn the new name you want to give this data set.

---------------------------- RENAME DATA SET --------------------------------
COMMAND ===>

DATA SET NAME: JOEUSER.BLAKE.TEXT
VOLUME: USERME

ENTER NEW NAME BELOW: (The data set will be recataloged.)

ISPF LIBRARY:
PROJECT ===> JOEUSER

438 Chapter 26 Using an MVS System

GROUP ===> BLAKE
TYPE ===> BACKUP

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>

Figure 26.11 ISPF screen prompting you for the new name of your renamed data set.

The DATA SET NAME field at the top of this panel shows the name of the data set that you
said you wanted to rename. Now you only need to fill out the new name in the GROUP and
TYPE fields. After you do this and press Enter, ISPF displays the message "DATA SET RE-
NAMED" in the upper-right of the screen.

26.4.4 Deleting Data Sets

You may have noticed that the LIBRARY UTILITY and DATA SET UTILITY screens used
to rename data set members or entire data sets offered "D" as an alternative command to enter
at the OPTION ===> prompt. When you enter this and enter a data set member name on the
LIBRARY UTILITY screen, you delete that member from the specified partitioned data set,
leaving the PDS otherwise intact.

When you enter a "D" at the OPTION ===> prompt of the DATASET screen and a data set
name in the ISPF LIBRARY section, you delete the whole data set, whether sequential or
partitioned. When you press Enter, ISPF displays a screen similar to the one shown in Figure
26.12 to make sure that you really want to delete the specified data set.

---------------------------- CONFIRM DELETE ---------------------------------
COMMAND ===>

DATA SET NAME: JOEUSER.BLAKE.TEXT
VOLUME: USERME
CREATION DATE: 1994/06/20

INSTRUCTIONS:

Press ENTER key to confirm delete request.
(The data set will be deleted and uncataloged.)

26.4.4 Deleting Data Sets 439

Enter END command to cancel delete request.

Figure 26.12 ISPF screen confirming a request to delete a data set.

Press Enter to follow through and delete the data set or enter "END" at the COMMAND ===>
prompt to cancel the deletion. Either way, you return to the DATA SET UTILITY screen,
which will have a message in the upper right telling you either "DATA SET DELETED" or
"DATA SET NOT DELETED."

26.4.5 Displaying A Data Set's Contents

Because ISPF takes better advantage of your terminal than TSO, it has no direct equivalent to
the LIST command to put a data set's contents on your screen one screenful at a time from
beginning to end. Instead, ISPF has a utility called BROWSE that gives you more flexibility
when viewing a data set. Basically, it's just like the ISPF editor, but it won't let you change a
data set's contents.

All of the editor's commands for moving around and searching for text work the same when
you browse a data set. This means that when looking at the middle or end of a data set, you
can go backwards and look at the text before the currently displayed text, which you can't do
when you use LIST at the TSO command line.

To browse a data set, select BROWSE from the ISPF main menu. On the next screen, enter
the name of a sequential data set or a member of a partitioned data set and press Enter. ISPF
starts the BROWSE program with the beginning of your data set displayed on the screen.

26.4.6 Printing a Data Set

Print a data set or a member of a partitioned data set with the same LIBRARY UTILITY pan-
el (accessible by selecting LIBRARY from the UTILITIES menu) that you used to rename a
member of a PDS (Figure 26.10). Instead of entering "R" for "rename," you enter either "L"
to print a sequential data set or "P" to print a member of a PDS. Type the sequential data set
or PDS member's name in the ISPF LIBRARY section of the panel, press Enter, and you're
done.

26.5 A Sample MVS Session
One morning you log on to your JOEUSER ID, and you see the screen shown in Figure
26.13.

440 Chapter 26 Using an MVS System

ICH70001I JOEUSER LAST ACCESS AT 14:40:39 ON MONDAY, JANUARY 18, 1994
JOEUSER LOGON IN PROGRESS AT 14:42:38 ON JANUARY 18, 1994

* The system will be unavailable from 12:01 AM to 10 AM *
* Sunday January 24th for maintenance. *

Are those CLISTs ready or what? Give me whatever you have. LNIVEN

You have no messages or data sets to receive.
**** NATIVE TSO READY ****
READY

Figure 26.13 Joe User's logon messages one morning.

The message from the system administrator doesn't concern you, because you had no plans to
log on Sunday morning. The other message, from your friend Larry Niven, is more urgent;
you had promised to write him several CLISTs to use with the inventory database system he
is developing.

You may as well send him what you've done so far, but you want to see what you have first.
They're in a partitioned data set called INVEN.CLIST. You you list out the members of this
data set by entering the LISTDS command with the MEM operand and see the output shown
in Figure 26.14.

listds inven.clist mem
JOEUSER.INVEN.CLIST
--RECFM-LRECL-BLKSIZE-DSORG
FB 80 3120 PO

--VOLUMES--
USERMD

--MEMBERS--
ADD
DELETE
UPDATE
REPORT
TESTING

Figure 26.14 List of members in INVEN.CLIST.

26.5 A Sample MVS Session 441

The TESTING one was for playing with some of the CLIST commands. You delete it from
the PDS, because you don't need to send that one to Larry:

delete inven.clist(testing)

The other CLISTs were pretty good, but the UPDATE one is still giving you some problems.
No use putting off Larry further; you'll send him the whole PDS of CLISTs, but warn him
about the UPDATE CLIST in a separate message.

You type the message into a data set called FORLARRY.TEXT. The TRANSMIT command
can be picky about how these message data sets are allocated, so you allocate it by copying
the allocation details from the data set FORMARY.TEXT, which you sent to Mary Jones last
week:

allocate dataset(forlarry.text) like(formary.text)

You enter text into FORLARRY.TEXT with the ISPF editor. Because the editor is the second
choice on the ISPF main menu, you jump right to the editor by including a "2" on the com-
mand line when you start up ISPF:

ispf 2

After indicating the data set you want to edit on the EDIT ENTRY PANEL, you type in your
message. Figure 26.15 shows how it might look when you are done.

EDIT ---- JOEUSER.FORLARRY.TEXT ------------------------------ COLUMNS 001 072
COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 Larry -
000200 I'm sending you INVEN.CLIST, which has the CLISTs. Most of them
000300 work fine, but the UPDATE one is still a little flaky. Let me
000400 know if you have any questions.
****** **************************** BOTTOM OF DATA ****************************

Figure 26.15 Joe's message to be sent to Larry.

After writing the message, you press PF4 to show that you've finished editing. (If you had
wanted to edit another data set, you would have pressed PF3, which would return you to the
screen where you enter the name of the data set to edit. This time, however, you no longer
need the editing program.)

442 Chapter 26 Using an MVS System

When you return to the TSO prompt, you are ready to send the CLISTs and their accompany-
ing message to larry on the SATURN system. You can do this with one command. It's a long
one, though; after you enter the first part, you type a plus sign to show TSO that you haven't
finished entering the command.

transmit saturn.lniven dataset(inven.clist) +

Then, you press Enter, finish typing the command,

msgdataset(forlarry.text)

and press Enter again. TSO displays a message showing you that it successfully transmitted
the CLIST partitioned data set and the accompanying message.

You'd better straighten out the UPDATE CLIST as soon as possible. It would be a good idea
to print out a hard copy so that you can sit down with a cup of coffee and write some notes on
it. Since the accounting department's mainframe printer is near the coffee machine, you'll
send the printout there so that you can pick it up and get your coffee in one trip. You enter the
command to print it:

printds dataset(inven.clist(update)) dest(acctng)

You're not even going to try to fix the UPDATE CLIST until you've had a good hard look at
the printout. You log off by typing

LOGOFF

and head for the printer and coffee machine.

26.5 A Sample MVS Session 443

444

	Fake Your Way Through Minis and Mainframes
	Table of Contents
	Part I. Introduction
	A 2001 Preface to a 1994 Book
	Acknowledgments

	1 Introduction
	1.1 Why Should You Learn How to Use Minis and Mainframes?
	1.1.1 What This Book Assumes That You Know

	1.2 Minicomputers
	1.3 Mainframes
	1.4 Getting to Know an Operating System
	1.4.1 History and Culture
	1.4.2 Starting Up: Getting to Use the System
	1.4.3 Filenames
	1.4.4 How Files Are Organized
	1.4.5 On-line Help
	1.4.6 Dealing with Files: The Most Important Commands
	1.4.7 The Text Editor
	1.4.8 Printing Text Files
	1.4.9 Command Files
	1.4.10 Sending and Receiving Mail
	1.4.11 A Sample Session

	1.5 General Advice
	1.5.1 Filenames
	1.5.1.1 Wildcards
	1.5.1.2 Wildcards and File Deletion

	1.5.2 Mail
	1.5.3 The Text Editor
	1.5.3.1 Line Editors, Full-Screen Editors
	1.5.3.2 The Editing Buffer

	1.5.4 Looking at Text Files
	1.5.5 "Printing" on the Screen
	1.5.6 Reading and Writing
	1.5.7 Logging Off (or Out)
	1.5.8 Terminal Emulation and File Transfer
	1.5.8.1 Emulated Terminals

	1.6 Syntax Expressions in this Book
	1.7 Comments and Suggestions

	Part II. UNIX
	Chapter 2 UNIX: An Introduction
	2.1 History
	2.1.1 Today
	2.1.2 USENET

	Chapter 3 Getting Started with UNIX
	3.1 Starting Up
	3.1.1 Finishing Your UNIX Session

	3.2 Filenames
	3.2.1 Wildcards
	3.2.1.1 The Asterisk
	3.2.1.2 The Question Mark

	3.3 How Files Are Organized
	3.3.1 Relative Pathnames
	3.3.2 Moving between Directories

	3.4 Available On-line Help

	Chapter 4 Using Files in UNIX
	4.1 The Eight Most Important Commands
	4.1.1 Command Options: Switches
	4.1.2 Common Error Messages
	4.1.3 Listing Filenames
	4.1.3.1 Listing More than File Names

	4.1.4 Displaying a Text File's Contents
	4.1.4.1 Looking at Text Files One Screen at a Time

	4.1.5 Copying Files
	4.1.6 Renaming Files
	4.1.7 Deleting Files
	4.1.8 Controlling Access to a File
	4.1.9 Creating Directories
	4.1.10 Removing Directories

	Chapter 5 The UNIX vi Text Editor
	5.1 Entering vi
	5.2 Inserting Text
	5.3 Deleting Text
	5.4 Typing Over Existing Text
	5.5 Searching for Text
	5.6 Saving Your Changes
	5.7 Quitting vi
	5.8 Other vi commands

	Chapter 6 Using a UNIX System
	6.1 Printing Text Files
	6.1.1 Checking the Print Queue
	6.1.2 Canceling Your Print Job

	6.2 Command Files
	6.2.1 The Automatic Login Command File

	6.3 Communicating with Other Users
	6.3.1 Receiving Mail

	6.4 A Sample UNIX Session

	Part III. VMS
	Chapter 7 OpenVMS: An Introduction
	7.1 History
	7.1.1 Today
	7.1.1.1 Popular VMS Software

	7.1.2 VMS, DCL

	Chapter 8 Getting Started with OpenVMS
	8.1 Starting Up
	8.1.1 Finishing Your VMS Session
	8.1.1.1 Reconnecting

	8.1.2 Entering Commands
	8.1.2.1 Retrieving Previous Commands
	8.1.2.2 Aborting Screen Output
	8.1.2.3 Command Parameters
	8.1.2.4 Case Sensitivity

	8.2 File Names
	8.2.1 Wildcards
	8.2.1.1 The Asterisk
	8.2.1.2 The Percent Sign

	8.3 How Files Are Organized
	8.3.1 Moving Between Directories
	8.3.1.1 Default Directory? Current Directory?

	8.3.2 Querying Available Disk Space

	8.4 Available On-line Help

	Chapter 9 Using Files in OpenVMS
	9.1 The Eight Most Important Commands
	9.1.1 Command Options: Qualifiers
	9.1.2 Common Error Messages
	9.1.3 Listing File Names
	9.1.3.1 Listing More than File Names

	9.1.4 Displaying a Text File's Contents
	9.1.4.1 Looking at Text Files One Screen at a Time

	9.1.5 Copying Files
	9.1.5.1 Copying Files to Other Directories

	9.1.6 Renaming Files
	9.1.7 Deleting Files
	9.1.7.1 Purging Old Versions of Your Files

	9.1.8 Controlling Access to a File
	9.1.9 Creating Directories
	9.1.10 Removing Directories

	Chapter 10 The OpenVMS EVE Text Editor
	10.1 EVE and Special Keys
	10.2 Entering EVE
	10.3 Inserting Text
	10.4 Deleting Text
	10.5 Typing Over Existing Text
	10.6 Searching for Text
	10.7 Saving Your Changes
	10.8 Quitting EVE
	10.9 EVE On-line Help
	10.10 Other EVE Features

	Chapter 11 Using an OpenVMS System
	11.1 Printing Text Files
	11.1.1 Checking the Print Queue
	11.1.2 Canceling Your Print Job

	11.2 Command Files
	11.2.1 Symbols
	11.2.2 DCL Command Procedures
	11.2.3 The Automatic Login Command File

	11.3 Communicating with Other Users
	11.3.1 Sending an Existing File
	11.3.2 Receiving Mail
	11.3.2.1 Mail Folders
	11.3.2.2 Reading Mail
	11.3.2.3 Moving a Message to Another Folder
	11.3.2.4 Deleting Messages from a Folder
	11.3.2.5 Leaving the MAIL Program
	11.3.2.6 Saving a Message in a Text File

	11.3.3 On-line Help in the MAIL Program

	11.4 A Sample OpenVMS Session

	Part IV. OS/400
	Chapter 12 OS/400: An Introduction
	12.1 History
	12.1.1 Today
	12.1.1.1 Popular OS/400 Software

	Chapter 13 Getting Started with OS/400
	13.1 Starting Up
	13.1.1 Finishing Your OS/400 Session
	13.1.2 Entering Commands
	13.1.2.1 Command Parameters
	13.1.2.2 Positional Parameters
	13.1.2.3 Case Sensitivity
	13.1.2.4 The Four Types of Displays
	13.1.2.5 Important Special Keys

	13.2 File Names
	13.2.1 Wildcards

	13.3 How Files Are Organized
	13.3.1 Physical, Source Physical, and Logical Files
	13.3.2 The Library List and Your Current Library

	13.4 Available On-line Help
	13.4.1 The Search Index
	13.4.2 Navigating Help Screens
	13.4.2.1 Expanding Help Windows
	13.4.2.2 The User Support and Education Menu
	13.4.2.3 Hypertext Links

	13.4.3 The On-line Tutorial
	13.4.4 Other Helpful Features

	Chapter 14 Using Files in OS/400
	14.1 The 12 Most Important Commands
	14.1.1 Common Error Messages
	14.1.2 Listing File Names
	14.1.2.1 Listing a File's Members
	14.1.2.2 Listing a File's Members with the Program Development Manager

	14.1.3 Displaying a Text File's Contents
	14.1.3.1 Displaying a File's Members with the Program Development Manager

	14.1.4 Copying Files
	14.1.4.1 Copying Members
	14.1.4.2 Copying Members with the Program Development Manager

	14.1.5 Renaming Files
	14.1.5.1 Renaming Members
	14.1.5.2 Renaming Members with the Program Development Manager

	14.1.6 Deleting Files
	14.1.6.1 Deleting Members
	14.1.6.2 Deleting Members with the Program Development Manager

	14.1.7 Editing Your Library List
	14.1.7.1 Changing Your Current Library

	14.1.8 Creating and Deleting Libraries

	Chapter 15 The OS/400 SEU Text Editor
	15.1 Entering SEU
	15.1.1 Entering SEU from the Program Development Manager

	15.2 Line Commands
	15.2.1 Adding New Lines
	15.2.2 Moving Your Cursor Around

	15.3 Inserting, Deleting, and Typing over Words and Characters
	15.3.1 Duplicating Lines
	15.3.2 Deleting Lines
	15.3.3 Copying Lines
	15.3.4 Moving Lines

	15.4 Searching for Text
	15.4.1 Case Sensitivity

	15.5 Saving Your Changes
	15.6 Quitting SEU
	15.7 Other SEU Features
	15.7.1 SEU On-line Help
	15.7.2 Syntax Prompting

	Chapter 16 Using an OS/400 System
	16.1 Printing Text Files
	16.1.1 Printing a File Member from the Program Development Manager or SEU
	16.1.2 Checking the Print Queue
	16.1.3 Canceling Your Print Job

	16.2 Command Files
	16.2.1 The Automatic Signon Command File

	16.3 Communicating with Other Users
	16.3.1 Receiving Mail
	16.3.2 Inquiry Messages
	16.3.3 Sending an Existing File
	16.3.3.1 Receiving a File

	16.4 A Sample OS/400 Session

	Part V. VM/CMS
	Chapter 17 VM/CMS: An Introduction
	17.1 History
	17.1.1 CP: The Control Program

	Chapter 18 Getting Started with VM/CMS
	18.1 Starting Up
	18.1.1 The Logon Screen
	18.1.2 Entering CMS
	18.1.3 Entering Commands
	18.1.3.1 MORE . . .
	18.1.3.2 Aborting Screen Output
	18.1.3.3 Case Sensitivity

	18.1.4 Finishing Your CMS Session

	18.2 File Names
	18.2.1 Wildcards
	18.2.1.1 The Asterisk
	18.2.1.2 The Percent Sign

	18.3 How Files Are Organized
	18.3.1 Free Space on Your Disk

	18.4 Available On-line Help
	18.4.1 Help Function Keys
	18.4.2 Help Menus
	18.4.3 Command-Line Help
	18.4.3.1 Command-Line Help and Error Messages

	Chapter 19 Using Files in VM/CMS
	19.1 The Five Most Important Commands
	19.1.1 Command Options
	19.1.2 Common Error Messages
	19.1.3 Listing File Names
	19.1.3.1 Listing More than File Names

	19.1.4 Displaying a Text File's Contents
	19.1.5 Copying Files
	19.1.5.1 Changing a File's Format

	19.1.6 Renaming Files
	19.1.7 Deleting Files

	19.2 Sharing Files between Users
	19.2.1 Unlinking the Disk
	19.2.2 Other Ways to Link

	Chapter 20 The VM/CMS XEDIT Text Editor
	20.1 Entering XEDIT
	20.2 Customizing Your XEDIT Environment
	20.3 Prefix Commands
	20.3.1 Adding New Lines
	20.3.2 Moving Your Cursor Around
	20.3.3 Inserting, Deleting, and Typing over Words and Characters
	20.3.4 Duplicating Lines
	20.3.5 Deleting Lines
	20.3.6 Copying Lines
	20.3.7 Moving Lines

	20.4 Searching for Text
	20.5 Saving Your Changes
	20.6 Quitting XEDIT
	20.7 Other Useful XEDIT Features
	20.7.1 XEDIT On-line Help
	20.7.2 The Automatic Startup Macro
	20.7.3 The Split/Join Key

	Chapter 21 Using a VM/CMS System
	21.1 Printing Text Files
	21.1.1 Checking the Print Queue
	21.1.2 Canceling Your Print Job

	21.2 Command Files
	21.2.1 The Automatic Logon Command File

	21.3 Communicating with Other Users
	21.3.1 Sending Files
	21.3.2 Receiving Mail and Files
	21.3.2.1 Looking at a File in the Reader
	21.3.2.2 Saving a File from the Reader
	21.3.2.3 Discard a File from the Reader

	21.4 The FILELIST Program
	21.4.1 Copying Files
	21.4.2 Renaming Files
	21.4.3 Deleting Files
	21.4.4 Displaying A Text File's Contents
	21.4.5 Editing a File
	21.4.6 Printing a File

	21.5 A Sample VM/CMS Session

	Part VI. MVS
	Chapter 22 MVS: An Introduction
	22.1 Batch Jobs
	22.2 Interacting with MVS
	22.2.1 TSO
	22.2.2 ISPF
	22.2.3 CICS
	22.2.4 Other MVS Components

	22.3 History

	Chapter 23 Getting Started with MVS
	23.1 Starting Up
	23.1.1 VTAM
	23.1.2 Logging On
	23.1.2.1 Reconnecting

	23.1.3 Entering Commands
	23.1.3.1 Aborting Screen Output
	23.1.3.2 Command Parameters
	23.1.3.3 Long Commands
	23.1.3.4 Case Sensitivity
	23.1.3.5 Command-Line Options

	23.1.4 Finishing Your MVS Session

	23.2 File Names
	23.2.1 Sequential and Partitioned Data Sets
	23.2.2 Line Numbers and Data Sets
	23.2.3 Naming Data Sets
	23.2.3.1 The Members of a Partitioned Data Set

	23.2.4 Wildcards

	23.3 How Files Are Organized
	23.4 Available On-line Help

	Chapter 24 Using Files in MVS
	24.1 The Seven Most Important Commands
	24.1.1 Common Error Messages
	24.1.2 Listing Data Set Names
	24.1.2.1 Listing a Catalog's Data Sets
	24.1.2.2 Listing a Partitioned Data Set's Members

	24.1.3 Looking at Data Sets
	24.1.4 Copying Data Sets
	24.1.4.1 Copying and Partitioned Data Sets

	24.1.5 Renaming Data Sets
	24.1.6 Deleting Data Sets
	24.1.7 Allocating Data Sets
	24.1.7.1 Allocating Existing Data Sets
	24.1.7.2 Allocating New Data Sets
	24.1.7.3 Unallocating Data Sets
	24.1.7.4 Finding Out a Data Set's Allocation Status

	24.1.8 Adding a Data Set to a Catalog

	Chapter 25 The MVS ISPF Text Editor
	25.1 The ISPF Text Editor
	25.2 Entering the ISPF Editor
	25.2.1 Customizing Your Editor's Environment

	25.3 Line Commands
	25.3.1 Adding New Lines
	25.3.2 Moving Your Cursor Around

	25.4 Inserting, Deleting, and Typing over Words and Characters
	25.4.1 Duplicating Lines
	25.4.2 Deleting Lines
	25.4.3 Copying Lines
	25.4.4 Moving Lines

	25.5 Searching for Text
	25.6 Saving Your Changes
	25.7 Quitting the ISPF Editor
	25.7.1 On-line Help in the Editor

	25.8 TSO's EDIT Text Editor
	25.8.1 Starting the Editor
	25.8.2 Creating a New Data Set
	25.8.3 Line Numbering and the EDIT Editor
	25.8.4 Input Mode and Edit Mode
	25.8.5 Displaying the Data Set's Current Contents
	25.8.6 The Current Line
	25.8.7 Adding New Lines
	25.8.8 Editing Existing Lines
	25.8.9 Deleting Lines
	25.8.10 Copying Lines
	25.8.11 Duplicating Lines
	25.8.12 Moving Lines
	25.8.13 Searching for Text
	25.8.14 Saving Your Changes
	25.8.15 Quitting the TSO Editor
	25.8.16 On-line Help and the TSO Editor

	Chapter 26 Using an MVS System
	26.1 Printing Data Sets
	26.2 Command Files
	26.2.1 The Automatic Logon Command File

	26.3 Communicating with Other Users
	26.3.1 Sending Files
	26.3.2 Receiving Mail and Data Sets

	26.4 ISPF
	26.4.1 Allocating Data Sets
	26.4.2 Copying Data Sets
	26.4.3 Renaming Data Sets
	26.4.4 Deleting Data Sets
	26.4.5 Displaying A Data Set's Contents
	26.4.6 Printing a Data Set

	26.5 A Sample MVS Session

